
Coding Structure Optimization for Interactive
Multiview Streaming in Virtual World Observation

Gene Cheung #1, Antonio Ortega ∗2, Takashi Sakamoto #3

Hewlett-Packard Laboratories Japan
3-8-13 Takaido-higashi, Suginami-ku, Tokyo, 168-0072, Japan
1 gene-cs.cheung@hp.com 3 takashi.sakamoto@hp.com

∗ Signal and Image Processing Institute, University of Southern California
Los Angeles, CA 90089-2564
2 ortega@sipi.usc.edu

Abstract—While most multiview coding techniques focus on
compressing all frames in a multiview video sequence in a rate-
distortion optimal manner, in this paper we address the problem
of interactive multiview streaming, where we minimize the ex-
pected transmission rate of an interactive multiview video stream,
where the observer can select the view of the next frame, subject
to a storage constraint. We show that gains can be achieved by
optimizing the trade-off between overall storage and transmission
rate, i.e., by storing a more redundant multiview representation
(where some frames are encoded more than once, each time
using a different reference frame) it is possible to reduce the
overall bandwidth needed for online interactive viewing. We
show that our proposed redundant representation can reduce
the transmission cost of interactive multiview streaming by up
to 65% as compared to a good non-redundant representation for
the same storage constraint.

I. INTRODUCTION

Emerging video applications are being developed where
multiple views of a scene are captured, encoded and delivered
to users, and where new levels of interactivity are added by
letting users switch in real-time among multiple view points.
Such applications are being considered for both real video data
and for computer generated content.
Recent standard activities on multiview video coding

(MVC) [1], [2] have studied efficient techniques to compress
video sequences captured by multiple cameras exploiting both
cross-view and temporal redundancy. Among applications for
MVC tools are those where users are allowed to select for
playback only a subset of those views or, potentially, virtual
views generated from the actual video data captured.
Moreover, increased popularity and realism of computer

graphics has led to considering virtual worlds as applications
not only for active play but also for observing. Examples of
popular virtual worlds include Second Life [3] and online
games like Warsow [4]. Applications are built to enable users
to become spectators, so that they can follow the actions of
skilled semi-pro players in the virtual worlds. These applica-
tion have proven popular, to the extent that game tournaments
are now broadcasted as network videos at Half-Life TV [5]
and other portals. This has led to increase interest in providing
network streaming services for 3D world observation beyond

active participation, where “observers” do not need access
to powerful rendering engines, since virtual world data is
compressed into standard-compliant video streams.
Note that while current motivation for viewing video cap-

tured from virtual worlds has come mostly from entertainment
applications, video captures can also be used in training and
education applications in virtual worlds, commonly known as
serious games [6]. For example, this would allow later viewing
of captured training sessions by instructors or students.
An important motivation for the work in this paper comes

from the observation that, with this computer generated data,
multiview information can be easily captured by slightly mod-
ifying the source code and then grabbing frames from frame
buffers (as opposed to having multiple physical cameras).
Thus, the multiview experience envisioned for video generated
from physical cameras can potentially be extended to virtual
worlds. In this paper we will consider a generic multiview
interactive viewing problem; our experimental results show
that our algorithms apply equally well to virtual multiview
video data obtained from a game and to multiview video data
captured by physical cameras.
We consider multiview streaming scenarios where multiple

views are stored as encoded video in a server of finite storage.
Our goal is to allow a viewer maximum flexibility in playing
back the content, so that a video stream can be requested from
the server and the viewpoint can be changed interactively.
Work to date in both MVC and game observing video has

focused on capture and compression. For example, the MVC
standardization process has concentrated on developing new
compression algorithms to encode all frames in the multi-
view sequence in a rate-distortion optimal manner. For game-
generated data, in our previous work [7] we have optimized the
video quality of regions of interest (ROI) during encoding of
single game view in H.263 using per-pixel depth information,
which can be extracted from the depth buffer during frame
rendering [8]. We have also developed community streaming
[9], where a group of game observers can interact visually
via overlaid talking heads or personalized avatars in a shared
view. Most recently, we have developed fast mode selection
algorithms for H.264 video encoding of 3D virtual worlds

978-1-4244-2295-1/08/$25.00 © 2008 IEEE MMSP 2008450

using per-pixel depth information [10].
Instead, in this paper we focus on how users may interact

with multiview content. More specifically we consider the
likely scenario where each user only views a subset of avail-
able content, e.g., users are allowed to display one frame from
one view at a time, so that the interaction with the content can
be seen as a view “traversal” over time, where at each time
users can switch views or continue playing back the current
one. In this context, we consider the problem of minimizing
streaming rates, while not exceeding a given constraint on the
total storage required to store the multiview dataset.
A key observation in our work is that there is a trade-off

between these two requirements. Consider a multiview video
dataset: many proposed MVC algorithms extend conventional
video coding schemes by combining cross-view predictive
coding with existing temporal prediction. Thus, in order to
minimize total storage, complex dependencies can be created
in the data: decoding a specific frame may require having
access to multiple other frames that act as predictors, both in
the current view and in neighboring views. Note that these
predictors will have to be transmitted whether or not the
corresponding frames will be displayed. Thus, when the goal
is to stream and decode the dataset partially only, e.g., at
any point in time only one view is being displayed, this
minimal storage solution leads to high transmission cost (the
total number of frames transmitted exceeds the total number of
frames displayed). On the other hand, for a given traversal of
views, one can prepare a priori a sequence of prediction-coded
frames with dependency path that mimics the traversal. This
ensures minimal transmission cost, but the required storage
would be too large if one were to prepare such predicted frame
sequences for all possible view traversals. Our goal is then to
find the coding structure that provides the optimal trade-off
between storage cost and transmission cost.
We use a simple abstraction of the encoding structure of

video sequences, representing them as a set of dependency
trees, where a given frame corresponds to a node in the tree
and can have both parents (reference frames) and children
(frames that use it as a reference). Each of these trees is rooted
by an Intra frame. With this abstraction it is clear that decoding
a given frame requires having access to all its ascendants
in the tree. Thus, the worst case scenario is when different
frames corresponding to different views belong to different
dependency trees and thus switching would require retrieving
a number of frames in the new tree: none of these will be
displayed, they will be needed simply to represent the desired
frame in the new view.
Our philosophy to tackle this problem is to allow frames

to belong to more than one dependency tree, i.e., to encode
certain frames more than once (each time with a different
set of reference frames.) This will increase the flexibility in
decoding, but at the cost of increases in overall storage. This
is the key objective of our optimization.
Our proposed algorithms do not require development

of new encoding algorithms, but instead rely on existing
H.264 codecs. We are trying to enable interactive multiview

streaming from a standard-compliant H.264 streaming client,
where RTSP [11] commands “fast-forward” and “rewind” are
mapped to view-switching commands. Note that alternative
tools for efficient view switching have been recently pro-
posed based on distributed source coding (DSC) [12], but
our primary focus here is that of enabling switching with
existing coding techniques. Analysis of this problem in the
context of DSC encoding is left for future work. Note also
that SP-frames [13] have been proposed to facilitate switching
between streams without creating drift. As compared to our
approach (where drift is avoided by storing multiple sets
of descendants for frames that can be obtained on multiple
different predictors) an approach based on SP-frames would
require increases in transmission cost (due to the inefficiency
of SP-frames relative to P-frames) but require lower overall
storage. While the analysis in this paper does not include SP-
frames, our framework can be generalized to incorporate SP-
frames so the best combination of SP-frames and redundant
P-frames can be chosen. This is also left for future work.
To the best of our knowledge, this formulation of interactive

multiview streaming, which has practical significance, has not
been performed in the literature. We show that our proposed
redundant representation can reduce the transmission cost of
interactive multiview streaming by up to 65% compared to
a good non-redundant representation for the same storage
constraint.
The outline of this paper is as follows. We first formally

define the optimization problem for interactive multiview
streaming in Section II. Given the problem is NP-hard (shown
in Appendix A), we derive approximation algorithms that
produce locally optimal solutions in Section III. We discuss
results in Section IV and conclude in Section V.

II. PROBLEM FORMULATION

Fig. 1. Example Multiview Screen-shots of Warsow.

A. Feasible Search Space
To support interactive multiview streaming, a server com-

presses, stores and streams individual frames of a multiview
video upon client requests. The compressed multiview repre-
sentation stored at the server can be one of many possibilities
in a large feasible space; we first discuss this space in abstract.
Let the number of captured views at a given frame capturing

instant be a constant K; i.e., K different views of a scene
are simultaneously captured periodically. See Figure 1 for an
example of simultaneous frame capture of three views for first-
person-shooter game Warsow. Let us assume that the first
frame-capturing instance of time index 0 is of a single view

451

⌈
K
2

⌉
, and there are N frame-capturing instances in total. See

Figure 2 for an example.

1,1 P P2,1 3,1 4,1

P

P

P P

P

1,2 2,2 3,2 4,2

1,3 2,3 4,3

I0,2

P

P

P

P

P/I3,3

Fig. 2. Example of Representation of multiview video for K = 3 and
N = 5. There are two basic dependency trees with roots at I0,2 and I3,3.

The server compresses the multiview video into a redundant
representation format as follows. An original frame F o

i,j of
time index i and view j can be encoded into numerous versions
Fi,j ’s (and at least one version) as an I-frame Ii,j , or a P-
frame Pi,j(F) motioned-compensated using different refer-
ences F ’s. We do not consider B-frames in this formulation.
For simplicity, we assume that a P-frame Pi,j(F) is only
motion-compensated using as reference an encoded frame F
of time index i − 1 and of view between max(1, j − 1) and
min(K, j + 1).
All encoded frames of a particular representation can be

organized into a set of S basic dependency trees T =
{T 1, . . . , T S} of different root frames. A tree T s(Is

i,j), with
unique root I-frame Is

i,j , is recursively defined as follows:

T (F) = F ∪ {T (F ′)|F ← F ′} (1)

(1) states that a tree T (F) rooted at a frame F is a frame
set composed of F and (sub-)trees stemming from F . A
basic dependency tree is a tree with root frame encoded as
an I-frame. Using tree set T , we can define a dependency
path of a frame F , p(F), as the ordered set of all frames
that proceed from the root I-frame to F in the basic depen-
dency tree that F belongs to. More precisely, dependency
path p(F) = {Fp

1 , . . . , F
p

|p| = F} is a series of motion-
compensated frames, where inside path p frame Fp

i is motion-
compensated using Fp

i−1 for i ≥ 2 and Fp

1 is an I-frame.
Note that in general, a set of basic dependency trees can

have an exponentially large number of nodes as function of
original frames NK . For practical purposes, we will assume
each original frame F o

i,j cannot be encoded in more than M
versions. That means the maximum number of nodes in a set
of basic dependency trees is bounded by MNK .
The feasible space for the representation of the multiview

video, Θ, can now be formally defined as the set of basic
dependency trees T , as described in (1), such that each original
frame F o

i,j is encoded no more thanM times but at least once,
either as an I-frame or as a P-frame using an encoded Fi−1,k ,
for max(1, j− 1) ≤ k ≤ min(K, j + 1). Each chosen tree set
T ∈ Θ implies both a storage and transmission cost, which
we will discuss next.

B. Tree Set Storage Cost
For I-frames, let |Ii,j | denote the byte count of encoding

original frame F o
i,j as I-frame. |Ii,j | =∞ will denote the case

when F o
i,j was not encoded as an I-frame. Similarly, for P-

frames, let |Pi,j(F)| denote the byte count required to encode
F o

i,j as P-frame using frame F for motion compensation.
|Pi,j(F)| = ∞ will denote the case when F o

i,j was not encoded
as a P-frame using F for motion compensation. We write the
storage cost of the representation T , B(T), as:

B(T) =
X

Ts∈T

b(Is
i,j) (2)

b(F) = |F |+
X

F ′|F←F ′

b(F ′)

In words, the storage cost of a tree T (F) rooted at F is the
size of root frame |F | plus trees stemming from F .

C. Frame-to-frame Transmission Cost
Suppose after observing an encoded frame Fi,j , with depen-

dency path p = p(Fi,j), an observer chooses for viewing next
frame at time i+1 of view k. The server makes a deterministic
decision on which encoded version of F o

i+1,k to send to the
observer based on Fi,j and k as follows. First, if either encoded
I-frame Ii+1,k or P-frame Pi+1,k(Fi,j) is available, the server
can send either one for client to decode and display.
If neither is available, the server finds an alternative P-frame

Pi+1,k(F ′), F ′ �= Fi,j—a P-frame whose reference frame is
not available at the client—with alternative path q = p(F ′),
where either: i) paths p and q are non-overlapping paths; or, ii)
paths p and q overlap and first diverge after frame Fq

d of path
q. “non-overlapping” here means motion-compensated Fi,j

and F share no common decoding history, and “overlapping”
means Fi,j and F share common decoding history up till Fq

d .
In the first case, the server needs to send all the frames in
dependency path q = {Fq

1 , . . . , F
q

|q| = F ′} and the P-frame
Pi+1,k(F ′) itself for correct decoding of frame with time index
i+1 and view k; decoder at the observer will of course display
only the decoded P-frame Pi+1,k(F ′). In the second case, the
server needs to send sub-path {Fq

d+1, . . . , F
q

|q| = F ′} of path
q and the P-frame Pi+1,k(F ′). Thus the total transmission cost
of re-routing dependency path from p to q, r(p,q), for each
of these two cases is as follows:

r(p,q) =

j
|Fq

d+1|+ . . . + |F q

|q|| if p,q overlap till F q

d

|F q

1 |+ . . . + |F q

|q|
| o.w. (3)

As an example, consider path p = {I0,2, P1,2, P2,3} in Figure
2. At frame P2,3 observer requests frame F3,2. Server will
need to send frame Pq

3,2 together with frame P2,2 of path
q = {I0,2, P1,2, P2,2}, overlapping p up to frame P1,2.
There can be multiple alternative P-frames Pi+1,k(F ′)’s for

different references F ′’s and alternative paths p(F ′)’s, so the
server needs to find one with the lowest transmission cost
φ(p, k) given dependency path p(Fi,j) and desired view k:

φ(p(Fi,j), k) = min
F ′

˘
|Pi+1,k(F ′)|+ r(p(Fi,j),p(F ′))

¯
(4)

452

The transmission cost for observer to choose view k after
observing encoded frame Fi,j , Φ(Fi,j , k), is then the minimum
transmission cost of the possibly available I-frame, P-frame,
and alternative P-frame(s):

Φ(Fi,j , k) = min {|Ii+1,k|, |Pi+1,k(Fi,j)|, φ(p(Fi,j), k)} (5)

Note that Φ(Fi,j , k) in (5) will never return ∞ since there is
at least one encoded version of original frame F o

i+1,k . Finally,
for ease of derivation in later sections, let ψ(Fi,j , k) be the
server-selected compressed version of original frame F o

i+1,k

minimizing (5).

D. Optimization Definition

Having defined the storage cost of a tree set T and trans-
mission cost of switching from observed frame Fi,j to some
encoded version of the next frame F o

i+1,k , we are ready to
define formally the optimization problem. Let C(T) denote the
expected transmission cost of N -frame interactive multiview
streaming given tree set T . After observing an encoded version
of original frame F o

i,j , we will assume an observer watches
the next view k at the next time index i+ 1 with probability
αi,j(k), where

∑
k αi,j(k) = 1. Using derivation of frame-to-

frame transmission cost (5), we write C(T) as:

C(T) = |F
0,�K

2
�| + c(F

0,�K

2
�) (6)

c(Fi,j) =

min(K,j+1)X

k=max(1,j−1)

αi,j(k) [Φ(Fi,j , k) + c(ψ(Fi,j , k))]

(6) can be calculated efficiently in a recursive manner. First,
c(Fi,j) is a sum of at most three terms. Second, φ(p(Fi,j), k)
in Φ(Fi,j , k) has at most M references F ′’s (maximum M
versions of Fi+1,k) to test. For each reference F ′, rerouting
cost r(p(Fi,j),p(F ′)) has at most N additions. First time
computed c(Fi,j) is stored in a table so that a future recursive
call to c(Fi,j) can simply return the calculated value. The
computation complexity of (6) is therfore M ∗ N times the
maximum number of nodes in T , or O(M2N2K).
To simplify the calculation of the storage cost, instead

of finding exact encoding costs of P-frames for all possible
encoded versions of an original frame, we assume Ii,j = rI

i,j

and Pi,j(Fi−1,k) = rP
i,j(k) for any encoded version Fi−1,k

of original frame F o
i−1,k . The interactive multiview streaming

optimization, denoted as IMVS, can now be formalized as
follows. Given transition probabilities αi,j(k)’s and encoding
rates rI

i,j ’s and rP
i,j(k)’s for N frames of multiview video of

K views, find the optimal tree set T in feasible space Θ
that minimizes expected transmission cost C(T) subject to
a storage constraint B̄. Mathematically, we write:

min
T ∈Θ

C(T) s.t. B(T) ≤ B̄ (7)

We outline an NP-hardness proof in Appendix A for IMVS.
Given IMVS is NP-hard, we next derive approximation algo-
rithms that find locally optimal solutions.

III. APPROXIMATION ALGORITHMS
Given the computation of expected transmission cost in

(6) is fairly expensive itself—though in practice M is likely
small—we derive approximation algorithms for IMVS using
a computation-efficient greedy approach. As an initial so-
lution T i, we first find a minimum-storage solution—one
that requires minimum storage space for all frames of all
views, where each frame of each view is encoded only once.
Assuming the size of an I-frame |Ii,j | is larger than its P-frame
counterpart |Pi,j(Fi−1,k)|, it is easy to see that the minimum-
storage solution T i is I-frame followed by all P-frames. In
particular, we can find T i mathematically as follows:

Bmin(T) = I
0,�K

2
� + bmin(1) (8)

bmin(i) =
KX

j=1

min(K,j+1)

min
k=max(1,j−1)

rP
i,j(k) + U(i < N − 1)bmin(i + 1)

where U(c) = 1 if clause c is true and 0 otherwise. (8)
basically finds the smallest P-frame Pi,j(Fi−1,k) for each
original frame F o

i,j .
Given a minimum-storage solution T i, our next step is to

find locally optimal solution from T i. This is done iteratively
by defining a series of augmentations and selecting among
those the one that provides the greater decrease in a chosen
cost function. The augmentations we use are:
1) Change a P-frame Pi,j(Fi−1,k) to I-frame Ii,j .
2) Select a different reference F ′ for a P-frame Pi,j(Fi−1,k).
3) Add a new I-frame Ii,j .
4) Add a new P-frame Pi,j(Fi−1,k).

The first two augmentations do not increase the number of
representations of a given frame, while each of the next two
increases by one (only performed if number of versions of
that frame is < M). That means the resulting solution will
always have at least one representation of each frame of each
view. When a new I-frame Ii,j is added to “complement”
existing P-frame(s), we determine which children of existing
P-frame(s) should switch parent to the newly added I-frame.
This is done greedily: a child of existing P-frame is switched if
by switching, the transmission cost goes down. Similarly op-
timum parent and children node selections are also performed
greedily when adding a new P-frame.
Given the augmentations, we propose two algorithms with

two cost functions. First is Lagrangian cost:

J(T) = C(T) + λB(T) (9)

where λ ≥ 0 is the Lagrange multiplier. At each iteration
we select the augmentation providing the greatest decrease
in Lagrangian cost. Algorithm stops when no further cost
reductions are possible given λ. Using different λ’s, we can
trade off storage and transmission bandwidth differently.
Alternatively, at each iteration we select the augmentation

of all frames Fi,j’s in current solution T such that the ratio of
the decrease in transmission costΔC(T) to increase in storage
costΔB(T) is the largest. Algorithm stops when the next such
beneficial augmentation will exceed storage budget B̄. This
alternative algorithm has the advantage that it directly targets

453

a given storage. Note that both approaches are sub-optimal in
that they are greedy: choosing the best augmentation at a given
iteration does not guarantee that the globally optimal solution
is achieved for given storage.

IV. EXPERIMENTATION
A. Experimental Setup
To collect virtual data for experimentation, we captured two

100-frame multiview sequences of the online game Warsow
[4] at 10 frames per second (fps) during regular game play.
At each frame-capturing moment, in addition to the regular
view, two side views rotated 30o to the left and to the
right were captured. Figure 1 shows example screen-shots of
such multiview captures. For real video data, we used the
ballroom sequence from [15] at 25 fps.
Given these raw frames, scaled to QCIF (176 × 144), we

used H.264 JM reference software version 12.4 [14], with
quantization parameters for I- and P-frames set constant at 30,
to generate encoding rates rI

i,j’s and rP
i,j(k)’s as follows. For

I-frame rates rI
i,j’s, we simply encoded all frames of all three

views as I-frames and recorded the byte count. For P-frame
rates rP

i,j(k)’s, we first generated four zigzagged streams z’s
as follows:
1) zlc = {I0,0, P1,1, P2,0, P3,1, . . . }.
2) zcr = {I0,1, P1,2, P2,1, P3,2, . . . }.
3) zcl = {I0,1, P1,0, P2,1, P3,0, . . . }.
4) zrc = {I0,2, P1,1, P2,2, P3,1, . . . }.

For P-frame rate rP
i,j(k), we simply located the zigzagged

stream z that contains the sub-sequence {Fi−1,k, Pi,j} and
assigned the coding rate of Pi,j in z to rP

i,j(k).
For transition probabilities αi,j(k)’s, in the experiments we

assumed the following evaluation for simplicity:

αi,j(k) =

8<
:

1− α if j = k
α else if j = 1 or j = K
α/2 o.w.

(10)

We assume α = 0.4 throughout the experiment.
Using I- and all P-frame prediction structure for same-view

motion compensation, this resulted in 34.9dB and 36.4dB in
PSNR at bit-rate 74kbps and 55kbps for the center-view of
two Warsow sequences w1 and w2, respectively. This rate-
distortion disparity indicates that sequence w1 is much more
active than w2. Using camera 2, ballroom was encoded at
33.47dB at 172.4kbps.

B. Experimental Results
For comparison, we constructed a non-redundant multiview

representation we call I-only, where frames of each of the
K available views are first encoded as I- plus all P-frames
independent of other views, then P-frames are converted to I-
frames at evenly spaced intervals (at N/2, N/4, 3N/4, N/8,
3N/8, etc) at all K views until the storage budget has been
expended. I-only is non-redundant in that each frame is
encoded only once.
Using the two Warsow sequences w1 and w2, we applied

our two approximation algorithms ratio and Lagrange
discussed in Section III with M = 5 and I-only to find the

250 300 350 400 450
100

200

300

400

500

600

700

800

900

1000
transmission cost vs. storage for w1

storage in kbytes

tra
ns

m
is

si
on

 c
os

t i
n

kb
ps

I−only
ratio
Lagrange

180 200 220 240 260 280 300
100

200

300

400

500

600

700
transmission cost vs. storage for w2

storage in kbytes

tra
ns

m
is

si
on

 c
os

t i
n

kb
ps

I−only
ratio
Lagrange

a) Trans.-Storage Tradeoff for w1 b) Trans.-Storage Tradeoff for w2

Fig. 3. Tradeoffs of Expected Transmission Cost and Storage Expenditure
for Warsow Sequences w1 and w2

minimum expected transmission cost for varying storage bud-
get. Note that both ratio and Lagrange represent greedy
search strategies and so we make no claims of optimality.
The tradeoffs of storage versus expected transmission cost

is shown in Figure 3, where storage B̄ ranged from three I-
frames above minimum storage required to store all frames to
1.5 times the minimum storage. First, we see in general an
inverse proportional relationship between expected transmis-
sion cost and storage as we anticipated. Comparing the three
schemes, we see that for both w1 and w2, Lagrange and
ratio had lower expected transmission cost than I-only
for the entire range.
Numerically, ratio reduced transmission cost of I-only

by up to 52% for w1 and 43% for w2, and Lagrange
performed similarly. Moreover, though the performance gap
decreased as storage budget increased, at 1.5 times the mini-
mum storage, ratio still outperformed I-only by 20% for
w1 and 19% for w2. This shows that our proposed redun-
dant representation of multiview video can indeed outperform
significantly a good non-redundant representation in terms of
transmission cost for a large range of storage budgets.
For the ballroom sequence, Figure 4 shows the perfor-

mance of I-only, ratio and Lagrange when different
subsets of capturing cameras were used to form the multi-
view sequence. We see again in Figure 4 that ratio and
Lagrange outperformed I-only for all ranges of storage
budget. Lagrange performed similarly to ratio at most
points and slightly worse at some points.
Numerically, ratio reduced transmission cost of I-only

by up to 65% and 55% for camera subset {0, 1, 2} and subset
{0, 3, 6} respectively. More so than the Warsow sequences,
ratio and Lagrange continued to outperform I-only
by a wide margin even at high storage budget: at 1.5 times
the minimum storage, ratio reduced transmission cost of
I-only by 52% and 44% for the two camera subsets
respectively. We conjecture that this is because ballroom
was captured using closely spaced cameras, meaning P-frames
predicted from neighboring views are significantly smaller
than I-frames. Hence even at large storage budget, I-only

454

remained significantly more costly than ratio, Lagrange
utilizing redundant P-frames.

250 300 350 400
200

400

600

800

1000

1200

1400

1600

1800

2000
transmission cost vs. storage for ballroom (skip0)

storage in kbytes

tra
ns

m
is

si
on

 c
os

t i
n

kb
ps

I−only
ratio
Lagrange

250 300 350 400 450
200

400

600

800

1000

1200

1400

1600

1800

2000
transmission cost vs. storage for ballroom (skip2)

storage in kbytes

tra
ns

m
is

si
on

 c
os

t i
n

kb
ps

I−only
ratio
Lagrange

a) Multiview from camera 0, 1, 2 b) Multiview from camera 0, 3, 6

Fig. 4. Tradeoffs of Expected Transmission Cost and Storage Expenditure
for ballroom Sequence from Different Subsets of Cameras

Note that because the cost functions are different for
Lagrange and ratio, there is no reason to expect them
to yield the same solutions. Indeed, in our experiments we
observe that the best algorithm choice depends on the specific
data being encoded. In future work we plan to further study
the optimization process.

V. CONCLUSION
In this paper, we addressed the problem of interactive

multiview streaming, where we minimize the expected trans-
mission rate of an interactive multiview video stream, where
the observer can select the view of the next frame, subject to
a storage constraint. We showed the problem is NP-hard. We
derived approximation algorithms that find well performing
locally optimal solutions. Using captured multiview game
sequence Warsow and real video sequence ballroom, we
showed in our results that indeed expected transmission cost
can be gracefully traded off with storage expenditure.

APPENDIX
A. NP-Hardness Proof of IMVS

I ...

I

I

I

0,S 1,S

1,S−1

1,S+1

...

I

It,1

t,2 It+1,2

Pt+1,1

G 1
(1) (1)

(1)(1)

(S)

(S) (S)

(S)

P’

GS

It,2S−1

I t,2S

Pt+1,2S−1

It+1,2S

P’

(1)

(S)

Fig. 5. Construct used for NP-hardness Proof of IMVS

For brevity we only outline an NP-hardness proof for optimization
IMVS. First, it can be easily shown that storage cost B(T) in (3)

and transmission cost C(T) in (6) can be calculated in polynomial
time, given solution instance T . Hence IMVS is obviously in NP.
Second, we show that IMVS contains the well-known NP-hard

knapsack (KS) problem as a special case, so IMVS is at least as hard
as KS, and IMVS is NP-hard. We restate KS as follows: given set S
of S items, where each item s ∈ S is of value v(s) and of weight
w(s), find a subset S ′ ⊂ S , such that the total values

P
s∈S′ v(s)

is maximized subject to a weight constraint
P

s∈S′ w(s) ≤ W̄ . For
each instance of KS, we construct a corresponding instance of IMVS
as shown in Figure 5. We set small rates rI

i,j’s for I-frames such that
an optimal solution T must contain I-frames for first frame F0,S to
frames of time index t− 1. At time indices t and t+1, there are 2S
views, and we set αi,j’s such that the probability of entering each of
2S views at time index t is 1

2S
.

We construct a group Gs of four frames for each item s ∈ S as
follows. We set the sizes of the top-left I-frame and top-right P-frame
predicting from top-left I-frame to be u(s)+1 and ε ≈ 0 respectively.
We set the size of an additional top-right P-frame predicting from
bottom-left I-frame to be u(s), and the size of an additional top-
right I-frame to be so large that it is not selectable. Finally, we set
the transition probability from bottom-left I-frame to top-right frame
to be v(s)

v(smax)
, where smax is the item in S with maximum value.

The extra storage cost and reduction in expected transmission cost for
adding top-right P-frame are therefore u(s) and v(s)

2Sv(smax)
. If extra

storage available for these additional P-frames, beyond necessary I-
frames, is W , then the optimal set of additional P-frames selected in
IMVS corresponds to the optimal subset S ′ in KS.

REFERENCES
[1] P. Merkle, A. Smolic, K. Muller, and T. Wiegand, “Efficient prediction

structures for multiview video coding,” in IEEE Transactions on Circuits
and Systems for Video Technology, vol. 17, no.11, November 2007, pp.
1461–1473.

[2] M. Flierl, A. Mavlankar, and B. Girod, “Motion and disparity compen-
sated coding for multiview video,” in IEEE Transactions on Circuits
and Systems for Video Technology, vol. 17, no.11, November 2007, pp.
1474–1484.

[3] “Second Life: Official site of the 3D online virtual world,”
http://secondlife.com.

[4] “Warsow: a fast paced first person shooter game,”
http://www.warsow.net.

[5] “Half-Life TV,” http://www.hltv.org.
[6] “Serious Games Initiative,” http://www.seriousgames.org.
[7] G. Cheung, T. Sakamoto, and W.-T. Tan, “Graphics-to-video encoding

for 3G mobile game viewer multicast using depth values,” in IEEE
International Conference on Image Processing, Singapore, October
2004.

[8] T. Akenine-Moller and E. Haines, Real-time Rendering. AK Peters,
2002.

[9] G. Cheung, W.-T. Tan, B. Shen, and A. Ortega, “ECHO: A community
video streaming system with interactive visual overlays,” in IS&T/SPIE
15th Aunnual Multimedia Computing and Networking (MMCN’08), San
Jose, CA, January 2008.

[10] G. Cheung, A. Ortega, and T. Sakamoto, “Fast H.264 mode selection
using depth information for distributed game viewing,” in IS&T/SPIE
Visual Communications and Image Processing (VCIP’08), San Jose, CA,
January 2008.

[11] H. Schulzrine, A. Rao, and R. Lanphier, “Real time streaming protcol
(RTSP),” April 1998, IETF RFC 2326.

[12] N. Cheung and A. Ortega, “Distributed source coding application to
low-delay free viewpoint switching in multiview video compression,”
in Proc. of Picture Coding Symposium, PCS’07, Lisbon, Portugal, Nov.
2007.

[13] M. Karczewicz and R. Kurceren, “The SP- and SI-frames design for
H.264/AVC,” in IEEE Transactions on Circuits and Systems for Video
Technology, vol. 13, no.7, July 2003.

[14] “The TML project web-page and archive,” http://kbc.cs.tu-
berlin.de/ stewe/vceg/.

[15] “Test sequences at MERL,” ftp://ftp.merl.com/pub/avetro/mvc-testseq.

455

	Welcome Page
	Hub Page
	Topic List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Gene Cheung
