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ABSTRACT

T his thesis focuses on the applications of Filtering & System Identification in Reser-

voir Waterflood Simulation in two major sections; 1) Investigating the challenges

in identification of data-based, low order, linear, and time invariant models that

are used for describing injector(s)-producer(s) relationship, and 2) Upscaling irregular

reservoir grids that are used for waterflood simulation using graph signal processing.

Data based modeling techniques have been used in reservoir simulation in the past

decade. However, most of the attention has been on the mathematical development

of the model structures, and less on the information content of the training data. This

thesis shows that the reliability of the models in terms of predicting the production

rates can be improved if the training data is obtained with predefined injection se-

quence(s) and under known reservoir condition. Injection rate signals that have more

variations can provide more information about the underlying dynamics of the system,

but determining these variations is not trivial since large variations can cause severe

nonlinearities in the waterflood process. A methodology is proposed on how to design

the characteristics of an appropriate injection sequence such as length and amplitude of

variations and its frequency, and how to translate the information about the reservoir

into those design parameters.

Numerous reservoir upscaling methods have been proposed in the literature, including

the applications of the wavelet transform in recent studies. However, the applications

are limited to the models that are represented by regular computational grids with equal

size blocks or cells. We propose a generalization of the lifting scheme for upscaling

by representing the reservoir grid on a graph network that makes it possible to use

wavelet transform and spatial and spectral analysis to upscale any irregular grid highly

efficiently. A graph bipartition algorithm and a method to calculate the equivalent

permeability of the enlarged cells are introduced, along with a complete simulation

example.
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Chapter 1

Introduction

The production life cycle of a reservoir is in the order of decades and is commonly

divided into three stages; A) The primary stage, in which the reservoir has a naturally

high pressure that is enough to push almost 10% of the oil to the surface; B) Secondary

stage, where reservoir pressure is regenerated by injecting water or steam (Figure 1.1),

depending on the configuration and the number of injectors and producers, and on

reservoir type, around 20− 40% of the oil can be recovered by waterflooding; and C) The

final or tertiary stage, where techniques that alter the original properties of the oil are

used, e.g. improving oil mobility by injecting CO2 or fire, or by using chemicals. In

overall, enhanced oil recovery (EOR) can help extracting up to 60% of the oil in place. Oil

production during this life cycle can be improved not only by using modern equipment,

but also by production optimization algorithms that are based on mathematical models.

Figure 1.1: Process of waterflooding using a horizontal injection and production well,
equipped with Internal Control Valve (ICV). The irregular-shaped oil-water front is a

result of the reservoir heterogeneities. Image courtesy of [1]
.

1



2 Chapter 1. Introduction

1.1 Waterflood Modeling

The dynamics of the fluid flow in a reservoir and in wells can be modeled according

to conservation of mass and momentum. The relationship between rock pressure and

saturation is based on a set of coupled Partial Differential Equations (PDEs) that are

nonlinear and contain high order derivatives. Alternatively, waterflooding can be

modeled using empirical relations, such as Darcy’s law, which are simpler and have

been developed based on lab experiments. It should be noted that in either approach,

the models and system boundaries of the wells and facilities can generally be defined

reasonably accurate, but reservoir properties are highly heterogeneous and known with

large uncertainties. Accordingly, subsurface model parameters are not stationary and

accurate and usually multiple models are used to simulate the fluid flow for different

geological realizations [2].

PDEs are solved numerically by discretizing the field into small gridblocks. The size

of the gridblocks (or equivalently their number) is determined based on the level of

heterogeneity, desired solution accuracy and available computational capabilities. An

example of a reservoir model with multiple injectors and producers is shown in Figure

1.2. Note that each block has a number of static properties such as permeability, porosity,

etc., a number of dynamic properties such as relative permeability, compressability, etc.,

and two state variables: pressure and saturation. The order of the discretized reservoir

model is as large as the number of states. For example for an oil field in order of miles

and for gridblocks in order of feet, the model order can rise to tens of millions.

A “large scale” and “nonlinear” model with parameters that are known with uncer-

tainty is not practical for small simulations and analysis. Moreover, there are a number

of optimization and control techniques that are only applicable for linear models, see

Figure 1.2: An example of a discretized reservoir model with heterogeneous perme-
ability distribution, with large number of vertical wells. Image courtesy of [1].
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e.g. [3–7]. To overcome this, a number of alternatives have been proposed in reser-

voir engineering literature such as: upscaling the model by increasing the size of the

gridblock [8], smart gridding or dynamic gridding to have flexible grid size and shape

[9, 10], model reduction and linearization around a working point [11], and modeling

with simplified dynamics and based on empirical relationship such as the capacitance

model (CM) [12]. Other types of modeling have also been introduced recently in liter-

ature to describe the interwell connectivity such as: Kalman filtering[13, 14], Subspace

Identification (SubID) [15], and Prediction Error Identification (PEI) [16].

In this thesis we focus on two main aspects of reservoir waterflood modeling, one is

the importance of information content of the data when used for data based modeling,

and the other is using graph signal processing tools to upscale a large scale model that

is discretized by arbitrary shaped cells.

1.1.1 Data Based Modeling

Approximation of injector-producer dynamical relationships with linear low order

models has received a great deal of attention in recent years, because of its simplicity,

ease of use and speed of estimation/update of states and parameters. By considering the

waterflooding as a process, injection rates as the input signal and production rates as the

output signal, a model with a simple and linear structure can be identified that can best

describe the input-output relationship. All of the existing techniques are data driven

and use measured injection and production rates to directly estimate the parameters of

the low order model. Such a model usually lies in a much lower dimension subspace,

with fewer states and parameters, as compared to a grid-based simulation model.

The effectiveness of data based modeling methods is indeed limited to the circumstances

under which the model parameters are estimated or trained, and what is expected from

them. For example, we will show in Chapter 2 that nonlinearities are more pronounced

and parameters are varying more rapidly during the water break through (WBT)1,

where linear low order models would highly suffer from undermodeling.

Despite such limitations, these models can be reasonably accurate in terms of pre-

dictability by making sure that the training data is obtained in controlled and prede-

fined conditions such that all the relevant dynamics are excited. The experiment design

for obtaining an informative training data is the subject of Chapters 3 and 4.

1Water breakthrough is referred to the phase when water reaches the producers while most of the
produced fluid is oil. It will be explained why low saturation of water causes nonlinearity.
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1.1.2 Reservoir Upscaling

Reservoir upscaling can be done for either static properties such as absolute permeabil-

ity, porosity, or dynamic properties like relative permeability and capillary curves. The

correctness criterion of an upscaling procedure is often the equality of flow for a given

flow potential [17, 18]. Accordingly, the coarse model should be capable of reproducing

the main aspects of the fine-scale flow behavior such as flow rates, average pressures,

average saturations, and breakthrough times. However, all coarsening procedures in-

troduce a discrepancy and loss of detail in the numerical model. Study of upscaling

techniques is not new, but it is still an ongoing research area of significant importance,

leading to simulation errors when not done properly [19]. In most practical upscaling

approaches, the resulting coarse-scale equations from homogenization and averaging

have the same form as the fine-scale equations with the difference that the fine-scale

parameters are replaced by upscaled (effective) ones [20, 21]. Different methods of

two-phase flow upscaling can be found in [22–25]. Other methods such as multi-scale

methods, dual-gridding techniques, upscaling with flow-based gridding and near-well

upscaling are also examples of upscaling techniques. The reader is referred to [26] for

a review.

Applications of Signal Processing and specifically Wavelet Transform (WT) for upscaling

have received attention recently and [27] presented an accurate approach to reduce the

number of cells in a structured grid. In their approach, the detail and scale coefficients

of WT of permeability distribution are calculated for x and y direction. However, the

concept of direction becomes very complex for unstructured/non-uniform grids, which

are very useful and efficient for modeling the fractures and flow in fractured media.

Therefore, using classical signal processing rules out the application of wavelets in

unstructured gridding, such as triangular grids and Voronoi tesselations.

1.2 Problem Definition and Proposed Approach

Injection Scheduling for Improved Model Reliability: The usefulness of the training

data has been extensively studied in the system identification literature and is usually

referred to as experiment design or input design. The very basic goal of experiment

design is to develop an automated procedure for obtaining appropriate training data,

where the challenges are to provide tests that are cost-efficient (preferably short with

little disturbance in process operation), that keep the operation within constraints, and

that sufficiently excite the process dynamics that are relevant for subsequent design of

model-based multivariable controllers.
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Despite its importance, experiment design has not received enough attention for wa-

terflood modeling, and it is often assumed that the naturally existing rate fluctuations

in the measurements is enough. For example [28] used a set of randomly varying

pressure in injector and producer for training low order models without motivating the

properties of the variations. In this study, we are proposing a methodology that basi-

cally translates the knowledge that we have from the reservoir dynamics into required

statistical characteristics of the input signal, and we call it injection scheduling.

The proposed injection scheduling methodology is an iterative process that is proposed

to first know the reservoir conditions and then design a set of varying injection rates in

order to obtain sufficiently informative data for training simple LTI models. We show

that this is not trivial as mild and insufficient variations result in unreliable models,

and large and unbounded variations cause major nonlinear behavior in the underlying

dynamics. The process is carefully designed based on both theory and experiment.

Upscaling of Unstructured Reservoir Simulation Grid: In order to successfully apply

signal processing tools such as Wavelet Transform for upscaling unstructured grids,

we are proposing the applications of graph signal processing. Graphs are an abstract

representation of data, e.g., in social media, sensor network, internet users, economic

and molecular network, where the nodes are organized arbitrarily without any order.

A massive interest in analyzing and processing of such networks has brought attention

to the emerging field of graph signal processing [29, 30].

The freedom of abstract data representation comes with the cost of storage and com-

putation. Data on a graph can be visualized as a finite collection of samples, with

one sample at each vertex in the graph [29], which are referred to as“graph signal”

collectively. While a vector of length N is required to store the graph signal, each in-

terpretation of the graph network, or as we call it “graph feature”, requires a matrix of

N ×N that requires matrix operation of order N2.

We show how a reservoir grid can be represented on a graph regardless of the shape

of the cells. Using graph signal processing tools, we utilize lifting scheme to analyze

local heterogeneities in the model. A graph bipartition algorithm is proposed and

together with our state of the art algorithm for calculating the equivalent permeability,

we introduce an upscaling scheme.

1.3 Thesis Outline

We will start this thesis by briefly reviewing the waterflood modeling in porous media

in Chapter 2. By investigating the laws of conservation of mass and momentum, we can
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see where and when in the reservoir the pressure and saturation dynamics are linear.

Knowing the corresponding limitations, a number of linear time invariant (LTI) model

structures that are well accepted in the literature are reviewed. For each structure,

we have provided physical intuition and, wherever possible the interpretation of their

parameters.

The remainder of the thesis is divided into two parts: I) Experiment design for linear

low order waterflood modeling (Chapters 3 and 4), II) Reservoir upscaling using graph

wavelet transform (Chapter 5).

Knowing that parameter estimation of LTI models greatly depends on the training

dataset, in Chapter 3 we investigate the effects of various injection sequences with

different statistical properties on modeling of a simple reservoir. We will show that

the reliability of the models in terms of predicting the interwell connectivity greatly

depends on amount of fluctuations present in the injection rates.

In Chapter 4 we propose a methodology on how to determine an appropriate input

signal that has enough variations to excite the relevant dynamics, while avoiding non-

linear behavior. Injection scheduling is defined as adding a number of variations on top

of the injection rates, which are determined based on prior knowledge of the reservoir

or by running preparatory tests.

In Chapter 5, reservoir upscaling techniques are briefly reviewed. We will show how

one can represent a reservoir grid by a graph regardless of the shape and structure

of the cells. Unlike classic signal processing, operations such as filtering, shifting,

modulation or downsampling are not simple to interpret in graph signal processing.

Therefore, graph spectral analysis and graph signal filtering concept for the proposed

graph are studied. And finally, reservoir upscaling using graph wavelet transform is

introduced based on multiresolution analysis of permeability distribution of a reservoir

model with unstructured gridblocks. We will discuss the applications of Lifting Based

Wavelet Transform on reservoir graph and propose a downsampling algorithm for

upscaling.



Chapter 2

Flow Modeling in Porous Media

In this chapter we briefly review the modeling of water and oil flow in the reservoir.

It was mentioned in Chapter 1 that there are basically two approaches towards mod-

eling: The first approach is based on physical principles and dynamical relationship

of pressure and saturation. By reviewing this, we want to show the nonlinear nature

of the underlying dynamics, and the main sources of nonlinearity when they are ap-

proximated by linear regime. The second approach is based on the data and can either

involve some physical intuition to construct a model structure or none at all. In this

approach model parameters are obtained, or in other words identified, based on the

data that is gathered during production.

In a typical waterflooding process, oil, water, gas and other forms of chemical com-

ponents are present that make the analysis more complicated. However, in order to

better understand the underlying dynamics and phase interactions, we only review the

modeling of two phase flow using physical principles. Moreover, from the available

different data based modeling techniques in the literature, we only briefly review the

ones that are further investigated in Chapter 3. This brief review shows the limitations

of linear system identification methods, and in the end we conclude a set of assumptions

that must be considered for a valid data based model identification.

The reader is referred to Appendices A and B for further details of dynamics and

simulation of fluid flow in porous media.

2.1 Dynamics and Modeling of Two Phase Flow

The governing dynamical equation for iso-thermal two phase flow consists of two sets

of mass and momentum conservation equations for water and oil phase. Since the

7
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flow velocity in the reservoir is slow, the momentum balance is usually replaced by

an empirical relationship between flow and pressure called Darcy’s law. The reader is

referred to [31] for more detail on the multi-phase flow dynamics.

The mass balance equations for a 2D reservoir can be expressed as:

∇(hρw~vw) + h
∂(ρwφSw)

∂t
− hρwqw = 0, (2.1)

∇(hρo~vo) + h
∂(ρoφSo)

∂t
− hρoqo = 0, (2.2)

where indices w and o represent water and oil phase, ρ is density, ~v is velocity, h is

reservoir height which is a function of location (x, y), φ is porosity, S is saturation and

q represents the source (or sink) term expressed as flow rate per unit volume. Also, the

Darcy’s law can be represented as

~vw = −
krw

µw
~K(∇pw − ρwg∇z), (2.3)

~vo = −
kro

µo
~K(∇po − ρog∇z), (2.4)

where krw and kro are relative permeabilities, µ is viscosity, ~K is the permeability tensor,

p is pressure, g is gravity acceleration and z is the depth of the reservoir (assumed to be

constant in 2D).

The above four equations have four states; Sw and So where Sw + So = 1, and pw and po

are water and oil pressure that are related by po−pw = pc(Sw), where pc is called capillary

pressure and is a function of saturation. The presence of oil-water capillary pressure

implies that the states are not independent of each other. [32] shows that although pc is

the key factor in hydrocarbon movement in the pores, its effect is negligible compared

to dispersive effect of geological heterogeneities. In other words, oil and water pressure

can be assumed to be equal if the heterogeneities are large and significant.

Moreover, the parameters ρo,w, φ, µo,w and ~K are also function of the states which only

makes the dynamical interpretation more complicated.

Meanwhile, given the iso-thermal condition, oil and water compressibility co,w can be

defined as:

co ,
1
ρo

∂ρo

∂p
, cw ,

1
ρw

∂ρw

∂p
, (2.5)

while rock compressibility cr can essentially be defined as:



Chapter 2. Flow Modeling in Porous Media 9

cr ,
1
φ

∂φ

∂p
. (2.6)

2.1.1 Simplification For 1D Flow

In order to better understand the dynamical interactions of the states and the param-

eters, one can simplify Equations (2.3) and (2.4) for 1D flow, and also neglecting the

dependency of µ and ~K to pressure. Oil and water mobility λ can be defined as:

λo ,
kkro(So)
µo

, λw ,
kkrw(Sw)
µw

, (2.7)

noting that the permeability tensor ~K is now reduced to a scalar k. Combining the 1D

simplified Darcy’s relation A.3 and mass balance Equations (2.1) and (2.2) yields to two

coupled PDE with only two states p and Sw, as follows 1

−
∂
∂x

(λw
∂p
∂x

) + φ[Sw(cw + cr)
∂p
∂t

+
∂Sw

∂t
] = 0, (2.8)

−
∂
∂x

(λo
∂p
∂x

) + φ[(1 − Sw)(co + cr)
∂p
∂t
−
∂Sw

∂t
] = 0. (2.9)

Moreover, we should mention that the above equations are obtained by neglecting the

capillary and gravity forces, and assuming that ρ (and consequently co,w,r) is constant

and is pressure independent, i.e., low compressibility assumption.

Equations (2.8) and (2.9) can be decoupled by summation, to get a single PDE with only

pressure p as in:

−
∂
∂x
λt
∂p
∂x

+ φct
∂p
∂t

= 0, (2.10)

where λt = λw +λo and ct = Swcw + (1− Sw)co + cr are total mobility and total compress-

ibility, respectively. One can see that the parameters of Equation (2.10) are both function

of Sw. This equation is a parabolic equation with non-constant coefficient [32] and can

be further reduced to an elliptic equation with the assumption of incompressible flow

leading to:

∂
∂x
λt
∂p
∂x

= 0. (2.11)

1Note that the source term has been dropped considering only the flow between an injector and a
producer well, in which the flow in each cell is driven through boundary condition.
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Intuitively, the incompressible flow assumption means that pressure changes are in-

stantaneous. This can also be confirmed by noting that the term ∂p
∂t has been dropped

in the above equation.

We are interested in deriving a similar equation with Sw as the primary variable. Ne-

glecting the gravity forces, the Darcy’s law that was presented in Equations (2.3) and

(2.4) can be rewritten for 1D flow as follows:

vw = −λw
∂p
∂x
, (2.12)

vo = −λo
∂p
∂x
. (2.13)

Fractional flow fo,w is defined as fw , vw
vw+vo

≡
λw

λw+λo
, where vt = vw + vo is total velocity.

Note that fw is a function of Sw and is independent of pressure gradient. Replacing fw
in Equations (2.12) and (2.13) and then into Equations (2.8) and (2.9), and dropping the

compressibility dependent terms, results in:

vt
∂ fw
∂Sw

∂Sw

∂x
+ φ

Sw

∂t
= 0. (2.14)

The above equation is first order nonlinear hyperbolic equation. Given the incompress-

ible flow assumption (among many others that mentioned before), the only non-constant

parameter of Equation (2.14) is vt. In fact vt depends on pressure gradient ∂p
∂x according

to Equations (2.12) and (2.13).

The derivation of the above equations is mainly taken from [32], based on in-situ

reservoir volume, condition at the bottom of the wells and inside the reservoir. They

have shown that in practice however, it is important to take into account the oil and

water formation volume factor Bo,w, because of the dissolved gas in the oil and water.

In fact oil and water compressibility should be defined as a function of ∂B
∂p rather than

∂ρo,w
∂p . That is why in other similar model derivation co,w is replaced by Bo,w.

2.2 Sources of Nonlinearity

Analyzing the quality of the identified linear models, one must take into account the

conditions under which the training data is obtained. It is important to know the

cause and effect of different aspects that drift the underlying dynamics from linear

regime. Knowing the physics behind the sources of nonlinearity leads to proper design

of injection rate variations.
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In derivation of the above relations, we have shown that the parameters of the coupled

PDE’s are dependent on the states. In fact some of the major sources of nonlinearity are

through mobility λo,w in Equation (2.7), and in the saturation dependency of relative

permeability krw(Sw) and kro(Sw). Relative permeability is defined as a reduction in

absolute permeability ~K due to the presence of the other phase, which gives rise to

capillary pressure. In fact the nonlinearity is not negligible as long as water-oil ratio is

significant 2.

Moreover, parameters of mobility are also a function of p because of the upstream

weighting of the relative permeability. That is, if the pressure in two adjacent grid

blocks changes slightly, but such that the flow through the grid block boundary changes

direction, the upstream relative permeability changes strongly3 [32].

Another source of nonlinearity is due to the source term in Equations (2.1) and (2.2).

While it is possible to prescribe the water injection rate in the injector well directly, the

total liquid rate qt in producers depend on fractional flow rates fw and fo, i.e. qo = λo
λo+λw

qt

and qw = λw
λo+λw

qt.

2.3 Data-Based Modeling of Two Phase Flow

The development of dynamical equations in the previous section would lead to a large

scale model as the number of gridblocks N increases, and it is always a trade-off between

accuracy and complexity of calculation. However, the dynamics of the underlying

process can be captured in a lower dimensional space as shown by [34]. In recent years,

researchers in both the reservoir engineering and system engineering communities have

developed techniques to find low order models, both linear and nonlinear. A common

approach is to analyze the pressure, production, seismic and other types of data, and

describe the reservoir and the waterflooding based on the information present in the

data.

Considering the waterflood as a process and injection and production rates as the in-

put and output, data-based techniques are generally divided into two categories; a)

fully data-based techniques: identifying a mathematical relationship (sometimes phys-

ically meaningless) between input and output4, b) partially data-based techniques:

2For reservoir engineering aspects of relative permeability see [33].
3In other words it means that if the fluid is flowing in one direction from one gridblock to another, and if

the pressure gradient changes (e.g. near injectors when pressure changes happen due to rate change) such
that upstream and downstream pressure gridblock swapped and the fluid has to move in the opposite
direction, an excessive force due to relative pearmeability is opposing the fluid flow.

4This model could be either linear or nonlinear, or even a neural network. This approach is referred to
as Black Box modeling, and choosing the right model set or subspace is not trivial [35].
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developing a simple and understandable model structure based on physical intuition,

parameters of which are estimated based on the data5.

We will investigate the role of data, or more specifically the requirements of the training

data, in Chapter 3. But before that, we briefly review four such modeling techniques in

the following section. The following models are linear and require less computational

effort than other techniques, and perhaps that is why they are widely being used in

research and practice.

2.3.1 Linear Model Structure

We have seen in Section 2.1 that the waterflooding process has a nonlinear nature.

Furthermore, the dependency of the system parameters on the states implies that the

system is time-varying as well. However, under a series of assumptions that was

discussed in the same section (and will be further studied in the Chapter 3), the process

can be approximated by a linear time invariant model.

The model structures that are presented in this section take the sequence of injection rates

as the input and the sequence of production rates (liquid rate) as the output. Therefore,

for a reservoir with M injection wells and N producer wells, the ideal input/output

relationship can be represented as a multi-input multi-output transfer function:


Y1(z)
...

YN(z)

 =


G11(z) · · · G1M(z)
...

. . .
...

GN1(z) · · · GNM(z)




U1(z)
...

UM(z)

 , (2.15)

where Ui(z) and Yi(z) are the z-transforms of input and output sequences, respectively.

Gi j(z) =
Bi j(z)
Ai j(z) is a rational transfer function between the corresponding injector and

producer, where Bi j(z) and Ai j(z) are polynomials of z, in z domain. See [34, 36, 37] for

a detailed discussion of state space representations.

A widely used and accepted low order linear model structure in the reservoir engineer-

ing community is the capacitance model (CM). In the system identification literature,

Finite Impulse Response (FIR) and Auto Regressive eXogenous (ARX) are two widely

used models for simple and low order dynamical systems. [1] and [37] have also ap-

plied them for identifying inter-well connectivity and predicting the production rates.

Subspace Identification is another widely used method for modeling Multi-Input Multi-

Output (MIMO) systems.

5This type of modeling is called Grey Box modeling in system identification community. Advanta-
geously, model validation is easier and straightforward as the parameters have physical meaning and
value range [35].
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We will only review the single input single output model G(z) here. However, the

extension to MIMO should be straight forward using the Equation (2.15).

2.3.2 Capacitance Model

The derivation of CM is reviewed in more detail in Appendix C. The CM for a single

injector and single producer reservoir:

Y(z) =
β

1 − αz−1
U(z), (2.16)

where α , e−1/τ and β , ∆t/τ 6, and τ is defined as τ ,
ctVp

J . As one can see, this model

has only one pole that determines the shape of the response and therefore is called

a single pole transfer function in system identification literature, which is commonly

used for representing simple LTI dynamics.

The generalization of CM for MIMO systems is straightforward by introducing a new

parameter γi j called inter-well connectivity [37]. In this case, the transfer function Gi j(z)

according to Equation (2.15) becomes:

Gi j(z) = γi j
βi j

1 − αi jz−1
. (2.17)

One should specifically note that, for each pair of such system, the parameter τi j defines

the individual response from input i to output j, or in other words the measure of the

dissipation of the pressure between injector i and producer j, while another parameter

γi j determines the contribution of injector i to producer j.

2.3.3 FIR Model

After the popularity and successful application of CM with only a few parameters, [38]

proposed a similar model but with more parameters to shape the injection rate response.

The only assumption for this model is that for a discretized model the output response is

finite and confined to be dependent only on the last L input values. In signal processing

this operation is referred to as filtering, and such a system has a finite response for any

given bounded impulse input, hence the name FIR. For each injector-producer pair, the

model can be represented by:

6For further discussion about ∆t see Chapter 3, but for now assume that discretization time-step is
normalized to 1.
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Gi j = αi j,0 + αi j,1z−1 + · · · + αi j,L−1z−L+1. (2.18)

Unlike CM, the FIR model does not provide any physical information about the under-

lying dynamics, which makes it harder to validate the parameters. However, FIR model

has the major advantage of always being stable, which is suitable for the waterflood

modeling as this process is always stable. Note that not only the number of parameters

for each transfer function has been increased, but also the structure of FIR is different

from CM.

Mathematically, an FIR filter can approximate any LTI system for sufficiently high order

L [35]. However, from practical point of view, FIR model is obtained by truncating the

length L filter coefficients, the values of which are estimated according to the training

data. Although higher L can approximate the model dynamics better, it requires more

data (or more informative data) for more accurate estimation of the parameters, oth-

erwise the error covariance of the estimated parameters would become large, which

yields more uncertainty. See more discussion in Chapter 3).

2.3.4 ARX Model

A main advantage of both CM and FIR is that the predictor operator is linear in the

parameters. This means that the parameter estimation boils down into a linear min-

imization problem. This as well guarantees that a global optimum can be obtained

for the estimated parameters. Although linear operation is an obvious advantage, it

comes with the cost of undermodeling, due to the ultra simplified structure. As will

be discussed in the next chapter, although increasing the model order gives more free-

dom in shaping the training error, one should note that such undermodeling issues,

mainly in form of nonlinearities, can affect the validity of the identified linear models

if the assumptions regarding the linearity of the underlying process are not met. We

summarize these assumptions at the end of this chapter.

ARX models are also linear in the parameters, and provide more flexibility in shaping

the dynamics. A general transfer function between input and output can be represented

as:

Gi j(z) =
Bi j(z)
Ai j(z)

= z−nd
b0 + b1z−1 + · · · + bnb−1z−(nb−1)

1 + a1z−1 + · · · + anaz−na
, (2.19)

where nd represents the delay in response from input i to output j, and na and nb are

the order of the polynomials in denominator Ai j(z) and numerator Bi j. This structure
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can be physically interpreted as how much of the current output is determined from nb

samples of the past inputs, that is discounted by na samples of the past outputs. Note

that CM is a special case of ARX for nb = 1 and na = 1. Also, the DCM model in [16]

is a cascade of two CM transfer function and hence a transfer function in form of ARX,

where nb = 1 and na = 2 7. The double-pole model proposed by [13] is also a special

case of DCM with both poles at the same location.

Higher orders of nb and na can be used but they will tend to make the physical interpre-

tation of the poles more complicated. For a highly heterogeneous reservoir with high

permeability distribution variance, each area can be represented with a pole.

2.3.5 State Space Model

Subspace Identification (SubID) is another linear in the parameter modeling scheme

that is based on the state space representation of the system [39]. The main advantage of

SubID is that it has a straightforward extension to MIMO systems. Based on the building

blocks and assumptions for CM and Equations (C.1) and (C.2) in appendix, derivation

of the state space representation for a discrete time system is also straightforward. For

a reservoir with N producers and M injectors, one can write:

x[n + 1] = Ax[n] + Bu[n]

y[n] = Ix[n]
(2.20)

where y = [y1y2 · · · yN]T is the output vector, u = [u1u2 · · · uM]T is the input vector, AN×N

is the state matrix, BN×M is the input matrix and IN×N is identity matrix of size N. Note

that, in this model, the states are in fact the outputs of the system. This representation is

introduced by [37] and is called Multivariate ARX, which should not be confused with

the ARX model structure that was presented before. The elements of matrix A and B

are defined as:

ai j = −
δi j

τi
, bi j =

γi j

τi
, (2.21)

where τi and γi j have the same definition as in the last section and δi j determines the

contribution of producer j on production rate of producer i. This modeling structure

has two main advantages: 1) The effect of producers on each other is taken into account.

This is very important especially when the production wells are close and are subject to

7Note that the advantage of DCM is that the estimated parameters can be validated versus their
physical interpretation, e.g. existence of a fracture. That is why it is not preferred to change DCM into
ARX structure.
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frequent shut-ins8. 2) The parameters of this model have physical interpretation, which

makes their validation easier.

2.4 Conclusion

This chapter was aimed at fluid flow modeling in porous media. First, we briefly

reviewed the physics of the waterflooding phenomena and derived the PDE’s that

describe the relationship between pressure and saturation. We showed that these

equations are inherently “nonlinear” and their parameters are “varying in time” and

state dependent. However, by reviewing the simplification process, we showed that it

is possible to approximate the underlying dynamics with linear time invariant models

if a number of assumptions are taken into account. These assumptions are limiting in

the sense that identifying the parameters of a reliable LTI model, requires training data

that contains sufficient variations and length.

Considering the parameters of pressure dynamics in Equation (2.10), one can see that

total mobility λt depends on saturation Sw, and porosity φ and compressibility ct are

dependent on pressure change both in time or space (note that λ is also a function of

pressure p). Therefore, if pressure and saturation changes are sufficiently bounded,

or for incompressible or low compressible assumption, the pressure equations can be

replaced by a linear model.

In Equation (2.14) governing saturation is shown, and it can be seen that total velocity vt

is dependent on pressure gradient and on λo,w, and therefore on saturation. Therefore,

having sufficiently bounded pressure and saturation changes throughout the field, the

saturation can also be approximated by a linear model.

The places in reservoir that have large pressure gradient are near wells and in high

permeability channels such as in fractures, and for the rest of the reservoir ∇p ≈ 0,

(see Chapter 5). Because of low compressibility, pressure changes are also assumed

to be almost instantaneous and thus ∂p
∂t is also almost zero. Generally speaking, the

saturation changes in time happen much more slowly than pressure changes and it is

not negligible. This in fact implies that saturation related nonlinearity is stronger than

pressure related nonlinearity, and pressure related nonlinearity can only be neglected

under incompressible flow assumption. In other words wherever in the reservoir that

the water oil ratio is significant, saturation nonlinearity is also significant. Note also

that areas near wells, the nonlinearity is stronger due to the presence of source term,

see Section 2.2.
8Shut-in can happen for multiple reasons and might be planned or unforseen.



Chapter 2. Flow Modeling in Porous Media 17

In contrast to the large scale discretized model with fine grids, we presented a number

of techniques to describe the waterflood process with a simple linear model. These

models are low order, i.e., only have a few parameters, and have shown promising

results in predicting the production rates from injection rates. We have shown that

all CM, DCM, FIR, ARX and SubID have a similar MIMO model structure but with

different number of parameters to shape the response. In terms of the computational

efficiency or the number of parameters per input or output, SubID and ARX method are

similar and have more parameters than the others. We discussed that the parameters of

such models in terms of existence of a physical interpretation, which can be their major

disadvantage. Approximation of a large scale nonlinear process with simple linear

time invariant models naturally involves undermodeling, but we will show in Chapter

4 how to improve the reliability of these models using our proposed experiment design.

From what we observed in this chapter, we see that linear low order models are limited

and are only valid as long as waterflood dynamics are assumed to be linear and slowly

varying. The following assumptions need to be considered in order to guarantee

operation in a leaner regime:

• Two phase flow

• Negligible gravity and capillary forces compared to pressure

• Negligible dependency of µo,w and ~K on pressure

• Weak dependency of ρo,w and φ on pressure, thus low compressible flow

• Sufficiently bounded ∇P around injectors

• Low level of heterogeneities





Chapter 3

Data Based Modeling of Reservoir

Waterflood

It was motivated in Chapter 1 that linear low order modeling has found many ap-

plications in reservoir engineering. In Chapter 2 we reviewed a number of common

methods that have recently been widely used in research community. We have shown

that these simplified models have similar structure with a number of unknown param-

eters that need to be estimated according to a training dataset. This process is referred

to as Filtering and System Identification in the system identification literature. If the

model parameterization is based on some physical principles (greybox modeling) then

the identified parameters have physical interpretation that can be used for validation.

However, approximation of the waterflooding process with a linear time invariant

model (LTI) is mainly based on mathematical intuition (blackbox modeling), where the

model parameters are not necessarily meaningful. Now the question is how one can be

certain about the range of the estimated parameters and their validity without having

the option of using measurement for verification? And if there is no true LTI model,

what is the best approximation of the waterflooding with an LTI?

In this chapter, we will demonstrate a set of experiments that show the connection

between the conditions on the training data and the reliability of the predictions of

the identified mathematical models. The idea is to excite the dynamical modes of the

fluid flow by adding predefined variations on injection rates. A series of simulations is

done on a simple homogeneous reservoir for 26 predefined production scenarios with

different injection sequences. These sequences are different in the amount of variations,

their amplitude, and the stage of production in the lifecycle of the reservoir. Seeing the

individual effects of each of these aspects on the validity of models, we will conclude

the limiting factors of injection scheduling design process. What we learn here will be

19
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applied in Chapter 4 to properly design an experiment that generates an informative

training data. The discussions in this chapter contributes as a compliment to section

2.2, where the sources of nonlinearity were reviewed from theoretical point of view.

3.1 System Identification: Brief Review

We have shown in Section 2.3.1 that the injector-producer model can be described in

two forms: a) A rational transfer function G(z), b) A set of matrices in state space. In

the following, mathematics and statistics of Prediction Error Identification (PEI) and

Subspace Identification (SubID) are formally introduced in order to explain how to

estimate the parameters of each of these two models.

3.1.1 Prediction Error Identification (PEI)

Representing a nonlinear physical phenomenon such as waterflooding in terms of a

linear transfer function is an approximation. In PEI, the output is represented as a

relation between the input and a system model G(Z) and a noise model H(z), to account

for undesired effects of undermodeling such as system linearization, non-measurable

input signals, measurement noise and disturbances:

ŷ[n] = G(z)u[n] + H(z)e[n], (3.1)

where H(z) is a proper rational transfer function and is stable, e[n] a sequence of zero

mean, identically distributed, independent (iid) random variable 1 and u[n] is the

injection rate and ŷ[n] is the ”predicted” production rate simply because e[n] is random

and the measured output y[n] cannot be regenerated [39].

Let us denote the parameters of a given model by θ = [θ1 θ2 · · · θNΘ
]T, and the true

model G0(z) and H0(z) byS = G0(z),H0(z). IfM represents all the corresponding models

with same parameterization, i.e. M :=
{
G(z, θ),H(z, θ)∀θ ∈ RNΘ

}
, and by assuming

S ∈ M, then the goal is to find θ0 (or some estimate of it, θ̂) according to a training

dataset {u[n],y[n]} of length N. Equivalently,

θ̂N = arg min
θ

1
N

N∑
n=1

ε2(n, θ), ε2(n, θ) , (y[n] − ŷ[n])2. (3.2)

1Since e[n] is iid, it is enough to know its mean and variance.



Chapter 3. Data Based Modeling of Reservoir Waterflood 21

One can clearly see that θ̂N depends on the training dataset. Thus, the estimated

parameters for two different datasets are not necessarily the same. However, θ̂N has

normal distribution asymptotically, i.e. θ̂N ∼ N(θ0,Pθ), and if N→∞ then Pθ → 0.

The optimization problem in Equation (3.2) has an analytical solution, if one chooses to

parameterize H(z) as H(z) = 1
A(z) , where A(z) is the polynomial in the denominator of

G(z) according to Equation (2.19). [39] shows that the least square estimator in Equation

(3.2) is linear in parameter θ and it can be written in matrix notation as:

ŷ[n] = z−ndB(z)u[n] + [1 − A(z)]y[n] = φ[n]Tθ, (3.3)

where θ = [a1 a2 · · · ana b0 b1 · · · bnb−1]T and φ[n] = [−y[n − 1] · · · − y[n − na] u[n −

nd] · · · u[n − nd − nb + 1]]T. Therefore θ̂N can be obtained as:

θ̂N =


1
N

N∑
n=1

φ[n]φT[n]︸              ︷︷              ︸
R(N)



−1

.
1
N

N∑
n=1

φ[n]y[n]. (3.4)

As one can see in this equation, R(N) contains the samples from the training set and in

fact is a function of sample covariance. The dependency of the estimated parameters

to the input data will be explored further in the next section, where we show how the

number of variations in the input data affects the statistical properties of θ̂N.

3.1.2 Subspace Identification (SubID)

A discretized reservoir model that is presented in Appendix B can be formulated in the

state space form as [34]:

x[n + 1] = Ax[n] + Bu[n] + w[n]

y[n] = Cx[n] + Du[n] + v[n],
(3.5)

where the state vector x[n] in general contains the pressure and saturation of each

gridblock, input vector u[n] contains all the source terms as in injection and producer

that can be measured, y[n] represents the output values or the values that we are

interested to predict, v[n] and w[n] are Gaussian white noise, and A, B, C and D are

system matrices. Depending on the parameterization of the system, there might be

some variations to this notation. We have shown a simplified version of it in Equation
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(2.20), which is derived from Darcy’s relation for M injectors and N producers. For

this parameterization the states are all observable and can be measured, and in fact

are equal to the outputs. The objective of the problem can be defined as: given N

measured input/output data points (i.e. training data), find the best estimate of the

system matrices. Here, we only revisit the deterministic case where v[n] = w[n] = 0.

The reader is referred to [40] for more detail on more general cases.

For the system in Equation (2.20) and for an arbitrary integer s, where N < s << N2, one

can write:

Y0,s,N = OsX0,N + TsU0,s,N, (3.6)

where U0,s,N and Y0,s,N are block Hankel matrices corresponding to input and output,

respectively:

U0,s,N =


u(0) u(1) . . . u(N − 1)

u(1) u(2) . . . u(N)
...

...
. . .

...

u(s − 1) u(s) . . . u(N + s − 2)


, Y0,s,N =


y(0) y(1) . . . y(N − 1)

y(1) y(2) . . . y(N)
...

...
. . .

...

y(s − 1) y(s) . . . y(N + s − 2)


,

(3.7)

and Os = [I A A2
· · · As−1]T, X0,N = [x(0) x(1) x(2) · · · x(N − 1)] and Ts is defined as:

Ts =



0 0 0 · · · 0

B 0 0 · · · 0

AB B 0 · · · 0
...

...
...

. . .
...

As−2B As−3B . . . B 0


. (3.8)

Equation (3.6) relates matrices constructed from dataset to the system matrices. By

multiplying both sides to Π, the orthogonal projection onto the column space of U0,s,N,

we have:

Y0,s,NΠ = OsX0,NΠ, (3.9)

because it has the property that U0,s,NΠ⊥U0,s,N
= 0. According to [40], the system order

and Os can be extracted from a singular value decomposition (SVD) of Equation (3.9).

Its rank is equal to N and its column space coincides with that of Os. It is shown by [40]

2Larger than number of inputs and less than the length of the training data.
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that if Os is known, the system matrices can be calculated accordingly. They showed

that Os = U0,s,NS1/2
1 , where S1/2

M is the block of size M of the S matrix in SVD of Y0,s,NΠ.

Before we end this section, it is worth noting that the reader should not be confused

by the depth of mathematical derivation of SubID. The main purpose of the above

equations are to show the dependency of parameter estimation on training data. The

following section shows how the variation in input data can affect the estimation.

3.1.3 Conditions on the Training Data

We have shown in the previous section how the estimated parameter vector θ̂N is

mathematically dependent on the training data. Clearly, the estimated parameters

for two sets of training data are not necessarily the same, and cannot be expected

to have similar variance. This section describes the conditions on the training data

that affect the statistical properties of the estimated parameters such as their mean,

variance, uncertainty bound etc. These requirements can be investigated from two

points of view; a) requirements on the reservoir condition from which the training data

set is gathered, b) the statistical requirements of the input signal to ensure the data has

sufficient information about the dynamics. These two concepts are extremely important

and need to be further discussed in details.

A: Reservoir Condition for Data Generation

We have described in Chapter 2 that not only the waterflooding process is nonlinear,

but also the reservoir parameters are state dependent and time varying, sometimes

with nonlinear variations over time. But under certain assumptions and conditions, the

nonlinearities can be assumed to be milder and changes happen more linearly.

In the previous section, we have introduced the concept of ”true model” S, and we

further made the assumption that S ∈ M, whereM represents the set of all the models

of the same parameterization. Model structure S is linear and its parameters are not

varying over time, thus it is only able to describe a linear physical relationship.

Therefore, one must ensure that the training data is gathered under predefined con-

ditions in accordance to waterflooding dynamics to guarantee S ∈ M. Otherwise,

data-based modeling becomes unreliable with inaccurate predictions. Prior knowledge

about the reservoir and analysis of the information in the training data can reveal how

close the dynamics remained in linear regime.
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For the case where the real system S is not identifiable, or in other words the model

structure and the data generating system do not match, the estimated parameters are

biased. In this case, although the identified model might be misleading, it is the best

approximation of the process asymptotically.

B: Persistently Exciting Data

Data-based model identification is the extraction of the process dynamics information

that exists in the data. Therefore, it is obvious that the training data must contain enough

information about the process in the first place. It is straightforward to understand that

the input signal characteristics determines the amount of information about the system.

For example a constant input signal can only provide an insight over the static behavior

(steady state) of the process, and there is no information about the dynamical modes of

the system, simply because they have not been excited.

Definition 1. Let u[n] be a quasi stationary signal3, and let the N×N matrix R̄N be defined

as the covariance matrix of the signal (a symmetric Toeplitz matrix):

R̄N =


Ru(0) Ru(N − 1) . . . Ru(N − 1)

Ru(1) Ru(0) . . . Ru(N − 2)
...

...
. . .

...

Ru(N − 1) . . . Ru(1) Ru(0)


, (3.10)

with Ru(i) , Ē[u[n]u[n − i]] then u[n] is persistently exciting of order N if R̄N is nonsin-

gular, or has full rank.

Persistence of excitation of order n is a property concerning the“variation” that is present

in the signal u[n]. Note that a sequence of zero mean independent random variables

(white noise) is persistently exciting of any finite order, since R̄n = In for all n ∈N.

We have shown in the previous sections that the least square estimators of PEI and

SubID in Equations (3.4) and (3.9) can“uniquely” identify the system parameters, if

RN and Y0,s,NΠ have full rank. In fact the minimum order of persistency of excitation

required to identify θN parameters uniquely is 2θN according to [39].

An alternative formulation for the Definition 1 can be proposed in frequency domain,

and based on the power spectral density Φu(ω) of the signal. [39] shows that, signal

u[n] is persistently exciting of order N if Φu(ω) is unequal to zero in at least N points in

3An stationary signal has constant statistical properties over time, e.g. mean and variance. These
parameters are not constant but bounded for a quasi-stationary signal.
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the interval −π < ω < π. The interpretation of this result is that there exists no moving

average filter of order N that is able to reduce the signal to zero.

Injection rates are usually kept constant by production engineers are are usually de-

termined based on pumping capacity and interwell connectivity. Therefore, increasing

the level of excitation in training data by adding variations on injection rates must be

motivated, as will be discussed in Section 3.2.3.

3.2 Reservoir Model Identification: Simple Example

We run a series of experiments on a homogeneous reservoir, with each experiment

using different but known predefined injection rates. We wish to investigate the data

requirements reviewed in Section 3.1.3, and see the effect of different input data on the

reliability of the identified models. Moreover, we wish to identify any practical and

numerical issues that may arise for data collection in real life and using a simulator.

The identified models based on each training dataset are then validated with another

dataset, called validation set, which has similar statistical properties as the training set.

It will be shown that the reliability of the identified models is the lowest when there is

either very low or very hihg variation.

3.2.1 Reservoir Description

A 3D view of disctretized reservoir model HR11 is shown in Figure 3.1, and the corre-

sponding rock and fluid properties are listed in Table 3.1. HR11 has one injector and

one producer in the opposite corners of the field. The dimension of this reservoir is

200×200 f t and has been discretized into gridblocks of size 5×5 f t. Waterflooding starts

at the beginning of the lifecycle of the reservoir.

3.2.1.1 Rock and Fluid Properties

The parameters of this model are chosen so that only a two phase flow is simulated

using the black oil model, i.e., the BHP of the producer is always above the bubble

point pressure and below the reservoir pressure. This model guarantees two phase

flow in two dimensions, with gravitational force being neglected for the proposed

thickness. Water and rock compressibility are constant and independent of pressure,

but oil compressibility varies with pressure according to Figure 3.2. Oil and water

viscosity are assumed to be constant for the working pressure during the waterflooding.
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Figure 3.1: Oil saturation (So) 3D view of the homogeneous reservoir HR11 before
water break through. Blue areas have more water and red areas more oil. This

reservoir has one injector and one producer on the opposite corners.

Reservoir Dimension (ft) 200 × 200 × 50
Block Size Dimension (ft) 5 × 5 × 50

Depth (ft) 2000
Initial Oil Saturation (%) 80

Permeability in X,Y,Z direction (mD) 10
Porosity (%) 30

Rock Compressibility (1/psi) 1e − 6
Temperature (◦F) 100

Oil Density (STD) (lb/ft3) 56.388
Gas Density (lb/ft3) 0.0648312

Water Density (lb/ft3) 62.178
Water Compressibility (1/psi) 3.15633e-6

Water Viscosity (cp) 0.62582
Reference Pressure (psi) 14.69

Bubble Point Pressure (psi) 2080
Initial Reservoir Pressure (psi) 3000
Solution Gas Oil Ratio (ft3/bbl) 597
Oil Formation Volume Factor 1.29

Table 3.1: Rock and Fluid Properties of Reservoir Model HR11.

Figure 3.3 shows the relative permeability krw and krow versus water saturation Sw. This

plot is important since relative permeability is a major source of nonlinearity (for further

discussion on relative permeability see Appendix A).
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Figure 3.2: Oil Compressibility co vs. Pressure for HR11.

3.2.1.2 Well Setting

The linear low order model that we are seeking to identify is expected to predict the

relationship between the amount of water that is injected and the amount of liquid that

is produced. In the primary production scenario for HR11, the injector operates with

prescribed rate, chosen to be 100 (bbl/day) and remains constant during the life cycle

of the reservoir. The producer well operates under constant bottom hole pressure of

2500 (psi), which is almost 500 (psi) below the reservoir pressure, and 500 (psi) above the

bubble point pressure4 (to avoid any gas production). However, one should note that

the user defined conditions does not mean the pressure and saturation in the gridblocks

in which the injector and the producer is located are fixed and predefined.

4The prescribed rate and constant BHP is chosen because the simulation of the PDE requires boundary
condition, here source terms, for both pressure and saturation.

Figure 3.3: Oil and Water Relative Permeability vs. Saturation for HR11.
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Figure 3.4: Oil, water and liquid rate (left axis) and gas rate (right axis) of the
producer, and water rate of the injector for the lifecycle of HR11. Constant injection

rate is applied from the beginning.

3.2.1.3 Free Run

For the lifecycle of 4 years that the waterflooding is simulated, fractional fluid rate,

pressure and saturation of the blocks that contain the wells are represented in Figure

3.4, 3.5 and 3.6 respectively.

Saturation: At the injector, we only have water phase both at the top and the bottom of

the well. However, according to Figure 3.4 there are some discrepancies in the saturation

of the producer block and the amount of produced oil at the top of the well. The reason

is due to the difference between bottom hole and the surface conditions. As the fluid

travels to the surface the dissolved gas in the oil is separated and as a result the total of

oil and water does not match the total liquid that is produced at the bottom of the well.

It can be seen that the increase water cut aggravates this discrepancy. One should note

Figure 3.5: Well pressure, well gridblock pressure and average reservoir pressure for
the lifecycle of HR11. Constant injection rate is applied from the beginning.
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Figure 3.6: Water saturation Sw for injector (blue) and producer (red) for the lifecycle
of HR11. Constant injection rate is applied from the beginning.

that, especially for the realistic cases where the producer pressure drops below bubble

point pressure, this difference must be taken into account, either by calculation or by

implementing bottom hole measurement devices.

Pressure: As was discussed before, the BHP of the producer is constant and equal to

2500psi as can be seen in Figure 3.5. But the pressure in the same gridblock is slightly

above this value and changing. This figure also shows the variation of pressure in

injector and the injector gridblock, as well as the reservoir pressure. One assumption

here is that the maximum pressure stays below the limits of well equipment such as

pumps.

Water Break Through (WBT): During WBT, underlying dynamics show more nonlinear

behavior, since changes in saturation are more rapid and reservoir characteristics are

changing with relative permeability. Therefore, it is important to know when the water

front reaches the producer. Figure 3.6 shows the producer block saturation and it can be

seen that WBT happens around 325 days. At about the same time that a major change

happens both in pressure and amount of produced liquid, as can be seen in Figures

3.4 and 3.5. In fact the two overshoots in the pressure (in Figure 3.4) happens in the

beginning and at the time of the WBT. The rapid change of saturation in the producer,

causes a major setback for the mobility of the oil and water phase. As a result, the

reservoir pressure builds up (since the same amount of fluid is being injected) and

reaches the injector, where it is affected most significantly, as can be seen in Figure 3.5.

A sudden decline of liquid production also happens as can be seen in Figure 3.4.

While such nonlinear and transient behavior is significant even for such a simplified

model, the process goes back to approximately linear when the water saturation changes
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in the producer become insignificant. For example in this reservoir and under such

condition, we can say after almost 2 years, Sw changes very slowly.

3.2.2 Model Identification

After introducing the HR11 model and its waterflooding characteristics, we are going

to investigate the potential of linear low order model identification. To this end, we

study the effect of various training datasets on the validity of the identified models.

A set of input data as a time sequence of injection rate with different characteristics in

time and frequency domain is applied to HR11. Each injection rate sequence is applied

three times in the lifecycle of the reservoir: before, during and after water break through.

The effects of applying varying injection rate on spectral properties of the input/output

(or liquid injection/production rate), and on cumulative oil rate, as well as monitoring

well and reservoir pressure are investigated.

Injection Rate Sequence: Input

A set of 26 sequences of length 60 days is generated. Each of these sequences is different

in the amount and amplitude of variations during its length, while their mean value is

the same and is equal to the nominal injection rate of the injector, which is 100 bbl/day.

For example the first set,“TR1.IN” is a constant signal of 100, and“TR26.IN” switches

more than 30 times randomly between two values 50 and 150 as shown in Figure 3.7.

Depending on the number of variations, the frequency content of the input signals is

also different. To show this, a series of similar input signals are generated but with

longer length. Figure 3.8 shows the frequency representation of a selected number
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Figure 3.7: Examples of input sequences used for training.TR1 is constant, TR13 with
medium variation ±25% of nominal value, TR26 with fast variations ±50% of nominal

value.
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Figure 3.8: Examples of frequency content of input sequences used for training. The
number of variations increases with the index of the input signal.

of signals. It can be seen that for example input TR7.IN has less frequency content

compared to TR26.IN, as well as less energy as a result of different amplitude.

Produced Liquid Rate Sequence: Output

The measured output signal is the rate of produced liquid at the producer. Similar to

the input, an example of output signal for three stages of production is presented in

Figure 3.9. As expected, when injection rates exhibit less variations, less variations are

also observed in the production rates. Similarly, the responses to the inputs with more

variation are more high pass fluctuations.

In order to illustrate the scope of the experiments, the injection and production rate for

TR13 is represented in Figure 3.10 for the whole lifecycle of the reservoir.

Pressure and Saturation: States

To illustrate the effect of input sequence on the states of the process, i.e., pressure and

saturation, we have plotted the states of the grids that contain the wells. Figure 3.11

shows the pressure of the injector and producer gridblocks and the block that is located

in the center of the reservoir. Figure 3.12 only shows the saturation of the producer

block and the block in the center. Note that the injector block saturation immediately

reaches its maximum 0.8 and stays there.

The pressure changes in the gridblocks closer to the injector have more fluctuations.

Since the reservoir and fluid have nonzero compressibility, fluctuations damp out spa-

tially towards the producer. Therefore, for a certain radius around the injector ∂p
∂t is
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not negligible and becomes stronger when changes in injection rate are larger, and thus

causes nonlinearity in pressure dynamics (see Chapter 2).

In terms of saturation, the only time that ∂Sw
∂t is negligible is after water break through.

Before and during water break through and in the vicinity of the water front, one

must expect significant changes of saturation in time. However, the rate is still very

slow such that effects of input variations on saturation is relatively small. It is only

after WBT that the dominant dynamics of the field is governed only by smooth (and

thus approximately LTI) saturation distribution. It must be noted that, the significant

variations of Sw during the WBT pushes the system dynamics toward nonlinear regime.

Cumulative Oil

While adding variations on injection rate excites the dynamic modes of the system,

it is not desired to affect the amount of produced oil adversely. Figure 3.13 shows
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Figure 3.9: Examples of output data for training, before, during and after the water
break through.



Chapter 3. Data Based Modeling of Reservoir Waterflood 33

0 500 1000 1500
40

50

60

70

80

90

100

110

120

130
lifecycle of HR11 for the input signal of TR13

Date (day)

Li
qu

id
 R

at
e 

(b
bl

/d
ay

)
 

 

injection rate
production rate

Figure 3.10: The lifecycle of the HR11 after applying injection scheduling TR13 for
training.

the cumulative produced oil for the lifecycle of the reservoir for a number of injection

scenarios. The difference in the amount of produced oil is very low, around 1bbl. The

reason is that the binary signal that is used as injection rate has similar mean value equal
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Figure 3.11: Gridblock pressure changes due to the applied input signals. Producer
block (bottom blue), center block (middle green) and injector block (top blue).
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Figure 3.12: Examples of gridblock water saturation Sw changes due to the applied
input signals. The gridblock at the center (green) and the producer gridblock (blue).

to the constant rate of TR1, that means that on average the same amount of water has

been injected into the reservoir. This result is very important and verifies the minimal

effect of the added variations on the achievable profit.

Training and Validation

For each of the experiments in this section, we have also generated a set of validation

input sequences, with similar time and frequency domain properties. A model with

a given structure (i.e., fixed number of parameters) is trained with each training data

set, and simply validated with its corresponding validation data set. Moreover, all the

models are also validated against a dataset that is obtained under conditions different

than those used for training, to evaluate the model reliability.

We investigated 5 types of models here:

• 1st order ARX, or Capacitance Model (Figure 3.14).
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• Distributed Capacitance Model (Figure 3.15).

• 2nd order ARX (Figure 3.16).

• FIR model of order 14 (Figure 3.17).

• SubID of order 2 (Figure 3.18).

The fit are calculated based on:

fit % = 100
(
1 −

‖ y − ŷ ‖
‖ y −mean(ŷ) ‖

)
(3.11)

where y is the measured output, and ŷ is the simulated output from the identified

model.

3.2.3 Model Analysis and Discussion

The first consistent observation in all the experiments is the poor performance of all

the models during WBT. This is mainly due to the significant nonlinear dynamics that

governs the process during the change of saturation. Moreover, it can be seen that

before and after WBT, the validation fit of all the identified models for various training

sets is very similar. While there is no single injection schedule that outperforms others

for all model structures, there is one training set for each model parameterization that

yields the highest validation fit.

For CM, the overall best fit for training and validation is the best for TR5-TR10, which

means small variations and low amplitude suffices for good identification. For a slightly

more complicated model structure, such as DCM and 2nd order ARX, TR5-TR10 are
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Figure 3.13: Examples of cumulative produced oil for the lifecycle of HR11 for different
input signals.



36 Chapter 3. Data Based Modeling of Reservoir Waterflood

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100
Capacitance Model − TRAINING data simulation error

CM
i
ndex (excitation increases with index)

F
it 

(%
)

 

 
before
during
after

(a) Capacitance Models training fit.
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(b) Capacitance Models validation fit.
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(c) Capacitance Models validated against VA13.

Figure 3.14: Training and validation fit for the identified models of Capacitance Model.

still outperforming others. FIR of order 14th has 3 times as many parameters and

requires more persistently exciting data, which is why TR10-TR14 are more appropriate.

However, the validation fit is almost 10% lower compared to CM, DCM and ARX.

The reason is the short length of the experiment relative to the number of unknown

parameters. As a result, the training fit is high and validation fit is low.

Similar to FIR, State Space models have many parameters, and clearly show better fit

in training. The results in Figure 3.18 shows that TR16-TR26 have excited the reservoir

substantially and variations in injection rate cause a drift towards nonlinearity, and thus

worse performance in terms of identification.

Another characteristic of the signal that can be investigated is the length of the training

data or the experiment. Since the dynamics of the waterflood are constantly changing

and the condition of the reservoir is not repeatable, the choice of the length of the

experiment is not trivial as it determines the ”working point” of the process. Waterflood

is similar to batch process in chemical engineering plants, where a batch is produced in

a single run. While more data is naturally more advantageous in terms of the amount
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of information it carries, care must be taken as to keep the process around that working

point. During WBT the experiment must be short since the change in dynamics and

thus working point happens more rapidly. But before or after that, a longer experiment

is preferable (more on this in the next chapter).

Similarly, the model order can directly affect the validity of the models. While models

are suffering from underfitting during the water break through, e.g. see Figure 3.14a

and 3.14c, overfitting also becomes an issue for high orders of FIR models, as seen in

Figure 3.17a and 3.17c.

3.3 Conclusion

In this chapter we have studied the challenges of linear low order model identification of

reservoir waterflooding. These challenges are mainly due to the fact that the identified
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(a) Distributed Capacitance Models training fit.
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(b) Distributed Capacitance Models validation
fit.
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(c) Distributed Capacitance Models validated against VA13.

Figure 3.15: Training and validation fit for the identified models of Distributed Capac-
itance Model.
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(a) 2nd Order ARX Models training fit.
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(b) 2nd Order ARX Models validation fit.
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(c) 2nd Order ARX Models validated against VA13.

Figure 3.16: Training and validation fit for the identified models of 2nd Order ARX
Model.

models do not have clear physical interpretation even if they are capable of reasonably

accurate predictions. Since the underlying dynamics are nonlinear, these models are

usually viewed with significant skepticism and doubt. In this study we have shown

that some of the blame must be directed towards the training data and the condition

of the experiment. A number of experiments are simulated for a simple reservoir, each

designed such that they take the reservoir into various working points and regimes, e.g.

fast changing vs. slow changing, or small vs. large fluctuations. We see that linear low

order identification cannot be entirely discarded, since we can achieve high training

fit as well as high validation fit for some of the experiments. More importantly, since

the total amount of injected water on average is the same, we have shown that adding

predetermined variations in any of the 26 experiments does affect the total amount of

produced oil.

Based on the results, it can be said that variations in injection rates determine the validity

of the identified models. A model with 70% validation fit is a very good candidate for

any feedback control system. With abundance of sensors and actuators, a well designed
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one-step-ahead predictor can provide highly accurate predictions. For example, one

can define a study to design a feedback controller to force the produced oil to follow

a certain trajectory by manipulating the amount of injected water. The identified LTI

models can also be used for production optimization, for example by field engineers to

obtain a better overall field sweep and minimize the amount of dead oil. However, an

LTI model for such purpose must have a higher accuracy, which we suggest an iterative

experiment design for data acquisition.

The length of the experiment (or the number of data in the signal) can be investigated

to see its effect on the validation fit. Since the dynamics of the waterflood are constantly

changing and the condition of the reservoir is not repeatable, the choice of the length of

the experiment is not trivial as it determines the working point of the process.

The observations in this chapter imply that the statistical properties such as amplitude

and variations of the injection rates signal can affect the reservoir condition and its

working point, and consequently the validity of the LTI models. Since the models are
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(a) 14th Order FIR Models training fit.
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(b) 14th Order FIR Models validation fit.
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(c) 14th Order FIR Models validated against VA13.

Figure 3.17: Training and validation fit for the identified models of 14th Order FIR
Model.
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(a) 2nd Order State Space Models training fit.
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(b) 2nd Order State Space Models validation fit.
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(c) 2nd Order State Space Models validated against VA13.

Figure 3.18: Training and validation fit for the identified models of 2nd Order State
Space Model.

linear and time invariant, reservoir dynamics should also remain in linear (or close to

linear) regime, or otherwise the model identification becomes meaningless. How large

of an amplitude in injection rate can shock the dynamics into its nonlinear mode? And

how fast are they required to be for the model to be reliable models? The answer to these

questions can be found in the next chapter, where we have introduced a framework to

design an appropriate and informative training data.



Chapter 4

Injection Scheduling Design:

Methodology and A Full Simulation

Example

The linear low order models that were discussed in the previous chapter, require an

informative training data set for parameter estimation. In fact not only just one training

dataset, but many, since the dynamics of waterflooding change over time, the param-

eters must be updated with the most recent measurements. So how do we know a

training dataset is sufficiently informative? And how do we design injection rates to

achieve informative training?

Informative data does not necessarily mean more data or less noisy measurements [41].

Informative data is the one that is obtained under controlled and known conditions.

Note that the model parameters which are the unknowns, basically determine the

dynamical behavior of the system, and can only be estimated if their corresponding

dynamics are excited. An input signal with certain variations must be designed based

on prior knowledge of the system. If there is none available, a number of preparatory

step response should be applied. Depending on how accurate our knowledge of the

system is, the identified models may require another training set, or an update due to

changing dynamics.

Figure 4.1 shows a schematic representation of model identification as an iterative

process [35]. Some of the elements of experiment design can be minor and only require

post processing, but some need major changes in the experiment and require a new set

of dataset.

41
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Figure 4.1: System identification procedure and experiment design.

In this chapter we are investigating how production data can be used to learn about

the waterflood process so that a better experiment can be designed. First we review the

characteristics of input signal, such as frequency content, amplitude of variations and

etc. To show how these characteristics must be chosen, we have simulated a full example

that illustrates how to gain knowledge about the system by preparatory experiments.

As a result, an injection sequence is scheduled and a Capacitance Model (CM) model is

identified.

4.1 Experiment Design

An input signal (i.e., a set of injections sequences in our case) must have certain prop-

erties before it can be used for parameter estimation of data based modeling. On the

one hand it must have large enough variations to excite the relevant dynamics, and on

the other hand the reservoir cannot be over excited or otherwise nonlinearities of the

variable states becomes so strong that they cannot be approximated by linear low order

models. The training data set must have sufficient data points, but waterflooding is a

very slow process and measurement requires weeks or even months of observations.

Moreover, despite being very slow, as the process evolves the underlying dynamics are

constantly changing due to the state dependency of the parameters. Since we know that

the identified models are Linear and Time Invariant (LTI), what is the optimal length of

an experiment?

The answer to this question depends on the underlying process, i.e. the production

setting of the waterflood and the reservoir type and its properties. In what follows,
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we review the design parameters of the experiment from production and reservoir

engineering point of view. We then summerize our findings and propose a methodology

in the Section 4.1.6.

4.1.1 Sampling Time

Approximation of a continuous system with a discrete model requires a choice of

sampling time ∆t. Smart oil fields are expected to be equipped with several measuring

devices on each well, and often the injection and production rates are reported daily.

[13], [12], [15], [1] and [42] have all used daily sampled measurements. Smart oil fields

are expected to be equipped with several measuring devices on each well these days,

and often the injection and production rates are reported daily. If the frequency of the

measurement is not an issue, it is preferred to have small ∆t. However, the sampling

interval cannot be arbitrarily short if we wish to capture the fast dynamics of the process

and avoid aliasing. Considering Nyquist-Shannon sampling theorem [35], the upper

bound of sampling interval should be:

∆t <
π

2ωb
, (4.1)

where ωb is the bandwidth (or the band of interest for control purposes) of the process.

An estimate of ωb can be obtained by a well-test, or using a step response analysis that

shows the slowness/fastness of the producer in response to changes in the injectors.

Note that determining an upper bound of ∆t is very important, especially when daily

rate measurements are not possible. After measurement, it is typically assumed that

the production rate p(t) of the producer is such that,

p(t) = constant, for k∆t < t < (k + 1)∆t, (4.2)

which might not be necessarily true specially when production rate p(t) changes rapidly

during the early stage of waterflooding. Therefore, depending on how fast the reservoir

dynamics are changing, ∆t cannot be very long, otherwise the desirable fluctuations in

the output will be masked.

4.1.2 Signal Power and Frequency of Variations

In the classic system identification literature, it is desirable for the frequency content of

the input signal to have more energy around the bandwidth of interest of the system.

Bandwidth of interest is defined as the frequency range in which the fastest pole of the
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system is located. [37] has done an extensive analysis for MIMO system and showed

that the required signal property in frequency domain can be summarized as

Pθ ∝
1
N

Φe

Φu
, (4.3)

where Pθ is the covariance matrix of the parameter estimation, Φu and Φe are the power

spectral densities of input and noise respectively and N is the number of measurement.

Equation (4.3) intuitively means that the energy of the input signal should be large

and preferably concentrated on the frequencies that are most sensitive to the target

parameters. Consider the Capacitance Model (CM) structure, where an estimate of

the location of the pole of this transfer function is available (i.e., the time constant τm).

Then the input signal is required to have more energy around that frequency in order

to be estimated more accurately. Therefore, it is only required to know roughly where

the fastest pole of the MIMO system is located to determine the upper bound of the

input signal frequency content. Such an estimate can be obtained by a pressure or rate

transient well test or by using an experimental equation.

The dynamics of the waterflooding are of slow nature and therefore the injection sched-

ule does not require having fast changing daily injection rates. In fact excessive fre-

quency in the injection rates may cause nonlinear behavior in the system. Alternatively,

if one has a reasonable estimate of the tset,95% (the time it takes for the system to settle

within 95% of its steady state), the frequency band of interest can be easily determined

by looking at the Bode plot of a first order LTI system with similar settling time. A

white noise signal has equal frequency content for all frequencies and can be filtered

(low pass) by this system to filter all of its unnecessary high frequency content.

4.1.3 Experiment Length

As can be seen in Equation (4.3), using more data points N is desirable in the sense that

it reduces the variance of θ. Moreover, the length of the experiment TN is related to N by

TN = N∆t. A general rule-of-thumb for the lower bound on the total experimentation

time TN is 5-10 times the largest relevant time-constant in the process [35]. Because the

time constant is directly related to the settling time of the step response, we will see in

in the next section that a meaningful estimate of ∆t can be obtained by a well test.

It is also important to note that to be able to detect the individual effect of multiple

injectors on a single producer, the variations in the scheduled injection rates must be

uncorrelated between producers [42]. Generating uncorrelated short signals with slow
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variations is not practically possible. Therefore, the lower bound is also constrained for

fields where each producer is potentially being affected by multiple injectors.

Furthermore, note that it was initially assumed that the system is operating around a

steady state working point, or at least the flooding process stays in the same regime

during the acquisition of the training data for identification. Therefore, on the one hand

slow dynamics of saturation requires longer TN, while on the other hand TN must be

short since the reservoir properties and flooding dynamics are changing over time, and

thus the reservoir is likely to drift from one working point to another, even without any

field development. We will see in the following section that a mature reservoir can stay

around a certain operational point for a long time, so that the rate of change in system

parameters is very slow and linear.

From the above discussion, the maximum length of the experiment is constrained by

the normalized average saturation change of the reservoir during the time TN. This is

in accordance with the fact that nonlinearities are more severe during the early stages

of the waterflooding and especially in the early stages of water break-through where

saturation changes more rapidly.

4.1.4 Amplitude of Variations

Variations in the injection rates cannot be arbitrarily large due to two reasons: 1)

Pumping equipment has a limited capacity, 2) For certain reservoir types and under

some condition, large and rapid changes may drift the process out of linear regime. It is

a very common situation in system identification that large variations in input can cause

unwanted nonlinear behavior. Increasing or decreasing the injection rate too frequently

changes the pressure pattern around the well, which eventually affect the amount of

produced fluid at the producer.

Pressure constraints directly influence the allowable range of the variations in injection

rates. In finite difference method (FDM) simulation, the pressure difference between

the two sides of each grid block causes the fluid to flow. The pressure in the gridblocks

closer to an injector is not only higher compared to the rest of the reservoir, but is also

more sensitive to the variations of the injection rate. The resulting pressure gradient

damps through the reservoir until it meets a production well. In other words, the

pressure gradient caused by injection rate variation is steeper in the grid blocks closer

to the injectors. This means that if the pressure variation remains within a certain

range in the vicinity of the injector, average reservoir pressure variation is guaranteed

to remain in that range in areas far from the injectors too.
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One way to determine the maximum allowable amplitude that does not disrupt the

linearity regime of the system is by conducting a stairway experiment [35]. In this

experiment, the amplitude of the input is increased incrementally and the output is

measured carefully. If the output increases according to the law of superposition, it

implies that the system is in the linear regime.

One can look at the pressure distribution around the injector and determine the max-

imum range for the amplitude based on analytical or heuristic relationships. This is

in fact true because the pressure gradient caused by injection rate variation is steeper

around the injectors. This means that if the pressure variation remains within a certain

range in the vicinity of the injector, average reservoir pressure variation is guaranteed

to remain in the same range in areas far from the injectors too. For example, near

well pressure Pw f for steady-state single phase flow (water or oil above bubble point

pressure) can be described as [43]:

PR − Pw f = −
µBq
2πkh

ln
re

rw
, (4.4)

where PR is average reservoir pressure, B is oil/water formation volume factor, q is the

flow rate with negative sign for production and positive for injection well, h is the depth

of the well, re is reservoir effective radius and rw is the distance from the well.

Assume that for a given reservoir pressure PR, we would like to see a maximum of

80%PR within 20%re around the well. The maximum rate qmax can be determined from

Equation (4.4), and can be used as an upper bound for maximum injection rate. Then

the amplitude can be chosen between 1
2 qmax ≤ q ≤ qmax, or ±25%qnominal whichever is

tighter1.

Note that beside linearity issues, BHP is primarily limited by field constraints (such

as pumping capacity, etc.) and most injectors are usually working at their maximum

limit. In this case, variations can only be in form of decreases in the injection rate, which

naturally cause pressure decline and less produced oil.

4.1.5 Signal Type

The type of the predetermined variation is important because it is desirable to avoid

unnecessary production decline due to injection rate variation. Random Binary Signals

(RBS) or Pseudo-Random Binary Signals (PRBS) are a type of white noise-like signals

with values that alternate between two predefined amplitudes. [37] has shown that if

PRBS injection rate is applied, the overall trend of the pressure decline and saturation is

1Motivation for this trade off is heuristic and based on the observations in Chapter 3.
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similar to the case where the injection rates are kept constant, which is in accordance with

our qualitative results shown in the previous chapter, e.g. see Figure 3.13. Generating

an RBS signal is very straightforward if its length, amplitude and frequency content are

known (see [35]).

4.1.6 Methodology

To better understand the design parameters of the input signal and how to determine

them, we summarized the above discussions in Table 4.1, which shows the design

parameters, their statistical requirements, physical constraints and how to design them.

4.2 Multi Fracture Tight Reservoir Model

Tight diatomite reservoirs are among the most common in California. In this type of

reservoir oil is trapped in a very low permeability rock and it is extremely hard to

push it after the primary production stage. Usually there is a number of naturally

or artificially made fractures in the field that help increase the mobility of the oil and

water. As a result, some injector-producer pairs have higher connectivity depending

on the direction of the fracture. Detecting the fracture direction, not only helps improve

the oil recovery factor of the reservoir, but also gives insight over possible further field

development, e.g., new well locations or well repairs.

The example reservoir FR34 that is used in this section has similar properties to the

reservoir model HR11 that was used in Chapter 3. The two dimensional FR34 has

3 injectors in the bottom and 4 producers in the top, and has only one layer. The

permeability map with fracture directions is shown in Figure 4.2. The permeability

of the fractures is 500 times larger than that in other areas of the reservoir. From this

figure, one should expect a higher connectivity between INJ2 and PRO1, and between

INJ3 and PRO4.

The reservoir dimension is 600 × 200 f t and is regularly discretized with block size of

4×4 f t. Oil, water and rock properties are presented in Table 4.2 and are similar to those

of HR11. Fluid flow is simulated in the simulator using Black Oil model, and producers

Bottom Hole Pressure (BHP) is fixed to be above the bubble point pressure to guarantee

two phase flow simulation.



48
C

hapter
4.Injection

Scheduling
D

esign

Signal Requirements Physical Constraints Design Factor

Sampling Time
ts/15 < ∆t < ts/5, ts is the step

response settling time, ∆t < π
2ωb

, ωb is
bandwidth of system

Available measuring
devices/techniques on the field

Fastest settling time of all well
pairs in a well test step exper-
iment

Frequency
Freq. content of 2 − 4× system

bandwidth or fastest pole

No constraints, modern injection
pumps can be programmed for fast

variations

Bandwidth of the existing
models or fastest settling time
of the well-test

Amplitude
Large enough to mask noise effect on

output (of any type)

Pressure changes near injector stay
bounded to remain in linear regime.

Large enough to cause visible effect on
the production rate

Field knowledge, empirical
relationships, noise of the
measuring devices. 1

2 qmax ≤

q ≤ qmax, or qnominal ±

50%qnominal

Length
5 − 10× largest (slowest) time

constant of the system

Varying dynamics of the reservoir,
field development, change of working

point

Slowest settling time of the
well-test

Type RBS or PRBS white noise like signal Field pressure drop and total
production drop

Low pass filtering for the de-
sired frequency content

Uncorrelated
Sequences

Necessary for MIMO systems Long and slow varying changes for
multiple injectors Verified before applying

Table 4.1: Summary of the design parameters and how to choose them for Injection Scheduling in a mature waterflood reservoir.
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Figure 4.2: Permeability map of the reservoir model FR34. Permeability is the same
for i, j and k direction.

4.2.1 Well Settings

The lifecycle of this reservoir is chosen to be 5 years. We have run the initial simulation

for this lifecycle with constant injection rates. Production rates of individual producers

are shown in Figure 4.3. The BHP of the producers are all constant to be 2500 psi and

water is injected at the rate of 100 bbl/day. While the water front reaches at PRO4 only

after 14 days and PRO1 after 23 days, it will take 1149 days for it to reach PRO2 and

will never reach PRO3 during the 5 years, see Figure 4.5. The oil saturation distribution

Reservoir Dimension (ft) 600 × 200 × 50
Block Size Dimension (ft) 4 × 4 × 50

Depth (ft) 2000
Initial Oil Saturation (%) 80

Matrix Permeability in X,Y,Z direction (mD) 10
Fracture Permeability in X,Y,Z direction (mD) 5000

Porosity (%) 30
Rock Compressibility (1/psi) 1e − 6

Temperature (◦F) 100
Oil Density (STD) (lb/ft3) 56.388

Gas Density (lb/ft3) 0.0648312
Water Density (lb/ft3) 62.178

Water Compressibility (1/psi) 3.15633e-6
Water Viscosity (cp) 0.62582

Reference Pressure (psi) 14.69
Bubble Point Pressure (psi) 2080

Initial Reservoir Pressure (psi) 3000
Solution Gas Oil Ratio (ft3/bbl) 597
Oil Formation Volume Factor 1.29

Table 4.2: Rock and Fluid Properties of Reservoir FR34.
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after 5 years is shown in Figure 4.4, and it can be seen that oil has not been swept evenly

and the reservoir still has a lot of unproduced oil.

4.3 Preparatory Experiments

The methodology introduced in Section 4.1.6 requires some basic knowledge about

the system, even before the first experiment is applied. There are two aspects of the

injection scheduling that needs to be determined before it can be properly designed:

• The frequency range that captures the most important reservoir dynamics,

• An estimate of the level of injection rate, like nominal rate and extreme amplitude

qmax.

Preparatory experiments are not specifically aimed at estimating the parameters of the

process at hand, their goal is to obtain just enough information about the process in

order to enables the proper design of an identification experiment.

The free-run test that was performed on FR34 (and similarly for HR11) is very important

in the sense that the existing noise and other sources of disturbances can be detected.

Moreover, for a time varying system such as waterflooding, it is indicative of how much

of the output behavior is in fact a result of changes in injection rate.

Figure 4.3: Daily liquid rate of each producer for model FR34, during the first year of
reservoir lifecycle.
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Figure 4.4: Oil saturation of the RF34 at the end of its lifecycle.

Note that although the simulations of step responses that are shown in these figures are

very long, well test and step responses can be reasonably short in practice.

4.3.1 Transient Test Response

As mentioned in Table 4.1, most of the parameters of a persistently exciting and infor-

mative injection sequence can be determined with and aid of a well test. Figures 4.6, 4.7

and 4.8 show the response of the producers to the increase of the individual injection

rate from 100 bbl/day to 500 bbl/day.

Shape: The step responses are very similar to each other with larger or smaller DC

gain depending whether the producer is located in the fracture or matrix, and also

the distance to the injector. The very simple shape of the response implies that the

Figure 4.5: Water saturation Sw of the producers in FR34 during its lifecycle.
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Figure 4.6: Step like increase in the injection rate INJ1 from 100 bbl/day to 500 bbl/day
and produced liquid rate response on all producers.

underlying dynamics are simple. Since this test is done after the water break through

of PRO1 and PRO4, saturation changes in the reservoir with time are very slow.

Fastness/Slowness: The declines in productivity are different for each producer, and

thus their ”settling shape” may look different; the responses of the producers in low

permeability areas are constantly decreasing and have a pulse-like increase temporarily,

while the producers in high permeability areas are non decreasing. In fact with less

complex heterogenities, the pressure changes are the dominant source of change in

production at this stage of the production. One should note that the presence of

heterogenities can cause more complex shape and variation in settling time in the step

responses. The fastest responses are settling to 95% of their steady state value between

3 to 12 days 2.

Response times that are greater than 10 days are insignificant as compared to oth-

ers as the change they cause in production rate is about 2 − 3% of the step increase.

2Frequency is normalized t units of days for the whole experiment.

Figure 4.7: Step like increase in the injection rate INJ2 from 100 bbl/day to 500 bbl/day
and produced liquid rate response on all producers.
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Figure 4.8: Step like increase in the injection rate INJ3 from 100 bbl/day to 500 bbl/day
and produced liquid rate response on all producers.

Consequently one should expect a smaller interwell connectivity.

Sampling time: The lower bound of sampling time is determined based on the slowest

time constant of the system, 14 days in this example. In PEI, numerically the smaller

sampling time cause more fit for high frequency dynamics [39], and a fast sampled

model is non-minphase with many nonmeaningful delays. With the rule of thumb

∆t ≥ tset/15, and having the settling times of 3, 6, 12, the determination of the lower

band is a trade-off as a function of which well pair is more important, and thus requires

a higher accuracy. According to Figures 4.6-4.8, the step response of PRO4 due to

INJ3 is the most significant (as the production increases above 90% due increase in the

injection) and thus these two wells are more closely related. The interwell connectivities

of INJ1-PRO1 and INJ2-PRO1 are also very large but less than INJ3-PRO4. Therefore,

the lower band can be determined as ∆t ≥ 3/15 = 0.2 day.

In order to avoid aliasing or masking of the dynamics, the sampling time must be short

enough as well. The upper bound is determined based on the fast dynamics of the

system, which is again determined based on the most important input-output pair.

Therefore, it can be easily chosen as ∆t ≤ tset/5 = 3/5 = 0.6. Note that for the cases

where the intersection of the two bounds is empty, the sampling time must be chosen

based on the trade-off between the important wells, similar to what it has been done

above.

(days) INJ1 INJ2 INJ3
PRO1 12 6 +20
PRO2 +20 +20 +20
PRO3 +20 +20 +20
PRO4 +20 +15 3

Table 4.3: Settling time of the step responses from injectors to producers.
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Figure 4.9: Frequency response (Bode plot) of a system with a single pole at 3 days
settling time.

Length of the experiment: A length of 45− 60 is enough to reach 4 times of the settling

time between INJ2-PRO4, the fourth most important pair in the table.

Frequency content: Figure 4.9 shows the frequency content of a first order LTI system

with a single pole, that has a step response of 3 days settling time. This system has a

sampling time of 1 day, and as it can be seen the pole is located around 15% of maximum

normalized frequency. Assuming that the fastest pole of the reservoir is located around

this frequency range, then the frequency content of the input signal should be more

concentrated before the frequency of 20% of the sampling frequency.

4.3.2 Staircase Input Signal

A possible method that can indicate the level of nonlinearity includes the analysis of the

system response to a staircase increasing or decreasing input signal. We have applied a

staircase injection rate input increasing from 100 bbl/day to 1200 bbl/day. The responses

after each increase are very similar, and an overall decline in production rate can be

seen.

The amplitude of the injection sequence should also be high enough to avoid being

masked by measurement/simulation noise. The two major pairs show strong connec-

tivity, and are very sensitive to injection rates, see Figure 4.10 and 4.11. For example an

increase/decrease of 25 bbl/day in injection rate of INJ2 is expected to increase/decrease

the production rate of 22, 1, 0.5 and 0.5 bbl/day in producers respectively.
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Figure 4.10: Response of PRO1 to staircase increase of injection rate in INJ2,
100 bbl/day increase.

Assuming the injectors have the capacity, and in order to see the effect of all injectors

on all producers, we choose to design a sequence that goes from 100 bbl/day up to

200 bbl/day.

4.3.3 Prior Knowledge

The conclusions we had in previous two sub-sections are based on prior knowledge

and preparatory experiments. Let us also look into this by considering a CM structure

where the system pole is located at τ = ctV
J .

For the average saturation Sw = 0.5, cw = 3.1 × 10−6, co = 7 × 10−6 at pressure above

2500 psi and cr = 10−6, then ct = 6 × 10−6. The effective pore volume from an injector to

its closest producer can be estimated roughly as V = 100×200×50, and is almost double

Figure 4.11: Response of PRO4 to staircase increase of injection rate in INJ3,
100 bbl/day increase.
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this size for farther producers. Well productivity index J for injectors vary significantly

depending on the presence of fracture or not and can be calculated by:

J =
koh

141.2µoBo(ln re
rw
−

3
4 )

(4.5)

For INJ3-PRO4 and INJ2-PRO1 which have faster dynamics J ≈ 20 and for other pairs

with slower dynamics it is 3 orders of magnitude smaller J ≈ 0.02. Therefore, the τ

would be τ ≈ 0.415 or τ ≈ 415 respectively, and the pole location of the CM will be

at e−1/τ
≈ 0.09 for fast dynamics, and e−1/τ

≈ 0.95 for slow dynamics. Note that these

values are only an estimate and not necessarily accurate for the whole reservoir.

4.4 Injection Scheduling

Given the required characteristics of the input signal, 3 sequences of RBS are generated

as shown in Figure 4.12. All inputs have sampling frequency of ∆t = 0.5 day, but the

variations are designed so that no more than one change per day is allowed. The length

of the experiment is 60 days.

Note that although there is a daily change in injection rate of all injectors, the frequency

content of input signals do not necessarily contain such high frequency changes. Most

of the energy of the signal is below 0.2rad/sample where the dominant poles of the model

are expected to be. This has been achieved by low pass filtering of the RBS signal as

shown in Figure 4.13 for a similar signal but with 50 times longer length.

4.4.1 Uncorrelatedness of Injection Sequence in Multi-Injector

A necessary identifiability condition is that neither of the input signals are linearly

dependent (100% correlated). Since all four producers are more or less affected by

all the three injectors, in order to be able to distinguish the individual responses, the

designed inputs must be uncorrelated. The smaller the length of the experiment, and

the larger the number of injector, the harder the generation of uncorrelated signals.

Figure 4.14 shows the cross correlation of the three injection schedule for ±10 samples

lag or equivalently ±5 days.

The correlation for zero lag is very small for all three combinations. However, ideally

all the correlations must be zero for any given lag.
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Figure 4.12: Designed injection rate schedule for training in reservoir model FR34.
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Figure 4.13: Frequency content of the designed input signals after filtering according
to adjusted system pole location. The plot is drawn for three signals of the same

characteristics with 50 times longer length to show the asymptotic behavior of the
PRBS.
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Figure 4.14: Cross correlation between the three injection schedule for ±5 days lag.

4.5 Model Identification and Validation

A single pole CM between each producer and injector is identified and the training and

validation results that are calculated in Equation (3.11) are presented in Figure 4.15 and

4.16. Note that both input and output signals are detrended before identification.

One can see that training and validation fits are both high and similar, which implies a

successful identification.

4.6 Conclusion

In this chapter, we have discussed the characteristics of an informative input signal

and proposed a methodology to design an informative experiment using injection

scheduling. Informative data is the one that excites all the relevant dynamical modes of

the system within the range of the desired injection/production rate. We reviewed the

parameter estimation from a mathematical point of view, and showed that the variance

of the estimated parameters is reduced only if the input signal is persistently exciting.

We suggested that a persistently exciting injection rate can be obtained by adding

a sequence of predefined Random Binary Signals (RBS) to the reservoir’s nominal

injection rate. The overall produced oil is similar, while we have a training data that

contains more information about the process.
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Figure 4.15: Training simulation fit for producers of the reservoir model FR34,
identified with a CM.

Meanwhile, because a non-linear process is approximated by a linear low order model,

care must be taken not to over-excite the system, which could make it drift from linear

regime. The idea is to realize where the governing dynamics of the waterflood process

lies and to identify the conditions under which the states are varying linearly, while the

change in parameters is negligible. Naturally, pressure and saturation do not vary in

a mature reservoir as much as they do in early life of the reservoir. That is the main

reason why linear models can perform a lot better for later stages of production.

The methodology proposed here is basically about determining a number of character-

istics (design parameters) of the injection scheduling: 1) Sampling Time, 2) Frequency

of Variations, 3) Amplitude of Injection and 4) Experiment Length. Our methodology

shows how to determine the design parameters step by step, based on the reservoir

type and the production stage. We know that waterflooding is a constantly changing

process, therefore prior information about the field can be used and most of the times

a simple well test can also provide valuable information.
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Figure 4.16: Validation simulation fit for producers of the reservoir model FR34,
identified with a CM.



Chapter 5

Reservoir Model Upscaling Using

Graph Wavelet

Over the past several decades considerable progress has been made in developing accu-

rate techniques for measuring the properties of oil reservoirs. These properties include

those obtained from field operations, such as pressure transients, well tests and well

logs, and seismic studies. Such data, when combined with modern geostatistical tech-

niques [44], have made it possible to generate highly-resolved computational grids for

simulation of fluid flow and transport in oil reservoirs in which the porosity, perme-

ability and other relevant properties are spatially distributed. The resolution of such

computational grids depends on the amount of data that are available for various rele-

vant length scales but, generally speaking, the grids typically contain a few hundreds

of thousands of blocks or cells to a few millions of them, that represent the reservoir’s

Geological Model (GM). Numerical simulation of multiphase flows in the GM entails

highly intensive computations, given that the governing equations are highly nonlinear

and the simulations are usually run over a few years of actual lifetime of the reservoir

[31, 45–47]. Since the main properties of a reservoir are usually known with some

level of uncertainty, one must also generate at least a few realizations of the model of a

reservoir, in order to obtain an estimate of the uncertainties in the computed properties.

Such computations are not, however, feasible. It is, therefore, necessary to upscale the

properties of the grid blocks of the GM in order to develop a coarsened grid that can

be used in reservoir simulation with an affordable amount of computation time, while

preserving the accuracy of the results.

Wavelet Transforms (WT) constitute a powerful tool for spectral and local analysis of

data, such as time series and well logs, and have been used in the past for various

problems in reservoir modeling. In particular, the WT has been used to upscale the

61
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geological models of oil reservoirs. The application has, however, been limited to the

models that are represented by regular computational grids with equal-size blocks or

cells.

In this chapter we propose a generalization of the WT approach to upscaling by pre-

senting a new model of a reservoir based on graph networks that makes it possible to

use WT for constructing unstructured grids and upscaling them highly efficiently. We

first define a computational grid representing a reservoir as a graph and its adjacency

matrix, and then introduce the WT construction using the concept of lifting, utilized

in classical signal processing and its extension to graph signal processing. The lifting-

based graph WT is then described and its application to upscaling is developed. The

result is an algorithm that can be applied to upscaling of any unstructured geological

model represented by a computational grid in which the multiresolution WT is applied

directly to the spatial distribution of the permeabilities. Examples in which the geolog-

ical models are represented by the Voronoi teseellations are described, and simulation

of waterflooding with such graph networks is carried out in order to demonstrate the

efficiency of the new method.

5.1 Reservoir Upscaling Techniques

While upscaling methods for the single-phase (absolute) permeabilities of the grid

blocks are now well-established, the same is not true about multiphase flows that

involve, in addition to computing the equivalent absolute permeabilities of the upscaled

blocks, adjustments to the flow of the fluid phases through the connected blocks of the

upscaled grid. Many methods have been developed to accomplish this task, a review

of which was given elsewhere [48] and, therefore, is not repeated here. In particular,

[49] introduced a method whereby finer resolution is used in the regions of high fluid

velocities, and upscaled homogenized description is utilized for the rest of the domain.

No upscaling scheme was used for the relative permeabilities, as the original rock

curves were used for the upscaled grid blocks, hence making the technique process-

independent. Since the pressure field in the near-well regions usually changes rapidly

in the radial direction, the early upscaling approaches were not suitable. Instead,

well pseudo-functions were proposed [50, 51] to account for the pressure changes.

[52] further developed their original method for calculating the transmissibility and

well index for singlephase flow based on the solution to the local well-driven flow.

Others developed upscaling methods that rely on either the spatial distribution of the

permeability [53–55], or on the dynamic responses obtained by streamline simulation

(see, for example, [49, 56–59].
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We propose a new upscaling technique that can be applied to irregular grids using

Graph Wavelet Transform (GWT), which represent an extension to irregular grids of

the application of WT for upscaling. [27] proposed a triangulation method that is

applicable to re-griding a coarse-scale model based on the location of the centroids of

the upscaled blocks. Although the method results in an unstructured upscaled grid, the

initial GM was still based on a computational grid with square blocks. The proposed

approach lifts the restriction, and is applicable to any irregular grid. It will be described

how to represent a computational grid and rock properties on a graph, and how to

analyze graph ”signals” such as the permeability, pressure, or saturation.

5.2 Gridding Schemes: Regular vs. Unstructured

Ideally, for evolutionary phenomena such as fluid flow in oil reservoirs, the computa-

tional grid should be dynamic so as to readjust itself as steep flow gradients propagate

across the field [60]. If the computational grid is fixed in time, as is typical in almost all

current simulators, then the best strategy for gridding is less obvious. One possibility is

to adjust the grid block density according to the variations in the fine-scale permeability.

Another strategy is based on the structure of the computational grid in the original GM.

The grids that are in current use may be broadly classified into regular with equal-size

blocks in the GM, and irregular and unstructured grids with unequal grid blocks. Due

to the ease of implementation and their topological equivalence to the Cartesian coordi-

nates, regular grids with square or cubic blocks are the most common. Critical reservoir

features, such as faults, fractures, pinchouts, deviated and complex wells and highly

correlated channels have, however, a high degree of geometric complexity, giving rise

to highly-curved sectors. As a result, rigid and regular grid structure makes it difficult

to simulate complex reservoir boundaries and heterogeneities, unless an impractically

large number of grid blocks is used.

In this respect, nonuniform grids offer significant general applicability. Although iden-

tifying the optimal gridding scheme for a reservoir is simpler for regular grid blocks,

unstructured grids represent an elegant and flexible description of the computational

model. With irregular grids the ability to identify cells by a simple set of indices is lost,

however, and the system of linearized equations generated by the unstructured grids

is also somewhat more difficult to solve, due to the irregular structure of the matrix of

the coefficients that arises in the iterative scheme for solving the equations. Flexible

grids, such as those with triangular blocks, or unstructured tetrahedral grids to directly

discretize 3D reservoirs, have been used in the past. [61] and [62] pioneered the use

of the Voronoi grids for reservoir simulation. The Voronoi-type grids are very flexible
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and may be used for generating hybrid structures, grids aligned with a reservoir’s

boundaries, and locally-refined blocks. However, the problem of upscaling such grids

has remained unsolved.

5.3 Upscaling Using Wavelet Transform

The permeability distribution function K(x), which represents the permeability of each

cell in space, can be expanded into wavelet functions of different dilations and positions

to analyze the level of existing heterogeneities. Unlike Fourier Transform, WT can

conveniently distinguish the location of the heterogeneities, which makes it a powerful

tool for non-uniform upscaling of the blocks. Note that WT can be applied to other

parameters of the dynamical equations such as relative permeability, porosity or even

pressure and saturation, but here we review the method that is based on the permeability

function.

Projection of K(x) onto wavelet functions gives ”detail” and ”scale” coefficient 1 for a

given dilation and translation parameters a and b:

Da,b =
1
√

2a

∫
∞

−∞

K(x)ψ(
x
2a − b)dx, (5.1)

Sa,b =

∫
∞

−∞

K(x)φa,b(x)dx, (5.2)

whereφ(x) andψ(x) are quadrature mirror filters (QMF) also known as wavelet function,

see [63]. Essentially, the ”scale” and ”detail” coefficients determine the low pass and

high pass content of the function K(x). Based on the low-pass high-pass analysis,

upscaling is done by keeping the fine grid in areas with large scale- and large detail-

coefficients, and coarsening it for small detail-coefficient as follows; by defining a

certain threshold for S and D in x, y and diagonal direction, every gridblock with

corresponding coefficient below the threshold is combined with its neighbor in that

direction. More levels of upscaling can be achieved by reapplying the same transform

for the scale coefficients of the preserved cells/nodes. However, the permeability of

the combined block is not known and an effective permeability must be calculated. To

this end, one can use inverse wavelet transform while replacing the detail coefficient

below threshold with zero as suggested by [27], or use a renormalization technique as

in [64, 65].
1In Signal Processing community, scale coefficient is referred to as ”approximation”.
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5.4 Graph Representation of Reservoir

Graphs provide a flexible and generic representation for any dataset, where data points

may be interrelated in complex ways. Consider a 2D or 3D computational grid for a

reservoir of any scale, where the grid blocks form a network of nodes that communicate

with their neighbors, similar to the variables in numerical solution of partial differential

equations. Every block has static properties, such as permeability and porosity, or

geometry (which could be unique or similar to others), and dynamic properties, such

as pressure and fluid saturation. Such a model of a reservoir may be viewed as a graph

in which each block is represented by a node that is connected to its neighboring blocks

with common edges. With such definition, any computational grid for a reservoir,

whether it is regular or irregular, can be represented by a graph, which we refer to as

the grid graph.

Every graph is defined by two sets of elements, G = (V,E), where V is the set of

‖V‖ = N number of vertices, and E is the set of edges ei j. Every vertex v can be

assigned a value, such as the permeability of the cell, and edges between two vertices

vi and v j can be weighted by, for example, a characteristic of a certain feature, also

known as the ”connectivity”. Examples of such weights include geometrical distance

or some measure of similarity between the values of the two vertices. The initial fine-

scale computational grid, or the GM, is then easily represented with the grid graph as

follows: The centers of the blocks are the vertices, and each pair of neighboring blocks

are connected with an edge ei j. While the choice of the nodes and edges seems to be

quite well defined, one has, in fact, considerable freedom on how to weight the edges.

The weight can be very simple and trivial, such as an edge between neighboring nodes

that is inversely weighted by the geometrical distance between the nodes. Alternatively,

it may be more informative about the fluid flow, such as the ”transmissibility” between

the two cells. Note that each cell is considered to be homogeneous with a single set of

parameters and states that are attributed to the cell’s center.

Let us denote the grid graph that is weighted with the transmissibility by GT, where

ei j = Ti j and Ti j is defined as [66]:

Ti, j ,
αiα j

αi + α j
, αi =

Aki

Di
~ni.~fi, (5.3)

with α j defined in a manner similar to αi. Here, A is the area of the interface between

two adjacent blocks, k is the permeability of the cell, and D is the distance from the

center of the block to the center of the interface, n is the normal vector of the interface,

and f is the unit vector of the line that connects the center of the block to the center of
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Figure 5.1: Geometrical representation of two adjacent control volume represented by
two arbitrary gridblocks. This figure shows the parameters for calculating transmissi-

bility T.

the interface; see Figure 5.1. Note that Ti j is calculated based on the fluid flow in the

direction perpendicular to the interface and is a scalar.

Each graph can be uniquely defined with its adjacency matrix defined as AN×N =

{ ai j | ai j = 0 or ai j = ei j, 1 ≤ i, j ≤ N}. Therefore, ei j = 0 implies that the two vertices (or

cells) vi and v j do not share an edge, i.e. the two cells are not neighbors; otherwise, they

share an interface. If ei j is calculated based on nonlinear time varying parameters or

states of a reservoir, then the adjacency matrix can also be varying over time. Specifically,

the dynamics of the three stages of production might be different substantially and

therefore require separate graphs. Matrix A can be invariant if it is solely based on

geometry or time invariant parameters such as permeability or transmissibility (which

is only practically true for single phase flow).

5.4.1 Reservoir Graph Spectral Analysis

Spectral graph theory has historically focused on constructing, analyzing, and manip-

ulating graphs, as opposed to signals on graphs [29]. In order to analyze the frequency

content of a graph signal, notions such as frequency, shift, downsampling, etc. that

are common in Fourier analysis of classic signal processing must be defined for graph

spectral domain.

The Fourier transform on graphs is given by the eigenbasis of the graph Laplacian which

is defined asL = D−A, where degree matrix D is a diagonal matrix whose ith diagonal

element di is equal to the sum of the weights of all the edges incident to vertex i. The

expansion of a graph signal f on eigenvectors of Laplacian ul shows the ”frequency”

content of that signal, and smaller eigenvalues of Laplacian λ are associated with
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smoother and slowly oscillating ”frequencies”, which larger eignevalues are associated

with rapidly oscillating eigenvectors.

The notion of oscillation and frequency for transmissibility reservoir graph GT can be

explained as follows; for a group of local cells/nodes that are connected with larger

weight, their permeability values are more similar if permeability is low frequency, and

are less similar if permeability is high frequency signal.

Related to the notion of frequency, for any given graph signal f, one can define ”zero

crossing” that is the number of ”edges” that have opposite signs on their corresponding

vertices. This quantity shows roughly an estimate of the frequency content of the

signal that is represented on the graph. For example the zero crossing of a Laplacian

eigenvector can be defined as a set of edges [29]:

ZG(ul) = {e = (i, j) ∈ E|ul(i)ul( j) < 0}. (5.4)

Total variation is another parameter that is related to number of zero crossings and is

calculated as follows:

TV(ul) =
‖ul −

1
λmax

Aul‖
2

‖ul‖
2 , (5.5)

where Aul is equivalent to one hop shift of the eigenvector on the graph. TV(ul)

increases with the frequency of ul.

5.5 Graph Signal Analysis

Graph signal f ∈ RN is defined as a value of each node, which can be represented as

a vector of length N. It must be reminded that the definition of weighted adjacency

matrix makes the location of nodes a conceptual notion and therefore, the index of the

elements of graph vector is a mere label and does not imply any sequence. The choice of

the graph signal depends on what needs to be analyzed and what kind of information

needs to be inferred. For example if one wishes to use the information for upscaling

based on permeability, then the value of each node is the permeability (assuming K is

the same for all directions for isotropic rock). Pressure and saturation can also be used

as graph signal.
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5.5.1 Graph Signal Filtering

For a fixed graph structure with graph Fourier transform L, graph signal filtering

is defined as (re)shaping the signal in graph Fourier domain according to a given

frequency response. Suppose a graph filter is denoted by h ∈ RN, which has graph

Fourier transform of ĥ ∈ RN. For a given graph signal fin, the filtering operation in the

frequency domain is defined as:

f̂out = f̂in. ∗ ĥ (5.6)

where f̂ is the graph Fourier transform of f and .∗ represents element by element

multiplication, and ĥ is defined as

ĥ(l) = 〈h,ul〉 =

N∑
i=1

h(i)u∗l (i), for l = 1, 2, . . . ,N (5.7)

where ul is the eigenvector in the basis of the graph Fourier transform. It should be

noted that this filtering is applied in the frequency domain and therefore, f̂out must be

transformed back into vertex domain.

Intuitively, the filtering operation is a modulation in frequency domain and as a re-

sult, depending on the shape of the filter ĥ, certain frequencies of f are amplified or

attenuated.

Let us look at an example; Assume a 2D permeability distribution of a reservoir with

three fractures as presented in Figure 5.2(A). Figures 5.2(B)-(F) show the filtered perme-

ability signal K based on graph GT. A low pass filtering operation to preserve n
N of the

graph frequencies for permeability signal is given by:

Kout = U

 In×n 0

0 0


N×N

UTKin. (5.8)

This filter only keeps the signal content that is a linear combination of first n eigenvectors

corresponding to the n lowest frequencies and the rest is discarded. A similar high pass

filtering can be defined by swapping the diagonal blocks is Equation (5.8). It can

be seen in Figure 5.2 (B), (C) and (D) that the permeability has been smoothed out

around fractures. In fact the permeabilities of the nodes that are connected with larger

transmissibility become more alike. The high pass filter in (E) and (F) has the opposite

effect and shows the sharp edges of the fractures.
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(a) Unfiltered permeability
distribution.

(b) LP Filtered with n =
1

160 1600
(c) LP Filtered with n =

1
16 1600

(d) LP Filtered with n =
1
2 1600

(e) HP Filtered with n =
1
2 1600

(f) HP Filtered with n =
1

160 1600

Figure 5.2: Filtering of permeability graph signal K based on transimissibility graph
GT of a fractured reservoir model. Filtering operation is given by Equation (5.8), for

N = 1600.

Filtering can also be done in the vertex domain, where node values are filtered/updated

as a linear combination of their K-hop neighbors, i.e., a localized linear transform. [29]

shows that filtering in the vertex domain is related to filtering in the spectral domain

as follows; when the frequency filter is an order K polynomial as ĥ(λl) =
∑K

k=0 akλ
k
l

with constant coefficients ak for all λl, the frequency filter signal at vertex i, fout(i), is

a linear combination of the components of the input signal at vertices within K-hop

local neighborhood of vertex i. This is in fact analogous to filtering in classic signal

processing using the shift operator z−1.

The operation on permeability signal K in Equation (5.8) requires an order N (as many

as the eigenvalues/nodes) polynomial and thus an N-hop linear transformation, i.e. a

global smoothing of the permeability.

Figure 5.3 shows the vertex domain filtering based on the smoothing on 3-hop neighbors,

using normalized Laplacian L̄, for low pass filter ĥ given by:

ĥ(λl) =

3∑
k=0

λk
l . (5.9)
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Figure 5.3: Low pass filtering in vertex domain using 3-hop neighbor averaging for
permeability graph signal of a fractured reservoir model, and the filter is given by

Equation (5.9).

(a) n = 4 (b) n = 16 (c) n = 800

Figure 5.4: Filtering of permeability graph signal K based on transimissibility graph
GT of the fractured reservoir model with N = 1600 nodes, in spectral domain with a

low pass filter given by Equation (5.10).

Figure 5.4 shows similar spectral domain filtering as in Figure 5.2, but the filter is chosen

based on the eigenvalues of Laplacian L as:

Kout = U

 diag(λ)n×n 0

0 0


N×N

UTKin, (5.10)

where diag(λ)n×n = diag(λ1, λ2, . . . , λn).

Examples of low pass and high pass filtering are illustrated in Figures 5.3 and 5.4.

5.6 Lifting Based Wavelet Transform

Discrete Wavelet Transform (DWT) is based on Fourier Transform and is designed in

frequency domain. In the early 1990’s a so called second generation wavelet transform

(SGWT) was introduced by [67], where the filters are not designed explicitly by trans-

lation and dilation, but are based on Lifting Scheme, which will be reviewed next.
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The SGWT has a number of advantages over the classic wavelet transform in that it is

quicker to compute (by a factor of 2) and it can be used for multiresolution analysis

in either a structured or nonstructured grid graphs. Moreover, every lifting transform

can be inverted perfectly and every perfect reconstruction filter bank can be decom-

posed into lifting steps and vice versa2. Another major advantage of lifting scheme is

that convolution operation can be replaced by any nonlinear operation, and only the

invertibility of the addition operation is relevant for perfect reconstruction.

5.6.1 Lifting Scheme

A generalized lifting scheme can be explained as follows; for a given signal f0 ∈ RN,

one is interested in capturing the information in the signal in a lower dimension space,

e.g., f1 ∈ R
N
2 . While the accuracy of the approximation in a lower subspace greatly

depends on the type of the signal, it is desirable for the difference between f0 and f1

to be small. To this end, the first step is to split the signal into even, fe
0, and odd, fo

0,

samples3. Assuming that one would like to keep the even samples, the next step is to

predict the odd samples based on the even samples. Finally, the low frequency branch

fe
0 is updated based on the energy/information removed by subsampling.

Figure 5.5 shows the block diagram of lifting scheme and its reconstruction. The above

steps can be formally presented using matrix notation. By representing the lifting

operations as a polyphase matrix Φp(z), we have [68]:

 fo
1

fe
1

 =

 1 −P(z)

U(z) 1 −U(z)P(z)


 fo

0

fe
0

 = Φp(z)

 fo
0

fe
0

 , (5.11)

where P(z) is the prediction and U(z) is the update operation. Note that det(Φp(z)) = 1

and therefore the inverse operation is

Φp(z)−1 =

 1 −U(z)P(z) P(z)

−U(z) 1

 . (5.12)

Note that Φp(z) can also be factored into an upper and lower triangular matrix as:

2Note that although every reconstructable filter bank can be expressed in terms of lifting steps, a general
description of the lifting steps is not obvious from a description of a wavelet family. However, for instance
for simple cases of the Cohen-Daubechies-Feauveau wavelet, there is an explicit formula for their lifting
steps.

3For a structured signal in classic signal processing, e.g. 1D audio signal or 2D image signal, this step
is trivial and it boils down to subsampling the signal using a lazy wavelet filtering.
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Figure 5.5: Block diagram of lifting scheme.

Φp(z) =

 1 −P(z)

U(z) 1 −U(z)P(z)

 =

 1 0

U(z) 1


 1 −P(z)

0 1

 , (5.13)

where each of them represents a lifting step, and the whole operation can be inverted

by changing the order of prediction and update. A sequence of lifting steps consists of

alternating lifts as: first the low-pass is fixed and the high-pass is changed and then the

high-pass is fixed and the low-pass is changed.

5.6.2 Lifting on Graph

Many multiscale transforms for signals on graphs require successively coarser versions

of the original graph that preserve properties of the original graph such as the intrinsic

geometric structure. To apply the lifting scheme on an arbitrary graph structure, one

must have a solid definition of graph coarsening or downsampling, which as will be

seen will involve a bipartition.

The graph downsampling problem is split into two steps: a) identifying the set of nodes

to keep/remove, b) reconnecting the nodes in new graph. Authors have proposed

various methods for these steps. [69] uses algebraic distance measure in a greedy

seed selection algorithm to downsample the nodes. [70] minimizes the number of

edges connecting two vertices in the same downsampled subset. Another generally

applicable method which yields a natural downsampling on a graph is to partition the

node set V into two subsets according to the polarity of the components of the graph

Laplacian eigenvector uλmax associated with the largest eigenvalue λmax [71]. We will

study this concept in more detail in the following section, but here we present the

extension of lifting scheme on graphs for any given bipartition technique.

At scale j of transform, assume we have a bipartition method that divides the node set

V j−1 into even setU j and odd set P j. The values of the graph signal f j for the samples

belonging to odd set, i.e. {f j(m)|m ∈ P j}, are predicted from the samples belonging to

even set {f j(n)|n ∈ U j}. Let us denote this set of coefficients with d j,m. Then, the values
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of the even samples are updated based on d j,m, which we denote them by s j,n. For the

next level, same operation is repeated by replacingV j = U j. Note that this transform

is invertible regardless of the bipartition technique.

For a graph G = (V,E) of size N nodes, with m odd and N − m = l even labels, it is

possible to rearrange the vertices with a proper permutation matrix to have:

Ṽ =

 Vodd

Veven

 , Ã =

 Fm×m Jm×l

Kl×m Ll×l

 , (5.14)

where Ã is the rearranged adjacency matrix. The submatrices F and L are now rep-

resenting the adjacency matrix of the subgraph containing only odd and even nodes

respectively. If the initial graph G is bipartite, these two matrices are trivially both zero,

i.e. nodes of the same parity are not connected. See next section for more discussion

about non-bipartite graphs.

For a given even-odd node assignment, the lifting wavelet transform to obtain coeffi-

cients s and d can be performed as follows:

D1
j = fodd

j − JPfeven
j

S1
j = feven

j + KUD1
j

, (5.15)

where JP and KU are prediction and update matrix respectively that are obtained by

proper weighting of submatrices J and K in Equation 5.14.

The inverse transform is also straightforward as follows:

feven
j = S1

j −KUD1
j

fodd
j = D1

j + JPfeven
j

. (5.16)

Thus, in this implementation of lifting, first a weighted sum of even parity neighboring

nodes is subtracted from the data on odd nodes to obtain detail coefficients. The values

on even nodes are then updated by adding a weighted sum of detail values obtained in

the previous step from their odd parity neighboring nodes.

5.7 Reservoir Upscaling Algorithm for Irregular Grid

As mentioned in the last section, the graph bipartition scheme directly influences the

approximation of the coarsened graph signal that has a fewer number of nodes. Ana-

lyzing the distribution of the permeability represented by a graph signal using the LWT,
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the idea is to determine a bipartition such that the detail coefficients D are all below a

certain threshold. After identifying such a split (below and above the threshold), the

even nodes are kept and odd nodes are removed. As a result, the volume (area in 2D)

of the even nodes/cells that lose an odd neighbor must be increased to keep for the total

reservoir volume (surface) constant. Since each node represents its cell’s permeability

and porosity, the equivalent permeability of the enlarged cell must also be calculated as

well.

5.7.1 Bipartition Algorithm

A bipartite graph is a graph whose node set V can be divided into two disjoint sets,

Veven and Vodd, such that every edge in E only connects a node from Veven to Vodd.

In other words, the nodes of each set are not connected. Some graphs are inherently

bipartite, like a tree graph or a grid graph with regular tiling. However, irregular and

unstructured reservoir grid graphs are not necessarily bipartite but can be transformed

into a bipartite graph by removing the edges that are connecting the nodes with similar

parity. PartitioningV into two set of nodes very much depends on the application, e.g.,

a scheme that is suitable for traffic network graphs is not necessarily the best bipartition

scheme for reservoir simulation.

We start by constructing the transmissibility graph GT based on the GM. The first stage

of the algorithm labels the nodes into even and odd, and removes the edges between

the nodes of the same parity, such that the adjacency matrices Abp of the bipartite graph

and that of the initial graph A, have minimum difference/conflict. First, the nodes are

labeled odd or even randomly with a uniform distribution. Then, for a certain number of

iterations (we typically used three times the number of the nodes) a randomly-selected

node is activated and its parity is determined such that it minimizes the total edge loss.

[70] showed that this method does converge and the partitioned graph is the closest

bipartite graph to the initial graph.

The nodes corresponding to large detail coefficients, i.e., the high frequency nodes,

are located in areas where the local cell permeability is less correlated. Since the even

nodes are kept and the odd nodes are removed, such nodes must be labeled even.

Otherwise, information at the locations with high flow velocity will be lost as a result of

the coarsening. Therefore, in the second part of the algorithm, given the even and odd

bipartition, the scale and detail coefficients are calculated based on adjacency matrix

Abp, defined earlier, using Equation 5.15. If the detail coefficients corresponding to the

odd nodes are larger than a certain threshold εD, then the node parity is changed to even.

Our preliminary simulations indicated that repeating the procedure four or five times
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and sweeping the graph captures all the nodes that are located in the high-frequency

areas.

The threshold εD determines the trade-off between accuracy and number of coarsened

or removed nodes. In our simulation, we chose εD based on a percent of the maximum

normalized detail coefficients. We note that areas with high flow velocity may also be

located around the injection or production wells. Naturally, to achieve a more accurate

upscaling, the grid in such areas must be relatively resolved.

The algorithm is summarized as follows.

Algorithm 1 Graph Bipartition Algorithm
1: Calculate the grid graph weighted by transmissibility GT
2: Calculate the adjacency matrix A
3: Randomly assign initial label (even or odd) to each node
4: while k < kmax do
5: Activate a node randomly
6: Choose a parity that minimizes the total edge loss based on GT
7: Inform the neighbors if parity changes
8: end while
9: for n = 1 : 5 do

10: Calculate the detail coefficient D j for odd nodes
11: If D j > εD, assign node as even
12: end for

5.7.2 Calculating the Equivalent Permeability

After the graph is coarsened into one with fewer cells, it must be (re)discretized based

on the location of the remaining nodes. Suppose that the original graph is embedded

within a 2D rectangular area, bounded from all sides. Since the total area (volume

in 3D) of the system should remain the same, the space is partitioned uniquely into

the Voronoi polygons, given the spatial coordinates of the remaining nodes, which

immediately yields the area (volume in 3D) of all the new blocks represented by their

corresponding nodes.

We then compute the equivalent permeabilities of the coarsened (enlarged) blocks or

cells. To do so, we use the effective-medium approximation (EMA) [72, 73]. The EMA

is known to be accurate if the system is not near its connectivity threshold. According

to the EMA, the equivalent permeability k of the new coarsened cell is the root of the

following algebraic equation:

n∑
i=1

αi
ki − k
ki + k

= 0 (5.17)
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Figure 5.6: The areas of the cells or grid blocks increase during upscaling, and consist
of the area of the cell from the initial graph (or the graph in the last coarsening level)
and partial areas from the neighboring cells. Here we show an example of a cell v0
with area A0 that has been increased into A0 + A1 + A2 + A3 as a resulting of coarsening

and merging of some of the cells.

where αi = Ai
A . A0 is the area of the cell in initial graph and k0 is its permeability. Ai

, i ≥ 1 is the partial area of the neighboring cell i that has been removed (added to

the coarsened cell), ki is its permeability, and A is the total area of the new cell in the

coarsened graph. Thus, αi represents the fraction of cell i contributing to the overall

coarsened cell. The polynomial Equation 5.17 might have more than one root, but the

real root that lies between the geometric and harmonic means of the permeabilities ki is

selected. If not, the geometric or harmonic mean that is closer to a real root is chosen

for equivalent permeability.

The partial areas Ai can be calculated accurately. Note that it is inherent to the Voronoi

tessellation that the area of the new (larger) cell consists of the area of the old (small) cell

plus some parts of the areas of the cells around it that have been pruned in the graph

upscaling. For example, see Figure 5.6, the polygon that creates partial area A1 is made

up of the corners of the common face that it has had with A0 and the common corners

of the polygons that used to be the neighbors of A1.

5.8 Experimental Results

To test the proposed upscaling algorithm, we carried out a waterflooding simulation.

A 2D GM model of size 512×512 was utilized that contained over 262,000 Voronoi cells.

The cells’ permeabilities were distributed according to a fractional Browning motion

(FBM) with a Hurst exponent of H = 0.3, resulting in a permeability distribution that

varies over nearly four orders of magnitude, between 75mD and 49, 950 mD. Isotropy
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Reservoir Dimension (ft) 256 × 256 × 50
Approximate Initial Block Size(ft) 0.5 × 0.5 × 50

Depth (ft) 2000
Initial Oil Saturation (%) 100

Porosity (%) 30
Rock Compressibility (1/psi) 1e − 6

Temperature (◦F) 530
Oil Density (STD) (lb/ft3) 56.388

Initial Reservoir Pressure (psi) 3000

Table 5.1: Rock and Fluid Properties of Reservoir Model SPE10.

was assumed, although it poses no difficulty to generate a stratified model of a reservoir,

or assume distributed directional permeabilities. One injection point was inserted at one

corner, and a producer at the opposite. The properties of the oil and the rock, presented

in Table 5.1, and the expressions for the saturation-dependent relative permeabilities

and capillary pressure were taken from the standard SPE-10 model [74].

The input to our proposed algorithm is a N × 3 matrix in which the first two columns

represent the Cartesian coordinates of the cells’ centers, and the third column repre-

sents their permeability. It then generates the corresponding grid graph. We utilized

Stanford University’s General-Purpose Research Simulator 4 due to its compatibility

with unstructured grid. Water is injected at constant BHP of 2, 500psi and the water

break through happens after 51.5 days, when the water production rate of the producer

passes 0.01bbl/day.

A snapshot of coarsened grid is presented in Figure 5.7, and Figure 5.8 shows how

the number of nodes (blocks) is reduced each time the grid graph is swept. Because

the permeability distribution is broad, the first few sweeps, or iterations, reduce the

number of the cells drastically. After about five iterations, however, more than 80% of

the original cells have been coarsened, and the decline in the number of the cells slows

down. Thus, in terms of computing time, one must decide whether it is still efficient to

continue sweeping the grid graph in order to reduce the number of the cells by a larger

number. As Figure 5.8 indicates, after fifteen iterations the number of the cells has been

reduced to 7, 507 and 992 for the two thresholds εD, respectively.

Figure 5.9 shows the normalized errors for the calculated water breakthrough times of

the upscaled models compared to the water break through time in the initial GM of the

reservoir, with two thresholds εD. One can see that the error is still less than 2% after

more than 85% of the nodes have been removed.
4https://earth.stanford.edu/researchgroups/suprib/ research/research-areas/gprs
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Figure 5.7: Snapshots of grid coarsening using graph wavelet transform.
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Figure 5.8: Reducing the number of cells by iterating the upscaling algorithm for two
thresholds εD.
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Figure 5.9: Percentage errors in predicting the water breakthrough time (WBT) by the
upscaled models for two thresholds.

Next, we compare the estimated errors for the total oil production after 200 days, relative

to that in the reservoir’s GM, calculated with the upscaled models with two thresholds.

The results are shown in Figure 5.10. The error is about 0.1% after more than 85% of

the cells have been merged to form larger upscaled blocks. Note that the results are not

very sensitive to the threshold εD.

The average pressure of a reservoir is another important quantity to study. Figure

5.11 compares the estimated errors for the average reservoir pressure, at various times,

relative to corresponding pressure in the reservoir’s GM at the same time, calculated

with the upscaled model with two thresholds εD. The errors with εD = 10% are

completely negligible, while those with εD = 20% are small, indicating the accuracy of

the upscaling method.

Figure 5.12 presents the computation times at various levels of coarsening. The fine-

scale model, or the GM, contained 262, 144 cells, and it took 14, 813 CPU seconds to

complete the waterflooding simulation. After only one level of coarsening, the compu-

tation time was reduced by about 55%. After 5 levels of coarsening the computation

time was reduced by a factor of 100, and when the coarsening stopped, the graph grid

contained about 1000 cells and it took only 23 CPU seconds to complete the simulations.

Thus, the proposed method achieves two principal goals of any upscaling method: high

accuracy and high efficiency of its required computations.
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Figure 5.10: Percentage errors in predicting the total produced oil by the upscaled
models for two thresholds.
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Figure 5.11: Comparison of the average reservoir pressure in the upscaled model with
their corresponding values in the geological model (GM) of the reservoir.
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Figure 5.12: Simulation times (in CPU seconds) of the upscaled models with various
iterations (levels) of coarsening.

5.9 Conclusion

A new method was proposed for upscaling of the geological models of oil reservoirs that

are represented by completely irregular grid. The method is based on representation

of a reservoir on graph networks, which makes it possible to use the wavelet trans-

formations for constructing highly efficient unstructured grids and upscaling them. A

computational grid representing a reservoir is defined as a graph and its adjacency

matrix is set up. Then, the WT construction was introduced using the concept of lifting,

used in classical signal processing and its extension to graph signal processing. The

lifting-based graph WT is then described and its application to upscaling was devel-

oped. The result is an algorithm that can be applied to upscaling of any unstructured

computational grid in which the multiresolution WT is applied directly to the spatial

distribution of the permeabilities. Examples in which the geological model are repre-

sented by the Voronoi tessellations were described, and simulation of waterflooding

with such graph networks were carried out in order to demonstrate the utility and

efficiency of the new method.

Irregular grids are the ideal models for fractured reservoirs, as they allow the inclusion of

fractures distribted in space at random or correlated orientations. Accurate and efficient

upscaling of the geological models of fractured reservoirs in which the fractures are

distributed in space according to a given orientation distribution and their length also

follows a statistical distribution, is still an unsolved problem. The proposed upscaling
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method based on representing the geological model by an irregular grid, can be used

to address the problem.



Chapter 6

Conclusion and Future Work

As the outlook of the world energy consumption suggests, demand for hydrocarbon

is rising constantly in the future. With 70% of the oil production coming from fields

that are very old, the optimal management of a reservoir to maximize the recovery

factor is becoming more important. Oil production can be improved not only by using

modern equipment, but also by production optimization algorithms that are based

on mathematical models. Advances in software technology is becoming as important

as advances in hardware technology if not more. It is not just the efficiency in the

computation anymore, as machine learning algorithms are redefining the world around

us.

This study has two contributions in ”experiment design for low order waterflood mod-

eling” and ”reservoir upscaling using graph wavelet transform”. Although there is no

direct connection between the two, in the bigger picture both lie under fluid flow mod-

eling in porous media. Therefore, mass and momentum conservation principles were

studied in Chapter 2. Although advanced reservoir simulators are capable of accurate

flow modeling using numerical solvers, it is still possible to reduce the computational

burden by upscaling the size of the reservoir grid. Alternatively, the injector-producer

relationship can be approximated with a Linear Time Invariant (LTI) model. The idea is

to use historical injection and production data, to estimate the parameters of a model,

one that is able to predict the production rate for a given injection rate time series.

It was shown how the two states of the waterflood process, pressure and saturation, are

coupled and are interacting nonlinearly. Reservoir rock and fluid properties are time

varying and state dependent, which makes this interaction more complex. However,

under mild assumptions the process can be approximated linearly over the periods of

time. In order to accurately identify an LTI model between injectors and producers,

the following assumptions must be met; a) neglecting the gas phase, b) negleting
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gravity and capillary forces compared to pressure, c) negligible dependency of viscosity

and permeability on pressure, d) neglecting compressible rock and fluid, e) bounded

pressure around injectors, and f) low level of heterogeneity. Relative permeability Kr

is a major source of nonlinearity that can greatly influence dynamical properties of the

process and the amount of produced fluid. Even for changes that happen as slowly as

in the order of weeks, the nonlinearities are so large that the LTI model must be updated

as a result of changes in dynamics. Perhaps this is the main reason for undermodeling

and underperforming of modeling approaches such as Capacitance Model (CM), Finite

Impulse Response (FIR), AutoRegressive eXogenous (ARX) and Subspace models. In

most oil fields, when producers start producing oil and water, i.e., when the reservoir

is mature, these conditions are met.

For unstructured upscaling, it is important to have finer grid in areas where fluid has

larger velocity, because it determines the flow direction and eventually the amount of

produced oil. Neglecting gravity and capillary forces in the pores, the major driving

force in the rock is the pressure gradient ∇P and mainly in the places with large per-

meability K. Areas near wells also have large ∇P, and permeability is very high near

fractures.

Chapter 3 - In this chapter the statistical properties of parameter estimation is reviewed,

and showed that the variance of the estimated parameters is reduced only if the input

signal is ”persistently exciting”. It is suggested that a persistently exciting injection

rate can be obtained by adding a sequence of predefined Random Binary Signal (RBS)

on the reservoir’s nominal injection rate. Adding such variations does not affect the

total produced oil, and the obtained training data contains more information about

the dynamical modes of the waterflooding process. We have investigated the effects

of adding more variations with larger amplitude to a constant injection rate on the

training and the validation of identified models. It can be concluded based on the

results that it is not trivial to determine those variations, since adding larger and faster

variations cause a more nonlinear behavior, and hence identified models will suffer

from undermodeling.

Future Work: This chapter can be further extended on looking at the length of the

experiment and how it influences the validation results. Moreover, the case where the

true LTI model does not belong to the selected model set, i.e. S <M, can be investigated

in more details.

Chapter 4 - A methodology is proposed in Chapter 4 about how to determine these

variations. The characteristics of a sufficiently informative training data consists of; a)

sampling time, b) frequency of variations, c) amplitude, and d) length of the sequence.

A detail study of how to determine these parameters based on reservoir properties is
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presented. A major source of information is history production data and well testing.

The shape of the response of each producer to the increase in injection rate, and how fast

this response settles, can be translated into a persistently exciting injection sequence,

with variations that doesn’t alter reservoir condition.

Future Work: This chapter can be extended by more simulation, and by more detailed

investigation on the identified models, including topics such as model order sensitivity,

and model predictability and prediction horizon. Ideally, one can show which param-

eters of the scheduled injection rate influence more on certain characteristics of the

model.

Chapter 5 - In this chapter many successful upscaling methods such as upscaling using

wavelet transform were reviewed, and it was discussed that they cannot be used for

unstructured reservoir models. We showed how one can represent the reservoir grid on

a graph and apply upscaling using graph wavelet transform. Since graph representation

is very abstract, we demonstrate operations such as filtering and explain concepts such

as frequency and downsampling by an example on how graph signal processing can be

applied to analyze the graph signal that contains permeability values on the nodes.

Next, upscaling using graph signal processing is introduced, where we reviewed lifting

based graph wavelet transform framework. What we propose is the multiresolution

analysis of the permeability distribution on grid graph, where large permeability areas

can be identified and located using graph wavelet transform. First, we introduced an

algorithm to downsample reservoir graph, based on transmissibility, in order to reduce

the number of cells. This algorithm partitions the cells into two groups: ”even” nodes

that represent the areas with large heterogeneity and high permeability, and ”odd”

nodes that represent the cells which pressure and saturation can be estimated from

their neighbor even nodes. After removing the odd nodes, the reservoir is repartitioned

using the location of even nodes as the centers of the Voronoi polygons to obtain a new

unstructured grid. As a result, the volume (or area in 2D) of the cells will increase and

their corresponding equivalent permeability is calculated based on effective medium

approximation (EMA). A simulation example is presented that shows the effectiveness

and efficiency of the proposed method.

Future Work: Further investigation is strongly suggested, such as comparison of our

method with other upscaling techniques. While the accuracy and efficiency of various

methods can be compared, one must note that our method has a fundamental advantage

over other methods in that it can be used directly for any unstructured reservoir.





Appendix A

Relative Permeability

As was mentioned in Chapter 2, dependency of parameters to states of the system is

a major source of the non-linearity. Permeability is a measure of ability of a porous

medium to transmit fluid, and is addressed with field unit of Darcy or SI unit of m2.

Therefore, according to Darcy’s law the fluid velocity (and also production rate) in a

certain block is determined by permeability. In multi-phase flow through porous media

the permeability to each phase is generally a nonlinear, path-dependent, function of

the phase saturation. The gas, oil and water saturation, Sg, So and Sw, are defined as the

fraction of the pore space occupied by the corresponding phase, such that, by definition,

Sg + So + Sw = 1. In the case of three-phase gas-oil-water flow, Darcy’s law is:

νi = −k
kri

µi
∇pi, i ∈ {g, o,w}, (A.1)

where k is the absolute permeability (also known as the homogeneous permeability)

governed by rock properties only, while 0 < krg < 1, 0 < kro < 1 and 0 < krw < 1 are

the relative permeabilities which are nonlinear functions of the phase saturation and

represent the reduction of permeability to one phase due to the presence of the other

phases. The products kg = kkrg, ko = kkro and kw = kkrw are known as the effective

permeabilities to gas, oil and water respectively. More specifically there is a term called

mobility, λ that is the quotient of viscosity and permeability, which plays a major role in

movability of the fluid.

λi ,
kkri(S)
µi

, i ∈ {g, o,w}. (A.2)
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The physics of the relative permeability effect is related to the the interfacial tension

between the phases (which gives rise to capillary pressure), the wettability of the rock,

and the tortuosity of the pores [32]. Figure A.1 depicts a typical set of relative per-

meability curves for oil and water flow during the saturation of a block. After the

formation of oil, it starts to migrate from bottom to the top and replaces the water that

has already occupied the pore. At the end of this process some water will always be

left in the pore space, known as connate water or interstitial water. The oil saturation

process (called imbibition by production engineers) therefore starts from a situation with

a water saturation Swc, known as the connate water saturation. Because the water can

not flow until the water saturation exceeds Swc, it is also referred to as the critical water

saturation or the immobile water saturation. At the end of the drainage process, a certain

amount of oil remains trapped in the larger pores from which it cannot be displaced by

water. This oil is known as residual oil, and the associated saturation Sor as the residual

oil saturation. At the beginning and the end of the imbibition process, the presence

of connate water and residual oil in the pores results in relative permeabilities below

the theoretical maximum. These values, k0
row and k0

rw, are known as the end-point rela-

tive permeabilities. The subscripts row are used instead of ro to distinguish relative oil

permeabilities in an oil-water system from those in an oil-gas system.

Figure A.1: Relative permeabilities to oil and water during imbibition (i.e. increasing
water saturation)

Relations between saturation and permeabilities are often determined with laboratory

experiments on core samples, called core flooding. In the absence of measured data, it

may be necessary to revert to empirical relationships for the the relative permeabilities.

For oil-water flow under imbibition conditions the relationship can be represented by
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krow = k0
row(1 − S∗w)now , krw = k0

rw(S∗w)nw

withS∗ , Sw−Swc
1−Sor−Swc

(A.3)

With now and nw are known as the Corey exponents. They are both larger than one

with typical values between 2 and 4. Similar relations exist for gas-oil phase. In case of

oil-water flow, the total relative permeability to liquid flow (the same for both phases)

is given by (kr)ow = krow + krw. In case of gas-oil flow the total relative permeability is

given by (kr)go = krg + krog, and similarly, for three-phase flow (kr)gow = krg + kro + krw. To

help illustrating the effect of relative permeability on production rates in the producer

wells, refer to the section 3.4.3 of [32].





Appendix B

Discretization in Time and Space for

Fluid Simulation in Porous Media

Because the reservoir properties are generally heterogeneous, the coupled PDE’s cannot

be solved analytically, and therefore the model must be discretized to be solved ana-

lytically. In this section we are presenting the basics of discretization, both in time and

space, that represents the building blocks of reservoir simulation software packages.

There are basically three discretization approaches in computational fluid dynamics;

finite element (FE), finite difference (FD) and finite volume (FV)[75]. Here we focus

on FV method because of its advantage of being independent of the grid shape. The

advantage that makes FV the only possible method that can be applied for unstructured

gridding. Please see [76] for more detail on FV derivation.

B.1 Spatial Discretization

Consider a 2D reservoir that has been discretized into several but finite number of grid

blocks, each having a control volume Ωi (see [19, 57, 77, 78]). For a given Ωi, it is

assumed that the physical properties of the reservoir and the fluid is averaged, and

the total mass of each phase in the block can be obtained by integrating a similar mass

conservation relation as Equations (2.1) and (2.2). A simplified form of it for single

phase flow can be written as (note that saturation is no longer defined in single phase

flow):

∫
Ωi

(∇.(ρv))dV +

∫
Ωi

(
∂
∂t

(φρ))dV −
∫

Ωi

(ρq)dV = 0, (B.1)
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where dV is the volume element. By using Darcy’s relation for velocity, and under the

assumption of low compressibility, one can obtain:

∑
m

∫
∂Ωim

(−
1
µ
~K.∇p).~nidS + ctφVi

∂p
∂t
− qiVi = 0, (B.2)

with dS representing surface element, ~ni unit outward normal vector on ∂Ωim, and ∂Ωim

being each of the m volumes that surrounds the control volume Ωi. For a diagonal

permeability tensor, the flux integral at each boundary can be approximated by a Two-

Point Flux Approximation (TPFA) approach [79]: Between two gridblocks i and j,

the flux in the boundary only depends on pressure (or more accurately the difference

between the pressure) at the center of the cells and can be derived from the continuity

of the pressure at the interface as:

qi− 1
2 , j

= −Ti− 1
2 , j

(pi−1, j − pi, j), (B.3)

where Ti− 1
2 , j

is the transmissibility between two grid blocks defined as:

Ti− 1
2 , j
,

1
µ

2ki−1, jki, j

∆xiki−1, j + ∆xi−1ki, j
∆y∆z. (B.4)

By the analogy to the resistors in an electric circuit and according to the definition of the

transmissibility, one can see that the equivalent resistance against the flux is in fact the

distance weighted harmonic average of the x-component of the permeability tensor.

For two phase flow, T can be defined for each phase, while the geometric transmissibility

is the same for all the phases and can be denoted by Ti, j [66]. The concept of geometric

transmissibility can be generalized for any arbitrary shape grid block and is defined as

in Equation 5.3.

B.2 Time Discretization

The most common way to perform the discretization in time is to use first-order Euler

scheme [80]. The pressure derivative term in Equation (B.2) can be replaced by:

∂p(t)
∂t

=
pn+1 − pn

∆t
, (B.5)

where ∆t is the discretization time step and pn = p(n∆t). The corresponding PDE is

called explicit if all other terms are evaluated at time t as opposed to implicit if they are
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defined at time t + ∆t. The choice of ∆t is not trivial as it can cause numerical instability

or non-physical interpretation of the solution. More discussion on this can be found in

Chapter 3.

B.3 Simulation

For a system of N grid blocks, the above equations can be solved for each block and for

each time step for a given boundary condition. The simplest boundary condition is to

assume no flow across all boundaries of the reservoir except for source and sink terms

(the wells). Given that, one can assume the flow is controlled either by prescribing the

flow (e.g. in the injector) or the bottom hole pressure (BHP), and numerically solve the

equations. As a result, the pressure and saturation of each gridblock can be obtained

for a given time.





Appendix C

Capacitance Model for

Waterflooding

Based on the total mass balance for a given drainage pore volume, the so called Capac-

itance Model (CM) was introduced by [12]. For a single injector and single producer in

the pore volume Vp the material balance can be written as:

ctVp
dp̄
dt

= u(t) − y(t), (C.1)

where p̄ is the average pressure in the pore volume, or as some literature calls it reservoir

pressure [32], and u(t) and y(t) are injection and production liquid rate. Pressure and

rate in the well can also be related by an empirical well model as:

y(t) = J(p̄ − pw f ), (C.2)

where pw f is the flowing Bottom Hole Pressure (BHP) and J is the productivity index of

the well, which is only valid for stabilized flow.

By eliminating the pressure from Equation (C.1) and (C.2), one can solve the ordinary

differential equation and derive a time domain relationship between the injection rates

(input) and production rate (output) as in:

y(t) =y(t0)e−(t−t0)/τ +
e−t/τ

τ

∫ ξ=t

ξ=t0

eξ/τu(ξ)dξ+

J
(
pw f (t0)e−(t−t0)/τ

− pw f (t) +
e−t/τ

τ

∫ ξ=t

ξ=t0

eξ/τpw f (ξ)dξ
)
,

(C.3)
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where t0 is the initial time, ξ is a variable of integration and τ is defined as τ ,
ctVp

J .

Equation (C.3) intuitively means that the production rate at a given time can be divided

into three components [81], corresponding to the three terms in Equation (C.3). The

first term is the response of the initial (pre-injection) production rate, or the cumulative

produced fluid up to the time t0. The second is the contribution from the input signal

or injection rate. And the last term is caused by change of producer’s BHP.

Equation (C.3) can be simplified by assuming the BHP remains constant and by setting

the initial production to zero, thus first term becomes zero. Therefore, the discretized

equivalent of Equation (C.3) can be derived as:

y[n] =
∆t
τ

n∑
m=0

e(m−n)/τu[m]. (C.4)

This equation simply implies that, for a production scenario that involves constant

BHP, the output for a given moment can be computed from previous input values, with

the knowledge of a single parameter τ (see [82] for varying BHP). This model can be

represented in z-domain as:

Y(z) =
β

1 − αz−1
U(z), (C.5)

where α , e−1/τ and β , ∆t/τ 1. As one can see, it has only one pole that determines the

shape of the response and therefore is called a single pole transfer function in system

identification literature, which is commonly used for representing simple LTI dynamics.

The generalization of CM for MIMO systems is straightforward by introducing a new

parameter γi j called inter-well connectivity [37]. In this case, the transfer function Gi j(z)

according to Equation (2.15) becomes:

Gi j(z) = γi j
βi j

1 − αi jz−1
. (C.6)

One should specifically note that, for each pair of such system, the parameter τi j defines

the individual response from input i to output j, or in other words the measure of the

dissipation of the pressure between injector i and producer j, and another parameterγi j

determines the contribution of the same injector and that producer.

1For further discussion about ∆t see Chapter 3, but for now assume that discretization time-step is
normalized to 1.



Symbols

A interface area

A state matrix, adjacency matrix

B input matrix

co,w,r,t compressibility

D distance
~f distance vector

e[n] random iid noise

fo,w fractional flow

g gravity acceleration

G transfer function, Graph

h depth

H(z) disturbance model

J well productivity index

kro,rw relative permeability
~K permeability tensor

k permeability

M number of system inputs

ñ normal vector

N length of data

N number of nodes in graph

N number of system outputs

o index oil

p pressure

pc capillary pressure

pw f well pressure BHP

qo,w,t flow

So,w saturation

S surface

t index total
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98 Nomenclature

T transmissibility

u input vector

U input of a system

~vo,w,t phase velocity

V volume

Vp pore volume

w index water

x system state

x Cartesian x-direction

y output vector

Y output of a system

z depth of the reservoir

z z-transform operator

α system pole

β system DC gain

γ interwell connectivity

δ system parameter

∆t time step

θ parameter vector

λo,w,t mobility

L graph Laplacian

µo,w viscosity

φ porosity

ρo,w density

Ω control volume

τ transfer function time constant
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