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Abstract

In this paper we investigate input dependent, vari-
able complexity algorithms to compute the DCT. The
basic goal of these algorithms is to not compute those
DCT coefficients that will be quantized to zero. These
algorithms exploit the fact that for compression appli-
cations (i) most of the energy is concentrated in a few
DCT coefficients and (i) as the quantization stepsize
increases an increased number of coefficients is set to
zero and reduced precision computation of the DCT
may be tolerable. Thus we propose two classes of algo-
rithms, the first one selectively prunes the DCT com-
putation while the second uses an approximate com-
putation, without floating point multiplications, that
ts matched to the quantization level selected.

1 Introduction

The Discrete Cosine Transform (DCT) [1] has been
used in many image and video compression standards
such as JPEG, MPEG1-2 and H.261/H.263 as signals
in the DCT transform domain can usually be repre-
sented with fewer bits as the energy tends to be clus-
tered in a few coefficients.

One of the major reasons for the continued popu-
larity of the DCT is the availability of numerous fast
algorithms. Whether these algorithms are exact or ap-
proximate a common feature in all of them is that they
operate with a fired number of operations independent
of the input or quantization level. An example of a fast
exact algorithm is shown in Figure 1 [2] for a size 8
1-D DCT. This algorithm requires only 13 multipli-
cations and 29 additions. The theoretical bound on
the number of nonrational multiplication for size 8 1-
D DCT is 11 [3] which is achieved as in [4] and [5] via
integer arithmetic and is adopted in many well-known
i[rr]l)plementation of DCT-based coding standards ([6],
7).

For situations where even a fast fixed-complexity
DCT algorithm is too complex (e.g. computation of
large DCTs or complexity-constrained encoding situ-
ations) it is possible to resort to approximate compu-
tation of the DCT, at the cost of some degradation
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Figure 1: Vetterli and Ligtenberg’s fast algorithm
where 'Rot’ represent rotation operation.

in the image quality. The following three techniques
have been proposed in the literature.

First, some DCT coeflicients corresponding to high
frequencies can be set to zero directly without being
computed since they tend to have less perceptual sig-
nificance and also have lower energy. Therefore one
can prune the DCT operations in a manner similar to
the well-known pruned DFT algorithms in [8].

The second method uses distributed arithmetic.
DCT coefficients can be represented as a sum of the
DCT of each input bitplane, which can be easily com-
puted by a look-up table. The number of bitplanes,
starting from the most significant bitplane, is deter-
mined by the complexity budget and can also be
matched to the quantization level, since the number of
bitplanes will determine the precision of the calcula-
tion. This method can be easily implemented in hard-
ware but may involve too much overhead for a prac-
tical software implementation. In [9] a similar idea is
called SNR update.

The third method exploits preprocessing to get
rid of empirically unnecessary information before per-
forming DCT on reduced size data. The gain of this
method comes from relatively less complex preprocess-
ing and reduced size DCT. In [10] and [11], the simple



Haar subband decomposition is used as the prepro-
cessing. Then DCT coeflicients are computed from
only low band coefficients. The number of levels of de-
composition and the number of bands used to compute
DCT can be determined by the complexity budget.

All three techniques are approximate since it can-
not be guaranteed that the exact DCT can be com-
puted for all blocks. For example in the third approach
one can only achieve an exact computation if all the
inputs have all their energy in the lowest frequency
band. However if it were easy to determine which
blocks have all their energy in the low frequency then
the approximate DCT could be used selectively with-
out overall loss. Likewise, tailoring the degree of ap-
proximation to the coarseness of quantization would
allow us to speed up the computation in cases where
coarse quantization is used. This will lead us to vari-
able complexity algorithms (VCAs) which are based
on classification of the input data or the quantization
coarseness.

In this paper, we propose both exact and approx-
imate algorithms based on this VCA approach. In
section 2, we show how to classify block inputs before
performing various components of a DCT operation
so as to achieve a VCA exact DCT algorithm. In
section 3, lossy approximate DCT algorithms are pro-
posed. These algorithms are multiplication-free and
are such that the degree of approximation can be se-
lected based on the quantization level. For simplicity,
all expressions are shown as if 1-D DCT is used. The
algorithms can also be applied to 2-D DCT. The con-
clusions are given in section 4. Our experiments show
the potential for some gains in a software implemen-
tation, in particular for the approximate algorithms.

2 Variable Complexity Algorithm

2.1 Input classification

A variable complexity algorithm (VCA) as intro-
duced above is an algorithm in which the complexity
is input dependent. Our previous work in [12] provides
an example of a VCA implementation of the inverse
DCT. Given that we operate on quantized data, typ-
ical input blocks tend to be sparse. The IDCT VCA
detects which input coefficients are zero, so that there
are not used in the computation. Thus the key compo-
nent of the VCA is classification. Given that detect-
ing zeros also has a cost, in [12], we also optimize the
classification such that the overall complexity includ-
ing the classification cost itself is minimized. Since
different types of blocks require different complexity,
the goal of VCA is to minimize the average complex-
ity, where the average is computed with respect to
“typical” data.

Consider now the case of the forward DCT. Here
our goal should be to avoid the computation of those
coefficients that will be later quantized to zero. In
addition, if using an approximate DCT algorithm,
one would like to generate coefficients with increas-
ingly good approximation as the quantization becomes
finer. Thus we would like to incorporate adaptivity
to both input and quantization. Figure 2 shows the
number of operations required (adds and multiplies)

after pruning the DCT computation to avoid calcu-
lating those coefficients that will be set to zero for a
particular quantization level.

While Fig. 2 indicates the potential for substantial
gains, the issue is now how to perform an efficient clas-
sification of the input blocks. An example of blockwise
classification can be found in [13] where each block is
tested to determine whether it is likely to be quantized
to zero after DCT. Given the values of the input pix-
els z(4, j) a proposed test determines whether the sum
of absolute values exceeds a quantization-dependent
threshold. This work has the limitation of assuming
a single quantizer is used for all the DCT coefficients
(thus it is better suited for for interframe coding sce-
narios). We now explore a more general algorithm
which can deal with nonuniform quantization and al-
lows a finer classification of the inputs.

The problem of determining whether the output
DCTs will be quantized to zero can be viewed geomet-
rically as that of determining whether the input vector
is in the deadzone region (Figure 3) or not. Since the
DCT is an orthonormal transform if the input is in
the deadzone, so is the output. In Figure 3, the dead-
zone is the solid rectangle in (y1, y2) output coordinate
where the DCTs are quantized to zero if they fall into
this region. The input coordinate is (21, £2). The test
region equivalent to [13] is shown as a dashed square.

We present a test region based on the follow-
ing test, if input |z(i)| < ¢(¢)/2 , V¥ i then set
output X to a zero vector. We search for ¢ =
[¢(0)g(1)...q(IN —1)] that satisfy the triangle inequality
|D|q < |Q/2| and has the maximal volume, where D is
the DCT transform matrix. (Note that the ideal test
would be one such that the deadzone corresponding
to the test fit as closely as possible within the dead-
zone corresponding to the actual quantization). This
test region is equivalent to another solid square in the
deadzone in Figure 3. We use square i.e. ¢(i) = ¢ for
all 7, because the maximal square volume is almost the
same as in rectangular case and for the sake of simplic-
ity in the test process. In order to perform this test
we will need to compute at most N absolute values,
N comparisons and N — 1 logical operations.

This test classifies the input into 2 classes to which
we assign either full operation DCT or no operation
DCT. Consider now the baseline fast algorithm in Fig-
ure 1. It can be seen that the computation is divided
into three stages. From Figure 1, let
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where Sy, S2, Sz correspond, respectively, to 8 x §,
4 x 4 and 2 x 2 matrices. Therefore, we can write the
output of each stage as follows.

s =[5 0] (1)
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Figure 2: Comparisons of original and pruned algorithms for different distortions (a) number of additions, (b)
number of multiplications. The DCT lower bound corresponds to computing only the subset of coefficients that
will be non-zero after quantization. The VCA lower bound corresponds to pruning subject to the classification
mechanisms of Section 2.2, i.e. we can only prune subsets of coefficients which are tested jointly in the algorithm.
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Figure 3: Geometric representation of deadzone after
rotation.

From the above, we can apply the proposed test
method at the beginning of each stage, i.e. testing z
before Si1, Z. and z, before S5 and S35 respectively,
and (Ze1,Zez, To1,202) before (S5, S5%, 591 S92 re-
spectively. To clarify the test pattern, we test if
|| < q. If the test is not satisfied, we perform the
first stage operation (S1) to get Z. and Z,. Then we
test if |Ze| < ¢e, the operation S§ is done on Z. and
test if |Z,| < go, the operation S9 is done on Z, where
ge and ¢, are obtained independently from triangle
inequality condition on S§ and S9, respectively. The
test and operation proceed in a similar manner for the
next stage.

Note that this classification is not restricted to de-
tecting all-zero blocks as in [13] and can thus be used
to determine whether subsets of the output coefficients
will be zero. This method can also be extended to a
separable 2-D DCT (row-column 1-D DCT) with the
use of Kronecker (or tensor) product. Furthermore,
“on the fly” classification for a nonseparable 2-D DCT
is possible by simply postmultiplying (1) and (2) with

¢
, respectively.
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The result of the classification is shown in terms of
number of operations as normalized by the fast algo-
rithm in Figure 1. We encode the “lenna” image of
size 512x512 using different quantization parameters
to obtain the complexity at different quality for de-
coded images. The DCT computation is exact and
the only distortion is that introduced by quantiza-
tion. The results of pruning for each quantization
level were shown in Figure 2 (a), (b), where sepa-
rable row-column 1-D DCT was used. Classification
costs were not included and thus these results can
serve bounds. DCT bounds indicate the number of
operations needed when only non-zero coefficients are
computed, which VCA bounds correspond to pruning
operations following the classification tree.

2.2 VCA with Optimal Classification

When the complexity of the tests is taken into ac-
count the total complexity can be higher than that of
the original fixed complexity algorithm, as seen in Fig-
ure 4. As in [12], we optimize the classification such
that only tests that provide reductions in average com-
plexity are kept (i.e. the savings achieved when opera-
tions are skipped outweigh the overhead of testing for
all inputs). This optimization is based on training on
a set of images and is performed through exhaustive
search (since the number of tests involved is small.)

We use “baboon”, “boat”, “creek” and “lake” as
training data to design the VCA at each quantization
parameter for “lenna” image. The result of both esti-
mated complexity and CPU clock! savings are shown
in Figure 4. In order to design the optimal test struc-
ture, we weight addition, multiplication, logical oper-
ation, absolute value, comparison, and ’if’as 1, 2, 1, 1,
1, 3, respectively. It can be seen that when the quan-
tization parameter is small i.e. in small MSE region,

! The implementation is run on a Sun Ultra-1 running Solaris
2.5.



the complexity is the same as the original fixed com-
plexity algorithm. This means that there is no test in
the algorithm because in the optimization process it
is determined that the tests would not result in any
savings. On the other hand, in the high MSE region
given that there will be more zero outputs there is
something to be gained from the VCA approach.

From our results we can see that the gains are mod-
est due in part to the overhead involved in testing.
However a major reason for the lack of more signifi-
cant gains is the fact that we are still computing an
exact DCT, when in fact at high MSEs an approx-
imate DCT would be acceptable given that data is
going to be coarsely quantized.
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Figure 4: Complexity(clock cycle)-distortion compar-
ison.

3 DCT Approximation

The DCT can be approximated using a subband de-
composition as in [11] and [10]. This approach exploits
the fact that, with appropriate post-processing, the
DCT coefficients can be obtained after the subband
decomposition, and in typical natural images one can
disregard high frequency subband components with-
out greatly affecting the accuracy of the calculated
DCT. Therefore, the DCT coefficients can be approx-
imated from post-processing only low frequency sub-
band coefficients. Because a simple subband decom-
position can be used (Haar filters for example) the
overhead for pre-processing is small. Subband decom-
position hence can be viewed as a pre-processing that
reduces the interdependencies among the inputs and
gives some clues of which information can be disre-

garded.

Instead we select to directly approximate the DCT
operation with parameters that can be easily com-
puted, by for example replacing multiplications with
binary shifts and additions, so that floating point op-
eration can be avoided. Our proposed approximate
DCT is shown in figure 5. It can be verified that as
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Figure 5: The approximate DCT algorithm.

more complex matrix (poz2,po3,Poa,and pos?) the cor-
responding post-processing required for exact DCT,
which is the DCT of the inverse of pre-processing
matrix (D - DL ), gets closer to the identity ma-

approx
trix (up to scaling factors). The scaling factors at
the output which is diag(D - D! ) can be ab-

approx
sorbed in quantization. The number of operations
required for these approximate DCTs (referred to as
#1,2,3 4 and 5) are 24 ADDs+2 SHIFTs, 33 ADDs+7
SHIFTs, 38 ADDs+8 SHIFTs, 38 ADDs+12 SHIFTs
and 42 ADDs+12 SHIFTSs, respectively as compared
to 13 MULs+ 29 ADDs in [2]. Since this algorithm
is lossy, the approximation introduces more distortion
to reconstructed images. The rate-distortion curves

2
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Figure 6: Rate-Distortion curve of 512x512 lenna im-
age JPEG coding using various DCT algorithms.

of these approximate DCTs using JPEG coding are
shown in Figure 6.

In this experiment, we encode “lenna” image with
JPEG compression using the example quantization
matrix [14]. Tt can be seen that, as expected, in
high distortion range the increase in distortion intro-
duced by the approximate DCTs is less than that in
low distortion range. This can be explained by the
fact that the distortion introduced by quantization is
larger than the distortion from the DCT approxima-
tion and thus masks it out. Therefore, we develop an
algorithm which is quantization parameter dependent
(shown as a solid line, Approx-Q, in Figure 6) in which
the selection of the approximate algorithm is made at
the beginning of the encoding process depending on
the quantization parameter. It uses a coarser DCT
approximation algorithm for low quality coding and
finer DCT approximation for high quality coding for
small degradation. The degradation of the decoded
image introduced by the approximate DCT is 0.12
dB at 0.18 bpp, 0.15 dB at 0.91 bpp and 0.64 dB
at 3.17 bpp, respectively. From Figure 6, it is obvi-
ous that even with the Approx#2, the R-D curve is
better than other reduced complexity approximate al-
gorithms such as pruned DCT (computing only low
frequency 4x4 DCT) and subband DCT (using low-
low subband [11]). This is because we do not lose
high frequency information which is present at high
rates.

It is worthwhile pointing out here that since the
structure of the approximate DCT algorithm is sim-
ilar to the fast algorithm in Figure 1 we can apply
the concept of classification and the optimization tech-
nique to obtain the optimal VCA as in section 2 to the
Approx-Q DCT algorithm presented in section 3. The
algorithm is now become data-dependent and will be
called Approx-VCA DCT. However, since the cost of
multiplication is already eliminated from the Approx-
Q DCT while the cost involving with tests is still the
same, the further complexity reduction is predicted to
be not as significant as the optimal VCA in section 2
compared to the baseline algorithm.

4 Summary and Conclusions

We present a novel lossless VCA and a lossy
Approx-VCA DCT algorithm. The former computes
exact DCT with data-dependent complexity. The lat-
ter is a multiplication-free algorithm sacrificing the ac-
curacy of the DCT coefficients giving approximated
DCT coefficients but yields small number of opera-
tions. In a software implementation only the approx-
imate algorithm shows some significant gain (e.g. 22-
27% reductions in compute time) depending on the
quantization level. Also the experiments show that
even with the approximate DCT, the R-D perfor-
mance is only slightly degraded depending on the tar-
get rate.
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