Figure 1: Adaptive quantizer. The current input distribu-
tion is estimated based on previously quantized samples.

In some adaptive quantization techniques[5, 6] the ob-
jective is to adjust the support region of a uniform scalar
quantizer, so that this quantizer can be used in conjunc-
tion with a predictor in a DPCM system. In [7] an initial
tree structured vector quantizer (TSVQ) is first designed,
with a rate higher than the rate available for transmission.
Then the adaptive algorithm chooses which subtree of the
previously designed tree has to be used at every instant, by
keeping counts of the number of samples that corresponded
to each of the nodes of the tree, selecting the subtree which



minimizes the expected distortion. While both methods re-
sort to an underlying of the input source, here we seek to
explicitly obtain the model before redesigning the quantizer.

The topic of adaptation has been extensively dealt with
in the area of lossless data compression, where the two main
approaches are [4] are model-based (e.g. Arithmetic Cod-
ing (AC) or adaptive Huffman coding) and dictionary-based
(e.g. Lempel Ziv (LZ) coding), where the adaptivity comes
from dynamically updating, respectively, the model and the
dictionary. In the AC algorithm [1], in the simpler case of a
binary source, the encoder has to update the probabilities
of the 0°s and 1’s. If the source is stationary and the model
is correct then AC can provide a performance very close to
the first order entropy. However, in real life environments,
where sources need not be stationary, the performance of
the algorithm is determined by how well it adapts to the
changing statistics of the source. In that sense, the model
tracking part of the AC algorithm plays an essential part
in the system performance. It is also worth noting the link
between the compression problem and that of obtaining of
a good model for random data, which is the basis for the
minimum description length (MDL) technique introduced
by Rissanen [8].

Section 2 will describe the algorithm by detailing the
building blocks of Fig. 1. Section 3 will present some ex-
perimental results.

2. ADAPTATION ALGORITHM

2.1. Estimation of input distribution

Objective 1 Given the N most recent quantized sample
occurrences #(n — N), &é(n — N + 1), ..., £(n — 1), where
N might be a constant or can be changed by the speed adap-

tation algorithm, find an estimate f(z) of the probability
distribution function of the source, f(z)1

We will use the following notation. The quantizer has
L reconstruction levels r; with L — 1 decision levels denoted
b1,...,bz_1. The counts of how many samples (out of the
last N) fell into each of the bins are denoted ng,...,nL_1,
where no and nr_; are the number of samples that fell in
the “outer” bins. Our goal is to, given the knowledge of
no,...,nr—1 and b1,...,br_1, find a good approximation
f(:c) From the observed data we can deduce that:

po [ e = (1)
= z)dr = —
by N
fort =0,...,L — 1, and by = —o0,br = 4+o0. Although
strictly speaking the equality holds only in the limit as NV
goes to infinity, it is a sufficiently good approximation.
The task of determining f(:n) is complicated by the fact
that we are limiting ourselves to accessing only the quan-
tized data. The problem can be separated into two parts:
(i) estimating f(:n) in the two outer bins, where we can only
rely on knowing one of the boundaries, and (ii) estimating
f(:c) within the inner bins, where we know both boundaries.

L Although we here refer to f(z) as the pdf, we do so by an
abuse of language. Strictly speaking we are gathering short term
data and assuming that there is an underlying pdf or model which
produced the data.

For simplicity, we resort to approximation fucntions f(:n)
that are piecewise linear. In the more general case, we can
choose a set of P, P > L, points, zo,...,zp—1 and our ob-
jective will be to find f(zo), ey f(zp_1), while f(:c) can be
linearly interpolated at other points z. The z; can be cho-
sen arbitrarily within the estimated dynamic range of the
source, say [bo, bz]. The task of approximating the dynamic
range will be dealt with in more detail in section 2.1.1.

Assume, thus, [bo,br] given and choose P > L points
which, for simplicity we assume equally spaced. Further
assume that the pdf f(z) that we are trying to approximate
is smooth in some sense. Then we can aim at finding f such
that

bit1 R
/ f(z)dz = P;, for 1=0,...,L -1 (2)
b

i

Since f is a plecewise linear approximation we can write
the equations (2) as a function of the P unknowns f(zo),

.y f(mp_1). This can be seen as a typical inverse problem
which in the case of P > L is overdetermined [9]. A linear
regularization method that has the advantage of resorting
to the pdf smoothness assumption is described in [10]. We
now propose a simpler approach that requires only P = L
points and involves no iterations.

fx)

f(x)

Figure 2: Notation used in the model estimation algorithm.
The b;’s denote the decision levels, with by and b7 denoting
the outer boundaries of the finite support approximation.
The z; are the knots of the piecewise linear approximation.

Assume again that we have chosen the boundaries bo
and bz, such that f(bo) = f(bL) = 0, as our estimate of
the dynamic range (Refer to Fig. 2). Furthermore, assume
that we estimate that our choice of bg, bz is expected to
“leave out” a fraction of the tail of the distribution such
that f_bio f(z)dz = beOO f(z)dz = Pous (see section 2.1.1).
Then, denoting Py = Py — Pour and P_; = P11 — Pout
with P/ = P, fori = 1,...,L — 2, we can choose P = L
points z; at which we need to calculate the function values
f(zi) such that f will meet the constraint of (2). To restrict
the number of degrees of freedom we arbitrarily choose the
z; to be center of each of the inner bins.

Now we can rewrite (2) by computing the integrals over

each bin [b;, bi4+1] of f(z) Our goal is to find the f(xl) such



that

(f(zi) + F(b) (@i = bi) + (F (1) + f(bis1)) (big1 — i) = Z(P;

3
where f(bz) can be found by linear interpolation. Note that,
since we have only one “knot” per bin, each of the equations
(3) involves at most three unknowns f(zi—1), f(z:), f(zit1)
so that the system we have to solve is

T-f=p' (4)

where T is a L x L tridiagonal matrix and p’ denotes the
vector of observed probabilities (with the corrected tails).
Efficient gaussian substitution methods can be used to solve
this system [9].

2.1.1. Fstimation of the dynamic range

Objective 2 Find by and by, defined as the points such
that we estimate the source pdf to be “almost zero”. For
these points we will have thus f(bo) =0 and f(br) = 0.

The difficulty here stems from the fact that we have
limited information: we know that no, resp. nr_1, samples
fell below b1, resp. above bz_1, but we need to use some of
our assumptions to estimate bo and bz. Obviously the main
assumption is that the outer bins should contain the tails
of the distribution. Based on the available information, i.e.
the counts n;, the current decision levels b;, ¢ =1, L—1, and
b5’ and b9'? the dynamic range estimates obtained in the
previous iteration, we will consider three cases as follows
(we outline the algorithm for adjusting bo, but the same
ideas apply for bz ):

(1) if no =0, i.e. the outer bin is empty, we readjust the
boundaries so that by = b1 (unless the adjacent bin is also
empty), and we then “split” one of the inner bins (e.g. the
one where we observed more samples), say 7, and we assign
n;/2 samples to each of the newly formed bins.

(2) if no /(b1 — bgld) > n1/(b2 — b1) then clearly our current
estimate is incorrect since we assume smoothly decaying
tails for the distribution and we are observing more “sample
density” in the outer bin . We have to expand the quantizer
range and thus choose the new boundaries so that the two
adjacent bins have the same sample density, thus we pick
bo = b1 — (no/n1)(b2 — bj)

(8) the two previous cases occur when there is a large
enough disparity between our current estimate and the “true”
short term source distribution. When our estimate is suffi-
ciently good that neither (1) nor (2) apply, we assume that
the tail of the distribution is gaussian. We estimate the
mean and variance based on the n»; and and we choose the
outer boundary so that the tail beyond by has a probability
of lessA than some threshold P,y: and thus the requirement
that f(bo) ~ 0 is met.

Note that cases (1) and (2) have to be dealt with sep-
arately since they represent cases where our previous esti-
mates are incorrect and therefore would result in incorrect
mean and variance estimates. Furthermore, it is clear that
cases (1) and (2) would not occur if we updated the quan-
tizer sufficiently often (as in [5] where the quantizer is re-
computed after each quantized sample is received). In that
sense (1) and (2) are safeguards to enable a less complex
operation of the algorithm.

2.2. Quantizer design for estimated distribution

Objective 3 Redesign the quantizer for the given distri-
bution f. This can be done by using an optimal quantizer
design algorithm which assumes f as the input distribution.

As an example, we can design a constant rate quantizer
simply using the Lloyd-Max algorithm [11] for the given
piecewise linear approximation. The task is to choose a
new set of bin boundaries b;, as well as the corresponding
reconstruction levels r}, such that the expected distortion
for the distribution f(:n) is minimized. Note that, as is the
case with Huffman coding for example, one can guarantee
optimality provided the model matches the source distribu-
tion. The same framework can be used with a variable rate
entropy constrained design [12].

It is important to note that once we have estimated a
model (i.e. chosen the f(z;)) the model is not modified by
the algorithm that redesigns the quantizer. Furthermore,
since our system keeps a running memory of the counts for
each bin (the counters are not reset to zero after the quan-
tizer has been redesigned) we also change the counters to
adjust for the new bin sizes. Therefore, after the quantizer
design stage, and calling b. and n!, respectively, the new
bin boundaries and the updated estimated bin counts, we
have that:

Vigr
ni=N / f(z)dz. (5)
b/

2.3. Determining the speed of adaptation

Objective 4 Dynamically determine at every iteration the
number of past samples N that should be used in estimating

the pdf.

The classes of error produced by the choice of memory
can be separated into two classes:

(a) if not enough memory (N small) is used we may be
dealing with a non-significant (in a statistical sense) set of
data and our estimation will necessarily be erroneous. (b)
if the source statistics (as determined by time averages over
finite windows) change over time then an excess of memory
(N large) will not permit sufficient adaptivity and will result
in loss of performance.

In our experiments we choose to keep two set of coun-
ters, one accumulating the long term statistics, the other
accumulating the latest pattern of sample arrivals. We
choose to use the short term data to estimate the model
only if the difference between short and long term data ex-
ceeds a threshold. In this way, we try to detect the changes
in statistics while avoiding always using a short term esti-
mate, and thus risking having to deal with non-significant
data.

3. EXPERIMENTAL RESULTS

In this section we present several examples to illustrate the
performance of the adaptive quantization scheme of Sec-
tion 2. A study of the convergence characteristics of the
algorithm can be found in [10]. Most examples are provided
for fixed rate quantizers at a rate of two bits per sample.
The examples with variable rate quantization indicate the



achieved SNR vs. entropy trade-off. Note that we use the
normalized SNR, log(o2/02) where 2 and o2 are respec-
tively the variance of the signal and that of the error and
are computed using time averages over finite windows.

3.1. Advantages of adaptivity

An adaptive algorithm can be useful even in the case of
stationary sources. In particular, adaptive schemes do not
require a previous design and can learn the distribution “on
the fly” (for instance, they could operate in “training mode”
part of the time, typically at the beginning of the transmis-
sion). Furthermore, because they are not designed for a
specific distribution they do not suffer the shortcoming of
loss of performance in the face of mismatch between the
actual source distribution and the one that was assumed in
the design. Two examples of this can be seen in Figs. 3(a)
and (b), where the behavior of the adaptive algorithm and
a Lloyd-Max quantizer are compared when the mean and
variance of the source, respectively, do not match those as-
sumed in the design.

A second advantage of using an adaptive algorithm is
that it can outperform systems that are designed consider-
ing only long term statistics, by attempting to find short
term trends in the data. As an example, Fig 4(a) shows
the performances of the Lloyd-Max algorithm (trained on
the sequence) and the adaptive algorithm for a bimodal
source which randomly switches between two states each
producing different mean. When an ii1.d. source is con-
sidered though, the adaptive approach will be less effective
although, as shown in Fig. 4(b) for a gaussian distribution,
only marginally so (less than 0.05d B). Note that the results
of Fig. 4 were obtained using the same parameters in the
algorithm (initilization, thresholds, etc) for both sources.
Fig. 5 shows that the advantage of adaptivity can also be
obtained within an entropy constrained variable rate quan-
tization framework [12].

3.2. Loss due to adaptivity

To estimate the loss due to adaptivity, we initialize the
adaptive algorithm with the optimal Lloyd-Max quantizer
trained on the gaussian i.i.d. source, rather than a uniform
quantizer as was usually the case. In this way, since our
first “guess” was optimal, the loss in performance is due
exclusively to the adaptivity.

In Table 1 the recurrence time is the period between
consecutive quantizer updates. The memory (measured in
units of the recurrence times) represents the number of sam-
ples that are considered to generate the new quantizer. For
instance a memory of 1.25 implies that the previous 50 sam-
ples are used when the recurrence time is 40, a memory of
+00 means that all previous samples are considered at every
update. We note that, as the number of samples becomes
small the main factor becomes the “non-significance” error,
i.e. not enough information is used in updating the quantiz-
ers. This error can be overcome by appropriate choice of the
speed of adaptation. Conversely, for long update intervals
the main factor becomes the error introduced by the algo-
rithm itself due to its manipulating quantized data, rather
than the original samples as in the Lloyd-Max algorithm.
This error can be seen to be very small.

Recurrence time 7' (samples)

Memory (times T') 40 200 400 2000
1.25 8.824 | 9.157 | 9.220 | 9.259

1.67 8.903 | 9.210 | 9.241 | 9.264

2.5 9.109 | 9.240 | 9.257 | 9.266

5 9.154 | 9.260 | 9.265 | 9.267

+o0 9.241 | 9.264 | 9.266 | 9.267

Table 1: SNR at different speeds of adaptation for an i.i.d.
source when the adaptive algorithm was initialized with
the Lloyd-Max quantizer designed on the actual data. The
Lloyd-Max performance is 9.271 dB.
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Figure 3: Adaptive vs. Lloyd-Max for Gaussian ii.d. source. (a) Mean mismatch. (b) Variance mismatch.
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Figure 4: Adaptive vs. Lloyd-Max. The SNR is the average measured over blocks of 2000 samples. (a) Bimodal source
(each mode has same variance but different mean). (b) i.i.d. gaussian source.
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Figure 5: Comparison in the entropy constrained case. The average entropy of the quantizer is used. (a) Bimodal source.
(b) ii.d. gaussian source.



