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ABSTRACT

Distributed source coding (DSC) depends strongly on accu-
rate knowledge of correlation between sources. Previous works
have reported capacity-approaching code constructions whenex-
actknowledge of correlation is available at the encoder. However,
in many applications exact correlation information may not be
available, and correlation estimation is necessary. While error in
estimation is inevitable, the impact of estimation error on compres-
sion efficiency has not been sufficiently studied for the DSC prob-
lem. In this paper we study correlation estimation subject to com-
plexity constraints, and its impact on coding efficiency in a DSC
framework. In particular, we consider the case where estimation
entails information exchange between spatially separate sources
and thus correlation estimation is subject to rate constraints. We
first derive optimal strategies for information exchange that min-
imize the rate penalty due to inaccurate estimation, under con-
straints on the number of bits that can be exchanged between sources.
Experimental results show that significant gain is possible by opti-
mally exchanging information. We then derive analytical expres-
sions to quantify the rate penalty, and analyze how rate penalty
changes with a priori knowledge of correlation. In addition, we
present a model-based estimation method which can achieve more
accurate estimation results compared to directly inspecting the data.

1. INTRODUCTION

Distributed source coding (DSC) addresses the problem of com-
pression of correlated sources that are not co-located. The Slepian-
Wolf theorem [1] states that two correlated sources can be opti-
mally encoded (compressed at a rate approaching their joint en-
tropy) even if the encoders only have accesses to the two sources
separately, as long as both encoded streams are available at the
decoder. Practical code constructions exploiting the Slepian-Wolf
theorem have been proposed recently based on channel coding [2,
3, 4], and capacity-approaching code constructions have been re-
ported using turbo codes or low-density parity-check codes (LDPC).
These works requireexactknowledge of correlation available at
the encoder, since the correlation information is necessary in set-
ting up the channel code rate. However, in many applications exact
correlation information may not be available beforehand, and one
would need to estimate it as part of the coding process.1 While
estimation error is inevitable, the impact of estimation error on
compression efficiency has not been sufficiently studied for the
DSC problem. Note that in many DSC applications only verylim-
ited information exchangebetween sources is feasible or desirable

1Note that in some cases, lack of an accurate correlation model is ac-
ceptable if there exists feedback from decoders to encoders [3], but this
leads to an increase in overall delay.

(e.g. camera sensors, DSC-based hyperspectral imagery compres-
sion [6]), for complexity and power consumption reasons. This
means that correlation estimation has to operate under rate con-
straints.

In this work we derive the optimal information exchange strat-
egy in correlation estimation, and study the rate penalty caused by
estimation error. We first derive the optimal strategy for informa-
tion exchange that minimizes the rate penalty due to inaccurate
estimation, under constraints on the total amount of information
that can be exchanged between sources. In [5], a similar idea has
been investigated to estimate blocking probability in a network.
This work proposes a method to allocate sample points to each
network link to minimize variance of the estimator. In compar-
ison, our independently derived results are specific to DSC and
focus on minimizing an encoding rate penalty. Using the optimal
information exchange strategy, we then analyze the relationship
between the coding rate penalty and the amount and type of in-
formation that was exchanged. We derive analytical expressions
to quantify the rate penalty, and analyze how rate penalty changes
with a priori knowledge of correlation. In addition, since in many
applications we may have information about the statistical mod-
els of the data, we present a method that takes advantage of this
knowledge, leading to better estimation accuracy as compared to
directly inspecting the samples.

This paper is organized as follows. In Section 2 we define
the problem and present the estimation process. In Section 3 we
derive the optimal information exchange strategy and study the
rate penalty due to estimation error. In Section 4 we present a
model-based estimation method. Finally, Section 5 concludes the
work.

2. PROBLEM DEFINITIONS AND CORRELATION
ESTIMATION

Consider the system in Fig. 1, where two correlated sourcesX
andY are encoded separately and decoded jointly. Here we as-
sume thatX andY are vector sources of sizeM , which will be
coded bit-plane by bit-plane. We will haveN bit-planes for each
source, withM binary samples in each bit-plane. For the purpose
of DSC we are interested in the correlation between bit-planes of
same significance inX andY . Specifically, following the nota-
tion in Figure 1, we assumeXi,j , Yi,j are i.i.d. equiprobable bi-
nary random variables. In addition,Xi,j andYi,j are correlated
with crossover probabilityPr[Yi,j = 1|Xi,j = 0] = Pr[Yi,j =
0|Xi,j = 1] = pi < 0.5, i.e. Pr[Xi,j 6= Yi,j ] = pi.

The crossover probabilitypi varies from bit-plane to bit-plane.
This situation can arise in many source coding problems. For
example, in [6], a DSC based hyperspectral image compression
system is proposed by applying set-partitioning on wavelet trans-
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(a) X and Y are two correlated sources 
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(b) X and Y consist of N bit-planes of M samples.  Xi,j and Yi,j 
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The correlations are different for different bit-planes. 
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Fig. 1. X andY are two correlated sources separately encoded and jointly
decoded.

formed data to extract bit-planes. In this caseXi,j , Yi,j are the
samples of theith bit-planes of the wavelet coefficients of two
spectral bands, and different bit-planes are correlated to different
extents. Our formulation could be applied to other scenarios where
input sources are mapped into a bit-plane representation and cor-
relations between corresponding bit-planes of two sources are ex-
ploited via DSC [7, 8].

X and Y are separately encoded and jointly decoded. We
compressY losslessly, which requiresH(Yi,j) = 1 bits. Accord-
ing to [1], the theoretical limit of encodingX (in bits per sample)
is H(Xi,j |Yi,j) = H(pi) = −pilog2(pi)− (1−pi)log2(1−pi).
Previous works have reported code constructions that can approach
this theoretical limit, when thepi’s are knownexactlyat the en-
coder. However, in many situations thepi’s are not known exactly
and have to be estimated. When there exists an estimation error
4pi > 0 there will be a penalty in compression efficiency. On
average, this penalty, in bits/sample, is given by:

4H =
1

N

N−1X
i=0

(H(pi +4pi)−H(pi)) (1)

Suppose the encoders use the following procedure for corre-
lation estimation: the first encoder samplesni ¿ M samples of
Yi,j and sends to the second encoder, which can use this informa-
tion to encodeX. The total number of binary samples exchanged
is limited to benT , i.e.

PN−1
i=0 ni = nT . We would like to

havenT ¿ N × M in order to keep the information exchange
cost small, because this cost is usually non-trivial for DSC appli-
cations. For example, in some sensor network applications, the
power consumption in inter-node communication is an order of
magnitude larger than that of computation. Other examples arise
in image/video compression in embedded environments, e.g., hy-
perspectral image compression in satellites [6], video encoding in
mobile devices, etc. In these applications the encoder system may
only have enough internal memory to accommodate the data of the
current spectral band/video frame (since the application programs
and operating systems may have occupied significant portions of
the internal memory). In order to estimate the bit-plane crossover
probabilities, the system would need to fetch the data of the neigh-
boring frames stored in external memory. Such external memory

accesses usually come at the cost of additional power consumption
and delay. For example, while some sophisticated CPU/DSPs can
handle multiple arithmetic operations in a single cycle, accessing
external memory data may incur latency in an order of tens of cy-
cles [9, 10]. So it is desirable to limit the total amount of data
exchanged.

By inspecting theni pairs(Xi,j , Yi,j) now available, an es-
timate ofpi can be computed beforeX is encoded. We use the
upper bound of the(1− ω)× 100% confidence interval as an es-
timator for a population proportion [11], given by

p̂i =
si

ni
+ zω/2

p
pi(1− pi)/ni

≈ si

ni
+ zω/2

r
si

ni
(1− si

ni
)/ni (2)

Heresi is the number of inspected samples such thatXi,j 6= Yi,j ,
andzω/2 is a constant that depends on the chosen confidence in-
terval, e.g.,zω/2 = 1.96 for a95% confidence interval. Note that
we choose the upper bound as the estimator to minimize the risk
of decoding failure, at the expense of some encoding rate penalty.

With this estimation, we are(1 − ω) × 100% confident (sta-
tistically) that the truepi are within si

ni
± zω/2

p
pi(1− pi)/ni.

Hence the estimation error4pi = p̂i − pi is bounded by0 ≤
4pi ≤ 2zω/2

p
pi(1− pi)/ni with probability1− ω. In the fol-

lowing we assume

4pi = k
p

pi(1− pi)/ni (3)

wherek is a constant that depends on the desired confidence inter-
val.

Note that4H, the rate penalty caused by correlation estima-
tion, is a function of (i){pi}, correlation of different bit-planes, (ii)
nT , total number of samples used to estimate correlation, and (iii)
{ni}, allocation of samples to different bit-planes. In the follow-
ing section, we investigate: (i) an optimal information exchange
strategy, i.e., given{pi}, nT , we derive the optimal{ni} to min-
imize4H; (ii) given the optimal information exchange strategy,
we study how4H changes withnT . Note that the result in (i)
requires the knowledge of{pi}. In practice,{pi} is obviously
unknown. However it is very likely that some of the information
known a priori can be used to select adequate{ni}’s. For exam-
ple, the relative values of{pi} may be known (e.g.,pi < pj if
pi corresponds to a more significant bit-plane thanpj). Moreover,
the range of values to be expected may also be known for eachi.
In the following section we also analyze how sensitive4H is to
uncertainty in{pi}.

3. OPTIMAL INFORMATION EXCHANGE

3.1. Optimal Information Exchange Strategy

Our first problem is to find the optimal number of samples to ex-
change,{n∗i }, which minimizes4H. From (1), we can approxi-
mate4H by using Taylor series expansion

4H ≈ 1

N

N−1X
i=0

H ′(pi)4pi, (4)

where4pi is given by (3) and differentiatingH(pi) givesH ′(pi) =
ln( 1

pi
− 1). To find{n∗i }, we solve the following constrained op-

timization problem: min{ni:
PN−1

i=0 ni=nT }4H.



By the Lagrangian optimization method,{n∗i } is derived as

n∗i = nT
α

2
3
iPN−1

i=0 α
2
3
i

(5)

where

αi = ln(
1

pi
− 1)k

p
pi(1− pi). (6)

Equations (5) and (6) give the optimal sample allocation to min-
imize 4H for a given{pi}. It is useful to evaluate how much
degradation can be caused by improperly allocating the samples
instead of using the optimal allocation. For example, a simple
strategy would be to allocate the same number of samples to all
bit-planes, i.e.,ni = n/N . We define the relative degradation,D,
with respect to this uniform sampling by

D =
4Heven −4Hoptimal

4Hoptimal
× 100%

where4Heven,4Hoptimal are the4H resulting from evenly
and optimally allocating the samples respectively. Experimental
results show that evenly allocating the samples can incur signif-
icant degradation. For example, for a particular{pi} ={0.475,
0.47, 0.083, 0.08} and withnT = 4096 using90% confidence in-
terval,D =26.7544%. Note thatD would vary according to how
the bit-planes are correlated.

Experimental results on real data show similar findings. We
have evaluated the relative degradation using a real hyperspectral
image compression system [6]. Our preliminary experimental re-
sults for this real data set show that the performance degradation
matches what is predicted by our model (see [6] for details).

3.2. Rate Penalty Analysis

Now we study how4H changes withnT . Having an expression
for 4H as a function ofnT allows the encoder to select appro-
priate values fornT , given that increasingnT leads to additional
overhead but also reduces the rate increase due to inaccurate es-
timation. We can evaluate how4H changes withnT using the
optimal information exchange strategy. This can be determined
exactly by (1). Moreover, when4pi is sufficiently small,4H
can be approximated by (4) with{n∗i } given by (5), resulting in:

4H ≈ β/
√

nT (7)

where

β =
1

N
(

N−1X
i=0

α
2/3
i )3/2. (8)

Sinceαi depends only onpi, β is independent ofnT . So4H is
inversely proportional to

√
nT .

3.3. Sensitivity Analysis

The optimal sample allocation in (5) requires the knowledge of
{pi}. However, in practice, a priori knowledge of{pi} may not
match the true correlation. Here we analyze how this uncertainty
affects the rate penalty. Letp = {pi} be the vector of “true”
correlation, and letp+4q = {pi +4qi} be our a priori estimate
of correlation, where4q is the error. Givenp + 4q, we can
usep +4q in (5), to compute a (sub-optimal) sample allocation

ni(p + 4q). In order to estimate the difference with respect to
the optimal allocation,ni(p), we use a Taylor series expansion

4ni = ni(p +4q)− ni(p) ≈ 5ni(p)′4q. (9)

Denote the rate penalty function4H = f(n;p, nT ), where
n = {ni} is the vector of sample allocations. The increase in4H
due to sub-optimal sample allocation can be approximated by

4f = f(n∗ +4n;p, nT )− f(n∗;p, nT )

≈ 1

2
4n′ 52 f(n∗;p, nT )4n (10)

where4n = {4ni} is given by (9). (10) can be derived by
Taylor series expansion and noticing that5f(n∗;p, nT )′4n is
zero since4n is along the direction of linear constraint

P
ni =

nT . Evaluating (10) we obtain

4f ≈ γ

n
5/2
T

‖ 4nS ‖2 (11)

whereγ = 3
8N

(
P

α
2/3
i )5/2 depends onp only and hence is a

constant with respect to a particular allocation, and4nS = [4ni

α
1/3
i

]

is a weighted version of4n. Using (9) and (11) we can evaluate
relative degradationD due to error in a priori knowledge,4q.
With the previous examplep = [0.475, 0.47, 0.083, 0.08]′ and a
5% error in a priori knowledge,D = 1.6766%. Note that using
p+4q directly to set up channel coding rate may cause decoding
error sincepi +4qi may be less thatpi. Instead, by usingp+4q
to determine a sample allocation and (2) as the estimator to set
up channel coding rate we are guaranteed thatp̂i is larger than
pi with probability (1 − ω/2), and we can bound decoding error
systematically.

4. MODEL-BASED ESTIMATION

In many applications we may have information about the statisti-
cal models of the data. For example, it is well known that DCT
coefficients are well modeled by a Laplacian distribution [12]. In
this section we present a method to take advantage of any such a
priori model knowledge. The method can result in more accurate
estimation than the direct estimation method presented in section
2.

The basic idea is to estimate first the probability density func-
tions (pdf) of the data (X, Y, andZ = Y − X), and then use
the estimated pdf to derive the crossover probabilities for each bit-
plane. Assume thatY = X + Z, with X andZ independent.
We start by estimating the pdf’sfX(x) andfZ(z). This can be
done by choosing appropriate models for the data samples, and
estimating the model parameters using one of the standard param-
eter estimation techniques, e.g., maximum likelihood estimation
(MLE), expectation-maximization (EM), etc.

Once we have estimatedfX(x) andfZ(z) we can derive the
crossover probabilities at each bit-plane as follows. The event
that crossover does not occur corresponds to the shaded regions
in Fig. 2. Hence we can estimate the crossover probability at bit-
planel by p̂l = 1− I(l), whereI(l) is given by

I(l) =
X

i

Z Z
Ai

fXY (x, y)dxdy

=
X

i

Z Z
Ai

fX(x)fY |X(y|x)dxdy (12)



The conditional pdffY |X(y|x) can be found to be equal to

fY |X(y|x) = fZ(y − x) (13)

and the integral in (12) can be readily evaluated for a variety of
densities. In practice we only need to sum over a few regions,Ai,
where the integrals are non-zero. Note that the formulation agrees
with the observation that whenl is small (i.e., least significant bit-
planes) the crossover probability is close to0.5, since in such cases
Ai are small and evenly distributed throughout the sample space,
and hence for most joint pdf (12) will giveI(l) close to0.5.
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Fig. 2. Crossover probability estimation. The shaded square regions
Ai correspond to the event that crossover does not occur atlth bit-plane.
E.g., considerl = 2 (i.e., the2nd bit-plane), whenX takes the value0,
crossover does not occur whenY takes the value in0 to 3, or 8 to 11, ...,
i.e., whenY is in m×2l to (m+1)×2l−1, wherem is an even number.

To compare the model-based estimation with the direct estima-
tion, we generate i.i.d. Laplacian random samplesX andZ with
different model parameters. We use the crossover probability defi-
nition according to [8], i.e., crossover occurs atlth bit-plane when
X andY do not fall into the same quantization bin of size2l. In the
model-based estimation MLE is used to estimate the model param-
eters. Fig. 3 compares the estimation results at the5th bit-plane.
The deviation here is with respect to the empirical crossover prob-
ability calculated using all the samples. As shown in the figure,
substantial reduction in the deviation is possible using the model-
based estimation. This is because at the5th bit-plane the crossover
probability is of the order of10−3. Thus direct estimation would
need to exchange several thousands samples in order to obtain re-
liable estimation results. In general model-based estimation can
achieve significant improvement when the crossover probability is
small. Those are also the situations when we can obtain significant
data compression using DSC.
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Fig. 3. Comparing direct estimation and model-based estimation.

5. CONCLUSIONS

We have derived the optimal information exchange strategy that
minimizes the rate penalty due to inaccurate estimation, under con-
straints on the number of samples that can be exchanged between
sources. Experimental results have shown that, for a particular cor-
relation, an arbitrary sample allocation can cause significant degra-
dation (e.g.,26% increase in rate penalty). Experimental results on
hyperspectral image data show similar findings. We have also pre-
sented analytical expressions to quantify the rate penalty due to
estimation error. Rate penalty is approximately inversely propor-
tional to the square root of the total number of sample exchanged.
Note that the result in optimal information exchange requires the
knowledge of correlation, so we have also analyzed how a pri-
ori correlation knowledge affects the rate penalty. In addition, we
have presented a model-based estimation method that can reduce
estimation error significantly compared to directly inspecting the
samples. The model-based estimation is particularly useful in im-
age/video compression, where knowledge of the statistical model
of the data is often available.
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