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Abstract - We propose an algorithm for erasure recovery in predic-
tive coding schemes, where erasures can cause catastrophic error propa-
gation. The recovery algorithm is based on sending multiple descriptions
of the source and using a deterministic distance measure to find the most
likely estimate for the lost data, given the received data and the side in-
formation. Results show that we can recover from short burst erasures
and that for long bursts (more than 10% of the samples are lost) we can
recover to within 0.4dB of the original DPCM performance.

INTRODUCTION

In recent years the volume of multimedia data transmitted over such “best-
effort” networks as the Internet has continued to increase while, due to con-
gestion, routing delay and network heterogeneity, packet losses and delays
continue to be commonplace. In this paper we propose techniques for local
recovery of erasures that are specifically designed for multimedia data. In
particular, we tackle one of the key obstacles in erasure recovery for com-
pressed video or audio, namely, the fact that predictive compression schemes
are typically used (e.g., motion prediction in video coding, DPCM in au-
dio coding). Predictive coding schemes take advantage of correlations in the
source to achieve better performance than approaches, such as PCM, that
treat a source as a set of independent samples [2]. However, the main draw-
back of these predictive schemes is that a single erasure causes decoding
errors to propagate through all the samples following the erasure. In con-
trast, PCM schemes are more robust, since losses do not propagate, but have
a much lower compression performance. A traditional approach to prevent
error propagation in predictive coders is to restart the prediction loop by pe-
riodically inserting PCM-coded samples. The drawback of this approach is
that it limits the length of the error propagation but it does not allow recovery
of lost data.

In this paper, we propose a novel technique for erasure recovery in DPCM
based on Multiple Description Coding (MDC) [1]. In MDC schemes, two or



more descriptions of the source are sent to the receiver over different chan-
nels (see Fig. 1). If only channel S; (or S>) is received the signal can be
reconstructed with distortion Dy, (or Dy,.) If both channels are received,
information from the two channels is combined to achieve a lower distortion
reproduction D, (i.e., D, < Dy,, D, < Dy,,.)
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Figure 1: Multiple Description coding and decoding

MDC is particularly suited for scenarios such as those considered here be-
cause (i) the network does not provide transmission at different priorities and
thus multiresolution techniques would not be useful, and (ii) local recovery is
preferable to retransmission. These features help explain the recent revival of
interest in MDC, which has led to the proposal of numerous practical MDC
systems e.g. [4], [3]- Most of the recently proposed techniques are designed
for memoryless coding environments and use Balanced Multiple Description
Coding (BMDC), where both descriptions are coded at the same rate. One
exception is the recent work of [5] where multiple description DPCM is pro-
posed. Here, each of the channels is coded using a DPCM loop, and if both
channels are received correctly, a better reproduction is possible, (i.e. for
D. < Dy, and D, < Dy, ). However, due to the lack of robustness to error of
DPCM it is assumed that if a channel suffers one erasure it will have to be
completely discarded.

Instead, in our proposed approach, while also employing DPCM in each
channel, we show how it is possible to approximate the lost data through
processing at the decoder. Our algorithm is based on maximum likelihood
estimation of the erased samples (from, say, S1), where likelihood is defined
in terms of a distance measure between S; and S with the added constraint
that the reconstructed S; samples be consistent with all the error-free data
that has been received.

Another novelty in our work is that we choose an Unbalanced Multiple De-
scription Coding (UMDC) framework, i.e. Ds, > Dy,. In BMDC the highest
resolution reproduction was obtained when both channels were received, while
in UMDC the highest resolution is obtained when Sj is received. Ss is coded
at low resolution and used as explicit redundancy to correct S;. In keeping
with the MDC philosophy, Ss is independently decodable and is of a quality
acceptable to the receiver in case erasures in S; cannot be recovered. We



compare BMDC and UMDC environments (for same total rate) and show
that for long erasures in S1, UMDC outperforms BMDC.

ERASURE RECOVERY ALGORITHM

We develop our algorithm using the UMDC case but, this can be easily ex-
tended to the BMDC case. In an UMDC environment one of the descriptions
of the input, Y, is at high bit-rate and the other at low bit-rate. Let HR
and LR be the reconstructed sequences at high and low resolutions, respec-
tively, with X and z, denoting their respective prediction errors. Quantized
variables are denoted with a hat and when subscripts are used, they denote
specific samples, e.g., X is the quantized prediction error X and HR; is the
ith sample of HR. Also let C'" and C"" represent the codebook partitions of
Q- and Qp respectivel}i.

Assume that sample X, of the high resolution description is lost at the de-
coder while the low resolution Z is received error-free. Our goal is to estimate
the lost sample by taking into account the information that was received. A
key tool used in our algorithm is the verification of consistency of the esti-
mate with LR where Consistency in simplified terms is defined as: a specific
X, is consistent with Z;, if there exists an input y; such that X; = Q1(y;)
implies that Q2(y;) = Z;, where @1 and @2 are the low resolution and high
resolution DPCM loops. Thus LR along with memory of the source helps in
recovering erasures in our look ahead scheme, e.g. a “good” local estimate
might invalidate consistency in the future.

The algorithm works through a 3 step process. (i) Candidate Selection: Of
all the possible quantized values for X, only those that are consistent with
%, are considered as candidates. (ii) Path Consistency Check: For each of the
above candidates the high resolution description is decoded giving a different
sequence of outputs for each candidate. Among these sequences, those that
are consistent with the LR sequence are chosen. (iii) The consistent sequence
closest to LR , in Euclidean distance, is chosen as the recovered HR. We now
describe our algorithm more formally.

In the DPCM encoder, with the predictor coefficient «, for any sample 4,

X;=Y,—aHR; 1, 2; =Y;—aLR;,_; = X; = x; +a(LRi_1 - HRi_l) (1)

At the decoder, let e = LR; 1 — HR; i, and given Z; = j, i.e. z; € ler =
[aj,b;], an interval R in which X; has to lie can be found:

X; € R =[aj + e, bj + ae (2)

On the other hand if X; = j is given, i.e. X; € C;" = [A;, Bj] then z; € r
where 7 is defined below:

z; €r =[Aj — ae, Bj — ae (3)



For Candidate Selection in the first step of our algorithm, given HR, 1,
LR, 1, . we use (2) to define the interval R. All the bins of Q. that
intersect with R are candidates for X.. An example is shown in the Figure 2.
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Figure 2: Quantization in DPCM is equivalent to using a scalar quantizer
with its center shifted to the value of predictor. In this example Qp, & Qpnr
are shifted by aHR._1 & LR._1 respectively. If £, = 1 was received then
the candidates for X, are 0,1 or 2.

We further define Path Consistency Check as: Given a sequence of X;,
reconstructed sequence HR; is consistent with LR, if at each sample i > e,
the interval r from (3) overlaps with the the quantization bin of Z;.

To explain our algorithm we use Figure 3. Here, Xo = 1 is lost but we
assume that o, HR_1, LR_; and X;, z; Vi > 0 have been received correctly.
From Candidate Selection, we have 3 possible candidates for the erased sam-
ple, i.e Xy could be 0,1 or 2. Decoding each of these 3 choices of X3, N
samples into the future, leads to three candidate paths for the HR descrip-
tion, shown by the dark lines in the figure.

Next, we apply our Path Consistency Check to each of the candidate paths.
HRJj] represents the decoded path given X = j. In the figure we see that
the HR|[2] is not consistent with LR. At sample 2, r (patterned box), defined
by HR[2]1, LR, X», does not overlap with the quantization bin of Z»( black
box). Among the two consistent paths H R[1]&H R[0], the one closest to LR
stream is the recovered HR.

Thus, the reconstructed output of our algorithm is consistent with all the
data received and closest to the correctly received description. The algorithm
is formally given below, where we are assuming that erasures occur in X from
index ep to e.. HR,,_1 is decoded and LR,z are known.

Step 1: Generate all candidates

For j= ey e,

Find X;, given HR;_1,LR;_1,x; using Candidate Selection.
Decode HR; = o HR;_1 + X for each of above X

end

Decode all candidates for N future samples.

Step 2: Eliminate all candidate paths that are not consistent with LR using
Path Consistency Check.
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Figure 3: Erasure Recovery Algorithm. Xg is erased. HR_1,LR_1,xo give
3 possible candidate for Xg € [0,1,2]. Next consistency check is done for the
decoded paths, at sample 2 the top path is inconsistent, the black box (Z2)
does not overlap with patterned box (r). Then of the two remaining paths
we choose the one which is closest in MSE to LR

Step 3: Pick the candidate that is closest in MSE to LR

If both channels are received correctly then as shown in figure 2 the code-
book partitions of @y, are further subdivided. These new partitions can be
used to form a new codebook which would have larger number of bins over
the same range thus necessarily improving the SNR performance of the quan-
tizer. Even though we can improve performance by combining @, and Qy,
the original quantizers Qp, or @, should be used in the prediction loops,
otherwise encoder and decoder would not be synchronized.

RESULTS

In our experiments we have found that N increases with the correlation in
the source. For correlation of about 0.9, looking ahead 20 samples suffices.
Also for long burst of erasures pruning is needed as the number of candidates
grows exponentially. Right now we keep only the candidates which are closet
to the second description at the pruning point. Using interleaving, the need
to consider long burst of erasure can be avoided.

The results in Figure 4 are for UMDC with 3 bits and 1 bit channel. Our
algorithm recovers nearly perfectly from single erasures, this is important
because in a DPCM loop even single erasures are catastrophic. We show that
for a burst erasure of 100 samples, (10 %of the samples) we would be doing
better than the BMDC reported in [5]. The other interesting result is that
we are gaining 0.6 db when both channels are received by using the simple
algorithm given in previous section.

In the right plot of Figure 4 we have a BMDC system with bit rate 2 in
each channel. We did not use the index assignment of [5], instead we used
two quantizers shifted relative to each other and we get a gain of about 2.5
dB when both the channels are received. We show that if there are erasures
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Figure 4: Results for our algorithm for both Unbalanced (3+1 bps) and Bal-
anced (242 bps) case. D, is the SNR after recovery, Dy, is the side channel
1 SNR, D. is Central Distortion, D-BMDC are results from [5]. All results
for Gauss Markov Source, p = 0.9, results are averaged over 100 runs of 1000
samples each. Uniform Threshold Quantizers are used with entropy coding.

in S7 we don’t need to discard it, we can recover to within 0.1 dB of D,
for erasures of length 20 samples. In addition we did an experiment with
interleaved packets where a packet is of the form:

Xit1, Xit2, Xiys, Xita, Xiys, Xiv21 Xiyaz, Xitos, Xipoa, Xiyos, Xijar-.. |
A packet lost meant that 125 samples were lost for a 1000 sample stream. We
recovered to within 0.4 dB of the original SNR.

The results show that for both BMDC and UMDC we can use our algorithm
to recover erasures. In BMDC this allows the decoder to decode around D.,
in UMDC we can have a large burst of erasures before we will be doing worse
than a same bit rate BMDC.
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