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ABSTRACT

Digital video’s increased popularity has been driven large to a extent by a flurry of recently proposed inter-
national standards. In most standards, the rate control scheme, which plays an important role for improving
and stabilizing the decoding and play-back quality, is usually not defined. Several techniques have been proposed
to aim at the best possible quality for a given channel rate and buffer size. These approaches are complex in
that they require the R-D characteristics of the input data to be measured. In this paper, we propose a method
to approximate the rate and distortion functions to reduce the complexity of the optimization procedures while
making a minimal number of a priori assumptions on the source data. In the proposed method, the R-D of
image frames is approximated by spline interpolation functions, and inter-frame dependency (for P or B frames
in MPEG) are modeled by a linear-constant function. The application to gradient-based rate-control scheme for
MPEG shows that, for a typical MPEG encoder, by using the proposed model, the same performance can be
achieved with only about 10 to 15 percent of computation cost.
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1 INTRODUCTION

Digital video’s increased popularity has been driven large to an extent by a flurry of recently proposed in-
ternational standards. For example, MPEG [1] is already being used for digital video satellite broadcast and
will be soon used in high-density Video-CDs. Another standard, H.263, is being targeted for low bit rate trans-
mission over ISDN or phone lines and may soon replace H.261 as the preferred standard for videoconferencing.
These standards, along with other video compressing schemes, share many common components, such as block
transforms, macroblock structure, and motion compensated prediction.

However these standards only define the bitstream syntax and do not specify such essential components of
the encoders as rate control and bit allocation. Bit allocation is the problem of selecting among a discrete set
of possible choices which quantizers and modes of operation to use for each of the blocks in a frame or set of
frames. The goal is to select a setting that provides good quality while not exceeding the global rate assignment
for the frame. Rate control is concerned with a related problem, where in addition to optimizing quality the goal
is to prevent the output buffer of the encoder from overflowing. Rate control scheme plays an important role for
improving and stabilizing the decoding and play-back quality.



Many rate control schemes for constant-bit-rate encoding, such as the one in MPEG Test Models [2], use the
buffer occupancy to determine the quantization setting. These approaches only take into account the rate, not
the distortion, in the algorithm. Recently, there has been a growing interest in rate-distortion (R-D) optimal
techniques for both bit allocation and rate control. There are several possible frameworks in which to optimize
the performance of the rate control algorithm. A popular approach is to use models of the future frame’s rate
(and sometimes also distortion) and use control techniques to avoid overflow [3,4]. A second alternative is to
measure the rate and distortion on the frames themselves, thus increasing the required optimization complexity
but eliminating the dependency of the results on the choice of a good model. Examples of this approach can
be found in [5—8] where techniques like Lagrangian optimization and dynamic programming have been used.
These approaches are complex in that they require the rate and distortion characteristics of the input data to be
measured. However they are well suited for environments, as those encountered in video coding, where a discrete
set of operating points is available and where it may not be easy to find adequate “continuous” models for the
data. In this paper our motivation is to approximate the rate and distortion functions to reduce the complexity
of the optimization procedures, while making a minimal number of a prior: assumptions on the source data.

Previous work on rate and distortion modeling has been based to a large extent on the exponential statistics
model. For example, in [9,10], exponential expressions were used to model the relationship between the rate,
distortion, and quantization step size in a macroblock. These types of models require low computation overhead
since they are obtained based on parameters such as block variance which can be easily obtained from the input
frames. However, these are continuous models which tend to be better when a large number of quantizers is used.
Thus they may suffer from large errors because of the difficulty in modeling the highly nonlinear quantization
and entropy coding process. In addition, these models do not take into account the dependencies that arise in
the choice of quantizers for the reference frames and the predicted frames [6]. Even when these models take
the dependencies into account, as in [11], they ignore some non-linear effects that are typical in video coding.
For example, under the general intra/inter selection rule, there is no dependency if the quality of the reference
frame is too low. Although data estimated through these models might be useful in the bit allocation stage of a
buffer-state feedback rate control algorithm such as that in [2], the accuracy is not good enough for the optimal
buffer control algorithm in [5,8].

In this paper we study models that are better suited to rate-distortion optimization in realistic video coding
scenarios. We will focus on the two improvements motivated above, namely, we provide models that (i) make
relatively few assumptions on the shape of the R-D characteristics and are thus suited when operating with a
small number of quantizers and (ii) take into account the dependencies typical of video coding. These models are
based on computing a few R-D points and interpolating the remaining points using spline functions. The price
to pay for the increased accuracy is a somewhat higher complexity. The paper is organized as follows. In Section
2, we describe the formulation of the spline interpolation function and apply this function to optimal adaptive
quantization for image compression. In Section 3, we present a scheme to model the frame dependencies for P and
B frames. In Section 4, we apply the model to the MPEG video compression and present several experimental
results. Finally, conclusions and future perspectives on this technique are given in Section 5.

2 SPLINE INTERPOLATED R-D AND IMAGE
COMPRESSION

In typical DCT-based compression the rate-distortion trade-off is controlled by a quantization scale. This
parameters is used to compute the step size of the uniform quantizers used for the different DCT coefficients
(see [12] for details). When an image block (or an entire image frame if constant quantization is used) is quantized
and encoded with a specific quantization scale, ¢, the rate (the number of bits generated by the coder), r(g),
and the distortion (here the MSE is used), d(g), can be calculated. Most of the computation cost in optimum
rate control algorithms such as those in [5,6,13] comes from the computation of r(¢) and d(q) for all applicable



values of ¢'. Therefore, the computational cost can be reduced significantly if these two function values can
be correctly estimated before actually quantizing and encoding the source data. However, due to the complex
nonlinear properties of the quantization and entropy coding processes, it is difficult to predict the function value
accurately enough by using simple mathematical expressions. In this paper, we propose an approach which calls
for encoding the data and measuring the R-D functions, but only on a small set of quantization scales which we
call “control points”. Piece-wise polynomials, or splines, are then used to interpolate the function for other ¢’s
where the actual data has not been measured.

2.1 Formulation of Spline Interpolation Function

Because the rate and distortion functions are to be used in an optimization algorithm (gradient search,
Lagrangian, etc.), the first-order derivative of these functions should be well-defined. A good candidate for the
interpolation function would be the “interpolating cubic-spline”, which possesses the second-order continuous
property [14]. One disadvantage of this method is that the interpolation polynomials for any given segment (a
segment is defined as a set of points between the two consecutive control points) depends on all the control points,
i.e., it will require the coder to encode the source on all the control points even though only a small portion of
the function data is required in the rate control algorithm. In this paper, we use another type of spline, which
requires smaller computation cost, still possesses first-order continuity, and for which each segment depends only
on four nearest control points.

We assume the control points are defined as (z;,¥;), ¢ = 0...M — 1, where M is total number of control
points. Fig. 1 shows an example set of control points, where z; represents the quantization scale (for MPEG,
the applicable values are {1,2,...,31}), and y; represents the actual measured rate or distortion. The function
between two consecutive control points, z; and z;41, is defined as

fi(aj):ai~;L‘3+bi~:L‘2+Ci~I—|—di (1)

where ¢ = 0...M — 2. There are M — 1 polynomials, each corresponding to one segment. For each polynomial,
the four parameters, a;, b;, ¢;, di, can be derived from the four control points, (z;-1,yi—1), (Zs, %), (Zit+1, Yit1),
(i42, Yit+2), by imposing the following two constrains:

1. The interpolated function should take the same values as the original one at the control points, hence:
e} ait @l bitwioci+di o=y (2)
el caitzi bt it di = oy (3)

2. The first-order derivative should be continuous on the control points. This condition can be achieved by
defining the slope at control point ; as (the first derivative of f(z) is denoted as f'(z)):

Flla) = fl_y () = 2L Yzt "

Lit1 — Li-1

By taking the derivative of (1) and substituting into (4) on the two end points of fi(z), we get

Saf-ai 42w bt = SVl (5)
Tit1l — Ti—1
33322+1 cap +2zi41 b+ = Yita 7 Y -
Tiy2 — 5

The four unknowns of f;(z), a;, b;, ¢;, d;, can be readily found from the set of equations (2), (3), (5), and (6).

1Tt has to be noted, though, that the complexity of computing the R-D data for n g for a given frame is not n times the complexity
of encoding the frame. Indeed, the DCT itself only has to be computed once.
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Figure 1: Control points for typical (a) rate and (b) distortion curves. In this figure, a control point (z;,y;)
represents that if the quantization scale is set to x;, the measured rate or distortion value is y;.

In order to capture the exponential-decay property, which is typically observed in R-D data?, we choose the
control points to be with the relation as x; = z;_1 + #;_», so that, in the MPEG case, the set of eight control
points becomes {1,2,3,5,8,13,21,31}. However, on a typical video sequence at standard rate (e.g. CIF at 1.152
Mbps), the settings for ¢ = 1,2, or even ¢ = 3,4, are rarely used, hence, only 5 to 6 control points are required
in most cases.

2.2  Application to Adaptive Quantization in DCT Image Compression

By applying the spline approximation model at DCT block level, we are able to reduce the computational load
in searching for optimal adaptive quantization in DCT-based image compression. Suppose there are N blocks
in an image, and for each block the rate and distortion for a given quantization setting are denoted as r;(g;)
and d;(¢;), where 7 is the index for block, and there are a finite number of available quantization settings. The
optimum adaptive quantization problem is to determine quantization scales for all blocks (qo, ¢1,...,¢n-1), such

that the overall distortion is minimized: N

min E d;(qi) (7)

(90,1, 598 -1) i3
subject to the following rate constrains (total bit-budget is R):

" ri(e) < R (8)

i=0

The problem can be solved by the method of Lagrange multipliers, by repeatedly solving the following set of
unconstrained problems for given A’s,

min[d;(¢;) + Ari(¢;)], i=0...N—1 9)
gi
and search for A, such that the constraint (8) is satisfied. This can be done efficiently by using the fast search
method proposed in [15]. Note that the overhead for coding the quantization scale for each block can be ignored
in the above formulation (but is included in counting the total bits). That overhead can be taken into account
by using the techniques proposed in [13].

2Note that while approximately exponential characteristics are typical, the error incurred with our approach will normally be
smaller, because we have more degrees of freedom, and the characteristics are not exactly exponential.



2.3 Simulations for the Adaptive Quantization

In this part, we encode the 512 x 512 grayscale Lena image using a modified JPEG encoder. The modification
was made such that a quantization scale can be assigned for each DCT block as is done in MPEG. To test the
effectiveness of the spline approximation model, we replace r;(¢;) and d;(¢;) by the approximated data, and run the
adaptive quantization procedure. The results are shown in Table 1 and Fig. 2. We conclude from the results that,
(1) the spline approximated model produces a much smoother R-D curve, which may have potential to be used
to reduce the complexity of the search procedure in optimization algorithm, (ii) the result using approximated
R-D is close to the one using actual R-D, and (iii) the constraint (8) may not able to be strictly satisfied due to
the error in the approximated rate. In practice, this will not be a problem because the errors are typically small
and the variations can be absorbed through buffering. By using the spline model, the computation complexity
for the evaluating R-Ds is reduced to about 20% (6 control points instead of 31 settings). Note also that many
blocks have R-D characteristics similar to that of Fig. 2(a) and the lack of smoothness in the shape makes our
approach based on several control points more effective than exponential based models.
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Figure 2: (a) Comparison between the original and spline interpolated rate-distortion function of a DCT block in
the lena image, to illustrate the lack of smoothness in the original R-D characteristics. (b) PSNR curves of constant
quantization, adaptive quantization using original data, and adaptive quantization using spline approximated
data.

constant q. a.q. with original R-D | a.q. with spline R-D
q bpp  PSNR | bits overflow PSNR | bits overflow PSNR
3 1564 37.96 -34 38.66 1223 38.59
6 0993 3594 -17 36.58 2290 36.46
9 0755 34.84 -2 35.32 2358 35.16
12 0.621 34.08 0 34.37 2095 34.26

Table 1: Adaptive quantization encoding of Lena image. constant q.: constant quantization; a.q. with original
R-D: adaptive quantization using the original R-D; a.q. with spline R-D: adaptive quantization using spline
approximated R-D. The bits overflow is the difference in bits between the actual number of bits generated and
the bit-budget.



3 INTER-FRAME DEPENDENCY MODEL FOR VIDEO

To apply the approximation model to video coding, we keep the quantization scale, ¢, constant over an entire
frame, and use the spline function defined in previous section to approximate the frame-level rate and distortion
as functions of ¢g. We also make the motion estimation refer to the original reference frame, so that it only has
to be computed once for each of the P and B frames, and does not have to be recomputed when the P-B frames
are encoded to sample their respective R-D functions at the control points. For the I frames, the approach of the
previous section can be directly applied. For the P and B frames, the R-D characteristics depend on the quality of
their reference frames and we have thus to deal with multi-dimensional functions. We will now introduce methods
that are less complex than full-blown multi-dimenional models while still capturing the inter-frame dependencies.
Note that the ideas presented in this section are introduced in an MPEG framework, but are applicable to more
general video coding enviroments.

3.1 Formulation of Inter-frame Dependency

We consider the first P frame in a GOP, and its reference I frame3. Because of the dependency, the rate and
distortion functions become two-dimensional, i.e., they have the form d(g¢r, ¢p) and r(qz1, ¢p), where ¢y and gp are
the quantization scales for the I and P frame respectively. Now, the data has to be sampled in the two-dimensional
space. One straightforward extension is to sample the data at the same 6 control points for each dimension (total
36 control points), but this requires many more computations. This is because, in order to compute the data
for each additional control points along the g axis, the I frame has to be re-compressed and reconstructed again
(involving DCT, quantization, de-quantization, and IDCT), and the P frame has to be re-encoded (involving
prediction, DCT, quantization, and encoding). This complexity is much higher than the one for computing the
data along the ¢p axis (only involving quantization and encoding for the P frame). In this section, we introduce
a model for inter-frame dependency which only requires two control points along the ¢ axis.

Consider the fact that the rate-distortion characteristic of the predictive frame (P or B) depends on the quality
of its reference frame(s). When the reference frame has smaller MSE, the prediction residue tends to be smaller,
which results in a smaller rate and distortion in the predictive frame. Conversely, if the MSE in the reference is
larger, not only the rate and distortion of the predictive frame will become larger, but also more macroblocks will
be coded as “intra-block” (given the typical decision rules used in general MPEG encoders, e.g. in [16]), which
will decrease the dependency on the reference frame. After some point, the predicted frame will be completely
independent of the reference frame (see Fig. 3).

Suppose gp fixed at a constant C, so that d(qr,gp = C) becomes a one-dimensional function with variable
q1. The MSE of the reference frame (I-frame) is denoted as dr(¢qr). Based on the above observation, the frame
dependency for the distortion of a P frame is modeled as a linear increasing function with respect to dr(qr) for
qr < C, and becomes a constant function for ¢y > C', as shown in the following expression:

d(qI,C):{ Z—ﬁ~[d1(0)—d1(q1)] ig;ig (10)

where ¢ is the only variable in the model. The two model parameters, a and 3, can be determined by encoding
and measuring the distortion at two values of ¢qr. For example, if the two values are chosen to be 5 and 13, and
the same spline model with 6 control points (as in Section 2) is used along ¢p axis, the set of 12 control points

becomes:
(13,3) (13,5) (13,8) (13,13) (13,21) (13,31)

To interpolate the function value for any given settings, say (10, 10), the above interframe model is applied 4
times with C set to {5, 8, 13,12}, so that the function values are derived at (10,5), (10,8), (10, 13) (10,21). Then

3Note that the model still can be applied when the reference is another P frame.



1201 201
1001

801

mse of P frame

A

20
0 - . G L L L L
0 20 40 60 80 5 10 15 20
mse of reference frame mse of reference frame
(a) Football sequence (b) Miss America sequence

Figure 3: MSE for the P frames from two video sequences, plot as function of MSE for their reference frames.
Each solid line is a MSE curve for a given ¢ in the predictive frame. The dotted line indicates the boundary
where ¢ for the predictive and reference frames are equal.

spline interpolation function is used to derive the value at (10, 10) using the 4 derived data. The entire procedure
is illustrated in Fig. 4 (a).

However, due to the difference in properties, a similar model does not work as well for the rate. From several
video sequences, we have observed that, for the quantization scales between 3 and 24, the inter-frame dependency
for rate is reasonably low. Hence, the following simple piece-wise linear model is used (suppose the two measured
points for ¢r are z; and z3):

T’(l‘l,C) if qr < 21
r(qr,C) = § A{r(z1, O)(dr(22) — dr(ar)) + r(z2, C)(dr(qr) — dr(21))}/{dr(21) —dr(z2)} if 21 <gr <z
r(zs,C) if g > o

(12)

For B frames, the MSE function becomes d(qr, ¢p, ¢B), where ¢p is the quantization scale for the B frame itself,
and ¢y and gp are the quantization scales for the two reference frames. To keep the computation simple, we first
fix one reference frame by setting gy = ¢, where ¢ is one of the inter-frame control points, and we evaluate the de-
pendency for the other reference frame by using the same model for P frames and get d; (¢, ¢p, ¢p). We then fix the
other reference frame and derive ds(qr, ¢, ¢p). Finally, d(¢r,qp, ¢p) is defined as min(di(c, ¢p, ¢B), d2(qr1,¢, ¢B)).
This procedure simulates part of the strategy for selecting “forward” or “backward” motion vectors in the MPEG
encoder. The same model is also used for the rate function. There are a total of 18 control points to be measured
if the same set of control points as in (11) is used. The entire process is illustrated in Fig 4 (b).

3.2 Model Compliance Test

We use the MPEG-2 encoder implementation of [16] to test the accuracy the approximation model, by the
following steps: We first encode the frame, measure and record the MSE and code length, for every possible
quantization settings. Based on the function values at the pre-defined control points ({1,2,3,5,8,13,21,31}
for intra-coded frame, {5,13} for inter-frame dependency), we build the model using the procedure described
in Section 2 and Section 3, and calculate the estimated rate and distortion values. The relative error is then
calculated by
estimated_value — original value

relative_error =

(13)

original value
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Figure 4: Reconstruction of distortion model for (a) P frame and (b) B frame.

For I frame, the average and maximum relative errors are calculated over all the quantization scales. For P and B
frames, the average and maximum relative errors are calculated over the typical operating range of quantization
scales, which is from 3 to 24. The results are shown in Table 2. The results show relatively small errors for 1
frame, and also reasonably small for P frame, but it is somewhat large for B frame. Several sample graphical
comparisons are shown in Fig. 5.

4 APPLICATION TO THE RATE CONTROL FOR MPEG

In this section, we apply the approximation model to MPEG video encoding. The gradient-based algorithm
in [8] is used for the rate control, with the R-D for I frames substituted by the model defined in Section 2, and
R-D for P and B frames substituted by the model defined in Section 3.
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Figure 5: (a) Rate function of an I frame in the football sequence. The circles indicate the control points, which
are chosen to capture the exponential-decay property of the rate function. (b) The dotted line is the MSE of a
P frame in the football sequence, with respect to the MSE of its reference frame. The quantization scale of the
P frame, ¢p, is fixed at 8. The curve is approximated by a linear-constant function, indicated by solid line. The
circles indicate the two control points, at ¢f = 5 and ¢; = 13. The corner point is at ¢f = ¢gp = 8. (c) Original
measured data and (d) reconstructed with B-frame model, of a B frame in the football sequence, as a function of
gr and ¢p, with ¢p fixed at 10.

4.1 Gradient-Based Rate-Control Algorithm

The rate-control problem is defined as assigning the quantization scales ¢; to the ith frame in a GOP such
that the overall quality, measured by a pre-defined cost function (here MSE is used), is optimized. Let q =
(90,491, ---,qn—1)T be the quantization choices for the frames in a GOP. When the quantization scales are set to
q, we define the code length and mean square error of frame ¢ as the rate and distortion functions, denoted by
r(%,q) and d(¢, q), respectively. The buffer occupancy after frame ¢ is coded is then:

b(i,q) = b(i—1,q) +r(i,q) - R (14)

where R is the channel bit-rate in bits per frame. If b(4, q) is smaller than zero, stuffing bits are padded to avoid
underflow and b(i, q) is assigned as zero. The cost function is defined as

N

J(a) =Y d(i,a) (15)

1=0

—



I frames P frames
MSE BITS MSE BITS
avgerr maxerr | avgerr Imaxerr | avgerr Imaxerr | avgerr maxerr
Football 0.88% 7.01% | 1.04% 6.32% | 0.39% 6.60% | 0.66% 8.41%
Claire 0.83% 4.37% | 0.34% 3.28% | 0.88% 12.30% | 2.49% 33.02%
Susie 1.08% 6.10% | 0.89% 6.11% | 1.24% 15.88% | 2.92% 15.88%
Miss America | 0.95% 3.84% | 0.65% 7.18% | 0.89% 11.03% | 3.27T% 45.82%
Football B frames
MSE BITS
avgerr maxerr | avgerr —Imaxerr
Bl | 2.28% 17.56% | 2.89% 17.78%
B2 | 2.29% 14.73% | 3.15% 19.65%

Table 2: Relative errors. For I frames, the statistic is over the entire quantization scale range. For P and B frame,
it is calculated over the range from 3 to 24. (avgerr: average error, mazerr: maximum error.)

The problem can now be formulated as that of finding q* such that J(q) is minimized, subjected to

b(i,q) < bmaz, 1=0...N—2 and b(N—-1,q)<0 (16)
where by, 4 18 the prescribed maximum buffer size. Note that we force the final buffer occupancy to be less than
or equal to zero. Stuffing bits will be then padded at the end of GOP to ensure all GOPs have the same number
of bits. To solve this constrained optimization problem, we convert the constraints of (16) into a set of penalty

functions:

Pi(q) = max(0,b(i,q) —bmaz)? and Q(q) = max(0,b(N — 1,q))?. (17)
which are added to the cost J(q):
Ha,c) = J(a) ¢ (Z Pia) + Q<q>) , (19

where ¢ determines the amount of the penalty, which is simply set to a relatively large value. And finally, we
use steepest descent method to solve the unconstrained problem, by which the negative direction of the gradient
vector V¢ (q)? is used as the search direction, and the vector q is updated by the following

Qi1 = qr — . Vo(qr)” (19)

where oy is a nonnegative scalar value obtained by minimizing the function

p(a) =¢ (@ — aVé(ar)")

using a line search procedure [17]. To apply the above approximation model and speed-up the computations, the
functions r(4,q) and d(i,q) are substituted by the approximated data. Because of the model error in rate, the
original strictly-constant-rate for GOPs may be no longer satisfied, but we expect the buffer constraints will still
be satisfied most of the time because most of the errors is from the B frames, which consume the fewest number
of bits.

(20)

Consider the fact that the model errors in B frames are relatively large, we can further improve the solution
by re-allocating bits for the B frames. First, the I and P frames are encoded using the solution from the model,
and then, the total number of bits remains for B frame is calculated. Finally, the bit allocation for B frames is
optimized by using the same Lagrange method as in Section 2.2. The Lagrange method can be applied because
all the B frames are independent to each other after their reference frames (I and P) are fixed. By using this
approach, the solution is improved and the strictly-constant-rate for GOPs are satisfied again.



4.2 MPEG Encoding Results
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Figure 6: PSNR of image frames for (a) football, and (b) table tennis. In each figure, mrb: gradient-based method
using the approximated R-D by the proposed model, with additional bit-re-allocation for B frames; mdl: gradient-
based method using the approximated R-D only; org: gradient-based method using the original measured R-D;
tmb: Test model 5 algorithm.

o

Football Table Tennis

PSNR  Complexity | PSNR  Complexity
Model R-D 33.13 1.68 32.64 1.71
B-Frame Re-Alloc. | 33.17 1.70 32.80 1.73
Original R-D 33.17 8.87 32.74 11.35
Test Model 5 32.43 1.00 31.25 1.00

Table 3: Average PSNR and computation complexity with different encoding method. The second second row is
based on the model R-D with additional bit-re-allocation for B frames. The computation complexity is relative
to the Test Model 5 algorithm.

In the experiment the MPEG-2 encoder implementation of [16] to encode two video sequence: football and
table tennis. Both of them are in CIF format, and coded at 1.152 Mbps using four different configurations: (i)
gradient-based method with the approximated R-D from the proposed model; (ii) use (i) with additional bit-re-
allocation for B frames using Lagrange method; (iii) gradient-based method with the original R-D; and (iv) Test
Model 5 (TM5) algorithm®. The results are shown in Fig. 6 and Table 3. The computation complexities shown
in the Table are relative to the Test Model 5 algorithm, and are estimated based on the procedures in [16], where
(i) 13 mults and 29 adds are required for each 8 x 1 DCT; (ii) two-step search® method is used for the motion
estimation (takes about 85 to 90 percent of overall computations in a single-pass encoding). We assume the
memory is large enough to hold all the intermediate data including the motion vectors, reconstructed reference
frames, DCT coefficients, etc., so that many of the operations only have to be done once during the evaluation of
R-D data on the control points.

The results show that, by using the approximated model, the number of computations are reduced significantly
with very little loss in PSNR. With bit-re-allocating on B frames, we are able to achieve the same PSNR with

4Note that in the rate control used in TM5 adaptive quantization is used within frames, while we are using constant quantization.
Because the adaptive quantization in TM5 is not aimed at minimizing the MSE a further 0.3dB or so could be gained from operating
at constant quantization. However since adaptive quantization is needed in TM5 to prevent buffer overflow we still use TM5 with
adaptive quantization for our comparison.

5Spiraling outward full search for full-pixel displacement, followed by the search for 8 neighboring half-pixel displacement.



only a fraction of computation overhead. The results also show that, for the table tennis sequence in Fig. 6 (b),
the optimum method is capable of adjusting to the scene changes much faster than the test model 5 algorithm.

5 CONCLUSION AND FUTURE WORK

From the above experiments, we have demonstrated that our proposed model provides a good estimation of

rate-distortion characteristic for any given quantization settings. The first applications to the gradient-based
rate control algorithm shows the same performance can be achieve with only 15 to 20 percent of computation
costs. It can also be applied applied to other optimal rate control techniques such as the dynamic programming
approaches. In addition, our model is also useful for bit-allocation for other rate-control techniques or constant-
quality variable-bit-rate encoding scheme. In the next stage, we will incorporate our model into these techniques
and measure its performance in terms of the accuracy and computation reduction.
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