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Abstract

Graph signals provide a natural representation for data in many applications such
as social networks, web information analysis, sensor networks and machine learn-
ing. Traditional data such as images and videos can also be represented as signals
on graphs. A frequency domain representation for graph signals can be obtained
using the eigenvectors and eigenvalues of operators that measure the variation in
signals taking into account the underlying connectivity in the graph. Based on
this, we develop a sampling theory for graph signals that answers the following
questions: 1. When can we uniquely and stably reconstruct a bandlimited graph
signal from its samples on a subset of the nodes? 2. What is the best subset of
nodes for sampling a signal so that the resulting bandlimited reconstruction is
most stable? 3. How to compute a bandlimited reconstruction efficiently from a
subset of samples? The algorithms developed for sampling set selection and recon-
struction do not require explicit eigenvalue decomposition of the variation operator
and admit efficient, localized implementation. Using graph sampling theory, we
propose effective graph based active semi-supervised learning techniques. We also
give a probabilistic interpretation of graph sampling. Based on this interpretation,
we generalize the framework of sampling on graphs using Bayesian methods to give
an adaptive sampling method in which the future choice of nodes to be sampled
depends on the samples observed in the past.

Additionally, we study the problem of constructing a sparse graph efficiently
from given data and a kernel function that measures pairwise similarity between
data points. The proposed graph construction method leads to graph based learn-
ing and clustering algorithms that outperform the conventional k-nearest neighbor
methods. We also use the proposed graph construction method to provide an effi-
cient alternative to the well-known bilateral filter by representing an image as a
sparse graph in which the nodes correspond to the pixels in the image.
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Chapter 1

Introduction

A graph is a collection of nodes (or vertices) that are connected together by edges
(or links). The edges can be directed and weighted, where the weight on each edge
represents the affinity between the vertices that it connects as dictated by the
problem at hand. Graphs provide a natural representation for data in many appli-
cation domains, such as social networks, web information analysis, sensor networks
and machine learning [79, 72]. They can also be used to represent conventional
data, such as images and videos [29, 62]. A graph signal is a function defined over
the nodes of a graph. Analyzing graph signals taking into account the underlying
connectivity information is very important in all of these application domains. For
example, in social networks it would be of interest to see how personal attributes
influence formation of communities, in sensor networks analyzing the correlations
between measurements on different sensors may give insights for designing efficient
data gathering algorithms, in learning or ranking problems the goal is to predict
the unknown labels of nodes from a few training node labels based on the similarity
information given by the graph.

Traditional signal processing techniques such as sampling, filtering and wavelet
transforms have proven to be very effective tools for analysis, approximation,
denoising and interpolation of signals in regular Euclidean spaces. Graph sig-
nal processing (GSP) aims to extend these tools to signals on graphs [79, 72]. The
problem of generalizing signal processing techniques to graph signals is non-trivial
since they lie in irregular non-Euclidean spaces. Thus, analogs of even the simplest
signal processing operations such as shifting, downsampling, dilation and filtering
are not easily apparent for graph signals. A key challenge in graph signal process-
ing is to design localized algorithms (in which the output at each vertex depends
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on its local neighborhood) that scale well with the large sizes of graphs that arise
in real world applications.

The main goal of this thesis is to develop a sampling theory for graph signals.
Specifically, we focus on the following questions:

• When can we recover a graph signal from a subset of its samples?

• How to choose a good subset of nodes for sampling?

• How can we efficiently reconstruct the signal from the observed samples?

Application of the proposed theory to the problem of active semi-supervised learn-
ing is explored in detail. We also provide a probabilistic interpretation of graph
sampling. Using this interpretation, we generalize the sampling framework to adap-
tive sampling, in which the future choice of nodes to be sampled depends on the
signal samples observed in the past. A part of the thesis deals with the problem
of constructing a sparse graph efficiently from given data and a kernel function
that measures pairwise similarity between data points. The proposed graph con-
struction method leads to graph based learning and clustering algorithms that
outperform the conventional k-nearest neighbor based methods. We also use the
proposed graph construction method to provide an efficient alternative to the well-
known bilateral filter for image processing. A detailed description of the research
questions studied in this thesis is provided in Section 1.2.

1.1 Related Work

The Fourier transform provides a frequency domain representation for traditional
signals, which allows us to characterize their smoothness. Similarly, in order to ana-
lyze graph signals, it is useful to have a way to represent them in a graph-dependent
basis. Such a basis can be defined using the eigenvectors and eigenvalues of matri-
ces that allow us to measure the variation in a graph signal, taking into account
the connectivity information given by the graph. These matrices include the adja-
cency matrix [73], the Laplacian matrix and its normalized versions [42, 17]. The
representation of a graph signal in the basis given by the eigenvectors of the above
matrices is called its Graph Fourier Transform (GFT). The GFT enables us to for-
malize natural smoothness assumptions on the graph signals and to define spectral
domain filtering on graphs. Based on the GFT, several wavelet filterbank designs
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have been proposed for graph signals, which offer trade-off between vertex and
frequency domain localization [42, 60, 61]. These filter banks have two compo-
nents namely, filtering and downsampling. The filters used in these designs are
in the form of the polynomials of the graph Laplacian. Their frequency response
is localized while admitting localized implementation in the vertex domain. The
downsampling operation involves dropping the samples of the filter output on a
subset of the nodes. An important question in this context is to decide which sam-
ples to drop (or preserve). Methods based on maximum graph cuts and spanning
trees have been proposed to choose the sampling set for filterbank design [59, 63].
The problem of unique reconstruction from the given sampling subset is studied
in [67].

Graph based methods have also been proposed in the machine learning litera-
ture. In many learning problems, unlabeled data is abundant but labels are scarce
and expensive to obtain, often requiring human expertise or elaborate experiments.
Active semi-supervised learning (SSL) is an effective way to minimize the cost of
labeling [95, 76]. As opposed to supervised learning, which only uses the labeled
data to train a classifier, semi-supervised learning techniques learn from both the
labeled data and the inherent clustering present in the unlabeled data to improve
label prediction. An active learning approach allows the learning algorithm to
choose which data points to label, i.e., those that are most helpful in predicting
the rest of the labels. A graph based approach to active SSL begins by constructing
a graph in which the nodes correspond to data points and weighted edges capture
the similarity between them. The cluster assumption [12] says that similar nodes
are more likely to have same labels, i.e., a graph signal given by the labels is
smooth. Different ways of characterizing this smoothness lead to different SSL
methods [5, 94, 81, 4]. A graph based approach to active learning chooses those
nodes for labeling that minimize the expected classification error of the graph
based SSL methods [96, 46] and are well connected to the unlabeled nodes [40].

While many datasets such as social, web and sensor networks are inherently
graph structured, in most applications the graph is constructed from data, where
each node represents a vector in Rd, in order to use graph based approaches. The
most commonly used graph construction heuristics in clustering and SSL are the k-
nearest neighbor and ε-neighborhood methods, which connect each node to a few of
its nearest neighbors. Other methods have been proposed for graph construction in
various contexts such as dimensionality reduction [69] and clustering [25]. Aspects
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of GSP can also be viewed through the lens of the Gaussian Markov random field
model. In this model, the graph Laplacian corresponds to the inverse covariance of
a Gaussian distribution and the problem of graph construction boils down to the
problem of inverse covariance estimation using multiple observations drawn from
the GMRF [66, 55, 87].

Graph signal filtering and sampling have also found applications in adaptive,
edge-aware image processing [29, 56, 26] and compression [62, 11]. In these appli-
cations, an image is represented as a signal on a graph in which nodes correspond
to pixels and links between the nodes capture similarity between them. Many
modern image filtering techniques such as bilateral filtering [83], non-local means
filtering [8], kernel regression [82] etc. can be thought of as filters on an image-
dependent graph with different link weights. Graph wavelets can be applied to
image-dependent graphs to get effective image compression methods [62, 11].

1.2 Research Questions and Contributions

1.2.1 Sampling Theory of Graph Signals

Sampling theory is of immense importance in traditional signal processing, provid-
ing a link between analog and discrete time domains and also serving as a major
component in many discrete time signal processing systems. Fundamentally, it
deals with the problem of recovering a signal from a subset of its samples. It
provides the conditions under which the signal has a unique and stable reconstruc-
tion from the given samples. Conversely, it gives the minimum sampling density
required in order to get a unique and stable reconstruction for a signal that meets
the modeling assumptions. Typically, the signal model is characterized by ban-
dlimitedness in the Fourier domain. For example, the classical Nyquist-Shannon
sampling theorem states that a signal in L2(R) with bandwidth f can be uniquely
reconstructed by its (uniformly spaced) samples if the sampling rate is higher than
2f . Analogous results have been obtained for both regular and irregular sampling
of discrete time signals bandlimited in the DFT domain [36].

Sampling theory of graph signals similarly deals with the problem of recovering
a graph signal from its samples on a subset of nodes of the graph. A graph
signal is said to be ω-bandlimited if its GFT is supported on frequencies in [0, ω].
Bandwidth of a graph signal is defined as the maximum graph frequency for which
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it has a non-zero GFT coefficient. Bandwidth can be thought of as a measure of
smoothness of a graph signal, i.e., a graph signal with small bandwidth is smooth
on the graph. Based on these definitions, we answer the following questions:

1. When can we uniquely recover an ω-bandlimited graph signal from its samples
on a given subset S of the nodes? We give the necessary and sufficient
condition under which this is possible. Using this condition, we provide a
bound on the maximum bandwidth ωc(S) that a signal can have (i.e., the
cutoff frequency) so that it can be uniquely reconstructed from the given
sampling set [57, 1, 2]. The derived bound is GFT-free, i.e., it does not need
computation of the GFT basis and therefore, can be computed efficiently.

2. What is the optimal sampling set for stable bandlimited reconstruction? In
practice, observed samples are noisy. Also, the signals are not necessarily
exactly bandlimited. A poor choice of sampling set can result in a very ill-
conditioned reconstruction operator that amplifies the sample perturbations
caused by noise and model mismatch and thus can lead to large reconstruc-
tion errors. Hence, selecting a sampling set that gives stable reconstructions
is vital. We show that an optimal sampling set, which minimizes the worst
case reconstruction error, is the one that maximizes the bound on the cutoff
frequency for unique recovery [1, 2]. We give a greedy algorithm to find an
approximately optimal sampling set.

3. How to find a bandlimited reconstruction efficiently from the given samples?
A naive method of computing the bandlimited reconstruction from given
samples involves solving a least squares problem in terms of the GFT basis.
However, graphs that model real world data have a large number of nodes.
Storage and processing of such graphs demands decentralized memory and
computation. Computing their GFT basis is not practical. To circumvent
this issue, we develop an efficient GFT-free algorithm for approximate ban-
dlimited reconstruction. The proposed reconstruction is localized, i.e., out-
put at each node depends only on its local neighborhood and thus allows
distributed implementation.
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Probabilistic Interpretation of Sampling Theory

The smoothness assumption on graph signals can also be formalized by assum-
ing that they can be modeled with a Gaussian Random Field (GRF), in which
the covariance depends on the graph structure. Under this model, likelihood of
observing a signal increases as its smoothness on the graph increases. We show that
bandlimited reconstruction is equivalent to MAP inference on this GRF. The prob-
abilistic model allows us to apply the framework of Bayesian experiment design
for sampling set selection. This formulation provides a unified view of various
sampling set selection methods proposed in the literature [46, 54] in the context of
graph based active learning. Specifically, we can show that an optimal sampling
set that maximizes the bound on the cutoff frequency minimizes a function of the
predictive covariance [32].

Adaptive Sampling Using Bayesian Methods

The probabilistic view of graph sampling theory allows us to consider its extension
to adaptive sampling. The problem of finding the optimal sampling set as posed in
the context of sampling theory entails selecting a subset of nodes before observing
the signal. The choice depends only on the graph and is unaffected by observed
signal samples. However, in many applications graph signal samples are observed
sequentially one at a time or in small batches. An important question in this setting
is if and how we can adapt the sampling strategy using the observed samples in
order to improve the future choice of sampling set. Such an adaptation can also
involve modifying the graph based on the observed samples.

In order to get an adaptive sampling method, we propose a different prior for
graph signals using the concept of p-Laplacian, which is more suited for discrete
valued signals that arise in classification problems. Because of the non-Gaussianity
of the proposed prior, the posterior predictive covariance depends on the observed
labels. Applying the framework of Bayesian experiment design to this model gives
us an adaptive sampling scheme, in which the choice of future samples depends on
the labels observed in the past.
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Application: Active Semi-supervised Learning

Many important practical problems can be formulated as graph signal sampling
problems, including active semi-supervised learning [30], sensor placement for envi-
ronment monitoring [52], design of lifting transforms for image/video compres-
sion [11] etc. This thesis, in particular, explores its application to graph based
active semi-supervised learning in detail.

Based on the cluster assumption, the graph signal formed by the node labels
is likely to be smooth and approximately bandlimited. Therefore, selecting the
optimal sampling set for bandlimited reconstruction is a good active learning cri-
terion and the iterative bandlimited reconstruction method gives an efficient label
prediction algorithm [30]. Our proposed adaptive sampling method is useful when
data points can be labeled sequentially or in small batches. We show that the
proposed sampling and reconstruction methods outperform many state of the art
active SSL methods.

1.2.2 Graph Construction from Data

Graph based approaches for learning and clustering begin by constructing a graph
from given data in the form of vectors in Rd and a pairwise similarity kernel.
Constructing a good graph is important for graph based methods to be effective.
A constructed graph should have the following desirable properties:

• Signals of interest should be smooth with respect to the graph since this is
the underlying assumption in most graph based methods;

• Graph construction should be robust to data noise;

• Graph should be sparse for graph based methods to be efficient;

• Graph construction should have low computational complexity and memory
requirement so that it is scalable to large datasets.

We propose an efficient method for graph construction from data, in which each
node represents a vector in Rd. The complexity of our proposed method is of
the same order as that of the k-nearest neighbor method. Motivated by the clus-
ter assumption in semi-supervised learning, we interpret the similarity between
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each pair of vectors, given by a positive definite kernel function, as the covari-
ance between the signal values on the corresponding nodes. We then find a graph
whose Laplacian approximates the inverse of the kernel similarity matrix by rep-
resenting each vector as a linear combination of other vectors using `1 regularized
non-negative kernel regression. The proposed method produces a sparse graph
that is robust to data noise and choice of kernel parameters.

Application: Efficient Alternative to the Bilateral Filter

In addition to graph based clustering and semi-supervised learning, we also consider
the application of our proposed graph construction method for adaptive image
filtering. We focus on the bilateral filter (BF), which is widely used for edge-
preserving smoothing [83]. The weights of the BF are given by a positive definite
similarity kernel that depends on the geometric as wells as photometric distance
between the pixels. The BF can be interpreted as a simple, 1-hop filter on a dense
graph, whose adjacency matrix equals the kernel matrix. Since the kernel matrix
is dense, computational complexity of the BF is high. In order to provide an
efficient alternative to the BF, we use our proposed graph construction method
to construct a much sparser image adaptive graph, whose Laplacian approximates
the inverse of the BF kernel matrix and has similar eigen-structure. We can then
define multi-hop, Laplacian polynomial filters on the proposed sparse graph that
offer similar performance as the BF with lower complexity. Such a sparse image
adaptive graph can also be useful in other applications such as image interpolation
and compression.

1.3 Outline

In this chapter, we described and motivated the research questions studied in this
thesis. In Chapter 2, we define the notions of frequency and bandlimitedness for
graph signals, which allow us to formalize the smoothness assumption on them.
Based on the frequency definition, spectral filtering of graph signals is also defined.
In Chapter 3, the conditions for obtaining a unique and stable bandlimited recon-
struction using samples on a subset of the nodes are derived. Using these condi-
tions, a greedy algorithm for selecting a good sampling set, which leads to a stable
bandlimited reconstruction, is proposed. We also give an efficient and localized
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algorithm for computing an approximate bandlimited reconstruction using a given
subset of samples. In Chapter 4, we apply the proposed methods of sampling set
selection and bandlimited reconstruction to the problem of active semi-supervised
learning. In Chapter 5, a probabilistic interpretation for these methods is given by
defining a Gaussian random field model for the signals based on the graph. Based
on this interpretation, we propose a different prior for graph signals using the con-
cept of p-Laplacian, which is better suited for classification problems. An adaptive
active learning method is developed using the proposed prior. In Chapter 6, we
describe an efficient method for constructing a graph from data, which can then
be used for clustering and semi-supervised learning. The proposed method also
provides an efficient alternative to the bilateral filter. We conclude in Chapter 7
with a discussion of possible directions for future work.
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Chapter 2

Graph Fourier Transform and
Filtering

In this chapter, we introduce spectral domain representations for graph signals.
Such a representation allows us to characterize the smoothness of signals with
respect to the graph. It leads naturally to the concepts of filtering and bandlimit-
edness, which are essential for formulating a sampling theory. The ideas presented
in this chapter are based on the work in [42, 2, 73]. The rest of the chapter is
organized as follows. In Section 2.1, we describe the notation used throughout this
thesis. Section 2.2 defines the graph Fourier transform (GFT) using eigenvalues
and eigenvectors of operators used for computing the variation in a graph signal.
Examples of these variation operators are given in Section 2.3 for both undirected
and directed graphs. In Section 2.4, we define spectral filtering of graph signals
and present a fast method to implement these filters.

2.1 Notation

A graph G = (V , E) is a collection of nodes indexed by the set V = {1, . . . , N} and
connected by edges (or links) E = {(i, j, wij)}, where (i, j, wij) denotes an edge of
weight wij ∈ R+ pointing from node i to node j. We restrict the edge weights to
be non-negative since this ensures that the symmetric graph variation operators
(defined in Section 2.3) are positive semi-definite. The assumption is useful in
many applications of interest. The adjacency matrix W of the graph is an N ×N
matrix with W(i, j) = wij. A graph signal is a function f : V → R defined on
the vertices of the graph (i.e., a scalar value assigned to each vertex). It can be
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represented as a vector f ∈ RN , where fi is the function value on the ith vertex.
For any f ∈ RN and a set S ⊆ {1, . . . , N}, we use fS to denote a sub-vector of f
consisting of components indexed by S. Similarly, for A ∈ RN×N , AS1S2 is used
to denote the sub-matrix of A with rows indexed by S1 and columns indexed by
S2. For simplicity, we denote ASS by AS . The complement of S in V is denoted
by Sc = V r S. Further, we define L2(S) to be the space of all graph signals that
are zero everywhere except possibly on the subset of nodes S, i.e.,

L2(S) = {f ∈ RN | fSc = 0}. (2.1)

2.2 Notions of Frequency for Graph Signals

In order to formulate a sampling theory for graph signals, we need a notion of
frequency that enables us to characterize the level of smoothness of the graph
signal with respect to the graph. In practice this is achieved by defining analogs of
operators such as shift or variation from traditional signal processing, which allow
one to transform a signal or measure its properties while taking into account the
underlying connectivity over the graph [2]. Let L be such an operator in the form
of an N×N matrix. A variation operator creates a notion of smoothness for graph
signals through its spectrum. Specifically, assume that L has eigenvalues |λ1| ≤
. . . ≤ |λN | and corresponding eigenvectors {u1, . . . ,uN}. Then, these eigenvectors
provide a Fourier-like basis for graph signals with the frequencies given by the
corresponding eigenvalues. For each L, one can also define a variation functional
Var(L, f) that measures the variation in any signal f with respect to L. If |λi| ≤
|λj|, then Var(L,ui) ≤ Var(L,uj) (see Figure 2.1).

λ = 0
λ = 0.27 λ = 1.32 λ = 1.59

Figure 2.1: Variation in the eigenvectors of the symmetric normalized Laplacian of
a graph. As λ increases, one can see that variation in corresponding graph signal
(i.e., eigenvector) also increases.

The graph Fourier transform (GFT) f̃ of a signal f is given by its represen-
tation in the above basis, f̃ = U−1f , where U = [u1 . . .uN ]. Note that a GFT
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can be defined using different variation operators. Examples of possible variation
operators are reviewed in Section 2.3. If the variation operator L is symmetric
then its eigenvectors are orthogonal leading to an orthogonal GFT. In some cases,
L may not be diagonalizable. In such cases, one can resort to the Jordan normal
form [73] and use generalized eigenvectors.

A signal f is said to be ω-bandlimited if f̃i = 0 for all i with |λi| > ω. In
other words, GFT of an ω-bandlimited f is supported on frequencies in [0, ω]. If
{λ1, λ2, . . . , λr} are the eigenvalues of L less than or equal to ω in magnitude, then
any ω-bandlimited signal can be written as a linear combination of the correspond-
ing eigenvectors:

f =
r∑
i=1

f̃iui = UVRf̃R, (2.2)

where R = {1, . . . , r}. The space of ω-bandlimited signals is called Paley-Wiener
space and is denoted by PWω(G) [67]. Note that PWω(G) = range(UVR) (i.e., the
span of columns of UVR). Bandwidth of a signal f is defined as the largest among
absolute values of eigenvalues corresponding to non-zero GFT coefficients of f , i.e.,

ω(f) 4= max
i
{|λi| | f̃i 6= 0}. (2.3)

A key ingredient in our theory is an approximation of the bandwidth of a
signal using powers of the variation operator L, as explained in Section 3.3. This
approximation holds for all of the variation operators defined in the next section
on both undirected and directed graphs. Therefore, the proposed theory remains
valid for GFTs based on any of these operators.

2.3 Examples of Variation Operators

2.3.1 Variation on Undirected Graphs

In undirected graphs, the most commonly used variation operator is the combina-
torial Laplacian [16] given by:

L = D−W, (2.4)

where D is the diagonal degree matrix diag{d1, . . . , dN} with di = ∑
j wij. Since,

wij = wji for undirected graphs, this matrix is symmetric. As a result, it has
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real non-negative eigenvalues λi ≥ 0 and an orthogonal set of eigenvectors. The
variation functional associated with this operator is known as the graph Laplacian
quadratic form [79] given by:

VarQF(f) = f>Lf = 1
2
∑
i,j

wij(fi − fj)2. (2.5)

One can normalize the combinatorial Laplacian to obtain the symmetric normal-
ized Laplacian and the (asymmetric) random walk Laplacian given as

Lsym = D−1/2LD−1/2, Lrw = D−1L. (2.6)

Both Lsym and Lrw have non-negative eigenvalues. However, the eigenvectors of
Lrw are not orthogonal as Lrw is not symmetric. The eigenvectors of Lsym, on the
other hand, are orthogonal. The variation functional associated with Lsym has a
nice interpretation as it normalizes the signal values on the nodes by the degree:

VarQFsym(f) = f>Lsymf = 1
2
∑
i,j

wij

 fi√
di
− fj√

dj

2

. (2.7)

2.3.2 Variation on Directed Graphs

Note that variation operators defined for directed graphs can also be used for
undirected graphs since each undirected edge can be thought of as two oppositely
pointing directed edges.

Variation using the adjacency matrix This approach involves considering
the adjacency matrix as a shift operator over the graph (see [73] for details). For
any signal f ∈ RN , the signal Wf is considered as a shifted version of f over the
graph, analogous to the shift operation defined in digital signal processing. Using
this analogy, [73] defines total variation of a signal f on the graph as

VarpTV (f) =
∥∥∥∥∥f − 1

|µmax|
Wf

∥∥∥∥∥
p

, (2.8)

where p = 1, 2 and µmax denotes the eigenvalue of W with the largest magnitude.
It can be shown that for two eigenvalues |µi| < |µj| of W, the corresponding
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eigenvectors vi and vj satisfy VarpTV (vi) < VarpTV (vj). In order to be consistent
with our convention, one can define the variation operator as L = I −W/|µmax|
which has the same eigenvectors as W with eigenvalues λi = 1 − µi/|µmax|. This
allows us to have the same ordering for the graph frequencies and the variations in
the basis vectors. Note that for directed graphs, where W is not symmetric, the
GFT basis vectors will not be orthogonal. Further, for some adjacency matrices,
there may not exist a complete set of linearly independent eigenvectors. In such
cases, one can use generalized eigenvectors in the Jordan normal form of W as
stated before [73].

Variation using the hub-authority model This notion of variation is based
on the hub-authority model [49] for specific directed graphs such as a hyperlinked
environment (e.g., the web). This model distinguishes between two types of nodes.
Hub nodes, subset H, are nodes that point to other nodes, whereas authority
nodes, A, are the nodes to which other nodes point. Note that a node can be both
a hub and an authority simultaneously. In a directed network, we need to define
two kinds of degrees for each node i ∈ V , namely the in-degree pi = ∑

j wji and
the out-degree qi = ∑

j wij. The co-linkage between two authorities i, j ∈ A or two
hubs i, j ∈ H is defined as:

cij =
∑
h∈H

whiwhj
qh

and cij =
∑
a∈A

wiawja
pa

, (2.9)

respectively, and can be thought of as a cumulative link weight between two author-
ities (or hubs). Based on this, one can define a variation functional for a signal f
on the authority nodes [91] as:

VarA(f) = 1
2
∑
i,j∈A

cij

(
fi√
pi
− fj√

pj

)2

. (2.10)

In order to write the above functional in matrix form, define T = D−1/2
q WD−1/2

p ,
where D−1/2

p and D−1/2
q are diagonal matrices with

(D−1/2
p )

ii
=


1√
pi

if pi 6= 0

0 otherwise,
(D−1/2

q )
ii

=


1√
qi

if qi 6= 0

0 otherwise.
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It is possible to show that VarA(f) = f>LAf , where LA = I−T>T [91]. A variation
functional for a signal f on the hub nodes can be defined in the same way as (2.10)
and can be written in a matrix form as VarH(f) = f>LHf , where LH = I−TT>.
A convex combination Varγ(f) = γVarA(f) + (1 − γ)VarH(f), with γ ∈ [0, 1], can
be used to define a variation functional for f on the whole vertex set V . Note that
the corresponding variation operator Lγ = γLA + (1 − γ)LH is symmetric and
positive semi-definite. Hence, eigenvectors and eigenvalues of Lγ can be used to
define an orthogonal GFT similar to the undirected case, where the variation in
the eigenvector increases as the corresponding eigenvalue increases.

Variation using the random walk model Every directed graph has an asso-
ciated random walk with a probability transition matrix P given by:

Pij = wij∑
j wij

. (2.11)

By the Perron-Frobenius theorem, if P is irreducible then it has a stationary
distribution π which satisfies πP = π [45]. One can then define the following
variation functional for signals on directed graphs [17, 92]:

Varrw(f) = 1
2
∑
i,j

πiPij

(
fi√
πi
− fj√

πj

)2

. (2.12)

Note that if the graph is undirected, the above expression reduces to (2.7) since, in
that case, πi = di/

∑
j dj. Intuitively, πiPij can be thought of as the probability

of transition from node i to j in the steady state. We expect it to be large if i
is similar to j. Thus, a big difference in signal values on nodes similar to each
other contributes more to the variation. A justification for the above functional
in terms of generalization of normalized cut to directed graphs is given in [17, 92].
Let Π = diag{π1, . . . ,πn}. Then Varrw(f) can be written as f>Lf , where

L = I− 1
2
(
Π1/2PΠ−1/2 + Π−1/2P>Π1/2

)
. (2.13)

It is easy to see that the above L is a symmetric positive semi-definite matrix.
Therefore, its eigenvectors can be used to define an orthonormal GFT, where the
variation in the eigenvector increases as the corresponding eigenvalue increases.
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Table 2.1 summarizes different choices of GFT bases based on the above varia-
tion operators. Once an appropriate definition of GFT is chosen depending on the
application, we can define the concept of filtering in that frequency domain.

2.4 Spectral Filtering

Suppose that the GFT is defined using a variation operator L = UΛU−1, where
U = [u1, . . . ,uN ] is a matrix whose columns are the eigenvectors of L and Λ =
diag{λ1, . . . , λN} is a diagonal matrix of corresponding eigenvalues. A graph filter
is an operator of the form P = Uh(Λ)U−1, where h : R → R is its spectral
response. It acts on an input signal f by modulating its GFT coefficients f̃ to
obtain the output GFT coefficients ỹl = h(λl)x̃l, l = 1, . . . , N . Taking the
inverse GFT of ỹ gives the output y,

y = Uh(Λ)U−1x. (2.14)

A naive application of a graph filter using (2.14) requires explicit computation of
eigenvalues and eigenvectors of L which has a computational complexity of O(N3)
and space complexity of O(N2). This may not be practical for graphs with very
large number of nodes N , which commonly arise in applications.

Fortunately these graphs are often sparse, i.e., the number of edges in the graph
is of the same order as the number of nodes, |E| = O(N). Therefore, the number of
non-zero entries in L is also O(N). In such cases there exists a much more efficient
way for approximate application of a graph filter [42].

2.4.1 Polynomial Approximation for Fast Filtering

In order to circumvent eigen-decomposition of L for filtering, we approximate the
spectral response h(λ) of the filter P by a polynomial hpoly(λ) = ∑k

j=1 ajλ
j. This

allows us to represent the filter as

P ≈ Ppoly =
k∑
j=1

ajLj. (2.15)

Computing Ppolyx involves accessing L only through matrix-vector multiplica-
tions. If L is sparse, then each of these multiplications can be implemented with
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a complexity that is linear in N . Furthermore, it can be shown that a degree k
polynomial filter is k-hop localized [60], i.e., for any two nodes u, v if v is not in
the k-hop neighborhood of u then Ppoly(u, v) = 0.

We approximate h(λ) with the truncated Chebyshev polynomials in the interval
[0, λN ] as proposed in [42]. Chebyshev polynomials are a good proxy for the mini-
max polynomials that minimize a bound on ‖P−Ppoly‖. If the spectral response to
be approximated is not a continuous function of λ, then it is better to approximate
it with a smooth, continuous function first, in order to ensure a good polynomial
approximation.

2.5 Summary

In this chapter, we formally defined graph signals and their spectral representation.
We introduced variation operators which allow us to measure the variation in a
signal with respect to the connectivity information given by the graph. We gave
several examples of variation operators for both undirected and directed graphs.
We defined the graph Fourier transform (GFT) using eigenvalues and eigenvectors
of these operators. Based on the GFT, we defined the filtering operation for graph
signals and described an efficient way to implement it. The framework of sampling
theory developed in subsequent chapters is built on the basics discussed in this
chapter.
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Chapter 3

Sampling Set Selection and
Reconstruction of Graph Signals

In this chapter, we begin our study of sampling theory in earnest. As explained in
Chapter 2, the smoothness assumption on a graph signal is formalized in terms of
bandlimitedness in the GFT domain. Based on this signal model, we consider the
following questions:

1. Given a subset of nodes S (⊆ V) to be sampled, what is the maximum
bandwidth that a signal f can have so that it can be uniquely and stably
reconstructed from its samples fS?

2. Given the signal bandwidth, what is the best subset of nodes to be sampled
for a unique and stable reconstruction?

Stability is an important issue in the choice of sampling set. In practice, signals are
only approximately bandlimited and/or samples are noisy. Therefore, selecting a
good sampling set, which makes the resulting reconstructions robust against noise
and model mismatch, is very important. We also consider the problem of finding
a bandlimited reconstruction of a graph signal using observed samples efficiently.

Most recent approaches for formulating a sampling theory for graph signals
involve computing a portion of the graph Fourier basis. However, as discussed
in Chapter 2, when the graph of interest is large, computing and storing multi-
ple eigenvectors of its variation operator, L, increases the numerical complexity
and memory requirement significantly. Therefore, it is desirable to have GFT-free

Work in this chapter was published in [1, 2, 58].

19



methods for sampling set selection and reconstruction that access L only through
matrix-vector multiplication. To achieve this, we define graph spectral proxies
based on powers of the variation operator in order to approximate the bandwidth
of graph signals. These proxies can be computed using localized operations in a
distributed fashion with minimal storage cost, thus forming the key ingredient of
our approach. Using these proxies, we give an approximate bound on the maximum
bandwidth of graph signals (cutoff frequency) that guarantees unique reconstruc-
tion with the given samples. We show that this bound also gives us a measure
of reconstruction stability for a given sampling set. We formulate the problem of
optimizing the sampling set by greedily adding nodes to the sampling set in order
to maximize the bound. of given size. We also provide an efficient, iterative ban-
dlimited reconstruction algorithm using polynomial filters defined in Chapter 2.
Thus, our formulation, despite being spectrally motivated, is GFT-free.

The rest of this chapter is organized as follows: Section 3.1 reviews some of the
prior work on sampling set selection for graph signal reconstruction. In Section 3.2,
we consider the problems of uniqueness and stability of bandlimited reconstruc-
tion and sampling set selection, assuming that the GFT basis is known explicitly.
Section 3.3 addresses these problems using graph spectral proxies. The problem of
GFT-free bandlimited reconstruction using observed samples is considered in Sec-
tion 3.4. In Section 3.5, we discuss the time and space complexity of the proposed
algorithms. The effectiveness of our approach is demonstrated through numerical
experiments in Section 3.6. We conclude this chapter in Section 3.7.

3.1 Related Work

Sampling theory for graph signals was first studied in [67], where a sufficient con-
dition for unique recovery of bandlimited signals is stated for a given sampling set.
The necessary and sufficient condition for uniqueness of bandlimited reconstruc-
tion with given sampling set are also given in [77, 14] in a form that assumes that
the GFT basis is explicitly known. Previous methods for sampling set selection
in graphs can be classified into two types, spectral-domain methods and vertex-
domain methods, which are summarized below.
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Spectral-domain approaches

Spectral-domain approaches use set selection criteria that are motivated by the
bandlimited signal model. For example, the work of [77] requires computation
and processing of the first r eigenvectors of the graph Laplacian to construct a
sampling set that guarantees unique (but not necessarily stable) reconstruction for
a signal spanned by those eigenvectors. Similarly, a greedy algorithm for selecting
stable sampling sets for a given bandlimited space is proposed in [14]. It considers
a spectral-domain criterion, using minimum singular values of submatrices of the
graph Fourier transform matrix, to minimize the effect of sample noise in the worst
case. It is also possible to generalize this approach using ideas from the theory
of optimal experiment design [47] to select sampling sets that minimize different
measures of reconstruction error when the samples are noisy. Greedy algorithms
can then be used to find sets which are approximately optimal with respect to
these criteria.

Vertex-domain approaches

Alternative approaches to sampling set selection do not consider graph spectral
information and instead rely on vertex-domain characteristics. Examples include
[59] and [63], which select sampling sets based on maximum graph cuts and span-
ning trees, respectively. However, these methods are better suited for design-
ing downsampling operators required in bipartite graph multiresolution trans-
forms [60, 61]. Specifically, they do not consider the issue of optimality of sampling
sets in terms of quality of bandlimited reconstruction. Further, it can be shown that
the maximum graph-cut based sampling set selection criterion is closely related to
a special case of our proposed approach.

3.2 Sampling Theory for Graph Signals

In this section, we address the issue of uniqueness and stability of bandlimited
graph signal reconstruction and discuss different optimality criteria for sampling
set selection assuming that the GFT basis is known explicitly. The uniqueness
conditions in this section are equivalent to the ones in [77, 14, 24]. However,
the specific form in which we present these conditions lets us give a GFT-free
definition of cutoff frequency. This, together with the spectral proxies defined

21



later in Section 3.3, allows us to circumvent the explicit computation of the graph
Fourier basis to ensure uniqueness and find a good sampling set.

The results in this section are useful when the graphs under consideration are
small and thus computing the spectrum of their variation operators is computa-
tionally feasible. They also serve as a guideline for tackling the aforementioned
questions when the graphs are large and computation and storage of the graph
Fourier basis is impractical.

3.2.1 Uniqueness of Reconstruction

In order to give a necessary and sufficient condition for unique identifiability of
any bandlimited signal f ∈ PWω(G) (defined in Section 2.2) from its samples fS
on the sampling set S, we first state the concept of uniqueness set [67].

Definition 1 (Uniqueness set). A subset of nodes S is a uniqueness set for the
space PWω(G) iff xS = yS implies x = y for all x,y ∈ PWω(G).

Unique identifiability requires that no two bandlimited signals have the same
samples on the sampling set as ensured by the following theorem [1].

Theorem 1 (Unique sampling). S is a uniqueness set for PWω(G) if and only if
PWω(G) ∩ L2(Sc) = {0}.

Proof. Given PWω(G) ∩ L2(Sc) = {0}, assume that S is not a uniqueness set.
Then, there exist f , g ∈ PWω(G), f 6= g such that fS = gS . Hence, we have
f − g ∈ L2(Sc), f − g 6= 0. Also, f − g ∈ PWω(G) due to closure. But this is a
contradiction as PWω(G)∩L2(Sc) = {0}. Therefore, S must be a uniqueness set.

Conversely, we are given that S is a uniqueness set. Let φ be any signal in
PWω(G)∩L2(Sc). Then, for any f ∈ PWω(G), we have g = f + φ ∈ PWω(G) and
f(S) = g(S). But since S is a uniqueness set, one must have f = g, which implies
φ = 0. Therefore, PWω(G) ∩ L2(Sc) = {0}.

Let S be a matrix whose columns are indicator functions for nodes in S. Note
that S> : RN → R|S| is the sampling operator with S>f = fS . Theorem 1 essen-
tially states that no signal in PWω(G) is in the null space N (S>) of the sam-
pling operator. Let λ1 ≤ . . . ≤ λN be the graph frequencies corresponding to
the inverse GFT matrix U = [u1, . . . ,uN ]. Define R = {1, . . . , r}, where λr is
the largest graph frequency less than ω. Any f ∈ PWω(G) can be written as
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f = UVRc. Thus, for unique sampling of any signal in PWω(G) on S, we need
S>UVRc = USRc 6= 0 ∀ c 6= 0. This observation leads to the following corollary
(which is also given in [13]).

Corollary 1. S is a uniqueness set for PWω(G) iff USR has full column rank.

If USR has a full column rank, then a unique reconstruction f̂ ∈ PWω(G) can
be obtained by finding the unique least squares solution to fS = USRc:

f̂ = UVRU+
SRfS , (3.1)

where U+
SR = (U>SRUSR)−1U>SR is the Moore-Penrose pseudo-inverse of USR. The

above reconstruction formula is also known as consistent reconstruction [24] since
it keeps the observed samples unchanged1, i.e., f̂S = fS . Moreover, it is easy to see
that if the original signal f ∈ PWω(G), then f̂ = f .

3.2.2 Issue of Stability and Choice of Sampling set

Note that selecting a sampling set S for PWω(G) amounts to selecting a set of
rows of UVR. It is always possible to find a sampling set of size r = dim(PWω(G))
which uniquely samples the signals in PWω(G) as proven below.

Proposition 1. For any PWω(G), there always exists a uniqueness set S of size
|S| = r, where r = dim(PWω(G)).

Proof. Since {ui}ri=1 are linearly independent, the matrix UVR has full column
rank equal to r. Further, since the row rank of a matrix equals its column rank,
we can always find a linearly independent set S of r rows such that USR has full
rank that equals r, thus proving our claim.

In most cases picking r nodes randomly gives a full rank USR. However, all
sampling sets of given size are not equally good. A bad choice of S can give an
ill-conditioned USR which in turn leads to an unstable reconstruction f̂ . Stability
of reconstruction is important when the true signal f is only approximately ban-
dlimited (which is the case for most signals in practice) or when the samples are

1Existence of a sample consistent reconstruction in PWω(G) requires that PWω(G)⊕L2(Sc) =
RN [24].
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noisy. The reconstruction error in this case depends on the noise and the model
mismatch as well as the choice of sampling set. The best sampling set achieves the
smallest reconstruction error.

Effect of noise

We first consider the case when the observed samples are noisy. Let f ∈ PWω(G)
be the true signal and n ∈ R|S| be the noise introduced during sampling. The
observed samples are then given by yS = fS + n. Using (3.1), we get the following
reconstruction

f̂ = UVRU+
SRfS + UVRU+

SRn. (3.2)

Since f ∈ PWω(G), UVRU+
SRfS = f . The reconstruction error equals e = f̂ − f =

UVRU+
SRn. If we assume that the entries of n are i.i.d. with zero mean and unit

variance, then the covariance matrix of the reconstruction error is given by

E = E[ee>] = UVR(U>SRUSR)−1U>VR. (3.3)

Different costs can be defined to measure the reconstruction error as a function of
the error covariance matrix. These cost functions are based on optimal design of
experiments [6]. If we define the optimal sampling set Sopt of size m, as the set
that minimizes the mean squared error, then

SA-opt = arg min
|S|=m

Tr[E] = Tr[(U>SRUSR)−1]. (3.4)

This is analogous to the so-called A-optimal design. Similarly, minimizing the
maximum eigenvalue of the error covariance matrix leads to the E-optimal design.
The optimal sampling set with this criterion is given by

SE-opt = arg min
|S|=m

λmax(E) = arg max
|S|=m

σmin(USR), (3.5)

where σmin(.) denotes the smallest singular value of a matrix. This can be thought
of as a sampling set that minimizes the worst case reconstruction error. Note
that the above criterion is equivalent to the one proposed in [14]. Both A- and
E-optimality criteria lead to combinatorial problems, but it is possible to develop
greedy approximate solutions to these problems.
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So far we assumed that the true signal f ∈ PWω(G) and hence, UVRU+
SRfS = f .

However, in most applications, the signals are only approximately bandlimited.
The reconstruction error in such a case is analyzed next.

Effect of model mismatch

Let P = UVRU>VR be the projector for PWω(G) and Q = SS> be the projector
for L2(S). Assume that the true signal is given by f = f? + ∆f , where f? = Pf is
the bandlimited component of the signal and ∆f = P⊥f captures the “high-pass
component” (i.e., the model mismatch). If we use (3.1) for reconstructing f , then
a tight upper bound on the reconstruction error [24] is given by

‖f − f̂‖ ≤ 1
σmin(USR)‖∆f‖. (3.6)

We define an optimal sampling set Sopt of size m for PWω(G) as the set that
minimizes the worst case reconstruction error. Thus, to find this set we need to
solve a similar problem as (3.5).

The quantity σmin(USR) has a nice geometric interpretation. σmin(USR) equals
the cosine of the maximum angle between subspaces PWω(G) and L2(S), which is
defined as

cos(θmax) = inf
f∈PWω(G),‖f‖=1

‖Qf‖. (3.7)

σmin(USR) = cos(θmax) > 0 when the uniqueness condition in Theorem 1 is satisfied
and the error is bounded. Intuitively, the above equation says that for the worst
case error to be minimum, the sampling and reconstruction subspaces should be
as aligned as possible.

As stated before, the problem of finding S that maximizes σmin(USR) is com-
binatorial. It is possible to define a greedy algorithm to get an approximate solu-
tion [14]. A simple greedy heuristic to approximate Sopt is to perform column-wise
Gaussian elimination over UVR with partial row pivoting. The indices of the pivot
rows in that case form a good estimate of Sopt in practice.

The methods described above require computation of many eigenvectors of the
variation operator L. We circumvent this issue in the next section, by presenting
GFT-free techniques that allow us to express the condition for unique bandlimited
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reconstruction and methods for sampling set selection via simple operations using
the variation operator.

3.3 Sampling Set Selection Using
Graph Spectral Proxies

Our proposed approach for sampling set selection is obtained by defining graph
spectral proxies based on powers of L. These spectral proxies do not require eigen-
decomposition of L and still allow us to define a measure of quality of sampling
sets. As we will show, a sampling set optimal with respect to these spectral proxies
ensures a small reconstruction error bound. The following discussion holds for any
choice of the variation operator L in Table 2.1.

3.3.1 Cutoff Frequency

In order to obtain a measure of quality for a sampling set S, we first find the cutoff
frequency associated with it, which can be defined as the largest frequency ω such
that S is a uniqueness set for PWω(G). It follows from Theorem 1 that, for S
to be a uniqueness set of PWω(G), ω needs to be less than the minimum possible
bandwidth that a signal in L2(Sc) can have. This would ensure that no signal from
L2(Sc) can be a part of PWω(G). Thus, the cutoff frequency ωc(S) for a sampling
set S can be expressed as:

ωc(S) 4= min
φ∈L2(Sc), φ 6=0

ω(φ). (3.8)

To use the equation above, we first need a tool to approximately compute the
bandwidth ω(φ) of any given signal φ without computing the graph Fourier coef-
ficients explicitly. Our proposed method for bandwidth estimation is based on the
following definition:

Definition 2 (Graph Spectral Proxies). For any signal f 6= 0, we define its kth

spectral proxy ωk(f) with k ∈ Z+ as

ωk(f) 4=
(
‖Lkf‖
‖f‖

)1/k

. (3.9)
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For an operator L with real eigenvalues and eigenvectors, ωk(f) can be shown to
increase monotonically with k:

∀f , k1 < k2 ⇒ ωk1(f) ≤ ωk2(f). (3.10)

These quantities are bounded from above, as a result, limk→∞ ωk(f) exists for all
f . Consequently, it is easy to prove that if ω(f) denotes the bandwidth of a signal
f , then

∀k > 0, ωk(f) ≤ lim
j→∞

ωj(f) = ω(f). (3.11)

Note that (3.11) also holds for an asymmetric L that has complex eigenvalues and
eigenvectors. The proofs of (3.10) and (3.11) are provided in Appendix A. These
properties give us an important insight: as we increase the value of k, the spectral
proxies tend to have a value close to the actual bandwidth of the signal, i.e., they
essentially indicate the frequency localization of the signal energy. Therefore, using
ωk(φ) as a proxy for ω(φ) (i.e., bandwidth of φ) is justified and leads us to define
the cut-off frequency estimate of order k as

Ωk(S) 4= min
φ∈L2(Sc)

ωk(φ) = min
φ∈L2(Sc)

(
‖Lkφ‖
‖φ‖

)1/k

. (3.12)

Using the definitions of Ωk(S) and ωc(S) along with (3.10) and (3.11), we conclude
that for any k1 < k2:

ωc(S) ≥ lim
k→∞

Ωk(S) ≥ Ωk2(S) ≥ Ωk1(S). (3.13)

Using (3.13) and (3.8), we now state the following proposition:

Proposition 2. For any k, S is a uniqueness set for PWω(G) if, ω < Ωk(S).
Ωk(S) can be computed from (3.12) as

Ωk(S) =
[
min
ψ

ψt((L>)kLk)Scψ

ψtψ

]1/2k

= (σ1,k)1/2k, (3.14)
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where σ1,k denotes the smallest eigenvalue of the reduced matrix ((L>)kLk)Sc. Fur-
ther, if ψ1,k is the corresponding eigenvector, and φ?k minimizes ωk(φ) in (3.12)
(i.e., it approximates the smoothest possible signal in L2(Sc)), then

φ?k(Sc) = ψ1,k, φ?k(S) = 0. (3.15)

We note from (3.13) that in order to get a better estimate of the true cut-off
frequency, one simply needs a higher k. Therefore, there is a trade-off between
accuracy of the estimate on the one hand, and increased complexity and reduced
numerical stability on the other (that arise by taking higher powers of L). The
benefit of using a higher value of k is experimentally demonstrated in Section 3.6
(see also Sections 4.2.2 and 4.4.4). The issue of increase in the complexity due to
higher k is discussed in detail in [2].

3.3.2 Best Sampling Set of Given Size

As shown in Proposition 2, Ωk(S) is an estimate of the smallest bandwidth that a
signal in L2(Sc) can have and any signal in PWω(G) is uniquely sampled on S if
ω < Ωk(S). Intuitively, we would like the projection of L2(Sc) along PWω(G) to be
as small as possible. Based on this intuition, we propose the following optimality
criterion for selecting the best sampling set of size m:

Sopt = arg max
|S|=m

Ωk(S). (3.16)

In order to motivate the criterion above, we relate Ωk(S) to σmin(USR) from (3.5)
and (3.6). Let P denote the projector for PWω(G). Then it can be shown that [50]:

σmin(USR) = inf
f∈L2(Sc),‖f‖=1

‖f −Pf‖ =
√ ∑
i: ω<λi

|f̃ ?i |2 (3.17)

where f? ∈ L2(Sc) is the minimizer of the left hand side and f̃ ?i denotes its i-th
GFT coefficient. Note that ω(f?) ≥ Ωk(S) since Ωk(S) is the smallest bandwidth
that any signal in L2(Sc) can have. Therefore,

σmin(USR) ≥
√ ∑
i: ω<λi≤Ωk(S)

|f̃ ?i |2. (3.18)
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The equation above shows that maximizing Ωk(S) increases the lower bound
σmin(USR). This is desirable since it leads to reduction in the upper bound on
the reconstruction error (see (3.5) and (3.6)).

We now show that Ωk(S) also arises in the bound on the reconstruction error
when the reconstruction is obtained by variational energy minimization:

f̂m = arg min
y∈RN

‖Lmy‖ subject to yS = fS . (3.19)

It was shown in [68] that if f ∈ PWω(G), then the reconstruction error ‖f̂m−f‖/‖f‖,
for a given m, is upper-bounded by 2(ω/Ω1(S))m. This bound is suboptimal and
can be improved by replacing Ω1(S) with Ωk(S) (which, from (3.13), is at least as
large as Ω1(S)) for any k ≤ m, as shown in the following theorem:

Theorem 2. Let f̂m be the solution to (3.19) for a signal f ∈ PWω(G). Then, for
any k ≤ m,

‖f̂m − f‖ ≤ 2
(

ω

Ωk(S)

)m
‖f‖. (3.20)

Proof. Note that (f̂m − f) ∈ L2(Sc). Therefore, from (3.12)

‖f̂m − f‖ ≤ 1
(Ωm(S))m‖L

m(f̂m − f)‖

≤ 1
(Ωm(S))m (‖Lmf̂m‖+ ‖Lmf‖) (3.21)

≤ 2
(Ωm(S))m‖L

mf‖ (3.22)

≤ 2
(
ωm(f)
Ωm(S)

)m
‖f‖ (3.23)

≤ 2
(

ω

Ωk(S)

)m
‖f‖.

(3.21) follows from triangle inequality. (3.22) holds because f̂m minimizes ‖Lmf̂m‖
over all sample consistent signals. (3.23) follows from the definition of ωm(f) and
the last step follows from (3.11) and (3.13).

Note that for the error bound in (3.20) to go to zero as m→∞, ω must be less
than Ωk(S). Thus, increasing Ωk(S) allows us to reconstruct signals in a larger
bandlimited space using the variational method. Moreover, for a fixed m and k,
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a higher value of Ωk(S) leads to a lower reconstruction error bound. The optimal
sampling set Sopt

k in (3.16) essentially minimizes this error bound.

3.3.3 Finding the Best Sampling Set

The problem posed in (3.16) is combinatorial because we need to compute Ωk(S)
for every possible subset S of size m. We use a greedy algorithm to find an
approximately optimal set. At each iteration, this algorithm samples one node
from the unsampled set that leads to the largest increase in the cutoff frequency
estimate Ωk(S) (see Algorithm 1). The greedy selection of nodes can be further
accelerated using a gradient descent based method described in [1]. Intuitively,
the proposed greedy method selects a node farthest from the previously sampled
nodes at each iteration so that unsampled nodes are well connected to the sampled
nodes (see Section 4.2.2).

One can show that the cutoff frequency estimate Ωk(S) associated with a sam-
pling set can only increase (or remain unchanged) when a node is added to it. This
is stated more formally in the following proposition.

Proposition 3. Let S1 and S2 be two subsets of nodes of G with S1 ⊆ S2. Then
Ωk(S1) ≤ Ωk(S2).

This turns out to be a straightforward consequence of the eigenvalue interlacing
property for symmetric matrices.

Theorem 3 (Eigenvalue interlacing [41]). Let B be a symmetric n×n matrix. Let
R = {1, 2, . . . , r}, for 1 ≤ r ≤ n− 1 and Br = BR. Let λk(Br) be the k-th largest
eigenvalue of Br. Then the following interlacing property holds:

λr+1(Br+1) ≤ λr(Br) ≤ λr(Br+1) ≤ . . . ≤ λ2(Br+1) ≤ λ1(Br) ≤ λ1(Br+1).

The above theorem implies that if S1 ⊆ S2, then Sc2 ⊆ Sc1 and thus,
λmin

[(
(L>)kLk

)
Sc

1

]
≤ λmin

[(
(L>)kLk

)
Sc

2

]
.

3.4 GFT-free Bandlimited Reconstruction

Exact bandlimited reconstruction with observed graph signal samples can be
obtained using (3.1) if the GFT basis is known. In this section, we present an
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Algorithm 1 Greedy heuristic for estimating Sopt

Input: G = {V , E}, L, number of samples m, some k ∈ Z+

Initialize: S = {∅}.
1: while |S| < m do

2: v ← arg max
i∈Sc

Ωk(S+i), where S+i = S ∪ {i}.

3: S ← S ∪ {v}.
4: end while
5: Sest ← S.

efficient GFT-free method for computing an approximate bandlimited reconstruc-
tion. Our formulation begins with an iterative algorithm for exact bandlimited
reconstruction that uses an ideal low pass filter in the GFT domain (i.e., a projec-
tor of PWω(G)). Although the ideal low pass filtering operation requires knowing
the GFT basis, it is amenable to approximation using polynomial filters described
in Section 2.4. This leads to an iterative GFT-free method for approximate ban-
dlimited reconstruction.

Iterative Algorithm for Exact Bandlimited Reconstruction

The proposed iterative method is based on the Papoulis-Gerchberg algorithm [65,
35, 74] in classical signal processing, which is used to reconstruct a band-limited
signal from irregular samples. It is a special case of the projection onto convex sets
(POCS) [85] method used to find a point in the intersection of two closed convex
sets. The convex sets of interest in the present context are:

C1 = {x : S>x = S>f} (3.24)
C2 = PWω(G). (3.25)

A sample consistent bandlimited reconstruction f̂ lies in the intersection of C1 and
C2. The proposed algorithm aims to finds this reconstruction by projecting an
initial guess alternately on C1 and C2 (see Figure 3.1).

The projector for C1 is the low pass graph filter P : RN → PWω(G). It can be
written as P = Uh(Λ)U−1, where U is the inverse GFT matrix, Λ is the diagonal
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Figure 3.1: Iterative reconstruction using POCS

matrix of corresponding graph frequencies and the spectral response h : R→ R is
given by

h(λ) =


1 if λ < ω

0 if λ ≥ ω.

(3.26)

The projector Q : RN → C2 for C2 simply substitutes the samples of any signal x
on S by fS . It can be written as

Qx = x + SS>(fdu − x), (3.27)

where fdu = SS>f is the graph signal obtained by inserting zeros at the unsampled
nodes. With this notation the proposed iterative algorithm can be written as

f0 = Pfdu
fk+1 = PQfk. (3.28)

At each iteration the algorithm resets the signal samples on S to the actual given
samples and then projects the signal onto the low-pass space PWω(G).

Convergence

Let us define an operator T = PQ. It has been shown in [85] that an iterative
algorithm of the form xk+1 = Txk converges to a fixed point of T if

1. T is non-expansive, i.e., ‖Tx−Ty‖ ≤ ‖x− y‖

2. T is asymptotically regular, i.e., ‖Txk+1 −Txk‖ → 0 as k →∞.

P is a bandlimiting operator and hence, is non-expansive. Q is non expansive
because ‖Qx −Qy‖ = ‖(I − SS>)(x − y)‖ ≤ ‖x − y‖. Since both P and Q are
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Figure 3.2: Spectral response of an approximate polynomial filter of degree 10.
ω = 1, α = 8.

non-expansive, T is also non-expansive. Asymptotic regularity of T can also be
proved as shown in [74]. Note that if f̂ is a fixed point of T then f̂ ∈ C1 ∩ C2.
Therefore, the proposed algorithm converges to a sample consistent bandlimited
reconstruction (assuming it exists).

Approximate Iterative Reconstruction with Polynomial Filter

Exact computation of P requires knowing the GFT. In order to circumvent the
GFT computation, we approximate P with a Chebyshev polynomial in L as
explained in Section 2.4. This gives us an approximate and very efficient GFT-free
bandlimited reconstruction algorithm2. Since a degree k polynomial graph filter is
k-hop localized, the proposed algorithm also allows for distributed implementation.

Note that h(λ) in (3.26) is not a continuous function of λ. In order to ensure
a good Chebyshev polynomial approximation, we can replace h(λ) with a smooth,
continuous sigmoid-like function (see Figure 3.2)

h′(λ) = 1
(1 + exp(α(λ− ω))) . (3.29)

Due to these approximations in the filter, the reconstructed signal obtained by
our method is not exactly bandlimited. However, in many applications (e.g., see
Chapter 4) we do not expect the signals to be exactly bandlimited anyway. Thus,
using a filter with slowly decaying spectral response may end up improving the
result in such applications.

2Further acceleration of the proposed method is possible using the conjugate gradient
approach. See [31] for details
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3.5 Complexity

We now discuss the time and space complexity of our algorithms. The most com-
plex step in the greedy procedure for maximizing Ωk(S) is computing the small-
est eigen-pair of (Lk)Sc (see [2] for details). This can be accomplished using an
iterative Rayleigh-quotient minimization based algorithm. Specifically, the locally-
optimal pre-conditioned conjugate gradient (LOPCG) method [51] is suitable for
this approach. Note that (Lk)Sc can be written as ISc,V .L.L . . .L.IV,Sc , hence the
eigenvalue computation can be broken into atomic matrix-vector products: L.x.
Typically, the graphs encountered in learning applications are sparse, leading to
efficient implementations of L.x. If |L| denotes the number of non-zero elements
in L, then the complexity of the matrix-vector product is O(|L|). The complexity
of each eigen-pair computation for (Lk)Sc is then O(k|L|r), where r is a constant
equal to the average number of iterations required for the LOPCG algorithm (r
depends on the spectral properties of L and is independent of its size |V|). The
complexity of the label selection algorithm then becomes O(k|L|mr), where m is
the number of labels requested.

In the iterative reconstruction algorithm, since we use polynomial graph filters,
once again the atomic step is the matrix-vector product L.x. The complexity of
this algorithm can be given as O(|L|pq), where p is the order of the polynomial
used to design the filter and q is the average number of iterations required for
convergence. Again, both these parameters are independent of |V|. Thus, the
overall complexity of our algorithm is O(|L|(kmr+pq)). In addition, our algorithm
has major advantages in terms of space complexity: since the atomic operation at
each step is the matrix-vector product L.x, we only need to store L and a constant
number of vectors. Moreover, the structure of the Laplacian matrix allows one to
perform the aforementioned operations in a distributed fashion. This makes it well-
suited for large-scale implementations using software packages such as GraphLab
[53].
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3.6 Experiments

3.6.1 Sampling Set Selection

In this experiment, we numerically evaluate the performance of the proposed sam-
pling set selection. The experiment involves comparing the reconstruction errors
of different sampling set selection algorithms in conjunction with exact consistent
bandlimited reconstruction obtained using (3.1). We compare our approach with
the following methods:

M1: This method [14] uses a greedy algorithm to approximate the S that max-
imizes σmin(USR). Consistent bandlimited reconstruction (3.1) is then used
to estimate the unknown samples.

M2: At each iteration i, this method [77] finds the representation of ui as∑
j<i βjuj + ∑

u/∈S αu1u, where 1u is the delta function on u. The node v
with maximum |αv| is sampled. Reconstruction is done using (3.1).

Both the above methods assume that a portion of the frequency basis is known and
the signal to be recovered is exactly bandlimited. As a baseline, we also compare
all sampling set selection methods against uniform random sampling.

We consider an undirected Erdös-Renyi random graph (unweighted) with 1000
nodes and connection probability 0.01. The graph signal to be sampled is exactly
bandlimited with r = dimPWω(G) = 50 and non-zero GFT coefficients are gen-
erated from N (1, 0.52). The samples are noisy with additive iid Gaussian noise
such that the SNR equals 20dB. We generate 50 graph signals using the above
model, use the sampling sets obtained from the all the methods to perform recon-
struction and plot the mean of the mean squared error (MSE) for different sizes
of sampling sets. For our algorithm, we set the value of k to 2, 8 and 14. The
result is illustrated in Figure 3.3. Note that when the size of the sampling set is
less than r = 50, the reconstruction error is very high. This is expected, because
the uniqueness condition is not satisfied by the sampling set. Beyond |S| = r, we
observe that our sampling method leads to smaller reconstruction error in most
cases. This indicates that our method is robust to noise and model mismatch. Uni-
form random sampling performs very badly as expected, due to lack of stability
considerations. We also observe that using higher values of k in our method leads
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Figure 3.3: Reconstruction MSE vs. number of samples. The large reconstruction
errors for |S| < 50 arise due to non-uniqueness of bandlimited reconstruction and
hence, are less meaningful.

to better sampling sets. This is because using a higher k allows us to optimize a
better estimate of the cutoff frequency.

3.6.2 Efficient Bandlimited Reconstruction

This experiment demonstrates the effectiveness of our proposed bandlimited recon-
struction method. We consider the same Erdös-Renyi graph that was used in the
previous example. We randomly select 500 nodes in the graph for sampling. The
graph signal to be reconstructed is bandlimited with r = dimPWω(G) = 100 and
random GFT coefficients drawn from N (1, 0.52). r is chosen such that λr is less
than the cutoff frequency associated with the sampling set. We obtain reconstruc-
tions with the signal samples observed on the subset of the nodes selected using
the following methods:

1. POCS using the exact low pass filter.

2. POCS using a polynomial filter of degree 10 that approximates the low pass
filter with spectral response (3.29) with α = 100.

3. POCS using a similar polynomial filter with degree 40.

Figure 3.4 shows the relative error of reconstruction ‖f − f̂i‖/‖f‖ obtained with
different number of POCS iterations i, averaged over 10 trials. We observe that
our iterative POCS method converges to an exact bandlimited reconstruction if the
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Figure 3.4: Relative error of reconstruction vs. number of POCS iterations using
exact low pass filter and polynomial filters of different degrees.

exact low pass filter is used. The GFT-free POCS method using polynomial low
pass filters also converges to a fixed point in very few iterations. Although the final
reconstruction is not exactly bandlimited, the reconstruction error is small. Using
a polynomial filter with higher degree that better approximates the exact low pass
filter leads to a smaller reconstruction error at the cost of increased complexity.

3.7 Conclusion

We studied the problem of selecting an optimal sampling set for reconstruction of
bandlimited graph signals. The starting point of our framework is the notion of
the Graph Fourier Transform (GFT), which is defined via an appropriate variation
operator. Our goal is to find good sampling sets for reconstructing signals that are
bandlimited in the above frequency domain. We showed that when the samples are
noisy or the true signal is only approximately bandlimited, the reconstruction error
depends not only on the model mismatch but also on the choice of sampling set. We
proposed a measure of quality for the sampling sets, namely the cutoff frequency,
that can be computed without finding the GFT basis explicitly. A sampling set
that maximizes the cutoff frequency is shown to minimize the reconstruction error.
We also proposed a greedy algorithm which finds an approximately optimal set.
The proposed algorithm can be efficiently implemented in a distributed and par-
allel fashion. Together with the proposed localized, bandlimited reconstruction
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algorithm, it gives an effective method for sampling and reconstruction of smooth
graph signals on large graphs.

The present work opens up some new questions for further research. The
problem of finding a sampling set with maximum cutoff frequency is combinatorial.
The proposed greedy algorithm gives only an approximate solution to this problem.
It would be useful to find a polynomial time algorithm with theoretical guarantees
on the quality of approximation.

The proposed set selection method is not adaptive, i.e., the choice of sampling
locations does not depend on previously observed samples. This can be a limitation
in applications that require batch sampling. In such cases, it would be desirable
to have an adaptive sampling set selection scheme which takes into account the
previously observed samples to refine the choice of nodes to be sampled in the
future. This problem is considered in Chapter 5.

38



Chapter 4

Active Semi-supervised Learning
Using Sampling Theory

4.1 Introduction

In many real-life machine learning tasks, labeled data is scarce whereas unlabeled
data is easily available. Active semi-supervised learning is an effective approach
for such scenarios. A semi-supervised learning technique must not only learn from
the labeled data but also from the inherent clustering present in the unlabeled
data [95]. Further, when the labeling is expensive, it is better to let the learner
choose the data points to be labeled so that it can pick the most informative and
representative labels. Thus, in an active learning scenario, the goal is to achieve the
maximum gain in terms of learning ability for a given, and small, number of label
queries. In this chapter, we present a novel approach to active semi-supervised
learning based on the framework sampling theory of graph signals developed in
Chapter 3.

Active learning has been studied in different problem scenarios such as online
stream-based sampling, adaptive sampling etc. (see [76] for a review). We focus on
the problem of pool-based batch-mode active semi-supervised learning, where there
is a large static collection of unlabeled data from which a very small percentage
of data points have to be selected in order to be labeled. Batch operation (i.e.,
selecting a set of data points to be labeled) is more realistic in scenarios such as
crowd-sourcing where it would not be practical to submit for labeling one data

Work in this chapter was published in part in [30].
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point at a time. Therefore, we focus on the problem of optimizing batches of any
size without using any label information, which would be the case when selecting
the first batch of data points to be labeled. The problem of adaptive sampling, in
which the choice of data points to be labeled in the future depends on the labels
observed in the past, is considered in Chapter 5.

Applying a graph perspective to semi-supervised learning is not new. In a
graph-based formulation, the data points are represented by nodes of a graph and
the edges capture the similarity between the nodes they connect. For example,
the weight on an edge might be a function of the distance between the two points
in the feature space chosen for the classification task. The membership function
of a given class can be thought of as a “graph signal”, which has a scalar value
at each of the nodes (e.g., 1 or 0 depending on whether or not the data point
belongs to the class). Since features have been chosen to be meaningful for the
classification task, it is reasonable to expect that nodes that are close together in
the feature space are likely to have the same label. Conversely, nodes that are far
away in the feature space are less likely to have the same label. Thus, we expect
the membership function to be smooth on the graph, i.e., moving from a node to
its neighbors in the graph is unlikely to lead to changes in the membership. With
this in mind, the semi-supervised learning problem can be viewed as a problem
of interpolating a smooth graph signal from samples observed on a subset of the
nodes. This view has led to many effective techniques such as MinCut [5], Gaus-
sian random fields and harmonic functions [94], local and global consistency [91],
manifold regularization [4] and spectral graph kernels [81].

Active learning has also benefited from this graph based-view. Many active
learning approaches use a graph to quantify the quality of sampling sets [37, 39, 40].
One methodology is to try and pick a subset of nodes that captures the underlying
low-dimensional manifold represented by the graph. Another is to pick the nodes
to be labeled in such a way that unlabeled nodes are strongly connected to them.
Some methods select those samples which lead to minimization of generalization
error bound. We discuss some of these methods in Section 4.3.

Many of the semi-supervised learning methods mentioned above are global,
in the sense that they require inversion or eigen-decomposition of large matrices
associated with the underlying graph. This poses a problem in scalable and dis-
tributed implementation of these algorithms. Most graph-based active learning
methods suffer from the same problem. Another issue with these methods is that
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they do not give conditions under which the graph signal can be uniquely and
perfectly interpolated from its samples on the chosen subset.

In this chapter, we show that theoretical results on graph signal sampling and
interpolation in Chapter 3 provide a rigorous and unified framework to select points
to be labeled and subsequently perform semi-supervised learning. The sampling set
selection algorithm presented in Section 3.3 selects a subset of nodes for sampling
in order to ensure stable recovery of smooth graph signals. We use this algorithm
for choosing the best nodes for labeling (i.e., active learning), since the label signal
forms a smooth graph signal. The algorithm also has a compelling graph theo-
retic interpretation. We also give an effective and efficient semi-supervised label
prediction method based on the iterative bandlimited reconstruction algorithm in
Section 3.4. Both our algorithms are well-suited for large-scale distributed imple-
mentation. We show that our method outperforms several state of the art methods
by testing on multiple real datasets.

The rest of the chapter is organized as follows. In Section 4.2, we apply the
framework of sampling theory to derive the proposed active semi-supervised learn-
ing approach. Section 4.3 summarizes the related prior work. Experiments are
presented in Section 4.4. We conclude in Section 4.5 with a brief summary and
some remarks.

4.2 Graph Sampling Based Active
Semi-Supervised Learning

As noted earlier, if the edges of the graph represent similarity between the nodes,
then a graph signal defined using the membership functions of a particular class
tends to be smooth. This is illustrated experimentally in Figure 4.1, where the
GFT is defined using the symmetric normalized graph Laplacian. In Section 3.3,
we showed how to estimate the reconstruction cut-off frequency for a set of ver-
tices. In practice, class membership signals are not strictly bandlimited (see Fig-
ure 4.1). Thus, we will be approximating a non-bandlimited signal with one that
is bandlimited to the cutoff frequency of the chosen vertex set. We observe in our
experiments in Section 4.4 that the easiest task in terms of prediction performance
is the one in which the label signal has the highest percentage of energy in the low
frequencies. The key idea in our work is that, even though we cannot recover the
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(c) 20 newsgroups

Figure 4.1: Cumulative distribution of energy in the GFT coefficients (with GFT
defined using symmetric normalized Laplacian) of one of the class membership
functions pertaining to the three real-world dataset experiments considered in Sec-
tion 4.4. Note that most of the energy is concentrated in the low-pass region.

“true” membership signal exactly from its samples, an active learning approach
should aim at selecting the sampling set with maximum cutoff frequency. This is
because a sampling set with maximum cutoff frequency leads to bandlimited recon-
structions with small reconstruction error bound as shown in Section 3.31. Also
PWω(G) ⊂ PWω′(G) if ω ≤ ω′ and thus, for any signal, its best approximation
with a signal from PWω′(G) can be no worse (in terms of l2 error) than its best
approximation with a signal from PWω(G).

In this setting, predicting the labels of the unknown data points using the
labeled data amounts to reconstructing a bandlimited graph signal from its values
on the sampling set. Thus, based on the above reasoning the active learning
strategy should be to find a set S with size equal to a given target number of data
points to be labeled, so that the cut-off frequency of S is maximized.

4.2.1 Proposed method

We now present the details of our method. We target a multi-class active semi-
supervised learning problem with C classes. The true membership function for
class j is denoted as f j : V → {0, 1}, where f j(i) = 1 indicates that node i belongs
to class j. These membership functions are taken to be the graph signals for our
setting. The predicted membership functions for each class take real values and

1See also Section 5.1 in which we show that a sampling set that maximizes the cutoff frequency
leads to the smallest prediction covariance if signals are assumed to follow a Gaussian random
field based probabilistic smoothness model.
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are denoted as f̂ j : V → R. The predicted label of node i is given by arg maxj f̂ j(i).
We denote the labeled set as S and the unlabeled set as Sc = V \ S. Then, our
solution to the active semi-supervised learning task can be formally summarized
as follows:

1. Given a size m and parameter k, we define the optimal labeled set Sopt as
follows:

Sopt = arg max
S:|S|=m

Ωk(S) (4.1)

We find an approximate solution S? to problem above in a greedy fashion
by adding a node to S that leads to maximum the increase in Ωk(S) at each
step (see Section 3.3).

2. Next, we query the labels of nodes selected in S?.

3. Finally, we determine the predicted membership functions f̂ j for each class
from f j(S?), j = 1, . . . , C using the POCS iterative method described in
Section 3.4, where S = S? and ω = Ωk(S?) are used in (3.24) and (3.25) to
construct the convex sets.

Remarks

In our experiments, we use the gradient descent based approach in [1] for accelerat-
ing the greedy node selection method (Algorithm 1) in Section 3.3. This procedure
is summarized with Algorithm 2.

Algorithm 2 Greedy heuristic for finding S?

Input: G = {V , E}, L, target size m, parameter k ∈ Z+.
Initialize: S = {∅}.
1: while |S| ≤ m do
2: For S, compute the smoothest signal φ?k ∈ L2(Sc) using (3.14) and (3.15).
3: v ← arg maxi [(φ?k(i))2].
4: S ← S ∪ v.
5: end while
6: S? ← S.

In POCS reconstruction, we use polynomial filters of degree 10 by first approx-
imating the spectral response of the ideal bandlimiting filter by a sigmoid function
(3.29) with ω = Ωk(S?) and α = 8.
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4.2.2 Graph Theoretic Interpretation

In this section, we will provide an intuitive interpretation for our node selection
algorithm in terms of connected-ness among the nodes. To simplify the exposition,
we consider the maximization problem (4.1) for k = 1:

Ω1(S) = inf
x(S)=0
||x||=1

x>Lx (4.2)

This expression appears more commonly as part of discrete Dirichlet eigenvalue
problems on graphs. Specifically, it is equal to the Dirichlet energy of the subset
Sc [16, 64]. The sampling set selection problem seeks to identify the subset S that
maximizes this objective function. To give an intuitive interpretation of our goal,
we expand the objective function for any x with constraint x(S) = 0 as follows:

x>Lx =
∑
i∼j

wij

 xi√
di
− xj√

dj

2

=
∑
i∼j

i∈S,j∈Sc

wij

(
x2
j

dj

)
+

∑
i∼j
i,j∈Sc

wij

 xi√
di
− xj√

dj

2

.

(4.3)

The minimizer in the equation above is the first Dirichlet eigenvector which is
guaranteed to have strictly positive values on Sc [64]. Therefore, the contribution
of the second term is expected to be negligible compared to that of the first one.
Thus, we get

x>Lx ≈
∑
j∈Sc

(
pj
dj

)
x2
j , (4.4)

where, pj = ∑
i∈S wij is defined as the “partial out-degree” of node j ∈ Sc, i.e.,

it is the sum of weights of edges crossing over to the set S. Therefore, given a
current selected S, the greedy algorithm selects the next node, to be added to S,
that maximizes the increase in

Ω1(S) ≈ inf
||x||=1

∑
j∈Sc

(
pj
dj

)
x2
j . (4.5)
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Due to the constraint ||x|| = 1, the expression being minimized is essentially an
infimum over a convex combination of the fractional out-degrees and its value is
largely determined by nodes j ∈ Sc for which pj/dj is small. In other words, we
must worry about those nodes that have a low ratio of partial degree to the actual
degree. Thus, in the simplest case, our selection algorithm tries to remove those
nodes from the unlabeled set that are weakly connected to nodes in the labeled
set. This makes intuitive sense as, in the end, most prediction algorithms involve
propagation of labels from the labeled to the unlabeled nodes. If an unlabeled
node is strongly connected to various numerous points, its label can be assigned
with greater confidence.

Maximizing Ωk(S) with k > 1, which involves taking a higher power k in
x>Lkx, takes into account multi-hop paths while ensuring better connectedness
between S and Sc. This effect is especially important in sparsely connected
graphs and the benefit of increasing k becomes less noticeable when the graphs are
dense [2].

4.2.3 Prediction Error and Number of Labels

As discussed in Section 3.2, given the samples f(S) of the true graph signal on
a subset of nodes S ⊂ V , its estimate on Sc is obtained by solving the following
problem:

f̂(Sc) = USc,Rα
? where, α? = arg min

α
‖US,Rα− f(S)‖ (4.6)

Here, R is the index set of eigenvectors with eigenvalues less than the cut-off ωc(S).
If the true signal f ∈ PWωc(S)(G), then the prediction is perfect. However, this is
not the case in most problems. The prediction error ‖f − f̂‖ roughly equals the
portion of energy of the true signal in [ωc(S), λN ] frequency band. By choosing the
sampling set S that maximizes ωc(S), we try to capture most of the signal energy
and thus, reduce the prediction error.

An important question in the context of active learning is determining the
minimum number of labels required so that the prediction error ‖f − f̂‖ is less that
some given tolerance δ. To find this we first characterize the smoothness γ(f) of a
signal f as

γ(f) = min θ s.t. ‖f −Pθf‖ ≤ δ
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The following theorem gives a lower bound on the minimum of number of labels
required in terms of γ(f).

Theorem 4. If f̂ is obtained by solving (4.6), then the minimum number of labels `
required to satisfy ‖f−f̂‖ ≤ δ is greater than p, where p is the number of eigenvalues
of L less than the smoothness, γ(f), of signal f .

Proof. In order for (4.6) to have a unique solution, US,R needs to have full column
rank, which implies that ` = |S| ≥ |R|. Now, for ‖f− f̂‖ ≤ δ to hold the bandwidth
of f̂ has to be at least γ(f), or in other words, |R| ≥ p. This gives us the desired
result as ` ≥ |R| ≥ p.

4.3 Related Work

Different frameworks have been proposed for pool-based batch-mode active semi-
supervised learning including optimal experiment design [89, 86], generalization
error bound minimization [37, 38] and submodular optimization [39, 40, 44]. We
now point out connections between some of the graph based approaches in the
above categories and our graph signal sampling theory based framework.

The notion of frequency given by the GFT is closely related to Laplacian eigen-
map, a well known non-linear dimensionality reduction technique [3]. Laplacian
eigenmap represents data points lying on a low dimensional manifold embedded
in a high-dimensional space by points in an r dimensional Euclidean space with
coordinates of point i given by (u1

i , . . . ,uri ) (i.e., the values that the first r GFT
basis vectors take on node i). By selecting nodes that maximize the bandwidth
of the space of recoverable signals, we try to capture as many dimensions of the
manifold structure of the data with as few samples as possible. A related active
learning method proposed by Zhang et al. [89] is based on local linear embedding
(LLE), a different technique for approximating low-dimensional manifold strucure
of data [69]. The approach in [89] uses optimal experiment design to choose the
most representative data points from the manifold, using which one can recover
the whole data set by local linear reconstruction.

Gu and Han [37] propose a method based on minimizing the generalization
error bound for learning with local and global consistency (LLGC) [90]. Their
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formulation boils down to choosing a subset S that minimizes Tr ((µLS + I)−2).
To relate this formulation to our proposed method, note that

Tr
(
(µLS + I)−2

)
=
∑
i

1
(ζi + 1)2 ≤

|S|
(ζ1 + 1)2

where, ζ1 ≤ . . . ≤ ζ|S| denote the eigenvalues of LS . Loosely speaking, minimizing
the above objective function is equivalent to maximizing the smallest eigenvalue
ζ1 of LS. Using an argument similar to the one in Section 4.2.2, we can show that
this method essentially tries to ensure that the labeled set is well-connected to
the unlabeled set. Our method, on the other hand, ensures that the unlabeled set
is well-connected to the labeled set while taking into account multi-hop paths by
allowing higher degrees of Lk beyond k = 1.

Submodular functions have been used for active semi-supervised learning on
graphs by Guillory and Bilmes [40, 39]. In this work, the subset of nodes S ⊂ V is
chosen to maximize

Ψ(S) = min
T⊆V\S:T 6=∅

Γ(T )
|T |

, (4.7)

where Γ(T ) denotes the cut function ∑i∈T,j /∈T wij. Intuitively, maximizing Ψ(S)
ensures that no subset of unlabeled nodes is weakly connected to the labeled set
S. This agrees with the graph theoretic interpretation of our method given in
Section 4.2.2. [40] also provides a bound on the prediction error in terms Ψ(S)
and a smoothness function Φ(f) = ∑

i,j wij|fi− fj|. This bound gives a theoretical
justification for semi-supervised learning using min-cuts [5]. It also motivates a
graph partitioning-based active learning heuristic [39] which says that to select
` nodes to label, the graph should be partitioned into ` clusters and one node
should be picked at random from each cluster. Graph partitioning can be done
using spectral clustering methods [84] that use the first r eigenvectors of the graph
Laplacian to represent each node in an Euclidean space as in Laplacian eigenmap.
Selecting one node from each of the ` clusters obtained using spectral clustering
amounts to selecting ` rows from UVR.
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4.4 Experiments

We compare our method against four active semi-supervised learning approaches
mentioned in the previous section, namely, LLR [89], LLGC error bound mini-
mization [37], METIS graph partitioning based heuristic [39] and Ψ-max [40]. The
details of implementation of each method are as follows:

1. The LLR approach [89] allows any prediction method once the samples
to be queried are chosen. We use the Laplacian regularized least squares
(LapRLS) [4] method for prediction (used in [89]).

2. In our implementation of the LLGC bound method [37], we fix the parameter
µ to 0.01. Since this approach is based on minimizing the generalization error
bound for LLGC, we use LLGC for prediction with the queried samples. 2

3. The normalized cut based active learning heuristic of Guillory and Bilmes [39]
is implemented using the METIS graph partitioning package [48]. This algo-
rithm chooses a random node to label from each partition, so we average the
error rates over a 100 trials.

The parameter k in our method is fixed to 8 for these experiments. Its effect
on classification accuracy is studied in Section 4.4.4. In addition to the above
methods, we also compare with the random sampling strategy. In the random
sampling case, we use LapRLS to predict the unknown labels from the randomly
queried samples and report the average error rates over 30 trials.

To intuitively demonstrate the effectiveness of our method, we first test it on
the two circles toy data shown in Figure 4.2. The data is comprised of 200 nodes
from which we would like to select 8 nodes to query. We construct a weighted
sparse graph by connecting each node to its 10 nearest neighbors while ensuring
that the connections are symmetric. The edge weights are computed with the
Gaussian kernel exp

(
− ||xi−xj ||2

2σ2

)
(except in the case of Ψ-max where the graph

is unweighted). It can be seen from Figure 4.2 that all the methods choose 4
points from each of the two circles. Additionally, the proposed approach selects
evenly spaced data points within one circle, while at the same time maximizing
the spacing between the selected data points in different circles. This ensures that

2In our experiments, we observed that the greedy algorithm given in [37] did not converge to
a good solution. So we use Monte-Carlo simulations to minimize the objective function.
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(a) Ψ-max (b) LLR (c) LLGC Bound (d) Proposed

Figure 4.2: Toy example comparing the nodes selected using different active learn-
ing methods

the unlabeled nodes are as well-connected to the labeled nodes as possible, which
in turn leads to effective label propagation.

We tested our method in three application scenarios: Handwritten digit recog-
nition, text classification and spoken letters recognition. In these experiments,
we do not compare with Ψ-max since the method has computational complexity
of O(N6) and, to the best of our knowledge, is not scalable. Next, we provide
the details of each experiment. Both the datasets and the graph construction
procedures used are typical of what has been used in the literature.

4.4.1 Handwritten digits classification

In this experiment, we used our proposed active semi-supervised learning algorithm
to perform a classification task on the USPS handwritten digits dataset3. This
dataset consists of 1100 16× 16 pixel images for each of the digits 0 to 9. We used
100 randomly selected samples for each digit class to create one instance of our
dataset. Thus each instance consists of 1000 feature vectors (100 samples/class ×
10 digit classes) of dimension 256.

We construct a symmetric, weighted K-nearest neighbor graph with K =
10 and Gaussian kernel weights, wij = exp

(
− ||xi−xj ||2

2σ2

)
, where xi is the 256-

dimensional feature vector composed of pixel intensity values for each image. The
parameter σ is chosen to be 1/3-rd of the average distance to the 10-th nearest
neighbor for all data points. Using the graph constructed, we select the points
to label and report prediction error after reconstruction using our semi-supervised

3http://www.cs.nyu.edu/~roweis/data.html
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learning algorithm. We repeat the classification over 10 such instances of the
dataset and report the average classification error. The results are illustrated in
Figure 4.3(a). We observe that our proposed method outperforms the others and
gives very good classification accuracy even with very few labeled samples.

4.4.2 Text classification

For our text classification example, we use the 20 newsgroups dataset4. It con-
tains around 20,000 documents, partitioned in 20 different newsgroups. For
our experiment, we consider 10 groups of documents, namely, {comp.graphics,
comp.os.ms-windows.misc, comp.sys.ibm.pc.hardware, comp.sys.mac.hardware,
rec.autos, rec.motorcycles, sci.crypt, sci.electronics, sci.med, sci.space}, and ran-
domly choose 100 data points from each group. We generate 10 such instances
of 1000 data points each and report the average errors. We clean the dataset
by removing the words that appear in fewer than 20 documents and then select
only the 3000 most frequent ones from the remaining words. To form the feature
vectors representing the documents, we use the term frequency-inverse document
frequency (tf-idf) statistic of these words. The tf-idf statistic captures the relative
importance of a word in a document in a corpus:

tf-idf = (1 + log(tf))× log
(
N

idf

)
(4.8)

where, tf is the frequency of a word in a document, idf is the number of documents
in which the word appears and N is the total number of documents. Thus, we get
1000 feature vectors in 3000 dimensional space. To form the graph of documents,
we compute the pairwise cosine similarity between their feature vectors. Each node
is connected to the 10 nodes that are most similar to it and the resultant graph
is then symmetrized. The classification results in Figure 4.3(b) show that our
method performs very well compared to others. However, the absolute error rates
are not very good. This is due to the high similarity between different newsgroups
which makes the problem inherently difficult.

4http://qwone.com/~jason/20Newsgroups/
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Figure 4.3: Comparison of active semi-supervised learning methods on real
datasets. Plots show the average classification accuracies for different percentages
of labeled data.

4.4.3 Spoken letters classification

For the spoken letters classification example, we considered the Isolet dataset5. It
consists of letters of the English alphabet spoken in isolation twice by 150 different
subjects. The speakers are grouped into 5 sets of 30 speakers each, with the
groups referred to as isolet1 through isolet5. Each alphabet utterance has been
pre-processed beforehand to create a 617-dimensional feature vector.

For this experiment, we considered the task of active semi-supervised classifi-
cation of utterances into the 26 alphabet categories. To form an instance of the
dataset, 60 utterances are randomly selected out of 300 for each alphabet. Thus,
each instance consists of 60 × 26 = 1560 data points of dimension 617. As in the
hand-written digits classification problem, the graph is constructed using Gaussian
kernel weights between nodes, with σ taken as 1/3-rd of the average distance to the
K-th nearest neighbor for each data point. We select K = 10 for our experiment.
Sparsification of the graph is carried out approximately using K-nearest neighbor
criterion. With the constructed graph, we perform active semi-supervised learning
using all the methods. The experiment is repeated over 10 instances of the dataset
and average prediction error is reported in Figure 4.3(c). Note that we start with
2% labeled points to ensure that each method gets a fair chance of selecting at
least one point to label from each of the 26 classes. We observe that our method
outperforms the others.

5http://archive.ics.uci.edu/ml/datasets/ISOLET
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Figure 4.4: Effect of k on classification accuracy of the proposed method. Plots
show the average classification accuracy for different percentages of labeled data.

4.4.4 Effect of parameter k

To study the effect of parameter k in the proposed method on classification accu-
racy we repeat the above experiments for different values of k. Figure 4.4 shows
the results. For the USPS and Isolet datasets, the classification accuracies remain
largely unchanged for different values of k. For the 20 Newsgroups dataset, a slight
improvement in classification accuracies is observed for higher values of k. This
result agrees with the distribution of GFT coefficients of the class membership
functions in each dataset shown in Figure 4.1. In USPS and Isolet datasets, most
of the energy of the graph signal (i.e., the class membership functions) is contained
in the first few frequencies. Thus, increasing the value of k, so that a better esti-
mate of cut-off frequency is maximized during the choice of sampling set, is not
necessary. In other words, maximizing a loose estimate of the cut-off frequency
is sufficient. However, the membership functions in the 20 Newsgroups dataset
have a significant fraction of their energy spread over high frequencies as shown
in Figure 4.1. Due to this, maximizing a tighter estimate of the cut-off frequency,
which leads to a sampling set that allows for stable reconstruction of signals with
larger bandwidths, results in higher accuracies.

4.5 Summary

In this chapter, we introduced a novel framework for batch mode active semi-
supervised learning based on sampling theory for graph signals. The proposed
active learning framework aims to select the subset nodes which maximizes the
cutoff frequency and thus, gives most stable reconstructions. This interpretation
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leads to a very efficient greedy algorithm. We provided intuition about how the
method tries to choose the nodes which are most representative of the data. We
also presented an efficient semi-supervised learning method based on bandlimited
interpolation. We showed, through experiments on real data, that our two algo-
rithms, in conjunction, perform very well compared to state of the art methods. In
the future, we would like to provide tighter bounds on the number of labels required
for desired prediction accuracy. It would be useful to consider an extension of the
proposed framework to a partially batch setting so that we can incorporate the
label information from previous batches to improve the future choice of sampling
set. An approach to achieve this is introduced in Chapter 5.
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Chapter 5

Probabilistic Interpretation of
Sampling Theory and Extension
to Adaptive Sampling

In this chapter, we develop a probabilistic interpretation for the graph sampling
theoretic methods for active semi-supervised learning from Chapter 4. Our inter-
pretation is based on defining a graph-based probabilistic prior model for signals in
order to characterize their smoothness. Using this interpretation, we propose adap-
tive sampling and label prediction methods that are better suited to the discrete
valued graph signals encountered in classification problems.

In the sampling based prediction techniques of Chapter 4, label prediction is
considered as a graph signal reconstruction problem. The characterization of a
subset of nodes given by the sampling theory, namely the associated cutoff fre-
quency, is used as a criterion to choose the optimal set nodes to be labeled for
active learning. As presented in the last chapter, the sampling theoretic methods
for active and semi-supervised learning are purely deterministic. Their probabilis-
tic interpretation is desired for the following reasons:

1. It leads to a principled Bayesian way to refine the model parameters (which
are given by the underlying graph) as more data is observed.

This chapter is partially based on our work in [32].
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2. It makes the relationship between the sampling theoretic approach and pre-
viously proposed semi-supervised [94] and active learning [46, 54] methods
more apparent.

A probabilistic approach for active semi-supervised learning starts by defining
a graph based prior distribution for signals and a likelihood model for observa-
tions. The problem of label prediction then boils down to finding the posterior
mean or MAP estimate. Active learning can be formulated as Bayesian experi-
ment design [10], which is the problem of selecting the best subset from the set
of available measurements of a vector x so that the error (given by a suitable loss
function) in the reconstruction of x using those measurements is minimized.

We begin by defining a Gaussian random field (GRF) prior for graph signals
with a covariance matrix that depends on the graph. We show that, when condi-
tions of the graph signal sampling theorem are satisfied, bandlimited reconstruc-
tion of a graph signal from a subset of its samples is equivalent to finding the
MAP estimate of the unobserved samples, given the observations, with a low rank
approximation of the above GRF. We then show that a sampling set of given size
with the largest associated cut-off frequency, which is optimal from a sampling
theoretic point of view, minimizes the largest eigenvalue of prediction covariance.
Various other graph based active learning methods proposed in the literature can
be viewed as minimizing some function of the prediction covariance under the GRF
model assumption. We show that if the labels are assumed to follow a GRF model
then the expected prediction error, defined as a function of the prediction covari-
ance, is minimized by a non-adaptive sampling strategy and using the previously
observed samples in future sample selection does not help in reducing it further.

A non-adaptive sampling strategy can be useful if all the labels in the budget
need to be queried simultaneously. But in many applications, labels can be queried
one at a time or in batches. If the prior model for the labels is not accurate then
non-adaptive sampling will not be very effective. Therefore, we suggest a way to
introduce adaptation in the sampling process so that the choice of future samples
depends not only on the graph but also on the samples observed in the past. This
can be useful because of the following reasons:

1. The graph provides a probabilistic model for the smoothness assumption on
the node labels. However, the graph itself is constructed using the feature
vectors associated with the nodes. Using the partially observed signal (i.e.,
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observed labels) can allow us to refine the signal model by changing the
graph.

2. Using the observed labels, we can predict the labels for the rest of the nodes
to reveal a rough decision boundary. Nodes whose predicted labels are most
ambiguous are closer to the boundary. Sampling near this boundary can
allow us to converge to the correct labels faster.

In order to develop an adaptive sampling method, we first propose a new prior
for graph signals using the concept of p-Laplacian, which is better suited for dis-
crete valued labels in classification problems. Since the proposed prior is not
Gaussian, the posterior covariance of the signal depends on the observed labels.
We use variational Bayesian inference techniques to find the posterior covariance
approximately. The nodes to be sampled are then selected such that a suitable
function of this posterior covariance is minimized. Since the posterior covariance
depends on the observed labels, sampling set selection is adaptive. Because the
proposed prior offers a more realistic model for the discrete valued graph signals in
classification problems, adaptive sampling and prediction methods based on this
prior lead to better classification accuracy.

The rest of this chapter is organized as follows. In Section 5.1, we apply the
framework of Bayesian inference and experiment design to the GRF model to give a
probabilistic interpretation of sampling theory of graph signals. This also provides
a unified view of various active learning methods on graphs. We also explain why a
non-adaptive sampling strategy is sufficient to select a sampling set that minimizes
the prediction error (defined as a functional of the prediction covariance) under
this GRF model. In Section 5.2, we introduce a new prior model for graph signals
based on the concept of p-Laplacian. We use it to propose an adaptive sampling
set selection method, in which the choice of future samples depends on the signal
samples observed in the past. Numerical experiments are presented in Section 5.3,
which show that adaptive sampling can give better classification accuracy than
non-adaptive sampling with the same number of observed labels.
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5.1 Probabilistic Interpretation of Sampling
Theory

5.1.1 GRF Prior and Observation Likelihood

The smoothness assumption on the vector of node labels f can be formalized by
imposing a Gaussian random field (GRF) prior on them:

p(f) ∝ exp
(
−1

2f>Lf
)
, (5.1)

Under this model, vectors of labels with high variation f>Lf are less likely1. Let K
denote the covariance matrix of the GRF. Then, from the above equation K = L−1.
Most of the variation operators, L, introduced in Section 2.3 are singular. In this
case, L can be replaced with L + δI in order to get a bounded K. 1/δ can be
interpreted as the variance of the GFT coefficient of f corresponding zero frequency.

Let S be a subset of the nodes in the graph and Sc = V \ S. If f has a
distribution given by (5.1) then the conditional distribution of fSc given fS is also
Gaussian with mean and covariance given by

µSc|S = KScS(KS)−1fS and (5.2)
KSc|S = KSc −KScS(KS)−1KSSc (5.3)

respectively. In order to write the above expressions in the form of sub-matrices
of L, we can use the block matrix inversion formula to get:

KSc KScS

KSSc KS

 =

 M−1
LS

−(LSc)−1LScSM−1
LSc

−(LS)−1LSScM−1
LS

M−1
LSc

 ,

where MLS = LSc − LScS(LS)−1LSSc ,

MLSc = LS − LSSc(LSc)−1LScS (5.4)

1The prior distribution (5.1) can be generalized in order to put a stronger smoothness assump-
tion on the labels by replacing L with a high pass function h(L) of L. For example, using
h(L) = Lk with k > 1 leads to the cutoff maximization method for active learning (from Chap-
ter 4) under this model. Theoretical justification for this choice is provided in [93, 32].
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are the Schur complements of LS and LSc respectively. Note that the Schur com-
plement of LSc equals the Laplacian of the Kron reduction corresponding to the
nodes in S. Kron reduction is widely used in applications such as electrical circuit
analysis, finite element analysis [22], multiscale graph transform design [78] etc. for
reconnecting a subset of the nodes by taking into account the original connections
in the whole graph. (5.4) shows that Kron reduction corresponding to S preserves
the covariance of fS if f follows the GRF model (5.1). Using (5.4) we can write
the conditional mean and covariance as a function of L as

µSc|S = −(LSc)−1LScSfS , (5.5)
KSc|S = (LSc)−1. (5.6)

We observe the labels of a subset of the nodes S through the following mea-
surement model

b = DSf + ε, (5.7)

where ε is zero-mean, white Gaussian noise with variance σ2 and the sampling
matrix DS is obtained by taking the rows of an N×N identity matrix correspond-
ing to the subset S. The conditional likelihood is then given by

p(b|f) = N (b|DSf , σ2I), (5.8)

where the notation N (x|µ,Σ) denotes a Gaussian distribution with mean µ and
covariance Σ. The posterior distribution p(f |b) is also Gaussian with covariance
given by

cov(f |b) =
(
L + 1

σ2 D>SDS
)−1

. (5.9)

Using the block matrix inversion formula, we can write the covariance of the labels
to to be predicted fSc as follows

cov(fSc|b) =
(
LSc − σ2LScS(σ2LS + I)−1LSSc

)−1
. (5.10)

Note that as the noise σ2 → 0, the above expression reduces to L−1
Sc as in (5.6).
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5.1.2 Bandlimited Reconstruction as MAP Inference

Let λr be the largest eigenvalue of L that is less than ω. We define K̂ to be a
low rank approximation of L−1 that contains only the spectral components corre-
sponding to {λ1, . . . , λr}, i.e.,

K̂ =
r∑
i=1

1
λi

uiui> = UVRΣRU>VR. (5.11)

As in Section 5.1.1, if L is singular with λ1 = 0, we assume that it is replaced by
L + δI in order to get bounded K̂. Now, consider the problem of reconstructing
a random signal generated using a GRF with covariance K̂, from its samples on
S. The following theorem shows that, if conditions of the sampling theorem are
satisfied, then the error of bandlimited reconstruction is zero.

Theorem 5. Let f be a random graph signal generated using the GRF with covari-
ance K̂ given by (5.11). Let f̂Sc be the bandlimited reconstruction of fSc obtained
from its samples on S, where S is a uniqueness set for PWω(G). Then, fSc = f̂Sc.

Before proving the above theorem, we show, in the lemma below, that bandlimited
reconstruction is equivalent to MAP inference on the GRF with covariance K̂.

Lemma 1. Let S ⊆ V be a uniqueness set for PWω(G). Then the MAP estimate
of fSc given fS in a GRF with covariance matrix K̂ is equal to the bandlimited
reconstruction given by (3.1).

Proof. Under a permutation which groups together nodes in Sc and S, we can
write K̂ as the following block matrix

 K̂Sc K̂ScS

K̂SSc K̂S

 =

UScRΣRU>ScR UScRΣRU>SR

USRΣRU>ScR USRΣRU>SR

 (5.12)

Therefore, we can write the MAP estimate obtained with covariance K̂ as,

µ̂Sc|S = UScRΣRU>SR(USRΣRU>SR)+fS . (5.13)
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Because ω < ω(S), we have that USR has full column rank and equivalently, U>SR
has full row rank. Therefore, we can write (USRΣRU>SR)+ = (U>SR)+Σ+

RU+
SR and

U+
SR = (U>SRUSR)−1U>SR. Simplifying (5.13) using these equalities leads to

f̂Sc = UScR(U>SRUSR)−1U>SRfS ,

which is equal to the least squares solution given in (3.1).

Proof of Theorem 5. From Lemma 1, f̂Sc = µ̂Sc|S . Therefore,

E(‖fSc − f̂Sc‖2) = Tr(E(fSc − µ̂Sc|S)(fSc − µ̂Sc|S)>) = Tr(K̂Sc|S).

Now, K̂Sc|S = K̂Sc − K̂ScS(K̂S)+K̂SSc . Using the block form of K̂ in (5.12), and
the fact that USR has full column rank, it is easy to show that K̂Sc|S = 0, which
implies E(‖fSc− f̂Sc‖2) = 0. But since ‖fSc− f̂Sc‖ ≥ 0, we get ‖fSc− f̂Sc‖ = 0 which
in turn implies fSc = f̂Sc .

5.1.3 Active Learning as Bayesian Experiment Design

The goal of active learning is to select a subset of labels S to be observed so that the
unobserved labels fSc can be estimated with least uncertainty. Let u(fSc ,b) be a
loss function that quantifies the error in the prediction of fSc given the observations
b. Taking the expectation of the loss function with respect to the joint density of
(fSc ,b), we get

u(S) = EbEfSc |b (u(fSc ,b)) =
∫
p(b)

∫
p(fSc|b)u(fSc ,b)dfScdb. (5.14)

The goal of an active learning algorithm is to choose S so that u(S) is minimized
over all possible choices of given size m, i.e.,

Sopt = arg min
|S|=m

u(S). (5.15)

For example, if we estimate fSc using the conditional mean E(fSc|b) and consider
the `2 error ‖fSc − E(fSc |b)‖2

2 to be the loss function, then u(S) = Tr(cov(fSc|b)).
As σ2 → 0, u(S) = Tr(KSc|S).
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The sampling set Sopt, which maximizes the approximate cutoff frequency
λmin(LSc) (as proposed in Chapter 4), minimizes the largest eigenvalue of the
prediction covariance, i.e.,

arg max
|S|=m

λmin(LSc) = arg min
|S|=m

λmax(KSc|S). (5.16)

This follows from the fact that for the GRF model (5.1), we have KSc|S = (LSc)−1.
Maximizing λkmin(LSc) with k > 1 is equivalent to minimizing the largest eigenvalue
of the prediction covariance when the prior is p(f) ∝ exp(−f>Lkf).

Different choices of loss functions u lead to different active learning criteria,
which are summarized in Table 5.1 (assuming σ2 → 0). The relationship KSc|S =
(LSc)−1, allows us to give a graph theoretic motivation for minimizing some of the
choices of u(S) as a way of finding a good sampling set. For example, it was shown
in Chapter 4 that minimizing λmax[KSc|S ] or equivalently, maximizing λmin[LSc ]
ensures that unsampled nodes Sc are strongly connected to sampled nodes S.

Algorithm for finding Sopt

For any of the choices for u(S) described in Table 5.1, the problem (5.15) of finding
an optimal set Sopt is NP hard. It is possible find an approximate solution using a
greedy sequential sampling algorithm. Such an algorithm adds a node v from Sc to
S at each iteration that causes u(S) to decrease maximally. More specifically, let
Si be the subset of nodes of size i sampled so far with measurement bi. The goal
in sequential sampling is to select a node v ∈ Sci to get a new measurement bv. The
new sampling set is Si+1 = Si ∪ {v}. If u(S) is a functional of L−1

Sc as in Table 5.1,
then it is easy to find u(Si+1) from u(Si) since L−1

Sc
i+1

can be updated easily from
L−1
Sc

i
using the block matrix inverse and Sherman-Morrison formula [54]. Letting

Σi = L−1
Sc

i
and Σi+1 = L−1

Sc
i+1

, then

Σi+1 0

0 0

 = Σi − 1
Σi
vv

Σi
vΣi

v

>
, (5.17)

where Σi
v denotes the column of Σi corresponding to node v. For the E-optimality

criterion, which tries to minimize λmax(L−1
Sc ) (or equivalently, maximize λmin(LSc)),

we can use the approximate greedy method in Chapter 4 (see also [2]).
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Let Sapprox be the solution given by the greedy algorithm. In general, it is
difficult to quantify how close u(Sapprox) is to u(Sopt). But in the special case
when u(S) is a submodular function of S, it is possible to bound u(Sapprox) within
a constant factor of u(Sopt) [52, 34]. In practice, the greedy algorithm gives a good
solution even when the objective function is not submodular [30].

Choice of u(S)

It is not clear if one optimality criterion is superior to others. The choice of
u(S) depends on the final objective for which the selected samples are to be used.
For example, if the the goal is to predict real valued labels with minimum mean
squared error then u(S) = Tr(KSc|S) (i.e., A-optimality) is a reasonable choice.
Σ-optimality criterion, which minimizes u(S) = ∑

ij

(
KSc|S

)
ij
, ensures good pre-

diction of the value of fraction of data points in one class and thus, is more suitable
for surveying problems [34]. E-optimality can be thought of as a minimax general-
ization of Σ-optimality (however, it does not appear to directly correspond to any
function u(fSc ,b)). In practice, sampling based on E-optimality criterion leads to
superior classification performance compared to other criteria [32]. Information
theoretic criteria (i.e., entropy and mutual information) aim at selecting nodes
that are most helpful for refining the signal model.

5.1.4 Optimality of Non-Adaptive Set Selection in the
GRF Model

With the GRF model, the posterior distribution p(fSc |b) is also Gaussian with
covariance cov(fSc |b) ≈ L−1

Sc that does not depend on the observed samples b. For
different choices of u(fSc ,b), which are quadratic functions of (fSc−E(fSc|b)) as in
Table 5.1, EfSc |bu(fSc ,b) is a function only of the conditional covariance cov(fSc|b)
and does not depend on the observations b. Hence, active learning algorithms
that use such loss functions and are based on the GRF model cannot adapt to the
observed samples.

Note that the graph signals in classification problems are discrete valued.
Although the GRF model is useful in this case, it does not take into account
the discreteness of signals and does not allow for adaptation in sampling process.
We address these issues in the next section by proposing a different prior for graph
signals, which is more suited to discrete valued labels. The proposed prior is based
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on the concept of p-Laplacian and is non-Gaussian. The posterior covariance of
the signal depends on the observed signal samples. Therefore, any active learn-
ing scheme based on this model, which minimizes a posterior covariance based
objective as in Table 5.1, is adaptive.

5.2 Bayesian Active Learning Using p-Laplacian
Based Prior

5.2.1 Signal Prior Based on p-Laplacian

The standard graph Laplacian L induces the quadratic form (2.5) for a graph signal
f : V → R that measures the variation in the signal with respect to the graph.
The p-Laplacian [9] Lp is an operator that generalizes (2.5) as follows,

〈f ,Lpf〉 =
∑
i∼j

wij|fi − fj|p for p ≥ 1. (5.18)

We only consider the p-Laplacian with p = 1. Based on this notion of signal
variation, we propose the following prior model for graph signals:

p(f) ∝ exp(−τ
∑
i∼j

wij|fi − fj|), where τ > 0. (5.19)

Under this model, vectors of labels f with high variation ∑i∼j wij|fi − fj| are less
likely.

In order to motivate this prior model for the discrete valued signals in clas-
sification problems, we represent the variation form (5.18) with p = 1 using the
incidence matrix for the graph, which is defined as follows:

Definition 3. Incidence matrix M of a directed graph G = (V , E ,W) is a |E|×|V|
matrix. Each row Me of M corresponds to an edge e. If e goes from node i to
node j and has weight wij, then

Mei = wij

Mej = −wij
Mek = 0 for all k 6= i, j.
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For undirected graphs, edge orientations can be chosen arbitrarily.2

With this definition, 1-Laplacian based signal variation can be written as∑
i∼j wij|fi − fj| = ‖Mf‖`1 . The signal prior (5.19) can then be written as a

product of Laplace priors on (Mf)e

p(f) ∝
∏
e

exp (−τ |(Mf)e|) . (5.20)

A Laplace prior of the form (5.20) is commonly used to enforce sparsity with
computationally tractable algorithms in sparse signal reconstruction methods [75].
The above prior promotes solutions f such that Mf is sparse, i.e., Mf has a few
“dominant” entries and the rest of the entries of Mf are zero. Such sparsity is
desired when f is discrete valued as is the case in classification problems. For
example, when fi ∈ {+1,−1}, then (Mf)e = 0 if fi = fj and (Mf)e = 2wij if
fi 6= fj. Because of the cluster assumption, we expect that, in a sparse, distance-
based neighborhood graph, there are a much smaller number of edges connecting
two oppositely labeled nodes than the edges connecting two similarly labeled nodes.
Therefore, Mf is expected to be sparse.

Another motivation for the 1-Laplacian based prior can be given by consid-
ering its application in spectral clustering [9]. It is well known that the second
eigenvector of the 2-Laplacian minimizes a relaxation of the ratio cut by dropping
the constraint that the cut indicator vector be binary [84]. The second eigenvector
of the p-Laplacian with p < 2 allows for minimization of a better relaxation of
the ratio cut. The histogram of the resulting solution shows two distinct peaks
corresponding to two clusters [9] as p→ 1 (and therefore, gives a sparse Mf).

5.2.2 Bayesian Inference Using p-Laplacian Based Prior

We consider the same measurement model as in (5.7) with conditional likelihood
p(b|f) = N (b|DSf , σ2I). Using Bayes’ theorem we can write the posterior distri-
bution over the signals as

p(f |b) = 1
p(b)N (b|DSf , σ2I)

∏
e

exp(−τ |(Mf)e|), where (5.21)

2An edge e in an undirected graph connecting nodes i and j can be assumed to be a directed
edge that goes either from node i to node j or from node j to node i. This is because we only
need to consider the absolute values of the pairwise differences |fi − fj |.
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p(b) =
∫
N (b|DSf , σ2I)

∏
e

exp(−τ |(Mf)e|)df . (5.22)

If the goal is only to get a point estimate for the signal, one way is to find the
mode of the posterior (i.e., MAP estimation) as follows:3

f̂ = arg min
f

1
σ2‖b−DSf‖2

2 + τ‖Mf‖1. (5.23)

However, for Bayesian active learning, we need to find the posterior covariance of
fSc . Note that the posterior is non-Gaussian. Finding its mean and covariance is
analytically intractable since it requires integration over a high dimensional non-
Gaussian distribution (5.21).

An efficient variational method for approximate Bayesian inference in sparse
linear models has been proposed in [75]. We use it to approximate the posterior
mean and covariance of f . This method approximates the posterior distribution by
a Gaussian q(f |b). The main idea behind the Gaussian approximation is the fact
that the Laplace distribution admits a tight lower bound in the form of a Gaussian
function of width γe, i.e.,

exp(−τ |se|) = max
γe≥0

exp
(
− s2

e

2γe
− τ 2γe

2

)
, where se = (Mf)e. (5.24)

Plugging this into the expression for p(b), we get

p(b) ≥ max
γ≥0

exp
(
−τ

2

2 ‖γ‖1

)∫
N (b|DSf , σ2I) exp

(
−1

2 f>M>Γ−1Mf
)
df , (5.25)

where γ is a vector of γe’s from (5.24) and Γ = diag(γ). Note that for a fixed
γ, the above integral is easy to evaluate since it takes a Gaussian form in f . The
posterior also takes a Gaussian form with

covq(f |b) := C := A−1 =
( 1
σ2 D>SDS + M>Γ−1M

)−1
. (5.26)

3This is analogous to the total variation regularization framework used in image process-
ing [70].
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The optimal value of γ is found by maximizing the lower bound on p(b) given in
(5.25). Using the fact that∫

N (x|µ,Σ)dx =
√

2πdet(Σ) max
x
N (x|µ,Σ),

we can write the maximization problem (5.25) as

min
γ≥0

log det(A) + τ 2‖γ‖1 + min
f

1
σ2‖b−DSf‖2

2 + f>M>Γ−1Mf . (5.27)

We use the method in [75] to solve the above problem by iterative alternate min-
imization over f and γ, i.e., minimizing over f while keeping γ fixed and then
minimizing over γ while fixing f to the previously obtained value. Since the objec-
tive is convex in f and γ, it can be minimized efficiently. Once the optimal value
of γ is found, the posterior covariance C can be obtained by (5.26).

5.2.3 Sequential Sampling Using the Posterior Covariance

Let Si be the subset of nodes of size i sampled so far with measurement bi. Let
Ci be the covariance of the Gaussian approximation of the posterior q(f |bi). In
order to choose the best node v ∈ Sci to get a new measurement bv, we need to find
the posterior covariance Ci+1 = covq(f |bi, bv). Using the Gaussian approximation
q(f |bi), the posterior covariance Ci+1 can be easily computed as follows,

Ci+1 =
(
Ci−1 + 1

σ2 D>v Dv

)−1
= Ci − 1

σ2 + Ci
vv

Ci
vCi

v

>
, (5.28)

where Dv is the row of an N ×N identity matrix corresponding to node v and Ci
v

is the column of Ci corresponding to node v. The second equality follows from the
Sherman-Morrison formula.

The best node v ∈ Sci is then given by

v? = arg max
v∈Sc

i

ψ
(
Ci+1
Sc

i+1

)
, Si+1 = Si ∪ {v}, (5.29)

where ψ(.) can be chosen based on any of the criteria listed in Table 5.1. For
sequential sampling using the E-optimality criterion, which seeks to minimize
λmax(covq(f |bi, bv)), we can use the approximate greedy method in [2]. The method
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in [2] computes the eigenvector of LSc with the smallest eigenvalue at each itera-
tion and samples the node where this eigenvector has the maximum absolute value.
Note that LSc is the inverse of the posterior covariance in the GRF model. With
the Bayesian inference method explained in Section 5.2.2, we get the posterior
covariance (as opposed to inverse covariance). Therefore, we need to compute its
eigenvector with the largest eigenvalue and sample the node where this eigenvector
has the maximum absolute value. This is because the eigenvector of the inverse
covariance with the smallest eigenvalue equals the eigenvector of the covariance
with the largest eigenvalue.

Once a new observation bv is made, the posterior covariance is updated using
the method explained in Section 5.2.2. Since the posterior covariance depends on
the past observations, the sampling strategy based on the 1-Laplacian is adaptive.

5.3 Experiments

We compare the 1-Laplacian based adaptive active learning method with 2-
Laplacian based active learning described in Chapter 4. We restrict our atten-
tion to binary classification problems in which each label fi ∈ {+1,−1}. For fair
comparison, we use the E-optimality criterion in the 1-Laplacian based sampling
strategy, since the active learning method in Chapter 4 can also be interpreted to
be an E-optimal strategy with prior distribution p(f) ∝ exp(−f>Lkf/2) [32].

We apply the active learning methods for classification in two real world
datasets. In the first example, we use a subset of the 20 Newsgroups
dataset described in Chapter 4, containing 2 classes of documents, namely,
{comp.sys.ibm.pc.hardware, comp.sys.mac.hardware}. We randomly choose 500
data points from each class to generate 10 instances of 1000 data points each. The
feature vectors describing each document and the similarity graphs are computed
as in Chapter 4. In the second example, we consider a subset of the Isolet spoken
letters dataset described in Chapter 4 containing 2 classes corresponding to letters
‘f’ and ‘s’. Again, we randomly choose 200 data points from each class to generate
10 instances of 400 data points each and construct similarity graphs as described
in Chapter 4.

In each instance of the dataset, with the graph constructed, we select the points
to label using the 1-Laplacian based adaptive active learning method and the 2-
Laplacian based active learning method of Chapter 4 with k = 1 and k = 4. The
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Figure 5.1: Plots show the average classification accuracies with different number
of observed labels selected using 1-Laplacian based adaptive active learning (red)
and the 2-Laplacian based active learning method of Chapter 4 with k = 1 (black)
and k = 4 (blue).

rest of the labels are then predicted using the observed labels. We sample upto 20%
of the data points in each of the 10 instances of datasets and report average pre-
diction accuracies obtained with a given number of samples. The results are shown
in Figure 5.1. We observe that the 1-Laplacian based adaptive sampling method
gives much better accuracy than the 2-Laplacian based non-adaptive sampling
method for the same number of observed labels in the Isolet dataset. For News-
groups dataset, the 1-Laplacian based sampling method performs better in the
early stages and the performance remains comparable as the number of observed
labels increases.

5.4 Conclusion

In this chapter, we formulated the problem of active learning on a graph using the
framework Bayesian experiment design. This formulation provides a unified view
of different graph based active learning methods proposed in the literature. We
showed that if the prior on the graph signal is assumed to be Gaussian and the
prediction error is defined to be a functional of the prediction covariance, then a
non-adaptive sampling strategy, (in which the choice of future samples does not
depend on the labels observed in the past) is optimal.
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We then proposed a new prior for graph signals using the concept of p-
Laplacian. This prior is more suited for discrete valued signals which arise in
classification problems (since the labels are discrete valued). We used the approx-
imate Bayesian inference method in [75] to find the posterior covariance of the
unobserved labels given the observed labels. This covariance matrix is then used
to select the future nodes to be sampled. Due to the non-Gaussianity of the prior,
the posterior covariance depends on the observed labels, leading to an adaptive
sampling strategy. Experiments show that such an adaptive sampling method can
give better accuracy than a non-adaptive sampling strategy based on the Gaussian
prior with the same number of samples.

In future, we would like to understand if it is possible to develop a fast heuristic
for computing the modified graph Laplacian corresponding to the inverse of the
posterior covariance using the Laplacian of the original graph and the observed
labels. This would enable us to avoid the expensive variational Bayesian inference
step for computing the posterior covariance and make the proposed adaptive active
learning method more scalable.
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Chapter 6

Efficient Graph Construction
from Data for Image Processing
and Learning

In this chapter, we consider the problem of graph construction from data. Graphs
provide a useful model for data in many applications. The nodes in the graph rep-
resent data points in some domain and the edges capture connectivity or similarity
between the data points. The graph structure can be inherent to the data as is
the case in applications such as social, transportation or communication networks,
where the edges capture friendships or communication links. In many other appli-
cations, graph is constructed from the data (where each data point is represented
by a vector in Rd) in order to discover some underlying structure in it. Examples of
such application include clustering [84], semi-supervised learning [94, 30], collab-
orative filtering [27, 58], outlier detection [7], compression [61] etc. Conventional
data such as images and videos also benefit from a graph representation [62, 29].
Constructing a good graph is very important for graph based techniques to be
effective in the aforementioned applications. In Chapters 4 and 5, we proposed
algorithms for graph-based active semi-supervised learning. Although our pro-
posed algorithms assume that the labels form a smooth signal on the graph, we
did not address the problem of constructing a graph from data such that the
smoothness assumption remains valid. In our experiments, we used the k-nearest
neighbor method to construct the graph.

This chapter is partially based on our work in [29] and [33].
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In graph based formulation of learning and clustering, we are given data in the
form of N vectors in Rd and a pairwise similarity kernel. The kernel matrix is a
dense N×N matrix. Using graph based algorithms on the dense graph represented
by the kernel matrix is computationally inefficient. Motivated by this, we consider
the following question: Is it possible to obtain from a dense kernel graph a sparse
graph representation that has similar eigenstructure? Two of the most widely used
graph sparsification heuristics are the k-nearest neighbor (k-NN) method and the
ε-neighborhood method. The k-NN method connects each node only to k of its
most similar neighbors based on the kernel function value for each pair of data
vectors. The ε-neighborhood method connects a node i to another node j if j falls
within the ball of radius ε centered at i. Although these heuristic methods provide
good results in many applications (see for example Chapter 4), they have no clear
theoretical justification and are very sensitive to data noise.

We explore the potential for improvement in the performance of graph based
techniques by constructing “good” graphs in a principled way. We can formulate
the following “wish list” for a good graph representation for data:

1. Sparsity: The graph should be sparse, i.e., the number of edges should be
of the same order as the number of nodes. This allows for near linear time
implementation of different graph-based techniques, making them scalable to
large data sets.

2. Smoothness: The signals of interest (defined on the nodes of the graph) should
be smooth with respect to the graph Fourier transform (GFT). This ensures that
two nodes connected by an edge share similar signal values, whereas nodes with
very different signal values are not connected. Smoothness is a key assumption
for successful application of GSP techniques.

3. Complexity: Complexity of graph construction algorithm should be small for
it to be scalable to large data sets.

One of the applications of the sparse graph construction problem is to provide
an efficient alternative to the well-known bilateral filter (BF) [83], which is widely
used for edge-aware image filtering. The BF can be interpreted as a simple one-
hop low pass filter on a graph [29] in which the nodes represent pixels and the
edge weights capture the similarity between them as given by a positive definite
similarity kernel that depends on the geometric as well as photometric distance
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between the pixels1. In the graph associated with the k × k BF, each node is
connected to k2 neighbors with weights given by the BF kernel function. For large
values of k (k = 5, 7, 9 are commonly used), such a graph is very dense. Computa-
tional complexity of a single application of BF is roughly O(mnk2), where m× n
is the image size. Using such dense BF graph to apply additional GSP tools (such
as graph wavelets [62] or graph based regularization [29, 26]) for adaptive image
processing can be even more computationally complex. Therefore, constructing a
sparse image dependent graph using the BF kernel matrix is useful for efficient
edge-aware image filtering.

Prior Work

The problem of graph construction from data has been studied in the past in vari-
ous contexts such as graphical model estimation, non-linear dimensionality reduc-
tion, subspace clustering etc. In graphical model estimation, the nodes correspond
to random variables in a Gaussian Markov random field (GMRF) and the observa-
tions are in the form of multiple realizations of these random variables. The goal
is to estimate a sparse graph which represents the inverse covariance (or precision)
matrix of the GMRF [55, 87, 28] using these observations. In some cases, it is
desirable to get a precision matrix in the form of a graph Laplacian in order to use
GSP methods on the estimated graph. Examples of such (generalized) Laplacian
estimation methods include [80, 23, 21].

The problem setting considered in this chapter is different. Our goal is construct
a graph in which each node represents a feature vector of a data point in Rd. This
problem has been considered before in the context of non-linear dimensionality
reduction [69] and subspace clustering [25]. The local linear embedding (LLE)
method in [69] constructs a graph based on representation of each data point as
a linear combination of its neighbors. However, the method is not robust against
data noise [15]. In subspace clustering, the data is assumed to be drawn from a
union of subspaces. The goal is then to construct a graph such that two nodes
are connected only if they belong to the same subspace [25]. This is achieved
by representing each data point as a sparse linear combination of the rest. The
sparsity regularizer used in the linear reconstructions makes this method robust

1The discussion can be applied to other adaptive image filtering methods such as non-local
means [8] and kernel regression [56] by changing the pairwise pixel similarity kernel

73



against data noise. However, when the data comes from an underlying non-linear
manifold instead of a subspace (i.e., a linear manifold) such a model may not be
appropriate.

Most of the above methods have a high computational complexity of Ω(N2),
where N is the number of nodes in the graph. Therefore, they are not feasible for
use in large data sets.

Contributions

Given N data points represented by their feature vectors in Rd and a positive
definite pairwise similarity kernel, we propose an efficient method for constructing
a graph that can be used in applications such as image filtering, clustering and semi-
supervised learning. We interpret the kernel similarity between two feature vectors
as the covariance between the signal samples on the two nodes. The motivation
for this interpretation is the cluster assumption of semi-supervised learning [12],
which states that any two similar data points are expected to have similar labels.
We propose to estimate a sparse graph by approximating the inverse of the kernel
matrix in the form of a generalized Laplacian (GL) (see Section 6.1). Our method
can be thought of as a sparse estimator of the inverse covariance (or precision)
matrix of a GMRF with sample covariance given by the kernel matrix. The zero
entries of a GMRF precision matrix capture conditional independence relationships
between the nodes. If the kernel similarity between data points decays rapidly as
the distance between them increases, then it is reasonable to expect each node to be
conditionally independent of others, given the nodes most similar to it. Therefore,
we expect the inverse of the kernel similarity matrix to be well-approximated by a
sparse matrix.

Eigenvectors of the proposed graph approximate the eigenvectors to the kernel
matrix (because a matrix and its inverse have the same eigenvectors). Graph
signals of interest (which are labels in learning applications and pixel intensities
in image filtering) have a low frequency representation in the GFT of the graph
represented by the kernel matrix because of the cluster assumption. Therefore,
they are also low pass on the proposed graph.

Our proposed method estimates the graph that represents the inverse of the
kernel matrix by performing minimum mean squared error (MMSE) regression at
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each node with the feature vectors of the other nodes using the kernel inner prod-
uct. Since the regressions are kernelized, the proposed method can be used even
when the data is drawn from a non-linear manifold. The regression coefficients are
forced to be non-negative in order to get a Laplacian. We also add an `1 regular-
ization term in each regression problem in order to get a sparse Laplacian. The
regularization term also provides robustness against noise in the data. Our method
is similar in spirit to the sparse inverse covariance estimation method proposed in
[87]. However, we restrict our estimate of the inverse of the kernel matrix to be in
the form a graph Laplacian as in [23]. Because of the non-negativity constraint,
the `1 regularized least squares regression problems are reduced to quadratic pro-
grams (QPs). Using the KKT conditions, we show that the superset of the support
of solution of each regression problem can be obtained by thresholding the entries
of the kernel matrix. Moreover, by choosing the regularization parameter carefully,
the size of each QP can be made a constant (independent of N). The resulting
algorithm has the same asymptotic computational complexity as the k-NN graph
construction method.

We apply the proposed graph construction method to perform image filtering,
spectral clustering and semi-supervised learning. Our results show that the pro-
posed method has a superior performance compared to the k-NN method while
being more robust to the choice of k and kernel parameters.

The rest of this chapter is organized as follows. In Section 6.1, we provide a brief
review of the GMRF model for signals and a method for estimating a GL inverse
of a positive definite matrix. Our proposed method for sparse graph estimation by
inverting the kernel matrix is described in Section 6.2. Experimental results for
image filtering, spectral clustering and semi-supervised learning are presented in
Section 6.3. Section 6.4 concludes the chapter.

Notation

We use x−i to denote the subvector of x with its i-th component removed and
M−i,−j to denote the submatrix of M with its i-th row and j-th column removed.
Notations such as Mi,−j (i.e., i-th row of M with j-th entry removed) are defined
similarly.
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6.1 Laplacian Based Smoothness and GMRF

The GMRF model for signals [32, 88] (see also Chapter 5) is given by:

p(y) ∝ exp
−∑

i,j

Qij(yi − yj)2 −
∑
i

Qiiy2
i

 . (6.1)

The term in the exponent can be rewritten as −y>Qy, where Q is the inverse
covariance (or precision) matrix. If Q is a symmetric positive semi-definite matrix
of the form αI − N, where I is the identity matrix and Nij ≥ 0 ∀ i, j, then it
is called a generalized Laplacian (GL). Note that if Qii = ∑

j −Qij, then Q is a
Laplacian, while in general Q can be interpreted as a Laplacian with self loops.
If y>Qy is small, then y will have high likelihood with respect to the GMRF.
Therefore, if the GMRF is represented as a graph with Laplacian Q, then a graph
signal with high likelihood will be smooth on that graph.

For y drawn with the distribution of (6.1), the conditional correlation between
yi and yj given the rest of the variables corr(yi,yj|yk 6=i,j) = −Qij/

√
QiiQjj.

yi,yj are conditionally independent iff Qij = 0. Therefore, Q is expected to
be sparse [71]. Q is also sparse in cases of interest, where a sparse graph is used
to impose a Gaussian smoothness prior on signals (see Chapter 5).

An algorithm to estimate the inverse of a positive definite matrix K in the form
of a GL Q has been proposed in [66]. It solves the following problem:

min
Q�0; Qij≤0,i 6=j

− log det(Q) + Tr(KQ). (6.2)

If K is a sample covariance matrix, then the above problem can be thought of
as a maximum likelihood estimation problem of a GMRF under GL constraints.
Our approach for estimating a sparse graph from data is based on finding an
approximate solution to a problem similar to (6.2) with K given by the kernel
matrix.

6.2 Proposed Graph Construction Method

We consider a set of data points X = (x1, . . . ,xN), where xi ∈ Rd. Each data
point xi has a label yi associated with it. The labels can be binary, categorical or
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real valued. Let k : Rd×Rd → R+ be a symmetric positive definite kernel function
which gives the similarity between two data points; (xi,xj) 7→ k(xi,xj). Examples
of commonly used kernel functions are given below:

Gaussian kernel : k(xi,xj) = exp(−‖xi − xj‖2/2σ2), (6.3)
cosine kernel : k(xi,xj) = xiTxj/‖xi‖‖xj‖,

polynomial kernel : k(xi,xj) = (xiTxj + c)d.

K ∈ RN×N denotes the kernel (or Gram) matrix with Kij = k(xi,xj). We assume
that y = (y1, . . . , yN)T follows a Gaussian Markov random field (GMRF) model
with zero mean and the kernel matrix K as an estimate of its covariance. Note
that the Gram matrix is symmetric positive definite [43] and hence, satisfies the
requirements of being a covariance matrix.

Our goal is to construct a sparse graph with N nodes, where each node i
corresponds to a data point xi, such that the graph signal formed by the labels y
will be smooth with respect to that graph. Specifically, we propose to construct a
graph Laplacian which is approximately equal to the inverse of K.

6.2.1 Graph Estimation by Sparse Non-negative
Regression

We assume that y follows a multivariate Gaussian distribution N (0,K). Then the
conditional distribution of yi given y−i equals

yi|y−i ∼ N (Ki,−iK−1
−i,−iy−i,Kii −Ki,−iK−1

−i,−iK−i,i).

This can be thought of as the following regression equation [87]:

yi = yT
−iθ + ε, (6.4)
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where θ = K−1
−i,−iK−i,i ∈ RN−1 is the coefficient vector and ε = N (0,Kii −

Ki,−iK−1
−i,−iK−i,i) is independent y−i. Using the block matrix inversion formula, it

can be shown that [87] if Ω = K−1, then

Ωii = (Kii −Ki,−iK−1
−i,−iK−i,i)−1 = (var(ε))−1

Ωi,−i = −ΩiiKi,−iK−1
−i,−i = −(var(ε))−1θ. (6.5)

This shows that entries of the precision matrix can be estimated by the linear
regression of yi with y−1. Since we would like the precision matrix to be sparse
and in the form of a Laplacian, we impose additional constraints on θ. Specifically,
θ should be sparse and each of its entry should be non-negative. To impose the
sparsity constraint, we penalize the `1 norm of θ to get the following Lasso-like
problem with non-negativity constraints:

minimize
θ

1
2E

[
(yi − yT

−iθ)2
]

+ η‖θ‖1 (6.6)

subject to θ ≥ 0,

where θ ≥ 0 is interpreted element-wise and η is the regularization parameter.
Since θ ≥ 0, ‖θ‖1 = 1Tθ, where 1 denotes a vector of ones. Note that

E
[
(yi − yT

−iθ)2
]

= Kii − 2KT
−i,iθ + θTK−i,−iθ.

Thus, (6.6) can be expressed as a quadratic program (QP):

minimize
θ

1
2θ

TK−i,−iθ −KT
−i,iθ + η1Tθ (6.7)

subject to θ ≥ 0.

To estimate the Laplacian, we solve (6.7) at each node i.

6.2.2 Simplification and Fast Computation

There exists an efficient interative algorithm [18] for solving QPs of the form (6.7)
at a quadratic convergence rate. The algorithm performs Cholesky factorization (or
alternatively, preconditioned conjugate gradient descent) at each iteration, which
has a numerical complexity of O(N3). Therefore, solving (6.7) directly is not
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practical for large problems. Fortunately, the problem size can be greatly reduced
since it is possible to obtain the support of θ merely by thresholding the entries of
K−i,i as shown below.

Proposition 4. Let θ? be a solution of (6.7). If η > Kij, then the corresponding
entry of θ? equals zero, i.e., θ?l = 0, where l = j if j ≤ (i − 1) and l = (j − 1) if
j ≥ (i+ 1).

Proof. The Karush-Kuhn-Tucker (KKT) [6] optimality conditions for (6.7) are

K−i,−iθ + η1−K−i,i − λ = 0 (6.8)
λlθl = 0, l = 1, . . . , N − 1 (6.9)
θ ≥ 0 (6.10)
λ ≥ 0. (6.11)

Since K−i,−iθ ≥ 0, we must have η1−K−i,i−λ ≤ 0 because of (6.8). If η−Kij > 0,
then λl > 0. From (6.9), λl > 0 only if θl = 0. Therefore, η > Kij ⇒ θl = 0.

Let S be the subset of indices j such that Kij ≥ η. Then Proposition 4 implies
that θ?Sc = 0. Therefore, (6.7) can be simplified as

minimize
θ

1
2θ

TGθ + (η1− g)Tθ (6.12)

subject to θ ≥ 0,

where G is the submatrix of K−i,−i corresponding to the rows and columns in S
and g is the corresponding subvector of K−i,i. If η is chosen such that at each
node i, Kij > η for only the top k values in K−i,i (i.e., k nearest neighbors of i),
then the sizes of G and g in (6.12) are k × k and k × 1, respectively. Thus, the
numerical complexity of each iterative step for solving (6.12) is reduced to O(k3)
(which is independent of the total number of nodes N).

We solve (6.12) for every node. In order to obtain the edge weights for node i,
the entries of the solution θ? of (6.12) need to be scaled by (var(ε))−1 as shown in
(6.5). An estimate of var(ε) can be obtained as follows:

var(ε) = E
[
(yi − yT

−iθ)2
]

= Kii − 2gTθ? + θ?TGθ?. (6.13)
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Thus, the row of the adjacency matrix W corresponding to node i is given by
Wi,S = (var(ε))−1θ? and Wi,Sc = 0. Note that the resulting adjacency matrix
may not be symmetric. We symmetrize it by selecting W′ := (W + WT)/2.

6.2.3 Computational Complexity

The proposed method consists of two steps. The first step is to build a k-NN graph.
Brute-force implementation of k-NN graph construction is O(kN2). Fortunately,
there are efficient algorithms [20] to construct a k-NN graph in roughly O(N1.14)
time. Once the k-NN graph is constructed, we need to solve a QP of size k at each
node (assuming thresholds η are chosen accordingly for each node). As mentioned
before, there exists an efficient iterative algorithm for solving QPs [18]. Each
iterative step of this algorithm has a complexity of k3. The algorithm typically
requires less than 20 iterations to converge. The overall complexity of the second
step of the proposed method is O(Nk3).

Thus, the proposed method can implemented to run very efficiently with com-
putational complexity which is nearly linear in the number of nodes N . Moreover,
it is intrinsically suitable for distributed implementation since both the k-NN graph
construction algorithm [20] and the QPs at each node utilize data only in the local
neighborhood of each node.

6.2.4 Interpretation and Discussion

In order to gain some intuition about how the proposed method sets the graph
weights, we consider a small example with three nodes, i, j and k. In order to find
the weights Wij and Wik, we have to solve (6.12) with

G =

 1 Kjk

Kjk 1

 and g =

Kij

Kik

 .
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Here we assume that k(x,x) = 1 for all x, which is the case for most commonly
used kernels such as the Gaussian kernel, the cosine kernel etc. For simplicity,
assume that both θ?j ,θ?k > 0 and η = 0. Hence,

Wij

Wik

 = c.G−1g = c

Kij −KjkKik

Kik −KjkKij

 ,

where c is a constant independent of the index j, k. To compare the relative
strength of connections, we compute

Wij −Wik = c(Kij −Kik)(1 + Kjk). (6.14)

If Kij > Kik, then (6.14) shows that in the resulting graph, strong similarity (Kij)
between nodes i and j leads to a relatively even stronger connection between them
whereas weak similarity (Kik) leads to a further weakened connection.

6.3 Experiments

The proposed method of estimating a graph by local sparse non-negative ker-
nel regressions (NNK) can be used as a post-processing step once a k-NN graph
is constructed from the data. We test its performance in three applications,
namely, image filtering, clustering and semi-supervised learning, where a sym-
metric, weighted k-NN graph is commonly used.

6.3.1 Image Denoising with Sparse Inverse BF Graph

The BF can be interpreted as a filter on a dense image dependent graph with edge
weights given by the BF kernel

Kij = exp
(
−‖pi − pj‖2

2σ2
d

)
exp

(
−(fi − fj)2

2σ2
r

)
, (6.15)

where pi denotes the position of pixel i and fi is the pixel intensity. We use the
proposed NNK method to construct a sparse graph that approximates the inverse
of the BF kernel matrix.
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We compare the performance of the NNK graph in image denoising with 7× 7
BF graph and a sparse graph obtained using the heuristic similar to k-NN (with
k = 4) in [33]. The NNK graph is obtained by selecting η at each node such
that the set of non-zero entries in its adjacency matrix forms a subset of the set
of non-zero entries in the adjacency matrix of the 4-NN like graph. We consider
the problem of denoising four 16× 16 blocks from the “Lena” image corrupted by
i.i.d. Gaussian noise. We use the Wiener filters given by the GFTs computed using
the different graphs. Wiener filter is the optimal filter for minimizing the MSE.
Its spectral response [56] is given by hw(λi) = f̃2

i /(f̃2
i + σ2

n), where σ2
n is the noise

variance2.
The PSNR values of the results for different images at various noise levels

are shown in Table 6.1. The table shows that the proposed NNK graph gives
better or comparable results to the 4-NN like graph. Both of these graphs (which
approximate the inverse of the BF kernel matrix) perform better that the Wiener
filter given by the dense 7× 7 BF graph, while being much sparser (see Table 6.2).

6.3.2 Clustering

In this example, we consider the problem of two way clustering of the two moons
dataset shown in Figure 6.1(a) using spectral clustering [84]. Each data point
xi ∈ R2. Spectral clustering begins by constructing a graph from the data and
uses the first m (m = 2 in this example) eigenvectors of the normalized graph
Laplacian to find the clusters. We use the Gaussian kernel (6.3) to measure the
similarity between any two points xi,xj and construct symmetric, weighted k-NN
graph.

Table 6.3 shows the accuracy of spectral clustering with k-NN and proposed
graphs for different values of k and kernel width σ. From Table 6.3, we see that
the proposed graph construction method consistently outperforms k-NN and its
performance is more robust to the choice of k and σ than that of k-NN.

2Comparison between the 7× 7 BF and a polynomial filter on the sparse inverse BF kernel
graph is provided in [33]. It shows that the polynomial filter on the sparse inverse BF kernel graph
gives superior denoising performance than the 7× 7 BF with lower computational complexity
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Block Noisy 7× 7 BF 4-NN NNK

15 26.09 27.11 27.15

20 29.65 31.00 30.63

25 33.98 34.45 34.50

30 38.81 38.67 38.98

15 28.07 28.92 28.20

20 32.49 31.79 32.74

25 36.05 35.91 36.75

30 40.47 39.77 40.14

15 39.88 39.58 36.32

20 42.26 41.73 38.22

25 43.85 43.19 41.71

30 45.51 45.52 44.41

15 25.82 26.59 26.64

20 29.57 30.11 29.76

25 33.64 34.15 33.95

30 38.57 38.59 38.68

Table 6.1: PSNR (in dB) of images denoised using Wiener filters given by the
GFTs computed using 7 × 7 BF graph, 4-NN heuristic graph and proposed NNK
graph.

6.3.3 Semi-supervised Learning

In this example, we apply the proposed method for semi-supervised classification
of the USPS handwritten digits data. This data consists of 1100 16 × 16 images
each of digits 0 to 9. We use 100 randomly selected samples for each digit class
to create one instance of our dataset. Thus, each instance consists of 1000 feature
vectors (100 samples/class × 10 digit classes) of dimension 256.

As in the previous example, we use the Gaussian kernel to measure the similar-
ity between each pair of points xi,xj ∈ R256. We observe the labels of a randomly
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Graph 7× 7 BF 4-NN NNK

avg. nnz 8649 1168 1021

Table 6.2: Average number of non-zero entries in the adjacency matrices of different
graphs.

(a) Ground truth (b) k-NN (c) NNK (Proposed)

Figure 6.1: Spectral clustering with k-NN and proposed graph, k = 10, σ = 0.1

selected subset of the nodes in the graph and predict the labels of the rest of the
nodes using the method in [94]. The experiment is performed using both the sym-
metric, weighted k-NN graph and the proposed NNK graph, which is obtained by
selecting η at each node such that the set of non-zero entries in its adjacency matrix
forms a subset of the set of non-zero entries in the adjacency matrix of the k-NN
graph. The experiment is repeated over 10 instances of the dataset. Figure 6.2
shows the plots of average classification error vs. the number of observed labels
with both types of graphs constructed using different values of k and Gaussian
kernel width σ.

From Figure 6.2, we can make the following observations. Choice of σ is impor-
tant in k-NN graph, especially when k is large. A very small σ can change similarity
values significantly when distances vary only a little. On the other hand, when
σ is very large even a large, change in distance does not significantly change the
corresponding similarity value. Our proposed method gives better results than the
k-NN graph construction method and is much more robust to the choice of k and
σ.
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k = 5 k = 10 k = 40

k-NN NNK k-NN NNK k-NN NNK

σ = 0.1 84.9 94.0 93.2 98.2 94.4 96.2

σ = 1 82.1 93.3 88.8 95.0 88.4 89.8

σ = 4 82.1 92.9 88.6 94.1 88.0 88.4

Table 6.3: Clustering accuracy with k-NN and NNK (proposed) graph for different
values of k and σ
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Figure 6.2: SSL results with k-NN and NNK (proposed) graph for different values
of k and σ.

6.4 Summary

We proposed an efficient method for constructing a graph, given N data points in
Rd and a positive definite kernel function, which computes the similarity between
each pair of data points. The proposed graph construction methods provides a
computationally efficient alternative to the dense bilateral filter used for adap-
tive image filtering. It can also be used in graph based clustering and learning
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algorithms. Our graph construction method approximates the inverse of the ker-
nel matrix by representing each data point as a combination of other data points
using `1 regularized non-negative kernel least squares regression. It has nearly the
same computational complexity as the k-NN graph construction method and is
expected to be robust to data noise. Numerical experiments show that the pro-
posed method performs better in applications compared to the k-NN method and
is more robust to the choice of k and kernel parameters.

86



Chapter 7

Conclusions and Future Work

7.1 Main Contributions

In this thesis, we proposed efficient techniques for sampling and reconstruction of
signals defined on nodes of a graph. The proposed graph sampling theory is based
on the notion of graph Fourier transform (GFT) defined using eigenvalues and
eigenvectors of operators that measure the variation in a graph signal taking into
account the edge connectivity. We gave necessary and sufficient conditions under
which a graph signal bandlimited in the GFT domain can be uniquely and stably
reconstructed from its samples on a subset of the nodes. Using this condition,
we proposed an efficient algorithm for selecting a good sampling set that allows
for stable bandlimited reconstructions that are robust against sampling noise and
model mismatch. We also provided an efficient algorithm for obtaining an approx-
imate bandlimited reconstruction with the observed samples using graph filters
in the form of polynomials in the variation operator. The main advantage of our
approach over other methods proposed in the past is that, although it is motivated
by the GFT, our approach does not require computation of the GFT basis vec-
tors. The proposed methods access the variation operator only via matrix-vector
multiplication and thus allow distributed and localized implementation. They can
also be applied to directed graphs with appropriate variation operators.

We gave a probabilistic interpretation of graph sampling theory by posing the
sampling set selection problem as an experiment design problem for minimizing
predictive covariance assuming graph based smoothness prior for signals. Based
on this interpretation, we extended our sampling framework to adaptive sampling,
where the future choice of nodes to be sampled depends on the samples observed
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in the past. This extension used the concept of 1-Laplacian to define a graph
signal prior better suited for discrete valued signals. We considered an application
of the proposed sampling and reconstruction methods to graph based active semi-
supervised learning in detail. Our approach gives better classification accuracy
with a given number of labels than other state of the art methods in different real
world data sets.

Finally, we proposed an efficient method for constructing a sparse graph from
given data in the form of vectors in Rd and a pairwise similarity kernel, which is the
first step in graph based learning and clustering approaches. Our proposed method
has roughly the same computational complexity as the k-NN graph construction
method. In addition to graph based clustering and semi-supervised learning, we
applied the our method to provide an efficient alternative to the bilateral filter,
a well-known tool for edge-aware image filtering. The proposed graph leads to
superior performance in spectral clustering, semi-supervised learning and image
denoising compared to the k-NN method.

7.2 Future Work

There are several important questions that we would like to consider in future.
The greedy sampling set selection algorithm proposed in Chapter 3 gives only an
approximate solution to the combinatorial cutoff frequency maximization problem.
It would be useful to find a polynomial time algorithm with theoretical guarantees
on the quality of approximation.

In our adaptive sampling method from Chapter 5, the graph is modified based
on the observed samples using an approximate Bayesian inference method. We
would like to find a fast heuristic for computing the modified graph in order to
make the proposed adaptive sampling method more scalable. Such a heuristic can
also allow us to construct better graphs from data, which would lead to improved
semi-supervised learning performance.

The adaptive sampling framework can be generalized even further by consider-
ing different graph signal priors, observation likelihood models and error metrics.
An interesting theoretical problem is to provide bounds on the sampling complexity
(i.e., the number of samples required to achieve desired reconstruction accuracy)
for different graph signal models.
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Since our methods for graph signal sampling and reconstruction access the
graph variation operator only via matrix-vector multiplications, these can be imple-
mented using a distributed graph processing framework such as GraphLab [53] in
order to make them applicable to large datasets.

In Chapter 6, we constructed an edge-aware, sparse graph representation for
images by approximating the inverse of the BF kernel matrix and considered
its application in image denoising. In future, we would like to consider image
dependent graphs obtained using similarity kernels corresponding to different edge-
aware image filters such as non-local means [8] and locally adaptive kernel repres-
sion [82]. Application of these graphs in other image processing tasks such as
super-resolution, in-painting and compression would be also useful.
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Appendix A

Properties of Spectral Proxies

In this section, we prove the monotonicity and convergence properties of ωk(f).

Proposition 5. If L has real eigenvalues and eigenvectors, then for any k1 < k2,
we have ωk1(f) ≤ ωk2(f),∀f .

Proof. We first expand ωk1(f) as follows:

(ωk1(f))2k1 =
(
‖Lk1f‖
‖f‖

)2

=
∑
i,j(λiλj)k1 f̃if̃ju>i uj∑

i,j f̃if̃ju>i uj
(A.1)

=
∑
i,j

(λiλj)k1cij (A.2)

where cij = f̃if̃ju>i uj/
∑
i,j f̃if̃ju>i uj. Now, consider the function f(x) = xk2/k1 .

Note that since k1 < k2, f(x) is a convex function. Further, since ∑i,j cij = 1, we
can use Jensen’s inequality in the above equation to get

∑
i,j

(λiλj)k1cij

k2/k1

≤
∑
i,j

(
(λiλj)k1

)k2/k1
cij (A.3)

⇒

∑
i,j

(λiλj)k1cij

1/2k1

≤

∑
i,j

(λiλj)k2cij

1/2k2

⇒ ωk1(f) ≤ ωk2(f) (A.4)

If L has real entries, but complex eigenvalues and eigenvectors, then these occur in
conjugate pairs, hence, the above summation is real. However, in that case, ωk(f)
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is not guaranteed to increase in a monotonous fashion, since cij’s are not real and
Jensen’s inequality breaks down.

Proposition 6. Let ω(f) be the bandwidth of any signal f . Then, the following
holds:

ω(f) = lim
k→∞

ωk(f) = lim
k→∞

(
‖Lkf‖
‖f‖

)1/k

(A.5)

Proof. We first consider the case when L has real eigenvalues and eigenvectors.
Let ω(f) = λp, then we have:

ωk(f) =
(∑p

i,j=1(λiλj)k f̃if̃ju>i uj∑p
i,j=1 f̃if̃ju>i uj

)1/2k

(A.6)

= λp

cpp +
∑

(i,j)6=(p,p)

(
λi
λp

λj
λp

)k
cij

1/2k

(A.7)

where cij = f̃if̃ju>i uj/
∑
i,j f̃if̃ju>i uj. Taking limits, it is easy to observe that the

term in parentheses evaluates to 1. Hence, we have

lim
k→∞

ωk(f) = λp = ω(f) (A.8)

Now, if L has complex eigenvalues and eigenvectors, then these have to occur in
conjugate pairs since L has real entries. Hence, for this case, we do a similar
expansion as above and take |λp| out of the expression. Then, the limit of the
remaining term is once again equal to 1.
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