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ABSTRACT

In this paper, we present a rate control algorithm for
MPEG video. The goal is to minimize the distortion while
keeping the change in distortion between consecutive frames
small. We formulate this goal as a constrained optimiza-
tion problem and find a solution using an iterative gradient
search method. To reduce the computation cost, we pro-
pose a model based on spline curves to approximate the rate
distortion functions which also takes into account the frame
dependencies. Simulations on short video sequences show
that, at the same bit rate and buffer constraint, our tech-
nique generates output sequences with smaller and more
stable mean square error than other approaches, while main-
taining strictly constant bit rate for every group of pictures,
at the expense of higher computation cost.

1. INTRODUCTION

Digital video compressed with the MPEG [1] standard has
recently become increasingly popular for applications such
as CD-ROM and Video-CD storage. These are asymmet-
ric applications, where more computing power and process-
ing time can be spent in encoding while the encoded data
stream can be decoded with a relatively low cost. In decod-
ing, data is read out from disk at a strictly constant speed
thus making necessary a decoder buffer so that the video
stream can be decoded and played back synchronously. Be-
cause the buffer control strategy affects only the complexity
of the encoder, there is particular interest in strategies that
might be complex but will reduce the required buffer size
for a given video quality, or increase the quality for a given
buffer size.

Many buffer control methods [2, 3] only take into ac-
count the rate, not the distortion, in the algorithm. Other
methods control both the rate and quality by formulating
the problem as a delayed decision constrained optimization
problem and solving it using dynamic programming [4] or
Lagrangian techniques [5, 6, 7]. The optimal approaches re-
quire additional encoding delay and complexity but provide
optimal results in a rate distortion sense.

In this paper we formulate buffer control as a delayed
decision optimization and we solve it using an iterative gra-
dient search technique, which we introduced in [8]. In addi-
tion we propose a method for approximating rate and dis-
tortion functions by using spline curves which can be used
to significantly speed up the search procedure.

2. PROBLEM FORMULATION

In MPEG, a video sequence is divided into Groups of Pic-
tures (GOPs) with size equal to N frames. The GOP is
a basic access unit that can be decoded independently. In
this paper, we treat the GOP as a unit for buffer control.

The bit-rate and quality of MPEG video is controlled
by a quantization scale, mquant, which can be changed
over different macro blocks. In our formulation, the value
of mquant, denoted as g, is kept constant over an entire
frame. A complete system would consist of a rate con-
trol algorithm, such as the one described here, followed
by an adaptive quantization strategy of some sort which
would re-allocated bits among the macroblocks by chang-
ing their mquant. The rate derived from the rate control
algorithm would then be used as the “rate budget”. The
buffer control problem is to assign the quantization scale g;
for the tth frame in a GOP such that the overall quality,
measured by a pre-defined cost function, is optimized. Let
4= (q,q1,-..,q5-1)T be the quantization choices for the
frames in a GOP. When the quantization scales are set to q,
we define the code length and mean square error of frame
as the rate and distortion functions, denoted by r(z, q) and
d(1,q), respectively. r(z,q) and d(z,q) can be either actu-
ally measured during the encoding process, or calculated
from an approximation model. By using a vector expres-
sion for q, we are taking into account the “dependency”
of the problem, i.e., the distortion/rate trade off for pre-
dicted/interpolated frames depends on the frames that were
used to generate the prediction [6]. The buffer occupancy
after frame ¢ is coded is then:

b(i,q) =b(i —1,q9) + r(i,q) — R (1)

where R is the channel bit-rate in bits per frame. If b(3, q)
is smaller than zero, stuffing bits are padded to avoid un-
derflow and b(i, q) is assigned as zero.

We define the cost function as

J(a) = D(a)+wE(q) (2)

where
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and w is the weighting coefficient between D(q) and E(q).
The purpose of E(q) in the cost function is to minimize
the abrupt changes in quality and avoid “flicker” problems.
Note that, although we choose MSE as a quality measure
in this paper, it is also possible to use other measures that
take visual perception into account.

The problem can now be formulated as that of finding
q* such that:

*

a’ = argminJ(q) (5)

subject to
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where bpqz is the prescribed maximum buffer size. In (8)7
we force the final buffer occupancy to be less than or equal
to zero, and pad stuff bits at the end of GOP to ensure all
GOPs have the same number of bits.

This formulation leads to an integer programming prob-
lem with nonlinear cost function and nonlinear constraints.
These characteristics make the optimization problem diffi-
cult. Such problems can be solved using dynamic program-
ming techniques [4], where the true global optimal solution
can be obtained at the expense of high computational cost.
In this paper, we do not intend to obtain the global opti-
mal solution. Instead, we are only looking for reasonable
suboptimal solutions with reduced computation cost. To
achieve our goal we introduce (i) an approximate gradient
search technique and (ii) models for the rate and distortion
functions, which combined achieve results close to optimal
at a fraction of the complexity required to reach the optimal
solution.

3. PENALTY FUNCTION AND GRADIENT
SEARCH TECHNIQUE

Our first approximation is to change the integer-valued vari-
able in (6) into a continuous one, so that many optimization
techniques defined in continuous domain can be applied.
The constraints of (7) and (8) can be taken into account
by adding penalty functions to the cost, J(q). The penalty
functions are defined as

Pi(q) = max(0,b(i,q) — bmaz)’ (9)
Qla) = max(0,b(N —1,q))%.

The new cost function is
N-—2
$(a,c)=J(@+c| D Pl@)+Q@],  (10)
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where ¢ determines the amount of the penalty. The origi-
nal problem can be approximated by iteratively solving the
unconstrained problem of minimizing ¢(q,c¢) as ¢ — oc.

In order to solve the unconstrained problem efficiently,
we make the assumption that the cost function is smooth.
Our experiments [8] indicate that this assumption is usu-
ally realistic so that a nearly optimum point can be reached

using the gradient search technique. There are several it-
erative gradient search algorithms available for our prob-
lem [9, 8]. In this paper we consider the steepest descent
method, by which the negative direction of the gradient vec-
tor V¢(q)T is used as the search direction, and the vector
q is updated by the following

Qrt1 = qr — axVo(qr)” (11)

where o is a nonnegative scalar value obtained by mini-
mizing the function

ela)=¢ (ax —aVe(qx)") (12)

using a line search procedure [9, 8]. (See [8] for details).

4. APPROXIMATING THE RATE
DISTORTION FUNCTIONS

Our goal is to come up with reasonably good models of
r(1,q) and d(1, q) that enable us to speed up the search for
the optimal solution. Behavior at the macroblock level is
difficult to model. For example, for the predictive frames
(P and B), additional factors intervene such as the deci-
sion rules for selecting macroblock types as “intra” or “non-
intra”, and the strategy for the usage of motion vectors (for-
ward, backward, or both). In this paper, we use piece-wise
polynomials to approximate the frame level rate-distortion
curves of r(i,q) and d(7,q).

4.1. Intra-Frame Approximation

We first consider the influence of quantization scales within
a frame. This is useful not only for I frames, but also
for P and B frames after their reference frames are fixed.
The rate and distortion functions are, respectively, r(g) and
d(q), where g is a scalar variable. The first step is to com-
pute r(gq) and d(g) on several fixed g’s, called the “control
points”. In order to capture the exponential-decay prop-
erty of r(q), we choose 1, 2, 3, 5, 8, 13, 21, 31 as control
points. The function values at these control points can be
efficiently calculated by repeatedly quantizing and dummy-
coding (encoding without generating output stream). The
function value between two consecutive control points is in-
terpolated by a cubic polynomial f(q) = a-¢°+b-¢* +c-q+d
where the parameters «a, b, ¢, d can be determined by impos-
ing the zero and first-order continuity on the control points.
For example, if the four consecutive control points are go,
q1, g2, and g3, the parameters for the segment between g;
and g2 can be derived by solving the following linear equa-
tions for the rate (For the distortion, r is replaced by d):

s o
fl(gj) ; r(gf):r(qm (13)
Fla) = il

where f'(q) is the first-order derivative of f(g). Note that,
although we have defined 8 control points in our model, we
only need 4 control points to determine the interpolated
value for any given point.



4.2. Inter-Frame Dependency

The rate-distortion characteristic of the predictive frame (P
or B) depends on the quality of its reference frame(s). When
the reference frame has smaller MSE, the prediction residue
tends to be smaller, which results in a smaller rate and
distortion in the predictive frame. On the contrary, if the
MSE in reference is larger, not only the rate and distortion
of the predictive frame will become larger, but also more
macroblocks will be coded as “intra-block” (by the decision
rules used in [10]), which will decrease the dependency on
the reference frame. After some point, it will be completely
independent of the reference frame (see Fig. 1).
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Figure 1: MSE for a P frame in football sequence, plot as
function of MSE for its reference frame. Each solid line is
an MSE curve for a given mquant in the predictive frame.
The dashed line indicates the boundary where mquants for
the predictive and reference frames are equal.

To model the frame dependency for the distortion, we
denote the MSE of the predictive frame as d(p, q), and the
MSE of the reference frame as dr(gq), where g and p are,
respectively, the quantization scales for the reference and
predictive frames. For each value of ¢, we define the follow-
ing inter-frame dependency model:

d(p,q) = d(q,q) — a(q){d-(q) —d-(p)} ifp<q (14)
d(p,q) = d(q,q) if p>gq

where p is the only variable in the model. For each ¢, the
model parameters d(q, ¢) and a(g) can be determined by en-
coding and measuring the distortion at two values of p. In
our implementation, we only determine the model parame-
ters for the g at the 8 control points defined in the previous
subsection, and then, the entire d(p,q) is reconstructed by
using the intra-frame model from the control points. A sim-
ilar model does not work as well for the rate. From several
video sequences, we have observed that, for the quantiza-
tion scales between 3 and 24, the inter-frame dependency
for rate is reasonably low. The following model is used
(suppose the two measured points for p are p; and p2): use
linear interpolation of r(p1,q) and r(p2,q) if p1 < p < p2,
r(p1,q) if p < p1, and r(pz, q) if p > pa.

For B frames, where two reference frames are involved,
MSE function becomes d(p1, pz2,q), which is more difficult

to be characterized. In this paper, we simply evaluate the
dependency for one reference frame at a time by using the
above model, and we then pick the one with smaller MSE
values. This procedure simulates part of the strategy for
selecting “forward” or “backward” motion vectors in the

MPEG encoder.

5. SIMULATIONS

Our software simulations are based on the MPEG-2 encoder
implementation of [10].

5.1. Test on Gradient Search Algorithm

To show the effectiveness of our algorithm, we first test the
gradient search algorithm defined in Section 3. The cost
function for a given q is calculated by actually encoding the
GOP, and measuring the rate and distortion values. The
function only defined in the discrete integer grid of q, which
introduces two problems for the steepest descent algorithm.
The first problem is on the calculation of gradient vector,
where the derivative is required. In the simulation, the
derivative is approximated by first-order difference. The
second problem is that the exact line search can not be
applied. Instead, we create a search path consist of the
points that are closest to the line along the negative gradient
direction, and then search through those points. See [8] for
the details. One simulation result for the football sequence
is shown in Figure 2.
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Figure 2: PSNR of the first 22 frames in Football se-
quence (352 x 240, at 1152 Mbps). The 1st curve, global,
is obtained by exhaustive search. The 2nd, gradient, and
3rd curves correspond to our algorithm with w = 0 and
w = 10°, respectively. The last curve, tm5, was obtained
using the Test Model 5 rate control algorithm [10].

We can see from the results that the solution of our
algorithm is very close to the optimal one obtained by ex-
haustive search. Also, effectiveness of the squared difference
of MSE, E(q), is shown in the third curve, where w is set
to 10° and our solution maintains nearly constant PSNR.
Finally, compared to Test Model 5, note that we not only
achieve better PSNR, but also make the following possible:



(1) constant rate for GOP, (2) smaller MSE variation be-
tween consecutive frames, and (3) solution in small-buffer
case where TM5 fails. Our method offers the flexibility of
choosing an appropriate cost function while ensuring that
the buffer constraints are met. Additional results can be

found in [8].

5.2. Model Compliance Test

We test the accuracy of approximation model defined in
Section 4 by the following steps: We first encode [ frame and
P frame, measure and record the rate and distortion data,
for every possible quantization settings. Then, pick the data
at the following value for the control points: 1, 2, 3, 5, 8,
13, 21, 31 for intra frames, and 5, 13 for inter frames. Based
on these control points, we build the model and calculate
the estimated rate and distortion values. Then, the average
and maximum relative errors are calculated for the typical
operating range of quantization scales, which is from 3 and
24. The data from several different video sequences is shown
in Table 1. The low error on the average shows that the
model is accurate for most of the quantization settings, and
some larger maximum errors indicates there are some cases
where the model is incorrect.

Relative Errors for I frames

MSE BITS
avgerr maxerr avgerr maxerr
Football 0.88% 7.01% | 1.04% 6.32%
Claire 0.83% 4.37% | 0.34%  3.28%
Susie 1.08%  6.10% | 0.89% 6.11%
Miss America | 0.95%  3.84% | 0.65% 7.18%

Relative Errors for P frames

MSE BITS
avgerr maxerr | avgerr —maxerr
Football 0.39% 6.60% 0.66% 8.41%
Claire 0.88% 12.30% 2.49%  33.02%
Susie 1.24% 15.88% 2.92% 15.88%
Miss America | 0.89% 11.03% | 3.27% 45.82%

Table 1: Relative errors for [ and P frames. avgerr: average
€rror, mazerr: maximum error.

5.3. Gradient Search with Approximation Model

Our goal in modeling the rate and distortion functions is
not so much the accuracy of the model but the speed up
factors it allows while maintaining a near optimal solution.
In this part, we integrate the two parts and run a simu-
lation using gradient search algorithm with approximated
rate distortion functions. By using the model, the compu-
tation complexity is greatly reduced, because now, we only
have to evaluate the function value at fixed control points.
Also, because the rate and distortion functions are approx-
imated by a set of continuous piecewise polynomials, the
cost function is well-defined in the real-valued space. So, the
derivative of the cost function can be derived in close form,
and the line search can be performed exactly. After the al-
gorithm has converged, we simply round the value q to its

nearest integer and use it to encode the sequence. The sim-
ulation results for the football sequence show that our solu-
tion using models matches the one obtained by measurings
the actual rates and distortion functions, with only 1/10 of
the computations. This good performance for the football
sequence can be contributed to relatively small model error,
as shown in Table 1. More extensive testing and enhance-
ment is left for future work.

6. CONCLUSIONS

In this paper, we have demonstrated the feasibility of using
a gradient-based optimization algorithm for buffer control.
By using this technique, we are able to achieve strictly con-
stant bit rate per GOP, increase for overall quality (in MSE
sense), while decreasing the variation of qualities between
different frames. We also successfully reducing the com-
putations by introduce a rate-distortion model based on
piece-wise polynomials.
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