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ABSTRACT

One major difficulty in parallel architecture design for the Discrete Wavelet Transform (DWT) is that the DW'T is not
a block transform, with the exception of the trivial Haar transform. As a result, frequent communication has to be
set up between processors to exchange data to ensure that correct boundary wavelet coefficients are computed. The
significant communication overhead thus hampers the improvement of the efficiency of parallel systems, specially for
processor networks with large communication latencies. In this paper we propose, a new technique, called Boundary
Postprocessing, that allows the correct transform of boundary samples. The basic idea is to model the DWT as a
Finite State Machine (FSM) based on the lifting factorization of the wavelet filterbanks. Application of this technique
leads to a new parallel DWT architecture, Split-and-Merge, which only requires one communication setup between
neighboring processors for any arbitrary level of wavelet decompositions. Example designs and performance analysis
for 1D and 2D DWT show that the proposed technique helps to reduce greatly the interprocessor communication
overhead. For the best available parallel lifting DWT algorithm, a speedup of abut 30% on average is observed in
our experiments using the proposed technique.

Keywords: Discrete Wavelet Transform, Parallel Architecture, Finite State Machine, Boundary Postprocessing,
Split-and-Merge

1. INTRODUCTION

In this paper we study the problem of parallel architecture design for the Discrete Wavelet Transform (DWT). The
significance of the problem can be seen in that fast DWT computation is essential in a number of DWT-based image
processing applications, such as satellite imagery compression and analysis in remote sensing,'? fast image retrieval
and browsing in large databases® and real-time pattern recognition and autonomous tracking.* Fast DWT algorithms
are being actively developed to reduce the number of multiplication-add operations.>® Another alternative consists
of making use of devoted Massively Parallel Processors (MPP), such as Intel’s Paragon and MasPar’'s MP-1/2,
or cheap multiple Processing Elements (PE), such as the Network of Workstations (NOW)” and the Local Area
Multicomputers (LAM),® to perform a parallel implementation of the DWT.1.971!

One key issue in an efficient parallel algorithm design is to reduce the interprocessor communication overhead.
This becomes even more critical for a DWT parallel implementation since, with the exception of Haar transform,
the DWT is not a block transform.

Note that boundary issues are also encountered in standard filtering using the FFT and can be easily dealt with
appropriate data overlapping. However, because the DWT consists of the recursive application of a filtering operation,
the boundary problems become particularly important and deserve special attention. As an example, assume a three
level decomposition is to be performed using two processors. In this case, either the two processors are given sufficient
overlapped data to carry on the whole computation without communicating with each other (and this overlap can
be large) or alternatively they have to communicate samples after each of the levels of the decomposition has been
computed. This example shows the increased importance of boundary processing when recursive filterbanks are used.
The example also points out to the two parameters we can use to measure performance, namely, the amount of data
to be transmitted between processors (or to be stored in the processor if a sequential computation is used) and the
number of times data has to be communicated between processors.
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Figure 1. An example DWT dataflow chart using Boundary Preprocessing in a two-processor parallel system.
Processors 1 and 2 are allocated with input data block 1 and 2 respectively. Solid lines: completely transformed
data; Dashed lines: boundary samples from the neighboring block. Operations 1,3,5: communicate boundary data
samples to neighboring blocks; Operations 2,4,6: transform for current level.

Most existing parallel architecture designs adopt a Boundary Preprocessing approach in which raw input data
samples are exchanged between neighboring processors before the start of wavelet decomposition at each level %1
This is shown in Fig.1 using a two-processor system as an example. For a three-level wavelet decomposition, three
communications are necessary to transfer boundary samples from one processor to another. In general, for a J-level
wavelet decomposition, there would be J data exchanges at each decomposition level across neighboring processors.
Obviously this communication overhead adversely affects the speedup of parallel systems, specially those with large
communication latencies, such as NOWs and LAMs.!?

There are two approaches proposed in the literature aimed to reduce the interprocessor communication in parallel
DWT algorithms. The first is the overlap technique which stores enough input data samples at each processor so
that no communication is needed.™ This approach, however, increases the buffer requirements for cach processor
exponentially with the increase of decomposition level since extra raw data samples have to be stored for the DWT
computation at each level. Moreover, as the number of levels of decomposition increases, the amount of overlap also
becomes larger and thus the memory requirements increase. The second approach is the tiling method,'® which
approximates, at each processor, unavailable boundary data samples by symmetric extensions or periodic extensions,
for example. This approach, although it completely removes the interprocessor communication, results in incorrect
wavelet coefficients along block boundaries. Performance degradation has been reported in low bit rate image coding
due to incorrect wavelet coefficients near block boundaries.!* Furthermore, the computation error can also negatively
affect the accuracy of pattern recognition and tracking in image analysis applications.

In this paper, we propose a new technique, Boundary Postprocessing, for the DWT computation near block
boundaries. Using this technique, the DWT can be computed correctly while the interprocessor communication
overhead is significantly reduced. The basic idea is to model the DWT as a Finite State Machine (FSM), which
updates/transforms each raw input sample (initial state) progressively into a wavelet coefficient (final state) as long
as there are enough neighboring samples present. Obviously, data samples near block boundaries can only be updated
to intermediate states due to lack of enough neighboring samples. Rather than communicating raw data samples
before the start of the decomposition at each level, as in Boundary Preprocessing, these partially updated boundary
samples, called state information, are collected at each level and communicated after the independent transform of
each block. A postprocessing operation is then initiated to complete the transform for boundary samples.

The proposed FSM model takes advantage of filterbank factorizations such as the lattice factorization by Vaidyanathan
and Hoang!®1% and the ladder structure by Marshall.'” In particular, Daubechies and Sweldens® have shown recently
that, the polyphase matrix representation of any FIR wavelet filters can be factored into a product of a series of
“lifting” steps (elementary upper/lower triangular matrices). DWT computation based on such lifting factorizations
have some attractive properties, such as fast computation, in-place calculation and easy convertibility to integer
transforms. It is the in-place computation property that allows us to introduce the FSM approach. For this reason
we use the lifting factorizations as the basis for our work. Note that filterbank factorizations have been motivated
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Figure 2. The proposed Split-and-Merge parallel DWT architecture. The shaded parts store the state information.
In Split stage, each processor computes its allocated data independently up to the required decomposition level. In
Merge stage, a one-way communication is initiated to communicate the state information to neighboring processors.

A postprocessing operation is then started to complete the transform for boundary samples.

traditionally by the reduction of memory and number of operations, whereas here we demonstrate that they can also
contribute to a reduction in the communication overhead in a parallel computation.

Application of the proposed Boundary Postprocessing technique results in a new parallel DWT architecture,
Split-and-Merge, shown in Fig.2. As one can see, for 1D wavelet decompositions, only one interprocessor data
exchange is needed for any J-level wavelet decompositions. Compared to existing approaches which requires J
communications,"? ' the interprocessor communication overhead is significantly reduced. The proposed technique
not only can be applied to parallel systems built on NOWs and LAMs, but also to MPP systems. Interestingly, it
will be shown that the proposed design can make use efficiently of both the single-port and multi-port communication
model in a mesh connected processor network.® We will also show that with this algorithm it is the communication
overhead can be reduced when going from a single-port to a multi-port communication model, in contrast with what
was observed when standard DWT algorithms are used.’

The remainder of this paper is organized as follows. In the next Section, the FSM model for the DWT and the
Boundary Postprocessing technique based on the lifting factorization are introduced. The Split-and-Merge parallel
architecture is then introduced. Section 3 provides details on two variations on parallel architecture designs for 2D
DWT, block parallel and strip parallel, which correspond to MPPs and LAMs systems, respectively. To show the
effectiveness of the proposed architecture, performance analysis and experimental results are given in Section 4.

2. THE SPLIT-AND-MERGE PARALLEL ARCHITECTURE

Throughout this paper, we focus on the Mallat style'® multilevel octave-band wavelet decomposition system with
critical sampling using a two-channel wavelet filterbank. The extensions of our study to systems of standard DWTs,®
multichannel wavelet filterbanks, continuous DWT (no subsampling at each stage after filtering operations),’
wavelet packet decomposition, if not trivial, are straightforward.

and

2.1. DWT as a Finite State Machine

Using the Euclidean algorithm, Daubechies and Sweldens® have shown that, for any FIR wavelet filters, the polyphase
matrix Pg(z) (subscript s stands for the synthesis) has a factorization form as

e = I ) [l V][0 ] W



and the corresponding analysis polyphase matrix P,(z) as
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where (s;(z),%i(2)) are Laurent polynomials and m < |L/2] (L is the filter length) is determined by the specific
factorization from. The Perfect Reconstruction (PR) property can be easily verified as P4(z)P4(z) = I where I is
the identity matrix. It has been shown that such a lifting-factorization based DW'T algorithm is, asymptotically for
long filters, twice as fast as that of the Standard algorithm (Theorem 8 in Daubechies and Sweldens®). For example,
for the popular (9,7) filters,?° taking into consideration the filters’ symmetries, the cost of Standard algorithm
for one-level wavelet decomposition is 11.5 mult/add operations per output sample while the cost of lifting-based
algorithm is 7.

From the lifting point of view,?! these elementary matrices (upper triangular and lower triangular ones) in the
factorization form (2) can be further classified into prediction/lifting, updating/dual lifting operations. However, from
a computational point of view, there is no big difference among these elementary matrices, each of which essentially
updates the input data samples using linear convolutions. Without loss of generality, we use *(z) to represent either
s;(z) or t;(2) and e'(z) the corresponding elementary matrix. That is

s} 10] o [ ]

The inverses of €'(z) are the matrix inverses, denoted as e *(z).

Let us consider the input X(z) as a column vector, define the intermediate states in the process of transformation,
{X(2),i=0,1,---,2m + 1}, where X?(z) is the result of applying the operation e!~!(z) to X'~1(2), and where the
initial input is X°(z) = X(z). Obviously, the forward transform starts from the raw input data samples, the initial
state X%(2) = X(z), and, using these elementary matrices e’(z), progressively updates the input into the wavelet
transform coefficients, the final state Y (z) = X?™*1(z). The inverse transform reverses this process to reconstruct
the input. One can see that, because of the in-place computation property, every time we generate X'(z), we only
need to store this set of values, i.e., we do not need to know any of the other X7(z), for j < i, in order to compute
the output. Thus, it is clear that the filtering operation can be seen as a Finite State Machine (FSM) as depicted in
where each elementary matrix e’(z) updates the FSM state X?(z) to the next higher level X+1(z).
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Figure 3. State transition diagram of DWT as a Finite State Machine.

2.2. Boundary Postprocessing

To appreciate the benefits of the FSM model, let us consider one lifting operation e(z) which updates odd samples
using neighboring even samples.

; 1 0
2 —
e'(z) = [az‘l—}—b 1]
Assume the input vector X is segmented at point z(n) into two subvectors and transformed independently at different
processors. Without loss of generality, let index n be even. In vector form, this can be written as:
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As one can see, this simple filtering operation e’(z) updates all the odd samples while the even samples are
preserved. The first observation is that no extra memory is needed since the updated results can be stored back to
their original memory locations. The second observation is that the boundary sample z'(n — 1) is not fully updated
since z!(n) is in the next block. As a result, z!(n — 1) is updated into zi*+!(n — 1) = bz’(n — 2) + z'(n — 1). However,
if we preserve this partially updated value zi*!(n — 1), then as soon as z!(n) is communicated from the next block,
zitl(n — 1) can be updated immediately as z't1(n — 1) = zi*!(n — 1) + az’(n).

This approach of preserving intermediate states (the partially updated value zi*!(n — 1) in this case) and then
continuing later is exactly what a FSM enables us to do. That is, the wavelet transform can be stopped at any
intermediate stage and continued later as long as the state information (partially updated sample values) at the
break point is preserved. It can be shown that this is also true for multilevel wavelet decompositions.

One may have noticed that, if the updating of sample zi*!(n — 1) requires the original sample value z!(n + 1),
then the above approach will not work since z(n + 1) will have been updated after the independent processing of
the two vectors by e’(z). However, the polyphase factorization given in (1) guarantees that such situations never
occur. That is, at each stage e!(z), the samples to be updated only need, besides itself, original values of samples
which are not going to be updated at this stage. Following the lifting formulation, at each stage, either odd samples
are updated using only even samples or otherwise. Odd and even samples are never updated simultaneously at the
same stage except for the final scaling/normalization.

In general, each state transition by one elementary matrix ef(z) will leave partially updated samples near the
block boundaries. These partially updated samples will be called as the state information hereafter. As long as
necessary state information in each block is preserved, the boundary transform can be completed after independent
transformations of each block. This is done by communicating this state information across blocks and postprocessing
operations are initiated to complete the transform. We thus call this boundary transform technique as Boundary
Postprocessing in contrast to the Boundary Preprocessing approach which communicates raw data samples before

the start of transform of each block.22725:9,11

What makes this Boundary Postprocessing technique attractive is that it can be generalized to any arbitrary
number of decomposition levels. The intuition is that nothing prevents us to generalize the FSM model to multilevel
wavelet decompositions. After one level of decomposition, half of the samples (the high frequency subband) will
remain unchanged while the other half (the low frequency subband) starts over another round of state transitions
exactly the same as in the previous level of decomposition. This process continues until the transform reaches the
deepest level of decomposition. That is, a DWT with any number of decomposition level can always be modeled
as a Finite State Machine and the Boundary Postprocessing technique can always be applied. Each block is inde-
pendently transformed up to the required level of decomposition. The state information is communicated after and
postprocessing is initiated to complete the transform for boundary samples. In Fig.4 we show an example dataflow
chart of a three-level wavelet decomposition using the Boundary Postprocessing technique.

2.2.1. An example using the (9,7) filters
The analysis polyphase matrix factorization of the (9,7) filters, given by Daubechies and Sweldens,® is
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Figure 4. An example dataflow chart of a three-level wavelet decomposition using the proposed Boundary Post-
processing technique. Solid lines: completely transformed data; Dashed lines: partially transformed data. Operation
1: each block transforms its own allocated data independently and state information is buffered; Operation 2: state
information is communicated to neighboring blocks; Operation 3: complete transform for the boundary data samples.

where @ = —1.586134342, 3 = —0.05298011854,y = 0.8829110762,6 = 0.4435068522, and ¢ = 1.149604398. The
corresponding FSM implementation is shown in Fig.5, where each box represents one input sample and the number
inside the box denotes the current state of the input sample. Note that for simplicity the state numbering system
in this figure is slightly different from the definitions given before. That is, if the actual value of an input sample
is updated then it goes into next higher state. Otherwise, the state number is not changed. As one can see, for an
input 9D vector X = [z(—4) z(—3) - - -2(3) z(4)]*, only the center sample z(0) is updated fully, i.e., transformed into
a wavelet coefficient since it has all the 9 samples in its neighborhood. All others ( 4 samples to the left and 5 to the
right) are left in the intermediate states due to lack of neighboring samples. However, once the missing samples (
z(5) and z(6) in this case) are communicated from the neighboring processors, then the transform can be continued.
A complete two-processor system using Boundary Postprocessing example is shown in Fig.6. In the Split stage, the
input data is segmented into two blocks, each of which is allocated to a different processor. After independent
transform in each processor, each processor has partially transform samples along the block boundaries. Next in
the Merge stage, a one way communication is setup. The state information from processor 1 is communicated to
processor 2. The state information from the two processors is combined together and transformed completely which
completes the transform for boundary samples.

2.3. The Split-and-Merge Architecture

In Fig.2 the proposed parallel DWT architecture is shown. The striped data partition scheme, as described by
Fridman and Manolakos,® is used to allocate the input data sequence uniformly onto P available processors. Each
processor computes its own allocated data up to the required wavelet decomposition level J. This stage is called
as Split. The output from this stage consists of two parts: (Z)completely transformed coefficients and (i7) the state
information (partially updated boundary samples). In the second stage, Merge, a one-way communication is initiated
and the state information is transfered to the neighboring processors. The state information from the neighboring
processor is then combined together with its own corresponding state information to complete the whole DWT
transform. The corresponding pseudo C-code algorithm is given in Table 2.3.

3. PARALLEL ARCHITECTURES FOR 2D DWT

In Fig.7 an example 2D DWT with two level decompositions is shown. The data is row transformed first and then
column transformed. Naturally, data samples along block boundaries can not be fully transformed due to lack of
neighboring samples. This constitute the row and column state information at each level. Buffer size analyses can
be found in our more detailed description of the system.?®

3.1. Block Parallel

We first consider a 2D mesh-connected processor network depicted in Fig.8(a), where each processor is only connected
with 1ts immediate neighboring processors. The message passing mechanism is virtual-cut-through which models the
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Figure 5. Tllustration of DWT as a FSM using the (9, 7) wavelet filters. Solid lines represent operations performed
for the transform of input pair (z(0),z(1) while dashed lines represent operations to be performed later for input
pair (2(2),z(3). Along each line is the multiplication factor with default value 1. The operation at each end node is
a summation. Shaded boxes represent state information on one side of the input vector X.

Table 1. The proposed parallel DWT algorithm.

begin{ transform in processor p}
for(j=0;j< J;j++)
{
transform at current level j.
store state information.
}
send state information to processor p + 1;
receive state information from processor p — 1;
for(j=0;5< J;5++)
{

transform boundary data samples at current level j.

}

end

communication time 7, for a size-m message over [-link as T, = t; +mt,, + It where ¢, is the connection establishing
time, t5 is the propagation time over a single link, and #,, is the time to transmit a size-1 message. If one message
unit is an integer, than #,, is the time to transmit one integer. Other cases are defined accordingly.

Using such a model, the natural partition for 2D data is the block partition strategy shown in Fig.8(b). Processor
P, is given the input samples with indices (z,y),mN, < z < (m+ 1)N,,mN, < y < (m + 1)N.. Without loss
of generality, assume W = M N, and H = NN, where (N,, N.) are the block row and column length, (M, N) are
the number of processors in row and column direction, and (W, H) are the original 2D data sizes. We also limit the
analysis here to cases J < min(log, Ny,logy N.). The processor network model used here is the same as that by
Fridman and Manolakos® for the purpose of comparison.

As shown before, in the first phase, Split, each processor is allocated with its portion of data and starts the
transform all the way to the required decomposition level J. Upon completion, the data configuration at each
processor is shown in Fig.9(a). The center part of each block is completely transformed while the boundaries are
left with the partially transformed samples, i.e., the state information. The next stage, Merge, communicates the
state information and completes the transform for boundary samples. If the single-port model is used, then three
communications are necessary to complete the transform, one for row state, one for column and one for the intersection
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Figure 6. An example Split-and-Merge parallel DWT architecture using (9, 7) filters for two level decompositions.
Shaded boxes represent partially updated samples to be exchanged between processors in the Merge stage.

of row and column state. However, if the multi-port model is used, the row and column state information exchange
can be implemented simultaneously thus reducing one communication. This Merge process is shown in Fig.9 from
(a) to (d) for the single-port model. Tf the multi-port model is used, (a) and (b) can be combined to simultaneously
transmit/receive the row and column state information to/from neighboring processors. This is in contrast to the
observation given by Fridman and Manolakos® that it was not possible to effectively utilize more than a single
communication port at a time in the 2D DWT. The proposed parallel algorithm can reduce the communication
overhead if a multi-port model is used.

3.2. Strip Parallel

We now consider another type of processor network in which each processor can communicate to every other processor.
A typical example is the LAM/NOW systems where locally connected machines are reconfigured into a parallel
system. One example LAM is the bus network shown in Fig.10(a). Though virtually any arbitrary topology can be
built upon such a physical processor network, for a parallel system local interprocessor communication is preferred
to reduce the network traffic, and hence the communication overhead. Consequently, we propose to use the the strip
partition to allocate data to different processors. This is depicted in Fig.10(a) where processor P, is allocated with
input samples of indices (z,y),0 <2 < W —1,nN, <y < (n+ 1)N.. The block size is now WxN,.

In the first stage, Split, each processor is allocated with its own strip and transforms up to the required level
of decomposition J. Since no segmentation is done in the row direction, state information obviously will only
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Figure 8. 2D mesh processor network (a) and corresponding data partition (b).

appear along up and down boundaries in each block. This is shown in Fig.11. Next, in the Merge stage, only one
communication is necessary to transfer/receive the column state information from neighboring processors.

4. PERFORMANCE ANALYSIS AND EXPERIMENTAL RESULTS
4.1. Performance Analysis

The performance analysis is given for 1D DWT. It can be easily extended to the 2D DWT using the separable
transform approach. Comparison is done among three different parallel algorithms:

1. Standard:®'1: each processor computes the DWT using the standard subsample-filtering algorithm.> The
boundary data transform is completed using the Boundary Preprocessing technique;

2. Lifting: same as the Standard algorithm except that each processor computes the DWT using the fast lifting
algorithm?"®; and
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Figure 10. (a) Bus-connected processor network and (b) corresponding strip data partition.

3. Proposed: each processor computes the DWT using the fast lifting algorithm and the proposed Boundary
Postprocessing technique is used for transform of boundary samples.

The performance is given for an N-point sequence 1D DWT with J-level decompositions. The data partition
is the stripped partition® which allocates the input sequence uniformly to P processors so that ecach processor has
N/P (assumed to be an integer) consecutive samples. The runtime of a parallel algorithm T' consists of two parts:
() time for transform computation (multiplications and additions); and (i7) time for interprocessor communication.

Without loss of generality, denote the execution time of one mult/add operation as #,,,° and the time to com-
municate one data sample between neighboring processors .. Let f5ctup be the communication setup time and the
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Figure 11. Merge operations for strip parallel implementation. (a) transfer row state information from P; to Piy;
and (b) complete transforms for boundary samples in each processor.
filter length be L. The total number of multiplications and additions of a standard sequential algorithm is

Cseq = 2NL(1—2"7)4+2N(L-1)(1-277)
Multiplications Additions

2N (2L — 1)(1 —277),

Il

and the total transform time Tsoq = Clseqtma s

Tyeq = 2N(2L —1)(1 =27 )tmq. (3)

For the Standard algorithm, the transform computation time can be approximated as Cieqtma/P. Before each
level of decomposition, (L — 2) boundary samples need to be communicated to the adjacent processor.?” Therefore
the total runtime is

Ts = 2N(2L —1)(1 =27 )tma/P+ J(tserup + (L — 2)tc) (4)

Computation Communication

The Lifting algorithm has the same communication overhead as that of the Standard algorithm. However, it reduces
the number of multiplications and additions asymptotically to half of the standard algorithm.® Therefore the total
runtime is

T, = NQL—1)(1=2"tma/P~+J(tsetup + (L — 2)te) (5)

Computation Communication

In the Proposed algorithm, the transform computation time is the same as that of the Lifting parallel algorithm,
however, the communication overhead is reduced. As shown before, only one communication setup is necessary to
communicate the state information between adjacent processors. Furthermore, the size of the state information at
each decomposition level can be shown to be upper bounded by (L — 2).26 Therefore the total runtime of the
proposed parallel algorithm can be estimated as

Tp = N2L—1)(1 =27 tma/P +tsetup + J(L — 2)t. (6)

Computation Communication

Comparing T, 71, and Tp, the conclusion is clear that the proposed parallel architectures decreases the algorithm
runtime by: (7) reducing the computation time using the lifting DWT algorithm and (#7) reducing the communication
overhead using the Boundary Postprocessing technique. One can easily show that the proposed parallel algorithm
improves also the speedup and efficiency,?® and keeps the same isoefficiency as existing algorithms.®



4.2. Experimental Results

In the simulation the (9,7) wavelet filters are used and the three different parallel DWT algorithms discussed in
Section 2, i.e., the standard, the lifting and the proposed one, are implemented. The baseline sequential algorithm,
however, is chosen to be the fast lifting DWT algorithm.® The strip partition strategy is used in the experiment
to segment an input 512x512 image into two strips of size 256x512, each of which is loaded into one machine for
transform. The parallel platform is LAM 6.1 from Ohio Supercomputer Center,® which runs over Ethernet connected
SUN ULTRA-1 workstations in our lab (CPU clock frequency 133M Hz). Two workstations are used to simulate a
parallel system with two processors. The algorithm running time is measured using the M PT_Wtime() function call
from MPI libraries averaging over 50 running instances. The relative speedup is calculated against the sequential
lifting algorithm as Tyeq/Tpara — 1. The results of DWT running times for different decomposition levels are given

in Table.4.2.

As one can see, the simple parallel standard algorithm and the parallel lifting algorithm do not improve that
much from the sequential lifting algorithm (relative speedup is only about 10% to 30%) due to communication
overhead between the two workstations. However, using the Boundary Postprocessing technique, the proposed
parallel algorithm provides speedup from 50% to 70% for all five levels of decompositions. It can be concluded that
the proposed parallel algorithm can reduce the DW'T computation time by significantly reducing the communication
overhead.

Table 2. DWT running time of different parallel algorithms (in seconds).

Level | Sequential Lifting | Parallel Standard | Parallel Lifting | Parallel Proposed
time | speedup time | speedup | time | speedup

1 0.3638 0.3115 17% 0.2745 33% 0.2045 78%

2 0.3649 0.3275 11% 0.2899 26% 0.2338 56%

3 0.3952 0.3490 13% 0.2938 34% 0.2369 67%

4 0.4028 0.3513 15% 0.3041 34% 0.2383 69%

5 0.4041 0.3675 9% 0.3165 28% 0.2417 67%

5. CONCLUSIONS

As a summary, a new Boundary Postprocessing technique has been proposed in this paper for parallel DWT com-
putations. Application of this new technique results in a new parallel architecture, Split-and-Merge. The basic
procedure is that, each processor can compute the transform for its own allocated up to the required level of decom-
positions. Only one interprocessor communication is necessary to exchange boundary state information to complete
the whole transform. Example architecture design and performance analysis have shown that this technique helps
to reduce significantly interprocessor communication overhead. Our experimental results show that the proposed
parallel algorithm is particularly useful for processor networks with large communication latencies such as LAM
systems.
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