In Proc. of Visual Communic. and Image Proc., VCIP ’97, San Jose, CA, Feb. 1997

Stereo Image Compression based on Disparity Field
Segmentation

Woontack Woo and Antonio Ortega

Integrated Media Systems Center
Department of Electrical Engineering-Systems
University of Southern California,

Los Angeles, California 90089-2564

Email: wwoo@sipi.usc.edu and ortega@sipi.usc.edu

ABSTRACT

The increasing demand for 3D imaging and recent developments of autostereoscopic displays will accelerate
the usage of 3D systems in various areas. However, limited channel bandwidth is, as for monocular images, the
main bottleneck for realizing 3D systems. As a result, an efficient compression algorithm will be essential to
reduce the bandwidth requirement while maintaining the perceptual visual quality at the decoder. In this paper,
we will focus on compression of stereo images. When it comes to stereo image coding, we can take advantage
of binocular redundancy by using disparity compensation. The most popular disparity compensation method
approaches so far have been block based methods, due mostly to their simplicity. Block based methods, however,
may suffer from blocking artifacts at low bit rates due to the uniform disparity assumption within a fixed block.
Meanwhile, if we reduce the block size, the disparity estimation may suffer from various noise effects which result
in increases of bit rates for the disparity. Considering these observations, we estimate disparity based on a small
block or a pixel with the energy equation derived from the MRF model. In order to prevent oversmoothing across
boundaries, we use the combined intensity edges of two images as an initial disparity boundary. Then, we segment
the resulting smooth disparity field. Finally, the disparity and the starting position are encoded using DPCM and
the corresponding boundary is encoded using Run Length Chain coding. At the end of this paper, we present
experimental results.

Keywords : stereo image coding, disparity estimation, segmentation, Markov random field (MRF)

1 INTRODUCTION

Recently, 2-D visual communication technologies have matured so fast that various commercial systems are
available for real-time visual communication based on standards such as JPEG, MPEG I and II, or H.263. Nev-
ertheless, these techologies may not be sufficient for the increasing new demands for realistic or more natural
representations of scenes. New 3D technologies are a proper solution for these requirements. Also, recent devel-
opments of autostereoscopic displays may open a new way for adding realism in the 2-D display and will accelerate
the usage of 3D systems in various areas.



In this research, we consider the problem of efficient encoding of stereo images, which are frequently used to
provide 3-D realism. In general, depth perception is obtained by simultaneously viewing a scene from different
positions. If we can find correspondences in stereo images, we can then construct 3-D structures of the scene
by a triangulation with the camera geometry. The stereo (or multi-view) images are bound to have a number
of applications in near future; for example, in the fields of 3-D visualization (CAD), 3-D telemedicine, 3-D
telerobotics, 3-D visual communications, 3-D HDTV and cinema, and Virtual Reality. However, limited channel
bandwidth is, as for monocular images, the main bottleneck for making these systems possible since stereo images
require to transmit or store enormous amount of data. As a result, an efficient compression algorithm will be
essential to reduce the bandwidth requirements while maintaining the perceptual visual quality at the decoder.

This paper deals with stereo image coding based on disparity field segmentation. In stereo image encoding,
we can take advantage of binocular redundancy by adopting disparity compensated coding. Fixed block based
displacement. estimation has been widely used in motion or disparity compensated coding.! Though they are
simple and effective to implement, block based methods suffer from several main drawbacks; as the block size
becomes smaller the overhead required to handle the disparity becomes too large. Block based methods may
also fail to provide accurate matching results because the correspondences are locally ambiguous due to noise,
occlusion, lack of texture, and repetitive texture. Conversely, larger block size will result in increases in the
corresponding estimation error and thus it requires higher rates to transmit the difference images. In addition,
if the block includes object boundaries, block based methods may suffer from visual artifacts such as blockiness
at low bit rates. This is because the displacements are assumed to be the same within a block and in general
different objects have different disparity. Since the human visual system (HVS) is sensitive to object boundaries,
which are usually related to abrupt intensity changes, these blocking errors can be very annoying.

One way to avoid the problems associated with block based methods is to a variable block size by segmenting
blocks with higher estimation error into smaller blocks, in order to reduce estimation error while maintaining the
encoding efficiency.? Another possibility is to use an arbitrary shape segmentation-based approach.® Chu et al.
showed that edge information can help segment range images effectively.* Marques et al. have adopted object
based segmentation approaches in motion compensated coding.’ In general, a correct displacement estimation
based on arbitrary shapes improves the coding efficiency of the residue image by reducing the estimation error
at the object boundary. As a result, segmentation or object based approaches fewer visible artifacts. In addi-
tion, segmentation simultaneously produces useful intermediate information for various applications such as scene
analysis, synthesis, or generation for VR. However in order to achieve better overall coding rates than block-based
methods, segmentation-based algorithms have to represent the segmentation information and the corresponding
disparity map in an efficient manner. Therefore our goal should be to simplify the disparity /segmentation infor-
mation so as to minimize the encoding cost while providing a good prediction. This involves finding a smooth
disparity map and along with simple segmentation contours.

In this paper, we first derive an energy equation based on the MRF/GRF model to find a smooth disparity
map with simple boundaries. In order to achieve these goals, we impose some useful and realistic constraints on
the disparity estimates, such as similarity between intensity fields of corresponding stereo images, smoothness of
the disparity field, a connected occlusion field, and smooth contours. We also combine two intensity edge fields
and then use them as an initial disparity boundary which prevents disparity from being oversmoothed across
boundaries. Then, given a smooth disparity field we make the disparity contour as simple as possible to reduce
the bit rate of the target image of the stereo pairs using run length chain coding. The proposed compression
algorithm can be used not only to reduce bandwidth but also to achieve efficient rendering of scenes. The potential
for a parallel implementation is another desirable feature of our algorithm. This paper is organized as follows. In
section 2, we briefly introduce the MRF method that will be used for image segmentation based on intensity and
for disparity field estimation and segmentation. In section 3 we describe how these two MRF techniques can be
used to estimate disparity, using the intensity field segmentation to help obtain a more efficient segmentation of
the disparity field. We also describe our method for encoding the resulting disparity field based on the disparity
field segmentation. Experimental results are presented in section 4. Finally, conclusions and future research
directions are given in section 5.



2 IMAGE SEGMENTATION AND MRF

2.1 Segmentation and Region Representation

The main goal of segmentation-based coding is an efficient representation of images, i.e. one based on the
classical principles of achieving the best visual quality for a given rate. An image can be segmented into ho-
mogeneous regions, and the contours (or shapes of segmented regions), textures (intensities) and segmentation
errors have then to be encoded. The same ideas as will be seen can be used to segment a disparity field or a
motion vector field. Segmented regions can be represented by global object descriptors such as the surface area,
the perimeter, the center of mass, the length and width, or the convexity. These type of parameters are useful
for object recognition and classification but not for coding since such low precision descriptions do not allow a
good reconstruction. Other popular ways to represent segmented regions are region description methods and
boundariy description methods.

An example of a region-based method is the quadtree representation, which assumes the image is unit square
and the root node represents the entire image. The image is successively subdivided into quadrants until no
further division is necessary. It guarantees a compact representation due to its hierarchical data structure. It,
however, may not be good for image sequence compression since the descriptions are shift variant.

Boundary description methods are also widely used since they provide compact representation and are easy
to implement.® The contour, the boundary representation of segmented region, can be found by edge detection
or region growing and then can be encoded using chain coding. The total rate, B, for the contour coding of an
M x N intensity image can be represented (not including the cost of sending the intensities within each segment)
as follows

c
B = {lli| x logs(M x N)} (1)
i=0
where ¢ represents the number of contours and |I| denotes contour length. It can be encoded using a chain code
which encodes the sequence of contour directions. The total number of bits for the chain coding of an M x N
intensity image can be represented as follows

B = {logs(M x N) +|li| x logsk} (2)

i=0

where k denotes the neighbor connectivity used in the chain coding, say 4 or 8. The first term is needed to
represent the starting point of a contour and the second term is required to describe the contour. Roughly
speaking, for a 256 x 256 image we can achieve about 8 to 1 compression ratio when compared to a plain
contour coding. One simple extension of the contour coding exploiting the redundancy, smoothness in contours,
is differential or run length chain coding. However, chain coding methods are noise sensitive and also require more
bits for detailed contour description. Therefore, we can tradeoff between given bit budget and desired precision
by allowing approximate reconstruction using straight lines, curves, or polygons. Methods to achieve approximate
curve reconstruction using rate-distortion criteria have recently been proposed.”

Once all the pixels in the image have been labeled by the segmentation procedure we need to encode the
contours. We start by finding labeled contours for each segmented area using a 4-connected neighborhood, ¢.e.,
if one of the 4 neighbors has a different value, then we decide it as a boundary. Then, we scan the image and
detect a starting point. We keep the starting point and label, (d, z, y), and then start tracking the contour using
8-connected neighborhood. The tracking is finished when the starting point is reached. This process is repeated
until whole contours in the image are tracked. We can save more bits by applying DPCM to the starting points
and labels. We also can use differential or run length chain coding to further reduce the bit rate of the contour
coding.



2.2 MRF/GRF Model and MAP Estimation

The main advantage of the MRF model based approach is that it provides a rigorous mathematical framework
and a general model for the interaction among spatially related random variables. Another advantage of the
MRF model is its ability to combine discontinuity and occlusion indicators into the energy equation. It reduces
the disparity estimation error resulting from an occlusion effect by treating those blocks independently.® The
resulting algorithm also can be implemented in parallel due to its inherent localization property.

Geman and Geman considered images as realizations of a stochastic process that consists of an observable noise
process and a hidden edge process.® We apply this stochastic model to modeling of the stereo disparity field as
well as intensity image. We model the spatial interactions among neighboring intensity pixels (disparities) based
on the discrete MRF model and Gibbs distribution. Consider a random field of intensity, F' = {f;;, (¢,J) € Q}
(or disparity, D = {d;;, (,j) € §2}) defined on a discrete, finite, rectangular lattice @ = {(¢,7)]0 < ¢ < Ng,0 <
J < Ny} where N, and N, are, respectively, the vertical and horizontal size of the image (or the disparity field).
Assume the intensity image, I (or D), is a MRF with respect to a neighborhood system n = {n;;, (¢, j) € Q},
where 7;; is the neighborhood of f;; (or d;;) such that (¢, ) € ni; and (k1) € n:;, t.e.,

P{D = dij|dy, (k,1) € 2} P{dijldyi, (i, 5) # (k,1), (k,1) € mij} (3)

The spatial interaction among the motion in the image sequences also can be defined similarly.

Fig. 1 shows some neighborhood systems commonly used in image processing. These can be used similarly

for disparity and occlusion.
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Figure 1: Neighborhood systems and cliques: (a) Geometry of neighborhoods; the number denotes ith order
neighborhood system. (b) First order neighborhood n' and cliques used for intensity, the disparity and the
occlusion; we can quantify the effect of each clique according to the characteristics of the random fields.

Fig. 2 shows two different neighborhood systems for edge processes, horizontal and vertical edges, respec-
tively.1? Considering the model constraints, an isolated edge is inhibited and a connected edge is encouraged

even if the intensity (or disparity) changes slightly.

2.3 Image Segmentation using MRF

Our first goal is to find simple and connected contours for the objects/regions in the image. The segmented
regions will then be used to help segment the disparity field using the MRF model. The resulting edge is a good
initial guess of the disparity edge, though the intensity discontinuities may not correspond to physical boundaries.



Figure 2: Neighborhood System for Edge Process for: (a) Vertical Edge (b) Horizontal Edge

We can formulate an intensity image segmentation as follows. For a given intensity image, G, we want to find
a smooth intensity image, F', and intensity edge, L, such that solutions maximize the a posteriori probability
(MAP), P(F,LP|G). We can decompose the posterior probability using Bayes theorem as follows

P(G|L!, F)P(F|L')P(L!)

P(L' F|G) = PG)

o« P(G|F)P(F|L"YP(L") (4)

where F'is smoothed image of given intensity image GG. In the above equation, the first term is called a noise
process or a degradation model, the second term denotes a smoothness model and the third term represents
connected edge process. The denominator P(G) can be ignored since it is independent on the smooth image or
intensity edge.

According to the Clifford-Hammersley theorem,!! if a measure can be modeled by a MRF, then the probability
mass of the measure can be represented in the Gibbs distribution form. The first term of the right side in (4) is
called as the observation process. It can be represented in the Gibbs distribution form as follows

P(GIF) = Zeap{~2U(GIF)) )

where Z is normalization constant a and 7' is a temperature. The energy functions designate the constraints
of the strong similarity between the noise image and the original image. The energy function for a pixel (3, j),
U(gij1fi;), can be represented as follows

Ulgij|fij) = (95 — fi)? (6)

where the second g denotes given intensity image and f represents reconstructed intensity image.

The second term in (4) represents an a priori assumption on the smoothness of the intensity field, F', given
an intensity edge, LY. The a priori distribution for F' with L! also can be represented as Gibbs distribution form

1
P(FIE) = Zexpl— L U(FILT) (M
where Z is normalization constant 5 and 7T is a temperature. The energy function U(f;;|l;;) can be represented
as follows
U(fijllis) =Y (1=l ) (fij = fiy)? (8)
Nij

where f, represents neighboring pixels and /,, represents corresponding discontinuities.

We can also decide edge process initially by the intensity difference of the noisy image. The initial discontinuity

process is defined as
L. = { Lo Afij = fus
ij —

0, o.w.

> Ty

- (9)
where Ty is threshold for edge decision. If the difference between the intensity and its neighborhood exceed a
threshold T}, then there is discontinuity. In this case the smoothness constraints should not be performed across
this discontinuity.



Finally, we have
P(L, FIG) o cap{~ 20 (GIF) eap{ = 20 (FIL Yeap{~ LU (11)) (10)

where each term represents a noise process, a smooth intensity field, and a intensity edge process, respectively.
The overall energy function for intensity image segmentation can be represented as equation (4) and the energy
for a pixel (4, j) ca be calculated as follows

UL}, fijlais) = el fij = 9i5)” + (L =) D (L =Ly, ) (Fij = Faiy) +AVellijs bn,,)} (11)

Nij

where « and 7 are weighting constants. We set 3 to be equal (1 — «) since they are related to the noise level of
the given image.

2.4 MRF Model for Disparity Estimation

We estimate disparity using smoothed images and intensity edges of the previous step. To estimate the
disparity, we consider a coupled MRF model consisting of a disparity process, a disparity edge, and an occlusion
process. The estimation is also difficult because of the ill-posedness of the problem, i.e., the solution to the
problem may not exist, may not be unique, or may be discontinuous with respect to the data.

We can similarly formulate a disparity estimation (DE) problem as we did in our previous work.® The main
difference is the disparity boundary process which is used to compactly represent the segmented area as well as
prevent the disparity field to be oversmoothed across the boundary.

For given stereo pairs, F'* and F® we want to find disparity, D, occlusion, ®, and disparity edge, L7,
such that solutions maximize the a posteriori probability, P(D,®, LP|FL F#). We can decompose the posterior
probability using Bayes theorem as follows

P(FL|FE D &, LP)P(D|®, L?)P(LP)P(®)
P(FL|FE)

P(D,®, L°|F® FL) = (12)
where we assume that the disparity, D, depends upon the occlusion, ®, and disparity edge, L?. The disparity
edge and the occlusion are independent of the right image, F'¥, because the right image itself does not directly
effect on the decision of the disparity edge and the occlusion in the MAP estimation. The denominator of the
above equation also can be ignored in the MAP estimation because it is not a function of the disparity, D, the

disparity edge, L, or the occlusion, ®. Therefore, the posterior probability is proportional to the numerator in
(12) as follows

P(D,L? ®|Ff Fl)y < P(F¥|FE D, L” ®)P(D|L?,®)P(L")P(®) (13)
Using again the Clifford-Hammersley theorem,!! we have
1
P(D,®, LP|F® FE) = Zemp{—U(D,@,LD|FR,FL)} (14)

where Z is a normalization constant and U (D, ®, L? |FL| F /) is an energy function. The MAP estimation problem
can be replaced by the energy minimization problem, i.e., the solutions, D, ®, and L” minimizing the energy
function U(D,®, LP?|FL F&) are the solutions maximizing the posterior probability P(D,®, L?|FL F&) We
can formulate the disparity estimation problem as follows
(D,®, L) = arg max P(D,®, LP|FE FL)
D,®

Ely

= arg (%17%1) U(D,®, LP|FE FL) (15)

= arg (rgig){U(FﬂFR, D,®)+U(D|®, LP)+ U(L”) + U(®)}



where each term represents useful constraints for the disparity estimation, i.e., similarity, smoothness, disconti-
nuity constraints, and occlusion, respectively.

The first term of the right side in (15) represents the constraints of the similarity between stereo image for
a given disparity and occlusion. In general, the block based disparity estimation assumes only that the image
intensities in the stereo image pair, I’ and F'®  are similar after disparity compensation and tries to find the
matching block with an optimal cost value between X and FF. Therefore, block based approaches result in
erroneous matching for those blocks which contain object boundaries. In order to avoid the occlusion effects
we adopt an occlusion indicator and then we segment the block selected as an occlusion candidate into smaller
blocks. If the small block (or pixel) has still lager DE error than theshold, it is classified as an occlusion.

The second term in (15) represents an a priori assumption on the smoothness of the disparity field, D, given
the disparity edge, L?, and the occlusion, ®, which will be used to trade-off smoothness and estimation error.
We assume that the real disparity field is smooth except for the object boundaries that are related to the depth
discontinuities. Note that generating a smooth disparity field not only mitigates the effects of noise, it can also
increase the encoding efficiency for the disparity (similar disparities in adjacent blocks results in lower entropy).

The third term in (15) denotes a disparity contour process. We use the intensity edge obtained at the
image segmentation step as an initial disparity edge process. The disparity edge controls the discontinuity
between the disparity and its neighborhood. The main role of the disparity edge is to prevent disparity from
being oversmoothed across object boundaries. Thus, smoothness constraints should not be performed across this
discontinuity. The smooth contours are also used to compactly represent segmented disparity fields.

The last term in (15) denotes an occlusion process. We impose an a priori assumption on the occlusion field
so as to force it to be connected and then the isolated occlusion is inhibited. The initial occlusion candidate is
decided by comparing the magnitude of the mean absolute error (MAE) of the block with a pre-selected threshold.
It is natural to discard the estimates for the occluded block (pixel) because the occluded block tend to increase
the entropy of the error image. Even though, the connected occlusions increase the bits for DE errors, they
reduce the bits for the representations of occlusion areas. From the view point of perceptual image quality, the
advantages of occlusion indicators outweigh the disadvantages, i.e., the increases in bits for DE.

Given the above model, we can derive the overall energy function, U(D,®, L? |[F FL) for the segmentation-
based disparity estimation as follows

UD, @ FF Fhy = > Uldiy, ¢y, lij | Fly, )
= D> A=) =6i) D> (frn— Frnsa,)’ (16)
(1,5)eQ (m,n)€eFy;
o (dig = dy )2 (1= L) (1= 6,) + B Y Vellijilyy,) +7 D Vel@is, 6niy)}
Nij ceC ceC

where F; denotes a block of pixels and f,, represents pixels within the block, 7.e., the block size is 1 x 1, I and
f is the same. In the above equation, d, ¢, and [ represent a disparity, an occlusion, and a disparity contour,
respectively. The disparity edge [ controls the discontinuity between the disparity, d, and its neighborhood, d,.
An C represents a pre-specified set of cliques, ¢, for the occlusion and V, is a potential function for the cliques.
The larger neighborhood, 7, the greater the influence of neighboring disparities. The parameters «, 8, and ~ are
weighting constants. The constant « is determined according to the noise level of the two images. For example,
if we set a to be zero for the noise-free images the equation will be similar to the simple BM algorithm. We
increase it according to the noise level to reduce the noise effects.



3 STEREO IMAGE CODING BASED ON SEGMENTATION

3.1 Disparity Estimation and Segmentation

Using (16), we estimate a smooth disparity field. The occluded area can be decided by comparing an estimation
error and a clique potential of an occlusion indicator. Similarly, the disparity contour can be decided. Finally,
we segment the resulting smooth disparity map in terms of disparity and occlusion.

For the disparity estimation we only use the first and the second term in (16) since the other terms are not a
function of disparity. We estimate disparity by tradeoffs between similarity of intensities and smoothness of the
disparity field. To find occlusion candidates, the first and the last terms are used. In this case, the role of the first
term is a kind of dynamic thresholding for the decision of an occlusion according to the state of the neighboring
occlusions. For example, a pixel with lower MAE can be decided as an occlusion, if its neighboring pixels are in
an occlusion area. Also, even though a pixel has high MAE, it can be labelled as a nonocclusion, if its neighboring
pixels are in nonocclusion area. Similarly, the disparity edge is decided using the first and the third term. The
same statement with occlusion can be done for the disparity boundary.

Due to the nonlinearities of the energy equation U (D, ®, L? |F® FL) in (16), optimal disparity solutions are
difficult to obtain. There are several ways to solve the problem. One popular approach is to use a stochastic
relaxation algorithm, such as simulated annealing®!? or MFT,'3 which require a high degree of computation to
find an accurate disparity solution. To reduce the computational burden we can use non-optimal, deterministic
relaxation which converges to a local minimum. The problem can also be solved using neural networks; a
parallel implementation is possible due to the localization properties of the problem.!® When we implement a
parallel algorithm, we have to partition the disparity field into disjoint regions and update the disjoint regions
simultaneously at each iteration using the previous iteration result. In this paper instead of using the relaxation
algorithm, for simplicity, we estimate the disparity with a minimum energy by full search within a search window.

First, we assume the given stereo images are smooth enough and then segment intensity images using a simple
threshold method. Using the MRF model we try to find smoothly connected intensity edges. The resulting
combined intensity edges are used as an initial disparity boundary. It is a good initial guess, though all intensity
edges do not correspond to disparity boundaries. For disparity estimation, we divide the target image into blocks
and estimate initial disparity based on the fixed block matching.

Then, for each block the best matching block is estimated within the search window. Though the disparity
minimizing MSE is an effective solution in terms of bit rate for Disparity compensated error (DCE), it may not
be optimal when we consider the DCE and disparity together. Thus, we use in the energy equation containing
smoothness constrained. Then, we segment a block with higher Mean Absolute Error (MAE) than given threshold
into small blocks and for each subblock we estimate disparity again. We repeat this process until the block with
higher MAE reaches a pixel or the MAE of the block is smaller than the given threshold. When the block or pixel
has larger MAE than the threshold, we consider it an initial occlusion. The resulting disparity map is formed by
arranging the individual disparity of each block and used as an initial disparity.

Given an initial disparity edge and an initial disparity we estimate a smooth disparity field to make the entire
coding efficient based on the energy equation derived from MRF model and MAP. Next, given the disparity, we
label blocks with high energy value in equation (16) as occlusion candidates with higher DCE. Then, we eliminate
redundant disparity boundaries and find smooth disparity contour since fewer numbers of region and shorter
boundary length requires less bit rate. We repeat these steps until we get a reasonable solution in terms of bit
rates and distortion. The resulting disparity field and corresponding contours are encoded using differential chain
coding.



3.2 Stereo Image Coding based on Disparity Field Segmentation

In general, we can get perceptually better image quality as well as reduced DCE by encoding the target
image based on the disparity segmentation if we assume that disparity contours coincide with object boundaries.
Figure 3 shows the block diagram of the stereo image encoding using the MRF model and segmentation.

The reference image is encoded in intraframe mode using transform methods such as DCT or wavelet transform.
We do not encode the reference image based on segmentation since the quality of the reconstructed image highly
depends on that of the reference image and generally conventional transform methods provide better performance
at higher bit rates than segmentation based coding does. First, we find disparity contour using a 4-connected
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Figure 3: Stereo Image Encoding using Segmentation based Disparity Compensation

neighborhood from the smooth disparity map resulting from MRF model based disparity estimation. Then, we
trace the contours using an 8-connected neighborhood. Then we encode contour using the differential chain
coding or run length chain coding followed by Huffman coding. Simultaneously, we encode the disparity and the
starting point using DPCM and Huffman coding. Finally, we encode the estimation error which includes the
intensity error for the occluded error. There is no side information for the occlusion since the maximum disparity
represents an occlusion.

The DCE is computed using the smooth disparity map and stereo images. The segmented areas with high
energy, t.e., requiring higher bit rate than intra mode coding, are encoded independently by encoding the original
image instead of DCE. In conventional approach, DCE is encoded in a similar manner to that of intra frame by
applying DCT to every square block. We use scalar quantizer and DPCM followed Huffman encoding for DCE.

The decoding is the inverse process of the encoding process. At the decoder, the reference image is first
decoded. Then the target image is reconstructed using the reference image and side information such as disparity
with occlusion and compensated error.

4 EXPERIMENTAL RESULTS AND DISCUSSION

In order to show the effectiveness of the proposed algorithm we test the proposed algorithm on simple syn-
thesized images. The performance is measured in terms of the bit rate of the target image and the peak signal to
noise ratio (PSNR). The first test image consists of a rectangle, a circle, and a triangle and has random texture
as shown in Figure 4 (a). Figure 4 (b) shows the disparity estimation results based on the simple block matching.
The resulting DCE has a blocky appearance as we are limited to a single disparity vector per block. As expected
the errors occur along the object boundaries where a different estimate for object and background is needed.



In order to solve this kind of problem which comes from the uniform disparity assumption within the block we
included line processes in the MRF Model. Figure 4 (c) shows the combined intensity edge fields which are
obtained based on the energy equation driven in Section 2.3. The combined edge is used as an initial disparity
boundary to prevent the disparity field from beeing oversmoothed accross the boundary of segmented areas. The
disparity field can then be found using the energy equation derived in Section 2.4. The resulting smooth disparity
field and corresponding disparity boundary are shown in Figure 4(e) and (f), respectively. As expected, the MRF
model based method found a smooth and accurate disparity field which can be used to generate intermediate
scenes in the virtual environment while reducing the disparity compensated error. The smooth disparity field
with connected occlusion areas reduces the bit rate for the disparity field itself. Furthermore, main advantages
of separation of occlusion areas are in the 3D visual perception since the occluded areas usually do not have any
effect on depth perception. Therefore, even if we reduce bit rate for the occluded areas, with the corresponding
loss in overall PSNR, we can perceive 3-D without loss of depth information. Finally, Figure 4(d) shows the re-
constructed image using the disparity contour, segmentation based disparity, and DCE. The segmentation based
coding results in no blocking artifacts which are obvious in human visual system.
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Figure 4: Results of Disparity Estimation for synthesized image. (a) target image (b) initial disparity (c) combined
intensity edges (d) reconstructed target image (e) disparity with occlusion (f) disparity contour

Figure 5 shows disparity estimation results and a reconstructed image. The original image, bust, was provided
by INRIA-Syntim in the gif format with size of 5122512 and we coverted it intensity image with size of 2562256.
Similarly, the proposed algorithm provides a smooth and exact disparity field.

We encoded the disparity contour using an eight-connected chain code and the disparity compensated error
using constant quantizer followed by DPCM and RLC. As a result, we reduced the bit rate for the disparity itself
as well as for the disparity compensated error. We also can take advantage of the fact that neighboring disparity
contour tend to change smoothly by adopting DPCM after chain coding. The proposed algorithm provides better
perceptual quality as well as higher PSNR than block based methods do. Figure 6 shows the comparison of the
rate-distortion(RD) performance among the results of JPEG, Block based, and MRF with segmentation based
coding.

According to the experimental results, the proposed algorithm achieves 0.5-0.7dB better performance. The
main gain comes from a smooth disparity field and compact boundary descriptions. At the same low bit rate,
though the reconstructed target image based on the fixed block suffers from blocking artifacts, especially at



Figure 5: Results of Disparity Estimation for synthesized image. (a) target image (b) initial disparity (c) combined
intensity edges (d) reconstructed target image (e) disparity with occlusion (f) disparity contour

object boundaries, the proposed algorithm provides no artifacts at object boundaties and produces less perceptual
artifacts. Currently, the main drawback of this approach is that lots of bits are used for encoding occluded areas
to increse the PSNR. One way to overcome this problem is for occlusion areas to adopt arbitrary shape based
transform technique which takes advantages of the segmentation. Usually, however, the occlusions do not affect on
perceiving 3D structure, i.e, even though we do not send any side information for occlusion areas, we can perceive
3D from stereo images. Therefore, another way to reduce this kind of overhead is to interpolate occluded areas
from their neighboring blocks. The remaining factor we have to consider to reduce bit rates is using boundary
approximation techniques.

5 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have proposed an algorithm for stereo image coding based on MRF model and disparity
field segmentation. The MRF based method provides a reasonable solution in the Rate-Distortion (R-D) sense
since the solution is selected by tradeoffs between compensated error and smooth disparity resulting in a lower
bit rate for the disparity. It also encourages smoothly connected disparity contours corresponding to effective
representation of segments. According to the results, the proposed algorithm also provides better visual quality
as well as PSNR. We will apply the algorithm onto the more complicate real multi-view images and stereo video
sequences. We also will consider R-D constrained segmentation and an efficient encoding of the resulting contours
and compensated error with given bit budget. The boundary approximation based on the R-D constraints can
be another issue to solve.
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