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ABSTRACT
Relevance feedback is a critical component for content-based
retrieval systems. Effective learning algorithms are needed
to accurately and quickly capture the user’s query concept,
under the daunting challenges of high dimensional data and
small number of training samples. It has been shown that
support vector machines (SVMs) can be used to conduct ef-
fective relevance feedback in content-based image retrieval.
Most recent work along these lines has focused on how to
customize SVM classification for the particular problem of
interest. However, not much attention has been to paid
to the design of novel kernel functions specifically tailored
for relevance feedback problems and traditional kernels have
been directly used in these applications. In this paper, we
propose an approach to derive an information divergence
based kernel given the user’s preference. Our proposed ker-
nel function naturally takes into account the statistics of
the data that is available during relevance feedback for the
purpose of discriminating between relevant and non-relevant
images. Experiments show that the new kernel achieves sig-
nificantly higher (about 17%) retrieval accuracy than the
standard radial basis function (RBF) kernel, and can thus
become a valid alternative to traditional kernels for SVM-
based active learning in relevance feedback applications.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Relevance Feedback

General Terms
Algorithms, Human Factors
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1. INTRODUCTION
In the past few years, we have seen fast proliferation of

multimedia information over the Internet. Content-based
Information Retrieval (CBIR) systems are proposed for au-
tomatically indexing and accessing large amounts of infor-
mation. In such systems, multiple features (color, texture,
shape, etc.) are extracted from the query signals. Retrieval
is performed using a similarity matching, where given an
input feature pattern the goal is to search for similar pat-
terns in the database. However, there is a major difficulty
associated with CBIR schemes: the semantic gap between
low-level features and high-level human concepts. Thus sub-
stantial efforts have been devoted to designing techniques
that introduce the user into the loop, so that the system
can learn the user’s particular query preferences.

Relevance feedback provides a way for the user to interac-
tively tune the system to her own interest by asking whether
certain proposed images are relevant or not. The system
then learns from these labeled examples to tune the param-
eters and returns a new set of similar images, iteratively
repeating this process until the user is satisfied with the re-
sult. The construction of such a query updating scheme can
be regarded as a machine learning task.

A majority of proposed approaches for relevance feed-
back in CBIR systems have been developed based on various
forms of feature re-weighting [12][11], where the weights as-
sociated with each feature for a typical K-Nearest-Neighbor
classifier are adjusted based on user feedback. The intuition
is to emphasize (i.e., give them a more significant weight in
the distance computation) those features that are best at
discriminating between positive samples and negative ones.

A more systematic formulation of the relevance feedback
problem can be achieved by setting up an optimization prob-
lem [8], where the goal is to find the optimal linear trans-
formation to map the feature space into a new space, that
has the property of clustering together positive examples,
making it easier to separate them from negative ones.

More recently, several researchers have proposed the use
of support vector machines as an active learning method for
the relevance feedback problem in content-based retrieval [3]
[7] [5] [6]. In [7], SVMs were first incorporated as an auto-



matic tool to evaluate the preference weights of the relative
images, which was then utilized to compute the query re-
finement [12]. A one-class SVM scheme was developed in
[5] that tries to fit a tight hyper-sphere in the non-linearly
transformed feature space (through a kernel) to include most
positive samples. This scheme only employs the positive
samples while totally neglecting the information provided
by the negative samples. As an extension, a biased SVM
was proposed in [6] to incorporate negative information by
employing a pair of hyper-spheres, the inner one includes
most of the positive instances while the outer one pushes
out most of the negative samples. The unlabeled samples
will then be classified as relevant if falling inside the inner
sphere and non-relevant if falling outside the outer sphere.
We can see that a key assumption made in both schemes is
that the positive samples will actually be clustered together
in the transformed space. Clearly, there is no guarantee that
this will always hold true. Whether clustering does occur (in
which case these SVM techniques are likely to be very suc-
cessful) depends on the distribution of positive and negative
samples and on the choice of kernel function.

Since the kernel function is a key factor to determine the
discrimination ability of a SVM in this paper we propose
a kernel function based on the information divergence be-
tween the probabilities of positive and negative samples in-
ferred from the user’s preferences. To the best of our knowl-
edge this approach has not been used for relevance feed-
back in content-based image retrieval systems. Our work is
inspired by [10] where a Kullback-Leibler (KL) divergence
was used to derive the kernel function for SVM classifica-
tion in speaker identification and image classification. Note
that in [10] domain knowledge is available to model the data
distributions that are used in computing the KL divergence.
Statistical models such as Gaussian Mixture Models (GMM)
or Hidden Markov Models (HMM) can very well model the
data and the Expectation Maximization(EM) algorithm can
be employed to learn and estimate the parameters. A more
theoretical analysis of the use of Kullback-Leibler divergence
to derive similarities between image classes, where each im-
age class is modeled as Gaussian Mixtures, can be found
in [15]. Although the idea of applying the Kullback-Leibler
divergence to SVM learning is not new, in this paper we pro-
pose an extension of the framework in [10] for cases where
the data distribution model is not known a priori and has
to be inferred from user feedback.

In relevance feedback applications, there are no generic
models for data distributions since the query concept is un-
known and time-varying. We propose to employ an em-
pirical method to capture the probabilistic information of
the user’s preference from the positive and negative samples
and derive a new kernel called User Preference Information
Divergence (UPID). Our scheme makes no prior assump-
tions on the data distribution, which is exactly what we
are trying to learn. We performed the experiments based
on a variety of image categories (from natural scenes such
as Sunsets, coasts, to human civilizations such as Mayan &
Aztec, Land of the Pyramids), the results show that the new
kernel achieves significantly higher (about 17%) retrieval ac-
curacy than RBF kernel, and even better than other kernel
choices. Near 100% top-50 retrieval accuracy is achieved us-
ing the proposed kernel function after 6 relevance feedback
iterations.

The paper is organized as follows. In section 2 we briefly

review the concept of active learning for relevance feedback
and support vector machines. Then we present our algo-
rithm in section 3. Experimental results are shown in section
4, section 5 concludes our work.

2. SUPPORT VECTOR MACHINES FOR
RELEVANCE FEEDBACK

Suppose that we are given L observations, with each ob-
servation consisting of a pair: a feature vector xi ∈ Rn,
i = 1, ..., L, and the associated semantic class label yi, which
can be either +1 (relevant) or -1 (irrelevant), based on the
user feedback. x can be modeled as a random variable drawn
from a distribution with probabilities {P (x|y = +1), P (x|y =
−1)}. The goal of relevance feedback is to learn the mapping
g : xi 7→ yi based on the labeled training set.

In the ideal case where we are able to estimate {P (x|y =
+1), P (x|y = −1)}, the optimal mapping simply resolves to
a maximum likelihood classifier (1):

g(x) = arg max
i

P (x|y = i) (1)

However, in relevance feedback applications, we are con-
fronted with the difficulty of small sample problem [16], i.e.,
the number of available training samples is quite small rel-
ative to the dimensionality of the data. Thus it will be
unrealistic to use traditional density estimation techniques
for this purpose. Support vectors machines are adequate
tools to address these challenges as they do not suffer from
the Hughes phenomenon (or curse of dimensionality).1

We here give a brief introduction to the basic concepts of
SVMs [13] [2]. Let {xi, yi}, i = 1, · · · , L, yi ∈ {−1, +1}, xi ∈
Rn be the labeled training set. SVMs are hyper-planes that
separate the training data by a maximal margin, with all
vectors labeled +1 lying on one side and all vectors labeled
-1 lying on the other side (see Fig. 1):

w · xi + b ≥ +1 for yi = +1 (2)

w · xi + b ≤ −1 for yi = −1

where w is normal to the hyperplane H. The training
vectors that lie on hyper-planes H0 : w · xi + b = 1 and
H1 : w · xi + b = −1, are called support vectors. It can
be shown that the margin between the two hyperplanes
H0 and H1 is simply 2

‖w‖
, thus searching for the optimal

separating hyperplane becomes a typical constrained opti-
mization problem [2]: minimizing ‖ w ‖2 subject to the
constraints given by (2). By introducing Lagrange multipli-
ers, this then leads to maximizing the Lagrangian objective
function (3) with respect to positive Lagrange multipliers
αi, i = 1, · · · , L, subject to constrains

P

i
αiyi = 0.

max(
X

i

αi −
1

2

X

i,j

αiαjyiyjxi · xj) (3)

If the training samples are not linearly separable in the
original space χ, suppose that we first map the data to some
other Euclidean space H (possibly infinite dimensional) us-
ing a mapping Φ : χ 7→ H. Since the training algorithm

1For a limited number of training samples, the classification
accuracy decreases as the dimensionality increases.



Figure 1: The optimal hyper-plane is the one that
separates the positive samples from the negative
ones with maximum margin.

only depends on the inner products between sample vectors,
we can define a kernel function K such that K(xi,xj) =
Φ(xi) · Φ(xj). Then we would only need to replace the in-
ner product xi · xj by K(xi, xj) everywhere in the training
algorithm (3) and would never need to explicitly compute
the mapping Φ. The resulting classifier takes the form of
g(x) :

PNs

i=1 αiyiK(xi,x) + b. {αi, i = 1, · · · , Ns} and b
are the parameters that can be learned using quadratic pro-
gramming [2]. Ns is the number of support vectors.

Most of the flexibility and classification power of support
vector machine resides in the kernel function, since these
make it possible to discriminate within challenging data sets,
e.g., those where linear discrimination may be suboptimal.
Typical kernel functions include: linear, polynomial and ra-
dial basis function (RBF):

Linear : K(x, z) = x · z (4)

Polynomial : K(x, z) = (Ax · z + B)p (5)

Radial Basis : K(x, z) = e
−γ‖x−z‖2 (6)

where z is another vector of the same dimension as x and
(·) denotes the inner product of two vectors. A, B, p and γ
are constants which are set a priori. It is important to note
that these kernels are generic and do not explicitly take into
account the statistics of user-provided feedback information
available in content-based retrieval systems. Thus, if using
an SVM in such a system, one would have to select a kernel
a priori and then the performance of the system will de-
pend significantly on the nature of the feedback provided by
the user. In what follows we show how user feedback can
be exploited in order to create a modified kernel function.
Our experimental results demonstrate that these modified
kernel functions consistently outperform others previously
proposed in the literature.

3. KERNEL BASED ON USER PREFERENCE
INFORMATION DIVERGENCE

Relevance feedback in content-based retrieval systems is
based on high-level user preferences, thus making the learn-
ing of low-level similarity metrics a very difficult task. The
perceptual interpretations of an image depends upon the
user, the context of usage and the application. There are

no generic models that are applicable to all scenarios. Our
proposed method aims at learning the user’s preference em-
pirically, through probabilistic information that is contained
in the user’s feedback, and then using this information to
derive a kernel that is customized for the specific user and
task.

We assume that each image is represented by one feature
vector x ∈ Rn. Then the relevance feedback problem can be
regarded as a machine learning task. The goal is to infer the
user’s preference on the unlabeled images (either relevant or
non-relevant to the user’s interest) based on the information
learned from the user-labeled data.

For a given feature vector x = (x1, x2, · · · , xn)t, we define
the marginal probability of each label for each component
of the feature vector xl as {P (y = +1|xl), P (y = −1|xl)}.
These marginal distributions for each component xl can be
empirically estimated from the training data (i.e., from the
feedback data in our case).Clearly, this estimation process is
challenging because i) xl can in general take values in either
a large discrete set or a continuous range, and ii) limited
amounts of data are available for training.

Given these challenges, parametric models for {P (y =
+1|xl), P (y = −1|xl)} could be considered but this in turn
would imply that some prior assumptions need to be made
about the distributions. Thus, in order to have as much
flexibility as possible, we choose a non-parametric probabil-
ity estimation approach. In what follows training data will
refer to data obtained by accumulating successive iterations
of user feedback.

For each feature vector component xl we define a quan-
tizer Al that consists of Bl reconstruction levels rlk with
Bl − 1 decision boundaries denoted as {b1, · · · , bBl−1}. We
estimate the probabilities {P (y = +1|xl), P (y = −1|xl)} by
counting the number of samples that fall in each bin:

P (y = ±1|xl = rlk) =

PL

i=1 1(yi = ±1)1(|xil − rlk| ≤ ∆lk)
PL

i=1 1(|xil − rlk| ≤ ∆lk)
(7)

where the indicator function 1(·) takes value one when its
argument is true and zero otherwise. L is the number of
labeled training data. xil is the l-th component of train-
ing vector xi. 2∆lk is the size of the quantization interval
along dimension l centered at reconstruction value rlk. For
those quantization bins where there is no training data, we
simply set the probability to zero since they make no con-
tribution to differentiating classes. Obviously the design of
quantizers Als plays an important role in probability esti-
mation. In this paper we use a simple uniform quantization
scheme where all quantization bins in a given feature di-
mension have the same size 2∆lk, which is computed from
the dynamic range of the data [max(xl), min(xl)] (note that
this range is changing from iteration to iteration) and the
number of quantization levels applied Bl:

∆lk = ∆l =
max(xl)−min(xl)

2×Bl

(8)

More sophisticated techniques, such as K-nearest-neighbor,
least-squares estimation etc., can also be used. We plan to
explore this in our future work.

With the probability model we just described we can view
a feature vector x = (x1, x2, · · · , xn)t as a sample drawn
from a random source, which has relevance statistics given
by P+(x) = (p+

1 , · · · , p+
n ) and P−(x) = (p−1 , · · · , p−n ). p±l =



P (y = ±1|xl) are estimated by quantizing the component xl

using Al based on the training data obtained from relevance
feedback.

Assume that we wish to estimate the distance between x
and z, another feature vector with probability vectors Q+ =
(q+

1 , · · · , q+
n ) and Q− = (q−1 , · · · , q−n ). We propose to use a

distance based on the Kullback-Leibler divergence of their
probability vectors P and Q:

D(x||z) =
n

X

l=1

p
+
l log(

p+
l

q+
l

) +
n

X

l=1

p
−
l log(

p−l
q−l

) (9)

We assume 0 × log(0) = 0 by continuity arguments. Since
the KL divergence is not symmetric we define based on (9)
a symmetric distance measure Ds(x, z) (the same technique
was used in [10] to obtain a symmetric distance starting from
the KL divergence):

Ds(x, z) = D(x||z) + D(z||x). (10)

We then define our proposed user preference information
divergence (UPID) kernel function in the generalized form
of RBF kernels with the original Euclidean distance d() re-
placed by the proposed distance of (10):

K(x, z) = e
−ρDs(x,z) (11)

The distance (11) is a positive definite metric [10], thus
the proposed UPID kernel satisfies Mercer’s condition [2].
As the model parameters αi, b and Ns are learned from the
training set, we evaluate the likelihood that an unknown
object x is relevant to the query by computing its score
f(x):

f(x) =

Ns
X

i=1

αiyiK(x,xi) + b (12)

Where xi is the ith support vector and there are a total
of Ns support vectors which is decided from the learning
process. The larger the score is, the more likely it is that
the unknown object belongs to the relevant class and thus
shall be returned and displayed to the user.

4. EXPERIMENTS
As an experimental evaluation of the proposed scheme,

we compare the performance of five types of learning meth-
ods: the query refinement and re-weighting (QRR) algo-
rithm [12], SVM using polynomial kernel (Polynomial), SVM
using Radial Basis function kernel(RBF), SVM using pro-
posed probabilistic kernel (UPID), and SVM using linear
kernel (Linear). 1500 real world images are chosen from
the COREL Image CDs [1]. The image set includes 15 dif-
ferent categories2 , with 100 images for each category. Our
experimental set up is very similar to that of [14], the only
difference being that we replace the categories auto racing

and Roses, with Exotic cars and flowers, respectively, since
we do not have access to the former. We use 80% of each cat-
egory (1200 images in total) as the database, and 20% (300
images in total) as the query images. The splitting of the

2Sunset, Coasts, Flowers (volume II), Exotic cars, Mayan &
Aztec, Fireworks,Ski scenes, Owls, Religious Stained glass,
Arabian horses, Glaciers & Mountains, English country gar-
dens, Divers & diving, Land of the pyramids, and oil paint-
ings

data (80% and 20%) is to be consistent with the tradition
that is used in machine learning.

We employ the feature extraction algorithm in [4]. Three
different features are extracted to represent the images: color,
texture and shape. The color features are computed as the
histograms in CIELab color space. The texture feature is
formed by applying Sobel operator to the image and his-
tograming the magnitude of the local image gradient. The
shape feature is characterized by histograming the angle of
the edge. Dimensionality of the feature vector we used in
our experiments is 72 (the number of bins used for each
histogram is 8).

For the experiments, we assume that the query feedback
is based on the actual image categories. The quality of the
retrieval result is measured by two quantities: precision and
recall. Precision is the percentage of relevant objects in the
retrieved set to the query image, it measures the purity of
the retrieval. Recall is a measurement of completeness of the
retrieval, computed as the percentage of retrieved relevant
objects in the total relevant set in the database.

When the system is presented with a query image, it will
first search for the K nearest neighbors based on the Eu-
clidean distance between the query image and each of the
images in the database. Then the returned images which
belong to the same category as the query image will be
labeled as positive, and all the others in the returned set
labeled as negative. The system learns the new model pa-
rameters and returns a new round of images and repeats
this process. The labeled images accumulate from iteration
to iteration as the system gets more feedback from the user.
For Support Vector Machine based methods, the parameters
αis and b are learned using (3) based on the labeled images.
The next round of retrieval will be carried out using the
classifier (12) with the new set of parameters. The images
with highest score are most likely to be the target images for
the user. For Query Refinement and Re-weighting method,
we implemented the algorithm proposed in [12]. Then the
new query vector and new weights are used to perform a
K-Nearest-Neighbor classification. The precision and recall
are averaged over all the test images.

The support vector machine learning algorithms are im-
plemented based on the SV M light library [9]. Fig.2 shows
the precision-recall curves comparing proposed method(with
parameter ρ set to 1), Query Refinement and Re-weighting
(QRR), SVM with RBF kernel(with parameter γ set to 1),
SVM with polynomial kernel(degree p = 4, A = B = 1),
and linear kernel. In proposed scheme, we fix the number of
quantization bins for all dimensions to be the same.

Top-k retrieval precision as a function of the number of
returned images are plotted in Fig.3. We can clearly see
that proposed method achieves significantly higher search
accuracy than the other methods.

Table 1 shows the top-k accuracy(mean and variance) af-
ter 6 relevance feedback iterations. We can see that SVM
based active learning methods perform significantly better
than the query refinement/re-weighting method. SVM with
proposed empirical probabilistic kernel function is the best
performer among all SVM based methods. It achieves al-
most 100% top-50 accuracy, while RBF kernels get around
92%. In [3], the performance of RBF and polynomial were
reported for a 4-category dataset. The top-50 accuracy after
3 iterations are 92.7% for polynomial degree 4, and 96.8%
for RBF. Considering that learning is more accurate with a
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Figure 2: Precision-Recall curves after 3 rele-
vance feedback iterations, comparing four meth-
ods: SVM with RBF kernel(Circles), SVM with
Polynomial degree 2(Dashed lines), Query Refine-
ment and Re-weighting(Cross), SVM with Proposed
UPID kernel (Triangles), and SVM with Linear Ker-
nel(Diamonds).
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Figure 3: Top-k accuracy as a function of the num-
ber of returned images after 6 relevance iterations.
We can see that compared to other methods, pro-
posed method has a more compact display of the
relevant images (Precision is relatively flat in the
beginning and gets a sharper tail off.)

smaller dataset, our results are consistent with theirs.

Algorithm Top-20 Top-50 Top-80
RBF 97.43±0.44 92.03±0.77 80.27±0.79
Polynomial 94.60±0.64 88.69±0.85 77.12±0.78
UPID 99.67±0.33 99.64±0.33 92.05±0.73
Linear 93.97±0.82 87.69±1.07 76.08±0.83
QRR 78.17±7.4 71.11±7.56 58.15±4.96

Table 1: Top-k accuracy(mean and variance) af-
ter 6 relevance feedback iterations comparing var-
ious methods. Bold numbers indicate the best per-
former. The parameters chosen are: γ = 1 for the
RBF kernel, p = 4, A = B = 1 for the polynomial
kernel, and ρ = 1 for proposed UPID kernel. We
implemented the query refinement and re-weighting
based on the algorithm in [12].

We also show in Fig.4 the improvement of the retrieval
accuracy as a function of the number of interaction rounds.
It basically gives us an idea that to what extent and how
fast (how many interactions are needed in order to achieve
a certain accuracy) the system is able to capture the query
concept through the information provided at each interac-
tion round.

We see that proposed kernel outperforms the other three
most popular kernels. About 17% higher accuracy than
RBF kernel is achieved using proposed kernel after the first
iteration. It is encouraging since usually very small num-
ber of positive samples are available at the beginning of the
interaction.

We then investigated the reliability of proposed empirical
estimation scheme (7) by varying the number of quantiza-
tion bins Bl. We tested on Bl = 10, 15, 20 and figure 5
shows the precision-recall curves of proposed scheme after 3
and 6 relevance feedback iterations. We can see that vary-
ing the number of quantization bins does not have a signifi-
cant effect on the learning performance. Another fact worth
noticing is that the number of labeled positive samples is rel-
atively small in the beginning of the learning process, and
still the accuracy improvement is remarkable after only one
relevance feedback using proposed method (17% higher than
RBF kernel, see Fig. 4). We plan to investigate adapting the
quantization during the process of learning for each iteration
as newly labeled sample occurrences are incorporated.

5. CONCLUSIONS AND FUTURE WORK
In this paper we proposed a new method of employing

the data statistics for active learning using SVM in content-
based image retrieval. The derivation of the new kernel
is empirical and requires no domain knowledge, it is thus
a practical approach for relevance feedback learning tasks
where the query concept is not known and can be time vary-
ing. Our experiments have shown promising performance
using proposed scheme compared with other kernels. Our
future work includes designing adaptive method for estimat-
ing the marginal distributions(current version uses a simple
uniform quantization to estimate the probabilities), taking
into account the data imbalance problem (the number of
negative samples is much larger than the number of positive
samples), and speeding up of the learning. We are also in-
vestigating how to incorporate the ranking information (i.e.,
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Figure 4: Comparison of learning accuracy of three
different kernels (evaluated as the top-80 retrieval
precision) as a function of the number of relevance
feedback iterations. The accuracy without relevance
feedback is 40.78%, it is obtained by a K-Nearest-
Neighbor classifier with the weights equal for all fea-
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Figure 5: Precision-Recall curves of proposed
scheme after 3 and 6 relevance feedback iterations
using different number of quantization bins for prob-
ability estimation. We can see that varying the num-
ber of quantization bins doesn’t has much effects on
the learning performance, thus the proposed empir-
ical estimation scheme is very reliable.

cases when the user has different degrees of preference for
the relevant images) into our framework.
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