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Abstract

The representation, processing and analysis of large-scale data as signals defined
over graphs has drawn much interest recently. Graphs allow us to embed natural inter-
connectivities between data points and exploit them during processing. As a result,
graph signal processing has laid a strong foothold in various modern application domains
such as machine learning, analysis of social, transportation, web and sensor networks,
and even traditional areas such as image processing and video compression. Although
powerful, this research area is still in its infancy. Recent efforts have therefore focused
on translating well-developed tools of traditional signal processing for handling graph
signals.

An important aspect of graph signal processing is defining a notion of frequency for
graph signals. A frequency domain representation for graph signals can be defined using
the eigenvectors and eigenvalues of variation operators (e.g., graph Laplacian) that take
into account the underlying graph connectivity. These operators can also be used to
design graph spectral filters. The primary focus of our work is to develop a theory of
sampling for graph signals that answers the following questions: 1. When can one recover
a graph signal from its samples on a given subset of nodes of the graph? 2. What is the
best choice of nodes to sample a given graph signal? Our formulation primarily works
under the assumption of bandlimitedness in the graph Fourier domain, which amounts
to smoothness of the signal over the graph. The techniques we employ to answer these
questions are based on the introduction of special quantities called graph spectral proxies
that allow our algorithms to operate in the vertex domain, thereby admitting efficient,
localized implementations.

We also explore the sampling problem in the context of designing wavelet filterbanks
on graphs. This problem is fundamentally different since one needs to choose a sam-
pling scheme jointly over multiple channels of the filterbank. We explore constraints
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for designing perfect reconstruction two-channel critically-sampled filterbanks with low-
degree polynomial filters, and conclude that such a design is in general not possible for
arbitrary graphs. This leads us to propose an efficient technique for designing a critical
sampling scheme that, given predesigned filters, aims to minimize the overall reconstruc-
tion error of the filterbank. We also explore M -channel filterbanks over M -block cyclic
graphs (that are natural extensions of bipartite graphs), and propose a tree-structured
design in a simpler setting when M is a power of 2.

As an application, we study the graph-based semi-supervised learning problem from
a sampling theory point of view. A crucial assumption here is that class labels form a
smooth graph signal over a similarity graph constructed from the feature vectors. Our
analysis justifies this premise by showing that in the asymptotic limit, the bandwidth (a
measure of smoothness) of any class indicator signal is closely related to the geometry
of the dataset. Using the sampling theory perspective, we also quantitatively show
that the label complexity (i.e., the amount of labeling required for perfect prediction of
unknown labels) matches its theoretical value, thereby adding to the appeal of graph-
based techniques for semi-supervised learning.
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Chapter 1

Introduction
Recent improvements in communication and electronic storage capabilities have cre-

ated an explosion in the amount of data generated from a variety of sources, so much
so that we have already stretched the boundaries of current data processing techniques
and ventured into unchartered territory. The exponential improvement in raw com-
puting power can only do so much to alleviate this problem – partly because current
processing techniques do not scale very well with the size of datasets, but more impor-
tantly because “modern” data is quite unstructured and irregular, and hence, there is an
alarming shortage of techniques required for understanding and processing such data.

Graph-structured data is one such form of unconventional data that cannot be easily
represented by regularly or irregularly spaced samples in a metric space. In many appli-
cation domains, such as social networks, web information analysis, sensor networks and
machine learning, a natural representation of the dataset can be provided by a graph.
Each observation or data point is attached to one of the vertices/nodes in the graph, and
the edges (directed or undirected, weighted or unweighted) capture important character-
istics of the dataset, e.g., similarity or proximity between the vertices, link capacity etc..
Specifically, such a mapping from the vertices of a graph to the set of scalars is known as
a graph signal. In order to study various properties of these signals (such as smoothness,
anomalous behavior etc.), one needs to take into account the underlying connectivity of
the data points. Common examples of graph signals include user ratings or preferences
on social graphs, class labels on similarity graphs in machine learning, signal values on
sensor nodes in a sensor network, collaborative filtering, etc. (Figure 1.1). Further, even
traditional applications such as image and video processing, and compression, can bene-
fit from a graph-based formulation [47, 30]. The set of tools that facilitate understanding
and processing graph signals are broadly covered by the emerging research area known
as Graph Signal Processing [66, 62].

Traditional signals in the Euclidean space can be analyzed and processed using well-
established techniques such as sampling, filtering, frequency transforms, etc.. Graph
Signal Processing aims to extend these tools for signals on graphs by exploiting the
underlying connectivity information. These extensions in most cases are non-trivial since
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Figure 1.1: Commonly occurring examples of graph-structured data in modern appli-
cation areas such as ranking, user ratings prediction over social networks, collaborative
filtering and semi-supervised learning.

graph signals lie in irregular non-Euclidean spaces. For example, defining analogs of even
the simplest signal processing operations such as time shift, scaling, and downsampling is
not immediately obvious for graph signals. An additional consideration in graph signal
processing is complexity, therefore greater emphasis is laid on the design of localized
algorithms, where the output at each vertex depends only on its local neighborhood.
This allows algorithms to scale well with large graph sizes that have become increasingly
common in modern big data applications.

The primary focus of this dissertation is to formulate a sampling theory for graph
signals that is meant to form a Graph Signal Processing analog of the Nyquist-Shannon
sampling theorem. Contrary to the more common uniformly-spaced sampling strategy in
traditional signals, sampling in graphs can consist of choosing any subset of vertices over
the graph. Therefore, in our formulation, we seek an answer for the following questions:

1. When can one recover a graph signal from a given subset of sampled vertices on
the graph?

2. How can one choose the best vertices to sample a given graph signal?

Next, we consider the sampling problem in the context of designing wavelet filterbanks on
graphs. Finally, as an application, we view the problem of graph-based semi-supervised
learning from the perspective of sampling theory. A detailed description of the research
problems studied in this dissertation is provided in the following sections.

2



1.1 Sampling theory for graph signals

The Nyquist-Shannon sampling theorem is a landmark result in signal processing
theory that forms a bridge between continuous-time and discrete-time signals. It estab-
lishes a sufficient condition on the sampling rate required to capture all the information of
continuous-time signals satisfying certain modeling assumptions (most commonly, ban-
dlimitedness in the spectral domain). For example, the simplest form of the sampling
theorem states that a signal with bandwidth f in the Fourier domain can be uniquely
represented by its samples captured uniformly at a rate of at least 2f . An analogue
of the sampling theorem in the digital signal processing domain specifies conditions
on downsampling bandlimited discrete-time signals without losing information. There
also exist alternate variants of the sampling theorem under different sampling regimes
such as non-uniform sampling [31], or different modeling assumptions (for instance, non-
baseband signals, signals with finite rate of innovation [73]), or a combination of these
in the more recent compressed sensing literature [18].

Similarly, in the context of Graph Signal Processing, the sampling theorem gives
conditions under which a graph signal can be uniquely represented by its samples on
a subset of nodes. This problem is fundamentally different from traditional sampling
due to a lack of “ordering” of the samples, i.e., one cannot select uniformly spaced
samples. Further, signal properties such as smoothness/bandlimitedness are determined
by the topology or connectivity of the graph. As we shall see in Chapter 2, similar
to the Fourier domain for traditional signals, a graph Fourier domain is obtained if
one is able to represent graph signals in a basis that takes into account the underlying
connectivity of the graph. Such a basis can be obtained using the eigenvalues and
eigenvectors of special matrices associated with the graph that capture variation in a
graph signal (example of such matrices include the adjacency [63], the Laplacian [66],
and its normalized versions [4, 24]). The representation of a graph signal in this basis
is known as the Graph Fourier Transform (GFT) and is used to provide a notion of
frequency for graph signals, which is crucial for developing the theory of sampling.

In order to formulate a sampling theorem for graph signals, one needs to consider
the following questions –

P1. When can one recover a graph signal from its samples on a given subset of nodes?
Not all graph signals can be uniquely represented from their samples on a subset
of nodes. Since sampling results in an inherent reduction of dimensionality, we
need to impose certain modeling assumptions on signals for recovery. In this work,
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we assume that our signals of interest are smooth over the graph. In quantitative
terms, this can be imposed by enforcing signals to be bandlimited or lowpass in
the graph Fourier domain. Therefore, for a given subset of nodes, we would like
to find the minimum bandwidth a signal can have in the graph Fourier domain
(also known as the cutoff frequency) so that it can be perfectly recovered from its
samples on the subset.

P2. What is the best choice of nodes to sample a given graph signal?
Under the modeling assumption of bandlimitedness, we would like to find a set of
nodes of smallest possible size that uniquely represents all signals with bandwidth
lower than a given value. However, not all choices of sampling sets exhibit robust-
ness of reconstruction in the presence of noise and model mismatch, therefore we
would also like to focus on choosing sets that promote stable reconstructions of the
original signal. Note that the algorithms we consider for choosing the sets should
be scale well with graph sizes, since graphs in modern applications are quite large.

P3. How can we reconstruct a signal from its samples?
Given samples of a graph signal on a set that satisfies the criteria posed by the
two questions above, one would like to design efficient algorithms for recovering the
entire signal. This is equivalent to the interpolation problem in traditional signal
processing, however, here we must focus on the design of localized algorithms,
where the signal value on a particular node can be computed from values on
neighboring nodes upto a certain connection depth.

Sampling theory for graph signals has applications in many research areas, most
prominent being machine learning and image processing. In the former case, class labels
are treated as graph signals over the similarity graph and predicting unknown labels
can be posed as an interpolation problem. In image processing, graphs can be used to
incorporate edge information in the images and are useful for designing edge-adaptive
wavelet transforms over images.

1.1.1 Existing work

Prior to our work, sampling theory for graph signals was considered first in [55],
where a sufficient condition was given for unique recovery of signals from a given subset
of nodes (called a sampling set). Using this condition, [49] computes a bound on the
maximum bandwidth that a signal can have, so that it can be uniquely reconstructed
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from its samples on a given subset of nodes. The uniqueness conditions are in fact
special cases of results pertaining to sampling signals from arbitrary subspaces presented
in [28]. Results along the same lines have been considered recently in [65, 22] after our
first work [3]. However, in order to apply results from the aforementioned papers, one
must have an explicit representation of the GFT basis corresponding to the bandlimited
space of interest thereby limiting their practical utility when the graphs are large. To
our knowledge, our approach is the first to circumvent this issue. Sampling theory
for graph signals has also been studied in other contexts such as designing filterbanks
on graphs [44, 52], or more recently along the lines of alternative sampling strategies
such as shift-based sampling [43] and random sampling [57], and in connection with the
uncertainty principle for graph signals [71, 72].

1.1.2 Our contributions

The primary contribution of this dissertation is to develop a sampling theorem for
bandlimited graph signals by answering the questions posed in Section 1.1. We proceed
by first stating a necessary and sufficient condition under which a bandlimited signal
can be perfectly recovered from a given subset of nodes on the graph. This condition
guarantees uniqueness of sampling and is used to compute, for a given sampling set,
the maximum bandwidth (i.e., the cutoff frequency) that a signal can have so that it
can be perfectly reconstructed from its samples (thereby answering P1). Further, this
formulation also avoids explicit computation of the GFT basis for the graph by defining
quantities called Graph Spectral Proxies that allow a trade-off between complexity and
accuracy while computing the cutoff frequency. These quantities are based on a method
for estimating the bandwidth of any signal, upto different orders of accuracy, through
simple localized operations in the vertex domain.

In order to obtain the best sampling set (i.e., problem P2), we propose to use the cut-
off frequency, estimated via spectral proxies, as the objective function that is maximized
subject to a bandwidth constraint (or equivalently, a cardinality constraint that is deter-
mined by the dimensionality of the space of signals to be sampled). This optimization
problem is however combinatorial in nature, therefore we resort to a greedy algorithm
that uses binary relaxation and gradient ascent. Although the spectral proxies-based
objective function is designed to obtain sampling sets that guarantee uniqueness, we
show that it also considers robustness of reconstruction with respect to sampling noise
and model mismatch. This is because maximizing the objective function is shown to
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be closely related to minimizing a bound on the worst case reconstruction error associ-
ated with a given sampling set. Further, our method is iterative and requires finding a
minimum eigenpair as the atomic operation, thereby making it efficient and amenable
for localized/distributed implementations. This is demonstrated through various exper-
iments that compare our sampling set selection method against other existing methods
in terms of robustness and complexity.

In this dissertation, we exclude the study of techniques for bandlimited reconstruction
of signals from their samples (i.e., problem P3) since they have been studied indepen-
dently elsewhere [50, 74, 76]. An example of a real-world application of our sampling
theory is the problem of active semi-supervised learning where the learning algorithm
can specify beforehand specific data points to label given a budget. Under the assump-
tion that class labels are smooth over the similarity graph, active learning is essentially
equivalent to a sampling set selection problem. It is shown in [29] that our method
performs well in comparison to other state-of-the art methods. The details of this work
are excluded from this dissertation for brevity.

1.2 Wavelet filterbanks on graphs

Graph wavelet transforms have recently been used for a variety of applications, rang-
ing from multiresolution analysis [47, 60], compression [48, 53, 19], denoising [25], and
classification [27]. These transforms allow one to analyze and process signals defined
over graphs while taking into consideration the underlying relationships between signal
values. The designs of these transforms are generally inspired by traditional wavelet
construction schemes and leverage principles from graph signal processing.

One of the recent techniques for constructing wavelet transforms on graphs is based
on filterbanks. This approach is quite appealing because it makes use of spectral graph
filters [66] that have a low complexity and enable a trade-off between vertex-domain and
frequency-domain localization. Besides designing the filters, sampling set selection is an
important aspect of graph wavelet filterbank design. The requirements are fundamen-
tally different in this case – instead of working with bandlimited signals for perfect and
stable recovery, one looks for a sampling scheme over two or more channels of a filterbank
that allows a multiresolution analysis, followed by recovery (or synthesis) of all signals
over the graph. An important property taken into consideration while designing these
filterbanks is critical sampling, which requires the total number of samples across chan-
nels to be equal to the number of nodes in the graph [45, 46]. Other desirable properties
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of the sampling scheme involve ensuring near perfect reconstruction, near orthogonality,
and most importantly compact support that allows localized implementations of the
filterbank. These properties are suitable for compression applications where one would
like to obtain compact respresentations of signals of interest efficiently at the encoder,
followed by near lossless recovery at the decoder. Unlike traditional filterbanks that
boast numerous well-studied designs with wide-ranging properties, graph filterbanks are
more difficult to design as the structure of the Fourier basis is influenced by the structure
of the graph. Therefore, it is useful to understand and characterize graphs that admit
filterbanks with one or more of these properties.

1.2.1 Existing work

In order to ensure perfect reconstruction and compact support, state-of-the-art
wavelet filterbanks require imposing certain structural constraints on the underlying
graph. For example, the recently proposed two-channel filterbanks in [45, 46] are
designed specifically for bipartite graphs. The special structure leads to a natural
downsampling-upsampling scheme (on one of the two partitions) in each channel, accom-
panied by a spectral folding phenomenon that is exploited while designing the filters.
The design can be extended to arbitrary graphs through a multidimensional approach
that involves hierarchically decomposing the original graph into a sequence of bipartite
subgraphs. Techniques for bipartite subgraph decomposition such as those in [52, 77]
form an active area of research. There also exist filterbanks that exploit circulant graph
architectures, albeit with non-polynomial synthesis filterbanks [26, 27]. Recently, yet
another class of graphs suitable for the design of M -channel polynomial filterbanks have
been studied [69, 70]. These are called M -block cyclic graphs and are a natural directed
extension of bipartite graphs. The topology and the eigenstructure of these graphs also
induces a spectral folding upon downsampling-upsampling on one of the blocks, thus
providing a means to extend several concepts from classical multirate signal processing
to the graph signal processing domain. Perfect reconstruction conditions for M -channel
filterbanks on these graphs are stated in [70], albeit with a lack of concrete solutions.

1.2.2 Our contributions

Following the lines of [45], our work begins by spelling out design criteria for two-
channel filterbanks that satisfy the critical sampling, compact support, and perfect
reconstruction properties. We realize immediately that without the presence of special
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structure in the Fourier basis associated with the graph, it is in general difficult to satisfy
critical sampling and perfect reconstruction simultaneously with low-degree polynomial
filterbanks. Our analysis shows that the structural requirement on the Fourier basis
is identical to that of traditional signal processing – downsampling-upsampling should
induce a spectral folding in the graph Fourier domain. This makes bipartite graphs
particularly amenable to the design of perfect reconstruction two-channel filterbanks.

We shift our focus and seek to design filterbanks on arbitrary graphs (without altering
their topology) that are critically-sampled, have compact support, and satisfy the perfect
reconstruction and orthogonality conditions as closely as possible. The lack of a special
structure makes the problem of jointly designing low-degree polynomial filters and the
sampling scheme impossible. Therefore, as a starting step, we decouple the two by
focusing only on designing a critical sampling scheme while assuming that the analysis
and synthesis filters are predesigned for given frequency localization constraints. Our
main contributions are the following:

• A criterion based on the reconstruction error to evaluate any sampling scheme for
given predesigned filters.

• A greedy but computationally efficient algorithm to minimize the error criterion
that approximates the optimal solution, along with some theoretical guarantees.

Experiments show that our algorithm for choosing the sampling scheme performs better
than existing heuristics.

Finally, we turn our attention to the design of M -channel filterbanks on M -block
cyclic graphs. The perfect reconstruction conditions stated in [70] are meant for graphs
with balanced block sizes, where signals in each channel are sampled on the same block.
We first modify the conditions to work for disjoint sampling sets across different channels.
Next, we look into the design of possible polynomial solutions satisfying these conditions.
This problem is more complex than traditional M -channel filterbanks since the graph
Fourier domain (of graphs with a normalized adjacency) spans the complete unit-disc
instead of the unit-circle. In our work, we consider a simpler version of the problem where
M is a power of 2, and propose a tree-structured design composed of hierarchically
arranged two-channel designs. Our design allows disjoint sampling sets for different
channels, and also works for unbalanced block sizes. Our main contributions are:

• A scheme to represent a 2L-channel filterbank on 2L-block cylic graphs as a hierar-
chical tree-structure composed of 2-channel filterbanks on smaller directed bipar-
tite graphs.
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• A perfect reconstruction 2-channel filterbank solution for a 2-block cyclic graph
(i.e., a directed bipartite graph). This is a generalization of the designs in [45, 46,
68], since the spectrum of directed bipartite graphs can be complex.

1.3 Sampling theory perspective of graph-based
semi-supervised learning

The abundance of unlabeled data in various machine learning applications, along with
the prohibitive cost of labeling, has led to growing interest in semi-supervised learning.
This paradigm deals with the task of classifying data points in the presence of very
little labeling information by relying on the geometry of the dataset. Assuming that the
features are well-chosen, a natural assumption in this setting is to consider the marginal
density p(x) of the feature vectors to be informative about the labeling function f(x)
defined on the points. This assumption is fundamental to the semi-supervised learning
problem both in the classification and the regression settings, and is also known as
the semi-supervised smoothness assumption [20], which states that the label function is
smoother in regions of high data density. There also exist other similar variants of this
assumption specialized for the classification setting, namely, the cluster assumption [78]
(points in a cluster are likely to have the same class label) or the low density separation
assumption [51] (decision boundaries pass through regions of low data density). Most
present day algorithms for semi-supervised learning are based on one or more of these
assumptions.

In practice, graph-based methods have been found to be quite suitable for geometry-
based learning tasks, primarily because they provide an easy way of exploiting informa-
tion from the geometry of the dataset. These methods involve constructing a distance-
based similarity graph whose vertices represent the data points and edge weights are
computed using a decreasing function of Euclidean distances between the points in the
feature space. The class labels are treated as a graph signal, and the known labels as
its samples. The semi-supervised smoothness assumption for the class labels translates
into a notion of “smoothness” of the signal over the graph, in the sense that labels of
vertices do not vary much over edges with high weights (i.e., edges that connect close or
similar points). This smoothness assumption can be imposed through quantities such as
the graph cut, or the graph Laplacian regularizer, and more recently, through bandwidth
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constraints in the graph spectral domain. Further, predicting labels of the unknown
points can be considered as an intepolation problem over the similarity graph.

Although using the bandwidth of signals to impose smoothness is well-motivated in
graph-based learning methods, it is important to understand its connection to the under-
lying geometry of the dataset in a theoretical sense. One way of justifying this approach
is to explore its geometrical interpretation in the limit of infinitely available unlabeled
data. This typically involves assuming a probabilistic generative model for the dataset
and analyzing the bandwidth of class indicator functions in the asymptotic setting for
certain commonly-used graph construction schemes. Specifically, in this setting, we seek
answers for the following questions in the asymptotic setting:

1. What is the connection between the bandwidth of class indicator signals over the
similarity graph and the underlying geometry of the data set?

2. What is the interpretation of the bandlimited recontruction approach for label
prediction?

3. How many labeled examples does one require for perfect prediction?

The answers to these questions would help complete our theoretical understanding of
graph-based semi-supervised classification approaches, specifically bandlimited interpo-
lation over the graph, and strengthen their link with the semi-supervised smoothness
assumption and its variants.

1.3.1 Existing work

In the graph-based semi-supervised learning paradigm, there have been numerous
ways of quantitatively imposing smoothness constraints over label functions defined on
vertices of a similarity graph. Most graph-based semi-supervised classification algorithms
incorporate one of these criteria as a penalty against the fitting error in a regularization
problem, or as a constraint term while minimizing the fitting error in an optimization
problem. For example, a commonly used measure of smoothness for a label function f
is the graph Laplacian regularizer fTLf (L being the graph Laplacian), and many algo-
rithms involve minimizing this quadratic energy function while ensuring that f satisfies
the known set of labels [83, 78]. There also exist higher-order variants of this measure
known as iterated graph Laplacian regularizers fTLmf , that have been shown to make
the problem more well-behaved [81]. On the other hand, a spectral theory based clas-
sification algorithm restricts f to be spanned by the first few eigenvectors of the graph
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Laplacian [10, 11], that are known to form a representation basis for smooth functions
on the graph. In each of the examples, the criterion enforces smoothness of the labels
over the graph – a lower value of the regularizer fTLf , and a smaller number of leading
eigenvectors to model f imply that vertices that are close neighbors on the graph are
more likely to have the same label.

Recent works have therefore focused on justifying these approaches by exploring
their geometrical interpretation in the limit of infinitely available unlabeled data. This is
typically done by assuming a probabilistic generative model for the dataset and analyzing
the graph smoothness criteria in the asymptotic setting for certain commonly-used graph
construction schemes. For example, it has been shown that for data points drawn from
a smooth distribution with an associated smooth label function (i.e., the regression
setting), the graph Laplacian regularizer converges in the limit of infinite data points
to a density-weighted variational energy functional that penalizes large variations of
the labels in high density regions [11, 15, 34, 12, 81, 82]. A similar connection ensues
for semi-supervised learning problems in the classification setting (i.e., when labels are
discrete in the feature space). If points drawn from a smooth distribution are separated
by a smooth boundary into two classes, then the graph cut for the partition converges
to a weighted volume of the boundary [51, 42]. This is consistent with the low density
separation assumption – a low value of the graph cut implies that the boundary passes
through regions of low data density.

1.3.2 Our contributions

The main contribution of our work is a novel theoretical justification of the sampling
theoretic approach to semi-supervised learning. This approach involves treating the class
label function/indicator signal as a bandlimited graph signal, and label prediction as a
bandlimited reconstruction problem. Our work is the first to consider, using sampling
theory, the label complexity of semi-supervised classification, that is, the minimum frac-
tion of labeled examples required for perfect prediction of the unknown labels. A key
ingredient in this formulation is the bandwidth of signals on the graph – signals with
lower bandwidth tend to be smoother on the graph, and are useful for modeling label
functions over similarity graphs. Label prediction using bandlimited reconstruction then
involves estimating a label function/indicator signal that minimizes prediction error on
the known set under a bandwidth constraint.
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In order to provide a geometrical interpretation of bandwidth of class indicator sig-
nals, we leverage our work on sampling theory and make use of spectral proxies. These
spectral proxies are computed over similarity graphs constructed from a two-class sta-
tistical model for the feature vectors. To make our analysis as general as possible, we
consider two data models: separable and nonseparable. These generative models are quite
practical and mimic most datasets in the real world. The separable model assumes that
data points are drawn from an underlying probability distribution in the feature space
and each class is separated from the others by a smooth boundary. On the other hand,
the nonseparable model assumes a mixture distribution for the data where the data
points are drawn randomly and independently with certain probability from separate
class conditional distributions. We also introduce a notion of “boundaries” for classes
in the nonseparable model in the form of overlap regions, defined as the set of points
where the probability of belonging and not belonging to a class are both non-zero (i.e.,
the region of ambiguity). This definition is quite practical and useful for characterizing
the geometry of such datasets.

Using the data points, we consider a specific graph construction scheme that applies
the Gaussian kernel over Euclidean distances between feature vectors for computing
their similarities (our analysis can be generalized easily to arbitrary kernels under simple
assumptions). In order to compute the bandwidth of the indicator, we use graph spectral
proxies from our work on sampling theory. A significant portion of this work focuses
on analyzing the stochastic convergence of this bandwidth estimate (using variance-bias
decomposition) in the limit of infinite data points for any class indicator signal on the
graph. The analysis in our work suggests a novel sampling theoretic interpretation of
graph-based semi-supervised learning and the main contributions can be summarized as
follows:

1. Relationship between bandwidth and data geometry. For the separable model, we
show that under certain rate conditions, the bandwidth estimate for any class
converges to the supremum of the data density over the class boundary. Similarly,
for the nonseparable model, we show that the bandwidth estimate converges to
the supremum of the density over the overlap region.

2. Interpretation of bandlimited reconstruction. Using the geometrical interpreta-
tion of the bandwidth, we conclude that bandlimited reconstruction allows one
to choose the complexity of the hypothesis space while predicting unknown labels
(i.e., a larger bandwidth allows more complex class boundaries).

12



3. Quantification of label complexity. We also show that the bandwidth of class
indicator signals is closely linked theoretically to the fraction of labeled points
required for perfect classification which is in turn related to the geometry of the
data.

Our analysis has significant implications: Firstly, class indicator signals have a low
bandwidth if class boundaries lie in regions of low data densities, that is, the semi-
supervised assumption holds for graph-based methods. And secondly, our analysis also
helps quantify the impact of bandwidth and data geometry in semi-supervised learning
problems, an aspect that was lacking in existing work. Specifically, our results enable
us to theoretically assert that for the sampling theoretic approach to graph-based semi-
supervised learning, the label complexity (minimum fraction of labeled points required)
of learning classifiers matches the theoretical estimate and is indeed lower if the boundary
lies in regions of low data density, as demonstrated empirically in earlier works [10, 11].

1.4 Outline

The rest of this dissertation is organized as follows:

• Chapter 2 begins by introducing notations used throughout this dissertation, along
with several useful definitions. This is followed by a brief review of graph signal
processing concepts and the introduction of notions of frequencies over graphs.

• In Chapter 3, we formulate our theory of sampling for bandlimited graph signals.
We begin by stating necessary and sufficient conditions for unique sampling, using
which we formulate methods to compute the cutoff frequency for a given sampling
set and conversely, the best sampling set of a given size. We also briefly discuss
stability considerations in sampling.

• Chapter 4 considers the sampling problem in a different, but related, problem of
designing graph filterbanks. We consider a general formulation for designing two-
channel filterbanks on arbitrary graphs and study conditions required for satisying
desirable properties such as critical sampling, compact support, perfect reconstruc-
tion and orthogonality. We characterize graphs that admit solutions satisfying
these properties. We then present an efficient algorithm for selecting the best
sampling scheme over the channels that aims to minimize reconstruction error,
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given predesigned filters. Finally, we also consider the design of M -channel filter-
banks on M -block cyclic graphs and propose a simple tree-structured design.

• Finally, in Chapter 5, we view graph-based semi-supervised learning from the
perspective of sampling theory. This point of view allows us to explain why graph-
based methods are suited for this problem by looking at the geometrical interpreta-
tions of bandwidth of class indicator signals in the asymptotic limit. Further, using
sampling theory, we also shed light on the label complexity of the semi-supervised
learning problem.
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Chapter 2

Review of Graph Signal Processing
In this chapter, we review relevant concepts from Graph Signal Processing that will

be helpful in formulating our sampling theory. The most important concept is the notion
of frequency for graph signals that will help us characterize their level of smoothness. The
key idea is to introduce analogs of operators such as variation or shift from traditional
signal processing, that allow one to transform a signal or measure its properties while
taking into account the underlying connectivity on the graph. Such operators create
a notion of smoothness for graph signals through their spectrum. There can be many
different choices of variation operators depending the application at hand, we review a
few examples after introducing notations used throughout this proposal.

2.1 Basic concepts

A graph G = (V , E) is a collection of nodes indexed by the set V = {1, . . . , N} and
connected by links E = {(i, j, wij)}, where (i, j, wij) denotes a link of weight wij ∈ R+

pointing from node i to node j. The adjacency matrix W of the graph is an N × N
matrix with elements wij. The degree di of a node i in an undirected graph is defined as∑
j wij, and the degree matrix of the graph is defined as D = diag{d1, d2, . . . , dN}. For

directed graphs, one can define in-degrees and out-degrees separately.
A graph signal is a function f : V → R defined on the vertices of the graph, (i.e., a

scalar value assigned to each vertex, such that f(i) is the value of the signal on node i).
It can be represented as a vector f ∈ RN where fi represents the function value on the
ith vertex.

Sampling sets are subset of nodes S ⊂ V over which the values of a signal are
measured. For any signal x ∈ RN and a set S ⊆ {1, . . . , N}, we use xS to denote its
sampled version, which is an |S|-dimensional sub-vector of x consisting of components
indexed by S. Similarly, for any matrix A ∈ RN×N , AS1S2 is used to denote the sub-
matrix of A with rows indexed by S1 and columns indexed by S2. For simplicity, we
denote ASS by AS . The complement of S in V is denoted by Sc = V \ S.
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Figure 2.1: Variation in the eigenvectors of the Laplacian of a graph ordered according
to the eigenvalues. Note the increasing variation over edges.

2.2 Notion of frequency for graph signals

In order to formulate a sampling theorem for graph signals, we need a notion of
frequency that helps us in characterizing the degree of smoothness of various signals
with respect to the graph. This can be done by defining shift or variation operators that
allow one to transform a signal or measure its properties while taking into account the
underlying connectivity over the graph. We denote any operator that measures variation
of signals over the graph by L, an N × N matrix1. This operator essentially creates a
notion of smoothness for graph signals through its spectrum. Specifically, assume that
L has eigenvalues |λ1| ≤ . . . ≤ |λN | and corresponding eigenvectors {u1, . . . ,uN}. Then,
these eigenvectors provide a Fourier-like basis for graph signals with the frequencies
given by the corresponding eigenvalues. For each L, one can also define a variation
functional Var(L, f) that measures the variation in any signal f with respect to L. Such
a definition should induce an ordering of the eigenvectors which is consistent with the
ordering of eigenvalues (see for example, Figure 2.1). More formally, if |λi| ≤ |λj|, then
Var(L,ui) ≤ Var(L,uj).

The GFT f̃ of a signal f is given by its representation in the above basis, f̃ = U−1f ,
where U = [u1 . . .uN ]. Note that a GFT can be defined using any variation operator.
Examples of possible variation operators are reviewed in the next section. If the variation
operator L is symmetric then its eigenvectors are orthogonal, leading to an orthogonal
GFT. In some cases, L may not be diagonalizable. In such cases, one can resort to the
Jordan normal form [63] and use generalized eigenvectors.

1Although L has been extensively used to denote the combinatorial Laplacian in graph theory, we
overload this notation to make the point that any such variation operator can be defined to characterize
signals of interest in the application at hand.
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Using this notion of frequency, filters can be designed on the graph using any of
the variation operators by manipulating its spectral response to satisfy desired prop-
erties. One useful way is to consider polynomial graph filters H = h(L) = ∑k

i=0 hiLi

of different degrees, whose response in the spectral domain is given by the polynomial
h(λ) = ∑k

i=0 hiλ
i. These are particularly useful because of their simplicity – a k-degree

polynomial filter can be implemented in O(k|E|) complexity. Further, note that for
undirected graphs, L is symmetric, and hence H is symmetric.

Bandlimited graph signals

A signal f is said to be ω-bandlimited if f̃i = 0 for all i with |λi| > ω. In other words,
GFT of an ω-bandlimited2 f is supported on frequencies in [0, ω]. If {λ1, λ2, . . . , λr} are
the eigenvalues of L less than or equal to ω in magnitude, then any ω-bandlimited signal
can be written as a linear combination of the corresponding eigenvectors:

f =
r∑
i=1

f̃iui = UVRf̃R, (2.1)

where R = {1, . . . , r}. The space of ω-bandlimited signals is called Paley-Wiener space
and is denoted by PWω(G) [55]. Note that PWω(G) = range(UVR) (i.e., the span of
columns of UVR). Bandwidth of a signal f is defined as the largest among absolute
values of eigenvalues corresponding to non-zero GFT coefficients of f , i.e.,

ω(f) 4= max
i
{|λi| | f̃i 6= 0}. (2.2)

A key ingredient in our theory is an approximation of the bandwidth of a signal using
powers of the variation operator L, as explained in Section 3.3. Since this approximation
holds for any variation operator, the proposed theory remains valid for all of the choices
of GFT in Table 2.1.

2One can also define highpass and bandpass signals in the GFT domain. Sampling theory can be
generalized for such signals by treating them as lowpass in the eigenbasis of a shifted variation operator,
e.g., one can use L′ = |λN |I− L for highpass signals.
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2.3 Examples of variation operators

2.3.1 Variation on undirected graphs

In undirected graphs, the most commonly used variation operator is the combinato-
rial Laplacian [24] given by:

L = D−W, (2.3)

where D is the diagonal degree matrix diag{d1, . . . , dN} with di = ∑
j wij. Since, wij =

wji for undirected graphs, this matrix is symmetric. As a result, it has real non-negative
eigenvalues λi ≥ 0 and an orthogonal set of eigenvectors. The variation functional
associated with this operator is known as the graph Laplacian quadratic form [66] and
is given by

VarQF(f) = f>Lf = 1
2
∑
i,j

wij(fi − fj)2. (2.4)

One can normalize the combinatorial Laplacian to obtain the symmetric normalized
Laplacian and the (asymmetric) random walk Laplacian given as

Lsym = D−1/2LD−1/2, Lrw = D−1L. (2.5)

Both Lsym and Lrw have non-negative eigenvalues. However the eigenvectors of Lrw are
not orthogonal as it is asymmetric. The eigenvectors of Lsym, on the other hand, are
orthogonal. The variation functional associated with Lsym has a nice interpretation as
it normalizes the signal values on the nodes by the degree:

VarQFsym(f) = f>Lsymf = 1
2
∑
i,j

wij

 fi√
di
− fj√

dj

2

. (2.6)

2.3.2 Variation on directed graphs

Note that variation operators defined for directed graphs can also be used for undi-
rected graphs since each undirected edge can be thought of as two oppositely pointing
directed edges.

Variation using the adjacency matrix This approach involves posing the adjacency
matrix as a shift operator over the graph (see [63] for details). For any signal f ∈ Rn,
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the signal Wf is considered as a shifted version of f over the graph, analogous to the
shift operation defined in digital signal processing. Using this analogy, [63] defines total
variation of a signal f on the graph as

VarpTV (f) =
∥∥∥∥∥f − 1

|µmax|
Wf

∥∥∥∥∥
p

, (2.7)

where p = 1, 2 and µmax denotes the eigenvalue of W with the largest magnitude. It can
be shown that for two eigenvalues |µi| < |µj| of W, the corresponding eigenvectors vi and
vj satisfy VarpTV (vi) < VarpTV (vj). In order to be consistent with our convention, one can
define the variation operator as L = I −W/|µmax| which has the same eigenvectors as
W with eigenvalues λi = 1−µi/|µmax|. This allows us to have the same ordering for the
graph frequencies and the variations in the basis vectors. Note that for directed graphs,
where W is not symmetric, the GFT basis vectors will not be orthogonal. Further, for
some adjacency matrices, there may not exist a complete set of linearly independent
eigenvectors. In such cases, one can use generalized eigenvectors in the Jordan normal
form of W as stated before [63].

Variation using the hub-authority model This notion of variation is based on the
hub-authority model [39] for specific directed graphs such as a hyperlinked environment
(e.g., the web). This model distinguishes between two types of nodes. Hub nodes H
are the subset of nodes which point to other nodes, whereas authority nodes A are the
nodes to which other nodes point. Note that a node can be both a hub and an authority
simultaneously. In a directed network, we need to define two kinds of degrees for each
node i ∈ V , namely the in-degree pi = ∑

j wji and the out-degree qi = ∑
j wij. The

co-linkage between two authorities i, j ∈ A or two hubs i, j ∈ H is defined as

cij =
∑
h∈H

whiwhj
qh

and cij =
∑
a∈A

wiawja
pa

(2.8)

respectively, and can be thought of as a cumulative link weight between two authorities
(or hubs). Based on this, one can define a variation functional for a signal f on the
authority nodes [80] as

VarA(f) = 1
2
∑
i,j∈A

cij

(
fi√
pi
− fj√

pj

)2

. (2.9)
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In order to write the above functional in a matrix form, define T = D−1/2
q WD−1/2

p ,
where D−1/2

p and D−1/2
q are diagonal matrices with

(D−1/2
p )

ii
=


1√
pi

if pi 6= 0

0 otherwise,
(D−1/2

q )
ii

=


1√
qi

if qi 6= 0

0 otherwise.

It is possible to show that VarA(f) = f>LAf , where LA = I − T>T. A variation
functional for a signal f on the hub nodes can be defined in the same way as (2.9)
and can be written in a matrix form as VarH(f) = f>LHf , where LH = I − TT>. A
convex combination Varγ(f) = γVarA(f)+(1−γ)VarH(f), with γ ∈ [0, 1], can be used to
define a variation functional for f on the whole vertex set V . Note that the corresponding
variation operator Lγ = γLA+(1−γ)LH is symmetric and positive semi-definite. Hence,
eigenvectors and eigenvalues of Lγ can be used to define an orthogonal GFT similar to
the undirected case, where the variation in the eigenvector increases as the corresponding
eigenvalue increases.

Variation using the random walk model Every directed graph has an associated
random walk with a probability transition matrix P given by

Pij = wij∑
j wij

. (2.10)

By the Perron-Frobenius theorem, if P is irreducible then it has a stationary distribution
π which satisfies πP = π [36]. One can then define the following variation functional
for signals on directed graphs [23, 79]:

Varrw(f) = 1
2
∑
i,j

πiPij

(
fi√
πi

− fj√
πj

)2

. (2.11)

Note that if the graph is undirected, the above expression reduces to (2.6) since, in
that case, πi = di/

∑
j dj. Intuitively, πiPij can be thought of as the probability of

transition from node i to j in the steady state. We expect it to be large if i is similar
to j. Thus, a big difference in signal values on nodes similar to each other contributes
more to the variation. A justification for the above functional in terms of generalization
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of normalized cut to directed graphs is given in [23, 79]. Let Π = diag{π1, . . . ,πn}.
Then Varrw(f) can be written as f>Lf , where

L = I− 1
2
(
Π1/2PΠ−1/2 + Π−1/2P>Π1/2

)
. (2.12)

It is easy to see that the above L is a symmetric positive semi-definite matrix. Therefore,
its eigenvectors can be used to define an orthonormal GFT, where the variation in the
eigenvector increases as the corresponding eigenvalue increases.

Table 2.1 summarizes different choices of GFT bases based on the above variation
operators – our theory applies to all of these choices.

2.4 Summary

In this chapter, we introduced basic concepts of graph signal processing that our rele-
vant to our work. Specifically, we introduced variation operators that allow us to obtain
notions of frequency for graph signals and quantify their smoothness. We mentioned
several examples of variation operators from existing literature both for undirected and
directed graphs. A definition of the Graph Fourier Transform (GFT) is given using the
eigenvalues and eigenvectors of these operators. This framework allows us to quantify
smoothness of signals over the graph in terms of bandlimitedness.
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Chapter 3

Sampling Theory for Graph Signals
In this chapter, we focus on developing the sampling theorem for graph signals. As

mentioned earlier, our signals of interest are bandlimited in the graph spectral domain,
or in other words, smooth graph signals. Under this assumption, we answer the following
questions: (i) What is the maximum bandwidth a signal f can have so that it can be
perfectly recovered from its subset of samples on S(⊂ V)? (ii) Given a bandwidth
(or dimensionality of the bandlimited space), what is the best set of nodes to sample
for unique reconstruction? Additionally, stability is an important issue while choosing
sampling sets, since in practice signals are only approximately bandlimited and/or their
samples are noisy. A good sampling set leads to robustness of reconstruction in the
presence of noise and model mismatch.

Most approaches to the sampling problem involve explicitly computing a portion of
the graph Fourier basis, followed by using these basis elements to check if a unique and
stable recovery is possible with the given samples or to choose the best subset of nodes
for sampling. This approach works well enough for small graphs, where computing and
storing a portion of the graph Fourier basis is practically feasible. However, current
applications demand the handling of large graphs with thousands or even millions of
nodes, and computing multiple eigenvectors of the variation operators can be burden-
some in terms of time and space complexity. Therefore, in our approach, we define
certain quantities called graph spectral proxies based on powers of the variation oper-
ator that allow one to estimate the bandwidth of graph signals. These proxies can be
computed using repeated application of the variation operator over signals in a localized
and distributed fashion with minimal storage cost, thus forming a key contribution of
our approach. Using these proxies, we provide an approximate bound on the maximum
bandwidth for unique recovery (i.e., the cutoff frequency) given the sampling set. We
show that this quantity also appears in an approximate bound on the reconstruction
error, and hence we maximize it using a greedy approach in order to select an approx-
imately optimal sampling set of given size. Our algorithm is efficient and scalable,

Work in this chapter has been published in [3, 29, 4].
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since it does not require explicit computation of the graph Fourier basis, and is shown
to achieve comparable performance in comparison to approaches such as [65, 22] with
lower computational cost.

The rest of this chapter is organized as follows: Section 3.1 reviews related work in
the area of sampling. In Section 3.2, we provide necessary and sufficient conditions for
sampling, and consider results in the scenario of known GFT. Section 3.3 introduces
graph spectral proxies along with their properties. Section 3.4 and 3.5 employs these
quantities to address the questions posed by the sampling theorem. Finally, we conclude
this chapter with experimental validation in Section 3.6, followed by a summary in
Section 3.7.

3.1 Related work

Sampling theory for graph signals was first studied in [55], where a sufficient con-
dition for unique recovery of signals is stated for a given sampling set. Using this
condition, [49] gives a bound on the maximum bandwidth that a signal can have, so
that it can be uniquely reconstructed from its samples on a given subset of nodes. The
uniqueness conditions in this section have also appeared prior to our work in [28] and
subsequently in [65, 22]. However, the specific form in which these conditions have been
presented require the explicit computation of the GFT, thereby limiting its practical util-
ity. Using spectral proxies defined later in Section 3.3, our work circumvents the explicit
computation of the graph Fourier basis and states conditions that ensure uniqueness and
find a good sampling set. Previous methods for sampling set selection in graphs can be
classified into two types, namely spectral-domain methods and vertex-domain methods,
which are summarized below.

Spectral-domain approaches

Most of the recent work on sampling theory of graph signals assumes that a portion of
the graph Fourier basis is explicitly known. We classify these methods as spectral-domain
approaches since they involve computing the spectrum of the variation operator. For
example, the work of [65] requires computation and processing of the first r eigenvectors
of the graph Laplacian to construct a sampling set that guarantees unique (but not
necessarily stable) reconstruction for a signal spanned by those eigenvectors. Similarly,
a greedy algorithm for selecting stable sampling sets for a given bandlimited space is
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proposed in [22]. It considers a spectral-domain criterion, using minimum singular values
of submatrices of the graph Fourier transform matrix, to minimize the effect of sample
noise in the worst case. The work of [71, 72] creates a link between the uncertainty
principle for graph signals and sampling theory to arrive at similar criteria in the presence
of sample noise. It is also possible to generalize this approach using ideas from the theory
of optimal experiment design [38] and define other spectral-domain optimality criteria
for selecting sampling sets that minimize different measures of reconstruction error when
the samples are noisy (for example, the mean squared error). Greedy algorithms can
then be used to find sets which are approximately optimal with respect to these criteria.

Vertex-domain approaches

There exist alternative approaches to sampling set selection that do not consider
graph spectral information and instead rely on vertex-domain characteristics. Examples
include [44] and [52], which select sampling sets based on maximum graph cuts and
spanning trees, respectively. However, these methods are better suited for designing
downsampling operators required in bipartite graph multiresolution transforms [45, 46].
Specifically, they do not consider the issue of optimality of sampling sets in terms of
quality of bandlimited reconstruction. Further, it can be shown that the maximum
graph-cut based sampling set selection criterion is closely related to a special case of
our proposed approach. There exists an alternate vertex-domain sampling approach,
described in [43], that involves successively shifting a signal using the adjacency matrix
and aggregating the values of these signals on a given node. However, sampling using
this strategy requires aggregating the sample values for a neighborhood size equal to the
dimension of the bandlimited space, which can cover a large portion of the graph.

The sampling strategies described so far involve deterministic methods of approxi-
mating optimal sampling sets. Following our work, [57] proposed a randomized sampling
strategy that guarantees a bound on the worst case reconstruction error in the presence
of noise by sampling nodes independently based on a judiciously designed distribution
over the nodes. However, one needs to sample many more nodes than the dimension of
the bandlimited space to achieve the error bound with high probability.

25



3.2 Necessary and sufficient conditions

In this section, we address the issue of uniqueness and stability of bandlimited graph
signal reconstruction and discuss different optimality criteria for sampling set selection
assuming that the graph Fourier basis (i.e., the spectrum of the corresponding variation
operator) is known1. The results in this section are useful when the graphs under
consideration are small and thus, computing the spectrum of their variation operators is
computationally feasible. They also serve as a guideline for tackling the aforementioned
questions when the graphs are large and computation and storage of the graph Fourier
basis is impractical.

In order to give a necessary and sufficient condition for unique identifiability of any
signal f ∈ PWω(G) from its samples fS on the sampling set S, we first state the concept
of uniqueness set [55].

Definition 3.1 (Uniqueness set). A subset of nodes S is a uniqueness set for the space
PWω(G) iff xS = yS implies x = y for all x,y ∈ PWω(G).

Unique identifiability requires that no two bandlimited signals have the same samples
on the sampling set as ensured by the following theorem [3].

Theorem 3.1 (Unique sampling). S is a uniqueness set for PWω(G) if and only if
PWω(G) ∩ L2(Sc) = {0}.

Proof. Given PWω(G) ∩ L2(Sc) = {0}, assume that S is not a uniqueness set. Then,
there exist f ,g ∈ PWω(G), f 6= g such that fS = gS . Hence, we have f −g ∈ L2(Sc), f −
g 6= 0. Also, f − g ∈ PWω(G) due to closure. But this is a contradiction as PWω(G) ∩
L2(Sc) = {0}. Therefore, S must be a uniqueness set.

Conversely, we are given that S is a uniqueness set. Let φ be any signal in PWω(G)∩
L2(Sc). Then, for any f ∈ PWω(G), we have g = f + φ ∈ PWω(G) and f(S) = g(S).
But since S is a uniqueness set, one must have f = g, which implies φ = 0. Therefore,
PWω(G) ∩ L2(Sc) = {0}. �

Let S be a matrix whose columns are indicator functions for nodes in S. Note that
S> : Rn → R|S| is the sampling operator with S>f = fS . Theorem 3.1 essentially states
that no signal in PWω(G) is in the null space N (S>) of the sampling operator. Any

1Parts of this chapter focusing on stability of reconstruction and other optimality criteria, have been
done in collaboration with Akshay Gadde and appear in our joint paper [4].
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f ∈ PWω(G) can be written as f = UVRc. Thus, for unique sampling of any signal in
PWω(G) on S, we need S>UVRc = USRc 6= 0 ∀ c 6= 0. This observation leads to the
following corollary (which is also stated in [21]).

Corollary 3.1. Let R = {1, . . . , r}, where λr is the largest graph frequency less than ω.
Then S is a uniqueness set for PWω(G) if and only if USR has full column rank.

If USR has a full column rank, then a unique reconstruction f̂ ∈ PWω(G) can be
obtained by finding the unique least squares solution to fS = USRc:

f̂ = UVRU+
SRfS , (3.1)

where U+
SR = (U>SRUSR)−1U>SR is the pseudo-inverse of USR. The above reconstruction

formula is also known as consistent reconstruction [28] since it keeps the observed samples
unchanged2, i.e., f̂S = fS . Moreover, it is easy to see that if the original signal f ∈
PWω(G), then f̂ = f .

3.2.1 Issue of stability and choice of sampling set

Note that selecting a sampling set S for PWω(G) amounts to selecting a set of rows of
UVR. It is always possible to find a sampling set of size r = dimPWω(G) that uniquely
determines signals in PWω(G) as proven below.

Proposition 3.1. For any PWω(G), there always exists a uniqueness set S of size
|S| = r.

Proof. Since {ui}ri=1 are linearly independent, the matrix UVR has full column rank
equal to r. Further, since the row rank of a matrix equals its column rank, we can
always find a linearly independent set S of r rows such that USR has full rank that
equals r, thus proving our claim. �

In most cases picking r nodes randomly gives a full rank USR. However, all sampling
sets of given size are not equally good. A bad choice of S can give an ill-conditioned
USR which in turn leads to an unstable reconstruction f̂ . Stability of reconstruction is
important when the true signal f is only approximately bandlimited (which is the case

2Existence of a sample consistent reconstruction in PWω(G) requires that PWω(G) ⊕ L2(Sc) =
RN [28].
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for most signals in practice) or when the samples are noisy. The reconstruction error
in this case depends not only on noise and model mismatch but also on the choice of
sampling set. The best sampling set achieves the smallest reconstruction error.

Effect of noise

We first consider the case when the observed samples are noisy. Let f ∈ PWω(G)
be the true signal and n ∈ R|S| be the noise introduced during sampling. The observed
samples are then given by yS = fS + n. Using (3.1), we get the following reconstruction

f̂ = UVRU+
SRfS + UVRU+

SRn. (3.2)

Since f ∈ PWω(G), UVRU+
SRfS = f . The reconstruction error equals e = f̂ − f =

UVRU+
SRn. If we assume that the entries of n are iid with zero mean and unit variance,

then the covariance matrix of the reconstruction error is given by

E = E[ee>] = UVR(U>SRUSR)−1U>VR. (3.3)

Different costs can be defined to measure the reconstruction error as a function of the
error covariance matrix. These cost functions are based on optimal design of exper-
iments [16]. If we define the optimal sampling set Sopt of size m, as the set which
minimizes the mean squared error, then assuming UVR has orthonormal columns, we
have

SA-opt = arg min
|S|=m

tr[E] = arg min
|S|=m

tr[(U>SRUSR)−1]. (3.4)

This is analogous to the so-called A-optimal design. Similarly, minimizing the maximum
eigenvalue of the error covariance matrix leads to E-optimal design. For an orthonormal
UVR, the optimal sampling set with this criterion is given by

SE-opt = arg min
|S|=m

λmax(E) = arg max
|S|=m

σmin(USR), (3.5)

where σmin(.) denotes the smallest singular value of a matrix. It can be thought of as a
sampling set that minimizes the worst case reconstruction error. The above criterion is
equivalent to the one proposed in [22]. Further, one can show that when UVR does not
have orthonormal columns, (3.4) and (3.5) produce sampling sets that minimize upper
bounds on the mean squared and worst case reconstruction errors respectively. Note
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that both A and E-optimality criteria lead to combinatorial problems, but it is possible
to develop greedy approximate solutions to these problems.

So far we assumed that the true signal f ∈ PWω(G) and hence, UVRU+
SRfS = f .

However, in most applications, the signals are only approximately bandlimited. The
reconstruction error in such a case is analyzed next.

Effect of model mismatch

Let P = UVRU>VR be the projector for PWω(G) and Q = SS> be the projector
for L2(S). Assume that the true signal is given by f = f∗ + ∆f , where f∗ = Pf is the
bandlimited component of the signal and ∆f = P⊥f captures the “high-pass component”
(i.e., the model mismatch). If we use (3.1) for reconstructing f , then a tight upper bound
on the reconstruction error [28] is given by

‖f − f̂‖ ≤ 1
cos(θmax)‖∆f‖, (3.6)

where θmax is the maximum angle between subspaces PWω(G) and L2(S) defined as

cos(θmax) = inf
f∈PWω(G),‖f‖=1

‖Qf‖. (3.7)

cos(θmax) > 0 when the uniqueness condition in Theorem 3.1 is satisfied and the error
is bounded. Intuitively, the above equation says that for the worst case error to be
minimum, the sampling and reconstruction subspaces should be as aligned as possible.

We define an optimal sampling set Sopt of size m for PWω(G) as the set which
minimizes the worst case reconstruction error. Therefore, L2(Sopt) makes the smallest
maximum angle with PWω(G). It is easy to show that cos(θmax) = σmin(USR). Thus,
to find this set we need to solve a similar problem as (3.5). As stated before, this
problem is combinatorial. It is possible to give a greedy algorithm to get an approximate
solution. A simple greedy heuristic to approximate Sopt is to perform column-wise
Gaussian elimination over UVR with partial row pivoting. The indices of the pivot rows
in that case form a good estimate of Sopt in practice.

The methods described above require computation of many eigenvectors of the varia-
tion operator L. We circumvent this issue in the next section, by defining graph spectral
proxies based on powers of L. These spectral proxies do not require eigen-decomposition
of L and still allow us to compute the cut-off frequency that also acts as a measure of
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quality for different sampling sets. As we will show, these proxies arise naturally in the
expression for the bound on the reconstruction error. Thus, a sampling set optimal with
respect to these spectral proxies ensures a small reconstruction error bound.

3.3 Graph Spectral Proxies

As discussed earlier, graphs considered in most real applications are very large.
Hence, computing and storing the graph Fourier basis explicitly is often practically
infeasible. We now present a tool to approximately compute the bandwidth ω(φ) of
any given signal φ without computing the Fourier coefficients explicitly. These quan-
tities shall allow us to express the condition for unique bandlimited reconstruction, in
terms of the cut-off frequency, and methods for sampling set selection via simple oper-
ations using the variation operator. The following definition holds for any choice of the
variation operator L in Table 2.1:

Definition 3.2 (Graph Spectral Proxies). For any signal f 6= 0, we define its kth spectral
proxy ωk(f) with k ∈ Z+ as

ωk(f) 4=
(
‖Lkf‖
‖f‖

)1/k

. (3.8)

For an operator L with real eigenvalues and eigenvectors, ωk(f) can be shown to increase
monotonically with k:

∀f , k1 < k2 ⇒ ωk1(f) ≤ ωk2(f). (3.9)

These quantities are bounded from above, as a result, limk→∞ ωk(f) exists for all f .
Consequently, we can show that if ω(f) denotes the bandwidth of a signal f , then

∀k > 0, ωk(f) ≤ lim
j→∞

ωj(f) = ω(f). (3.10)

Note that (3.10) also holds for an asymmetric L that has complex eigenvalues and
eigenvectors. The proofs of (3.9) and (3.10) are provided in Lemmas 3.1 and 3.2. These
properties give us an important insight: as we increase the value of k, the spectral proxies
tend to have a value close to the actual bandwidth of the signal, i.e., they essentially
indicate the frequency localization of the signal energy.

Lemma 3.1. If L has real eigenvalues and eigenvectors, then for any k1 < k2, we have
ωk1(f) ≤ ωk2(f), ∀f .
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Proof. We first expand ωk1(f) as follows:

(ωk1(f))2k1 =
(
‖Lk1f‖
‖f‖

)2

=
∑
i,j(λiλj)k1 f̃if̃ju>i uj∑

i,j f̃if̃ju>i uj
(3.11)

=
∑
i,j

(λiλj)k1cij (3.12)

where cij = f̃if̃ju>i uj/
∑
i,j f̃if̃ju>i uj. Now, consider the function f(x) = xk2/k1 . Note

that since k1 < k2, f(x) is a convex function. Further, since ∑i,j cij = 1, we can use
Jensen’s inequality in the above equation to get

∑
i,j

(λiλj)k1cij

k2/k1

≤
∑
i,j

(
(λiλj)k1

)k2/k1
cij (3.13)

⇒

∑
i,j

(λiλj)k1cij

1/2k1

≤

∑
i,j

(λiλj)k2cij

1/2k2

⇒ ωk1(f) ≤ ωk2(f) (3.14)

If L has real entries, but complex eigenvalues and eigenvectors, then these occur in
conjugate pairs, hence, the above summation is real. However, in that case, ωk(f) is
not guaranteed to increase in a monotonous fashion, since cij’s are not real and Jensen’s
inequality breaks down. �

Lemma 3.2. Let ω(f) be the bandwidth of any signal f . Then, the following holds:

ω(f) = lim
k→∞

ωk(f) = lim
k→∞

(
‖Lkf‖
‖f‖

)1/k

(3.15)

Proof. We first consider the case when L has real eigenvalues and eigenvectors. Let
ω(f) = λp, then we have:

ωk(f) =
(∑p

i,j=1(λiλj)k f̃if̃ju>i uj∑p
i,j=1 f̃if̃ju>i uj

)1/2k

(3.16)

= λp

cpp +
∑

(i,j) 6=(p,p)

(
λi
λp

λj
λp

)k
cij

1/2k

(3.17)
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where cij = f̃if̃ju>i uj/
∑
i,j f̃if̃ju>i uj. Now, using logarithms, we can show

lim
k→∞

cpp +
∑

(i,j)6=(p,p)

(
λi
λp

λj
λp

)k
cij

1/2k

= 1. (3.18)

Substituting (3.18) in (3.17), we get

lim
k→∞

ωk(f) = λp = ω(f). (3.19)

Now, if L has complex eigenvalues and eigenvectors, then these have to occur in conjugate
pairs since L has real entries. Hence, for this case, we do a similar expansion as above
and take |λp| out of the expression. Then, the limit of the remaining term is once again
equal to 1. �

3.4 Cutoff frequency

In order to obtain a measure of quality for a sampling set S, we first find the cutoff
frequency associated with it, which can be defined as the largest frequency ω such that
S is a uniqueness set for PWω(G). It follows from Theorem 3.1 that, for S to be a
uniqueness set of PWω(G), ω needs to be less than the minimum possible bandwidth
that a signal in L2(Sc) can have. This would ensure that no signal from L2(Sc) can be a
part of PWω(G). Thus, the cutoff frequency ωc(S) for a sampling set S can be expressed
as:

ωc(S) 4= min
φ∈L2(Sc), φ 6=0

ω(φ). (3.20)

In order to avoid computation of the GFT basis, we use ωk(φ) as a proxy for ω(φ)
(i.e. bandwidth of φ) and this leads us to define the cut-off frequency estimate of order
k as

Ωk(S) 4= min
φ∈L2(Sc)

ωk(φ) = min
φ∈L2(Sc)

(
‖Lkφ‖
‖φ‖

)1/k

. (3.21)

Using the definitions of Ωk(S) and ωc(S) along with (3.9) and (3.10), we conclude that
for any k1 < k2:

ωc(S) ≥ lim
k→∞

Ωk(S) ≥ Ωk2(S) ≥ Ωk1(S). (3.22)

Using (3.22) and (3.20), we now state the following proposition:
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Proposition 3.2. For any k, S is a uniqueness set for PWω(G) if, ω < Ωk(S). Ωk(S)
can be computed from (3.21) as

Ωk(S) =
[
min
ψ

ψ>((L>)kLk)Scψ
ψ>ψ

]1/2k

= (σ1,k)1/2k, (3.23)

where σ1,k denotes the smallest eigenvalue of the reduced matrix ((L>)kLk)Sc. Further, if
ψ1,k is the corresponding eigenvector, and φ∗k minimizes ωk(φ) in (3.21) (i.e. it approx-
imates the smoothest possible signal in L2(Sc)), then

φ∗k(Sc) = ψ1,k, φ∗k(S) = 0. (3.24)

We note from (3.22) that to get a better estimate of the true cut-off frequency, one
simply needs a higher k. Therefore, there is a trade-off between accuracy of the estimate
on the one hand, and complexity and numerical stability on the other (that arise by
taking higher powers of L).

3.5 Sampling set selection

3.5.1 Best sampling set of given size

As shown in Proposition 3.2, Ωk(S) is an estimate of the smallest bandwidth that
a signal in L2(Sc) can have and any signal in PWω(G) is uniquely sampled on S if
ω < Ωk(S). Intuitively, we would like the projection of L2(Sc) along PWω(G) to be as
small as possible. Based on this intuition, we propose the following optimality criterion
for selecting the best sampling set of size m:

Sopt
k = arg max

|S|=m
Ωk(S). (3.25)

To motivate the above criterion more formally, let P denote the projector for PWω(G).
The minimum gap [40] between the two subspaces L2(Sc) and PWω(G) is given by:

inf
f∈L2(Sc),‖f‖=1

‖f −Pf‖ =
√ ∑
i: ω<λi

|f̃∗i |2

≥
√∑
i∈I
|f̃∗i |2, (3.26)
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where I = {i : ω < λi ≤ Ωk(S)} and f̃∗i denotes the ith GFT coefficient of the minimizer
f∗ for the left hand side. The inequality on the right hand side holds because Ωk(S)
is the smallest bandwidth that any signal in L2(Sc) can have. Eq. (3.26) shows that
maximizing Ωk(S) increases the lower bound on the minimum gap between L2(Sc) and
PWω(G). The minimum gap equals cos(θmax) as defined in (3.7) [40]. Thus, maximizing
Ωk(S) increases the lower bound on cos(θmax) which, in turn, minimizes the upper bound
on the reconstruction error ‖f − f̂‖ given in (3.6), where the original signal f /∈ PWω(G)
and f̂ ∈ PWω(G) is obtained by (3.1).

We now show that Ωk(S) also arises in the bound on the reconstruction error when
the reconstruction is obtained by variational energy minimization:

f̂m = arg min
y∈RN

‖Lmy‖ subject to yS = fS . (3.27)

It was shown in [56] that if f ∈ PWω(G), then the reconstruction error ‖f̂m − f‖/‖f‖,
for a given m, is upper-bounded by 2(ω/Ω1(S))m. This bound is suboptimal and can
be improved by replacing Ω1(S) with Ωk(S) (which, from (3.22), is at least as large as
Ω1(S)) for any k ≤ m, as shown in the following theorem:

Theorem 3.2. Let f̂m be the solution to (3.27) for a signal f ∈ PWω(G). Then, for any
k ≤ m,

‖f̂m − f‖ ≤ 2
(

ω

Ωk(S)

)m
‖f‖. (3.28)

Proof. Note that (f̂m − f) ∈ L2(Sc). Therefore, from (3.21)

‖f̂m − f‖ ≤ 1
(Ωm(S))m‖L

m(f̂m − f)‖

≤ 1
(Ωm(S))m (‖Lmf̂m‖+ ‖Lmf‖) (3.29)

≤ 2
(Ωm(S))m‖L

mf‖ (3.30)

≤ 2
(
ωm(f)
Ωm(S)

)m
‖f‖ (3.31)

≤ 2
(

ω

Ωk(S)

)m
‖f‖.
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(3.29) follows from triangle inequality. (3.30) holds because f̂m minimizes ‖Lmf̂m‖ over
all sample consistent signals. (3.31) follows from the definition of ωm(f) and the last
step follows from (3.10) and (3.22). �

Note that for the error bound in (3.28) to go to zero as m→∞, ω must be less than
Ωk(S). Thus, increasing Ωk(S) allows us to reconstruct signals in a larger bandlimited
space using the variational method. Moreover, for a fixed m and k, a higher value of
Ωk(S) leads to a lower reconstruction error bound. The optimal sampling set Sopt

k in
(3.25) essentially minimizes this error bound.

3.5.2 Obtaining the best sampling set

The problem posed in (3.25) is a combinatorial problem because we need to compute
Ωk(S) for every possible subset S of size m. We therefore formulate a greedy heuristic
to get an estimate of the optimal sampling set. Starting with an empty sampling set S
(Ωk(S) = 0) we keep adding nodes (from Sc) one-by-one while trying to ensure maximum
increase in Ωk(S) at each step. To achieve this, we first consider the following quantity:

λαk (1S) = min
x

(
ωk(x) + α

x>diag(1S)x
x>x

)
, (3.32)

where 1S : V → {0, 1} denotes the indicator function for the subset S (i.e. 1(S) = 1
and 1(Sc) = 0). Note that the right hand side of (3.32) is simply a relaxation of the
constraint in (3.21). When α � 1, the components x(S) are highly penalized during
minimization, hence, forcing values of x on S to be vanishingly small. Thus, if xαk (1S)
is the minimizer in (3.32), then [xαk (1S)](S)→ 0. Therefore, for α� 1,

φ∗k ≈ xαk (1S), Ωk(S) ≈ λαk (1S). (3.33)

Now, to tackle the combinatorial nature of our problem, we allow a binary relaxation of
the indicator 1S in (3.32), to define the following quantities

ωαk (x, t) =
(
ωk(x) + α

x>diag(t)x
x>x

)
, (3.34)

λαk (t) = min
x

ωαk (x, t), (3.35)
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where t ∈ RN . These relaxations circumvent the combinatorial nature of our problem
and have been used recently to study graph partitioning based on Dirichlet eigenval-
ues [54, 14]. Note that making the substitution t = 1S in (3.35) gives us (3.32) exactly.
The effect of adding a node to S on Ωk(S) at each step can now be understood by
observing the gradient vector ∇tλ

α
k (t), at t = 1S . Note that for any x and t,

dωαk (x, t)
dt(i) = α

(
x(i)
‖x‖

)2

. (3.36)

When t = 1S , we know that the minimizer of (3.35) with respect to x for large α is φ∗k.
Hence,

dλαk (t)
dt(i)

∣∣∣∣∣
t=1S

= dωαk (φ∗k, t)
dt(i)

∣∣∣∣∣
t=1S

= α

(
φ∗k(i)
‖φ∗k‖

)2

. (3.37)

The equation above gives us the desired greedy heuristic - starting with an empty S (i.e.,
1S = 0), if at each step, we include the node on which the smoothest signal φ∗k ∈ L2(Sc)
has maximum energy (i.e. 1S(i) ← 1, i = arg maxj(φ∗k(j))2), then λαk (t) and in effect,
the cut-off estimate Ωk(S), tend to increase maximally. We summarize the method for
estimating Sopt

k in Algorithm 3.1.
One can show that the cutoff frequency estimate Ωk(S) associated with a sampling

set can only increase (or remain unchanged) when a node is added to it. This is stated
more formally in the following proposition.

Proposition 3.3. Let S1 and S2 be two subsets of nodes of G with S1 ⊆ S2. Then
Ωk(S1) ≤ Ωk(S2).

This turns out to be a straightforward consequence of the eigenvalue interlacing
property for symmetric matrices.

Theorem 3.3 (Eigenvalue interlacing [32]). Let B be a symmetric n × n matrix. Let
R = {1, 2, . . . , r}, for 1 ≤ r ≤ n − 1 and Br = BR. Let λk(Br) be the k-th largest
eigenvalue of Br. Then the following interlacing property holds:

λr+1(Br+1) ≤ λr(Br) ≤λr(Br+1) ≤ . . .

. . . ≤λ2(Br+1) ≤ λ1(Br) ≤ λ1(Br+1).

The above theorem implies that if S1 ⊆ S2, then Sc2 ⊆ Sc1 and thus,
λmin

[(
(L>)kLk

)
Sc1

]
≤ λmin

[(
(L>)kLk

)
Sc2

]
.
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Algorithm 3.1 Greedy heuristic for estimating Sopt
k

Require: G = {V , E}, L, sampling set size M , k ∈ Z+.
Ensure: S = {∅}.
1: while |S| < M do
2: For S, compute smoothest signal φ∗k ∈ L2(Sc) using Proposition 3.2.
3: v ← arg maxi(φ∗k(i))2.
4: S ← S ∪ v.
5: end while
6: Sopt

k ← S.

Connection with Gaussian elimination

From Section 3.2, we know that the optimal sampling set can be obtained by max-
imizing σmin (USR) with respect to S. A heuristic to obtain good sampling sets is to
perform a column-wise Gaussian elimination with pivoting on the eigenvector matrix U.
Then, a sampling set of size i is given by the indices of zeros in the (i + 1)th column
of the echelon form. We now show that the greedy heuristic proposed in Algorithm
3.1 is closely related to this rank-revealing Gaussian elimination procedure through the
following observation:

Proposition 3.4. Let Φ be the matrix whose columns are given by the smoothest signals
φ∗∞ obtained sequentially after each iteration of Algorithm 3.1 with k = ∞, (i.e., Φ =[
φ∗∞||S|=0 φ

∗
∞||S|=1, . . .

]
). Further, let T be the matrix obtained by performing column-

wise Gaussian elimination on U with partial pivoting. Then, the columns of T are equal
to the columns of Φ∗∞ within a scaling factor.

Proof. If S is the smallest sampling set for uniquely representing signals in PWω(G) and
r = dim PWω(G), then we have the following:

1. |S| = r.

2. The smoothest signal φ∗∞ ∈ L2(Sc) has bandwidth λr+1.

Therefore, φ∗∞||S|=r is spanned by the first r+1 frequency basis elements {u1, . . . ,ur+1}.
Further, since φ∗∞||S|=r has zeroes on exactly r locations, it can be obtained by performing
Gaussian elimination on ur+1 using u1,u2, . . . ,ur. Hence the (r + 1)th column of Φ is
equal (within a scaling factor) to the (r + 1)th column of T. Pivoting comes from the
fact that the (i+ 1)th sampled node is given by the index of the element with maximum
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Table 3.1: Comparison of complexity of different sampling set selection algorithms.

Methods in [65, 22] (with GFT) Proposed Method
Eigen-pair computations O((|E||S|+ C|S|3)T1) O (k|E||S|T2(k))
Sampling set search O(N |S|3) [65], O(N |S|4) [22] O(N |S|)
Space complexity O(N |S|) O(N)

magnitude in φ∗∞||S|=i, and is used as the pivot to zeros out elements with same index
in subsequent columns. �

The above result illustrates that Algorithm 3.1 is an iterative procedure that approx-
imates a rank-revealing Gaussian elimination procedure on UVR. For the known-
spectrum case, this is a good heuristic for maximizing σmin (USR). In other words,
our method directly maximizes σmin (USR) without going through the intermediate step
of computing UVR. As we shall see in the next subsection, this results in significant
savings in both time and space complexity.

Complexity and implementation issues

We note that in the algorithm, computing the first eigen-pair of ((L>)kLk)Sc is the
major step for each iteration. There are many efficient iterative methods, such as those
based on Rayleigh quotient minimization, for computing the smallest eigen-pair of a
matrix [41]. The atomic step in all of these methods consists of matrix-vector products.
Specifically, in our case, this step involves evaluating the expression ((L>)kLk)Scx. Note
that we do not actually need to compute the matrix ((L>)kLk)Sc explicitly, since the
expression can be implemented as a sequence of matrix-vector products as

((L>)kLk)Scx = IScVL> . . .L>L . . .LIVScx. (3.38)

Evaluating the expression involves 2k matrix-vector products and has a complexity of
O(k|E|), where |E| is the number of edges in the graph. Moreover, a localized and
parallel implementation of this step is possible in the case of sparse graphs. The num-
ber of iterations required for convergence of the eigen-pair computation iterations is a
function of the eigen-value gaps [41] and hence dependent on the graph structure and
edge-weights.

For the methods of [65] and [22], one needs to compute a portion of the eigenvector
matrix, i.e., UVS (assuming |R| = |S|). This can be done using block-based Rayleigh
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quotient minimization methods [41], block-based Kryolov subspace methods such as
Arnoldi/Lanczos iterations or deflation methods in conjunction with single eigen-pair
solvers [59]. The complexity of these methods increases considerably as the number
of requested eigen-pairs increases, making them impractical. On the other hand, our
method requires computing a single eigen-pair at each iteration, making it viable for
cases when a large number of samples are required. Moreover, the sample search steps
in the methods of [65] and [22] require an SVD solver and a linear system solver,
respectively, thus making them much more complex in comparison to our method, where
we only require finding the maximum element of a vector. Our algorithm is also efficient
in terms of space complexity, since at any point we just need to store L and one vector.
On the other hand, [65, 22] require storage of at least |S| eigenvectors.

A summary of the complexities of all the methods is given in Table 3.1. The
eigen-pair computations for [65, 22] are assumed to be performed using a block
version of the Rayleigh quotient minimization method, which has a complexity of
O((|E||S| + C|S|3)T1), where T1 denotes the number of iterations for convergence,
and C is a constant. The complexity of computing one eigen-pair in our method is
O(k|E||S|T2(k)), where T2(k) denotes the average number of iterations required for con-
vergence of a single eigen-pair. T1 and T2(k) required to achieve a desired error tolerance
are functions of the eigen-gaps of L and Lk respectively. In general, T2(k) > T1, since
Lk has lower eigengaps near the smallest eigenvalue. Increasing the parameter k further
flattens the spectrum of Lk near the smallest eigenvalue leading to an increase in T2(k),
since one has to solve a more ill-conditioned problem. We illustrate this in the next
section through experiments that compare the running times of all the methods.

The choice of the parameter k depends on the desired accuracy – a larger value of k
gives a better sampling set, but increases the complexity proportionally, thus providing
a trade-off. Through experiments, we show in the next section that the quality of the
sampling set is more sensitive to choice of k for sparser graphs. This is because increasing
k results in the consideration of more global information while selecting samples. On the
other hand, dense graphs have a lower diameter and there is relatively little information
to be gained by increasing k.
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3.6 Experiments

We now numerically evaluate the performance of the proposed work3. The experi-
ments involve comparing the reconstruction errors and running times of different sam-
pling set selection algorithms in conjunction with consistent bandlimited reconstruc-
tion (3.1)4. We compare our approach with the following methods:

M1: This method [22] uses a greedy algorithm to approximate the S that maximizes
σmin(USR). Consistent bandlimited reconstruction (3.1) is then used to estimate
the unknown samples.

M2: At each iteration i, this method [65] finds the representation of ui as
∑
j<i βjuj +∑

u/∈S αu1u, where 1u is the delta function on u. The node v with maximum |αv|
is sampled. Reconstruction is done using (3.1).

Both the above methods assume that a portion of the frequency basis is known and
the signal to be recovered is exactly bandlimited. As a baseline, we also compare all
sampling set selection methods against uniform random sampling.

3.6.1 Examples with artificial data

We first give some simple examples on the following simulated undirected graphs:

G1: Erdös-Renyi random graph (unweighted) with 1000 nodes and connection proba-
bility 0.01.

G2: Small world graph [75] (unweighted) with 1000 nodes. The underlying regular
graph with degree 8 is rewired with probability 0.1.

G3: Barabási-Albert random network [9] with 1000 nodes. The seed network is a fully
connected graph with m0 = 4 vertices, and each new vertex is connected to m = 4
existing vertices randomly. This model, as opposed to G1 and G2, is a scale-free
network, i.e., its degrees follow a power law P (k) ∼ k−3.

3Code available at https://github.com/aamiranis/sampling_theory

4Although reconstruction using (3.1) requires explicit computation of UVR, there exist efficient
localized reconstruction algorithms that circumvent this [50, 74]. However, in our work, we restrict our
attention to the problem of sampling set selection.
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The performance of the sampling methods depends on the assumptions about the true
signal and sampling noise. For each of the above graphs, we consider the problem in the
following scenarios:

F1: The true signal is noise-free and exactly bandlimited with r = dimPWω(G) = 50.
The non-zero GFT coefficients are randomly generated from N (1, 0.52).

F2: The true signal is exactly bandlimited with r = 50 and non-zero GFT coefficients
are generated from N (1, 0.52). The samples are noisy with additive iid Gaussian
noise such that the SNR equals 20dB.

F3: The true signal is approximately bandlimited with an exponentially decaying spec-
trum. Specifically, the GFT coefficients are generated from N (1, 0.52), followed by
rescaling with the following filter (where r = 50):

h(λ) =

1, λ < λr

e−4(λ−λr), λ ≥ λr.
(3.39)

We generate 50 signals from each of the three signal models on each of the graphs,
use the sampling sets obtained from the all the methods to perform reconstruction and
plot the mean of the mean squared error (MSE) for different sizes of sampling sets. For
our algorithm, we set the value of k to 2, 8 and 14. The result is illustrated in Figure 3.1.
Note that when the size of the sampling set is less than r = 50, the results are quite
unstable. This is expected, because the uniqueness condition is not satisfied by the
sampling set. Beyond |S| = r, we make the following observations:

1. For the noise-free, bandlimited signal model F1, all methods lead to zero recon-
struction error as soon as the size of the sampling set exceeds the signal cutoff
r = 50 (error plots for this signal model are not shown). This is expected from the
sampling theorem. It is interesting to note that in most cases, uniform random
sampling does equally well, since the signal is noise-free and perfectly bandlimited.

2. For the noisy signal model F2 and the approximately bandlimited model F3, our
method has better or comparable performance in most cases. This indicates that
our method is fairly robust to noise and model mismatch. Uniform random sam-
pling performs very badly as expected, because of lack of stability considerations.
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(a) Graph G1 and signal model F2
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(b) Graph G1 and signal model F3
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(c) Graph G2 and signal model F2
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(d) Graph G2 and signal model F3
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(e) Graph G3 and signal model F2
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(f) Graph G3 and signal model F3

Figure 3.1: Reconstruction results for different graph and signal models. Plots for
signal model F1 are not shown since the reconstruction errors are identically zero for all
methods when |S| ≥ dimPWω(G) = 50. The large reconstruction errors for |S| < 50
arise due to non-uniqueness of bandlimited reconstruction and hence, are less meaningful.
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Effect of parameter k in the spectral proxy

Parameter k in the definition of spectral proxies controls how closely we estimate
the bandwidth of any signal f . Spectral proxies with higher values of k give a better
approximation of the bandwidth. Our sampling set selection algorithm tries to maximize
the smallest bandwidth that a signal in L2(Sc) can have. Using higher values of k allows
us to estimate this smallest bandwidth more closely, thereby leading to better sampling
sets as demonstrated in Figure 3.2. Intuitively, maximizing Ωk(S) with k = 1 ensures
that the sampled nodes are well connected to the unsampled nodes [29] and thus, allows
better propagation of the observed signal information. Using k > 1 takes into account
multi-hop paths while ensuring better connectedness between S and Sc. This effect
is especially important in sparsely connected graphs and the benefit of increasing k

becomes less noticeable when the graphs are dense as seen in Figure 3.2. However, this
improvement in performance in the case of sparse graphs comes at the cost of increased
numerical complexity.

Running time

We also compare the running times of the sampling set selection methods for different
sizes of the graph. For our experiments, we generate symmetrized Erdös-Renyi random
graphs of different sizes with parameter 0.01, and measure the average running time of
selecting 5% of the samples in MATLAB. For computing the eigen-pairs, we use the code
for the Locally Optimal Block Prec-conditioned Conjugate Gradient (LOBPCG) method
available online [41] (this was observed to be faster than MATLAB’s inbuilt sparse
eigensolver eigs, which is based on Lanczos iterations). The results of the experiments
are shown in Table 3.2. We observe that the rate of increase of running time as the graph
size increases is slower for our method compared to other methods, thus making it more
practical. Note that the increase with respect to k is nonlinear since the eigengaps are a
function of k and lead to different number of iterations required for convergence of the
eigenvectors.

3.6.2 A real data example

In this example, we apply the proposed method to classification of the USPS hand-
written digit dataset [1]. This dataset consists of 1100 images of size 16 × 16 each
corresponding digits 0 to 9. We create 10 different subsets of this dataset randomly,
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(a) p = 0.01
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(b) p = 0.05
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(c) p = 0.1

Figure 3.2: Reconstruction performance for noisy signals (model F2) with different values
of k in Erdös-Renyi graphs having different connection sparsity levels. Higher connection
probability p implies lower sparsity.

consisting of 100 images from each class. The data points can be thought of as points
{xi}1000

i=1 ⊂ R256 with labels {yi}1000
i=1 . For each instance, we construct a symmetrized

k-nearest neighbor (k-nn) graph with k = 10, where each node corresponds to a data
point. We restrict the problem to the largest strongly connected component of the graph
for convenience so that a stationary distribution for the resultant random walk exists
which allows us to define the random walk based GFT. The graph signal is given by the
membership function f c of each class c which takes a value 1 on a node which belongs
to the class and is 0 otherwise. To solve the multi-class classification task, we use the
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Table 3.2: Running time of different methods (in seconds) for selecting 5% samples on
graphs of different sizes. The running time for M1 increases drastically and is ignored
beyond graph size 5k.

1k 5k 10k 20k
M1 16.76 12, 322.72 - -
M2 2.16 57.46 425.92 3004.01
Proposed, k = 4 2.00 11.13 84.85 566.39
Proposed, k = 6 13.08 24.46 170.15 1034.21
Proposed, k = 8 31.16 53.42 316.12 1778.31

one-vs-rest strategy which entails reconstructing the membership function of every class.
The final classification for node i is then obtained by

yi = arg max
c

{f ci }. (3.40)

We first compare the performance of the proposed method against M1 and M2 using
the normalized adjacency matrix based GFT with the variation operator L = I−D−1W.
The bandwidth parameter r is set to 50. The plot of classification error averaged over
the 10 dataset instances vs. number of labels is presented in Figure 3.3a. It shows that
the proposed method has comparable performance despite being localized. The per-
formance is also affected by the choice of the variation operators (or, the GFT bases).
Figure 3.3b shows that the variation operators based on the hub-authority model and
random walk offer higher classification accuracy and thus, are more suited for this par-
ticular application. Their superior performance can be explained by looking at the signal
representation in the respective GFT domains. Figure 3.3c shows the fraction of signal
energy captured in increasing number of GFT coefficients starting from low frequency.
Since the hub-authority model based GFT and random walk based GFT offer more
energy compaction than adjacency based GFT, the signal reconstruction quality using
these bases is naturally better.

3.7 Summary

We studied the problem of selecting an optimal sampling set for reconstruction of
bandlimited graph signals. The starting point of our framework is the notion of the
Graph Fourier Transform (GFT) which is defined via an appropriate variation operator.
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(a) Comparison of different methods using the
adjacency based variation operator.
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Figure 3.3: Classification results for the USPS dataset using different methods and
GFTs.

Our goal is to find good sampling sets for reconstructing signals which are bandlimited
in the above frequency domain. We showed that when the samples are noisy or the
true signal is only approximately bandlimited, the reconstruction error depends not
only on the model mismatch but also on the choice of sampling set. We proposed
a measure of quality for the sampling sets, namely the cutoff frequency, that can be
computed without finding the GFT basis explicitly. A sampling set that maximizes
the cutoff frequency is shown to minimize the reconstruction error. We also proposed
a greedy algorithm which finds an approximately optimal set. The proposed algorithm
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can be efficiently implemented in a distributed and parallel fashion. Together with
localized signal reconstruction methods, it gives an effective method for sampling and
reconstruction of smooth graph signals on large graphs.

3.7.1 Future work

The present work opens up some new questions for future research. The problem of
finding a sampling set with maximum cutoff frequency is combinatorial. The proposed
greedy algorithm gives only an approximate solution to this problem. It would be useful
to find efficient algorithms with theoretical guarantees on the quality of approximation.
The accuracy-complexity trade-off provided by spectral proxies in computing the cutoff
frequency indicates the existence of simple heuristics that can be used for fast sampling
set selection at the expense of robustness of reconstruction. For example, maximizing
the spectral proxy for k = 1 removes the need of computing even the smallest eigenpair
and can be implemented entirely in the vertex domain. The heuristic in effect ensures
that the unsampled nodes are strongly connected to the sampled ones. It would be
interesting to understand heuristics arising from higher-order spectral proxies.

Another avenue for research is the consideration of randomized sampling algorithms
(along the lines of [57]), that define a distribution over the nodes and provide probabilistic
tradeoffs between the sampling set size and bounds on the reconstruction error. This
would come however at the expense of increased size of the sampling set and increased
reconstruction error. By carefully designing probability distributions for selecting the
sampling sets, one can guarantee a probabilistic bound on the error as a function its
cardinality using concentration inequalities from probability theory.

Finally, it would also be interesting if one can estimate the bandwidth of any signal
using a few observed samples and L. This would help us decide “where to stop” while
computing the sampling set sequentially, or in other words, understanding the cardinality
of the sampling set required for recovering a signal without knowing it apriori. A possible
approach for achieving this is to randomly observe a few samples of the signal and
analyze the convergence of spectral proxies defined using these samples as a function of
the cardinality. This can potentially provide a handle on the accuracy of the bandwidth
estimate, that one can use to figure out when to stop sampling.
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Chapter 4

Wavelet Filterbanks on Graphs
In this chapter, we explore the sampling problem further and consider the design

of wavelet filterbanks on graphs. This problem is fundamentally different from sam-
pling bandlimited signals since one needs to find a joint sampling scheme spanning over
multiple channels of the filterbank and favoring all signals on the graph, i.e., not only
bandlimited signals. These filterbanks are designed taking into account several desir-
able properties such as compact support, critical sampling, near orthogonality and near
perfect reconstruction. Compact support implies using graph spectral filters that are
polynomials of the graph adjacency or Laplacian matrix, thus helping keep time and
space complexities in check. We show in this chapter that satisfying all these proper-
ties simultaneously for graph wavelet filterbanks is only possible under very restrictive
conditions, since the structure of the GFT basis is dependent on the structure of the
graph.

Recent approaches in graph wavelet filterbank design impose certain structural con-
straints on the graphs, for example by requiring the graphs to be bipartite or circulant.
These assumptions significantly reduce the number of constraints needed to be satis-
fied for achieving the desirable properties mentioned earlier. Extending these designs to
arbitrary graphs involves approximate decomposition into multiple subgraphs that sat-
isfy the structural constraint at the cost of diminished multiresolution performance of
the system. In this chapter, we circumvent this issue and design filterbanks directly on
arbitrary graphs by decoupling the design of filters and choice of the sampling scheme.
Given graph spectral filters that achieve desirable frequency localization, we consider
the problem of choosing the best sampling scheme over multiple channels by minimizing
a bound on the reconstruction error for the entire filterbank. This objective is opti-
mized by a greedy minimization scheme that allows an efficient implementation, once
again without the need of explicitly handling the GFT basis. Experimental results show
that our scheme performs well in comparison to other adhoc sampling schemes in the
literature. Finally, we also explore an interesting directed extension of bipartite graphs

This chapter is based partly on our work in [7, 8].
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called M -block cylic graphs [69]. These graphs are useful in modeling periodic finite
state machines (FSMs) and Markov decision processes (MDPs). The eigenstructure of
these graphs makes them particularly suitable for the design of M -channel filterbanks.

The rest of this chapter is organized as follows: In Section 4.1, we review existing
work on the design of graph wavelet filterbanks. Section 4.2 introduces some background
and notations relevant for this chapter. Section 4.3 focuses on the general formulation
behind two-channel filterbanks and introduces conditions required for attaining desirable
properties. In Section 4.4, we design a critical sampling scheme that can be obtained
efficiently given predesigned filters. We then turn to the design of M -channel filter-
banks on M -block cyclic graphs in Section 4.5. Finally, we conclude the chapter with a
summary and possible extensions of our work in Section 4.6.

4.1 Related work

State-of-the-art wavelet filterbanks that satisfy most of the above mentioned proper-
ties require imposing certain structural constraints on the underlying graph. For exam-
ple, the recently proposed two-channel filterbanks in [45, 46] are designed specifically
for bipartite graphs. The special structure leads to a natural downsampling-upsampling
scheme (on one of the two partitions) in each channel, accompanied by a spectral folding
phenomenon that is exploited while designing the filters. In order to extend the design
to arbitrary graphs, these works suggest using a multidimensional framework where the
input graph is decomposed into multiple bipartite subgraphs over which filterbanks are
designed and implemented independently. Various approaches have been proposed to
optimize the bipartite subgraph decomposition [52, 77] for designing these multidimen-
sional filterbanks. However, the limitation of this framework is that one is forced to work
with simplified graphs that do not contain all the connectivity information. Addition-
ally, there are also works that suggest expanding the input graph to create a bipartite
graph thereby leading to an oversampled filterbank [61], which may not be desirable for
some applications such as compression. There also exist filterbanks that exploit circulant
graph architectures [26, 27]. These works however consider only the analysis filterbank,
whereas the synthesis part is assumed to be obtained via least-squares inversion.

Recently, there has also been interest in designingM -channel polynomial filterbanks.
Once again, the filterbanks are designed on graphs with a special structure called M -
block cyclic graphs [69]. These graphs exhibit an M -fold spectral folding phenomenon
(in the GFT basis of the adjacency) upon downsampling-upsampling on any block.
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This phenomenon is exploited to state perfect reconstruction conditions for M -channel
filterbanks in [70]. However, these conditions are meant for graphs with balanced block
sizes and a sampling scheme that involves downsampling-upsampling on the same block
in each channel. Moreover, this work does not provide insight into possible solutions
satisfying the constraints and suggests using existing filter designs from classical DSP.
In our work, we remove the sampling restrictions and provide a possible solution for the
perfect reconstruction conditions when M is a power of 2.

4.2 Background and notation

In this chapter, we work with weighted graphs G = (V , E) consisting of a set of nodes
V = {1, 2, . . . , n} and edges E = {wij}, i, j ∈ V , with wii = 0. We denote the adjacency
matrix by A and the degree matrix by D, and assume that A has been normalized1 so
that ‖A‖2 = 1 (this facilitates the design of graph spectral filters).

When the graph is undirected, we shall work with the symmetric normalized form of
the Laplacian defined as L = I−D−1/2AD−1/2. L is a symmetric positive semi-definite
matrix and has a set of real eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2 and a corresponding
orthogonal set of eigenvectors denoted as U = [u1,u2, . . . ,un].

We recall that the downsampling operation on a graph signal f is defined as the
restriction of the signal f to a certain subset of nodes S ⊂ V (known as the downsampling
set), and the downsampled signal is a vector of reduced length |S|. The downsampling
operator for S is obtained by sampling the corresponding rows of the identity matrix I,
i.e., S = IS,V ∈ {0, 1}|S|×n. Similarly, the upsampling operation for signals downsampled
on S inserts zeros in place of the missing signal values at appropriate locations and is
given by ST .

Further, while designing filterbanks, we shall employ polynomial graph filters H =
h(L) = ∑k

i=0 hiLi (or alternatively, H = h(A) = ∑k
i=0 hiAi, when we work with A

in case of directed graphs). These filters are useful because of their efficiency (since a
k-degree polynomial filter can be implemented in O(k|E|) complexity). Note that for
undirected graphs, L is symmetric, and hence H is symmetric.

1There can be different ways of normalizing depending on the application at hand, eg., 1
|λmax|A, or

random walk normalization D−1A.
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Figure 4.1: A generic two-channel filterbank on graphs.

4.3 Two-channel filterbanks

We now describe the general formulation for two-channel wavelet filterbanks on arbi-
trary undirected graphs (this can be easily extended to directed graphs). A more detailed
description can be found in [45, 46] in the context of bipartite graphs. We make certain
changes to notation for compactness.

A generic two-channel wavelet filterbank on a graph decomposes any graph signal
x ∈ RN into a lowpass (smooth) and highpass (detail) component (Figure 4.1). It
consists of an analysis filterbank with H0 and H1 as lowpass and highpass filters, and a
synthesis filterbank with G0 and G1 as the lowpass and highpass filters. S0 ∈ {0, 1}|S0|×N

and S1 ∈ {0, 1}|S1|×N are the downsampling operators for the lowpass and highpass
branch, respectively, while ST0 and ST1 are the corresponding upsampling operators. The
outputs of the two branches after the analysis filterbank are y0 ∈ R|S0| and y1 ∈ R|S1|.
These are given as y0

y1

 =
S0H0

S1H1

x = Tax. (4.1)

Similarly, the output of the synthesis filterbank (i.e., the reconstructed signal) is denoted
as x̂ ∈ RN and is given by

x̂ =
[
G0ST0 G1ST1

] y0

y1

 = Ts

y0

y1

 , (4.2)

with the complete transfer equation for the system given by

x̂ =
(
G0ST0 S0H0 + G1ST1 S1H1

)
x. (4.3)
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We now state some desirable characteristics of the filterbank along with the conditions
needed to satisfy each.

• Compact support requires that the filters {Hi,Gi}i=0,1 be expressible as finite poly-
nomials of the graph Laplacian L (or A for directed graphs), a notion analogous
to FIR filters in classical DSP. A k-degree polynomial filter requires collecting
information from a k-degree neighborhood for each node.

• Critical sampling requires that the total number of samples after downsampling in
both branches should be equal to the dimension of the signal, i.e., |S0|+ |S1| = N .
If the sampling scheme is constrained to disjoint sets, this can be stated in terms
of the sampling operators as

ST0 S0 + ST1 S1 = I. (4.4)

• Perfect reconstruction requires that the transfer function of the entire system be
identity, i.e.,

G0ST0 S0H0 + G1ST1 S1H1 = I. (4.5)

• Orthogonality requires the filterbanks to satisfy Ts = TT
a and TT

aTa = I, which
translates to substituting G0 = H0 and G1 = H1 in (4.5).

Note that the perfect reconstruction condition in (4.5) can also be interpreted using the
eigendecomposition of L or A as UΛU−1 as

g0(Λ)U−1ST0 S0Uh0(Λ) + g1(Λ)U−1ST1 S1Uh1(Λ) = I, (4.6)

For an arbitrary U, it is impossible to satisfy (4.6) using low-degree polynomial filters,
since the number of constraints (= N2) is much larger than the available degrees of free-
dom. Therefore, one would like to design the system such that G0ST0 S0H0 +G1ST1 S1H1

is as close as possible to identity. Special structure in the graph results in a structured
U and therefore simplification of (4.6) by elimination of several constraints, as shown
next for bipartite graphs.

4.3.1 Special case: bipartite graphs

The special structure of bipartite graphs leads to a spectral folding phenomenon that
eliminates several constraints in (4.6), thereby allowing two-channel filterbank designs
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using low-degree polynomial filters [45, 46]. We now explain this phenomenon in the
context of undirected bipartite graphs, however, this analysis can easily extended to
directed bipartite graphs, and alsoM -block cyclic graphs as we shall see in Section 4.5.1.

We begin by noting the following properties of the symmetric normalized Laplacian
L for bipartite graphs:

1. The eigenvectors of L exhibit a “spectral folding” phenomenon [45], i.e., ifλ,
u0

u1

 is an eigenpair of L (where u0 and u1 are values on partitions S0

and S1, respectively), then

2− λ,
 u0

−u1

 is also an eigenpair.

2. Using orthogonality of the eigenvectors
u0

u1

 and
 u0

−u1

, we have uT0 u0−uT1 u1 =

0⇒ uT0 u0 = uT1 u1. Further, since the eigenvectors are normalized, we have uT0 u0 +
uT1 u1 = 1, which gives uT0 u0 = uT1 u1 = 1/2.

3. Further, using orthogonality of the eigenvector
uT0

u1

 to
u′0

u′1

 and
 u′0
−u′1

, we
get uT0 u′0 + uT1 u′1 = 0 and uT0 u′0 − uT1 u′1 = 0, which gives us uT0 u′0 = uT1 u′1 = 0.

We can use the above three properties to simplify (4.6). For simplicity, let us consider
balanced bipartite graphs (that have equal-sized partitions) with distinct eigenvalues.
The eigenvector matrix for such graphs can be written as

U =
U0 U∗0
U1 −U∗1

 , (4.7)

where U∗0 and U∗1 are obtained from U0 and U1 by reversing or mirroring the column
order. Therefore, if S0, S1 are two sets of the bipartition, then it can be shown that

UTST0 S0U =
UT

0

U∗T0

 [U0 U∗0
]

= 1
2(I + I∗), (4.8)

UTST1 S1U =
 UT

1

−U∗T1

 [U1 −U∗1
]

= 1
2(I− I∗), (4.9)

where I∗ is the anti-diagonal identity matrix. Noting that U−1 = UT for the undirected
case and substituting (4.8) and (4.9) in the left hand side of (4.6), we conclude that (4.6)
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is satisfied if the following conditions on the filter responses hold in the spectral domain
for 0 ≤ λ ≤ 2:

g0(λ)h0(λ) + g1(λ)h1(λ) = 2, (4.10)
g0(λ)h0(2− λ)− g1(λ)h1(2− λ) = 0. (4.11)

These are exactly identical to the perfect reconstruction conditions stated in [45]. I∗

causes the spectral folding phenomenon and thus generates N additional aliasing con-
straints besides the N diagonal constraints, resulting in a total of 2N constraints that
are easier to satisfy with low-degree filters. The analysis can be extended to bipartite
graphs with unbalanced partitions and possibly repeated eigenvalues through simple
modifications and can be shown to produce the same perfect reconstruction conditions.
Note that if we are not restricted to using polynomial filters for synthesis, one can use
least-squares inversion for inverting the analysis transfer function Ta, provided it is
non-singular.

4.3.2 Characterizing graphs that admit perfect reconstruction
filterbanks

We now characterize graphs that admit a critically-sampled, compact support, per-
fect reconstruction design for the two-channel filterbank depicted in Figure 4.1. For
the analysis to hold for both undirected and directed graphs, we work with filters that
are polynomial in A with appropriate normalization2. Once again, we begin with the
transfer function in the spectral domain as

T̃ = g0(Λ)U−1ST0 S0Uh0(Λ) + g1(Λ)U−1ST1 S1Uh1(Λ). (4.12)

Recall that for critically-sampled (on disjoint sets), perfect reconstruction polynomial
filterbanks, we should satisfy T̃ = I with ST0 S0 + ST1 S1 = I and low-degree polynomial

2Normalization is carried out as D−1A or 1
λmax(A)A for directed graphs and D−1/2AD−1/2 for

undirected graphs. Note that both these normalizations lead to the following bound on the frequencies:
λ ∈ [−1, 1].
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filter responses {hk(λ), gk(λ)}. Similar to [45], let us define a modulation function β ∈
{−1,+1}n and a corresponding modulation operator Ω as

Ω = diag(β), where β(v) =

+1 v ∈ S0

−1 v ∈ S1
. (4.13)

The modulation operator satisfies Ω2 = I. With this definition, we have the following
relations for critical sampling in the two channels

ST0 S0 = 1
2(I + Ω), (4.14)

ST1 S1 = 1
2(I−Ω), (4.15)

using which (4.12) can be rewritten as

T̃ = 1
2

(
g0(Λ)h0(Λ) + g1(Λ)h1(Λ)

)
︸ ︷︷ ︸

T̃gain

+ 1
2

(
g0(Λ)U−1ΩUh0(Λ)− g1(Λ)U−1ΩUh1(Λ)

)
︸ ︷︷ ︸

T̃alias

. (4.16)

The first term on the right hand side of the above equation, denoted by T̃gain, is diagonal
in the spectral domain and therefore determines the gain of the transfer function. The
second expression, denoted by T̃alias, is termed as the aliasing component since U−1ΩU
is not diagonal in general (Ω is not simultaneously diagonalizable with A). As a result,
we observe an input-dependent smearing in the spectrum which is difficult to reverse.
Therefore, for perfect reconstruction, the filter responses and the sampling scheme must
be chosen such that T̃gain = I and T̃alias = 0.

In order to characterize aliasing, we expand the modulated basis vectors ΩU in the
original basis U, by finding a P such that

ΩU = UP. (4.17)

P contains the coefficients for expressing ΩU in U and since P = U−1ΩU, it also
determines the aliasing pattern in the transfer function (illustrated in Figure 4.2 for an
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(a)
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h1(Λ) = 0

⇒T̃alias = g0(λ)h0(−λ)− g1(λ)h1(−λ) = 0

(b)

Figure 4.2: An illustration of aliasing patterns for two-channel filterbanks in (a) an
arbitrary graph, (b) a bipartite graph. Spectral folding in a bipartite graph results in a
concise anti-aliasing constraint in the spectral domain as seen in Section 4.3.1.

arbitrary graph and a bipartite graph). A minimum number of constraints is generated
from the condition T̃alias = 0 when P is a permutation matrix. This happens if and
only if for all GFT basis vectors u, their modulated versions Ωu are also elements of the
basis. In other words, if {λ,u} is an eigenpair of A, then {µ,Ωu} is also an eigenpair.

Observation 4.1. Minimum number of anti-aliasing constraints is generated if there
exists a one-to-one mapping between GFT vectors and their modulated versions. In other
words, modulating the GFT matrix is equivalent to applying a column permutation.

To ensure that polynomial filters can be designed independent of the graph (i.e.,
without knowing its size or spectrum), the frequencies associated with u and Ωu, λ and
µ respectively, must be related in a simple fashion. Specifically, we must have µ = p(λ),
where p(λ) is a continuous function. Continuity of p(λ) is required since piecewise
functions cannot be expressed as polynomials, and hence cannot be implemented as
polynomial filters in the vertex domain. Moreover, since µ = p(λ) and λ = p(µ), p must
be an involutory function (i.e., p(p(λ)) = λ) in [−1, 1]. Using this relationship in the
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aliasing term in (4.16), we conclude that the following condition must be satisfied to
eliminate all aliasing:

g0(λ)h0(p(λ))− g1(λ)h1(p(λ)) = 0. (4.18)

Note that (4.18) is satisfied if g0(λ) = h1(p(λ)) and g1(λ) = h0(p(λ)). Further, in order
to ensure g0(λ) and g1(λ) are polynomials, the only choice of p(λ) is p(λ) = c− λ (since
higher order polynomials are not involutory in [−1, 1]). Note that Tr(A) = ∑N

i=1 λi = 0.
But we also have Tr(A) = ∑N

i=1(c−λi) = 0. Therefore, c = 0 is the only choice satisfying
all our design criteria. This means both {λ,u} and {−λ,Ωu} are eigenpairs of A, and
this can be true if and only if the graph is bipartite [24]. We summarize our analysis in
the following observation:

Observation 4.2. Two-channel perfect reconstruction filterbanks satisfying the follow-
ing design criteria:

1. Polynomial filters,

2. Disjoint sampling sets,

3. Independent from graph size N (i.e., constraints expressible as a function of λ),

4. Minimum number of anti-aliasing constraint equations (equal to two),
can be designed if and only if the graph is bipartite.

The criteria in the observation above reduce the problem to the design of four poly-
nomials h0(λ), h1(λ), g0(λ), g1(λ) in the spectral domain satisfying two concise constraint
equations. Although this leads to a significant simplification of the design process, we
must remark that these criteria can be somewhat restrictive as the design is viable only
on one candidate graph, i.e., bipartite. We cannot deny the possibility that filterbanks
can be realized on other kinds of graphs if one or more of these criteria is relaxed. For
example, an alternative sampling approach has recently been proposed in [67], where
spectral folding is embedded in the sampling strategy itself through spectral domain
sampling. Such a sampling scheme allows for the design for filterbanks on any graph, at
the expense of increased complexity in the sampling step.

In the next section, we relax the perfect reconstruction requirement and explore
critically-sampled polynomial designs on arbitrary graphs.
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4.4 Critical sampling for filterbanks on arbitrary
graphs

4.4.1 Approximately optimal sampling scheme

For a critically sampled design, we must choose S0 and S1 such that |S0|+ |S1| = N

and the filterbank is as close to perfect reconstruction as possible. One way to achieve
this is by minimizing the deviation of the overall transfer function of the system from
identity in terms of Frobenius form, i.e., ‖G0ST0 S0H0 + G1ST1 S1H1 − I‖2

F , which is in
fact an upper bound on the squared relative error for all signals on the graph. Further,
in our design, we assume that we have already designed filters H0,H1,G0,G1 to satisfy
G0H0 + G1H1 = 2I which is the overcomplete case. The filters can be designed, for
example, using the methods of [45, 46]. In order to minimize the reconstruction error
over the choice of sampling sets S0 and S1, we first introduce a concatenated setting (of
2N dimensions) by defining

H =
H0

H1

 ∈ R2N×N , G =
G0

G1

 ∈ R2N×N ,

y =
y0

y1

 ∈ R|S0|+|S1|, S =
S0 0

0 S1

 ∈ {0, 1}(|S0|+|S1|)×2N . (4.19)

Note that the concatenated downsampling operator S can be obtained by sampling rows
of the 2N -dimensional identity corresponding to indices in a concatenated sampling set
S ⊂ {1, . . . , 2N} that contains sampled nodes for both the channels such that |S| =
|S0| + |S1|. Further, Sc = {1, . . . , 2N} \ S and S0 and S1 can be recovered from S as
S0 = {v|v ∈ S, 1 ≤ v ≤ N} and S1 = {v − N |v ∈ S, n + 1 ≤ v ≤ 2N}. With these
definitions, the transfer function of the system can be written as GTSTSH and finding
a critical sampling scheme requires solving

min
S:|S|=N

∥∥∥GTSTSH− I
∥∥∥2

F
. (4.20)
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Algorithm 4.1 Basic greedy minimization
Ensure: S = {∅}.
1: while |S| < N do
2: S ← S ∪ {u}, where u = argminv∈Sc φ(S ∪ {v}).
3: end while

Since we choose the filters such that GTH = 2I, we can rewrite the objective as

φ(S) =
∥∥∥∥GTSTSH− 1

2GTH
∥∥∥∥2

F

=

∥∥∥∥∥∥1
2
∑
i∈S

gihTi −
1
2
∑
j∈Sc

gjhTj

∥∥∥∥∥∥
2

F

, (4.21)

where gi and hi denote the ith columns of GT and HT respectively. In order to minimize
φ(S), we propose to use a simple greedy procedure (Algorithm 4.1) that begins with an
empty S and keeps adding nodes one-by-one that minimize φ(S) at each step. However,
this algorithm requires O(N2) evaluations of the objective φ(S) which can be quite
expensive. Explicitly storing the matrices G and H requires O(N2) space. We now show
how one can efficiently implement the algorithm in O(N) graph filtering operations and
O(N) space. Using (4.21), the change in the objective φ(S) when a node v ⊂ {1, . . . , 2N}
is added to S is given by:

φ(S ∪ {v}) =

∥∥∥∥∥∥
1

2
∑
i∈S

gihTi −
1
2
∑
j∈Sc

gjhTj

+ gvhTv

∥∥∥∥∥∥
2

F

= φ(S) + pv(S) + qv, (4.22)

where we defined

pv(S) = Tr
hvgTv

∑
i∈S

gihTi −
∑
j∈Sc

gjhTj

 , (4.23)

qv = ‖gv‖2‖hv‖2. (4.24)

Thus, we have

argmin
v∈Sc

φ(S ∪ {v}) = argmin
v∈Sc

(pv(S) + qv) . (4.25)
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Algorithm 4.2 Efficient algorithm for critical sampling
Require: Graph G = {V , E}, concatenated filters H, G.
Ensure: S = {∅}, p,q ∈ R2N such that pv = −2 〈gv,hv〉, qv = ‖gv‖2‖hv‖2.
1: while |S| < N do
2: S ← S ∪ {u}, where u = argminv∈Sc (pv + qv).
3: p← p + 2(Ggu) ◦ (Hhu).
4: end while

In order to compute pv(S) for each S, we first note that

pv(∅) = Tr
[
hvgTv (−GTH)

]
= −2 〈gv,hv〉 . (4.26)

Further, for a node u, pv(S ∪ {u}) can be computed as

pv(S ∪ {u}) = Tr
hvgTv

∑
i∈S

gihTi −
∑
j∈Sc

gjhTj + 2guhTu


= pv(S) + 2 〈gv,gu〉 〈hv,hu〉 . (4.27)

To make the notation compact, we introduce the vectors p(S),q ∈ R2N , whose vth

elements are pv(S) and qv. Therefore, using “◦” to denote element-wise vector product
(Hadamard product), we have

p(S ∪ {u}) = p(S) + 2(Ggu) ◦ (Hhu). (4.28)

We summarize the efficient method for choosing S in Algorithm 4.2. Note that the
algorithm is allowed to produce sampling sets S0 and S1 that are not disjoint. In order
to avoid this, a simple heuristic is to constrain the algorithm in each iteration to disregard
“images” (created in the concatenated setting) of already selected indices (eg., selection
of i ≤ N rules out i+N from list of candidate indices in subsequent iterations).

Complexity: The vectors hv and gv can be computed using two filtering operations
each as HT δv and GT δv respectively, where δv is the graph delta signal on node v.
Therefore, in terms of time complexity, computing p(∅) and q require 4N one-time
graph filtering operations in total. Further, each greedy iteration requires performing 8
filtering operations. Therefore, Algorithm 4.2 requires O(N) graph filtering operations.
The space complexity of the algorithm is O(N) since it is matrix-free, i.e., A is the only
matrix that needs to be stored.

60



4.4.2 Theoretical guarantees

We now show that it is possible to obtain some theoretical insight into the perfor-
mance of (a randomized variant of) our greedy algorithm when G = H. Note that for
S1 ⊆ S2 and a v /∈ S1,S2,

pv(S1) =
∑
i∈S1

〈hv,hi〉2 −
∑
j∈Sc1

〈hv,hj〉2

≤
∑
i∈S2

〈hv,hi〉2 −
∑
j∈Sc2

〈hv,hj〉2 = pv(S2). (4.29)

Using this in (4.22), we obtain

φ(S1 ∪ {v})− φ(S1) ≤ φ(S2 ∪ {v})− φ(S2), (4.30)

which implies φ(S) is supermodular in S. Therefore, the function ψ(S) = φ(∅)−φ(S) is
submodular, non-monotone and normalized (ψ(∅) = 0). As a result, the set S∗ obtained
by the greedy maximization of ψ(S) (or equivalently greedy minimization of φ(S)) with
a randomized version of Algorithm 4.1, that selects one node uniformly at random from
the best N nodes at each iteration, is at least a 0.3-approximation of the optimal set
SOPT [17]. To be precise, we have the following guarantees for S∗ obtained from the
randomized greedy algorithm

ψ(SOPT) ≥ ψ(S∗) ≥ 0.3ψ(SOPT) (4.31)
⇒ φ(SOPT) ≤ φ(S∗) ≤ 0.3φ(SOPT) + 0.7N. (4.32)

Although, guarantees for the deterministic version of the greedy algorithm are part
of ongoing research, we observe empirically that its performance is competitive. Note
that for the biorthogonal design when G 6= H, φ(S) is no longer supermodular, hence
we cannot state guarantees on the performance of the greedy algorithm in this case.
However, experiments show that the algorithm performs well in this case as well.

4.4.3 Multi-channel extension

In order to extend our formulation to M -channel filterbanks with analysis/synthesis
filter pairs {Hk,Gk}k=0,...,M−1 and sampling sets {Sk}k=0,...,M−1 (Sk ⊂ {1, . . . , N}), one
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can create the concatenated filters H,G ∈ RMN×N and the concatenated sampling set
S ⊂ {1, . . . ,MN} in a manner similar to that of the two-channel case:

H =


H0

H1
...

HM−1

 ∈ RMN×N , G =


G0

G1
...

GM−1

 ∈ RMN×N ,

y =


y0

y1
...

yM−1

 ∈ R
∑

k=1 |Sk|, S =


S0 0 . . . 0
0 S1 . . . 0
... ... . . . ...
0 0 . . . SM−1

 ∈ {0, 1}
(
∑

k=1 |Sk|)×MN . (4.33)

Note that each Sk can be then be recovered from S as Sk = {v − kN |v ∈ S, kN + 1 ≤
v ≤ kN+N}. Further, in this case, we require predesigned filters such that GTH = MI,
resulting in the objective

φ(S) =

∥∥∥∥∥∥
(

1− 1
M

)∑
i∈S

gihTi −
1
M

∑
j∈Sc

gjhTj

∥∥∥∥∥∥
2

F

, (4.34)

where gi = GT δi and hi = HT δi. The objective can be optimized under the constraint
|S| = N using the same technique as that of the two-channel case by computing the
change with respect to incremental node additions. In this case,

φ(S ∪ {v}) =

∥∥∥∥∥∥
(1− 1

M

)∑
i∈S

gihTi −
1
M

∑
j∈Sc

gjhTj

+ gvhTv

∥∥∥∥∥∥
2

F

= φ(S) + pv(S) + qv, (4.35)

where we defined

pv(S) = 2Tr
hvgTv

(1− 1
M

)∑
i∈S

gihTi −
1
M

∑
j∈Sc

gjhTj

 , (4.36)

qv = ‖gv‖2‖hv‖2. (4.37)
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To compute pv(S) for each S, we note that

pv(∅) = 2Tr
[
hvgTv (− 1

M
GTH)

]
= −2 〈gv,hv〉 , (4.38)

where we used GTH = MI. Further, for a node u, the update pv(S ∪ {u}) can be
computed as

pv(S ∪ {u}) = 2Tr
hvgTv

(1− 1
M

)∑
i∈S

gihTi −
1
M

∑
j∈Sc

gjhTj + guhTu


= pv(S) + 2 〈gv,gu〉 〈hv,hu〉 . (4.39)

Note that the computations required to initialize qv and update pv(S) are identical to
that of the two-channel case. Thus, one can use Algorithm 4.2 to obtain the optimal
sampling set with one change – the vectors p(S),q are now MN -dimensional, with vth

elements pv(S) and qv. In order to force the algorithm to produce a disjoint sampling
scheme, one can once again disregard images of selected indices (eg., choice of index
i ≤ N rules out indices i + kN, k = 1, . . . ,M − 1 in subsequent iterations). In terms of
complexity, computing p(∅) and q require 2MN one-time graph filtering operations and
each greedy iteration requires performing 4M filtering operations. Therefore, similar
to the two-channel case, computing an approximately optimal sampling scheme for M -
channel filterbanks requires O(N) graph filtering operations, with a space complexity of
O(N). Note that the theoretical guarantees discussed in Section 4.4.2 hold in this case
as well.

4.4.4 Experiments

In this section, we present simple experiments3 to demonstrate the effectiveness of our
critical sampling scheme for two-channel filterbanks. In our first experiment, we test its
performance on three simple bipartite graphs (Figure 4.3) with filters obtained using the
Graph-QMF design [45] (that approximates the Meyer kernel with a polynomial filter of
chosen length 4), and GraphBior(6,6) [46]. We observe that the output of Algorithm 4.2,
in most cases, matches exactly with that of the optimal sampling scheme for bipartite
graphs, that is to downsample the filtered signal in each channel on either partition.
However, due to the greedy nature of the algorithm, we occasionally observe that the

3Code available at https://github.com/aamiranis/cs_fb_arbitrary
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(a) (b) (c)

(d) (e) (f) (g)

Figure 4.3: Sampling scheme obtained using Algorithm 4.2 for bipartite graphs with
length 4 Graph-QMF filters: (a)-(c), and GraphBior(6,6) filters: (d)-(g). Red and blue
colors indicate nodes in low-pass and high-pass channels. The sets are heuristically
forced to be disjoint in (g).

obtained sampling scheme differs slightly from the optimal one, as seen in Figure 4.3f
for the biorthogonal filters case. Notice that the sampling scheme is not disjoint, we
heuristically force the algorithm to obtain disjoint sets in Figure 4.3g. The sampling
pattern obtained in this case is nearly perfect with one wrongly assigned pair.

For our second experiment, we design a critically-sampled two-channel filterbank on
the Minnesota road network graph using two configurations of analysis/synthesis filters:
(i) Graph-QMF [45] with 8-degree polynomial approximations of the Meyer kernel, and
(ii) GraphBior(6,6) [46]. The sampling scheme obtained for each of these configurations
is plotted in Figures 4.4a and 4.4b. We observe that the sampling pattern for each
channel colors nodes in a predominantly alternating fashion indicating a propensity
towards bipartition. The response of the filterbank after determining the sampling set
is plotted in Figures 4.4c and 4.4d for unit magnitude delta functions in the spectral
domain. We observe that it is close to 1 for all frequencies. Since the transfer function
is not diagonalizable in the GFT basis U, there is an associated aliasing effect with the
filterbank. We characterize this by plotting the maximum aliasing coefficient in terms of
magnitude for each frequency component in Figures 4.4e and 4.4f. We also compare the
recontruction performance (in terms of ratio of energies of error signal and original) of
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Figure 4.4: Performance of our critical sampling scheme (Algorithm 4.2) on the Min-
nesota road network graph. (a), (c) and (e) denote the sampling scheme obtained,
spectral response, and maximum aliasing component for Graph-QMF design. (b), (d)
and (f) illustrate corresponding results for GraphBior(6,6).

our method against one instance of a randomly selected sampling scheme, and a spectral
approximation of MaxCut for 1000 random signals. The average squared relative errors
along with the standard deviations are listed in Table 4.1. Observe that our method has
superior performance.

In the final experiment, we compare the sampling scheme obtained from our method
against random sampling schemes and the optimal sampling scheme that minimizes the
objective: Sopt = arg minS φ(S). Since determining the optimal scheme requires an
exhaustive search, we limit ourselves to small graphs. Specifically, we test the methods
on a ring graph with N = 10 nodes that also contains cross-links with a probability p.
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Table 4.1: Recontruction error results for random signals on Minnesota road graph.

Graph-QMF (poly 8) GraphBior(6,6)
Random 0.4842± 0.0113 0.4629± 0.0108
MaxCut 0.1125± 0.0069 0.0972± 0.0061
Proposed 0.0779± 0.0049 0.0664± 0.0045

Table 4.2: Comparison of our method against an optimal sampling scheme obtained
through exhaustive search. The experiment is performed for ring graphs of size N =
10 that have randomly added cross-links with probability p. Reconstruction error is
averaged over 100 signals, and also 100 sampling schemes for the random sampling case.

Graph Random Proposed Optimal
p = 0.1 0.410± 0.168 0.100 ± 0.098 0.100± 0.098

p = 0.2 0.375± 0.142 0.199 ± 0.093 0.190± 0.086

p = 0.3 0.375± 0.133 0.204 ± 0.091 0.205± 0.098

p = 0.4 0.364± 0.131 0.223 ± 0.102 0.183± 0.080
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Note that when p = 0, such a graph is bipartite, and increasing p results in a deviation
from the bipartite property. We also compare the mean error for reconstructing 100
random signals in each case. For the random sampling scheme, the mean is computed
over all combinations of 100 randomly generated sets and 100 random signals. The
results are illustrated in Table 4.2. We make two significant observations:

1. Despite making use of a greedy approximation for efficiency, our method’s perfor-
mance is comparable to the optimal sampling scheme.

2. As we deviate from the bipartite property, the structure of the graph limits the
performance of the filterbank significantly.

The results in this experiment, along with the analyses in Sections 4.3.1 and 4.3.2,
suggest that there is little wiggle-room for designing filterbanks on arbitrary graphs in
terms of reconstruction error. Specifically, one needs to exploit special structures in
the graph, or special sampling strategies (such as the one suggested in [67]) in order to
achieve perfect reconstruction. In the next section, we explore a certain class of graphs
where the special structure makes them suitable for the design of perfect reconstruction
M -channel filterbanks.

4.5 Filterbanks on block-cyclic graphs

We saw in Section 4.3.1 that the special structure in bipartite graphs greatly simplifies
the design of two-channel filterbanks with low-degree polynomials filters. In this section,
we explore the design of filterbanks in another such class of graphs calledM -block cyclic
graphs [69]. These graphs are directed withM components, S0,S1, . . . ,SM−1, connected
in a cyclic fashion, with no edges within each partition (for M = 2, it is a directed
bipartite graph). The adjacency of this graph has a block-cyclic structure given by

A =



0 A1 0 . . . 0 0
0 0 A2 . . . 0 0

0 0 0 . . . ... 0
... ... ... . . . . . . ...
0 0 0 . . . 0 AM−1

A0 0 0 . . . 0 0


, (4.40)

where each Aj has arbitrary but appropriate size to make A square. The adjacency
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Figure 4.5: A 3-block cyclic graph.

matrix of an M-block cyclic graph has a special eigen-structure suitable for designing
filterbanks, as described by the following theorem from [69]:

Theorem 4.1. For any M-block cyclic graph, if (λ,v) is an eigenpair of its adjacency
matrix A, then (ωMλ,ΩMv), (ω2

Mλ,Ω2
Mv), . . . (ωM−1

M λ,ΩM−1
M v) are also eigenpairs of

A, where

ωM = e−i
2π
M , ΩM = diag(β), β(v) =



1 v ∈ S0

ω1
M v ∈ S1

...

ω
(M−1)
M v ∈ SM−1

. (4.41)

The special form of the eigenstructure of M -block cylic graphs, i.e., the existence
of M modulated copies of the eigenvalues and eigenvectors, naturally facilitates the
design of M -channel filterbanks. Specifically, modulating an eigenvector with ΩM pro-
duces another eigenvector whose eigenvalue is also a modulated version of the original
eigenvalue. In other words, modulating a signal results in a structured remapping (or
folding) of its Fourier coefficients in the spectral domain – akin to the well-known spectral
folding phenomenon in traditional sampling theory. Using the fact that downsampling-
upsampling operations can be expressed as weighted sums of modulated versions of the
original signal, one can succinctly express the perfect reconstruction conditions for an
M -channel filterbank on M -block cyclic graphs in the spectral domain, as illustrated
next.
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4.5.1 Perfect reconstruction conditions for M-channel filter-
banks on M-block cyclic graphs

Let us assume for now that the adjacency A of the M -block cyclic graph is diago-
nalizable and has distinct eigenvalues4. Therefore, we have A = UΛU−1. The transfer
function of an M-channel filterbank is given by

T =
M−1∑
k=0

gk(A)STkSkhk(A). (4.42)

where Sk ∈ {0, 1}|Sk|×N is the downsampling operator for the block Sk, and STk is the
corresponding upsampling operator. {hk(A)}k=0,...,M−1 and {gk(A)}k=0,...,M−1 are the
set of analysis and synthesis filters respectively, these are polynomial functions of the
adjacency matrix5. The transfer function can be expressed in the spectral domain as
T̃ = U−1TU

T̃ =
M−1∑
k=0

gk(Λ)U−1STkSkUhk(Λ). (4.43)

Note that using properties of the discrete Fourier basis, the downsampling-upsampling
operation in each channel can be expressed as

STkSk = 1
M

M−1∑
j=0

ω−jkM Ωj
M . (4.44)

Substituting this in the transfer function, we get

T̃ =
M−1∑
k=0

gk(Λ)U−1

 1
M

M−1∑
j=0

ω−jkM Ωj
M

Uhk(Λ) (4.45)

= 1
M

M−1∑
k=0

gk(Λ)hk(Λ) +
M−1∑
j=1

M−1∑
k=0

ω−jkM gk(Λ)U−1Ωj
MUhk(Λ)

︸ ︷︷ ︸
aliasing components

. (4.46)

4With simple modifications, the analysis can be extended to the case of repeated eigenvalues. The
frequency interpretation for the non-diagonalizable case is more complex since one might need to work
with the Jordan form [64]. We leave this aspect for future work.

5It is easier to work with the adjacency in this case since M -block cyclic graphs are directed.
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Using Theorem 4.1 in the aliasing terms, we obtain the following set of perfect reconstruc-
tion constraints on polynomials {gk(λ), hk(λ)} for |λ| ≤ 1 (assuming A is appropriately
normalized):

M−1∑
k=0

gk(λ)hk(λ) = M, (4.47)

M−1∑
k=0

ω−jkM gk(λ)hk(ω−jM λ) = 0, for all 1 ≤ j ≤M − 1. (4.48)

Similar perfect reconstruction conditions in the spectral domain have been proposed
in [70], where filtered signals in each channel are downsampled on the same subset
of nodes (i.e., S0) leading to the absence of the summation weights “ω−jkM ” in (4.48).
Ssampling each channel on a different subset of nodes is more amenable to the polyphase
implementation carried out in [68] for the two-channel case.

The analyses in this subsection and in [70] do not provide insight about possible
solutions for the perfect reconstruction conditions. The problem can be particularly
challenging for theM -channel case since one needs to designM pairs of filters satisfying
the constraint equations (4.47), (4.48). Further, since the spectrum of M -block cyclic
graphs encompasses the entire complex unit disc and not just the complex unit circle
(as in classical DSP), the choice of sub-bands for these filterbanks also remains unclear.

In order to gain some insights regarding these questions, we consider the problem
under a simpler setting in the following subsection. Our solution works forM -block cylic
graphs whenM is a power of 2. Specifically, whenM = 2L, we propose to use an L-stage
hierarchical tree-structured design for the filterbank that naturally extends the two-
channel design for bipartite graphs. Our design also suggests a sub-band decomposition
of the frequency domain (enclosed in the unit-disc), that in turn provides a frequency
interpretation for the M > 2 case.

4.5.2 Tree-structured filterbank design

WhenM = 2L, we propose a hierarchical tree-structured filterbank design consisting
of L stages that can be succinctly explained in the following two points:

• In each stage, we group even-numbered and odd-numbered blocks together into two
partitions and treat the original graph as a directed bipartite graph over which a
2-channel filterbank can be implemented. Existing solutions meant for undirected
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Figure 4.6: A 4-block cyclic graph visualized as a directed bipartite graph by grouping
even and odd blocks.

bipartite graphs in [45, 46, 68] are extended to this directed setting via simple
modifications.

• We create a new subgraph for each channel that is closely related to the original
graph in the spectral domain. The 2-channel design from the previous stage is
replicated on these subgraphs, leading to the hierarchical design.

This approach simplifies the design of the filterbank significantly since the problem
is reduced to designing two prototype half-band filters (for the biorthogonal case) or one
prototype half-band filter (for the orthogonal case), which can be repeatedly used in
every stage. In contrast, for the general M -channel design, one would have to design M
and 2M filters for the orthogonal and biorthogonal cases respectively, with appropriate
responses for each sub-band.

Filterbank architecture

By definition, it is easy to see that block cyclic graphs with M = 2L blocks are
directed bipartite, where the two partitions are given by the set of even and odd blocks
respectively. This is easily seen, for example in M = 4, where one can observe the
bipartite structure by applying a block permutation on A in order to group even and
odd blocks (also illustrated graphically in Figure 4.6):


0 A1 0 0
0 0 A2 0
0 0 0 A3

A0 0 0 0

 −→


0 0 A1 0
0 0 0 A3

0 A2 0 0
A0 0 0 0

 .

To make our notation concise, let us denote the set of all even blocks by Se and the
set of all odd blocks by So Therefore, we can design a two-channel filterbank for these
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graphs, where the filtered signal in one channel is sampled on the even set Se and on
the odd set So in the other channel. After downsampling, we create new subgraphs for
each channel with adjacencies Ae and Ao based on the idea proposed in [68]:

Ae = SeA2STe ,

Ao = SoA2STo . (4.49)

We now highlight some useful properties of these subgraphs that are crucial to our
design.

Lemma 4.1. If A is the adjacency matrix of an M-block cylic graph, then Ae and Ao

are adjacency matrices of M/2-block cyclic graphs.

Proof. Using the structure of A in (4.40), we have

A2 =



0 0 A1A2 . . . 0
... ... ... . . . ...
0 0 0 . . . AM−2AM−1

AM−1A0 0 0 . . . 0
0 A0A1 0 . . . 0


. (4.50)

Using the defintions of Se and So that are meant to sample even and odd block indices
respectively, we get

Ae = SeA2STe =



0 A1A2 0 . . . 0
0 0 A3A4 . . . 0
... ... ... . . . ...
0 0 0 . . . AM−3AM−2

AM−1A0 0 0 . . . 0


, (4.51)

Ao = SoA2STo =



0 A2A3 0 . . . 0
0 0 A4A5 . . . 0
... ... ... . . . ...
0 0 0 . . . AM−2AM−1

A0A1 0 0 . . . 0


. (4.52)
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Figure 4.7: A tree-structured filterbank for block cyclic graphs consisting of two stages.

Clearly, Ae and Ao are adjacency matrices of M/2-block cyclic graphs. �

Lemma 4.1 allows us to reuse the same two-channel design on the new subgraphs
in the next stage. This reduces the design complexity since we are required to design
only one perfect reconstruction two-channel filterbank for a directed bipartite graph. By
hierarchically implementing this two-channel design on a 2L-block cylic graph, we end
up with a perfect reconstruction tree-structured filterbank of depth L that effectively
has 2L channels. Note that in every stage, we keep splitting the blocks into even and
odd in order to sample the two channels until the last stage where we are left with only
one block for each channel. An example of the tree-structured filterbank containing two
stages (i.e., up to depth L = 2) is shown in Figure 4.7. Since every stage involves splitting
the even blocks from the odd blocks, the labels of the blocks in the last stage with respect
to the original parent graph can be obtained by the bit-reversal permutation sequence
(similar to decimation-in-frequency for the radix-2 FFT algorithm). For example, after
two stages of decimation in a 4-block cylic graph, the sampling sets for each channel
comprise of one of the four blocks – these are See = S0, Seo = S2, Soe = S1, and Soo = S3.

The next Lemma gives a relation between the spectrum of the two new subgraphs
and the parent graph:

Lemma 4.2. If {λ,v} is an eigen-pair of A, then {λ2,Sev} is an eigenpair of Ae and
{λ2,Sov} is an eigenpair of Ao.

Proof. Since A is bipartite with partitions Se and So, the following relations are true by
definition:

SeASTe = SoASTo = 0, SeA2STo = SoA2STe = 0. (4.53)
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Let {λ,v} be an eigenpair of A, then we have A2v = λ2v. Further, let us define a

permutation matrix P =
Se
So

. Note that PTP = PPT = I, and therefore, we have

PA2(PTP)v = λ2Pv

⇒

Se
So

A2
[
STe STo

]Se
So

v = λ2

Se
So

v

⇒

SeA2STe

0︷ ︸︸ ︷
SeA2STo

SoA2STe︸ ︷︷ ︸
0

SoA2STo

Sev
Sov

 = λ2

Sev
Sov

 (using (4.53))

⇒

Ae 0
0 Ao

Sev
Sov

 = λ2

Sev
Sov


⇒

AeSev
AoSov

 = λ2

Sev
Sov

 .
Therefore, Ae(Sev) = λ2(Sev) and Ao(Sov) = λ2(Sov), and this completes our proof.

�

Lemma 4.2 has a significant implication: the eigenvectors of Ae and Ao are obtained
by downsampling the eigenvectors of A. Intuitively, this relationship is quite important
for multi-resolution analysis, since it allows us to “zoom in” on a particular portion of
the GFT matrix of the parent graph in order to attain finer resolution.

Although the definition of these subgraphs seems arbitrary at first sight, there are
many reasons for why we would like to work with this specific choice. Lemmas 4.1
and 4.2 allow us to conclude that these subgraphs not only preserve the block cyclic
structure in the vertex domain, but also maintain a close association with the parent
graph in the spectral domain. Yet another justification for using these definitions is
that they arise naturally while working with polyphase analysis and structures of two-
channel filterbanks over bipartite graphs [68]. However, the most important reason in
our opinion is that these definitions allow us to apply the noble identities stated in [69]
in order to provide a spectral interpretation for the filterbank as explained next.
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Figure 4.8: Two-stage tree-structured filterbank simplified using the noble identities for
bipartite graphs.

Filterbank spectral interpretation

We now analyze the spectral behavior of the proposed tree-structured design. The key
idea here is to use the noble identities [69] for the filters in the second stage. Specifically,
for any polynomial filter p(A) on a bipartite graph with Se and Se denoting its odd and
even partitions, one has

p(Ae)Se = p(SeA2STe )Se = Sep(A2), (4.54)
p(Ao)So = p(SoA2STo )So = Sop(A2), (4.55)
STe p(Ae) = STe p(SeA2STe ) = p(A2)STe , (4.56)
STo p(Ao) = STo p(SoA2STo ) = p(A2)STo . (4.57)

Equations (4.54) and (4.55) are the first noble identities, whereas (4.56) and (4.57) are
the second noble identities for bipartite graphs. Note how these identities serve as a
justification for the choice of subgraphs in each channel. We reduce the depth of the
filterbank using these identities on the filters of the second stage to obtain a single stage
filterbank with filters as indicated in Figure 4.8. This simplification approach can easily
be extended to a tree-structured design of depth L by applying the noble identities in
a cascaded fashion starting from the last stage and moving backwards until only stage
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remains. The resultant analysis and synthesis filters of any particular channel can then
be written as

hk(A) = hi1(A)hi2(A2)hi3(A4) . . . hiL(A2L−1) =
L∏
l=1

hil(A2l−1), il ∈ {0, 1}, (4.58)

gk(A) = gi1(A)gi2(A2)gi3(A4) . . . giL(A2L−1) =
L∏
l=1

gil(A2l−1), il ∈ {0, 1}. (4.59)

It is interesting to observe the behavior of a tree-structured filterbank constructed
with ideal filters. For a two-channel filterbank on a directed bipartite graph, the ideal
lowpass filter h0(A) has a half-disc response (in the spectral domain of A) with a pass-
band on the positive real-axis. Similarly, the ideal highpass filter h1(A) has a passband
on the negative real-axis. These ideal kernels are plotted in Figure 4.9a. The responses
of h0(A2), h1(A2) are given in Figure 4.9b and the spectral responses of the four channels
of a two-stage tree-structured filterbank are given in Figure 4.9c.

Polynomial filter design

The perfect reconstruction conditions for a two-channel filterbank on bipartite graphs
can be obtained by plugging M = 2 in (4.47) and (4.48). Specifically, we need to design
filters h0(λ), h1(λ), g0(λ) and g1(λ) that satisfy the following conditions for |λ| ≤ 1 (λ
is complex):

h0(λ)g0(λ) + h1(λ)g1(λ) = 2, (4.60)
h0(−λ)g0(λ)− h1(−λ)g1(λ) = 0. (4.61)

When the graph is undirected, λ is restricted to the real axis. Orthogonal solutions
for these equations cannot be obtained using polynomial filters, thus an approximate
solution is proposed in [45]. However, perfect reconstruction using polynomial filters is
possible for the biorthogonal design, and a solution based on the CDF maximally-flat
filter design approach is presented in [46].

Since M -block cyclic graphs are directed, our problem requires designing polynomial
filter responses in the complex unit disc. In the following, we focus on the biorthogonal
design since it allows perfect reconstruction. Similar to the approach in [46], we choose
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(a) Ideal lowpass and highpass kernel
responses h0(A) and h1(A).

(b) Second stage filter responses h0(A2)
and h1(A2).

(c) Responses of the four channels of a two-stage tree-structured filterbank. The right-
most and left-most pie slices correspond to the lowest and highest frequency sub-bands
respectively.

Figure 4.9: Spectral characterization of a two-stage tree-structured filterbank with ideal
filters. Gray-shaded areas indicate passbands.

h1(λ) = g0(−λ) and g1(λ) = h0(−λ) so that (4.61) is automatically satisfied leaving us
with the design criterion:

h0(λ)g0(λ) + h0(−λ)g0(−λ) = 2, ∀{λ : |λ| ≤ 1}. (4.62)

We then define p(λ) = h0(λ)g0(λ), so that (4.62) can be rewritten as

p(λ) + p(−λ) = 2, ∀{λ : |λ| ≤ 1}. (4.63)
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Since p(λ) is the product of two lowpass kernels, it is also a lowpass kernel. Therefore,
our objective is to design a polynomial half-band kernel p(λ) that satisfies the comple-
mentarity condition (4.63), followed by its spectral factorization to obtain h0(λ) and
g0(λ). It is immediately clear from (4.63) that p(λ) must have the following the form:

p(λ) = 1 +
D∑
k=0

ckλ
2k+1. (4.64)

We now describe an approach for obtaining p(λ) by generalizing the maximally-flat
design presented in [46] for undirected bipartite graphs. The key idea is to force p(λ)
to have K1 roots at λ = −1. However, since we are working in the complex unit disc,
this does not guarantee a flat response as we move on the imaginary axis away from
the real axis (i.e. the top and bottom of the complex unit disc). In order to have a
better transition band, we also place K2 roots at −1+ i and −1− i (note that they must
be equal in number to have a polynomial with real coefficients). Therefore, the design
approach involves finding a polynomial r(λ) = ∑R

m=0 rmλ
m such that

(λ+ 1)K1(λ+ 1 + i)K2(λ+ 1− i)K2r(λ) = p(λ) (4.65)

⇒ (λ+ 1)K1(λ2 + 2λ+ 2)K2

(
R∑

m=0
rmλ

m

)
= 1 +

D∑
k=0

ckλ
2k+1. (4.66)

Comparing highest powers on both sides of (4.66), we have R+K1 +2K2 = 2D+1. The
left hand side of (4.66) has R+1 unknowns and the right hand side has D+1 constraints.
Therefore, to have a unique polynomial p(λ) that satisfies (4.63), we should have the
same number of constraints as unknowns, which implies R = D = (K1 + 2K2 − 1). We
can thus rewrite (4.66) as

(λ+ 1)K1(λ2 + 2λ+ 2)K2

K1+2K2−1∑
m=0

rmλ
m

 = 1 +
K1+2K2−1∑

k=0
ckλ

2k+1. (4.67)

The K1 + 2K2 unknowns {rm} can be found by solving a linear system of K1 + 2K2

equations. Once r(λ) is found, we obtain p(λ) using (4.65). Note that we can also place
roots at other locations to shape the response accordingly and modify (4.66) to obtain
the appropriate r(λ) and the corresponding p(λ).
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Figure 4.10: Spectral responses (magnitude and phase) of polynomial filters designed
using the maximally-flat approach with K1 = K2 = 2: (a) lowpass kernel h0(λ) (length
= 6), (b) highpass kernel h1(λ) (length = 7). (c) Channel responses of a two-stage
tree-structured filterbank built using the polynomial kernels h0(λ) and h1(λ).
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Once we have p(λ), we factor it to obtain the kernels h0(λ) and g0(λ) using the
approach presented in [46]. This approach produces maximally-balanced kernels by
splitting roots of p(λ) between h0(λ) and g0(λ) as evenly as possible while ensuring that
the filterbank is as close to orthogonal as possible. Examples of a lowpass filter kernel
h0(λ) and h1(λ)(= g0(−λ)) designed using this approach are plotted in Figures 4.10a
and 4.10b. The spectral responses of the four channels of a two-stage tree-structured
polynomial filterbank built using these kernels is illustrated in Figure 4.10c.

4.5.3 Preliminary experiment

In this section, we perform a simple filtering experiment6 on a synthetically generated
4-block cyclic graph to evaluate our tree-structured filterbank design. The graph consists
of 100 nodes and is generated in the following way:

1. We first create 25 disjoint directed cycles, each consisting of 4 nodes and oriented
in the same direction with edges of weight 1. Note that these cycles collectively
form a disconnected 4-block cylic graph of 100 nodes.

2. Next, we add directed edges of weight 1 randomly with probability p = 0.2 while
preserving the block-cyclic property (i.e., by only connecting adjacent blocks with
edges of consistent directionality).

3. Finally, we normalize the edge weights to ensure that the rows of the adjacency A
sum to 1 (random-walk normalization). Such a normalization makes A a stochastic
matrix with a cyclic structure, that is commonly used to model periodic Finite
State Machines (FSMs) and Markov Decision Processes (MDPs) [37, 58].

Before performing the experiment, we ensure that the generated graph instance is
connected. In order to evaluate its performance, we consider a two-stage tree-structured
filterbank and compute the filtered channel outputs for a given input signal that is zero
on all the blocks except one where it has i.i.d. values chosen uniformly from [0,1]. The
graph chosen for our experiment is illustrated in Figure 4.11a, along with its eigenvalues
in Figure 4.11b, and the input signal in Figure 4.11c.

We first perform the filtering experiment using ideal filters (illustrated in Figure 4.9c),
followed by resorting to the polynomial kernels h0(λ) and h1(λ) obtained from the
maximally-flat design for K1 = K2 = 2 (these filters have length 6 and 7 respec-
tively, the spectral response of each channel in this case is illustrated in Figure 4.10c).

6Code available at https://github.com/aamiranis/tree_structured_fb
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Figure 4.11: (a) A 4-block cyclic graph considered in the filtering experiment (the edges
are oriented in counter-clockwise fashion). (b) The spectrum of its adjacency in the
complex unit disc. (c) An input signal on the graph used for filtering experiments with
the two-stage tree-structured filterbank.

The output of each channel for both cases is illustrated in Figure 4.12. We observe that
the filtered output for the first channel (filtered by h0(A)h0(A2)) in both cases has rela-
tively little variation across the blocks, thus confirming our intuition that it corresponds
to the lowest frequency sub-band. Similarly, the output of the third channel (filtered
by h0(A)h0(A2)) has the highest variation with significant sign changes across blocks,
thus making it the highest frequency sub-band. The other two channels have moderate
variation and therefore correspond to the intermediate frequency sub-bands.

4.6 Summary and future work

In this chapter, we considered the sampling problem in the context of designing
graph wavelet filterbanks. This is fundamentally different from the earlier problem of
sampling bandlimited graph signals since one is required to choose a sampling scheme
over multiple channels of the filterbank while satisfying useful properties such as perfect
reconstruction, critical sampling and polynomial filter responses.

We began by spelling out design criteria for two-channel polynomial filterbanks that
are critically sampled, and satisfy perfect reconstruction. We showed that it is not
possible in general to attain perfect reconstruction with low-degree polynomial graph
filters using any critical sampling scheme unless the graphs have a special eigen-structure.
Specifically, downsampling-upsampling or modulating signals over such graphs should
lead to a spectral folding phenomenon. Bipartite graphs, for example, are particularly
suited for designing perfect reconstruction two-channel filterbanks.
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Figure 4.12: Output obtained in each channel of a two-stage tree-structured filterbank
after filtering the input signal from Figure 4.11c using ideal filters (Figure 4.9c) and
polynomial filters (Figure 4.10c).

We then shifted our focus to the design of critically-sampled near-perfect reconstruc-
tion wavelet filterbanks on arbitrary graphs. This problem has two intertwined aspects
– designing polynomial filters and designing a critical sampling scheme. Our formula-
tion decouples the two design problems and focuses only on choosing the best possible
sampling scheme. Specifically, given a predesigned set of analysis/synthesis filters, our
algorithm efficiently chooses the best sampling set for each channel in order to minimize
a bound on the overall reconstruction error associated with the filterbank. Experiments
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show that the sampling scheme produced by our method outperforms existing heuristics,
however, the reconstruction error is indeed significantly limited by the graph structure.
Searching for graphs and sampling schemes that are amenable to perfect reconstruction
filterbanks would be an interesting direction of future research. An immediate exam-
ple of such graphs are Kronecker graphs where the Kronecker product structure of the
adjacency matrix leads to a regular eigen-structure akin to bipartite graphs. Further,
the spectral domain sampling scheme presented in [67] allows for the design of perfect
reconstruction filterbanks on any arbitrary graph, at the cost of increased complexity of
sampling.

Finally, we turned our attention to the design of M -channel perfect reconstruction
filterbanks onM -block cylic graphs. In this case, we simplified the problem by assuming
that M is a power of 2 and proposed a tree-structured design where the original graph
is decomposed hierarchically into smaller graphs over which one can implement a two-
channel filterbank. This formulation significantly reduces the design complexity, since
the problem boils down to designing and reusing only one two-channel filterbank for
a directed bipartite graph. We proposed a maximally-flat polynomial design in this
case that extends the approach presented in [46] for undirected bipartite graphs. Our
design produces sub-bands that have a simple spectral interpretation, which we validate
in simple filtering experiments. For future work, we would like to extend the design
to cases when M is not a power of 2. One possibility is to design p-channel perfect
reconstruction filterbanks, where p is a small prime number, and use it to hierarchically
construct a larger filterbank whenM can be factored as a product of small primes. This
approach is similar to the mixed-radix implementations of FFT in traditional DSP.
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Chapter 5

Sampling Theory Perspective of
Semi-supervised Learning

In this chapter, we explore the semi-supervised learning problem from a graph sam-
pling theory perspective. Graph-based methods have been shown to be quite effective
for this problem because they provide an easy means to exploit the underlying geometry
of the dataset. These methods involve the construction of a distance-based similarity
graph from the feature vectors, whose vertices represent the data points and edge weights
capture the similarity between them. The key assumption here is that class labels vary
smoothly over the graph, i.e., there is little variation between labels corresponding to
vertices connected by high-weight edges.

There are numerous ways of quantitatively imposing smoothness constraints over
label functions defined on vertices of a similarity graph. Most graph-based semi-
supervised classification algorithms incorporate one of these criteria as a penalty against
the fitting error in a regularization problem, or as a constraint term while minimizing
the fitting error in an optimization problem. Examples of commonly used measures of
smoothness include the graph Laplacian regularizer fTLf [83, 78], the iterated graph
Laplacian regularizers fTLmf [81], etc., and many algorithms involve minimizing these
functions while ensuring that the label function on the vertices f satisfies the known set
of labels. On the other hand, a spectral theory based classification algorithm restricts
f to be spanned by the first few eigenvectors of the graph Laplacian [10, 11], that are
known to form a representation basis for smooth functions on the graph. Similarly, a
more recent approach, derived from sampling theory considers class indicator signals
as smooth signals over the similarity graph. This assumption is incorporated via band-
width in the graph Fourier domain. The classification algorithm then involves estimating
a label function that minimizes prediction error on the known set under a bandwidth
constraint and can be carried out without explicit eigendecomposition of the Laplacian,
as illustrated in our recent work [50, 29]. In each of the examples, the criterion enforces

This chapter is based on our work in [5, 6].
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smoothness of the labels over the graph – a lower value of the regularizer fTLf , a smaller
number of leading eigenvectors and a smaller bandwidth of f imply that the labels vary
less across similar vertices.

The focus of this chapter is to provide a formal justification for using bandwidth
as a regularizer, thereby providing a sampling theory perspective of graph-based learn-
ing methods. An interpretation of this smoothness measure would help complete our
theoretical understanding of graph-based semi-supervised classification approaches and
strengthen their link with the semi-supervised smoothness assumption and its variants.
Under a generic statistical model of the data and a graph construction scheme, we pro-
vide a geometric interpretation of the bandwidth (estimated via spectral proxies) of
class indicator signals in the asymptotic limit of infinite data points. We show that
this quantity is closely connected to the supremum of the data distribution at the class
boundaries. This result helps us justify sampling theory based learning:

1. A lower bandwidth of class indicator signals indicates that the class boundary
passes through regions of low data density.

2. Given enough labeled data, bandlimited reconstruction of the class indicator learns
a decision boundary that respects the labels and over which the maximum density
of the data points is as low as possible, similar to other graph-based methods.

3. And finally, we also show that sampling theory based learning attains the theo-
retical label complexity, i.e., the minimum number of labels required for perfectly
predicting the unknown labels from the known ones.

In summary, our results reinforce the smoothness assumption on class indicator signals
in graph-based learning methods. From previous analyses of spectral clustering we
observe that asymptotically, there is a strong link between the value of a cut and the
bandwidth of its associated indicator signal. Thus, the geometric properties desired of
“minimal cuts” in clustering translate to those of “minimal bandwidth” indicator signals
for classification in the presence of labels.

The rest of this chapter is organized as follows: In Section 5.1, we introduce the
statistical models of the data, the graph construction scheme and relevant concepts from
sampling theory, particularly bandlimited interpolation. Section 5.2 reviews existing
work in the literature and their relation to our work. In Section 5.3 we state and discuss
our main results (without proofs), followed by their numerical validation in 5.4. We
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provide a brief discussion along with directions in Section 5.5. Finally, the proofs of our
results are laid out in Section 5.6.

5.1 Preliminaries

5.1.1 Data models

The separable model

In this model, we assume that the dataset consists of a pool of n random, d-
dimensional feature vectors X = {X1,X2, . . . ,Xn} drawn independently from some
probability density function p(x) supported on Rd (this is assumed for simplicity, the
analysis can be extended to arbitrary manifolds M ⊂ Rd, but would more technically
involved). To simplify our analysis, we also assume that p(x) is bounded from above,
Lipschitz continuous and twice differentiable. We assume that a smooth hypersurface
∂S, with radius of curvature lower bounded by a constant τ , splits Rd into two disjoint
classes S and Sc, with indicator functions 1S(x) : Rd → {0, 1} and 1Sc(x) : Rd → {0, 1}.
This is illustrated in Figure 5.1a. Thus, the n-dimensional class indicator signal for class
S is given by 1S ∈ {0, 1}n such that 1S(i) = 1S(Xi), i.e., the ith entry of 1S is 1 if Xi ∈ S
and 0 otherwise.

The nonseparable model

In this model, we assume that each class has its own conditional distribution sup-
ported on Rd (that may or may not overlap with other distributions of other classes).
The data set consists of a pool of n random and independent d-dimensional feature

(a) (b)

Figure 5.1: Statistical models of data considered in this work: (a) the separable model,
(b) the nonseparable model.
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vectors X = {X1,X2, . . . ,Xn} drawn independently from any of the distributions pi(x)
with probabilities αi, such that ∑i αi = 1. For our analysis, we consider a class denoted
by an index A with selection probability αA, class conditional distribution pA(x) and an
n-dimensional indicator vector 1A whose ith component takes value 1 if Xi is drawn from
class A. This model is illustrated in Figure 5.1b. Further, we denote by αAc = 1 − αA
the probability that a point does not belong to A and by pAc(x) = ∑

i 6=A αipi(x)/αAc
the density of all such points. The marginal distribution of data points is then given by
the mixture density

p(x) = αApA(x) + αAcpAc(x). (5.1)

Once again, to simplify our analysis, we assume that all distributions are Lipschitz
continuous, bounded from above and twice differentiable in Rd. Next, we introduce the
notion of a “boundary” for classes in the nonseparable model as follows: for class A, we
define its overlap region ∂A as

∂A = {x ∈ Rd | pA(x)pAc(x) > 0}. (5.2)

Intuitively, ∂A can be considered as the region of ambiguity, where both points belonging
and not belonging to A co-exist. In other words, ∂A can be thought of as a “boundary”
that separates the region where points can only belong to A from the region where points
can never belong to A. Since class indicator signals on graphs will change values only
within the overlap region, one would expect that the indicators will be smoother if there
are fewer data points within this region. We shall show later that this is indeed the case,
both theoretically and experimentally. Note that the definition of the boundary is not
very meaningful for class conditional distributions with decaying tails, such as the Gaus-
sian, since the boundary encompasses the entire feature space. However, in such cases,
one can approximate the boundary with appropriate thresholds in the definition and
this approximation can also be formalized for distributions with exponentially decaying
tails.
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5.1.2 Graph model

Using the n feature vectors, we construct an undirected distance-based similarity
graph where nodes represent the data points and edge weights are proportional to their
similarity, given by the Gaussian kernel:

wij = Kσ2(Xi,Xj) = 1
(2πσ2)d/2 e

−‖Xi−Xj‖2/2σ2
, (5.3)

where σ is the variance (bandwidth) of the Gaussian kernel. Further, we assume wii = 0,
i.e., the graph does not have self-loops. The adjacency matrix of the graph W is an n×n
symmetric matrix with elements wij, while the degree matrix is a diagonal matrix with
elements Dii = ∑

j wij. We define the graph Laplacian as L = 1
n
(D−W). Normalization

by n ensures that the norm of L is stochastically bounded as n grows. Since the graph
is undirected, L is a symmetric matrix with non-negative eigenvalues 0 ≤ λ1 ≤ · · · ≤ λn

and an orthogonal set of corresponding eigenvectors {u1, . . . ,un}. It is known that for
a larger eigenvalue λ, the corresponding eigenvector u exhibits greater variation when
plotted over the nodes of the graph [66].

5.1.3 Estimating bandwidth

Recall that the bandwidth ω(f) of any signal f on the graph as the largest eigenvalue
for which the projection of the signal on the corresponding eigenvector is non-zero, i.e.,

ω(f) = max
i
{λi | uTi f > 0}. (5.4)

Ideally, computing the bandwidth ω(f) of a graph signal f requires computing the eigen-
vectors {ui} and the corresponding projections f̃i = uTi f . However, analyzing the con-
vergence of these coefficients is technically challenging. Therefore, we resort to Graph
Spectral Proxies introduced in Section 3.3 in order to estimate the bandwidth. Since, in
this chapter, we deal with a symmetric L, we slightly modify the definition for simplicity:

ωm(f) =
(

fTLmf
fT f

)1/m

, (5.5)
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where ωm(f) is themth-order spectral proxy. Recall that the bandwidth estimates satisfy
the property: for allm1,m2 such that 0 < m1 < m2, ωm1(f) ≤ ωm2(f) ≤ ω(f). Therefore,
we have:

∀f , ω(f) = lim
m→∞

ωm(f), (5.6)

Analyzing the convergence of ωm(1S) and ωm(1A) as n→∞, σ → 0 and m→∞ consti-
tutes the main subject for the rest of this chapter. Specifically, we relate these quantities
to the underlying data distribution p(x) and class boundaries (the hypersurface ∂S in
the separable case and the overlap region ∂A in the nonseparable case).

Note that the limit in (5.6) holds in a point-wise sense. This means that analyzing
the convergence of the bandwidth estimates ωm(1S) and ωm(1A) as n → ∞ and then
applying the limitm→∞ gives only an idea about the convergence of actual bandwidths
ω(1S) and ω(1A) as n → ∞. Specifically, it does not imply convergence of ω(1S) and
ω(1A) to the same values as ωm(1S) and ωm(1A), since the limits are not interchangeable
unless (5.6) holds in a uniform sense. However, based on our experiments and results on
label complexity, we believe that our intuition is accurate, i.e., the convergence results
hold for the actual bandwidths, not only their estimates. We leave the analysis of this
intricacy for future work.

5.1.4 Bandlimited interpolation for classification

Bandwidth plays an important role in the spectral approach for semi-supervised
learning. In this approach, one finds a label assignment by minimizing the error over
the known set, while ensuring that the resulting class indicator vector is bandlimited
over the similarity graph, i.e,

Minimize ‖f(L)− y(L)‖2 subject to ω(f) < ωL, (5.7)

where L denotes the set of known labels, y denotes the true class labels and f(L) and
y(L) denote the values of f and y on the set L respectively. ωL restricts the hypothesis
space by constraining it to a set of bandlimited signals which is equivalent to enforcing
smoothness of the labels over the graph. Therefore, it is important to understand its
connection to the geometry of the dataset. A good choice for ωL is the cutoff frequency
associated with the labeled set that can be estimated using results in Section 3.4.

Note that the bandwidth-based approach for semi-supervised learning differs from the
Fourier eigenvector approach suggested in [10, 11] since it can be implemented without

89



explicitly computing the eigenvectors of L. The method is based on iteratively and
alternately projecting onto convex sets and can be implemented in an efficient manner
via graph filtering operations [50].

Note that if the original indicators 1S (or 1A) are bandlimited with respect to the
labeled set, i.e., ω(1S) < ωL (or ω(1A) < ωL), then the estimate fLS in (5.7) is guaranteed
to be equal to 1S (or 1A) as a consequence of the sampling theorem. Moreover, in this
case, 1S and 1A can also be perfectly estimated by the solution of the following “dual"
problem:

fmin = arg min
f

ω(f) s.t. f(L) = 1S(L) (or f(L) = 1A(L)). (5.8)

These facts leads to the following insight regarding bandlimited interpolation for classi-
fication:

Observation 5.1. If ω(1S) < ωL and ω(1A) < ωL, then
1. 1S and 1A can be perfectly recovered using either (5.7) and (5.8).

2. 1S and 1A are guaranteed to have minimum bandwidth among all indicator vectors
satisfying the label constraints.

The observations above have significant implications: Given enough and appropriately
chosen labeled data, bandlimited interpolation effectively recovers an indicator vector
with minimum bandwidth, that respects the label constraints. Note that by labeling
enough data appropriately, we mean to ensure that the cut-off frequency ωL of the
labeled set is greater than the bandwidths ω(1S) and ω(1A) of the indicator functions
of interest. If this condition is not satisfied, both observations break down, i.e., the
solutions of (5.7) and (5.8) would be different and serve only as approximations for 1S
and 1A. Moreover, the minimum bandwidth signal fmin satisfying the label constraints,
would differ from 1S and 1A and may not even be an indicator vector. To help ensure
that the condition is satisfied, one can use the efficient algorithm in Section 3.5. We
note that in practice, (5.7) can be solved via efficient iterative techniques [50].

5.2 Related work and connections

Existing graph-based semi-supervised learning and spectral clustering methods have
been justified by analyzing the convergence of graph-based smoothness measures (such
as the graph cut and the Laplacian regularizer) for various graph construction schemes in
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two different settings – classification and regression. The classification setting assumes
that labels indicate class memberships and are discrete, typically with 1/0 values. Note
that both the separable and nonseparable data models considered in our work are in the
classification setting. On the other hand, in the regression setting, one allows the class
label signal f to be smooth and continuous with soft values, i.e, f ∈ Rn and later applies
some thresholding mechanism to infer class memberships. For example, in the two class
problem, one can assign +1 and −1 to the two classes and threshold f at 0. Convergence
analysis of smoothness measures in this setting requires different scaling conditions than
the classification setting, and leads to fundamentally different limiting quantities that
require differentiability of the label functions. A summary of convergence results in the
literature for both settings is presented in Table 5.1. Although these results do not focus
on analyzing the bandwidth of class indicator signals, the proof techniques used in this
paper are inspired by some of these works. We review them in this section and discuss
their connections to our work.

5.2.1 Classification setting

Prior work under this setting assumes the separable data model where the feature
space is partitioned by smooth decision boundaries into different classes. When m = 1,
the bandwidth estimate ωm(1S) for the separable model in our work reduces (within
a scaling factor) to the empirical graph cut for the partitions S and Sc of the feature
space, i.e.,

Cut(S, Sc) =
∑

Xi∈S,Xj∈Sc
wij = 1TSL1S . (5.9)

Convergence of this quantity has been studied before in the context of spectral clustering,
where one tries to minimize it across the two partitions of the nodes. It has been shown
in [42] that the cut formed by a hyperplane ∂S in Rd converges with some scaling under
the rate conditions σ → 0 and nσd+1 →∞ as

1
nσ

1TSL1S
p.−→ 1√

2π

∫
∂S
p2(s)ds, (5.10)

where ds ranges over all (d− 1)-dimensional volume elements tangent to the hyperplane
∂S, and p. denotes convergence in probability. The analysis is also extended to other
graph construction schemes such as the k-nearest neighbor graph and the r-neighborhood
graph, both weighted and unweighted. The condition σ → 0 in (5.10) is required to have

92



a clear and well-defined limit on the right hand side. We borrow this convergence regime
in our work, since it allows a succinct interpretation of the bandwidth of class indicator
signals. Intuitively, it enforces sparsity in the similarity matrix W by shrinking the
neighborhood volume as the number of data points increases. As a result, one can
ensure that the graph remains sparse even as the number of points goes to infinity.
The analysis is also extended to other graph construction schemes such as the k-nearest
neighbor graph and the r-neighborhood graph, both weighted and unweighted. The
condition σ → 0 in (5.10) is required to have a clear and well-defined limit on the right
hand side. We borrow this convergence regime in our work, since it allows a succinct
interpretation of the bandwidth of class indicator signals. Intuitively, it enforces sparsity
in the similarity matrix W by shrinking the neighborhood volume as the number of data
points increases. As a result, one can ensure that the graph remains sparse even as the
number of points goes to infinity. A similar result for a similarity graph constructed with
normalized weights w′ij = wij/

√
didj was shown earlier for an arbitrary hypersurface ∂S

in [51], where di denotes the degree of node i. In this case, under the condition n→∞,
and for a vanishing sequence {σn} that satisfies σn > 1/

(
n

1
d+1
)
, one has

1
nσn

1TSL′1S
p.−→ 1√

2π

∫
∂S
p(s)ds, (5.11)

where L′ denotes the Laplacian with normalized weights. Normalization leads to a
different weighting factor on the right hand side than (5.10). The results in [51, 42] aim
to provide an interpretation for spectral clustering – up to some scaling, the empirical
cut value converges to a weighted volume of the boundary. Thus, spectral clustering is a
means of performing low density separation on a finite sample drawn from a distribution
in feature space.

Although these works provide inspiration for the proof techniques used for analyzing
the separable model in this paper, they cannot be directly used in the convergence
analysis of ωm(1S) for m > 1, which is the main focus of our paper. Additionally, our
work is the first to propose and analyze the nonseparable model in the classification
setting, i.e., convergence results for ωm(1A).
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5.2.2 Regression setting

To predict the labels of unknown samples in the regression setting, one generally min-
imizes the graph Laplacian regularizer fTLf subject to the known label constraints [83]:

min
f

fTLf such that f(L) = y(L). (5.12)

One particular convergence result in this setting assumes that n data points are drawn
i.i.d. from p(x) and are labeled by sampling a smooth function f(x) on Rd. Here,
the graph Laplacian regularizer fTLf can be shown to converge in the asymptotic limit
under the conditions σ → 0 and nσd →∞ as in [15, 34]:

1
nσ2 fTLf p.−−→ C

∫
Rd
‖∇f(x)‖2p2(x)dx, (5.13)

where for each n, f is the n-dimensional label vector representing the values of f(x) at
the n sample points, ∇ is the gradient operator and C is a constant factor independent of
n and σ. The right hand side of the result above is a weighted Dirichlet energy functional
that penalizes variation in the label function weighted by the data distribution. Similar
to the justification of spectral clustering, this result justifies the formulation in (5.12) for
semi-supervised classification: given label constraints, the predicted label function must
vary little in regions of high density. The work of [34, 33] also generalizes the result for
arbitrary kernel functions used in defining graph weights, and data distributions defined
over arbitrary manifolds in Rd. Similar convergence results have also been derived for the
higher-order Laplacian regularizer fTLmf obtained from uniformly distributed data [81].
In this case, it was shown that for data points obtained from a uniform distribution
on a d-dimensional submanifoldM ⊂ RN such that Vol(M) = 1 and 2m-differentiable
functions f(x), one has as n→∞, σ → 0,

1
nσmn

fTLmf p.−−→ C
∫
M
f(x)∆mf(x)dx, (5.14)

where ∆ is the Laplace operator and σn = n−1/(2d+4+α) is a vanishing sequence with
α > 0. Extensions for non-uniform probability distributions p(x) over the manifold can
be obtained using the weighted Laplace-Beltrami operator [12, 82]. More recently, an `p-
based Laplacian regularization has been proposed for imposing smoothness constraints
in semi-supervised learning problems [2]. This is similar to higher-order regularization
but is defined as Jp(f) = ∑

i,j∈E w
p
ij|fi − fj|p, where wij = K(‖Xi − Xj‖/σ) and K(.)
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is a smoothly decaying Kernel function. It has been shown for a bounded density p(x)
defined on [0, 1]d that for every p ≥ 2, as n→∞, σ → 0,

1
n2σp+dJp(f) p.−−→ C

∫
[0,1]d
‖∇f(x)‖pp2(x)dx. (5.15)

Although our work also uses higher powers of L in the expressions for ωm(1S) and
ωm(1A), we cannot use the convergence results in (5.14) and (5.15) since they are only
applicable for smooth functions (i.e., differentiable upto certain order) on Rd. Specifi-
cally, these results cannot be applied for the bandwidth of discrete 0/1 class indicator
functions.

To summarize, the results in the literature mostly pertain to convergence analysis
of variants of the graph cut or the graph Laplacian regularizer for different models of
data and graph construction schemes, and do not provide insight into the convergence
of bandwidths of discrete 0/1 class indicator signals. In contrast, we analyze bandwidth
expressions involving these class indicator signals and higher powers of L, and for the
first time, extend it to a nonseparable data model. As opposed to other smoothness
measures considered earlier, analyzing the bandwidth allows us to interpret graph-based
semi-supervised learning using the sampling theorem [4] and provide a quantitative
insight into label complexity based on data geometry.

5.3 Main results and discussion

5.3.1 Interpretation of bandwidth and bandlimited reconstruc-
tion

We first show that under certain conditions, the bandwidth estimates of class indi-
cator signals, over the distance-based similarity graph described earlier, converge to
quantities that are functions of the underlying distribution and the class boundary for
both data models. This convergence is achieved under the following asymptotic regime:

1. Increasing size of dataset: n→∞.

2. Shrinking neighborhood volume: σ → 0.

3. Improving bandwidth estimates: m→∞.

Note that an increasing size of the dataset (Condition 1) is required for the stochastic
convergence of the bandwidth estimate. Condition 2 ensures that the limiting values
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are concise and have a simple interpretation in terms of the data geometry. Intuitively,
Condition 2 ensures that as the number of data points increases, one looks at a smaller
neighborhood around each data point, as a result, the degree of each node in the graph
does not blow up. Finally, Condition 3 leads to improving values of the bandwidth
estimate. The convergence results are precisely stated in the theorems below:

Theorem 5.1. If n → ∞, σ → 0 and m → ∞ while satisfying the following rate
conditions

1. (nσmd)/(mCm)→∞, where C = 2/(2π)d/2,

2. m/nσ → 0,

3. mσ2 → 0,

4. σ1/m → 1,

then for the separable model, one has

ωm(1S) p.−−→ sup
s∈∂S

p(s), (5.16)

where “p." denotes convergence in probability.

Theorem 5.2. If n → ∞, σ → 0 and m → ∞ while satisfying the following rate
conditions

1. (nσmd)/(mCm)→∞, where C = 2/(2π)d/2,

2. m/n→ 0,

3. mσ2 → 0,

then for the non-separable model, one has

ωm(1A) p.−−→ sup
x∈∂A

p(x). (5.17)

The dependence of the results on the rate conditions will be explained later in the
proofs section. An example of parameter choices that allow all the scaling laws to hold
simultaneously is illustrated in the following corollary:
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Corollary 5.1. Equations (5.16) and (5.17) hold if for each value of n, we choose m
and σ as follows:

m = [m0 (log n)y], (5.18)
σ = σ0 n

−x/md, (5.19)

for constants m0, σ0 > 0, 1/2 < y < 1 and 0 < x < 1. [ . ] indicates taking the nearest
integer value.

Theorems 5.1 and 5.2 give an explicit connection between bandwidth estimates of
class indicator signals and the underlying geometry of the dataset. This interpretation
forms the basis of justifying the choice of bandwidth as a smoothness constraint in graph-
based learning algorithms. Theorem 5.1 suggests that for the separable model, if the
boundary ∂S passes through regions of low probability density, then the bandwidth of
the corresponding class indicator vector ω(1S) is low. A similar conclusion is suggested
for the nonseparable model from Theorem 5.2, i.e., if the density of data points in the
overlap region ∂A is low, then the bandwidth ω(1A) is low. In other words, low density
of data in the boundary regions leads to smooth indicator functions.

From our results, we also get an intuition behind the smoothness constraint imposed
in the bandlimited reconstruction approach (5.7) for semi-supervised learning. Basically,
enforcing smoothness on classes in terms of indicator bandwidth ensures that the learn-
ing algorithm chooses a boundary passing through regions of low data density in the
separable case. Similarly, in the nonseparable case, it ensures that variations in labels
occur in regions of low density. Further, the bandwidth cutoff ωL effectively imposes a
constraint on the complexity of the hypothesis space – a larger value increases the size
of the hypothesis space and results in choosing more complex boundaries.

As a special case of our analysis, we also get a convergence result for the graph cut
in the nonseparable model analogous to the results of [42] for the separable model. Note
that the cut in this case equals the sum of weights of edges connecting points that belong
to class A to points that do not belong to class A, i.e.,

Cut(A,Ac) =
∑

Xi∈A,Xj∈Ac
wij = 1tAL1A. (5.20)

With this definition, we have the following result:
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(a) (b)

Figure 5.2: 1-D example illustrating the theoretical label complexity for (a) the separable
model, (b) the nonseparable model. Note that labeling all points where density is lower
than supremum density over the boundary resolves all ambiguity and results in perfect
prediction.

Theorem 5.3. If n→∞, σ → 0 and nσd+1 →∞, then

1
n
Cut(A,Ac) p.−−→

∫
αAαAcpA(x)pAc(x)dx (5.21)

The result above indicates that if the overlap between the conditional distributions
of a particular class and its compliment is low, then the value of the graph cut is lower.
This justifies the use of spectral clustering in the context of nonseparable models.

5.3.2 Label complexity of SSL

In the context of semi-supervised learning, we define the label complexity as the
minimum fraction of labeled examples required for perfectly predicting the labels of the
unlabeled data points. This quantity essentially is an indicator of how “good" the semi-
supervised problem is, i.e., how much help do we get from geometry while learning. A
low label complexity is indicative of a favorable situation, where one is able to learn from
only a few known labels by exploiting data geometry. In the following discussion, we
first estimate the theoretical label complexities of the data models we consider, and then
show that the expected label complexity of the sampling theoretic approach to learning
exactly matches these values in the asymptotic limit.
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Theoretical label complexities

A simple way to compute the label complexity, for the data models we consider, is
to find the fraction of points belonging to a region that fully encompasses the boundary.
To formalize this, let us define the following two regions in Rd:

XS = {x : p(x) ≤ sup
s∈∂S

p(s)}, (5.22)

XA = {x : p(x) ≤ sup
x∈∂A

p(x)}. (5.23)

Note that by definition, ∂S is fully contained in XS and ∂A is fully contained in XA (see
Figure 5.2 for an example in R1). To perfectly reconstruct 1S and 1A, it is sufficient
to know the labels of all points in XS and XA respectively, as this strategy removes
all ambiguity in labeling the two classes. Based on this, we arrive at the following
conclusions:

Observation 5.2. The theoretical label complexity of learning 1S and 1A in the asymp-
totic limit are P (XS) and P (XA) respectively, where P (E) =

∫
E p(x)dx.

Label complexity of graph-based learning

Using our results, we can show that the same label complexities hold for the graph-
based sampling theoretic approach to semi-supervised classification. In this context,
label complexity can be seen as the fraction of samples required for perfectly reconstruct-
ing a signal on the similarity graph. It is known that the fraction of samples required
for perfectly reconstructing a bandlimited signal cannot be more than the fraction of
eigenvalues of the Laplacian below the signal’s bandwidth [4]. Since our bandwidth con-
vergence results relate the bandwidth of indicators for the two data models with data
geoemtry, we only need to asymptotically relate the number of eigenvalues of L below
any constant in terms of data geometry. This is achieved through the following result:

Theorem 5.4. Let NL(t) be the number of eigenvalues of L below a constant t. Then,
as n→∞ and σ → 0, we have

E
{ 1
n
NL(t)

}
−→ P ({x : p(x) ≤ t}) , (5.24)

Proof. See Section 5.6.4. �
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Substituting the bandwidth convergence results from Theorems 5.1 and 5.2 (i.e.,
t = ωm(1S) and t = ωm(1A)), we immediately get the desired value of the expected label
complexity of graph-based semi-supervised learning:

Theorem 5.5. If the conditions in Theorems 5.1 and 5.2 hold, then the expected label
complexities of bandlimited reconstruction for the separable and nonseparable models are
given as

lim 1
n
E {NL(ωm(1S)} → P (XS), and (5.25)

lim 1
n
E {NL(ωm(1A)} → P (XA). (5.26)

The following remarks are in order:

1. Note that Theorem 5.4 and Theorem 5.5 can be strengthened by proving conver-
gence of 1

n
NL(t) rather than its expected value. This requires further analysis,

which we leave for future work. The result in Theorem 5.5 also encourages us to
conjecture that the convergence results for bandwidth estimates also hold for the
convergence of the bandwidth itself.

2. This result further strengthens the connection between graph-based learning meth-
ods and the semi-supervised smoothness assumption, since one can conclude that
the number of labeled examples required for perfect prediction depends on the
geometry of the data around the boundary. A low value of the density at the
boundary results in a lower label complexity.

3. One might ask what is the advantage of using graph-based methods for semi-
supervised learning, if we can predict the class labels by the simple labeling strategy
used to compute label complexities in Observation 5.2. Note that our definition of
label complexity is an ideal one which aims for perfect reconstruction. The power
of graph-based methods would be more evident for a more practical definition of
label complexity, where one tries to find the number of labels required for achieving
a certain error tolerance. We leave this issue for future work.

In the following two sections, we first numerically validate our results through experi-
ments and then provide theoretical proofs.
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Table 5.2: Illustrative boundaries used in the separable model.

Boundary Description sups∈∂S p(s)
∂S1 x = 0 0.0607
∂S2 x = −1 0.2547
∂S3 x = y2 − 1 0.2547
∂S4 y = 0 0.5969
∂S5 x2 + y2 = 1 0.5969

5.4 Numerical validation

We now present simple numerical analyses1 to validate our results and demonstrate
their usefulness in practice. For simulating the separable model, we first consider a
data distribution based on a 2D Gaussian Mixture Model (GMM) with two Gaussians:
µ1 = [−1 0],Σ1 = 0.25I and µ2 = [1 0],Σ2 = 0.16I, and mixing proportions α1 = 0.4
and α2 = 0.6 respectively. The probability density function is illustrated in Figure 5.3.
Next, we evaluate the claim of Theorem 5.1 on five boundaries, described in Table 5.2.
These boundaries are depicted in Figure 5.4 and are illustrative of typical separation
assumptions such as linear or non-linear and low or high density.

For simulating the nonseparable model, we first construct the following smooth
(twice-differentiable) 2D probability density function

q(x, y) =


3
π

[1− (x2 + y2)]2 , x2 + y2 ≤ 1
0, x2 + y2 > 1

. (5.27)

Note that datapoints (X, Y ) can be sampled from this distribution by setting the coordi-
nates X =

√
1− U1/4 cos(2πV ), Y =

√
1− U1/4 sin(2πV ), where U, V ∼ Uniform(0, 1).

We then use q(x, y) to define a nonseparable 2D model with mixture density p(x, y) =
αApA(x, y) + αAcpAc(x, y), where pA(x, y) = q(x − 0.75, y), pAc(x, y) = q(x + 0.75, y)
and αA = αAc = 0.5. The probability density function is illustrated in Figure 5.3. The
overlap region or boundary ∂A for this model is given by

∂A =
{

(x, y) : (x− 0.75)2 + y2 < 1 and (x+ 0.75)2 + y2 < 1
}
. (5.28)

1Code available at https://github.com/aamiranis/asymptotics_graph_ssl
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Figure 5.3: Probability density functions to generate data for (a) separable model, (b)
nonseparable model.

Further, for this model, we have sup∂A p(x) = 0.2517.
In our first experiment, we validate the statements of Theorems 5.1 and 5.2 by

comparing the left and right hand sides of (5.16) and (5.17) for corresponding boundaries.
This is carried out in the following way: we draw n = 2500 points from each model and
construct the corresponding similarity graphs using σ = 0.1. Then, for the boundaries
∂Si in the separable model and ∂A in the nonseparable model, we carry out the following
steps:

1. We first construct the indicator functions 1Si and 1A on the corresonding graphs.

2. We then compute the empirical bandwidth ω(1Si) and ω(1A) in a manner that
takes care of numerical error: we first obtain the eigenvectors of the corresponding
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Figure 5.5: Convergence of empirical value of bandwidths ω(1Si) and ω(1A) for different
boundaries {∂Si} and ∂A on corresponding graphs. Dark shaded regions denote standard
deviation over 100 experiments. Red bars indicate theoretical values.

L, then set ω(1Si) and ω(1A) to be ν for which energy contained in the Fourier
coefficients corresponding to eigenvalues λj > ν is at most 0.01%, i.e.,

ω(1Si) = min
{
ν
∣∣∣ ∑
j:λj>ν

(
uTj 1Si

)2
≤ 10−4

}
(5.29)

ω(1A) = min
{
ν
∣∣∣ ∑
j:λj>ν

(
uTj 1A

)2
≤ 10−4

}
. (5.30)
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Figure 5.7: Mean reconstruction errors averaged over 100 experiments for (a) 1S3 , and
(b) 1A. Red-dashed lines indicate the theoretical label complexities of ∂S3 and ∂A.

The procedure above is repeated 100 times and the mean of ω(1Si) and ω(1A) are
compared with sups∈∂Si p(s) and supx∈∂A p(x) respectively. The result is plotted in Fig-
ure 5.5. We observe that the empirical bandwidth is close to the theoretically predicted
value and has a very low standard deviation. This supports our conjecture that stochas-
tic convergence should hold for the bandwidth. To further justify this claim, we study the
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behavior of the standard deviation of ω(1Si) and ω(1A) as a function of n in Figure 5.6,
where we observe a decreasing trend consistent with our result.

For our second experiment, we validate the bound on the label complexity of graph-
based SSL in Theorem 5.5 by reconstructing the indicator function corresponding to ∂S3

and ∂A from a fraction of labeled examples on the corresponding graphs. This is carried
out as follows: For a given budget B, we find the set of points to label pivoted column-
wise Gaussian elimination on the eigenvector matrix U of L. This method ensures that
the obtained labeled set guarantees perfect recovery for signals spanned by the first
B eigenvectors of L [4]. We then recover the indicator functions from these labeled
sets by solving the least squares problem in (5.7) followed by thresholding. The mean
reconstruction error is defined as

Emean = No. of mismatches on unlabeled set
Size of unlabeled set (5.31)

We repeat the experiment 100 times by generating different graphs and plot the averaged
Emean against the fraction of labeled examples. The result is illustrated in Figure 5.7.
We observe that the error goes to zero as the fraction of labeled points goes beyond
the theoretically predicted label complexity as predicted. This reinforces the intuition
that the bandwidth of class indicators is closely linked with the inherent geometry of
the data.

5.5 Summary

In this chapter, we provided an interpretation of the graph sampling theoretic
approach to semi-supervised learning. Our work analyzed the bandwidth of class indi-
cator signals with respect to the Laplacian eigenvector basis and revealed its connection
to the underlying geometry of the dataset. This connection is useful in justifying graph-
based approaches for semi-supervised and unsupervised learning problems, and provides
a geometrical interpretation of the smoothness assumptions imposed in the bandlimited
reconstruction approach. Specifically, our results have shown that an estimate of the
bandwidth of class indicators converges to the supremum of the probability density on
the class boundaries for the separable model, and on the overlap regions for the nonsepa-
rable model. This quantifies the connection between the assumptions of smoothness (in
terms of bandlimitedness) and low density separation, since boundaries passing through
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regions of low data density result in lower bandwidth of the class indicator signals. We
numerically validated these results through various experiments.

Our analysis also sheds light on the label complexity of graph-based semi-supervised
learning problems. We showed that perfect prediction from a few labeled examples
using a graph-based bandlimited interpolation approach requires the same amount of
labeling as one would need to completely encompass the boundary or region of ambiguity.
This indicates that graph-based approaches achieve the theoretical label complexity as
dictated by the underlying geometry of the problem. We believe that the main potential
of graph-based methods will be apparent in situations where one can tolerate a certain
amount of prediction error, in which case such approaches shall require fewer labeled
examples. We plan to investigate this as part of future work.

5.5.1 Future work

There are several directions in which our results can be extended. In this work, we
only considered Gaussian-weighted graphs, an immediate extension would be to consider
arbitrary kernel functions for computing graph weights, or density dependent edge-
connections such as k-nearest neighbors [42]. Another possibility is to consider data
defined on a subset of the d-dimensional Euclidean space. It will also be useful to have
uniform convergence results over all possible boundaries. Moreover, our definition of
label complexity considers perfect label predictions, it would be interesting to study
trade-offs between prediction error, the number of labeled examples, and the impact of
labeling noise.

Finally, note that our results on label complexity are theoretical at this point – we
assume complete knowledge of the indicator signal in order to quantify the amount of
labeling required. However, this result can be made useful in a practical sense if one
were able to apriori estimate the bandwidth of a class indicator as this would give
an indication of “when to stop” labeling. One possible approach is to estimate the
bandwidth of any signal through randomly (or possibly, cleverly) chosen samples:

ω(f) ≈ ωm(f) =
(

fTLmf
fT f

)1/m

≈
(

fT STS Lm STS f
fT STS f

)1/m

, (5.32)

where S is the sampling operator. Analyzing the convergence of this bandwidth estimate
along with our prediction error trade-offs will give us a handle on how much labeling is
required for achieving a particular error tolerance.
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5.6 Proofs

We now present the proofs of Theorems 5.1 and 5.2 through a sequence of lemmas.
The main idea is to perform a variance-bias decomposition of the bandwidth estimate
and then prove the convergence of each term independently. Specifically, for the indicator
vector 1R ∈ {0, 1}n of any region R ⊂ Rn, one can consider the random variable:

(ωm(1R))m = 1TRLm1R
1TR1R

=
1
n
1TRLm1R
1
n
1TR1R

. (5.33)

We study the convergence of this quantity by considering the numerator and denominator
separately (it is easy to show that the fraction converges if both the numerator and
denominator converge). By the strong law of large numbers, we conclude the following
for the denominator as n→∞:

1
n

1TR1R
a.s.−−→

∫
x∈R

p(x)dx. (5.34)

For the numerator, we decompose it into two parts – a variance term for which we show
stochastic convergence using a concentration inequality, and a bias term for which we
prove deterministic convergence.

5.6.1 Convergence of variance terms

Let V = 1
n
1TRLm1R, then we have the following concentration result:

Lemma 5.1 (Concentration). For every ε > 0, we have:

Pr (|V − E {V }| > ε)

≤ 2 exp
(

−[n/(m+ 1)]σmdε2

2CmE {V }+ 2
3 |Cm − σmdE {V }| ε

)
, (5.35)

where C = 2/(2π)d/2.

Proof. Recalling that wi,j = Kσ2(Xi,Xj), we begin by explicitly expanding V =
1
n
1TR(D−W)m1R into the following summation

V = 1
nm+1

∑
i1,i2,...,im+1

g
(
Xi1 ,Xi2 , . . . ,Xim+1

)
. (5.36)
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The above expansion has the form of a V-statistic. Details on how to explicitly write the
summation are given in Section 5.6.5. Note that g is composed of a sum of 2m terms,
each a product of m kernel functions that are non-negative. Therefore,

g ≤ 2m‖K‖m∞ =
(

2
(2πσ2)d/2

)m
= Cm

σmd
. (5.37)

In order to apply a concentration inequality for V, we first re-write it in the form of a
U-statistic by regrouping terms in the summation in order to remove repeated indices,
as given in [35]:

V = 1
n(m+1)

∑
(n,m+1)

g∗
(
Xi1 ,Xi2 , . . . ,Xim+1

)
, (5.38)

where ∑(n,m+1) denotes summation over all ordered (m+1)-tuples of distinct indices
taken from the set {1, . . . , n}, n(m+1) = n.(n − 1) . . . (n −m) is the number of (m+1)-
permutations of n and g∗ is a convex combination of specific instances of g that absorbs
repeating indices (see supplementary material for a complete expansion):

g∗ (x1,x2, . . . ,xm+1) = n(m+1)

nm+1 g (x1,x2, . . . ,xm+1)

+ (terms with repeated indices). (5.39)

Therefore, g∗ has the same upper bound as that of g derived in (5.37). Moreover, using
the fact that E {V } = E {g∗}, we can bound the variance of g∗ as

Var {g∗} ≤ ‖g∗‖∞E {g∗} = Cm

σmd
E {V } . (5.40)

Finally, plugging in the bound and variance of g∗ in Bernstein’s inequality for U-statistics
as stated in [35, 33], we arrive at the desired result of (5.35). �

Note that as n → 0 and σ → 0 with rates satisfying (nσmd)/(mCm) → ∞, we have
P (|V −E {V } | > ε)→ 0 for all ε > 0. The continuous mapping theorem then allows us
to conclude that V 1/m p.−→ (E {V })1/m.

108



5.6.2 Convergence of the bias term for the separable model

To evaluate the convergence of bias terms, we shall require the following properties
of the d-dimensional Gaussian kernel:

Lemma 5.2. If p(x) is twice differentiable, then∫
Kσ2(x,y)p(y)dy = p(x) +O

(
σ2
)
. (5.41)

Proof. Using the substitution y = x + t followed by Taylor expansion about x, we have∫
Kσ2(x,y)p(y)dy

=
∫ 1

(2πσ2)d/2 e
−‖t‖2/2σ2

p(x + t)dt

=
∫ 1

(2πσ2)d/2 e
−‖t‖2/2σ2

(
p(x) + tT∇p(x)

+ 1
2tT∇2p(x)t + . . .

)
dt

= p(x) + 0 + σ2

2 Tr(∇2p(x)) + . . .

= p(x) +O(σ2).

where the third step follows from simple component-wise integration. �

Lemma 5.3. If p(x) is twice differentiable, then∫
Kaσ2(x, z)Kbσ2(z,y)p(z)dz

= K(a+b)σ2(x,y)
(
p

(
bx + ay
a+ b

)
+O

(
σ2
))

. (5.42)

Proof. Note that

Kaσ2(x, z)Kbσ2(z,y) = 1
(2πaσ2) d2

e−
‖x−z‖2

2aσ2
1

(2πbσ2) d2
e−
‖z−y‖2

2bσ2

= 1
(2π(a+ b)σ2) d2

e
− ‖x−y‖2

2(a+b)σ2 1
(2π ab

a+bσ
2) d2

e
−
‖z− bx+ay

a+b ‖
2

2( ab
a+b )σ2

= K(a+b)σ2(x,y) K ab
a+bσ

2

(
bx + ay
a+ b

, z
)
.
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Therefore, we have ∫
Kaσ2(x, z)Kbσ2(z,y)p(z)dz

= K(a+b)σ2(x,y)
∫
K ab

a+bσ
2

(
bx + ay
a+ b

, z
)
p(z)dz

= K(a+b)σ2(x,y)
(
p

(
bx + ay
a+ b

)
+O

(
σ2
))

,

where the last step follows from Lemma 5.2. �

In order to prove convergence for the separable model, we need the following results:

Lemma 5.4. If p(x) is Lipschitz continuous, then for a smooth hypersurface ∂S that
divides Rd into S1 and S2, and whose radius has curvature that is bounded by τ > 0,

lim
σ→0

1
σ

∫
S1

∫
S2
Kσ2(x1,x2)pα(x1)pβ(x2)dx1dx2

= 1√
2π

∫
∂S
pα+β(s)ds, (5.43)

where α and β are positive integers. Moreover, for positive integers a, b, and α, β, α′, β′

such that α + β = α′ + β′ = γ, we have:

lim
σ→0

1
σ

∫
S1

∫
S1

[
Kaσ2(x1,x2)pα(x1)pβ(x2)

−Kbσ2(x1,x2)pα′(x1)pβ′(x2)
]
dx1dx2

=
√
b−
√
a√

2π

∫
∂S
pγ(s)ds. (5.44)

The proof of this lemma is given in Appendix 5.6.6. We now prove the deterministic
convergence of E

{
1
n
1TSLm1S

}
in the following lemma:

Lemma 5.5. As n→∞, σ → 0 such that m/n→ 0,mσ2 → 0, we have

1
σ
E
{ 1
n

1TSLm1S
}
→ t(m)√

2π

∫
∂S
pm+1(s)ds, (5.45)

where t(m) = ∑m−1
r=1

(
m−1
r

)
(−1)r(

√
r + 1−

√
r).
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Proof. We evaluate E
{

1
n
1TSLm1S

}
term by term by expanding Lm as (D−W)m−1(D−

W). Details on the intermediate steps of this expansion are given in Section 5.6.5. Using
(5.41) repeatedly, we have for the first two terms of the expansion:

1
σ
E
{ 1
n

1TSD . . .D(D−W)1S
}

= 1
σ

∫
S

∫
Sc
Kσ2(x,y)pm(x)p(y)dxdy

+O (σ) +O
(
m

nσ

)
. (5.46)

For the rest of the terms, we also require the use of (5.42). However, in this case, we
encounter several terms of the form p(θx + (1− θ)y) for some θ ∈ [0, 1]. Since mσ2 → 0
and p(x) is assumed to be Lipschitz continuous, we can approximate such terms by p(x)
or p(y). Therefore, for all terms in the expansion of (D −W)m−1 containing r > 1
occurrences of W (there are

(
m−1
r

)
such terms), repeated use of (5.41), (5.42) gives:

1
σ
E
{ 1
n

1TS [Dm−1−r,Wr](D−W)1S
}

= 1
σ

[ ∫
S

∫
S
Krσ2(x,y)pα(x)pβ(y)dxdy

−
∫
S

∫
S
K(r+1)σ2(x,y)pα′(x)pβ′(y)dxdy

]

+O(σ) +O
(
m

nσ

)
. (5.47)

where α + β = α′ + β′ = m + 1 and [Dm−1−r,Wr] denotes an expression containing
r occurrences of W and m − 1 − r occurrences of D. Now, using Lemma 5.4, we
conclude that the right hand sides of (5.46) and (5.47) converge to 1√

2π
∫
∂S p

m+1(s)ds
and

√
r+1−

√
r√

2π
∫
∂S p

m+1(s)ds, respectively, as σ → 0 and m/nσ → 0. Putting everything
together in the expansion of E

{
1
n
1TSLm1S

}
, we get the desired result. �

Since σ1/m → 1, we have

(
E
{ 1
n

1TSLm1S
})1/m

= σ1/m
( 1
σ
E
{ 1
n

1TSLm1S
})1/m

→
(
t(m)√

2π

∫
∂S
pm+1(s)ds

)1/m

(5.48)
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Finally, we note that as m→∞, we have

 t(m)√
2π
∫
∂S p

m+1(s)ds∫
S p(x)dx

1/m
s.−−→ sup

s∈∂S
p(s) (5.49)

Therefore, we conclude for the separable model

ωm(1S)→ sup
s∈∂S

p(s) (5.50)

5.6.3 Convergence of bias term for the nonseparable model

For the nonseparable model, we need to prove convergence of E
{

1
n
1TALm1A

}
. This

is illustrated in the following lemma:

Lemma 5.6. As n→∞, σ → 0 such that m/n→ 0,mσ2 → 0, we have

E
{ 1
n

1TALm1A
}
→
∫
αAαAcpA(x)pAc(x)pm−1(x)dx. (5.51)

Proof. Similar to the proof of Lemma 5.5, we evaluate E
{

1
n
1TALm1A

}
term by term

by expanding Lm as (D −W)m−1(D −W). Details on the intermediate steps of this
expansion are given in Section 5.6.5. Using (5.41) repeatedly, we have for the first two
terms of the expansion:

E
{ 1
n

1TAD . . .D(D−W)1A
}

=
∫
αAαAcpA(x)pAc(x)pm−1(x)dx +O

(
σ2
)

+O
(
m

n

)
. (5.52)

Further, for all terms in the expansion of (D−W)m−1 containing r > 1 occurrences of
W (there are

(
m−1
r

)
such terms), repeated use of (5.41), (5.42) gives:

E
{ 1
n

1TA[Dm−1−r,Wr](D−W)1A
}

= O
(
σ2
)

+O
(
m

n

)
. (5.53)

Therefore, as σ → 0, m/n→ 0, we get the desired result. �

We finally note that as m→∞, we have
(∫

αAαAcpA(x)pAc(x)pm−1(x)dx∫
A p(x)dx

)1/m
s.−−→ sup

x∈∂A
p(x) (5.54)
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Therefore, we conclude for the nonseparable model

ωm(1A)→ sup
x∈∂A

p(x) (5.55)

Note that Lemma 5.6 for special case for m = 1 yields

1
n

1TAL1A →
∫
αAαAcpA(x)pAc(x)dx (5.56)

which proves Theorem 5.3.

5.6.4 Proof of Theorem 5.4

We begin by recalling the definition of the empirical spectral distribution (ESD) of
L: µn(x) = 1

n

∑n
i=1 δ(x − λi), where {λi} are the eigenvalues of L. For each x, µn(x)

is a function of X1, . . . ,Xn, and thus a random variable. Note that the fraction of
eigenvalues of L below a constant t, and its expected value can be computed from the
ESD as

1
n
NL(t) =

∫ t

0
µn(x)dx, (5.57)

E
{ 1
n
NL(t)

}
=
∫ t

0
E {µn(x)} dx, (5.58)

Therefore, to understand the behavior of the expected fraction of eigenvalues of L below
t, we need to analyze the convergence of the expected ESD in the asymptotic limit.
The idea is to show the convergence of the moments of E {µn(x)} to the moments of a
limiting distribution µ(x). Then, by a standard convergence result, E {µn(I)} → µ(I) for
intervals I. More precisely, let the⇒ symbol denote weak convergence of measures, then
we use the following result that follows from the Weierstrass approximation theorem:

Lemma 5.7. Let µn be a sequence of probability measures and µ be a compactly supported
probability measure. If

∫
xmµn(dx)→

∫
xmµ(dx) for all m ≥ 1, then µn ⇒ µ.

We then use the following result on equivalence of different notions of weak con-
vergence of measures [13, Theorem 25.2] in order to prove our result for cumulative
distribution functions.

Lemma 5.8. µn ⇒ µ if and only if µn(A)→ µ(A) for every µ-continuity set A.
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We begin by writing the mth moment of E {µn(x)}:

∫
xmE {µn(x)} dx = 1

n

n∑
i=1

E {λmi } = E
{ 1
n
Tr (Lm)

}
. (5.59)

Now, note that Lm = (D −W)m = Dm + ∑m
k=1

(
m
k

)
[Dm−k,Wk], where [Dm−k,Wk]

denotes product terms with m−k occurrences of D and k occurrences of W. Therefore,
we have for the right hand side of (5.59):

E
{ 1
n
Tr (Lm)

}
=
∫ (∫

K(xi1 ,xi2)p(xi2)dxi2
)
. . . (5.60)(∫

K(xi1 ,xim+1)p(xim+1)dxim+1

)
p(xi1)dxi1

+O
(
m

n

)
(expected value of other terms)

Using (5.41) repeatedly in the equation above, we get:

E
{ 1
n
Tr (Lm)

}
=
∫
pm+1(x)dx +O

(
m

n

)
+O

(
σ2
)

(5.61)

Therefore, as n→∞ and σ → 0, we have:∫
xmE {µn(x)} dx =

∫
pm(x)p(x)dx (5.62)

From the right hand side of the equation above, we conclude that the mth moment of the
expected ESD of L converges to themth moment of the distribution of a random variable
Y = p(X), where p(x) is the probabilty density function of X. Moreover, since pY (y)
has compact support, E {µn(x)} converges weakly to the probability density function of
pY (y). Hence, the following can be said about the expected fraction of eigenvalues of L:

E
{ 1
n
NL(t)

}
=
∫ t

0
E {µn(x)} dx

s.−−→
∫ t

0
pY (y)dy =

∫
p(x)≤t

p(x)dx. (5.63)

This proves our claim in Theorem 5.4. Note that, to prove the stochastic convergence of
the fraction itself rather than its expected value, we would need a condition similar to
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those in Theorems 5.1 and 5.2 to hold for each moment. In that case, σ will go to 0 in a
prohibitively slow fashion. We believe that this is an artifact of the methods we employ
for proving the result. Hence, our conjecture is that the convergence result must hold
for 1

n
NL(t) itself, and we leave the analysis of this statement for future work.

5.6.5 Expansions of 1TSLm1S and E
{ 1
n1

T
SLm1S

}
To expand 1TSLm1S in terms of the elements wij of W, we first write the expression

for each product term. Since Lm = 1
nm

(D −W)m, there are 2m such terms. Let us
first introduce the following notation: [D,W]m denotes a product term containing the
matrices D and W, such that there are m matrices in the product. Note that Lm is
essentially a summation of all possible [D,W]m with appropriate signs.

Now, the explicit expression for 1TS [D,W]m1S can be obtained using the following
procedure:

1. All product terms have a form defined by the following template:

1TS [D,W]m1S
=

∑
i1,...,im+1

(1S)i1wi1i2w∗i3 . . . w∗imw∗im+1(1S)∗ (5.64)

where the locations with ∗ need to be filled with appropriate indices depending on
the product term. Note that each wij is contributed by either a D or W depending
on its location in the expression.

2. We fill the locations one-by-one from left to right, using the following set of rules. Let
wab be the term preceding w∗c, then

• If wab is contributed by D, then ∗ = a.

• If wab is contributed by W, then ∗ = b.

3. Let waim+1 denote the term preceding (1S)∗. Then, we have the following rule:

• If waim+1 is contributed by D, then ∗ = a.

• If waim+1 is contributed by W, then ∗ = im+1.
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The expansion of 1TSLm1S can be found by summing up the expansions of the individual
product terms 1TS [D,W]m1S. Recalling that wij = K(Xi,Xj), we conclude

1
n

1TSLm1S = 1
nm+1

∑
i1,...,im+1

g(Xi1 ,Xi2 , . . . ,Xim+1) (5.65)

The expression for E
{

1
n
1TSLm1S

}
can be evaluated in a similar fashion, except that the

summations are replaced by integrals. We first evaluate the expected value of individual
product terms E

{
1
n
1TS [D,W]m1S

}
by the following rules:

1. The template for the expected value of any product term can be expressed through
the following template:

E
{ 1
n

1TS [D,W]m1S
}

=
∫
. . .
∫ (

1S(x1)K(x1,x2)K(x∗,x3)

. . . K(x∗,xm+1)1S(x∗)
)
p(x1)dx1 . . . p(xm+1)dxm+1 (5.66)

where the locations with ∗ need to be filled with appropriate indices depending on
the product term. Once again, each K(xi,xj) is contributed by either a D or a W.

2. We fill the locations one-by-one from left to right, using the following set of rules. Let
K(xa,xb) be the term preceding K(x∗,xc). Then

• If K(xa,xb) is contributed by D, then ∗ = a.

• If K(xa,xb) is contributed by W, then ∗ = b.

3. Further, let K(xa,xm+1) be the term preceding 1S(x∗). Then

• If K(xa,xm+1) is contributed by D, then ∗ = a.

• If K(xa,xm+1) is contributed by W, then ∗ = m+ 1.

5.6.6 Proof of Lemma 4

The key ingredient required for evaluating the integrals in Lemma 5.4 involves select-
ing a radius R (< τ) as a function of σ that satisfies the following properties as σ → 0:

1. R→ 0,
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2. R/σ →∞,

3. R2/σ → 0,

4. εR/σ → 0, where εR :=
∫
‖z‖>RKσ2(0, z)dz.

A particular choice of R is given by R =
√
dσ2 log 1/σ2. Note that R → 0 as σ → 0.

Further, substituting this expression in the tail bound for the norm of a d-dimensional
Guassian vector gives us:

εR
σ

= 1
σ

∫
‖z‖>R

Kσ2(0, z)dz

≤ 1
σ

(
σ2d

R2

)−d/2

e−
R2
2σ2 + d

2

= 1
σ

(
eσ2 log(1/σ2)

)d/2
(5.67)

Therefore, if d > 1, then εR/σ → 0 as σ → 0. Further, it is easy to ensure R < τ for the
regime of σ in our proofs.

We now consider the proof of equation (5.43), let

I := 1
σ

∫
S1

∫
S2
Kσ2(x1,x2)pα(x1)pβ(x2)dx1dx2 (5.68)

Further, let [S1]R indicate a tubular region of thickness R adjacent to the boundary ∂S
in S1, i.e., the set of points in S1 at a distance ≤ R from the boundary. Then, we have

I = 1
σ

∫
[S1]R

pα(x1)
∫
S2
Kσ2(x1,x2)pβ(x2)dx2 dx1︸ ︷︷ ︸

I1

+ 1
σ

∫
[S1]cR

pα(x1)
∫
S2
Kσ2(x1,x2)pβ(x2)dx2 dx1︸ ︷︷ ︸

E1

(5.69)

E1 is the error associated with approximating I by I1 and exhibits the following behavior

Lemma 5.9. limσ→0 E1 = 0.

117



Proof. Note that

E1 ≤
1
σ

(pmax)β
∫

[S1]cR
pα(x1)

(∫
S2
Kσ2(x1,x2)dx2

)
dx1

≤ 1
σ

(pmax)β
∫

[S1]cR
pα(x1)

(∫
‖z‖>R

Kσ2(0, z)dz
)
dx1

= εR
σ

(pmax)β
∫

[S1]cR
pα(x1)dx1

≤ εR
σ

(pmax)α+β (5.70)

Using limσ→∞ εR/σ = 0, we get the desired result. �

In order to analyze I1, we need to define certain geometrical constructions (illustrated
in Figure 5.8) as follows:

Definition 5.1. Geometrical constructions for analyzing the integrals

1. For each x1 ∈ [S1]R, we define a transformation of coordinates as:

x1 = s1 + r1n(s1), (5.71)

where s1 is the foot of the perpendicular dropped from x1 onto ∂S, r1 is the distance
between s1 and x1, and n(s1) is the surface normal at s1 (towards the direction of
x1). Since the minimum radius of curvature of ∂S is τ and R < τ , this mapping
is injective.

2. For each s1 ∈ ∂S, let H+
s1 denote the halfspace created by the plane tangent on s1

and on the side of S2. Similarly, let H−s1 denote the halfspace on the side of S1,
that is, H−s1 = Rd \H+

s1.

3. Let W+
s1(x) denote an infinite slab of thickness x tangent to ∂S at s1 and towards

the side S2. Let W−
s1(y) denote a similar slab of thickness y on the side of S1.

4. Finally, for any x, let B(x, R) denote the Euclidean ball of radius R centered at
x.
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Figure 5.8: Geometrical constructions in Definition 5.1.

We now consider I1, the main idea here is to approximate the integral over S2 by an
integral over the halfspace H+

s1 . Hence, we have:

I1 = 1
σ

∫
[S1]R

pα(x1)
∫
H+

s1

Kσ2(x1,x2)pβ(x2)dx2dx1︸ ︷︷ ︸
I2

+ 1
σ

∫
[S1]R

pα(x1)
∫
S2−H+

s1

Kσ2(x1,x2)pβ(x2)dx2dx1︸ ︷︷ ︸
E2

(5.72)

where E2 is the error associated with the approximation. Therefore, we have

I = I2 + E2 + E1 (5.73)

We now show that as σ → 0, I2 → 1√
2π
∫
∂S p

α+β(s)ds, and E2 → 0.

Lemma 5.10. limσ→0 I2 = 1√
2π
∫
∂S p

α+β(s)ds.

Proof. Using the change of coordinates x1 = s1 + r1n(s1), we have

I2 = 1
σ

∫
∂S

∫ R

0
pα(s1 + r1n(s1))(∫
H+

s1

Kσ2(s1 + r1n(s1),x2)pβ(x2)dx2

)
|detJ(s1, r1)|ds1dr1 (5.74)
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where J(s1, r1) denotes the Jacobian of the transformation. Now, an arc P̂Q of length
ds at a distance r1 away from ∂S gets mapped to an arc P̂ ′Q′ on ∂S whose length lies
in the interval [ds(1− r1

τ
), ds(1 + r1

τ
)]. Therefore, for all points within [S1]R, we have

(
1− R

τ

)d−1
≤ |detJ(s1, r1)| ≤

(
1 + R

τ

)d−1
. (5.75)

Further, since p(x) is Lipschitz continuous with constant Lp, pα(x) is also Lipschitz
continuous with constant Lp,α. Therefore, for any x1 ∈ [S1]R, we have pα(x1) = pα(s1)+
Lp,αR. This leads to the following simplification for I2:

I2 =
(
1 +O(Rd−1)

) ∫
∂S
pα(s1)I3(s1)ds1 +O(Rd)

∫
∂S
I3(s1)ds1, (5.76)

where we defined

I3(s1) := 1
σ

∫ R

0

∫
H+

s1

Kσ2(s1 + r1n(s1),x2)pβ(x2)dx2dr1. (5.77)

Note that every x2 ∈ H+
s1 can be written as s2 + r2n(s2), where n(s2) = −n(s1). Hence,

we get

I3(s1) =
∫
Rd−1

1
(2πσ2) d−1

2
e−
‖s1−s2‖

2

2σ2 pβ(s2 − r2n(s1))ds2

× 1
σ

∫ R

0

∫ ∞
0

1√
2πσ2

e−
(r1+r2)2

2σ2 dr1dr2

=
(∫

Rd−1

1
(2πσ2) d−1

2
e−
‖s1−s2‖

2

2σ2 pβ(s2)ds2 +O(R)
)

× 1
σ

∫ R

0

∫ ∞
0

1√
2πσ2

e−
(r1+r2)2

2σ2 dr1dr2

=
(
pβ(s1) +O(σ2) +O(R)

)
× 1
σ

∫ R

0

∫ ∞
0

1√
2πσ2

e−
(r1+r2)2

2σ2 dr1dr2, (5.78)
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where we used Lipschitz continuity of pβ(x) in the second equality and applied
Lemma 5.2 to arrive at the last step. Further, using the definition of the Q-function and
integration by parts, we note that

1
σ

∫ R

0

∫ ∞
0

1√
2πσ2

e−
(r1+r2)2

2σ2 dr1dr2

=
∫ R/σ

0

∫ ∞
0

1√
2π
e−

(x+y)2
2 dxdy

=
∫ R/σ

0
Q(y)dy

= yQ(y)
∣∣∣∣∣
R/σ

0
−
∫ R/σ

0
Q′(y)dy

= R

σ
Q
(
R

σ

)
+ 1√

2π
(
1− e−R2/2σ2)

.

Therefore,

I3(s1) =
(
pβ(s1) +O(σ2) +O(R)

)
×(

R

σ
Q
(
R

σ

)
+ 1√

2π
(
1− e−R2/2σ2))

. (5.79)

Combining (5.76) and (5.79) and using the fact that R/σ → ∞ as σ → 0 (from the
definition of R), we get

lim
σ→∞

I2 = 1√
2π

∫
∂S
pα+β(s)ds, (5.80)

which concludes the proof. �

We now consider the error term E2 and prove the following result:

Lemma 5.11. limσ→0 E2 = 0.

Proof. Let us first rewrite E2 as follows:

E2 = 1
σ

∫
[S1]R

pα(x1)I4(x1)dx1 (5.81)

where we defined
I4(x1) :=

∫
S2−H+

s1

Kσ2(x1,x2)pβ(x2)dx2 (5.82)
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(a) (b)

Figure 5.9: Worst-case scenarios for the boundary ∂S when (a) S1 is a ball of radius τ ,
(b) S2 is a ball of radius τ .

The key idea is to lower and upper bound I4(x1) for all x1 using worst case scenarios
and evaluate the limits of the bounds. Note that I4(x1) is largest in magnitude when
S1 or S2 is a sphere of radius τ , as illustrated in Figures 5.9a and 5.9b. We now make
certain geometrical observations. For any x1 = s1 + r1n(s1) ∈ [S1]R, we observe from
Figure 5.9b that

I4(x1) ≤
∫
W−s1

(
R2−r2

1
2(τ−r1)

)Kσ2(x1,x2)pβ(x2)dx2

+
∫
B(x1,R)c

Kσ2(x1,x2)pβ(x2)dx2

≤
∫
W−s1 (R′)

Kσ2(x1,x2)pβ(x2)dx2 + pβmaxεR. (5.83)

where R′ = R2

2(τ−R) . Similarly, from Figure 5.9a, we observe that

I4(x1) ≥ −
[ ∫

W+
s1

(
R2−r2

1
2(τ+r1)

)Kσ2(x1,x2)pβ(x2)dx2

+
∫
B(x1,R)c

Kσ2(x1,x2)pβ(x2)dx2

]

≥ −
[ ∫

W+
s1 (R′)

Kσ2(x1,x2)pβ(x2)dx2 + pβmaxεR

]
. (5.84)
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Substituting these in (5.81) and using a simplification similar to that of I2 in (5.76), we
get

E2 ≤
(
1 +O(Rd−1)

) ∫
∂S
pα(s1)I−5 (s1)ds1

+O(Rd)
∫
∂S
I−5 (s1)ds1 + εR

σ
pα+β

max , (5.85)

E2 ≥ −
(
1 +O(Rd−1)

) ∫
∂S
pα(s1)I+

5 (s1)ds1

−O(Rd)
∫
∂S
I+

5 (s1)ds1 −
εR
σ
pα+β

max , (5.86)

where we defined

I−5 (s1) := 1
σ

∫ R

0

∫
W−s1 (R′)

Kσ2(s1 + r1n(s1),x2)pβ(x2)dx2dr1, (5.87)

I+
5 (s1) := 1

σ

∫ R

0

∫
W+

s1 (R′)
Kσ2(s1 + r1n(s1),x2)pβ(x2)dx2dr1. (5.88)

Similar to the evaluation of I3(s1) in (5.78), we have

I+
5 (s1) =

(
pβ(s1) +O(σ2) +O(R)

)
× 1

σ

∫ R

0

∫ R′

0

1√
2πσ2

e−
(r1+r2)2

2σ2 dr1dr2, (5.89)

I−5 (s1) =
(
pβ(s1) +O(σ2) +O(R)

)
× 1

σ

∫ R

0

∫ R′

0

1√
2πσ2

e−
(r1−r2)2

2σ2 dr1dr2. (5.90)

We now evaluate the two 1-D integrals as follows:

1
σ

∫ R

0

∫ R′

0

1√
2πσ2

e−
(r1+r2)2

2σ2 dr1dr2

=
∫ R/σ

0

∫ R′/σ

0

1√
2π
e−

(x+y)2
2 dxdy

=
∫ R/σ

0

(
Q(y)−Q

(
y + R′

σ

))
dy

=
∫ R/σ

0
Q(y)dy +

∫ R′/σ

0
Q(y)dy −

∫ R+R′
σ

0
Q(y)dy

= R

σ
Q
(
R

σ

)
+ R

σ
Q

(
R′

σ

)
− R +R′

σ
Q

(
R +R′

σ

)
1√
2π

(
1− e−

R2
2σ2 − e−

R′2
2σ2 + e−

(R+R′)2

2σ2

)
.
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Similarly,

1
σ

∫ R

0

∫ R′

0

1√
2πσ2

e−
(r1−r2)2

2σ2 dr1dr2

=
∫ R/σ

0

∫ R′/σ

0

1√
2π
e−

(x−y)2
2 dxdy

=
∫ R/σ

0

(
Q

(
y − R′

σ

)
−Q(y)

)
dy

=
∫ 0

−R′/σ
Q(y)dy +

∫ R−R′
σ

0
Q(y)dy −

∫ R/σ

0
Q(y)dy

= R′

σ
Q

(
−R

′

σ

)
+ R−R′

σ
Q

(
R−R′

σ

)
− R

σ
Q
(
R

σ

)
1√
2π

(
e−

R′2
2σ2 − 1 + e−

(R+R′)2

2σ2 − e−
R2
2σ2

)

Noting that as σ → 0, R/σ →∞ and R′/σ → 0, we conclude that limσ→0 E2 = 0. �

The proof of (5.44) proceeds in a similar fashion by approximating the inner integral
using hyperplanes. Specifically, similar to the proof of (5.43), we can show that the
integral on the left hand side can be written as I + E, where

I := 1
σ

∫
[S1]R

∫
H−s1

[
Kaσ2(x1,x2)pα(x1)pβ(x2)

−Kbσ2(x1,x2)pα′(x1)pβ′(x2)
]
dx1dx2, (5.91)

and E is the residual associated with the approximation that can be shown to go to zero
as σ → 0 (we skip this proof since it is quite similar to the analysis for (5.43)). In order
to evaluate I, we perform a change of coordinates x1 = s1 + r1n(s1) as before to obtain

I = 1
σ

∫
∂S

∫ R

0

pα(s1 + r1n(s1))
(∫

H−s1

Kaσ2(s1 + r1n(s1),x2)pβ(x2)dx2

)

− pα′(s1 + r1n(s1))
(∫

H−s1

Kbσ2(s1 + r1n(s1),x2)pβ′(x2)dx2

)|detJ(s1, r1)|ds1dr1

=
∫
∂S
pα(s1)Iβ(s1)ds1 −

∫
∂S
pα
′(s1)Iβ′(s1)ds1 +O

(
Rd
)
, (5.92)
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where we defined

Iβ(s1) := 1
σ

∫ R

0

∫
H−s1

Kaσ2(s1 + r1n(s1),x2)pβ(x2)dx2dr1,

Iβ′(s1) := 1
σ

∫ R

0

∫
H−s1

Kbσ2(s1 + r1n(s1),x2)pβ′(x2)dx2dr1.

By using change of coordinates for x2 similar to the steps in (5.78), we obtain

Iβ(s1) =
(
pβ(s1) +O(σ2) +O(R)

)
×

1
σ

∫ R

0

∫ ∞
0

1√
2πaσ2

e−
(r1−r2)2

2aσ2 dr1dr2, (5.93)

Iβ′(s1) =
(
pβ
′(s1) +O(σ2) +O(R)

)
×

1
σ

∫ R

0

∫ ∞
0

1√
2πbσ2

e−
(r1−r2)2

2bσ2 dr1dr2, (5.94)

The 1-D integrals can be evaluated as follows:

1
σ

∫ R

0

∫ ∞
0

1√
2πaσ2

e−
(r1−r2)2

2aσ2 dr1dr2

=
√
a
∫ R/

√
aσ

0

∫ ∞
0

1√
2π
e−

(x−y)2
2 dxdy

=
√
a
∫ R/

√
aσ

0
Q(−y)dy

=
√
a
∫ R/

√
aσ

0
(1−Q(y))dy

= R

σ
− R

σ
Q

(
R√
aσ

)
−
√
a√

2π
(
1− e−R2/2aσ2)

,

1
σ

∫ R

0

∫ ∞
0

1√
2πbσ2

e−
(r1−r2)2

2bσ2 dr1dr2

= R

σ
− R

σ
Q

(
R√
bσ

)
−
√
b√

2π
(
1− e−R2/2bσ2)

.

Using the fact that α + β = α′ + β′ = γ, and taking the limit σ → 0 after putting
everything together, we conclude

lim
σ→0

I =
√
b−
√
a√

2π

∫
∂S
pγ(s)ds. (5.95)
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