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Abstract

Image sensor testing and image quality enhancement methods that are geared towards
commercial CMOS image sensors are developed in this thesis. The methods utilize
sensor characterization data and camera system image processing information in order

to improve their performance.

Photo Response Non-Uniformity

An image sensor system-level pixel-to-pixel photo-response non-uniformity (PRNU) error
tolerance method is presented in Chapter 2. A novel scheme is developed to determine
sensor PRNU acceptability and corresponding sensor application categorization.
Excessive variation in the sensitivity of pixels is a significant cause of the screening
rejection for low-cost CMOS image sensors. The proposed testing methods use the
concept of acceptable degradation applied to the camera system processed and
decoded images. The analysis techniques developed give an estimation of the impact of
the sensor’'s PRNU on image quality. This provides the ability to classify the sensors for

different applications based upon their PRNU distortion and error rates.

Perceptual criteria are used in the determination of acceptable sensor PRNU limits.
These PRNU thresholds are a function of the camera system’s image processing and
sensor noise sources. We use a Monte Carlo simulation solution and a probability

model-based simulation solution along with the sensor models to determine PRNU error

Xiv



rates and significances for a range of sensor operating conditions. We develop
correlations between conventional industry PRNU measurements and final processed
and decoded image quality thresholds. The results show that the proposed PRNU

testing method can reduce the rejection rate of CMOS sensors.

Cross-Talk Correction

A simple multi-channel imager restoration method utilizing a priori sensor
characterization information is presented in Chapter 3. A novel method is developed to
correct the channel dependent cross-talk of a Bayer color filter array sensor with signal-
dependent additive noise. We develop separate cost functions (weakened optimization)
for each color channel component-to-color channel component. Regularization is
applied to each color channel component-to-color channel component, instead of the
standard per color channel basis (giving us four optimal regularization parameters per
color channel). This separation of color components allows us to calculate regularization
parameters that take advantage of the differing magnitudes of each color channel
component-to-color channel component cross-talk blurring, resulting in an improved

trade-off between inverse filtering and noise smoothing.

The restoration solution has its regularization parameters determined by maximizing the
developed local pixel SNR estimations. The restoration method is developed with the
goal of viable implementation into the on-chip digital logic of a low-cost CMOS sensor.
The separate color channel component-to-color channel component approach simplifies
the problem by allowing a set of four independent color channel component
optimizations per pixel. Local pixel adaptivity can also be easily applied. Performance
data of the proposed correction method is presented using color images captured from

low cost embedded imaging CMOS sensors.

XV



Chapter 1

Introduction

Trends in embedded imaging show that CMOS image sensors will continue to be
reduced in size and have an increased number of smaller pixels [33]. This causes the
delivery of sensors that produce good quality images to be more challenging. For
CMOS image sensors, more digital functionality and self-calibration will continue to be
integrated into the sensors in order to cope with image quality issues. It is very
important to have accurate and meaningful testing of these sensors, as the yield rate
directly affects profitability. The main idea developed in this thesis is the use of the
performance characteristics of CMOS image sensors and their camera systems to guide
and optimize the screening of the sensors and the processing of the sensor image data.
A testing method is developed in Chapter 2 to determine sensor pixel-to-pixel photo-
response non-uniformity (PRNU) acceptability and corresponding sensor application
categorization. In Chapter 3, a restoration method that can be implemented in on-chip
logic is developed to correct the color channel dependent cross-talk of a Bayer color
filter array sensor. Detailed information on CMOS image sensor characterization
required to develop these image quality testing and optimization approaches is

presented in the Appendices.



1.1 Pixel Response Non-Uniformity

Normally when sensor PRNU testing is performed, the temporal noise is removed by
multiple frame averaging [8], [17]. When this is done, most of the photon shot noise,
read noise, dark current shot noise, and other temporal noise sources are eliminated.
Only fixed pattern noise due to pixel offset (mean dark current, pixel voltage offset)
variation and pixel gain variation (PRNU) remain. The pixel offset variation can be
removed by black frame subtraction. The standard testing method does not consider
that the visibility of the PRNU can be reduced or hidden by these temporal noise
sources. The effects of the image processing performed (color correction, cross-talk
correction, etc.) along with the JPEG quantization on the visibility of PRNU are also not
considered. In practice, a heuristic PRNU threshold is frequently determined by finding
a visually acceptable level of PRNU for a worst-case operational condition [17]. Many
different factors will determine the image processing that will be performed, such as
designed camera application, transmission characteristics of the pixel color filters and
the infra-red filter, and so forth. The approach taken in Chapter 2 is to consider the
complete camera system, including its operating conditions (light levels, exposure times,
ISO number, image compression requirements, etc.), when evaluating acceptable PRNU
levels. Acceptable distortion values due to PRNU are determined based on camera
system characterization parameters and human visual system sensitivities to errors in

the DCT space.

Once these acceptable PRNU levels are determined for a particular sensor design for
use in a particular application, we can screen individual sensors for PRNU using
standard industry methods with the derived thresholds. The PRNU thresholds can be

determined for multiple applications. Thus sensors that fail PRNU screening for one



application, may be shown to acceptable for use in another application. For example, for
many consumer applications, low-light performance and color accuracy are important.
For industrial applications, frame rate may be more important. Different applications
may be concerned with different aspects of the pixel's performance, such as sensitivity,

dynamic range, or noise [33].

Different sensors will have different signal to noise behavior, composed of differing
relative amounts of read, shot, and PRNU noise. Additionally, the different applications
will call for the sensor to be operated in different manners (exposure times, gain
settings) with different amounts of compression (controlled by desired data rates).
Further, each camera system will have different image processing, including color
processing tied to specific color filter arrays, and so forth. All of these factors will result
in a complex system, with many different parameters, which will affect the allowable
PRNU of the sensor. For this reason, it is advantageous to have sensor and camera
system models that can be run through a set of defined analyses which can determine
PRNU screening values that can be applied in simple standard sensor tests. Two
different sensor PRNU testing methodologies are developed in this thesis: a Monte Carlo
simulation solution and a probability model-based simulation solution. Both of these

methodologies allow for the screening of sensors for different applications.

1.2 Bayer Cross-Talk Problem

In Chapter 3, we derive a multi-channel, Bayer color filter array (CFA), adaptive pixel-
wise, direct regularized correction solution that optimizes the local low-frequency
component signal-to-noise ratio (SNR) of each corrected pixel. Our solution is geared

towards application in a simple, low cost camera system (e.g., camera phone). This



application requirement results in a trade-off between accuracy of the solution and
algorithm complexity (affecting the ability to implement the solution) [5]. In order to
accomplish our restoration goal, we develop a method to estimate the local mean SNR
value of the reconstructed local pixel signal using a deterministic reconstruction
approach (developed in section 3.3). The use of local estimations avoids an indirect,
iterative process. A method is derived to estimate the constrained least-squares (CLS)
regularization reconstructed bias and variance errors. In order to have a simple, closed
form solution, the multi-channel problem is reduced to a set of independent color

channel component to color channel component equations (developed in section 3.3.1).

An important property of the separation of color channel components is that it allows the
separate optimization of each color channel component. This results in each color
channel component being corrected based on the ill-conditioned-ness (stability) of its
blurring filters and its local signal to noise ratio. Since within color channel components
are typically more stable, their correction will be closer to the ideal, non-regularized
solution than that of the cross color channel components, which are less stable. This is
an improvement over existing multi-channel restoration methods, which usually use a
single regularization parameter per color channel (not per color channel component)
[27], [44]. Separating the color channel component also allows the optimal
regularization parameters for each color channel component to be solved offline and
used to create look up tables for pre-calculated parameters as a function of local SNR
values. Complete sets of convolution filter coefficients as a function of color channel
local SNR values can also be stored. This permits a simple, real time application of the

restoration.



Determining the regularization parameters using the local pixel SNR of each color
channel component, instead of using MSE, noise and signal energy bounding, or other
criteria, improves our correction by adhering to the sensitivity of HVS to the local SNR
and low-frequency color error [7], [56], [64], [73], [75], [76]. Local pixel SNR optimization
combined with the separation of color channel components, and the typically greater
stability of the with-in channel cross-talk blurring filters, results in the presented
restoration method giving priority to color white balance for all camera-operating
conditions. However, the amount of color saturation correction (cross-channel de-
blurring) will be dependent upon the sensor SNR levels. This behavior is consistent with
the heuristic methods used in low-cost camera systems, but it will be more adaptive both

spatially and dynamically.

1.3 Contributions of the Research

In this thesis, we present novel image sensor testing and correction methods which are
applied to CMOS imagers. These algorithms use sensor characterization information,
and are designed to be implementable in commercial, real-world applications. These

methods utilize original approaches, as outlined in the following subsections.

1.3.1 Contributions of Pixel Response Non-Uniformity Testing Method
We have developed a novel CMOS imager PRNU testing method which uses

information from the complete camera system. The key novelties in our approach are:

e Our PRNU testing method is innovative in using the concept of
acceptable degradation applied to the complete camera system. The
developed analysis techniques give an estimation of the impact of the
sensor's PRNU on image quality. The human perceptual criteria are used

in the determination of acceptable sensor PRNU limits. Our solution



determines the effect of the complex camera system, with many different
parameters, on the allowable PRNU of the sensor. This is a unique
application of the concept of error tolerance. Sensor operating
conditions, sensor noise performance, image processing and
compression are all considered in the threshold and rate determinations.
Typically, fixed heuristic or empirical PRNU thresholds are used in

testing.

e Our solution allows for the industry standard testing method to still be
used. Using our modeled thresholds for multiple sensor applications, one
test can be used to categorize each sensor for one or more of a set of
possible sensor applications. This provides the ability to classify the
sensors for different applications based upon their PRNU distortion and
error rates. Thus, we allow for simultaneous testing for a set of sensor
applications. Typically, sensor retesting would be performed for each

sensor application.

1.3.2 Contributions of Bayer Cross-Talk Solution

We proposed a new solution for the Bayer CMOS imager cross-talk problem which is
simple, non-iterative, non-recursive and can be implemented in the on-chip digital logic
of an imaging sensor. The scheme takes into account the requirements and constraints
of a typical low-cost commercial embedded camera system. Our solution is unique in

combining the following method approaches and features:

o \We separate each color channel into a sum of color channel components
and apply a separate regularization of each color channel component.
We refer to this as our separate color channel component constrained
least squares (SCLS) regularization. Regularization is usually done per
image or color channel [27], [44], [62]. The color channel component
regularization approach is novel. We exploit the differing degrees of color

channel component blurring filter ill-condition-ness and take advantage of



differing color component filter stabilities. The variation of local color
channel component SNR is also exploited. We also use color channel
component separation to simplify calculations, which allows for a practical

camera system implementation.

We utilize a priori sensor data obtained from characterization. This
results in a coupling of the image sensor and the correction algorithms.
Simple signal magnitude dependent noise models obtained from sensor
characterization are used to define pixel SNR behavior. We obtain
stationary blurring models and independent Gaussian noise models.
Direction-dependent, asymmetrical and wavelength dependent cross-talk

models are also used to create pixel neighborhood directional filters.

We address the human visual system (HVS) sensitivities in the solution,
including the sensitivity to local signal to noise contrast (SNR) and low
spatial frequency color accuracy sensitivity [7], [56], [64], [73], [75], [76].
Our developed solution also conforms to industry standard testing
methods (e.g., 1ISO12232-1998E). Our use of SNR constraints results in
a simplification of the calculations, and makes the implementation in a

low-cost camera system possible.

We use the local pixel SNR to calculate the regularization parameter. We
have not seen this approach proposed among the published correction
methods. Other solution metrics do not match HVS’s sensitivity to local
SNR and low-frequency color error [3], [26], [48]. Our solution is adaptive
to global operating conditions and local image SNR conditions. Spatially
adaptive corrections are used in our solution, which are coupled with the
color component separation. The correction method results in a pixel
scalar solution form. Additionally, using the local mean estimate for local
SNR values improves the accuracy of our estimate through noise
smoothing. The local mean value also matches the HVS's color error and

SNR sensitivities.



Chapter 2

Photo-Response Non-Uniformity Error Testing

Methodology for CMOS Imager Systems

2.1 Introduction

In this chapter, we develop methods to determine acceptable pixel response non-
uniformity (PRNU) levels which take into account the complete camera system. We
evaluate the effect of image sensor PRNU defects at the output of the camera system.
Camera system characterization parameters and human visual system sensitivities to
errors are used to find acceptable PRNU distortion values. These calculations are done
off-line for a particular sensor and camera design, allowing the standard industry PRNU
testing to still be used. Our general approach of correlating conventional testing method
PRNU measurements to a set of application specific error rates is shown in Figure 2.1.
Conventional PRNU testing is used to measure PRNU error metrics for a set of sensors.
As shown in the figure, these measured PRNU errors are then used to determine the

error rates for each sensor for a set of different applications.



CMOS PRNU defects are discussed in Section 2.2, including typical screening methods
and values of PRNU. Image sensor models are developed in Section 2.3. In Section
2.4, a model of the camera system is developed. The PRNU screening thresholds,
involving both the human visual system and the system noise, are analyzed in Section
2.5. The camera system level PRNU distortion metric and error rate are determined in
Section 2.6. The PRNU distortion metric is developed for the camera system. A Monte
Carlo simulation solution and a probability model-based simulation solution are
developed to determine the PRNU error rate. The PRNU distortion testing methodology

is discussed. Finally, performance data and conclusions are presented in Section 2.7.

Industry Standard PRNU std LUTs from New Error Rates for
PRNU Testing —» SOl )| PRNUMethod |—p» L
Method peak-peak Simulations e

!

Figure 2.1: PRNU values correlated to failure rates for particular applications.

Application
Parameters

2.2 Background on CMOS PRNU Defects

221 Image Sensor Pixel Defects

We are interested in sensor defects due to excessive PRNU, a particular type of
photosensor pixel defect. The different types of photosensor pixel defects are classified
in Table 2.1. The pixels of a CMOS photosensor cannot be fabricated to have identical
properties, such as light sensitivity. One type of pixel defect is caused by pixel-to-pixel
gain mismatch. This is known as photo response non-uniformity (PRNU) [30], which will
be directly proportional to the input signal strength. Thus, PRNU is signal dependent
and multiplicative in nature [38]. In the literature, the effects of PRNU are sometimes
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considered to be one component of fixed pattern noise (FPN) [9]. However, in this
thesis, we use the more common definition which considers FPN to consist of signal-
independent time-invariant noise, while PRNU is considered as a sighal-dependent time-

invariant noise [11], [20].

Table 2.1: Pixel defect types.

Pixel Defect Type Cause

Hot Pixel Fabrication imperfection:

Pixel stuck high

Cold Pixel Fabrication imperfection:

Dead pixel, pixel stuck low

PRNU Fabrication imperfections,

Poor pixel design:

Photodiode size variation

Photodiode capacitance variation
Source follower transistor gain variation
Coating variation

High Dark Current Fabrication imperfection:

Pixel dark current variation

2211 Causes of PRNU

The photodiode area of pixels in CCD and CMOS sensors can vary, resulting in variable
gain from pixel-to-pixel. The main causes of variable pixel gain are photodiode
capacitance variation and deviations in the surface area of the photodiodes [42]. The
pixel conversion gain is proportional to the inverse of the photodiode capacitance (pixel
gain o« g/C). Photodiode capacitance deviations are due to variations in the properties of

the substrate and diode material (manufacturing doping issues). Variations in
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photodiode surface area lead to differences in the number of photons being captured by
a pixel. Another cause of pixel gain differences is the deviation in the thickness of color
filter array (CFA) coatings, which result in different pixel photon transmission values.
Pixel gain variations of 1 to 5 percent (rms) are common [39]. For APS CMOS pixels,
the source-follower transistors can have variations in both gain and offset. Variations in
pixel gain are complicated and expensive to correct in a camera system. For low cost
camera systems, pixel gain variation is usually not corrected. The PRNU defective
pixels are usually randomly distributed across the sensor array. These defects are

depicted in the pixel schematic shown in Figure 2.2.

1

—

WA

Pixel to Pixel
Variation

Figure 2.2: Pixel to pixel variations of photodiode and source follower transistor.

One of the major disadvantages of CMOS sensors compared to CCD sensors is the
lower vyield of the former due to excessive PRNU [32]. CMOS sensors usually have
moderate or low pixel response uniformity [20]. However, CMOS sensors offer many
advantages over CCD sensors. CMOS sensors can be manufactured at a lower cost,
can integrate digital logic on the chip (e.g., ADC, JPEG logic, ‘camera-on-a-chip’),
consume less power, and be more compact in area (through integration of components

on chip) [51].
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2212 Hot and Cold Pixel Defects

Due to fabrication errors, as the number of pixels in a photosensor increases, the
likelihood of the sensor having stuck hot and cold pixels defective pixels is high. These
defects occur at pixels whose output values are either stuck high (vVdd) or low (Gnd).
Pixels with very high levels of PRNU can be interpreted as hot or cold pixels. Hot and
cold pixel defects can be corrected during camera operation using simple spatial filtering
algorithms [6], [81]. The shot noise time variation of dark current appears as temporal
noise. Pixels with extremely high dark current (refer to Appendix A) are often treated as

hot pixel defects.

22.2 Reasons for Studying PRNU Defect Testing

We will consider only PRNU defects in this analysis. The reasons for this decision are:

1) Hot and cold pixels are usually identified during wafer or device testing
and are marked for correction (pixel value replacement) using
neighboring pixel values. In contrast, PRNU defective pixels are usually
not corrected by the imaging system, unless the PRNU values are so high

as to appear as a hot or cold pixel.

2) Variation in the pixel response is unavoidable. Pixels with PRNU values
which exceed standard testing thresholds, and are thus rejected, are
often more likely to occur than hot or cold pixels. As discussed,

excessive PRNU is a major cause of yield loss for CMOS sensors [32].

3) Image sensors that have large numbers of hot or cold pixels (especially
clusters of these pixels) are usually regarded as unusable, and cannot be

salvaged.

For these reasons, we wish to study the PRNU defect in order to improve photosensor

yield through increasing the acceptable defect rate and allowable threshold. We will also
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be able to classify sensors for particular applications based on the developed PRNU
screening method. PRNU is a problem with a continuous range of characteristics, i.e.,
differing degrees of response non-uniformity. Our goal is to increase the fault tolerance
for this type of pixel defect by considering the complete image processing chain, full

sensor noise model, and sensor application operating parameters.

2.2.3 PRNU Characterization

Sensor characterization data is used to create a typical probability density function (pdf)
for a CMOS sensor’'s pixel gain. In Figure 2.3, we show the local area pixel gain
variation (pdf) for a CMOS sensor obtained from a typical sensor lot [17], [18]. The data
was generated using a large set of pixel gain measurements. The measurements were
taken over local pixel areas (in this case 8x8 pixel areas). The pixel gain plot has been
normalized using the mean pixel gain (ug.n) t0 give a mean gain of unity. The results
shown are the mean distribution values of the collected local pixel areas. The parameter
X shown in the plot on the X-axis is the standard deviation of the normalized pixel gain
distribution (Gpixel_ cain=Cgain/ Hgain=PRNUms). FoOr a particular sensor design, the standard
deviation of the pixel gain distribution will vary from sensor to sensor. This change in
gain distribution is due to pixel design and manufacturing process (or wafer lot to lot
variation), as discussed previously. For a particular sensor design, the shape of the
distribution has been found to stay the same, with only the variance or gain variation
parameter changing from chip to chip [17]. Thus, one can obtain through sensor
characterization the basic shape and values of the PRNU distribution. Then the
distribution can be scaled to represent different magnitudes of PRNU. For what might
be considered good quality low-cost consumer sensors, the value of the standard
deviation of the pixel gain distribution has been found to be around 1%. This is the value
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of Ggain/Hgain (PRNUms) for the sensor family characterized in Figure 2.3 [18]. This
PRNU,s value is a fairly typical value for CMOS sensors [40]. The upper range of the
value of the gain variation parameter for some of the sensors within this design (and

other design families) may extend to 4.0 or more (Ggain/lgain > 4).

Pixel Gain PDF

5.5%
5.0% -
4.5% A
4.0% A
3.5% -
3.0% -
2.5% -

Probability

2.0% -
1.5% A
1.0% -
0.5% -

0.0% l i i .
1-4X 1-3X 1-2X 1-X 1.0 1+X 142X 1+3X 1+4X
Pixel Gain Factor Typically X=0.01

Figure 2.3: Pixel to pixel gain pdf, normalized by mean value. Characterization data
from Conexant 20490 DVGA sensor. The X parameter is the standard
deviation of the normalized pixel gain distribution (Spixel_cain=Cgain/ Hgain),
which varies from sensor to sensor.

2.2.4 Industry Standard PRNU Screening

The industry standard PRNU screening method is typically applied to monochrome
sensors still on the wafer (prior to dicing) and before the color filter array has been
deposited [17]. The PRNU screening is sometimes done after device packaging, with

each color tested separately. PRNU can be segmented into local PRNU and global
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PRNU [10]. We will concentrate on local PRNU, since it causes the greatest failure
rates [9], [17]. Also, local measurement of PRNU matches well with the HVS's
sensitivity to defects correlated within a small spatial area [7], [19], [73]. The HVS is less
sensitive to global variation of pixel gain (brightness). The standard screening method
consists of dividing the sensor’s image area into non-overlapping segments, often of size
8x8 or 10x10 pixels, under a normal exposure time condition [8], [17], [52]. Typically, the
response level of the pixels is set to be from 50% to 75% of full range [11] by applying
uniform illumination. PRNU is linear with signal, so we wish to create large values to
measure. PRNU is usually quantified in terms of the peak-to-peak pixel value divided by
the mean value (ugain) for each block (PRNUpp) [17], [18]. Another popular metric is an
rms pixel value (cgan) divided by the mean value (pgain) for each block (PRNU,ys). The
block with the largest value is often taken as the PRNU value for the chip, instead of
using a mean chip value. We will use the peak-to-peak method (PRNUp), as it seems
to be more commonly used. The peak-to-peak PRNU test is also considered better, as it
finds worst case pixels that will stand-out to the observer, whereas the PRNU rms test
can smooth-out one or more pixels within a block that are outliers. The peak-to-peak

PRNU test is also generally faster to calculate on a wafer or chip tester.

For both the peak-to-peak and rms PRNU measurement methods, temporal noise is
removed to leave only fixed pattern noise (FPN) [17]. This is done through multiple
frame averaging, where 16 or more frames may be used in the mean frame calculation.
When the FPN dark level offset is removed, we are left with essentially the PRNU.
Testing of the pixels can be done in the analog domain, by having the voltage values of
the pixels output. Often this is done by utilizing a test mode on the chip to by-pass the

on-chip ADC and output voltage levels to a pin, usually when the chips are still on the
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wafer [17]. For each segment (e.g., 8x8 or 10x10 area of the sensor), the average
analog output voltage (Vout) is found for the mean frame. The maximum and minimum
pixel voltage values of each segment’s mean frame are also calculated, given by Vmax

and Vmin, respectively. The peak-to-peak PRNU is then defined as:

PRNUpp = (Vmax — Vmin) / Vout (2.1)

We can also perform this operation in the digital domain using digitized pixel values from
the on-chip ADC. This is often done on the chip level, after the wafer has been diced.
The sensor can be in the camera system, or simply in its package. When performed in
the digital domain, the methodology will be the same. The only difference is that the
variables Vmax, Vmin, and Vout will be digital numbers read directly from the sensor
output, instead of voltage levels. During this testing, the pixels previously identified as
being hot or cold pixels should not be used in the calculations. The assumption made is
that these pixels will be corrected, usually using values taken from their neighbors.
Sensors that have too many hot or cold pixels will have been rejected prior to the PRNU

screening test.

The measured PRNU value is compared with a threshold value. The PRNU threshold
value used will often be determined for a particular type of camera application.
Consumer applications have PRNU peak-to-peak thresholds that vary from 10% for mid
to low-end applications [16] to 5% for more stringent applications. The PRNU block
error rate will be equal to the number of blocks that fail the PRNU test divided by the
total number of pixel blocks on the sensor array. Using data from many sensors, it

represents the probability that a sensor will have a block that fails the PRNU test. Some
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applications may call for zero defective PRNU blocks, while others allow for one or more

blocks failing.

2.2.5

PRNU Screening Metric Behavior

In Figure 2.4, we show expected PRNU metric values as a function of the standard

deviation of the normalized pixel gain distribution (cgain/Hgain=PRNUms) for the sensor

with the pixel gain distribution shown in Figure 2.3.
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Figure 2.4:

05 1.0 15 2.0 25 3.0 35 4.0
Pixel Gain Factor Applied to PRNU pdf

Expected PRNU metric values as a function of PRNU,,s, the standard
deviation of the normalized pixel gain distribution (cgn/Hgin), for Conexant
DVGA resolution sensor, 4um x 4um pixel, with 5084 8x8 blocks. ‘max’ is
maximum value from all of the 5048 blocks. The mean block PRNUp; is
appox. 4.5% when the mean block PRNU,,s is 1%. The expected
maximum PRNU values are 6.7% for PRNUp, and 1.4% PRNU,,s when
PRNU,ns is 1%. For sensors with PRNU,s=1.5%, we expect the mean
PRNUr.» to be 6.8%. For a DVGA resolution sensor, this corresponds to
a maximum PRNUepp value of 10% (and max PRNU,;s of 2%), which is a
commonly used value for the testing PRNU threshold.
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The data was generated using measured pixel gain pdfs from a set of sensors. The
pixel gain pdfs were scaled in order to get a realistic range of sensor PRNU
performance. This scaling was applied to the standard deviation value of the pixel gain
pdf. The sensor pixel data was then used to calculate the different PRNU metric values.
The plot shows the anticipated linear relationship between different PRNU metrics and
the standard deviation of the normalized pixel gain distribution (cgain/ligain). The expected
maximum PRNU values for a sensor will be a function of the number of pixel blocks that
make up the array. As the size of the sensor array increases, the probability of at least
one pixel block failing the PRNU test increases. For a sensor with this pixel gain
distribution and many 8x8 blocks, there can be a fairly high probability of the sensor
having at least one defective PRNU block. Many commercial imager designs have less
than a 1% sensor rejection rate due to PRNU [15]. However, yield losses of up to 4.5%

have been seen in CMOS image sensor manufacturing [17].

Finally, we discuss the advantage of using a peak-to-peak metric for measuring PRNU
instead of a rms metric. In Figure 2.5 we show two different sensor block PRNU
responses. The distributions of the pixel responses are shown in the histograms of
Figure 2.6. One of the 8x8 pixel blocks has a Gaussian pixel gain distribution, while the
other one has uniform pixel gain with two impulse-like pixel gain outliers. The measured
mean, standard deviation, and PRNU,s of each block are all the same. However, the
PRNUe, value of the image on the right is much greater. This is due to the image on
the right having a zero PRNU value for all pixels except for two pixels that are extreme
outliers. Since the image on the left has a Gaussian distribution of PRNU, its greatest
PRNU outliers are not as extreme as the image on the right. Due to the HVS's

sensitivity to brightness contrast [7], the PRNU of the image on the right is more visible.
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If we were to use the PRNU,,s metric, we would not have been able to distinguish
between these two relatively low and high PRNU visibility cases (left and right images,
respectively). Thus, we can see that the PRNUp method of calculating a PRNU metric
is more in-line with the way the HVS functions. Our developed PRNU screening metric
must be sensitive to peak-to-peak differences within blocks As we shall see in Section
2.5 when we develop our distortion metric, we will use a ‘Peak Contrast’ model of
Minkowski pooling, as opposed to linear summation. This approach adheres to the

conventional PRNUg s testing method of looking at pixel PRNU outliers.

1 2 3 4 5 B 7 8 1 2 3 4 5 B 7 g

Figure 2.5: PRNU peak to peak and rms values for two different pixel PRNU
distributions. The left block has a Gaussian PRNU distribution (PRNUp.
p=4%, PRNU,s=0.87%). The right block has impulse noise for two
outliers, with the remainder of the pixels having no PRNU (PRNUp.»=10%,
PRNU,;1s=0.87%). The contrast has been exaggerated to enhance PRNU
visibility.
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Figure 2.6: Distributions for the two 8x8 blocks shown in Figure 2.5 (left block has a
Gaussian-like PRNU distribution, right block has impulse).

2.2.6 Typical Sensor Values of PRNU

We have seen that the performance of CMOS sensors is traditionally often limited by

PRNU [9]. PRNU measurement values are reported in Table 2.2 for numerous sensors.

Table 2.2: Typical PRNU measurements for CMOS sensors.

gg?sor PRNU Sensor Information

[1] 2% rms High performance VGA resolution sensor

[21] 5% rms Commercial CMOS sensor

[51] 1.9% rms APS CMOS sensor, 0.35 um technology

[51] 6.5% rms APS CMOS sensor, 0.18 pm technology

[69] 1% peak-to-peak | Very large pixel size of 11.6 um by 11.6 um and low
resolution. Pixel is impractical for mobile imaging.

In sensor documentations, PRNU rms values for CMOS sensors in the range of 1 to 5%
have been measured [39]. In making the rms measurements, the pixel mean response

is removed (unbiased estimator), giving the standard deviation, which is normalized
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using the mean response (u/c). PRNU usually increases as the pixel size is decreased.
The particular CMOS technology used also affects PRNU. In cell phone applications,

pixel sizes are usually less than 3 um by 3 um [33].

2.3 Pixel Noise and Defect Characterization and Mod  eling

231 Image Sensor Noise Model

In this section, we will develop noise models for our CMOS image sensors. We will
define a simplified camera system noise model that can be used in creating acceptable
threshold values for image distortion (see Section 2.5). As we will discuss later, the
presence of other noise sources can mask the effects of PRNU noise. Detailed

information on CMOS image sensor noise is presented in Appendix A.

CMOS image sensors experience noise from numerous noise sources. The resulting
noise has both time-invariant (fixed-pattern) and time-variant (temporal) behavior. The
use of the term fixed-pattern noise refers to any spatial pattern that does not change
significantly from frame to frame. In contrast, temporal noise changes from image frame
to frame. A noise transfer diagram is shown in Figure 2.7 for a typical CMOS imager

[35].

Photon Noise

Dark Current Noise Read Noise 1if Noise Quantization Noise
Fixed Pattern Noise Reset Noise Amplifier Noise System Noise
Photo Response Nonuniformity Noise

Sense Node On-Chip Sense Node
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Figure 2.7: Noise transfer diagram.
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The temporal (time variant) noise that CMOS sensors encounter includes [92]: photon
shot noise, capacitive reset (KTC) noise, dark current time-varying noise, Johnson
(thermal or white) noise, and 1/f noise (frequency-dependent). Additionally, CMOS
imagers can suffer temporal noise from electrical ground-bounce and coupling noise
problems generated by on-chip logic and ADC circuitry. Fixed pattern noise (FPN) is
generated in CMOS imagers by pixel variations in dark current and sensitivity, as well as
pixel fixed offset. It is common practice to express the values of the noise sources in

root mean square (RMS) electron values.

2311 Noise Model Simplifications and Assumptions

For many camera systems, an adequate noise model can be constructed using only shot
noise, read noise, dark current noise (both fixed pattern and temporal), and PRNU noise
[35]. All of these noise sources can be considered to be uncorrelated from pixel-to-pixel
[35], [42]. Some of the noise sources are functions of the signal levels [35]. In the
development of our PRNU testing methodology, we will make the following commonly

used assumptions [35], [42]:

1) Allindividual noise sources are independent and thus their powers (variances)

can be added.

2) All noise components are white (in time and space for temporal noise, and in

space for fixed pattern noise).

3) Image processing operations applied to the sensor data will be limited to linear

functions.

4) A uniform image model [72] can be used to calculate the DCT-domain
guantization error, where it is assumed that the quantization step sizes are

reasonably small.
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The assumption of linear image processing operations is a reasonable assumption for
most of the camera functions [43], such as Bayer interpolation, cross-talk correction,
color correction, color space conversion, and DCT transform (see Section 2.4). In order
to simplify our model and our noise estimations, we will restrict our image processing
modeling to only linear operations. Using the above simplifications, the total pixel noise

can be written as:

2 _ 2 2 2 2
Opixel = Oshot + Oread + Odark current T OPRNU (22)

A noise model for a CMOS image sensor can be developed using characterization and
sensor performance theory. The model will be a function of the sensor operating

conditions, such as exposure time and input signal level.

When we incorporate the camera image processing, we will include quantization due to
the JPEG compression (not due to the analog-to-digital converter, ADC) into the pixel
noise equation. As listed above, we will use the simplifying assumption of a uniform
image model [72] to calculate the DCT-domain quantization error. We will also consider
noise amplification due to image processing operations. The effects of the image

processing will be taken care of in the camera system model (see Section 2.4).

2.3.2 Noise Models and Photon Transfer Curves

We now look at how the amount of PRNU affects the total noise of the sensor. This
relationship will help determine our visibility thresholds for PRNU, as shown in Section
2.5. As we have discussed, we can construct a simplified pixel noise model using
Equation (2.2) [35], [42]. In Figure 2.8 we show a typical base gain (lowest internal gain

setting of the sensor) noise plot. The sensor used for the noise model is a DVGA
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resolution CMOS sensor with 3 transistor (3T) 4um x 4um APS pixel architecture. The
conversion gain (k) ratio of a sensor is defined as the amount of output generated (in
digital number values, DN) per unit charge (e-) created in the pixel [68], and has units of
e-/DN. This sensor has a base gain conversion factor of k=28 e-/DN, read noise of 28e-,
full well (usable pixel signal range) of 21,000 e-, pixel non-uniformity of 1.0% rms, dark
current rate of le-/ms, and was operated for a 30ms exposure time. These sensor
parameter values were taken from actual measurements of a CMOS sensor [17]. In the
plot, shot noise, read noise, dark current (FPN and TN), PRNU noise, and total noise are
shown. From the Figure 2.8, we can see that PRNU is the dominant noise source for
the majority of the pixel's output signal range. When a sensor is operated at a higher
internal gain setting, the output range in the pixel in electrons is reduced. This can be
seen in Figure 2.9, where we show the noise plot for an internal gain setting of 4x (k=7
e-/DN). When the sensor is operated at this gain setting, the output signal range over
which the PRNU is the dominant noise source is reduced to the point that it is
eliminated. The upper output range of the pixel is now limited by the ADC, and is
clipped at the maximum output (7168 electrons in this case). The sensor would be set to
a larger gain when the amount of light reaching the sensor is lower (high 1SO
conditions). This can occur for lower lighting conditions, shorter sensor exposure times,

or the use of higher f-number lens.

We show the signal-to-noise ratio (SNR) for the sensor in Figure 2.10. The SNR is
computed in the usual manner using mean output signal (e-) divided by total noise (e-).
We also show the situation when PRNU is removed from the total noise (gain variation
set to zero), when only signal shot noise is considered (shot noise limited case), and

when only PRNU noise is considered in the SNR calculation. Since PRNU noise is
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proportional to signal, the SNR due to PRNU remains constant and independent of
sensor output magnitude. It is obvious from the plot that as the output signal
approaches the full well capacity of the pixel, the PRNU noise becomes the dominant
noise and limits SNR. The point of intersection of the total noise without PRNU SNR
curve with the only PRNU SNR curve shows the signal magnitude value when PRNU
begins to dominate. The signal value at which PRNU begins to dominate is

approximately 10,900 electrons.

In Figure 2.11 we show how variable amounts of PRNU affect the total noise of the
sensor. The plot shows that PRNU noise is not perceptible until the PRNU variable gain
percentage reaches an amount that causes a ‘knee’ in the total noise curve [35]. This

‘knee’ is defined to occur when the total noise without PRNU is equal to the PRNU

noise. This occurs when the total noise increases by a factor of \/E from its zero PRNU
value. We see from the plot that when the pixel is closer to full well, the perceptible
PRNU percentage threshold decreases. This is the same as saying that as the pixel
gain setting (user selected gain factor that is applied to the pixel data) is increased, the

perceptible PRNU percentage threshold increases.

The complete noise performance of an imaging sensor can be determined using the
photon transfer curve (PTC) technique [41]. The PTC method is discussed in greater
detail in Appendix B. In the method, the rms noise is plotted as a function of the signal
level, in unit of electrons. The method can be used to estimate the conversion gain (k)
of an imager [68]. The PTC method can be used to calculate a sensor’s read noise, full
well, linearity, dynamic range, and sensitivity [40]. A PTC is shown Figure 2.12 for our

test image sensor. At low input signal levels (low photon fluxes), the noise floor of the
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sensor will dominate. This will determine the read noise. As the input signal increases,
the photon shot noise will increase. For most well-designed sensors, the sensor will be
‘shot noise limited’, i.e., the photon shot noise will be the dominant noise. As the charge
held by the pixel photodiode approaches saturation, the noise behavior can enter a third
region of behavior. This region is dominated by PRNU noise. Thus, the photon transfer
curve gives us the following important information: the level at which PRNU will be
visible, and the pixel region of operation when PRNU will not be a limiting factor on
sensor performance. Sensors can have values of PRNU low enough that the pixel will
not be dominated by PRNU noise. But in the case of low cost CMOS sensors, there is
usually a PRNU noise dominated noise region. As the input signal increases, the noise
will reach a maximum value and then abruptly drop [35]. This defines the saturation

point, where electrons will overflow from the pixel into neighboring pixels.

In the PTC, which is plotted on a log-log scale, a read noise region will have a noise-to-
signal slope close to zero, a shot noise limited region will have a slope of ¥ (noise
variance equal to mean signal), and a PRNU limited region will have a slope of unity
(noise standard deviation proportional to mean signal). From the PTC shown in Figure
2.12, we can see the three noise regions. For low ISO sensor operation, which has
higher signal and SNR, typically pixels be operating in the PRNU region. This is due to
a greater range of the pixel’'s response being exercised. For high ISO sensor operation,
which has lower signal and SNR, the PRNU will be less dominant. This is due to a lower
range of the pixel's response being exercised. The upper response of the pixel (as it fills

up with electrons) will be clipped by the large gain applied (lower value of k).

In the full camera system analysis, we will use the image processing pipeline model as

well as the sensor noise model to determine the noise visibility threshold for PRNU. This
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will be done in the DCT domain. Quantization noise from the JPEG compression
process will also be included in the system noise calculations. The noise values will be

a function of the DCT frequency components. The camera system model is presented in

Section 2.4.
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Figure 2.8: Noise versus sensor output for noise sources. DVGA sensor operated at
base gain setting (1x). Simulation results based upon measurement
values of conversion gain, read noise, dark current noise, and full well for
a CMOS sensor [17]. Noise model is constructed using these parameter
values.
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Noise Sources in e- for DVGA Sensor (4X Gain)
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Noise versus sensor output for noise sources. DVGA sensor operated at
gain setting 4x. Simulation results based upon measurement values of
conversion gain, read noise, dark current noise, and full well for a CMOS
sensor [17]. Noise model is constructed using these parameter values.
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SNR for DVGA Sensor
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Figure 2.10: Pixel SNR versus sensor output for total noise, shot noise, and total noise
with zero PRNU. DVGA sensor operated at base gain setting (1x).
Simulation results based upon measurement values of conversion gain,
read noise, dark current noise, and full well for a CMOS sensor [17].
Noise model is constructed using these parameter values.
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PRNU noise are of equal magnitude. Simulation results based upon
measurement values of conversion gain, read noise, dark current noise,
and full well for a CMOS sensor [17]. Noise model is constructed using
these parameter values.
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Photon Transfer Curve for DVGA Sensor (Base Gain)
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Figure 2.12: Photon Transfer Curve for a DVGA sensor operated at base gain setting.
Simulation results based upon measurement values of conversion gain,
read noise, dark current noise, and full well for a CMOS sensor [17].
Noise model is constructed using these parameter values.

2.4 Imager System Model

We desire to analyze how input sensor PRNU error leads to final processed error in a
camera system after typical image processing of realistic image data (complete with
typical noise). We will seek to estimate the distortion between sensor systems that have
no PRNU noise and those that have varying degrees of PRNU. We propose to use
known or typical probability models for the input image (and noise) data, or alternatively
a Monte Carlo approach, where we use a set of images that will cover our input image
space. To accomplish this, we need to use an accurate camera system model, which
should include an accurate sensor noise model. A diagram used for the system level

error tolerance of a camera system is shown in Figure 2.13. The sensor pixels are
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subject to noise, including photon shot noise, read noise (including dark current noise),
and PRNU. We will use the simplified, but realistic noise model that was developed in
Section 2.3. The diagram of Figure 2.13 includes the image-processing pipeline for a
typical low-cost consumer camera (including embedded imaging applications). The ideal
image input data F is first blurred by the camera optics of the system and subsampled by
the Bayer color filter array (CFA) pattern of the sensor, producing the image signal G.
Then signal magnitude dependent photon shot noise (Esy) is modeled as being added to
the signal when it reaches the pixel photodiode. Additional blurring of the image data
occurs due to signal exchange between local neighborhood pixels (cross-talk effects)

[60]. This multi-channel blurring is a multi-color signal convolution, which can be written

in the matrix multiplication form: Y=HGE. This pixel signal color cross-talk blurring effect
will have to be corrected as part of the color correction of the image processing, resulting
in some noise amplification [60]. Color cross-talk blurring is discussed in detail in
Section 3.1 and Appendix C. We then model the read noise (Egy) as being added to the
signal at this point, which produces the distorted image signal G,,ise. We define the read
noise as being the additive noise floor, which includes pixel reset noise, dark current

noise (temporal and fixed pattern), and so on.

The PRNU error is represented as the additive term Eprny.  Using our noise and signal
models, we can calculate the additive term Eprny. The value of the multiplicative factor
used for the noise is taken from the probability density function of PRNU multiplicative
factors. The average PRNU distribution is taken from sensor characterization. Variation
in PRNU distributions is modeled as a multiplicative widening of the distribution, which
matches well with characterization data (refer to Section 2.3). After the addition of the

PRNU errors, the signal Ghise+prru IS SCalar quantized by the on-chip ADC, producing
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the output Yuse+prnu- We represent the output signal from the ADC without the PRNU
pixel error effect, but with the other sources of error, as Y.se. The ideal digitized raw
pixel data, with no noise sources or cross-talk corruption, is represented as Yean. Since
the pixel ADC quantization step size is small compared to all of the additive noise terms,
the quantization noise from the on-chip ADC can be ignored. Typically, the ADC is 10-

bit, producing a very fine resolution. We can then write:

Gnoise = H(G + ESN) + ERN )
Ghroise+prRNU = Groise + Eprnu
Yeean = G,

Ynoise = Groise » and

Y noise+PRNU = Groise+prNU = Ynoise + Eprnu (23)

The functional blocks within the dashed rectangle in Figure 2.13 represent the image
processing (usually done by the on-chip digital logic) prior to the JPEG quantization.
The image processing chain is represented by a function denoted K(). This processing
includes the RGB triplet formation from the Bayer data, which can incorporate a
separate cross-talk correction [43]. Color correction, involving white balancing and
saturation correction follows. This color correction essentially converts the image data
from the sensor space to the display space [43]. Often a color space transform is
performed here to convert to the YUV or YCrCg color space. A noise removal step,
such as a median filtering, may be performed, along with edge detection and
sharpening. Finally, the DCT linear transform is performed to provide frequency signal
information to be used in the JPEG quantization step that follows. The Bayer
interpolation, cross-talk correction, color correction, color space conversion, and DCT

transform are usually linear operations [43]. We will not consider the possibly non-linear
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operations of noise removal and edge enhancement in order to simplify our model and
our noise estimations. The output of the image processing chain, which is fed into the
guantization block, is denoted as W s, When the no-noise source and non-cross-talk
corrupted input signal Ycean is used. The output Wyse denotes that input Yygise, Which
has no PRNU pixel errors but has the other error sources, is used. Finally, Wqise+prnU

represents the output signal for an input containing all of our sources of error, Y hgise+prNU:

Wclean = K(Yclean)1

Wnoise = K(Ynoise) ’ and

Wnoise+PRNU = K(Ynoise+PRNU) ~ K(Ynoise + EPRNU) (24)
The quantization performed on the signal W as part of the JPEG compression process is
modeled as a function Q(). The noise component values after image processing are
denoted by the prime variables E’sy, E'rn, E'pryvu in Figure 2.13. The variation in noise
levels and analog gain factors for image sensors can be modeled by varying the
conversion factor for the sensor. This corresponds to varying the electron to digital

number conversion (k) parameter.

The amount of cross-talk corruption is determined by the coefficients of the cross-
channel matrices used. A general discussion on cross-talk and its modeling can be
found in Section 3.1 and Appendix C. As with the noise model, a cross-talk model can
be obtained from sensor characterization. Using this complete camera system model,
which includes the noise, cross-talk, and image processing pipeline models, we can
determine the effects of PRNU corruption for a particular sensor operating under defined
conditions (gain setting, exposure time, compression amount, color correction applied,

etc).
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2.5 PRNU Screening Thresholds

In this section, we propose an analytical approach to set the acceptable PRNU error
threshold. Error significance is a metric that quantifies the difference between two
images (an original one and one affected by error). The derived PRNU error threshold is
compared with the measured error significance. The error rate is then defined as the

probability that the error significance will exceed our PRNU threshold.

PRNU is screened (error significance) locally by segmenting the image into blocks, and
testing each block separately. This approach is justified by the HVS’s sensitivity to local
signal to noise contrast [7]. Defective pixels are visible against the pixels in the local
area. We will determine the visibility of PRNU in the presence of other noise sources,
including the quantization of the JPEG DCT coefficients. Thus, we will be measuring the
image distortion in the DCT domain. This also allows us to use error detection models
that closely match the HVS. The contrast sensitivity of the HVS is a function of the
spatial frequency of the image information [7]. This justifies the choice of measuring

distortion in the DCT domain.

We use the DCT coefficient error visibility thresholds developed in [88] to define
acceptable distortion limits. Although this is a relatively old model, it provides a
conservative visibility threshold, which will be sufficient for our use. The visibility
thresholds are defined for luminance and chrominance errors in the DCT domain using
detection models. In that paper, models that predict HVS detectability of quantization
error in color space are developed. For each DCT frequency component (u,v), an error

threshold (Ey(u,v)) is determined based on the perceptual threshold of the HVS. These
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DCT perceptual error thresholds can be used as a measure of distortion. The DCT

perceptual error thresholds are listed in Table 2.3 [88].

Table 2.3:

Y guantization matrix =

r/‘ld

10
i
14
19
248
34
45

M

Cy gquantization matrix =

r/JEIII

34
39
52
70
95
127

168
e

Cy guantization matrix =

rfEB

49
1M
132
1759
243
324
428

e

10
i
i
12
14
20
26
33

34
43
40
45
57
74
S5
125

49
110
101
114
144
188
245
319

1
1
14
18
21
25
1
Ja

39
40
e
B
77
93
115
144

107
107
148
170
197
237
294
367

14
12
13
24
20
33
39
47

52
45
&Y
il
107
125
47
177

132
114
170
22
272
318
376
451

19
14
21
28
36
43
a1
s

70
&7
7
107
136
163
19
223

179
144
197
272
347
415
456
569

25
20
24
33
43
54
b4
74

95
74
93
125
163
202
240
280

243
188
237
318
415
514
B11
713

34
2B
31
39
81
B4
7
1

127

96
115
147
191
240
29
342

324
245
294
376
436
B11
741
873

45
33
34
47
a9
74
91
108

165
125
144
177
223
2a0
342
403

423
319
367
451
Gl at
713
873
1040

DCT frequency component (u,v) perceptual error thresholds, used as
measures of distortion.

-

The HVS perceptual thresholds can be adjusted to take into account the masking effects

of the presence of other noise sources. The PRNU noise will not be detectable until its

energy exceeds that of the system’s total random, uncorrelated, non-structured noise
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[35]. As shown in Section 2.3.1.1, it is reasonable to assume that the sensor's non-fixed
pattern noise sources are random, uncorrelated, and non-structured. The system noise

variance, following image processing, can be simplified as:

O'SySZ(U,V) = dshotz(uyv) + O'readz(uyv) + OJdark currentz(uyv) +

O'prU (W) + Uquantz(u,v) : (2.5)

where Gquant IS due to the JPEG quantization, not the ADC quantization. The prime on

the noise terms signifies that values are found after the image processing (which is
assumed to be linear and are prior to JPEG quantization), as denoted by the E’sy, E'rn,
E'rrnu terms in Figure 2.13. We also observe that the noise terms are in the frequency
domain (u,v). Thus, the noise terms (as well as the image signal) have been operated
on by the image processing pipeline, K(), shown in Figure 2.13. The differences
between this system noise equation and Equation (2.2) of Section 2.3.1.1 are that the
system noise has been operated on by the image processing pipeline (which includes a
transformation to the DCT frequency domain) and has had the affects of JPEG
guantization added. The signhal independence and linearity assumptions of Section

2.3.1.1 still apply.

From the system noise equation, we see that for conditions that result in greater total

system noise, the PRNU component becomes less significant. The total system noise
can increase when we apply greater compression (Gquant iNCreases) or have greater

exposure times (dark current noise can increase). For low signal situations (e.g., low
light or short exposure time), the camera system will usually apply greater sensor gain.

This magnifies the total noise, but will usually not affect the overall SNR

(signal/cneise fioor), SiNce both noise and signal are being amplified. However, the PRNU
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noise will be low compared to the noise floor for low signal situations. Thus, the amount
of PRNU that will be acceptable will be dependent upon the operating conditions of the
sensor. Similar to what was done in Section 2.3, we consider the PRNU noise (in the

DCT domain) to be masked (imperceptible) when the following relationship holds:

O'prru (U,V) <O_Sys—PRNU2(qu) = O'snot (U,V) + Olread (U,V) +
o dark_currentz(uvv) + O-quantz(ulv) (2.6)
The PRNU limit is set as the noise variance of PRNU that is equal to the sum of the
noise variances of the remaining noise sources that make up the total system noise
(cssys_pRNuz). We are allowing for different noise levels for different DCT coefficients (u,v).
The individual noise terms may be white, but we leave the computations open to the
possibility of frequency dependency. The acceptable PRNU level will depend upon the
image processing applied to the sensor raw data (K{}). For example, high amounts of
color correction (saturation enhancement or pixel cross-talk correction) will amplify noise

terms (refer to Figure 2.13 and to Appendix C).

The noise comparison approach of Equation (2.6) is similar to that presented in [35],
where after applying simplifying assumptions, it was determined that PRNU will not be

detectable (i.e., will be masked) when the following condition holds true:

OprNU < O-shot_noise (27)

Since there is a cost associated with reducing PRNU in a sensor, the optimal PRNU

value was defined in [35] to be:

OPRNU_optimal = Oshot_noise (2 . 8)
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For a pixel with a full well capacity of n,. photo-electrons, Equation (2.8) gives us the

simplified optimal PRNU factor (U) value:

U = {ne} 7, (2.9)

where Gprny = Unpe .

In Equation (2.7) approximation used in [35], all other noise sources are ignored. This
general idea is related to the approach used in this thesis. However, we provide a more

detailed noise model, as well as using a model of the camera system image processing.

As discussed in Section 2.3.2, the photon transfer curve method characterizes the
pixel's photon shot noise, noise floor (read noise and dark current noise), and PRNU.
The photon transfer curve shows the region of pixel response where PRNU will be
significant. In this region, PRNU noise will become visible and will limit the pixel's SNR.
A plot of the noise components and total system noise versus pixel response can also
be used to determine the PRNU perceptual threshold. We will use the pixel noise and
camera system models to determine the PRNU perceptual distortion threshold using the

equation:
Th(u,v) = max{ En(U,v) , Osysprru(U,V) } (2.10)

The PRNU threshold (Th) is in the DCT frequency component domain (u,v), thus the
total system noise without PRNU (Gsys.pryu) IS also computed in that domain. This can

be done by using our known models for pixel noise and image processing. The above
equation for the PRNU perceptual distortion threshold defines the visibility of PRNU

noise in the DCT frequency component domain.
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In the equation for the perceptual distortion threshold, we are using the typically valid
assumptions for the noise sources that were listed in Section 2.3.1.1 (assumed to be
ideally independent noise sources which are white). For this situation, noise sources
cannot be visibly distinguished in the image [35]. We are not considering 'structured
noise', such as column fixed pattern noise (CFPN) or row temporal noise (RTN). The

SNR will not be appreciably affected by PRNU until Gpray® > Gsysprau’- This behavior is

shown in Figures 2.10, 2.11 and 2.12.

The quantization noise variance in the spatial domain can be written as a function of the

variance in the DCT-domain:

N-1 N-1
Oquan(M,N)* = z Z H(v,m)* H(u,n)? Gquam(U,V)?, (2.11)
u=0 v=0

where H(m,n) are the elements of the DCT real unitary transform matrix, and csquam(u,v)2
is the variance in the DCT-domain as a function of the frequency components (u,v). As
was done in [72], we can use the simplifying assumption of a uniform input image model,
which says that there is no prior knowledge of the frequency components values and
their values are uniformly distributed within the quantization interval. This gives us the

DCT-domain quantization error as:

%uant(u-v)z = { ACI(U,V)i }2/12 ’

Aq(u,v)i = q(u,v)ica - q(u,Vv), (2.12)

In the above equation, Ag(u,v); is the quantization step size for a given DCT frequency
component (u,v). If we were to use the same assumption of a uniform input image, the

values of Genor’s Gread’s aNd Gyar current WOUID be independent of frequency component
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(u,v). This would be an assumption that the noise sources are white, and the same
noise variances could be used for all frequency components, with the exception of the
DCT-domain guantization noise. This assumption would allow us to develop a simple
and easily calculated PRNU threshold. If desired, we could instead use a non-uniform

distribution image model to develop noise frequency component values.

However, since we have noise and image processing models, we have the option to
simply use the data from Monte Carlo simulations to calculate the noise frequency

component values (see the E'sy, E'rn, E'prau terms in Figure 2.13). These noise

frequency component values, G'shot, G'reads aNd G'gark_current, €aN then be used to calculate

the total system noise without PRNU components (Gsys-prnu(U,V)) utilized in the threshold

(Th(u,v)) calculation. In a Monte Carlo simulation approach, we can select a set of input
images and camera operating conditions that will cover the particular camera application
targeted. Sensor characterization noise models are used to create the noise component
values. Once a robust Monte Carlo simulation has been performed, input raw sensor
PRNU values can be related to error rates for the prescribed set of camera operating
conditions. Multiple camera operating conditions can be used, so that categorizing of
sensors can be applied. Sensors that fail to meet the PRNU error rate requirements of

one application may meet the requirements of another.

The concept of the acceptable magnitude of a noise source being set by the total noise
of system has been previously used. The methods of [65] and [57] address different
problems by taking into consideration quantization noise. In [65], a class of non-linear
filters called Occam filters was used to remove system noise by increasing quantization

noise through compression. Random noise was removed from a signal by applying a
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lossy data compression algorithm with the loss threshold set equal to the noise strength
(e = Onose’). In [57], a pixel scalar quantizer is developed that utilizes knowledge of a

sensor’s performance characteristics. The decision and reconstruction levels of a non-
uniform quantizer are determined from the noise versus signal characteristics of the
sensor. The quantization step sizes q; are set proportional to the noise amplitude, as a
function of sensor output signal level. Again, in this thesis, we instead compare PRNU

noise with the magnitude of the other noise sources.

2.6 Camera System Level PRNU Distortion Metricand  Error
Rate

2.6.1 Distortion Metric

Having discussed the pixel noise and camera system models, we will now discuss how
the PRNU distortion is calculated using these models. The difference between a
reference image and a corrupted image is termed as distortion (D). In [88] and [90] a
perceptual objective metric is developed that evaluates the distortion distance (D)
between a reference and degraded image. We wish to quantify how the addition of
PRNU corrupts (degrades) image quality. This degradation is our error significance.
Thus, we need to look at image quality when the other sources of degradation are
present (e.g., temporal noise, cross-talk, JPEG quantization), with and without the

effects of PRNU.

26.1.1 PRNU Distortion Metric Extension from DCT H  ardware
In the development of our PRNU distortion metric, we have extended the work published
in [12] and [13], which developed error tolerances for DCT hardware faults. Our work

extends and adapts the work of [12] and [13] in the following manner:
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1) As was done in [13], we use an error significance metric that compares these two
decoded (fully processed) images. However, our two images have the camera
system image processing, including JPEG compression, applied to them. In[13],
the processing was limited to the JPEG compression. In a method analogous to
that used in [12] and [13], we compare these two images indirectly by computing

their individual distortions relative to an ideal, non-corrupted image.

2) In[12], only errors introduced by DCT hardware faults (the errors under
investigation) and compression are considered. In our work, in addition to the
PRNU errors, we consider distortion due to JPEG quantization, non-PRNU
system noise, and image processing noise amplification. This complicates our
distortion calculations, and increases the number of possible distortion cases
from than of [12]. A closed form solution of the error rate equation becomes

more difficult.

3) We use the DCT basis for coefficient error visibility thresholds [88] for error
tolerance, as was done in [12] and [13]. Additionally, we introduce the use of the
masking effects of the camera system processed noise to determine the PRNU

tolerance errors.

4) In[13], testing was performed on each block of DCT frequency components. We
also test each DCT block and apply a Peak Contrast model, which marks a block
as failing if any of its frequency components fails the threshold test. This strategy
is consistent with the industry standard approach to measuring local PRNU.

2.6.1.2 PRNU Distortion Metric Definition

Our error significance metric will measure the distortion between images with and
without PRNU. The metric will be compared with Watson’s DCT basis for coefficient
error visibility thresholds [88], as used in [12], [13]. As was discussed in Section 2.5
when we developed our threshold equations, we also compare this metric against the
total system noise without the contribution of PRNU. Referring to the system model of
Figure 2.13, we define three images to use in the calculation of the PRNU distortion

metric. The first image, Wgean, iS the ‘ideal’ or ‘clean’ image that has been image
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processed by the camera system (it is also written as simply W). This ideal image has
not been operated on by the JPEG quantizer, and has no photon shot noise, read noise,
or PRNU noise added. The second image, Q(Wyise), IS the image with photon shot
noise and read noise added, which has been quantized by the JPEG quantizer. The

third image, Q(Wneise+prnu), IS the same as Q(Wheise) but with PRNU noise also added.

In our developed PRNU testing method, we measure block-by-block errors. This
approach matches the way that PRNU errors are typically measured. The JPEG DCT
block size of 8 by 8 pixels is within the industry standard range of block sizes used for

PRNU testing. The blocks within the three images are denoted using a superscript bar

as V_Vdean, Q(V_\/noise), and Q(\/_Vnoise+pRNU). Individual DCT frequency coefficients within a
block are denoted as W¢iean(U,V), Q(Wpaise(U,Vv)), and Q(Wpngise+prnu(U,V)), Where (u,v) are
the DCT frequency coefficients. As was done in [13], we look at the distortion metrics at
the image, block, and DCT frequency component levels. These distortions are denoted

D,, Dg, and D¢, respectively.
Following the nomenclature used in [13], three different distortion metrics are defined by:

D! = D( Weiean, Q(Wnoise) ) )
D2 = D( Wclean, Q(Wnoise+PRNU) ) ’
D® = D( Q(Whoise), Q(Woisesprru) ) (2.13)

In the above equations, D is the basic distortion distance metric, which can be applied to
the entire image (1), an image block (B), or a block frequency component (C). D' is the
distortion between the ideal image and one that has typical noise (read noise, shot
noise) along with JPEG DCT frequency quantization (where we have a quantization bin

size A). D?is the distortion between the ideal image and one that has typical noise (read
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noise, shot noise), PRNU noise, and JPEG DCT frequency quantization (bin size A).
Distortions D' and D? are shown in Figure 2.14. Finally, D® is the distortion between the
ideal image corrupted with typical noise (read noise, shot noise) and DCT quantization,
and one that has also had PRNU noise added (these images might be referred to as
decoded images). All of the images have had the standard image processing operations
applied to them (color correction, etc.), which can result in noise amplification. Similar to
[12] and [13], we will be comparing Q(Whneise) and Q(Woise+prnu) indirectly by computing
D' and D? and comparing these distortions. We will discuss later in this section why the
difference between D? and D' is used as our metric instead of the difference between
Q(Whoiseprnu) and Q(Wpoise) (D). If the difference between D? and D' is small enough,
then we will conclude that the PRNU will be acceptable. Unlike [12], the addition of the
error does not always result in D? > D', since we have multiple sources of distortion for
D' and D2 Due to the multiple random noise sources and the image processing applied
to them, it is more difficult to determine a closed form equation for the error rate (Po)

than in the system model of [12].

W >

AQ® ‘ ........ ‘ B @ ‘ ........ ‘ c® ‘

Q(Wy)' Wy Wh+p Q(Wi+p)

Figure 2.14: Relationship of distortions D* and D? along with W, Wy and Wy.p and
their quantized values. Photon shot noise and read noise combined with
guantization distorts the input signal value W to Q(Wy). The addition of
the noise sources, including PRNU, combined with quantization distorts
the input signal value W to Q(Wy.p). We are interested in the increase in
distortion, from D' to D?, due to PRNU.
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As we have stated, using the block distortion as a metric (Dg) for PRNU screening
follows the industry approach to testing and matches the sensitivity of the HVS to local
noise [7]. Thus we will also measure block-by-block error (rather than applying a spatial
pooling approach). Additionally, since we wish to have our distortion metric follow the
sensitivities of the HVS, we use the DCT frequency component visibility thresholds
(Th(u,v)) of [88], as was done in [12], [13]. The Minkowski metric is used to pool all of

the transform coefficient errors (Dc(u,Vv)) of a block, and is given as:
Di={> Diuv)}* (2.14)

where Dy is the metric for block k (Dg), D¢(u,v) are the threshold weighted absolute
differences for the frequency components (u,v), and b is the pooling exponent. The error
components (differences) for each frequency are weighted by the perceptual thresholds
(Th(u,v)). For the Peak Contrast model, the pooling operation consists of choosing the
pixel with the largest absolute value [87]. This corresponds to the Minkowski metric with
the exponent b set to . The Minkowski exponent controls the efficiency of the
summation over the transform’s coefficients. Linear summation occurs with b set to 1,
while no summation (maximum selection) occurs with b set to «. We use Minkowski
pooling for the block DCT frequencies using the Peak Contrast model (b = «), on a
block-by-block basis. The distortion metric for a block is the largest absolute error of that
block. This is the greatest Dc(u,v) value of the block relative to (weighted by) the
corresponding threshold. This is similar to the conventional PRNU testing method of
using the maximum and minimum pixel values in each block for testing (peak-to-peak

PRNU), and not considering the remaining pixels in a block. However, it is done in the
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transform domain. Any block that has 1 or more DCT frequency components that
exceed the allowable distortion threshold is therefore marked as a defective block. Thus
the Peak Contrast model (Minkowski metric b = o) is in accordance with the PRNU
peak-to-peak method, and fits in with our goal of improving PRNU screening for CMOS
sensors. MSE does not measure PRNU well due to its value smoothing of outliers, while
the PRNU measurement is mostly concerned with outliers. This was illustrated in Figure

2.5.

From the noise modeling assumptions of Section 2.3.1.1, the image G of Figure 2.13 is
independent of the PRNU, read noise, and shot noise errors (Eprnu, Ern, and Egry). The
individual DCT components of the noise terms (Eprnu(U,V), Ern(u,v), and Esy(u,v)) are
random additive error terms independent of the image DCT components (G(u,v)). Using
sensor characterization data, we have models (and pdfs) for the Epgny and Egy errors
(refer to Section 2.3). The model (and pdf) for the shot noise error, Egy, is also known
(from the nature of photon arrivals). Finally, the pdf of the image G can either come from
a typical image, or a Monte Carlo approach can be used to ensure that we use an
accurate and realistic distribution of images. In this thesis, we will use both a Monte
Carlo approach and a probability model-based analysis. The spatial distribution of the

PRNU within blocks will affect the errors of the DCT components (u,v).

In analyzing how the addition of PRNU (Eprny) leads to additional error in the presence
of standard sensor noise and standard image processing including scalar quantization
(JPEG), we will use the absolute difference of the DCT coefficients as a distortion metric.
This choice reduces the computational complexity. The distortions due to typical noise

along with JPEG DCT frequency quantization (D¢'), and due to typical noise plus PRNU
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noise and JPEG DCT frequency quantization (Dc?) are then given by the distortion

distances (refer to Figure 2.14):

DC1 = | Wclean - Q(Wnoise) | ’ and
DC2 = | Wclean - Q(Wnoise+PRNU) | (215)

There will be cases where the Epgny error is masked by the quantization process (and

perhaps by other operations in the image processing). Thus we may have:

Wnoise ¢Wnoise+PRNU (and also Gnoise ¢Gnoise+PRNU)a

but still have:

Q(Wnoise) = Q(Wnoise+PRNU)-

This situation can be seen in Figure 2.15. As the JPEG quantization becomes greater
(quantization bin size A increases), the likelihood of Q(Wise) and Q(Wise+prru) bEING
different (mapped to different levels) decreases. Q(Wyoise) and Q(Wnoise+prru) are related

by the integer number of quantization bins between them (K):

Q(Wnoise+PRNU) = Q(Wnoise) +KA4

What we are truly concerned about is how PRNU adds to the distortion of the decoded
image Q(Whnoise+prru) With respect to the ideal image W. We show graphically in Figure
2.16 how the addition of PRNU can sometimes reduce this distortion. This happens
when the PRNU error and the other noise source errors have opposite signs. This
situation is different from that presented in [12], where the relationship Dc? > D' was
always true. This provides further justification for the use of the following metric

equation for the perceptual distance between Q(Woise) and Q(W oise+prNU):
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ADC = DCZ - Dcl , if Dc2 > Dcl

ADc =0 else (2.16)

Q(Whn),
Q(Wn+p) [,

Figure 2.15:

T Wi T_I?Bﬂyfrww

AQ
AD=D2-D./ =0

Example showing relationship of quantized signals and quantization bin
size. The upper portion of the figure shows a smaller quantization bin
size that results in Q(Wy) and Q(W.p) being in different bins, while the
lower portion shows the two quantized signals being in the same bin for a
larger bin size. We see how the noise terms (PRNU and non-PRNU
noise) affect the quantization of the input image data W. As the bin size
shrinks, the corrupted signal Wy.p enters the adjacent bin.

L 4
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Figure 2.16: Example showing how distortion metric Dc® can be a poor metric for
measuring PRNU distortion. Here, Dc® has a large value, however, the

distortion with and without PRNU is the same (Dc!=Dc?). We also see
that PRNU and non-PRNU noise can have opposite signs.

As was shown in [12], using the metric D3 = D[Q(Wnoise)» Q(Whoise+prnu)] CAN be a poor
choice for a distortion metric. This can be seen when both W and W, are near the
boundary of a quantization bin, and the addition of a small PRNU error, eprnu, results in
Q(Whoise) and Q(Wnoise+prru) beINg in adjacent bins. This would result in Dc®=A, and Dc?
~ Dct ~ A2, for a quantization bin size of A. This situation is depicted in Figure 2.16.
Obviously, this large distortion metric value of Dc® is not a good indication of the
relatively small distortion due to the PRNU error. This supports our choice of the metric

AD¢c shown above as a measurement for distortion.

The permutations of the W, W ise, Whoise+prnu @lONg with the quantization bin size results
in 5 different distortion cases that can be grouped into 2 different categories, as listed

below. Some of these cases result in zero distortion.
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1) Low noise case: Wygise is in the same bin as W, (Q(Wioise) = Q(W)). We have two
subcases:

a) Wioise+prru IS @ls0 in the same bin as W (Q(Wngise+prnu) = Q(Wioise) =

Q(W)), which results in zero distortion.

b) Wnoise+PRNU is in a different bin than W (Q(Wnoise+PRNU) * Q(\Nnoise) = QON))a
which results in non-zero distortion as shown in Figures 2.17 and 2.18

(for Dc?<AQ and D?>AQ).

2) High noise case: W,isc is in a different bin than W (Q(W ,ise)2Q(W)). We have

three subcases:

a) Whoise and Wise+pryu @re both in the same bin, which is different than the
bin for W (Q(Weise) = Q(Whaise+prru) # Q(W)), which results in zero

distortion as shown in Figure 2.19.

b) Wnoise+PRNU iS in a different than Wnoise and w (Q(Wnoise) * Q(Wnoise+PRNU) *

Q(W)), which results in non-zero distortion as shown in Figure 2.20.

C) Wnoise+PRNU iS in the same bm as W (Q(Wnoise) * Q(Wnoise+PRNU) = Q(W)),
which results in zero distortion.

Cases la and 1b correspond to the AO and Al cases of [12], respectively. Case la has

been shown to have AD=0 (Dc'=Dc?). Similarly, cases 2a and 2c will result in AD=0

(both these cases also have Dc'=D¢%). Thus, only cases 1b and 2b will have non-zero

distortion measurements. The case information and distortion equations are

summarized in Table 2.4, and shown graphically in Figures 2.17 through 2.20. The

relative magnitudes of the noise terms Esy, Ern, Eprnu, the quantization step size (A), the

cross-talk (H) and the image processing (K{}) will determine the distortion measurement

behavior.
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AQ>AD=D2-D.,/'>0, D.2<AQ

Case 1b: W oan & Whaise @re in same bin, Wigizsespriy 15 1N @djacent bin, and DC2 L A0

Figure 2.17:

Case 1b, with Dc?<AQ, PRNU forces quantized signal to next bin, but
distortion is less than quantization step size.

D2

AQ

PRNU
awy W W quy,e)

AD=D2-D.' = AQ, D> AQ

Case 1b: W oo & Wigiee @re in same bin, Wi gise+prpy 15 1N adjacent bin, and DC2 2 A0

Figure 2.18:

Case 1b, with Dc>>AQ, PRNU forces quantized signal to next bin, and
distortion is equal to quantization step size.
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Q(Wy), Q(W.p)
- 2 1 2 1
AD_DC -DC_D,DC_DO
Case 28 W, iue & W nisesprny 81 i same bin, D, = D2
Figure 2.19: Case 2a, Dc? = Dc', PRNU has no effect on quantized signal.
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WN WN+P
Q(Wy) Q(Wp+p)
— 2 1 . 2 1
AD=D./"-D, = AQ, D,/ =D, + AQ
Case 2b Wiy & Whgise & Whnisesprny are all in different bins, and D2 = D' + AQ

Figure 2.20: Case 2b, Dc? = D' + AQ , PRNU forces quantized signal to next bin.



Table 2.4:

Distortion cases.

Bin
Q) QWnoise) Q{Wnoise-pryu)] Case | Figure Distortion (AD) Description
A A A 1a 0 all in same bin
Q . _w|| ideal with & without
A A B 1b 31; |QWnoise-pavu) =W o T in one bin,
- —|QWnoise) =WI [ PRNU in another bin
A B B 2a 219 0 ideal m.one p|n= both _
corruptions in another bin
Q — -W . .
A B C 2b 214 | 1Q0Wnose-priv) | all in different bins
2.20 - |QMnuise}—W|
ideal and PRNU corruption
A B A 2c - 0 in same bin, RN/SN/XT
corruption in another bin
2.6.2 Error Rate

We determine the camera system’s PRNU error rate (Po), or probability of block error,
using the D:! and DG? distortion measurements. These distortion measurements are
functions of the PRNU probability density function, the sensor noise models, the DCT
guantization matrices used, the camera system image processing model, and the sensor
operating conditions (electrons per DN or ISO number). The error rate is the probability
that a DCT block will have at least one coefficient distortion error that exceeds the
defined threshold [12], [13]. Acceptability will then be defined as the percentage of
blocks that have errors that can be tolerated. We note that global averaging metrics,
such as MSE, are not suitable for measuring or detecting PRNU. The number of pixels
per DCT block (or analysis block size) that have pixel PRNU values that exceed
threshold allowable values can vary. Some blocks may have no defect PRNU pixels,

while other blocks may have many. A global averaging metric would not provide

meaningful results for this situation.
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In deriving an equation for the error rate, Py, we apply the applicable approximations
and assumptions listed in Section 2.3.1.1 for the noise and image signals. As an
example of how probabilities of error can be derived, consider case 1b of Table 2.4,
where we can write our distortion metric (for a particular DCT frequency component of a

DCT block) as:

4D = | Q(Wnoise+PRNU) -W | - | Q(Wnoise) -W | )
AD=|(+1)A-W| - |[/4-W], (2.17)

In Equation (2.17), Q(Woise) and Q(Woise+prnu) @re quantized to the centers of bins /A
and (/+ 1) A, respectively (where /is the bin number). We shorten the notation Wean
(ideal image data) to W in Equation (2.17) and in the equations that follow. Case 1b is
the situation where the addition of PRNU forces the quantized DCT coefficient to the

next bin (see Figures 2.17 and 2.18).

In general, the error rate, Po, can be defined as the probability of the distortion
exceeding the threshold given a particular given PRNU pixel error and distribution (eprnu

and f (), integrated over the PRNU probability density function:

€pPRNU

Po(u,v) = I fepany

PRNU

(eprnu) P(AD>Th | Eprnu = €prnu) depriu (2.18)

The fixed value of eprny in the above equation is the known PRNU metric, which can be
determined from industry conventional measurements. Again, the above error rate
equation is applied in the DCT frequency component domain, thus the value of Po, pixel
errors and distribution are all for a particular (u,v). We will not explicitly write the (u,v)

term in the rate equations which are developed here, but instead assume that it is
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implied. In order to find the error rate, Po, we need to determine the conditional

probability, P(AD>Th | Eprnu = €prnu), Which can be written as:

P(4D>Th | Eprnu = €prNU) =
P(| Q[ K{H(G + Esn) + Ern + Eprau} ] — K{G} | -
| Q[ K{H(G + Esn) + Ern} ] = K{G} | > Th | Eprnu = €prau)  (2.19)

Deriving a solution to the equation for error rate is complicated by the interaction of the
raw input image (G) statistics, the multiple sources of noise (Esn, Ern, €tc.), the cross
talk blurring (H()), the system image processing (K{}), and the quantization (Q()). The
raw input image signal G is shown in Figure 2.13. In Equation (2.19), K{} and K{} are
the nominal and linear system image processing operations with and without cross-talk
correction, respectively. In our analysis, we restrict ourselves to the linear operations
(see Section 2.3.1.1 for assumptions). The threshold, Th, will be a function of the
system noise (Esn, Ery) and quantization levels (Q()), as well as the HVS factors (see
Section 2.5). A Monte Carlo solution to the rate error problem is developed next
(Section 2.6.2.1), along with a probability model-based simulation solution (Section

2.6.2.2).

2.6.2.1 Monte Carlo Simulation Solution

Monte Carlo methods are a class of computational algorithms that use repeated random
sampling to compute results. In this method, we use characterization based pixel and
camera system models. This method avoids having to use assumed or captured
probability density functions (pdfs) for W, G, or F (image information) and the noise
sources (which we will use in our probability model-based simulation solution). Instead,

typical test images are used to create many 8x8 DCT blocks for use in the analysis. The
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noise signals are determined based on the image signals and the noise and sensor
models. We can select a set of images that will span a particular camera’s application
space. The images can be selected to have a range of pixel input signal magnitude,
spatial frequency content, color saturation, critical color types (e.g., skin tones) and so
forth. Performing the Monte Carlo simulations is simplified by our a priori knowledge of
the noise and image-processing models. The range of sensor and camera parameters,
such as sensor gain setting, exposure time, and compression rates, can then be easily
exercised. We determine the error rate directly from the statistics of the output of our
camera system model. This differs from the simulation solution of Section 2.6.2.2, since
we do not use a priori noise and image signal probability distributions taken at the output
of the camera system. Instead, we indirectly calculate these distributions by using our
selected set of input images along with our models. We will develop a diagram

representing the Monte Carlo testing methodology in Section 2.6.3.1.

2.6.2.2 Probability Model-Based Simulation Solution

We can use our sensor and system models to create DCT block-wise models to use in a
probability model-based simulation method to solve the error rate problem. Probability
density functions must be used for the input image (G) and noise sources (Esn, Egrn,
Eprnu).  In general, the total error of a pixel DCT frequency component (u,v) can be

written as [12]:

e=LA+¢e, (2.20)

where L is LE/A] a non-negative integer, A>e>0, and E is the total noise value (e is a

particular value of E). L defines the number of quantization bins (of size A=AQ) the
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corrupted signal is from the ideal signal, and e’ is the error distance within a quantization

bin. This is depicted in Figure 2.21.
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Figure 2.21: Depiction of the pixel error components: LA and e’

Since we have multiple sources of error, we can write:

e=LA+ey+ €eprnu, (221)

where L' = [(Ey +Eprny)/Al is due to all of the noise sources, with Ey and e’y being all
non-PRNU noise sources (shot noise, read noise, etc.). As was done in [12], we can

first consider the case where L'=0, so that:

e= e’N + e’pRNU . (222)

Here we note that e’y and e'rrny are the errors from the ideal image signal component
(G or Wgean) after the image processing (K{}), as well as the e’sy component of e’y
including the cross-talk corruption noise (H()). Also, due to the transform within K{},
these errors are in the frequency domain (DCT), and represent a particular frequency
component value (u,v). Again, from Section 2.3.1.1, K{} is a linear operation. Thus,
using our known models for the cross-talk corruption and the image system processing,

we define the following noise terms:
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E'’n = K{ H(Esn) + Ern }, and

E'prnu = K{ Eprnu } - (2.23)
We also define:
W = Wdean = K’{G} (2.24)

We then write the error rate for given PRNU and non-PRNU noise values (eprny @nd ey)

as given by:

P(4D(u,v) >Th(u,v) | E'prnu = €'prau, E'lN = €N) =
P( | QL W(u,v) +E'N + E'prau ] = WUV | -
| Q[ W(u,v) +E'N ] —W(u,v) | > Th(u,v) | E'prnu = €'prau, En=€v) ., (2.25)

where, as stated previously, the e’ and E’ terms are frequency components (u,v). We
can use our known system and noise models to determine the probability density
functions for E'y and E'pryy. We define an interval of W(u,v) that results in a distortion

exceeding the defined threshold as B;. The union of these sets, UB;, defines all of the

values of W(u,v) that have excessive distortion:

UB; ={ VW(u,v) : 4D(u,v) > Th(u,v) } (2.26)

This set of intervals of W(u,v) will be different for each of the cases of Table 2.4.

Using the equation for the conditional probability of failure (distortion greater than
threshold) for particular PRNU error and non-PRNU error pdf values (€'rrnu=0SprNU,
e’n=oy, for Gaussian behavior) above, and the determined set of intervals of W that will

result in unacceptable distortion (UB;), we can write the error rate as:
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Po(U,V) = J. I IUB_fe’PRNU(e,PRNU) fe’N(e’N) fW(W,U,V) dw dey deprnu (227)

€ornu En

The probability density functions for e’y and e’prnu (fe’PRNU(e’pRNu), fe'N(e’N)), as has been

stated, are determined from characterization data and system models. The probability

density function of the input image (fy/(W)) can be determined from captured image

statistical data for each DCT frequency component (u,v), and is written as fyy(W,u,v) in

Equation (2.27). The two noise probability density functions are dependent upon W,

since they are functions of signal magnitude. However, the problem is deterministic,

since we are using captured signal statistical data for fy(W) We will develop

fe’PRNU(e,pRNu) and fe'N(e’N), for each DCT frequency component (u,v), using the same

underlying fy/(W) data.

We must now determine the set of intervals UB; to use in the error rate equation. As we
have previously shown, only cases 1b and 2b of Table 2.4 will have non-zero distortion
measurements. Case 1b can be broken into two sub-cases: Dc?<AQ (see Figure 2.17)
and Dc*>AQ (see Figure 2.18). We will see that the magnitude of the noise term e’y
relative to half the DCT frequency component quantization step size, AQ/2, will also
have an effect on B;. We examine each of these situations in detail next. The intervals

of values of W that result in unacceptable distortion are summarized in Table 2.5.
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Table 2.5: Set of intervals of values of W that result in unacceptable distortion (UB;)
(case 2b is derived from case 1b with L changed from O to 1).
Case # | Condition UB;
1b -1 DC2<AQ W | |AQ + AQ/Z - (e1N + e’pRNu) SW< |AQ + AQ/Z -
Th/2 , for 0<Th=<2(e'y + €'prnu) SAQ
1b-2a |D>AQ &en<AQ2 | W | IAQ + AQ/2 — (€'N + €'pryu) S W <IAQ + AQ/2 —

Th/2 , for 0<Th<AQ

1b-2b |DZ>AQ & ey >AQ2 | W IIAQ +AQ/2 — (€' + E'priu) W <IAQ + AQ/2 -
e’y , for 0<Th=AQ
2.6.2.2.1 Bj for case 1b with Dc?<AQ

In Figure 2.22 we show the relationship between the distortion AD and the ideal image

signal data W (or K{G}) for particular values of e’y and e’pgyy for case 1b with Dc?<AQ

(and L=0).

As previously discussed, the noise probability density functions are

deterministic. The values of e’y and e’pryy are fixed based upon the value of W and the

camera operational settings. The x-axis of the plot shows the value of the uncorrupted

input signal W, along with quantization bins of size AQ. The y-axis shows the distortion

metric value when the effects of e’y and e’prny @nd considered. A threshold value (Th) is

shown on the y-axis, which is calculated from the methodology discussed in Section 2.5.

From Figure 2.22, we see that the maximum distortion (Enax) occurs when W has the

value that corresponds to W ise+prnu jUSt €ntering the next quantization bin:

when: Whgise+prnu = W + €'y + €'privy = 14Q + 4Q/2, and
W =i4Q + AQ/2 — (e'n + €'priu),

we have:

AD = |Q(Wnoise+PRNU) - Wl - |Q(Wnoise) - W)l ,» SO that
AD = (4Q/2 + €'y + €'prau) - (4Q/2 - €'y - €'priu)

AD =2 (e'n + €'prau) = Emax

(2.28)
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Case 1b with DC2 <AQ (L=0), eyteppuy < AQ/2

Bi={W|iAQ + AQ/2 — (e'y + €'rryu) SW <IAQ + AQ2 - Th/2},
forQ0<Th = 2(e’N + e‘pRNu) £ AQ

Figure 2.22: Relationship between distortion, AD, and clean input image signal value,
W, for Case 1b, with DCZ<AQ, L=0. The region of the input signal values
where the threshold is exceeded (AD>Th) is defined by B;.

The maximum distortion value of Enax = 2(e'n + €'pryu) Will have a maximum value of AQ
when W = iAQ + AQ/2 (Dc*=AQ, Dc'=0). The distortion then decreases with increasing

W until it reaches zero when W,,ise just enters the next quantization bin:

when: Wygise = W + €'y = id + 4Q/2, and

W =idQ + AQ/2 — €'y,

we have:

AD = |Q(Whoise+prnU) — W - |Q(Whoise) - W)| , so that

AD = (4Q/2 + e'y) - (4Q/2 + €'y) ,

AD =0 (2.29)

The distortion will have a value equaling the threshold, Th, when:
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AD = Th = |Q(Whoise+prru) — Wrn| - [Q(Whaise) - Wrn)|

Th = (4Q/2 + 'y + X) - (4Q/2 - €'y - X), where 0 < X < e'prny ,

Th =2 (e’y + X), and then:

Wi, =i4Q + 4Q/2 — (e'y + X) ,

W, = i4Q + AQ/2 — Th/2 (2.30)

The distortion will have a value equaling the threshold, Th, when:

AD = Th = |Q(Whoise+prru) = Wrn| = [Q(Whgise) - Wrn)|

Th = (4Q/2 + €'y + X) - (4Q/2 - €'y - X), where 0 < X < €'prnu

Th =2 (e'n + X), and then

Wq =14Q + 4Q/2 — (e'y + X) ,

Wiy = i4Q + AQ/2 — Th/2 (2.31)

A simple check of the distortion at W=W+,, shows that this is correct:
AD = (4Q/2 + Th/2) - (4Q/2 - Th/2) = Th

The range of W values in each quantization bin in which the distortion is unacceptable,
where the input signal values produce distortions that exceed the threshold (AD>Th), for

case 1b with Dc’<AQ is then given by:

Bi={W|i4Q + 4Q/2 — (€' + €’prnu) S W <id4Q + AQ/2 — Th/2 },
for 0<Th=2(e'y + €'prnu) S4Q (2.32)

If Th>2(e’'y + €'priu), then Bj is empty for L=0 and P, = 0. In this case if Th>AQ, we
calculate Bj for L=1 with AQ<Th<2AQ. If Th>2AQ, then we calculate B; for L=2. If

Th>3AQ, then we calculate B; for L=3, and so forth for increasing Th and L values.

When the value of the threshold Th does not exceed the minimum distortion value for a

given L value:
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ADpin = LAQ > Th, (2.33)

then the error rate is 100% (Po = 1). For simplicity, we have omitted the frequency

component terms (u,v) in the equations.

2.6.2.2.2 B; for case 1b with Dc?>AQ

In Figure 2.23 we show the relationship between the distortion AD and the ideal image
signal data W for case 1b with Dc*>AQ (and L=0). In this case, W is on the opposite

side of the quantization point (IAQ) from Wgise and W gise+prRNU-

AD 4
AQ L. ...
m _________________________________________________________________
0
1
:
1
: AQ
— "
1
(i+1)AQ w

Case 1b with D> > AQ (L=0) , AQ/2 < ey+epry < AQ, ey < AQ/2

B, ={W|iAQ+ AQ2 — (&' + €'prny) SW <iAQ + AQ2-Th/2},
for0< Th £AQ

Figure 2.23: Relationship between distortion, AD, and clean input image signal value,
W, for Case 1b, with Dc*>>AQ and e'y<AQ/2, L=0. The region of the input
signal values where the threshold is exceeded (AD>Th) is defined by B,.
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From the figure, we see that the maximum distortion of Enx = AQ (AQ=2(e’nt€'prrU))
occurs when W has the value that corresponds to Wyise+prnu JUSt entering the next

guantization bin (as with the previous case):

At Wigise+prnu = W + €'y + €'privu = 14Q + 4Q/2, and

W =i4Q + 4AQ/2 — (e'y + €'priu), @and we have

AD = |Q(Whoise+prru) — W[ - [Q(Wnoise) - W)

AD = (4Q/2 + €'n + €'prau) - (4Q/2 - €'y - €'priu)

AD =2 (e'y + €'priu) = 4Q (2.34)

The range of W values in each quantization bin for which the distortion is unacceptable

(AD>Th) is dependent upon €'y, and is examined next.

2.6.2.2.2.1  B;for case 1b with Dc>>AQ and e’y < AQ/2

If e’y is less than AQ/2, the distortion remains constant at AQ as W increases until it
reaches the quantization mid-point location (IAQ + AQ/2). The distortion then decreases
to a value of zero at a W value corresponding to Wise just entering the next quantization

bin (as was true for D?<AQ):

W =i4Q + 4Q/2 — €'\, and e’y < 4Q/2 , we have
AD =0 (2.35)

The point at which the distortion matches the threshold value is the same as in the

Dc?<AQ case:

AD=Th= |Q(Wnoise+PRNU) - WThl - |Q(Wnoise) - WTh)l ) and e’N < AQIZ ) for
Wi, = i4Q + 4Q/2 — Th/2 (case 1b, Dc*> 4Q and e’y < 4Q/2) (2.36)
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This gives us the same range of W values in each quantization bin for which distortion is
unacceptable, where input signal values produce distortions that exceed the threshold

(AD>Th), for case 1b with Dc?>>AQ and e’y < AQ/2 as for the case 1b with Dc*<AQ:

Bi={W|i4Q + 4Q/2 — (e'y + €’prnu) S W <id4Q + AQ/2 — Th/2 },
for 0<Th=<4Q (which is different from the previous case). (2.37)

If Th>AQ, then Bjis empty for L=0. In this case we calculate B for L=1. If Th>2AQ, then

we calculate B; for L=2, and so forth.

2.6.2.2.2.2 B; for case 1b with Dc?>AQ and e’y > AQ/2

If e’y is greater than AQ/2, as shown in Figure 2.24, the distortion remains constant at
AQ as W increases (from the value of iIAQ + AQ/2 — (e'y + €’pryy) Shown in Section
2.6.2.2.2) until it reaches the value of IAQ + AQ/2 - e'y. At which point W ise just enters

the next quantization bin, and the distortion becomes instantaneously zero:

W =i4Q + 4AQ/2 — e’y and e’y > 4Q/2 , we have
AD =0 (2.38)

This gives us a different range of W values in each quantization bin which the distortion
is unacceptable, where the input signal values produce distortions that exceed the

threshold (AD>Th), for case 1b with Dc?>AQ and e’y > AQ/2:

Bi={W|idQ + 4Q/2 — (€'N + €’prru) SW <i4Q + AQ/2 — €'y },
for 0<Th=AQ (2.39)
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Again, if Th>AQ, then Bj is empty for L=0. In this case we calculate B; for L=1. If

Th>2AQ, then we calculate B; for L=2, and so forth.

AD 4
AQ L. .
Th bommimmimm e o b e o
0 Errnu |
: 1 En 1
I +—Pp
| ' |
1 I AQ
I !4 €n >! < » I .
1 ]
iAQ ¢ » (i+1)AQ w

CrRIU

Case 1b with D.” > AQ (L=0) , AQ/2 < ey+epmuy < AQ, &> AQ/2

Bi ={W | IAQ+ AQ2— (&' + €priy) SW<IAQ + AQ2-¢'y ],
for0<Th =AQ

Figure 2.24: Relationship between distortion, AD, and clean input image signal value,
W, for Case 1b, with Dc*>>AQ and e'y>AQ/2, L=0. The region of the input
signal values where the threshold is exceeded (AD>Th) is defined by Bi.

2.6.2.2.3 B; for case 2b

The case 2b situation will be similar to the case 1b situation with L=1 and 0<Th=<2AQ.
We will have the same three situations of distortion variation with W as we saw with case
2b, depending on the position of W relative to the mid-bin point when W ise+prnu jUSt
enters a bin. For case 2b, Wyeise:prnu 1S two bins removed from W, and W ,ise IS ONe bin
removed (giving us L=1). In Figure 2.25 we show the part of the distortion plot for case
2b with Dc?>AQ when L=0 and 0<Th<AQ.
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AD a
AQ L ... -
(Case 1b)
'rh ________________________________
(Case 1b)
0 4 |
1
|
i En 1 EprnU ! AQ
| ! || ¢ 'l
[ i [ . [
iIAQ (i+1)AQ (iI+2)AQ w

Case 2b with D> > AQ, 0 £ Th < AQ (L=0)

Figure 2.25: Relationship between distortion, AD, and clean input image signal value,
W, for Case 2b, with Dc>>AQ and 0<Th<AQ, L=0.

26.2.2.4 Global error rate equation

With the range of W for unacceptable distortion (B;) determined, we are now in a position
to solve the integral equation for the error rate, Po. However, we still need to provide a
threshold and the probability density functions (pdf) for the input image signal (W) and
the noise signals that have been operated on by the system (e’y and €’pryy). We will
use statistical information based on appropriately selected test images and the use of

our pixel and imager system models in order to determine fw(W), fe (en), and
fePRNU(epRNu). The threshold value itself will be a function of these probability density

functions as well as the image system model (image processing and quantization
levels). The derived error rate equation allows us to calculate Po(u,v) for frequency

component (u,v). We must test each frequency component of a block (64 components
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per block). As was done in [12], we must combine the individual values Po(u,v) into a

global Py using the summation law:

N N
Po=1-J]]]{1-Pouw} (2.40)

==

This equation can then be used in the simulation of error rate calculation using known

signal and noise statistical models. The simulation can be used to yield a mapping from

fe’PRNU(e1pRNu) to error rate, and will only have to be performed a handful of times per

sensor design. Thus, overall complexity is not a major concern. However, some
computation complexity and time can be saved by assuming, as was done in [12], that
Po(u,v) will be small for all of the frequency components (u,v), so that we can use the

approximation:

N N
Po ~ Z Z Po(u,v) (2.41)

= v

2.6.3 PRNU Distortion Testing Methodology

Two different sensor PRNU testing methodologies, a Monte Carlo simulation solution
and a probability model-based simulation solution, will now be developed and discussed.
Both of these methodologies will permit sensors to be tested for different applications.
We will be able to take advantage of a sensor application having a certain set of
magnitudes of quantization and 1SO operating conditions. This will allow us to select
sensors for different applications using the performance in our proposed PRNU

screening methods. These methods permit us to choose operating conditions and
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guantization levels to mask the perceptual effects of the corresponding PRNU. We will

also show how these two methodologies result in solutions that are almost identical.

2.6.3.1 PRNU Distortion Monte Carlo Testing Methodo  logy

We can now state a methodology for PRNU distortion testing using a Monte Carlo
approach. The distortion measurements D¢t and Dc? are determined for the entire
image of DCT terms. Then the difference measurements in these distortions are
calculated, yielding our error significance metrics (AD). This is the perceptual distance
between Q(Wpoise) and Q(Woise+prnu), Similar to that defined in [13]. Each 8x8 DCT pixel
block of the sensor is then tested to determine if any of its 64 coefficients exceed the
visibility thresholds ( Th(u,v) ) [89], [35]. This testing is done for both the luminance and
chrominance data (Y, U, V, or Y, C,, C, channels). The error rate (Po), or probability of
block error, is determined using these measurements as a function of the PRNU
probability density function, DCT quantization matrices used, the sensor operating
conditions (electrons per DN or ISO number) that affect the sensor noise models, and
the camera system image processing. The definition of error rate is taken from [12] and
[13], which states that it is the probability that a DCT block will have at least one
coefficient error that exceeds the defined threshold. Acceptability is defined as the
percentage of blocks that have errors that can be tolerated. Input PRNU pdf, PRNUeax-
o-peak; OF PRNUs Values are then correlated to the final error rates for a prescribed set
of camera operating conditions. Multiple camera operating conditions can be used,
which can correspond to different camera applications. We perform this analysis using a
predetermined set of test images selected based on the camera application. A diagram

of the testing methodology is shown in Figure 2.26.
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2.6.3.2 PRNU Distortion Model-Based Simulation Test  ing Methodology

We can use Equation (2.27) of Section 2.6.2.2, along with pdfs of each DCT coefficient
component for the input image and camera system processed noise terms, to calculate
a table of error rates based upon the input parameters of operating conditions and
PRNU values (oprny). We modify the error rate equation to operate in the discrete
(sampled) domain instead of the continuous domain (summations used instead of

integrals):

Po(un) = D D 2o pfe,.,(Ermu)(UVIPMle, (@) (UVIPMIW(W)(UY) (2.42)
€prRNU ON UBI

In using the above error rate equation, we are reminded that the set of intervals of W
values in each quantization bin which the distortion is unacceptable (UB;) is a function of
the acceptable distortion threshold ( Th(u,v) ) for each DCT frequency coefficient (u,v).
Additionally, we must apply the error rate equation for the three output channels of W
(one luminance and two chrominance, e.g., YUV). Standard PRNU testing is then used
to measure a PRNU error metric, such as block PRNUeak-to-peak OF Oprnu, fOr a set of

sensors. This measured PRNU error is correlated with a camera system processed

PRNU noise (e'prnu) pdf curve (fe'PRNU()). Then the error rates for each sensor can be

determined for different applications based on the measured PRNU block values.

2.7 Performance Measurements and Conclusions

In our proposed PRNU testing methods, we use Monte Carlo simulations and probability

model-based simulations to create plots that relate measurements of raw block PRNU
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values to failure rates for particular sensor applications. The failure rate curves are
constructed for specific sensor operating conditions (gain setting, exposure time, etc.)
and image processing settings. Each of these settings or groups of settings can be
associated with a specific sensor application. The analysis path of our proposed Monte
Carlo PRNU screening method is depicted in Figure 2.26, which shows the use of our
sensor and camera models. A set of application appropriate images is used as input to
the Monte Carlo simulations. We used over 50,000 8x8 pixel blocks to run through the
Monte Carlo PRNU screening method and to generate probability data for the probability

model-based simulation method. One of the input images used is shown in Figure 2.29.

The industry standard or conventional PRNU screening threshold value for the block
PRNU peak-to-peak limit is a heuristic and subjective visualization limit. In the results
presented in this thesis, we have used a conventional PRNU peak-to-peak testing
threshold value of 10% to define PRNU block failure. This value is fairly typical for low
and mid quality consumer applications [17]. It is a simple matter to use a different

threshold value in our method.

We show the PRNU failure rates for the conventional peak-to-peak method (black curve)
and our two proposed methods for different sensor gain settings (conversion factors of
28, 7, and 2.8 e-/DN) in Figure 2.27. The failure rate, shown on the Y-axis, is plotted in
log scale as a function of the mean block PRNU,s value (cgain/ligain). This mean block
PRNU,s value can be related to a maximum block PRNUp» value, as shown in Figure
2.4. As sensor gain is increased, the conversion factor (e-/DN) decreases. The so
called ‘base’ or good quality compression settings were used in the calculations for

Figure 2.27. The JPEG DCT quantization matrices for the base setting are shown at the
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end of the section in Table 2.6. These matrices can be scaled using a ‘Quant Factor’ to

increase compression, where the ‘base’ setting has ‘Quant Factor'=1.

The conventional PRNU screening method is fairly independent of the sensor gain
settings used. This is due to the conventional method removing temporal noise through
frame averaging. In actuality, the gain setting would affect the point on the pixel
response curve (see photon transfer curve of Figure 2.12) where the measurements are
made. Higher gain settings would force us to the left and down the pixel response curve
(Figure 2.12). But when temporal noise is removed, we should measure the same pixel
response variation to mean response ratio, so the conventional screening method will
have the same failure rate curve for all of these simulated gain settings. In contrast,
since our proposed method uses HVS visibility of PRNU as a distortion threshold, we will

see different failure rate curves for different sensor gain settings.

Our sensor model has a base gain of 28 e-/DN, which provides the lowest noise and
highest SNR sensor operation. Under this operational setting, the visibility of PRNU will
be the greatest. Figure 2.27 shows that at the sensor base gain setting combined with
typical DCT quantization (‘Quant Factor'=1), the conventional and our proposed PRNU
screening methods have similar sensor block PRNU variation values at which the failure
rate becomes non-zero (0.001%). This is the point at which we define the sensors as
beginning to fail the PRNU screening test. This state is shown as the failure rate knee
point, circled in the plot. This agreement suggests that the PRNU,., threshold limit (10%
used in this case, which corresponds to a block mean cprny=1.5% for approximately

5100 8x8 blocks) can be determined by subjective visual analysis of images taken from
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the sensor operating under its best (most severe) gain setting combined with typical

JPEG compression.

The conventional threshold is not finely tuned for the complete camera system, which
includes consideration of the image processing pipeline, compression, and system
noise. Furthermore, the conventional threshold does not vary with these camera
settings. We also note that the sensitivity of the conventional PRNU screening method
to the input mean block PRNU amount is greater than that of our proposed method.
This can be seen by comparing the slopes of the PRNU failure rate curves of Figure
2.27. Our proposed method produces a more gradual PRNU failure rate response to
changes in the mean block PRNU amount, which becomes flatter as the sensor gain
setting is increased (e-/DN decreases). This flattening can be advantageous, in that
slight errors in PRNU measurements become less important, and lead to smaller errors
in the failure rate calculation. Our proposed PRNU failure rate curve method is less
sensitive to changes in PRNU since we consider the entire camera system (total noise,

compression, image processing), and not just the measured block PRNU value.

We see in Figure 2.27 that the failure rate knee point will move to the right as the sensor
gain setting is increased (and e-/DN decreases). This is due to the total noise increasing
and the SNR decreasing, allowing more PRNU noise. As the sensor base gain setting is
increased (representing worse noise performance), the PRNU failure rate curve moves
to the right. This results in a lower sensor failure rate for a given PRNU variation
(standard deviation). However, at lower gain settings, we approach the point where the
DCT quantization noise will be dominant. At this point, lowering the sensor gain setting

will have little effect on the failure rate curve. We can see this affect in Figure 2.27 by
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looking at the relatively small movement between the sensor e-/DN=7 and e-/DN=28

curves compared to the e-/DN=2.8 and e-/DN=7 curves.

In Figure 2.28, we show how the DCT quantization setting affects our proposed PRNU
failure rate method. Failure rate curves are shown in Figure 2.28 for a sensor gain
setting of 28 e-/DN combined with the cases of ‘Quant Factor’ DCT factor values of 1,
1.5, 2, and no quantization applied. The plot shows how the failure rate curves shift to
higher allowable mean block PRNU values as the DCT quantization is increased. This is
due to the PRNU becoming less significant to the measured distortion as the
guantization noise increases. The decrease in the sensor PRNU failure rate for a given
mean block PRNU value as quantization is increased is significant. This shows that for
applications with higher compression and lower image data rate transmission
requirements, we can reduce the PRNU rejection rate of sensors. When we do not
apply DCT quantization, the failure rate knee point decreases, and the failure rate curve
moves to the left. The left-most curve in Figure 2.28 shows the sensor being operated at
its highest conversion gain setting combined with no compression being applied, both of
which reduces the masking of PRNU. However, this mode of sensor operation is not
typical for lower and middle quality consumer CMOS sensors. The conventional
heuristic PRNU threshold for these types of sensors is determined with the sensor

operating under some degree of compression.

From the PRNU failure rate curves, we see several basic trends:

1) As the gain setting of the sensor is increased, a greater block PRNU error
can be tolerated (see Figure 2.27). This is due to the other sources of
noise increasing relative to the PRNU noise. The relative contribution of

PRNU to the total overall distortion is reduced, and the allowable
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2)

3)

distortion threshold is increased. The operation range of the pixel is
reduced, removing some upper response region, which is more significant
for PRNU.

As the JPEG DCT quantization is increased, a greater block PRNU error
is allowed (see Figure 2.28). Thus, for higher compression and lower
image data transmission rates, more block PRNU error is tolerable. This
is due to the quantization noise increasing, and masking the PRNU. At
lower gain settings (low ISO, high SNR), there is little separation between
the failure rate curves when DCT quantization (compression) is applied
(see Figure 2.27). This is due to the non-PRNU noise values not being
high enough to improve the allowable PRNU failure rate. Thus, only the
DCT coefficient error visibility thresholds affect the distortion thresholds,
and the AD distortion is mostly due to the PRNU corruption. When no
DCT quantization is applied, lower gain settings will continue to produce
lower failure rate curves (shifted to the left), since distortion will be almost
entirely due to PRNU corruption. Often, conventional PRNU testing does
not consider these more severe operating conditions for a sensor, since
they do not occur during typical camera operation. Thus, the heuristic
block PRNU threshold is set higher (commonly PRNUp block threshold
of 10% [16]), since it assumes a minimum amount of compression will be

used.

Though not directly shown in the plots, more severe image processing
can result in less block PRNU error being tolerated. This image
processing includes color correction and saturation enhancement. Other
image processing, such as Bayer pattern interpolation, which may low
pass filter image data, can result in more block PRNU variation being
tolerated. To understand the net effect of the image processing, a
complete model must be simulated. The Monte Carlo analysis used
image signal probability distributions taken at the output of the camera
system model. The probability model-based simulations used the image

processing system model to create the DCT block-wise models.
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4) The conventional ‘common’ allowable PRNU peak-to-peak threshold of
10% [16] for low to mid quality consumer sensors roughly corresponds to
the knee in the proposed PRNU screening method failure rate curve for
our sensor operating at its base gain combined with base JPEG
compression (matrices values in Table 2.6) and standard image
processing. This point is shown in Figure 2.27. A mean block PRNU s
value of 1.5% corresponds to a maximum block PRNUp » value of 10% for
a sensor with approximately 300K to 1M pixels. We would expect the
methods to be in close agreement for the most severe and realistic

operating conditions.

5) The conventional PRNU peak-to-peak failure rate method is very sensitive
to the PRNU threshold parameter. This can be seen in the very steep
curves of the conventional PRNU failure rate shown in Figures 2.27 and
2.28. Our proposed method produces PRNU failure rate curves that have
a more gradual response to changing block PRNU values than the
conventional method. This can lead to a more stable PRNU metric, which
is less sensitive to errors in block PRNU measurements. This reduced
sensitivity is due to consideration of the entire camera system (total noise,

compression, image processing).

6) The Monte Carlo and probability model-based simulation methods
produce nearly identical error rate performance results. This is due to the
use of the same underlying pixel and camera models, as well as the use
of the same distortion and threshold methodologies.
We can use our proposed method to create a full set of failure rate curves for a sensor
family. Subsets of the curves can then be assigned to different sensor applications. We
can then screen sensors using the standard method of measuring PRNU block values.
These measured values then are used with the new failure rate curves to determine

failure rates for the different sensor applications. This is the classification of sensors

based on their PRNU performance and the requirements of specific applications. We

78



use the idea that different sensor applications will have different requirements on
guantization (compression) amounts, acceptable SNR, image processing applied,
sensor gain settings, and other operating conditions. With this methodology, the yield
rate of sensors can be increased. In order to determine quantitatively the potential yield
rate improvement, we need to acquire more data on industry established acceptable
PRNU block thresholds and failure rates per sensor. One difficulty we find is that much
of this information is company proprietary. Thus, the task of calculating the yield rate

improvement from the use of our PRNU method requires further study.
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Table 2.6: Luminance [Y] and Chrominance [C, & C,] quantization matrices.

Luminance [¥] gquantization matrix

4 16 11 10 16 24 40 a1 B1 A
12 12 14 19 25 A3 B0 A5
14 13 16 24 40 A7 B9 A6
14 17 22 29 81 g7 80 B2
18 22 37 ah B3 109 103 77
24 35 A5 B4 81 104 113 52
49 B4 73 av 103 121 120 101
72 52 85 93 112 100 103 849
e >y
Chraminance [C, & Cy] quantization matrix
4 17 18 24 47 83 83 83 83 N
18 21 26 G5 83 89 83 89
24 26 T 93 83 89 83 89
47 BE 89 99 849 89 89 849
89 89 89 99 849 89 89 89
89 89 89 99 89 89 89 89
89 89 89 99 89 89 89 89
2 93 93 a3 94 99 93 84
R -
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Chapter 3

Bayer Cross-Talk Reduction Method for

Embedded Imaging Systems

3.1 Introduction

In this chapter we develop a simple multi-channel imager restoration method to correct
color channel dependent cross-talk of a Bayer color filter array (CFA) sensor. In this
effort, we break up each color channel into color channel components (CCC) and create
separate cost functions (weakened optimization) for each CCC. Our restoration solution
has its regularization parameters determined by maximizing the developed local pixel
SNR estimations (HVS detection constraint), where local pixel adaptivity is applied. We
utilize sensor characterization a priori information in our solution. The correction method
is geared towards implementation into the on-chip digital logic of low-cost CMOS

sensors. Thus, our solution is a direct and computationally simple technique.

The different sources of pixel cross-talk are discussed in Section 3.2.1. The general
Bayer cross-talk problem which we must solve is presented in Section 3.2.2. The basic

constrained least squares (CLS) problem solved by our method is presented in Section
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3.2.2.1. In Section 3.2.2.2, color channel components are defined and their use in our
solution is discussed. In Section 3.2.3, existing restoration methods that have been
applied or could be applied to the Bayer cross-talk problem are discussed. The
inadequacies of applying these methods to meet the particular requirements or
constraints of our low-cost camera system are discussed in that section. The goals,
requirements and constraints of our low-cost camera system Bayer cross-talk correction
method are presented in Section 3.2.4. The motivation for our novel solution to the
Bayer cross-talk problem is presented in Section 3.3.1. The general approach of
methods that we use to address the inadequacies of existing restoration methods are
developed in Section 3.3.2. In Section 3.4, we derive our deterministic separate CCC
constrained least squares local SNR (SCLS SNR) method. Lastly, performance data

and conclusions are presented in Section 3.5.

3.2 Bayer Cross-Talk Problem

3.21 Causes of Bayer Multi-Channel Blurring

Image sensor cross-talk is the loss of electrons or photons from a pixel to neighboring
pixels. Pixel cross-talk degrades both image sharpness (modulation transfer function,
MTF) and colorimetric accuracy (highly de-saturated, color-muted images). There are
both photonic (optical) and electronic (lateral diffusion) forms of cross-talk, as shown in
Figure 3.1. Photons can pass at an oblique angle through the CFA of one pixel such
that they are collected by an adjacent pixel with a different color filter. After carriers
have been created by photons in a photodiode, they may diffuse to the depletion region
of an adjacent pixel. The depth that photons penetrate into the photodiode before

creating an electron-hole pair is wavelength dependent [9]. Photons of shorter
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wavelength (e.g., blue light) have greater photon energy, and excite the silicon's
electrons sooner. They will not penetrate deep into the photodiode. Thus, blue pixels
will experience less diffusion cross-talk loss. Photons of longer wavelength (e.g., red
light) penetrate deeper into the photodiode. The carriers created by these photons are
more likely to diffuse to neighboring pixels. The percentage of cross-talk will increase as

the size of pixels is progressively reduced.
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Figure 3.1: Photonic and electronic forms of pixel cross-talk.

The Bayer pattern, shown in Figure 3.2, is the most commonly used CFA for low-cost
sensors. For imagers that use the Bayer CFA pattern, there will be a larger degree of
cross-talk from red pixels to green pixels than other color combinations. Additionally,
due to asymmetric pixel lay-outs, the amount of cross-talk signal received by green
pixels on odd and even rows can be different. The color pixel type dependencies of
cross-talk make it a Bayer multi-channel blurring problem. Both the optical and diffusion

cross-talk can be characterized for a sensor design, and then used for its correction.
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Typical values of cross-talk coefficients for a CMOS sensor with small pixels [17] are
shown in Figure 3.3. From Figure 3.3, we see that the extent of the cross-talk blurring

matrices is small (typically within a 5x5 pixel area).

B |[GO | B |GO

GE | R |GE | R

GE| R |GE| R

Figure 3.2: Bayer CFA pattern (typical types: red, green-even, green-odd, blue).

Red Percentage X-Talk Green Percentage X-Talk Blue Percentage X-Talk
02% 03% 03% 02% 02% 01% 01% 01% 01% 0.1% 00% 00% 00% 00% 00%
03% 45% 55% 36% 02% 01% 30% 32% 22% 01% 00% 25% 23% 15% 00%
05% 7.3% - 46% 03% 02% 54% |728%| 31% 0.1% 00% 46% |811%| 20% 00%
03% 46% 56% 36% 02% 01% 31% 34% 23% 01% 00% 24% 22% 15% 00%
02% 03% 04% 02% 02% 01% 01% 01% 01% 0.1% 00% 00% 00% 00% 00%

Figure 3.3: Cross-talk loss coefficients for a typical small pixel CMOS sensor [17].
3.2.2 Bayer Multi-Channel Blurring Problem Formulat  ion

The Bayer multi-channel cross-talk problem can be viewed as a blurring restoration
problem with four channels: green-odd, red, green-even, and blue (Go, R, Ge, B). We
can assume without loss of generality that each of the N=4 color channels has MxM or
M? pixels. The Bayer cross-talk blurring problem can be written in stacked vector and

matrix form as:

y=Hf+n, (3.1)
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where y is the NM?x1 observed blurred image with additive noise vector, f is the NM?x1
input (non-corrupted) image vector, n is the NM?x1 noise image vector, and H is the
NM?xNM? multi-channel blurring matrix. We can write the y, f, and n vectors for the

Bayer color channels as:

yGo fGo nGo

y — yR f — fR n= nR
yGe 1:Ge nGe (32)
yB fB nB

The Bayer CFA multi-channel blurring matrix (H) can be written as:

HGoGo HRGo HGeGo HBGo

H — HGoR HRR HGeR HBR 3 3
HGoGe HRGe HGeGe HBGe , ( . )
HGoB HRB HGeB HBB

where the full blurring matrix H is composed of stationary block-circulant M?xM? sub
matrices H;. The sub matrices H; are defined as having the j index being the input
channel and the i index being the output (blurred) channel. Thus, Hrge Would represent
the blurring of the green-even channel due to the red channel. The assumption of a
stationary block-circulant cross-talk blurring matrix is usually valid for our target camera
system, as can be seen from characterization data of sensor cross-talk [17]. However,
stationarity can be sometimes be invalidated by optical effects resulting from low-cost
lenses and small pixels. We will not consider these optical non- stationary effects in this

thesis.

Numerous multi-channel deterministic regularization methods have been developed.

Many of these methods are non-linear and require iterative solutions. Other solutions
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make simplifying assumptions such as neglecting the dependence between the color
channels, not considering the full spatial blurring, or not being adaptive to the local noise
levels. The most popular and practical restoration methods are discussed in Section
3.2.3. We employ a direct deterministic regularization estimation method, which we

discuss in Section 3.2.2.1 as part of our problem formulation.

3.2.2.1 Constrained least squares solution

A widely accepted deterministic regularization method is constrained least squares

(CLS) restoration [5]. CLS methods minimize a linear operator on the estimated

restored image f (such as Qf) subject to some set of conditions [3]. The operator Q is
the regularization functional, which reduces the effects of the small singular values of H
that occur at high frequencies, while leaving the larger ones unchanged. One popular

choice for the known condition is the norm of the noise signal (||n||?). Using this
approach, along with the smoothness constraint, ||Qf |2, the constrained optimization

problem can be written as determining a solution f which [27]:

minimizes: || Qf ||,

subject to the constraint: ||y — Hf [Z=]| n ||? (3.4)

This can be solved using a Lagrangian technique, that is obtaining f so as to minimize

the cost function [5], [27]:

a8 =(ly-HEIE-IIn|D+A1QFI7, (3.5)

where the Lagrange multiplier, or regularization parameter, B, is adjusted in order to

meet the defined constraint or set of constraints [5]. Estimates of the signal (f) and noise
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(n) energy values can be used to determine B [5], [26], [27]. Iterative methods are often
used in order to determine the optimal value of  [5], [27]. For our direct solution, we
use sensor characterization noise models that are signal-dependent in order to calculate
restored pixel SNR estimates (refer to Section 3.4.2.2). We determine the optimal
regularization parameter value by maximizing the estimates of the corrected pixel SNR

using an off-line search method (see Section 3.4.2.2.4):
= maximize: || 2/ /2|2, (3.6)

where f is the estimated restored pixel value, and n is the estimated noise value. Our
problem is further defined to operate on color channel components, as discussed in the

Section 3.2.2.2. The local pixel SNR optimization is derived in Section 3.4.2.2.4.

3.2.2.2 Separation of color channel components

For the Bayer CFA (see Figure 3.2), the color channel components (CCC) are defined
as being each of the four-color channels that compose each color channel. All four color
channels are components of each blurred color channel. During reconstruction, each
CCC is corrected. Thus, referring to Equations (3.2) and (3.3), we can write each output

(observed) blurred channel i as:

Vi = HGoi fGo + HRi fR + HGei fGe + HBi fB , Or

Yi=VYcoi t Yri t Ycei t Ybi 3.7

The vector y; is defined as a color channel, and the vector terms H; f; and y; (e.9., Hcoi

feo and yeo) are defined as CCCs. The matrix H; operates on channel j (f;) to produce
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yji, Which corrupts channel i, where i and j belong to the set {Go, R, Ge, B}. Likewise, we

can define each reconstructed channel i as:

fi = Acoi Yo T Ari Yr + Acei Yee + Asi Vs (3.8)

The A; matrices are defined as the color channel correction matrices for color channel i.
For example, Ag, corrects the color channel Go component of color channel i. Each

vector term A; y;j (€.9., Acoi Yoo) IS @ CCC vector term of the reconstructed color channel

vector f .

Applying the CLS solution from the Section 3.2.2.1 to each CCC term (see Section 3.4.1

for details), our constraints for our separated CCC CLS (SCLS) problem are:

minimize: || Q; f; |I%,

subject to the constraint: ||y;— Hif ;i [ = || A, |, (3.9)

where f,-i is the restored CCC value, and the optimal regularization parameter values, f;,

are determined by using an off-line search method (see Section 3.4.2):
B = maximize: || f 2/ ;% |]° (3.10)

Thus, our problem formulation consists of the constraints of Equation 3.9x combined
with using Equation 3.10x to determine the regularization parameter values. Equations
(3.9) and (3.10) are further simplified to scalar form to operate over local pixel areas, as

discussed in Section 3.4.2.

The use of SCLS simplifies the Bayer cross-talk problem (Equations (3.1), (3.2), (3.3)

and (3.4)) and allows for a direct solution. However, it neglects the correlation of the
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errors between different CCC components and introduces an error which will be image
dependent. We also use the approximation that the sum of the separately minimized
CCC cost function terms will be the minimum of the sum of the cost function terms
(weakened optimization). These errors are examined in Section 3.4.1.2. The SCLS

simplification benefits outweigh the relatively small errors from an exact solution.

3.2.3 Examination of Existing Image Blurring Soluti ons

We review single channel blurring restoration in Section 3.2.3.1. We then examine
multi-channel blurring in the Section 3.2.3.2. More details on multi-channel blurring

restoration methods can be found in Appendix C.

3.23.1 Inverse Filtering Problem

A direct solution of the simple degradation problem shown in Figure 3.4 can be found by

solving for an estimate f which minimizes the Euclidean norm:

min || y — Hf |2 (3.11)
n
Low Pass \)ﬁ -
f | Filter h D >y

Figure 3.4: Simple blurring and additive noise problem.
This is a least squares fit to the data, and leads to the generalized inverse filter

(unconstrained) solution:

f=(HHHY, (3.12)
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with H being the matrix form of the convolution filter h. When a stationary model is used,
H is block circulant and can be diagonalized with the use of the 2-D DFT. This is due to
the eigenvalues of a block circulant matrix being the 2-D discrete Fourier coefficients of
the impulse response of the degradation system, and the eigenvectors being the

complex exponential basis functions of this transform [5]. We can write in matrix form:
H=WHW", (3.13)

where H is a diagonal matrix comprising the 2-D DFT coefficients of H, and W' is a
matrix containing the components of the complex exponential basis functions of the 2-D
DFT. Using the DFT properties of block circulant matrices, the solution can be written in

the discrete frequency domain as:
F() = HOG() / IHOII?, (3.14)

where F(l) is the DFT of the restored image, H(l) is the PSF (point spread function or
blurring) DFT, and G(l) is the observed image DFT. These terms are functions of the 2-
D discrete frequency index |, where |=(ky,k») for ki,k,=0,...,N-1, for a NxN point DFT. In
Equation (3.14), " denotes complex conjugation. Using this method, we can solve for the

inverse matrix or an inverse convolution filter.

A significant problem with the application of Equation (3.14) is that the blurring problem
is ill-posed [82]. Because H is ill-conditioned, small bounded deviations may lead to
unbounded deviations in the solution. Thus, additional constraints are needed in order
to guarantee the uniqueness of the solution and make the problem well-posed. For the
cross-talk blurring problem, the degradation matrix H is a low pass filter, which means

that H(l) is small for | corresponding to high frequencies. Since the noise occurs at all
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frequencies, the noise at frequencies where H(l) is near zero will be greatly amplified.
The condition number of the blurring H matrix is the ratio of its maximal and minimal
eigenvalues (non-zero values only), and is a measure of how well-posed it is. A problem
with a blurring H matrix that has a low condition number is said to be well-conditioned,

while a problem with a high condition number is said to be ill-conditioned.

Many techniques have been developed to solve this problem [5], including direct,
iterative and recursive approaches. Direct approaches to regularization in a restoration
problem can use either a stochastic or a deterministic model for the original image. The
model represents prior information about the solution that can be used to make the

problem well-posed. Stochastic regularization uses a linear filtering approach that

computes the estimate f:

min E{|| f —f || (3.15)

Using the stochastic model for f and n requires prior knowledge of the statistics of the
image data that are then used to regularize the problem. Solving the problem using the
DFT also requires that the image and noise fields be stationary, which often is not the
case. Perhaps most importantly, costly calculations of correlations matrices for the
image and noise data must often be performed. It has been shown [93] that stochastic
solutions are very sensitive to the accuracy of the estimations of the image and noise
correlations. Because of these requirements and constraints, a stochastic regularization
approach is not desirable for a low-cost camera system. The linear estimate that

minimizes Equation (3.15) leads to the classical form of the Wiener filter:
f = RyH'(HRH" + Ron)y (3.16)
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where Ry and Ry, are the correlation matrices of the image and noise data, respectively.

As discussed in Section 3.2.2.1, deterministic regularization applies prior information
about the original image for regularizing the restoration problem [31]. The Lagrangian

cost function of Equation (3.4) can be solved by performing the indicated minimization.

We take the derivative with respect to f , Set the result to zero and solve, giving:
f = (HH+BQ'Q)* H'y (3.17)

The Lagrange multiplier B must be determined for the given set of constraints [5]. As
has been discussed, this often is done in an iterative fashion in order to determine the

optimal value.

3.2.3.2 Existing Bayer multi-channel blurring probl em solutions

There exist many restoration methods that can be applied to the Bayer cross-talk
problem (Equations (3.1), (3.2), and (3.3)). Due to their complexity, memory
requirements, and execution time, many of these methods cannot be implemented into
simple low-cost camera systems. Other methods in common use for low-cost systems
do not adequately correct the image data. We present some of the more important and
commonly used restoration methods for Bayer multi-channel blurring in the sections
which follow. More details on these methods can be found in Appendix C. Additionally,
more restoration methods are reviewed in Appendix C.

3.23.2.1 Multi-channel methods that optimize color channel
regularization

The more complex multi-color channel restoration methods allow for the optimization of

the regularization parameter for each color channel separately. These restoration
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methods typically employ an iterative solution or must use estimations of signal and
noise statistics. Two methods are developed in [27] for determining the regularization
parameter of each color channel: a set theoretic (ST) approach and a constrained least
squares (CLS) optimization. These two methods serve as the foundation for many other

methods. Both of these methods solve the multiple channel regularization equation:

[HAH +Q'Q1f = aH'y, (3.18)

where A is a matrix of N color channel regularization parameters (), and is written in

the form:

A1 0 0 0
o L 0 |, (3.19)
0 0 A,I] O
0 0 0 Al

A=

and where [I] is an identity matrix of size M>xM?. The regularization operator, Q, used in
[27] has both 2-D Laplacian (within channel smoothing) and 3-D Laplacian (across
channel smoothing) components. Using a Laplacian smoothing prior simplifies the
problem since it results in a quadratic regularization operator (system of linear
equations) [48]. The multi-channel blurring matrix H was defined by Equation (3.3). The

objective is to determine the optimal regularization parameters (;) of diagonal matrix A.

The ST approach uses a smoothness constraint for each color channel (E;), where an
assumption of equal channel smoothness is used. This is done using an estimate of the
full original image (f) statistics. This method also requires an estimate of each color
channel’'s additive noise (e) . The regularization parameters are then determined from

these estimations. The requirement for accurate estimates of E; and e; have been found
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to be overly restrictive [44]. Iterative methods can be used to determine accurate

estimates for the regularization parameters [48].

A CLS optimization approach is developed in [27] for the case when the smoothness

constraint value E is not known a priori or a satisfactory estimate is not available. For

this method, we seek a solution f which:

minimizes: || Qf |I?

subject to: |Hf=yi 2= ]I ni|[?=e?, fori=1,2, ..., N, (3.20)

where H; is the i channel M?xNM? matrix Hi=[Hu, Ha;, ... Hy] and n; is the noise of color
channel i. The solution of the regularization Equation (3.18) subject to these constraints,
Equation (3.20), requires that we must simultaneously find the values of A;, which can be

written as:

Z(, Ao o A = (I HF =i |2 =1 ni|]P) fori=1,2, ..., N (3.21)

This leads to a nonlinear problem, which has a very high computational cost, since the
roots of the nonlinear functions Zi(A1, A,, ... Ax) must be found simultaneously to give the
desired A; values. Typically, it is solved using an iterative method, such as Newton

iterations, to find the matrix of A; values (matrix A) of Equation (3.19).

The solution of Equation (3.18) can be written as:

f = Ay , with
A=[HAH+Q'Q['H' (3.22)
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Then, similar to Equation (3.8), we can write the reconstructed channel i using Bayer

channel notation (Go, R, Ge, B) as:

fizAGoino+ARiyR+AGeine+ABinv (3.23)
and the multi-channel restoration matrix A in the Bayer CFA notation (Go, R, Ge, B) is
written as:

é‘\GoGo ARGo AGeGo ABGo

A - AGOR ARR AGeR ABR

AGoGe ARGe AGeGe ABGe ’ (3-24)
AGOB ARB AGeB ABB

As with Equation (3.8), each vector term A; y; of Equation (3.23) is a CCC vector term of

the reconstructed color channel vector fi. We would like to find a simple, direction form

of A which satisfies our requirements of Section 3.2.4.

For both the ST and CLS methods, the amount of within-color channel smoothing and
cross-color channel smoothing applied are controlled by the same regularization
parameter. This restriction can result in sub-optimal performance, since this solution
does not consider the interaction of the channels in determining the optimal
regularization values A; for each channel. Each A; term is optimized using only its

channel noise and maximum energy estimations, but each corrected channel will be a

function of all the observed channels and all of the regularization parameters (f =Func{y,
H, Q, Ai=14}). These methods also do not take into account the local or global difference

of values of the noise terms of the within and cross CCCs. Both of the methods in [27]
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use global fixed noise variance values. The use of estimations and iterative steps also
make these methods too computationally expensive for our target application.

3.2.3.2.2 Simple direct solutions commonly used in low-cost imaging
systems

There are several simple and direct solutions to the Bayer cross-talk blurring problem
that can be implemented in low-cost camera systems. However, they use assumptions
that limit their performance. Several of these methods are discussed in Appendix C. A
simple and common approach used in industry in to correct the signal error due to cross-
talk utilizes a 3-by-3 color matrix correction. This correction, which is representative of
methods used in low-cost camera systems, essentially performs a linear minimum mean
squared error (LMMSE) color correction. The loss of image sharpness is normally
corrected in a separate step, which typically is concerned with edge sharpness and not
inverse filtering. An optimal 3x3 color correction matrix can be determined using linear
regression [43] or calculated from sensor and lighting parameters. The 3x3 color
correction matrix Tcc can be broken down into a 3x3 saturation matrix Tsy; and a 3x3

white balance matrix Tyg that only has terms on its main diagonal, as shown:

TSat TWB :TCC )
sat11 Tsat12 Tsat13 Tyeg; O 0 cci1 Tcciz Tccis
sat21 Tsat22 Tsat2zg | 0 Twe2z O | = [Tccar Tece Teczg (3.25)
sat31 Tsat32 Tsat3z | O 0 Tws cc3t Tces Tceesg

Using this approach, the white balance matrix corrects for the ambient lighting conditions
(dynamic, scene dependent), and the Ts, matrix coefficients correct for the sensor
dependent responses. These sensor dependent responses include cross-talk, as well

as the responsivity of silicon and the transmissivity of the CFA used.
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In order to maintain the white balance of an image, the Ts, matrix must have the
coefficients of each of its rows sum to one. Thus, as the magnitude of the off-diagonal
saturation terms increase, the on-diagonal terms of Ts, must also increase. This means
that for sensors that have more cross-talk, the Tsy coefficients will have larger values,

and the SNR of the processed images will decrease, due to amplification of the noise.

The calculations of the ideal correction coefficients for a 3x3 Ty matrix are shown in
Figure 3.5. The cross-talk coefficients for a DVGA CMOS sensor are used, where the
pixel area applied has been restricted to 3x3 pixels. In the signal diffusion table of the
figure, the amount of charge that enters a target pixel (center pixel) and ends up at the
specified pixel location is shown. This data is derived from sensor cross-talk

characterization [17].

There are several sources of error from using this approach. The mean blurred transfer
of signal from one pixel type to neighboring pixel type is used in constructing a 4x4
cross-talk transfer matrix. This forces the averaging of cross-talk that occurs in different
directions. For example, a blue pixel has four neighboring red pixels, each of which has
a particular cross-talk value. But an average cross-talk value will end up being used for
all of its red pixel neighbors. The inverse matrix operation will create a mean blurring
correction matrix. Another error is, in order to simplify the camera correction process,
the difference in green-even and green-odd pixel responsivity is not taken into account.
The correction matrix is reduced from a 4x4 matrix to a 3x3 matrix, which introduces a
bias error. The 3x3 correction matrix allows the correction to be applied to a Bayer
interpolated pixel triplet (RGB values at each pixel location). Thus, an ideal correction is
not possible with this method. By treating the green even and odd pixels the same, a

bias error is created since neither pixel type is corrected using the proper coefficients.
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This error increases as the asymmetrical behavior of cross-talk increases. Often, simple
smoothing or median filtering is used to correct this fixed pattern error [54]. But these

methods do not correctly restore the non-blurred image values.

DVGA CMOS sensor Cross- Amount of Signal Diffused to Neighbor Pixels
talk coefs, 3x3 area used,
amount of charge that entered Wave Length

target pixel (center piel) that Blue Pixel Green Pixel Red Pixel
ends up at the specified pixel

location

Mean Transfer from Pixel to Pixel Inverse of Mean Transfer from Pixel to Pixel

Inverse Matrix

—

Mean blurred transfer of signal from one pixel type * Reduce to 3x3
to neighboring pixel type.

Inverse matrix operation corrects mean blurring

Reduction from 4x4 to 3x3 correction causes
further blurring (averaging), thus ideal correction
is not possible.

Figure 3.5:  Calculations of the color correction matrix for a typical low-cost camera
sensor.

This method has no regularization in place, and cannot account for different noise levels.
A common industry approach is to adjust the ideal 3x3 Tcc matrix to approach the Tys
matrix as the overall camera system noise increases (or the SNR decreases). Thus, the
coefficients of the saturation matrix are reduced in magnitude when higher camera
system gains are used (indicative of lower lighting levels and lower SNR). The

adjustment is very rough and global (no local effects considered). By using this adaptive
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3x3 matrix approach, the performance at the low quality operating conditions (low light,
low SNR) is improved. The control for this adjustment is usually tied to camera
exposure time, sensor analog gain, and required digital gain. This idea is shown in

Figure 3.6 for the same camera system as defined in Figure 3.5.

3x3 Correction Matrix, Tce 3x3 White Balance Matrix, Tws

Decreasing
SNR, Increasing
Camera Gain

—>

Figure 3.6:  Typical low-cost camera color correction matrix adjustment.

3.2.3.2.3 Summary of limitations of existing multi-  channel blurring
correction methods

Simple and direct solutions to the Bayer cross-talk blurring problem, such as the ones
discussed in Section 3.2.3.2.2 and Appendix C, can be implemented in low-cost camera
systems. However, these methods use assumptions that limit their performance, such
as not correcting cross-channel blurring and not accurately correcting the spatial blurring
due to cross-talk. The more complex restoration methods examined in Section 3.2.3.2.1
and Appendix C require iterative solutions or rely on having accurate estimations of
image and noise statistics. Additionally, these regularization methods use a single
regularization parameter for all of the CCCs that compose a color channel. These
methods also do not use local pixel adaptivity based the HVS's sensitivities and usually

do not make use of noise models which vary with signal magnitude.
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3.24

Requirements and Goals of Our Solution

The goals, requirements, and constraints of our Bayer sensor cross-talk correction

method for implementation in a low-cost camera system are:

1)

2)

3)

The correction method must be appropriate for a low-cost camera
system, which leads to limits on the required memory, operation
execution time, and chip area of implementation (complexity of
algorithm). Due to execution time limits, the correction method must
have a direct, non-iterative, non-recursive approach. Due to limited
memory and execution time, we cannot perform real-time global image
and noise estimations. We also will not be able to perform real-time
frequency domain operations or invert large matrices in the inverse
blurring solution. We would like to use a convolution, sliding filter
approach, since this matches the implementation of the other image
correction methods used in these camera systems and is relatively

simple and fast.

Our solution must address human visual system (HVS) sensitivities.
Specifically, the HVS’s sensitivity to local signal to noise contrast and
low-frequency color must be optimized in our solution [7], [19], [56],
[64], [73], [75], [76], [85]. Thus, we must adjust the regularization
parameters based on the HVS's sensitivities. We wish to take
advantage of this constraint to simplify the calculations required for the
noise and image statistics used. Following these HVS requirements,

we wish to create a real-time spatial SNR adaptive solution.

Our restoration method must be adaptive to global operating conditions.
This requirement follows from the range of lighting and exposure time
conditions in which the camera must operate. The algorithm should
also be adaptive to local image SNR conditions (item 2 above), as is
driven by the HVS behavior [7], [19], [56], [73].
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4)  We must exploit sensor a prior characterization data. In order to use a
direct correction method, we must have accurate local pixel SNR
estimations. We will meet this goal using mean local estimations
derived from sensor characterization data. Simple noise models for the

pixels must be used to define pixel SNR behavior curves.

5) We must correct for asymmetrical behavior of cross-talk. Detailed
cross-talk characterization data must be used in correcting this blurring.
Usually, median or mean filtering is used to correct asymmetrical
blurring in low-cost camera systems. These systems do not properly
correct the green-even/green-odd pixel mismatch problem. Of course,
the wavelength dependent behavior of cross-talk (which defines the H;

matrices) must be exploited.

6) Our method must apply an accurate white balance correction. For high
SNR operating conditions, camera systems generally apply an ideal
color correction (see Section 3.2.3.2.2). These corrections include a
white balance and a saturation correction. When the operation
conditions are poor, with low SNR, a white balance is still performed.
However, the saturation correction is reduced or skipped. Our
correction method must apply a white balance correction for all
operating conditions, but must also be adaptive to the operating SNR in
applying the saturation correction. We will later show how our use of

separate CCC correction addresses this requirement.

3.3 Proposed Solution to the Bayer Cross-Talk Probl  em

3.3.1 Motivation and General Approach of Our Propos  ed Solution

The general ideas of how our proposed solution addresses the various weaknesses of
existing restoration methods when applied to the Bayer cross-talk, low-cost camera
system problem are presented in this section. We listed in Section 3.2.4 the set of

requirements and constraints that we must meet. In this section, we list the general
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approach and ideas that we will use to meet these requirements, as well as noting where

we have developed new approaches to the solution of the Bayer cross-talk problem.

1)

2)

3)

We separate each color channel into a summation of CCCs, which
allows the separate regularization of each CCC (refer to Equation (3.7)).
This permits exploiting the different degrees of blurring filter ill-
conditioning for the CCCs and the SNR values of the color channels.
This separation also leads to significantly reducing the complexity of the

solution. No restoration methods have previously used this approach.

We use the local pixel SNR value to calculate the regularization
parameter. This is done to match the HVS's sensitivity to local SNR [7],
[19], [56], [73] and low-frequency color error [64], [75], [76], [85]. We
have not seen this approach used by other restorations methods. We
make use of signal-dependent noise models, determined from sensor
characterization, to determine local pixel SNR estimations. The use of
local pixel SNR ensures good white color balance, while providing
adaptive saturation correction. It does not require expensive signal
energy calculations. Instead, a priori calculations are performed off-
line, reducing the amount of computations that must be done real time.
The use of local SNR values for each CCC allows spatially adaptive
corrections, whereas most existing methods use global regularization

values based on total image signal and noise energies.

We use a local mean estimate, or blurred estimate, for the local CCC
SNR values. This improves the accuracy of our estimate, while
matching the HVS’s color error and SNR sensitivity. The improved
estimate allows the use of a direct method; instead of an iterative
solution that would be too complex and take too long to run. The local
averaging process reduces the error in our local CCC SNR estimate by
smoothing the noise. Again, we make use of signal-dependent noise

models determined from sensor characterization. We have not seen
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this locally adaptive approach combined with sensor SNR

characterization used by other restorations methods.

4) Detailed cross-talk characterization data is used to create directional
(pixel neighborhood) filters. Existing heuristic methods used in low-cost
camera systems do not address local non-symmetrical blurring and are
not locally adaptive in their corrections. They only have a gross overall
camera SNR operating condition adaptivity. These systems do not

properly correct the green-even/green-odd pixel mismatch problem.

5) Sensor characterization information is used to create simple noise
models for the pixels, which define pixel SNR behavior curves. These
noise models will be a function of the pixel signal level. This
information, along with cross-talk blurring data, is used to create off-line
look-up tables for selecting the optimal regularization parameters that
are applied on a local spatial manner across the image. This creates a
real-time spatial SNR adaptive solution. Use of sensor characterization
is not considered novel.
In our restoration method, we incorporate the HVS attribute that the probability of visual
detection is dependent upon the local SNR (contrast sensitivity of the human eye) [7].
This criteria follows from Crozier's Law of signal probability of human detection [19],
which states that the psychometric 50% probability of detection is proportional to the
constant K = Signal/Noise = SNR. In 1948, Rose [31] used K to relate luminance
threshold to noise (SNR). As documented in [48], human visual object detectability is
proportional to image contrast and inversely proportional to background noise. We also
utilize the HVS'’s attribute that the low-frequency spatial components of color lead to the
optimal color match (Schade experiments [75], [76] and extensions [64], [85]). This

shows that, for color accuracy, it is most important to have low spatial frequency data

color corrected accurately. This behavior of the HVS is depicted in Figure 3.7. Using
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local averaged values of pixel data provides more accurate estimations of local mean

pixel SNR and low spatial frequency color measurements, due to the smoothing of

noise.
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Figure 3.7: HVS is sensitive to low spatial frequency color saturation [64], [85] and
their errors.

3.3.2 General Approach of Separating CCC Terms

The separation of each color channel into a summation of CCCs allows the separate
regularization of each CCC. This provides the advantage of allowing the use of different
regularization parameters for each component, instead of one best value applied to all of
the components. Existing restoration methods, such as [27], use a single regularization
parameter for each component. The advantage of the CCC separation can be seen by

looking at the regularization estimate of the input signal:
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f {H'H+ pQ'Q}* H'y , or

f=ABYy , (3.26)

where A(8) ={H'H + AQ'Q}* H' (3.27)

The terms in Equations (3.26) and (3.27) are defined in Sections 3.2.2 and 3.2.3.1, and
B is used as the regularization parameter. Equation (3.26) can be written for one of the

Bayer color channel as:

f=AGY (226

where A is the i" channel M?xNM? matrix A=[Ay, A, ... Ay]. Equation (3.28) can be

written as the summation of CCCs of color channel i:

fi= J; Ail(BY; (329)

As was discussed in Section 3.2.2.2, we can define our color component terminology

using Equation (3.29) as reference. The vector fi is defined as a corrected color
channel (e.g., corrected red). The terms A;(B)y; (e.9., Heor fco) are defined as corrected
CCCs. For each Bayer color channel, there are four components that are used in either

the correction or blurring of the channel’s value.

In Equation (3.29), which follows the multi-channel methods such as [27], we see that
there is one value of the regularization parameter for each color channel i. We can
improve the noise smoothing, data fidelity matching trade-off (noise variance/bias) by
allowing a separate regularization parameter for each CCC. We can then write Equation

(3.29) as:
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fi=3 A, (3.30)
j=0
The advantage in using the form of Equation (3.30) comes from each color channel
(within the local neighborhood) y; having different local SNR values and each of the
blurring matrices that operate on the different CCCs having different degrees of ill-
conditioning (from the eigenvalue magnitudes). Thus, we find an optimum regularization
parameter, B;, for each CCC of each color channel. This gives us 4 values per pixel
(which has only one color channel), and 16 values for a local 4 channel/4 pixel kernel
area. The derivation of the cost functions for this approach are located in Section

3.4.1.1.

3.4 Derivation of Deterministic Separated CLS Local SNR
Method

In deriving our deterministic regularized constrained least squares separated CCC local
pixel SNR method (SCLS SNR), we first discuss the separation of the CCC in Section
3.4.1. Then in Section 3.4.2, we consider how to at determine the CCC regularization
parameter value in order to optimize the corrected local pixel mean signal SNR.

3.4.1 Derivation of Bayer Cross-Talk Problem Separa tion of Color
Channel Components

3.4.1.1 Bayer Blurring Problem Cost Function

In Sections 3.2.3.1 and 3.2.3.2.1, cost functions were presented for single and multi-
channel blurring problems. In this section we derive separate CCC cost functions for the
Bayer blurring problem. We showed in Section 3.2.2 that the Bayer multi-channel

blurring problem can be written in stacked vector and matrix form with Equation (3.1):
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y=Hf+n

where the NM?x1 vectors vy, f, and n are defined by Equation (3.2), and the NM?xNM?
multi-channel blurring matrix H for N color channel is defined by Equation (3.3). The full
blurring matrix H was shown to be composed of stationary block-circulant M*xM? sub
matrices H;, where the j index is the input color channel and the i index is the output

(blurred) color channel.

The noise, n, that is represented in Equations (3.1) and (3.2) is signal-dependent, zero
mean, Gaussian, and uncorrelated from pixel to pixel. We discuss basic information on
image sensor noise in Section 2.3.1. Detailed information on CMOS image sensor noise
is presented in Appendix A. Fixed pattern or time-invariant noise can usually be
eliminated by the imaging sensor design. The temporal noise sources are generally
uncorrelated from pixel to pixel [42]. When light intensity is integrated over times longer
than the coherence time and is large, the Poisson-to-normal limit is appropriate (the
central limit theorem, CLT, applies). That is, when the number of photons detected by
the device is large, then the signal can be well modeled by a signal-dependent Gaussian
distribution. For low light intensity situations, the independent Gaussian read noise,
pixel offset, pixel gain variation, and other noise sources will dominate over the Poisson
shot noise. Thus, the noise can still be approximated as an independent Gaussian
model. We then can use a pixel to pixel independent signal-dependent Gaussian model
for the sensor noise. This signal to noise relationship is characterized for our target

sensor and is available as a priori data for our restoration method.

We showed in Section 3.2.2 that for the Bayer case, we can write each output blurred

channel i using Equation (3.7):
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Yi = Haoi feo + Hri fr + Hgei fge + Hai fa

where the vector y; is defined as a color channel and the H; f; terms are defined as
CCCs. For each color channel, there are four components that are used in the

correction and blurring of the channel’s value.

Since matrix H is composed of stationary block-circulant sub matrices (H;), we can use
the properties of the DFT to solve the corresponding N equations for the N input color
channels (the eigenvalues of a block circulant matrix are the 2-D DFT coefficients). This

will give us the inverse of the blurring matrix:
G=HH"'H", (3.31)

The de-blurring (inverse filter) matrix G will also be composed of stationary block-
circulant sub matrices. Due to the circulant properties of the blurring, both the blurring
and de-blurring operations can be applied in a convolution (sliding filter window) manner.
Since the problem is ill-posed (due to the blurring matrices H;) and noise is added, when

we solve for the input channels we get the naive (or inverse) solution (f*):
f'i = Gooi Yoo + Gri Yr + Geei Yce + Gai Vs, (3.32)

which can have significant noise amplification. In matrix form for all four of the Bayer

channels, we can write the naive, simple inverse solution as:

f* o Gooso  Groo  Geeso  Geeo || Yoo

fr R | _ Geor Grr Goer Ger YR

¥ Ge Gooce Groe  Goewe  Goce || Yoe , (3.33)
fr B Geos Grs Gees Ges Y
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where, in the above matrix equation, the G; matrices can be easily found using the DFT

convolution properties. We note that although G=(H"H)"H", in general G;=H; ™.

Per our definition, we see again in Equation (3.32) that the vector f; is referred to as a
color channel. The terms G;j y; (e.9., Ggor Yoo) are identified as CCCs, where there are
four of these components that are used in the correction of a channel’s value. We see in
Figure 3.8 that we can view each color component correction as being composed of the
sum of independent color channel corrections. For the Bayer 4 channel case, each
corrected color component in Equation (3.33) is composed of the sum four color channel
corrections. The original color corruption problem also can be viewed as four separate

color component corruptions for each color channel.

Col/Row 1 2 3 4 5

Pixel at location (3,3) is corrupted by pixels in 5x5 neighborhood

Four pixel types (R, Ge, Go, B), e.g., Blue pixels are at (2,2), (2,4), (4,2), (4,4)
Corruption can be viewed as 4 filters (H;) operating on 4 pixel types (fj)
Correction can be viewed as 4 filters (G; or W;) operating on 4 pixel types (y;)
Operations can be limited to local 5x5 pixel area shown.

Figure 3.8: Local extent of the cross-talk blurring and correction filters. Each blurring
and correction will consist of between 4 and 9 pixels.
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Since we have an ill-conditioned problem, we will use a deterministic regularization
approach to find the solution of Equation (3.1) [5], [31]. We then wish to find the

minimization of the CLS objective (cost) function [3], [5], [26]:

A= IIHf=y I +AIQF I, (3-34)

where we have imposed a constraint on the smoothness (|| Q f ||?) of the least squares

fit of the data (|| H f —y [|?). This gives the estimate of the input signal as [3], [5], [31]:
f={HH+AQQ}" Hly (3.35)

The regularization parameter § can be selected based on different optimization criteria,
such as constrained noise and signal energies [26]. In our solution, we select the value
of the regularization parameter 3 based upon an estimate of the corrected signal to
noise ratio (SNR). The corrected SNR estimate is determined using noise models, as

discussed in Section 3.4.2.2. This criteria is similar to the MMSE solution approach [26].

Furthermore, in our solution, we separate the corrected signal NM?x1 vector f into CCC
terms, as indicated by the four terms in the naive solution of Equation (3.32). This
approach gives us Equation (3.8) of Section 3.2.2.2, the color reconstructed channel i

vector f; written as:

—h)

i = Acoi Yoo T Ari YR + Acei Yee + Agi Y, OF

fi=feo+fri+ fge+fai,
and the ideal input channel i vector f; written as:

fi = feoi + fri + feei + fai, (3.36)
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where we have 4 CCC terms per color channel, each of which is a M?x1 vector. We do
this in order to replace the optimization Equation (3.34) with 16 separate optimization

equations (with 16 different f; terms) of the form:

o, B) = || B fi—y; 1P+ Bill Qi fi I (3.37)

In Equation (3.37), I:Iji is the blurring applied to channel i by channel j for CCC term fj,
where fj is the component of channel i due to channel j, which is dependent upon y;.
The separation of the cost function of Equation (3.34) into the CCC cost functions of
Equation (3.37) results in weakened optimization, and introduces an error which is
examined in Section 3.4.1.2. Since both the cross-talk blurring and de-blurring matrices

are block circulant, we can use the DFT to easily solve for the I:Iji values:

Gji = [{HTH}l HT]ji , (338)

where G; is defined as a circulant component sub-matrix of the complete inverse of

matrix H, and

Hi={G'G}'G;', (3.39)
where I:Iji is defined as the inverse of the ideal correction component sub-matrix G;.

One of the advantages of separating the single cost function of Equation (3.34), for the
Bayer case, into 16 separate cost functions of Equation (3.37) is that we can use
individual optimal regularization parameters ;. These B; terms are matched to the
stability or sensitivity (seen from the eigenvalues) of the blurring filters I:I,-i. The
eigenvalues of each of the 16 color-channel-to-color-channel blurring filters and their
corresponding 2-D Laplacian regularization filters are listed in Tables 3.1 and 3.2,

respectively. The differences in the filters’ stabilities can be seen from this eigenvalue
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data, which determine the matrix condition numbers. The eigenvalue data was
calculated based upon the characterization cross-talk data shown in Figure 3.3 for red,
green and blue color filter pixels. As mentioned, the assumptions and errors associated
with applying weakened optimization in converting Equation (3.34) to Equation (3.37) are

presented in Section 3.4.1.2. Using the approach of Equation (3.37) gives the estimate

of the input signal CCC M?x1 vector, fji, as:
fo={H'H;+ 5 Q'Qi Y H'y;, (3.40)

and the estimate of an input signal color channel (f ) as:
£ 3 T T 1T
fi= > {HiHi+5QiQi} Hyy; (3.41)
j=0

The regularization of the CCC of Equation (3.40) is illustrated in the matrix operation of
Figure 3.9. The optimization Equations (3.40) and (3.41), along with Equations (3.32),
(3.36), (3.38), and (3.39), can be used to define the naive (inverse) component solution

(where Bji is set to zero) as:

i =Gy, (3.42)
where from Equations (3.14) and (3.40), we have :

Gj = Ay(B=0)={ A" Ay Y* A" = {HTH} " HT); (3.43)

Looking at existing restoration methods that are used to solve the multi-channel

problem, we see from Equations (3.18) and (3.19) [27], that each fi estimate (color

channel solution) is a function of all four A; values (they are all present in the A matrix
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terms for all of the fi’s). From Equation (3.41), we see that our fi estimate is also a

function of four B; values (as well as I:Iji being a function of function of all 16 H; sub-

matrices). We have, however, separated the solution of fi into CCCs at the expense of
ignoring the cross-channel component correlations. This simplification greatly reduces
the complexity of the problem, while avoiding the use of image cross-channel
correlations that are costly to calculate. Additionally, it has been shown [93] that
stochastic methods which use this cross channel signal correlations data are very

sensitive to errors in the correlation statistics.
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Table 3.1: Eigenvalues of each of the 16 color-channel-to-color-channel blurring
filters, H;"H;. Note that these matrix filters are of size 5x5. Eigenvalues
less than 1E-5 are ignored (clipped to zero).

H_GoGo H RGo H_GeGo H BGo
5.13E-01 3.10E+01 1.47E+02 7.18E+02
0.00E+00 1.97E-05 8.46E-02 1.88E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00
H GoR H RR A GeR H BR
5.95E+01 3.03E-01 9.96E+01 1.95E+02
2.91E-04 0.00E+00 3.11E-02 7.49E-02
0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00
H_GoGe H RGe H_GeGe H BGe
1.55E+02 3.34E+01 5.14E-01 2.11E+02
1.44E-01 3.50E-04 0.00E+00 2.64E-02
0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00
H GoB H RB H GeB H BB
2.94E+02 4.23E+01 1.46E+02 6.42E-01
3.11E-01 1.07E-03 5.46E-02 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00
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Table 3.2: Eigenvalues of each of the 16 color-channel-to-color-channel Laplacian
regularization filters, Q;'Q;. Note that these matrix filters are of size 5x5.
Eigenvalues less than 1E-5 are ignored (clipped to zero).

Q_GoGo Q_RGo Q_GeGo Q_BGo
1.25E+01 1.65E+01 8.00E+00 1.65E+01
6.81E-01 6.98E-01 2.00E+00 6.98E-01
0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00
Q_GoR Q_RR Q_GeR Q_BR
1.65E+01 1.25E+01 1.65E+01 8.00E+00
6.98E-01 6.81E-01 6.98E-01 2.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00
Q_GoGe Q_RGe Q_GeGe Q_BGe
8.00E+00 1.65E+01 1.25E+01 1.65E+01
2.00E+00 6.98E-01 6.81E-01 6.98E-01
0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00
Q_GoB Q_RB Q_GeB Q_BB
1.65E+01 8.00E+00 1.65E+01 1.25E+01
6.98E-01 2.00E+00 6.98E-01 6.81E-01
0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00
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Figure 3.9: Regularization matrix equation showing the relationship between the
corrected CCC ji term at pixel k, and the observed channel j pixel values
in the local neighborhood of pixel k. Local pixel k component ji shown
calculated for local extent regularization, where N; will usually be between
4 and 9.

3.4.1.2 Error Due to Not Considering Cross CCC Erro  r Correlation

We now look at the error introduced by using our separation set of color component cost
functions simplification instead of the full matrix cost function equation. We will
determine the error in using Equation (3.37) for 16 separate optimizations instead of

using the full matrix Equation (3.34). Rewriting Equation (3.34) in terms of minimizing

the difference between the ideal and corrected signals (using f — Gy instead of y — Hf):
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A= IIT-Gy | + Al GQf ||, (3.44)

where we have previously defined G = {H'H}* H'. We can define the modified

smoothness constraint:
Q'f=GQf, (3.45)

and then update the smoothness constraint matrices coefficient values and drop the

prime on Q for simplicity, giving us:

A= IIT-Gyl” +AIQf I, (3.46)

We see from Equation (3.46) that we are performing a constrained least squares
regularization of the difference (f—Gy) instead of (y—Hf). This is done to allow the
separation of the CCCs of f in the optimization functional, since we have f';=G;y; (refer

to Equations (3.40) and (3.42)). Expanding terms in Equation (3.46), we can write:

3 3 2 3 2
otB)= 11> fi-> eyl +sll Y QflP, (3.47)
i=0 i=0 i=0
Further expanding the terms gives:

3
«f.p) = _ZO -Gy |P + 3 (fn—Gmy)'(fa=Guy) +
1=

m,n,nm

3
ZO AIQTIE+ Y fn@Qnf)T(Qnf) (3.48)
1=

m,n,nzm
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We observe that the matrix Q; is defined to operate only on the channel j data. Thus, the
coefficients of the matrix product Q,—TQi will be equal to zero when i #j. So the last term

in the above equation will be a zero vector:

> Ba@QuH(Qnf)=0 (3.49)

m,n,nm

Likewise, the cross-channel error product terms in the Equation (3.48) will also be zero
since the color channel vectors (f,, — Gny) and (f, — G,y) have no non-zero terms in
common vector positions when m # n. So the second term in Equation (3.48) will also

be a zero vector:

Z (fn — Gmy)(fn = Gny) =0 (3.50)

m,n,nm

Equation (3.48) is then the same as applying the method of Lagrange multipliers with the
minimum criteria, ||[f—Giy||®, and the smoothness constraints, ||Qif||>, which leads to the

CLS summation cost function equation (refer to Equation (2.12) of [27]):
$ 2 2
w. A= > {lIfi-Gyl* + BIQfI"}, (3.51)
=0

where G; and Q; are the i channel M>xNM? matrices:
Giz[Gli, Gzi, GNi] s and
Q=[Qui, Qzi, ... Quj] for color channel i.

In Equation (3.51), each color channel (f) has its fidelity to the observed data (g)

calculated separately. We presume that minimizing each ¢(f; B;) term of the summation
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in Equation (3.51) independently (with a separate regularization parameter ;) will result

in an optimal cost function:

min ¢, /] — > min[ 46,4 ] (3.52)
1=0

We can then write for one color channel i:

i B) = |Ifi—Gy I + Bl QfIP (3.53)

We must note at this point that the term Q; f will have components which are dependent
upon f; for i=1,...,N (N=4). This implies that, as with the ST approach [27], this
simplification of minimizing separate channel cost functions may lead to a sub-optimal

solution or weakened optimization.

Expanding terms in Equation (3.53), we can write:

3 3 3
ap=1Y ui-> Gyl +all Y aflP,
=0 =0 i=0

3 3 5 3 3 2
wtm =11y fi-Y GwllP+all Yy, (Y fi)ll (3.54)
=0 =0 =0 k=0
Now we observe that the M?xM? matrix Qi is defined to operate only on the channel j to
channel i CCC. The coefficients at all other color channel locations will be equal to zero.

This matches the non-zero coefficient locations of the M?xM? H; and G; matrices. Thus,

we can write by definition:
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Qjifkx=0 foralli#k, and

Qi fj = Qi fj (3.55)
We note that f; and f; are both M*x1 column vectors. Then we have:

3

3
> Gyl + sl > Qifill? (3.56)
0 =0

i
]

3
st B = > f
j=0

Further expanding the terms:

3
A B)= > | fi = Giy; || + D (fmi = Gy m)( fri = Gniyn) +

j:O m,n,n#m

3

z Al Qji fj II° + Z 5 (Qumi Trmi) (Qni Tri) (3.57)
j:O m,n,n=zm

We see from comparing the cost functions of Equations (3.57) and (3.37), that we can
obtain the channel component separation form of Equation (3.37) if we ignore the cross-

channel component error and high-pass filtered terms of Equation (3.57):

Z (fmi - Gmiym)(fni - Gniyn) + Z ﬂl (Qmi 1:mi)(Qni fni) ) (3-58)

m,n,n#m m,n,nm

By ignoring these terms, we are considering each CCC of a color channel to be
independent from one another. We note that costly calculations of estimations of the
image channel correlations are difficult to determine accurately and lead to solutions that
are sensitive to errors in those estimations [93]. The value of the terms of Equation

(3.58) will be dependent upon the actual image sensor data collected. Thus,
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guantification of the error due to ignoring the terms of Equation (3.58) will be image data

dependent. Using the CCC independence approximation, we have the equation:

3 3
6B = fti-GyillP + > AlIQifilP?, or
=0 =0

3
#a5)= 5 {Ilfi-cyi II? + AQitiI?} (3.59)
=

Further separating Equation (3.59) into the sum of color component j of color channel i,

and allowing f; to be independent for each channel component (8;), we can write:

A«fi, B) = 23: A5 Bi) (3.60)

=0

Now we use the logic that minimizing each ¢(f; B;) term of the summation of Equation
(3.60) independently (with independent regularization parameters B;) will result in an

optimal cost function:
A5 B) = 11 fi— Gy 117 + Bill Qi fi IIP (3.61)

It is noted that in the CLS method of [27], each Q; term has its out-of-channel
coefficients independently scaled based upon the mean signal magnitude of the color
channels. This corresponds to our method of using independent f; values for each Qj,

where each B; term will scale each Laplacian Q; matrix.

Equation (3.61) is then written in the more standard form of:
A5 5) = Ly = Bifi |2 + Al Qi 117, (3.62)
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which is used in the Section 3.4.2.1 in the development of a regularization solution form
for CCC terms. Equation (3.62) is simplified further in Section 3.4.2.2 by extracting the
local scalar pixel value from the vector/matrix form of the equation, resulting in a pixel
correction solution that will optimize the local low spatial frequency SNR of each

corrected pixel.

From this investigation of the separation set of CCC cost functions, we see that we will

have weakened optimization in our solution due to the two simplifying approximations:

1) The sum of the separately minimized color component cost function terms
will be the minimum of the sum of the cost function terms.

2) We can neglect the correlation of the errors between different CCC
components ([fmi — Gmiymllfni — Gniynl, for m#n), as well as neglecting the
correlation between the different high-pass filtered color components
themselves ([Qmi fmil[Qni fnl, for m#n). Thus, we assume that the sum of
the products terms between different CCCs will be negligible compared to
the squared same CCC terms (we drop the terms of Equation (3.58)).

In [27], Galatsanos and Katsaggelos apply their method using 3 channels, whereas we
use 4 color channels. Our approach will correct for the difference between the even and
odd green channels, which can lead to highly visible fixed pattern noise. Additionally,
Galatsanos and Katsaggelos only use 7 non-zero coefficients in total for the H and Q
matrices of each color channel. For each color channel only 1 coefficient is used to
represent the cross-talk to each of the other color channels. In our approach, we use 25
non-zero coefficients total for the H and Q matrices of each color channel. For each
color channel, from 4 to 6 coefficients are used to represent the cross-talk to each of the
other color channels. 9 coefficients are used for the in-channel matrices. [27] uses the

relative magnitude ratios of the color channels to determine the values of the cross-
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channel coefficients in the regularization matrices (Q). We compare the performance of

the ST and CLS methods of [27] with our proposed method in Section 3.5.

3.4.2 Derivation of Local Pixel Cost Functionand S NR Optimization

3.4.2.1 Local Pixel Regularization Solution Formfo r CCC

Regularization methods, such as [26], often use the global minimization of the MSE as a
criterion to determine the optimal global regularization parameter (). We instead use
the maximization of the local pixel SNR as a criterion to determine the optimal locally
adaptive regularization parameter. The use of local adaptivity is driven by the HVS's
sensitivity to local pixel values [7], [19], [56], [73]. In this section, we derive the local
pixel form of the cost function and its solution, with many of the equations illustrated in

Figure 3.9.

In Section 3.4.1 we derived the CCC form of the cost function for our Bayer cross-talk
problem (see Equation (3.62)). The estimated regularization pixel signal solution for the

cost function of Equation (3.62) is given by the equation:
fi={Ai"A + BQi'QiY* Ai"y; (3.63)

It is noted that Equation (3.63) is similar to the MAP cost function, except that the

covariance matrix C is not included. We can write Equation (3.63) in local pixel form for

the k™ element off,—i. First, we rewrite Equation (3.63) as:

fii =Wi(8i) i, (3.64)
where:

127



Wi(B) = (A A + Q" Qi}* AT (mxm matrix) (3.65)

Then the scalar estimate of k™ element of vector ji (? iis the ji component of the k™ pixel)

can by written as the dot product of the k™ row of W;i(B;) and y;:

~

Fiic = Wii(Bi) ¥ » (3.66)
where w;i(Bji) is @ 1xm row vector (the k™ row of W;i(Bji)):
Wi(Bi) = K {F"Hi + Qi Q™ AT, (3.67)

and k is a 1xm vector that has all zero terms except at the k™ position where it is 1. We
note in Equation (3.66) that wj(Bjx) will be a function of the local pixel k due entirely to
the regularization term By (which is a function of yj), otherwise it would not vary for the

CCCii.

Equation (3.66) gives the reconstructed pixel value at location k (a scalar). The

regularization parameter Bjix can vary for each row of the mxm matrix W;(B;). Allowing

Bji to vary for each element of f i will give us a local pixel optimization. Equations (3.64)

and (3.66) are illustrated in Figure 3.9.

34.21.1 Discussion of Local Pixel Regularization F  orm

The extent of the blurring matrices is small, and is typically within a 5x5 pixel area, as
shown in Figure 3.3. In Equations (3.66) and (3.67), we see that as ;x approaches zero
(indicative of a low noise situation), the corrected local signal estimate fj, approaches the
naive (inverse) solution (f'x). As Bjx approaches infinity (suggesting a very high noise

situation), the corrected local signal estimate f;, approaches the zero solution. However,
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due to the limited extent of the image (fixed, finite size), the impulse response of the
blurring filters cannot have boundaries that extend to infinity, and the value of B, cannot

approach infinity.

The stacked vector-matrix form of regularization solution can also be written in terms of
convolution solution.  Using the block circulant properties of the blurring and
regularization matrices, we can apply the DFT to write the solution as local extent matrix.
Since the blurring cross-talk matrices operate over a 5-by-5 pixel area, the CLS
regularization matrix correction will also operate over the same limited extent 5-by-5
pixel area. Thus, we can write Equation (3.66) using matrices defined over the local
pixel k 5-by-5 pixel area. This corresponds to the non-zero coefficients in the matrix and

vectors of Figure 3.9.

3.4.2.2 Optimal Regularization Parameter Pixel SNR S  olution
3.4.2.2.1 Discussion of the SNR Regularization Param eter Approach

We wish to derive a pixel correction solution that will optimize the local low spatial
frequency SNR of each corrected pixel. We will apply the maximization of the local pixel
SNR as our constraint applied to the CLS regularization problem. In many of the
existing regularization solution methods, the global image noise is used to determine the
regularization parameter. We define the pixel SNR as the estimated pixel magnitude
value divided by the square root of the variance of the total pixel noise (total error in
signal value). The SNR is a relative value, which matches the HVS’s sensitivity better

than using noise values.
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The derivation of the reconstructed pixel value is developed using a CLS regularization
method. The direct maximization of the local mean SNR with respect to a regularization
parameter requires knowledge of the original image data (f). Since this data is not
available, a predicted method, based upon an estimate of the local blurred SNR (defined
as SNRjx m) is used. We use the local mean of the actual pixel values together with
noise characterization models (see Section 2.3.1 and Appendix B) to calculate the local
mean SNR estimate. The reconstructed local pixel SNR equation, which must be

maximized, is derived and shown in Equation (3.81).

The circulant matrices I:I,-iTI:I,-i and jSTQ,-i can be diagonalized with the use of the 2-D DFT
[5]. The eigenvalues of each of the 16 CCC blurring filters (H;'H;) and the 16 2-D
Laplacian regularization filters (jSTjS) are listed in Tables 3.1 and 3.2, respectively.
Each CCC requires a different 2-D Laplacian regularization operator that is applied to
the proper pixels within the Bayer color pattern (refer to Figure 3.8). Since the extent of
the blurring and regularization matrices is small, we have a maximum of 5 eigenvalues
for matrix products H;"H; (H; is sparse) and Q;'Q; (N,=5, N4=5, as shown in Tables 3.1

and 3.2).

We can write the square of the estimated value of the corrected pixel (1: jikz) from
Equation (3.66) with w;,(B;ix) written for the local pixel k, which uses local H;"H; and
Q;'Q; matrices information. Since the extent of the blurring and regularization matrices
is small, only the small local area of pixel values of f; will affect the value of lA‘ jik- AS was
shown in Figure 3.9, we can take the non-zero coefficients from the large global matrix

as shown in the figure to construct our small, local extent matrix for each CCC. For our

5x5 local pixel neighborhood extent, we will have between 4 and 9 pixels with which to
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operate. We can also use the DFT applied to the convolution form of the problem to
construct the local convolution filters, which can then be used to construct the local

matrix.

3.4.2.2.2 Derivation of Local Regularized Pixel Esti  mate

Using the assumptions of local blurring [24], elements in the local extent of pixel k of the
vector y; will often approach being constant (refer to Figures 3.7 and 3.9). In
determining the best local value of the regularization parameter to use, we will use the

local mean value of the pixels in the neighborhood of pixel k to determine the local mean
estimate ?jik_m. The local mean observed channel for pixel k is denoted by yj m. Since
the row vector wj(Bji) will have a limited extent, defined as N; pixels, we can write the

vector dot product wji(Bji) Y; as:

Wik(Bi) Yi = { Wik(Bix) }1fo { Yk }Nf X1 s
Wii(Bi) ¥i = { Wii(Bix) }1fo {Yim Yikm Yikm -+ Yikm }TNf X1 s

WiBi) Vi = Yicm { Wik(Bi) Yoy, {21 -+ Wy (3.68)

Thus, the term y; , can then be moved outside of the summation resulting from the dot
product of the row vector and the column vector terms of Equation (3.68). Since local
averaging is used for the yj m value, noise suppression of the data results, improving the

accuracy of our estimation. Then we can write:

? jik_m2 = { wWi(Bin) ¥; }21

~

Ficm® = [Yiom £ WilBi) g, {21 100 I

1:jik_mz = ij_m2 [ { K {FIjiT’qji + ﬂinjiTQii}_l FIjiT }1fo {1 1.. 1}Tfo1 ]2 ,
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A~

N f
f jik_m2 = yjk_m2 { Zl Wiip(Bi) }2 ) (3.69)
p=

over the local area of pixel k. The vector wj, has scalar values (w;p) for index p equal
from 1 to N;,. From the limited extent of the blurring, N will typically be less than or
equal to 9 for each color component-to-color component blurring filter. It is noted that

when the regularization parameter B is set to zero, the estimated value of the mean

corrected pixel (? ik m) from Equation (3.69) will be the naive, inverse filtering, or
Maximum Likelihood (ML) solution (denoted by f'jx m). The ML estimate becomes the
least squares method for Gaussian likelihood functions when the covariance matrix is

taken as the identity matrix.

3.4.2.2.3 Derivation of Local Regularized Pixel SNR  Estimate

We define the corrected mean square error (MSE) of a scalar pixel as being composed
of two parts: signal error due to noise in the original signal (noise variance error, which
can result from noise being amplified by the correction process), and signal error due to
blurring (bias error, which can result from under-correction used to avoid noise
amplification). The bias error is the difference between the true pixel value and the
mean of possible estimates. The variance error is the measure of the spread of
estimates (due to noise) about the mean of possible estimates. Defining the scalar MSE

as the sum of these two error sources is well established [26]:

fis” = MSE = E[ej’] = E[{f - f i,
nvjikz = bias{fjik, % jik}2 + Var{? jik} ,

And = { fuc- EIFud 12 + EN{f - EIF d ¥ (3.70)

132



The ‘corrected’ scalar local pixel error (or the total MSE of the estimated local k™ pixel
value fjik) for the regularization method can then be derived from the local bias and

variance errors [22], [34]. Using Equations (3.67) and (3.69), and using ?jik_m for fjik

since we are using the local mean SNR constraint, the local mean bias is found from:
biasffj, f it = fi = E[ yim { K {H"Hy + QT Q™ AT by {11 - 1}TNfX1 ]
R N
bias{fii, f ji} = fii - Yk m { Z Wiip(Biik) } (3.71)
p=1

Since we do not know the value of the true pixel value fji (or fj_m), and since for the bias

we want to look at the non-random noise error, we will use the naive local mean

estimate (f'x m) for fi. The naive solution will be the value of f ik m (from Equation
(3.69)) when Bji is set to zero. The naive local mean estimate is based upon our
observable (known) data (yx m). Equation (3.71) can then be written to give us the

estimate (prediction) of the scalar corrected local mean pixel bias as:

bias{fin, Fiud = YVicm [ K {HTHY" AT L {11 1}TNfX1 -
Vicm [K{ATH + BQTQ" A Ty £11 0 s

biaS{fjik, fjik} = yjk_m { Vjik(ﬂjik) }lfo {1 1... 1}TNle y

~ Nt
bias{fi, fji} = Yk m { 21 Vip(Bii) } (3.72)
p:

where:
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Vjik(ﬁjik) is the kth row of the matrix product {FIjiTFlji + ﬂinjiTjS}_l ﬂinjiTQ]‘i .

Vi(Bi) = K [{Hi"A; + Q" QiY " AiQi"Qii] (3.73)
The vector v has values for index p equal from 1 to N;, where from the limited extent of
the blurring, N will typically be less than or equal to 9 for each CCC blurring filter. A bias
error will typically result in an under-correction of the color saturation. In particular, when

a color component j to i is not fully corrected, there will be an appearance of color de-

saturation.

The variance error is found from Equations (3.69) and (3.70) using the additive noise

vector niji:

var{f j} = E[{Wjik(ﬂjik) yi — Elwji(Bi) Y1 }2] ) (3.74)
and with y; = Hif; + n; and pj(Bix) = Wii(Bix) Hi:

var{f ji} = E[{ Piik(Bik) Tii + Wi(Bin) Nji — E[Pii(Bi) fi + Wii(Biw) Nl }2] )

var{f jik} = E[{ Wii(Bi) Nji }2] (3.79)
As was done in Equation (3.68), we will use the local mean value of the pixels in the
neighborhood of pixel k, yi m, to give us an estimate of the local mean noise, njx m. Our
sensor characterization noise models are used here. Using this local average signal

noise value (njx_m) and the limited extent of the filters (over N pixels), we can write the

vector dot product wji(Bji) n;j as:
Wii(Bii) N = { Wi(Biid) Yo, £ Mk Iy

Wii(Bi) Nji = { Wii(Bii) }1fo {Njk.m Njicm Njicm -~ njik_m}Tfol ,
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Wi(Bi) Nji = Njik m { Wiik(Bi) }1fo {f11.. 1}TNfX1 (3.76)
Now we can use Equations (3.75) and (3.76) to write over the local area of pixel k:
var{f j} = E[{ Wii(Bi) Nji }2] )
var{f i} = E[nim® ({ wix(Bid) b 121 1) 7,
var{f it = E[niicm® (AT H + BaQi" QY HTH]

~ Nt
var{f ji} = Oiik_m2 { z Wiip(Bik) }2 (3.77)
p=1

Again, the vector wj has values for p equal from 1 to N;, where from the limited extent of
the blurring, N; will typically be less than or equal to 9 for each color component-to-color
component blurring filter. In Equation (3.77), cs,-ik_mz is the predicted local average noise
variance. Its value is predicted based upon the characterization (a prior) data relating
pixel signal magnitude to noise variance. Combining Equations (3.72) and (3.77), we

can write the local mean pixel corrected (regularized) pixel noise estimate as:
2 2 N 2 2 0 2
Niik” = Yjk_m {Z Viip(Bik) } * Gikm { Z Wiip(i) } (3.78)
p=1 p=1

Now, using the equations for the regularization estimates of the local signal (Equation
(3.69)) and local total noise (Equation (3.78)), we can write the equation for the squared

local regularized pixel SNR estimate (SNR,—ikz), which we wish to maximize:

SNRZ = ful [ iyl
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. N
SNR; = ij_mz{zl Wip(Bid) ¥ /
p:
N N
[ij_mz{zl Vie(Bi) 2t a,-ik_mz{zl Wip(Bik) }2] (3.79)
p= p=

The local blurred mean estimate of the squared SNR at pixel k for the color component |

to color component i is defined as:
SNRjicm” = Yicm’ ! G’ (3.80)

We can then write the squared local regularized pixel SNR equation in terms of the local

blurred mean estimate of the squared SNR at pixel k:

Nt
SNR]ikz = SNRjik_mz{z Wjip(ﬂjik) }2 /
p=1

Nt N f
[SNRjik_mz{Zl VielBi) {Zl Wip(Bik) }2] (3.81)
p= p=

34224 Optimization of Local Regularized Pixel SNR

We now can optimize the local regularized pixel SNR by determining the value of By that
optimizes the above equation for the local blurred estimate of the squared SNR:
A= max [ SNRu ] (3.82)
B
One simple approach to solving this equation is to perform an off-line exhaustive search
over Bji for quantized set of local blurred mean estimated SNR values. This is a

reasonable approach since the color channel to color channel blurring behavior of

CMOS imagers is usually approximately constant across the sensor array and from

136



sensor to sensor for the same sensor design. The optimal B values can then be stored
in a look-up table (LUT) for real-time usage. Additionally, the corresponding coefficients
for the separated CCC constrained least squares (SCLS) SNR regularized convolution
filters can be calculated off-line and stored for real-time use in a camera system. This
approach minimizes the required number of calculations that must be performed in a
camera system during image processing. In implementing this solution, one would then
determine the optimal values of the regularization parameter from Equation (3.81), and
store the corresponding correction filter coefficient values w;, in a LUT. In real-time
usage, the local mean observed channel yy n value, combined with the sensor
characterization a priori data, gives us the local blurred mean SNR estimate, which then

gives us our correction filter coefficients.

The optimal values of the regularization parameter fjx from Equation (3.81) are used in
the separated CCC CLS SNR (SCLS SNR) regularization Equation (3.66) at each pixel
for each CCC. As we have seen, the optimal B, value is a function of the CCC blurring
filters (I:I,-i, dependent upon its stability) and the corresponding local mean pixel color
channel (yjx m) SNR value. The optimal regularization parameter Bj value is then
plugged into the local CCC ji regularization Equation (3.66). We see that the observed
local color channel j data (yj) is used in the SCLS SNR restoration Equation (3.66), and
not the local mean data (yj m), which was used in determining Bj.. This is due to our
deterministic constraint being the local mean SNR CCC maximization. During real-time
implementation of the SCLS SNR method, we calculate the local mean pixel k channel
component SNR (SNRHk) from Equation (3.80) and use that value to look up the
corresponding coefficients of wj,. Thus, we have as our SCLS SNR regularization

equation for pixel k:
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A~

f ik = Wji(Gi) Y , or

A N
fjic = Zl { Vo Win(B) } . (3.83)
p

f
where yy, are the N; channel j observed pixel values in the local pixel k area. Equation

(3.83), along with Equations (3.64) and (3.66), are illustrated in Figure 3.9.

If we wish to reduce the number of calculations or the amount of memory required by the
SCLS SNR regularization method, we can make a number of simplifications to the
algorithm’s implementation. The computation of the estimate of the local mean
observed channel for pixel k, yx m, can be simplified by using fewer pixels in the
calculation or simply using the value of the observed pixel k’s value directly (which would
result in using the improper color channel for 3 of the 4 computations). Additionally, we
can reduce the size of the input local mean SNR-to-correction filter coefficient LUT. In
our standard implementation, we have used one set of coefficients per each integer local
SNR estimate. Values for SNR estimates between these integer values are obtained
through linear interpolation. We can reduce our memory requirements by using stored
coefficients at SNR estimates greater than unity granularity. We can also eliminate the
interpolation calculations and simply use the coefficients closest to our SNR estimation.

These complexity reductions are examined in the next section.

3.5 Performance Comparisons and Conclusions

351 Performance Results

The corrected dB SNR improvement restoration performance to algorithm complexity is

shown in Figure 3.10 for several Bayer restoration methods. The plot shows the
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improvement from the uncorrected pixel data that results for each restoration method.
The performance measurements of the methods are averaged over a range of typical
operating conditions. Input images with mean SNR pixel values ranging in value from 10
to 40 were used as input to the restoration algorithms. All methods used the same
sensor characterization a priori data, which included knowledge of the mean pixel cross-
talk values. Algorithm complexity was measured by calculating the mean number of
operations performed per pixel. Additions, multiplications, and memory look-ups were
considered in the complexity measurement, as were the number of iterations required for

the non-direct method.

Two heuristic methods commonly used in low cost camera systems are shown in Figure
3.10. These methods are the simple 3x3 matrix color correction method and the same
method with matrix correction terms that are adaptive to the overall camera operating
SNR conditions (refer to Section 3.2.3.2.2 for details). The ideal coefficients derived a
priori from the cross-talk characterization are used. This a priori cross-talk
characterization information is shown in Figure 3.3. The 3x3 adaptive matrix method

also uses a simple median filter to smooth out the green-odd/even pixel mismatches.

The more complex methods of ST and CLS restoration using noise and smoothing
constraints are also plotted in Figure 3.10 (refer to Section 3.2.3.2.1 and Appendix C).
In order to provide a more challenging testing environment for our SCLS SNR method,
the ST, CLS, and SCLS SNR methods used the same noise and SNR characterization
data. Additionally, the ST and CLS methods were adjusted to operate on four color
channels (R, Ge, Go, B), in a similar manner as our SCLS SNR method. The CLS
method has the optimal per color channel regularization parameters used, which are

found through an iterative solution. The CLS method is referenced as our ideal, optimal
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solution.

A trend curve is also shown, which demonstrates the trade-off between

restoration SNR performance and algorithm complexity.

Mean dB Improvement in SNR
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Figure 3.10: Restoration dB SNR improvement performance and complexity

comparisons. Performances averaged over operating mean pixel SNR
range of input 10 to 40. Improvement measured relative to uncorrected
data. ST and CLS iterative restorations are non-spatially adaptive.

The ST and CLS methods both required that ideal regularization matrices be calculated

using full image estimates of color channel spatial frequency bounds. As expected, we

see a trade-off between high performance and low algorithm complexity. The iterative

method required in the CLS solution to determine the regularization parameters

significantly increases the number of operations performed. At each iteration, the

Jacobian must be calculated. Our goal was to derive a lower complexity restoration

algorithm that would provide restoration performance better than heuristic methods

140



currently implemented in low cost camera systems. From the data points for our SCLS

SNR method provided in the plot, we see that we have met this goal.

Several SCLS SNR method data points are shown in Figure 3.10. These correspond to
our baseline solution, as well as to some algorithm simplifications. These simplifications
lead to lower algorithm complexity, due to fewer calculations and less memory
requirements. We have tested a simplified SNR estimation method, where instead of
using the local mean estimations (Y m and ojx_m in Equation (3.80)), we use the target
pixels SNR estimate. For the cross-channel corrections, this estimate does not use the
proper pixel channel SNR values, but is less complex to implement. Additionally, the
mapping from the SNR estimate to the regularization parameter value (or directly to the
convolution matrix correction coefficients) is simplified by using a coarser LUT. This
results in less memory required and faster processing. Our baseline LUT used one set
of correction coefficients per each integer value of the input SNR estimate. Values of
the coefficients for intermediate SNR values (non integer) were found through simple
linear interpolation. The coarser LUTs used input SNR increments of 4, 8, and 10

instead of 1, and no interpolation.

The input mean SNR operating condition versus the output SNR dB improvement (after
correction) is shown in Figure 3.11. The same five methods from Figure 3.10 are
compared here. The range of mean input SNR values represents the extended range
that a low cost camera system would expect to experience. The input and output SNR

values are calculated as the mean of all of the pixel SNR values in our test image.
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Figure 3.11: Corrected dB SNR improvements as a function of input image SNR. SNR
values are mean of all of the image pixels.

The performance plot shows that applying the ideal full 3x3 matrix correction limits
output SNR at low input SNR due to noise amplification, while it limits output SNR at
high input SNR due to its inability to fully correct the spatial color-dependent blurring.
The adaptive 3x3 matrix correction method shown here uses a median filter to reduce

the fixed-pattern noise (FPN) created by the green-odd/even pixel cross-talk behavior.

All three of the regularization methods shown (ST, CLS with noise constraint and optimal
regularization parameters, and SCLS SNR methods) obtain similar performance at high

input SNR values. This is due to the regularization parameters approaching zero as the
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input mean pixel SNR value become large (or, similarly, the input noise values approach
zero) for all three methods. As the input SNR values are reduced, we see that the
optimally, iteratively obtained, regularization parameters of the CLS method result in the
optimal performance. The performance of the ST method is limited by the accuracy of
the estimations of the global signal energy and high frequency content (as well as the
noise estimations). As mentioned, all three regularization methods used the same noise
and SNR characterization data. The SCLS SNR method was able to outperform the ST
method, as well as the heuristic methods, by utilizing variable local SNR data and
separating each CCC correction. Accurate regularization parameters were found from

the characterization based local mean SNR values.

The use of separate CCC restoration based on local pixel SNR information accounts for
the excellent performance of the SCLS SNR restoration method. As was detailed in
Section 3.4.2.2, the optimal value of Bj for Equation (3.81) is found for use in the
restoration equation. The optimal B value is a function of the CCC blurring filters and
the local mean pixel SNR value for that CCC. The optimal B values for each CCC as a
function of local mean pixel SNR can be calculated and stored in a LUT for real-time
use. Additionally, the corresponding coefficients for the SCLS SNR convolution filters
can be calculated off-line and stored for real-time use in a camera system. This
approach minimizes the required number of calculations that must be performed in a
camera system. Using this approach of determining the optimal restoration parameter
values, we can generate contour plots displaying the optimal  values as a function of
input local mean pixel SNR values for each CCC. In Figures 3.12 through 3.15, we
show corrected mean pixel SNR versus input mean pixel SNR and B values plots for

blue to green-odd (cross-CCC) and green-odd to green-odd (within-CCC) blurring.
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These plots show the benefits of separating the corrected CCCs. This allows each color
CCC correction to have the optimal regularization applied in its correction. In general,
on-diagonal CCC terms (i=j) will have smaller optimal $; values than off-diagonal CCC
terms due to the off-diagonal CCC blurring filters being less stable and more sensitive to
noise. This behavior is shown in the plots by contours of the maximum normalized
corrected SNR values. The corrected SNR values are normalized to a value of unity

across the input SNR range.
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Figure 3.12: CCC jtoi B; terms (blue to green-odd) as a function of local pixel SNR,
with the maximum corrected SNR values per input SNR normalized to
unity. Off-diagonal blurring CCC filters often are ill-conditioned, requiring
larger optimal B; terms. The optimal ; value becomes large (>5) when
the input mean pixel SNR value becomes small (<10).
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Figure 3.13:
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3-D surface plot of CCC j to i B terms (blue to green-odd) as a function of
local mean pixel SNR, with the maximum corrected SNR values per input

SNR normalized to unity. The optimal ; value becomes large (>5) when
the input mean pixel SNR value becomes small (<10).
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Figure 3.14: CCC itoiB;terms (green-odd to green-odd) as a function of local pixel
SNR, with the maximum corrected SNR values per input mean SNR
normalized to unity. There is a dark red (maximum corrected SNR)
region close to the left edge of the plot (at <0.01). On-diagonal blurring
filters are better conditioned, requiring smaller optimal p; terms. The
optimal B; value remains small (<0.1) even when the input mean pixel
SNR value is small (<10), and the optimal B; value is very small (<0.001)
when the input SNR is in its normal operating range (>10).
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Figure 3.15:  3-D surface plot of CCC i to i B terms (green-odd to green-odd) as a
function of local pixel SNR, with the maximum corrected SNR values per
input SNR normalized to unity. The optimal B; value remains small (<0.1)
even when the input mean pixel SNR value is small (<10), and the
optimal B; value is very small (<0.001) when the input SNR is in its normal
operating range (>10).

The test image used in our analysis is shown in Figure 3.16. This test image possesses

all of the features that concern us: saturated colors, low and high spatial frequency data.

The range of input mean SNR values was obtained by adjusting input lighting values and

exposure times. Additionally, ideal images were created by utilizing multiple frame

averaging to remove temporal noise and full fixed pattern noise removal along with ideal

cross-talk inversion (with near zero noise).
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Figure 3.16: Ideal input test image used for performance analysis.

The cross-talk and noise corruption of the ideal input test image has a detailed section
shown in Figure 3.17 for an overall input SNR of 30, which corresponds to an electron to
digital count conversion factor (e/DN) of 1.4. In Figure 3.18, we show samples of an
image cross-talk corrected by the simple 3x3 matrix color correction method, the ST
method, and our SCLS SNR method. These images show the overall corrected SNR
value and the SNR value of the gray square (18% gray). The overall SNR is our metric
that we use to measure image correction. It is the average corrected pixel SNR, using
the knowledge of the ideal (uncorrupted) pixel values. The 18% gray SNR is the
measured flat field SNR of the MacBeth chart 18% reflector gray square. It is a metric

commonly used in industry to measure the quality of processed sensor images (refer to
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ISO standard 12232-1998E). The three images show that the SCLS SNR method
performs better than the other two methods of similar complexity. It should be noted that
further processing would typically be performed on the cross-talk restored pixel data.
One can view the cross-talk restoration process as the color correction step in the color
sensor process (along with the Bayer interpolation step). After the color correction step,
one might perform some sort of flat area noise smoothing (such as median filtering) and
an edge sharpening filtering. These image processing steps would improve the

appearance of the final processed images.

Figure 3.17: Input test image detail section corrupted for conversion factor e-/DN=1.4,
Overall SNR=30, 18% Gray SNR=18. Images with any specified SNR
value can be constructed using characterization and camera system
models.
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Figure 3.18: Detail of SNR=30 image section after correction by methods:
Top Left: Optimal 3x3 Matrix, Overall SNR=35, 18% Gray SNR=15,
Top Right: ST, Overall SNR=37, 18% Gray SNR=16,
Bottom:  SCLS SNR, Overall SNR=42, 18% Gray SNR=18.

352 Discussion of Performance and Conclusions

The separate optimization of CCC terms has been shown to be very advantageous for
the Bayer cross-talk problem. This is due to the full restoration of within color channel
blurring (j=i) usually having small noise amplification (small blur matrix condition

number), whereas the full restoration of cross color channel blurring (j#i) often having

150



large noise amplification (large blur matrix condition number). Although methods such
as [27] can scale the Q matrices for different CCCs, they cannot simultaneously adjust

for the CCC'’s blurring matrix stabilities and SNR values.

The pixel SNR after correction for within color channel blurring (j=i) is more sensitive to
bias error, than the pixel SNR for cross color channel blurring (j#). This is due to the
majority of the correction for the within color channel blurring case being a simple
gaining of the target pixel's value. Because of this, the pixel signal divided by pixel noise
ratio will have little change as the regularization parameter’s value approaches zero.
This is also a consequence of the within color channel blurring filters having smaller
condition numbers. However, the bias error will increase as regularization parameter’s
value increases. Correcting the within color channel blurring corresponds to a heuristic
white balance correction in a standard camera system, which does not affect the SNR
due to the noise variance. Thus, to maximize the pixel SNR due to noise variance and
bias error (total noise), a correction approaching the ideal full inverse correction (B;=0) is
usually required. Since, from a HVS standpoint, the white balance should always be
performed, the proposed restoration method’s behavior matches the HVS’s sensitivities
[64], [75], [76], [85]. Existing methods that use the MSE as a metric for calculating the
regularization parameter will not produce the optimal value for white balance, since the
noise variance will increase with a decreasing regularization parameter value. Even
when the bias error is included in the MSE calculation, this will result in too large of a

regularization parameter value being calculated.

For the cross color channel blurring (j#i) case, more independent pixels in the local

neighborhood are involved in the correction, leading to a noise amplification situation.
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This is a consequence of the cross color channel blurring filters having larger condition
numbers. The CCC correction will involve between 4 and 6 pixels in the local 5 by 5
pixel neighborhood. Thus, more blurring, resulting from a greater regularization
parameter value (B;>0), is often required in order to obtain the maximum corrected pixel
SNR. The optimal value of ; will result from the maximum value of the corrected CCC
divided by the total MSE derived as the sum of the corrected noise variance and the
corrected bias error. Existing methods that do not take into account bias error will
produce regularization parameters that are too large and penalize the saturation
correction too much. Additionally, even existing methods that use the total MSE
estimate for the regularization calculation do not consider the estimated corrected SNR
value. The HVS's sensitivity to the local SNR relationship is not represented well by the
MSE. Methods using the MSE metric will find minimum MSE regularization parameter
values which attenuate the corrected signal value too much. As a result, from the
maximum SNR point of view, they will produce regularization parameters that are too
large and overly reduce the saturation correction. From the HVS'’s sensitivity to local
SNR [7], [19], [56], [73], the existing methods using the MSE metric will over smooth the

images.

Using our proposed method for a local pixel area with a high SNR for all of the color
components, we will apply an ideal inverse filtering correction. This corresponds to an
ideal full 3x3 color correction Tcc matrix application in a heuristic camera system, which
corrects white balance and saturation. When we have a local pixel area with a low SNR
for all of the color components, we will apply close to an ideal inverse filtering correction
for the within CCC terms, but a greatly regularized correction to the cross CCC terms.

This is similar to a heuristic camera system applying an ideal white balance correction
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Twe Matrix with a greatly reduced Ts, matrix. This separate optimized correction of the
CCCs is not possible in the existing methods that use one regularization parameter per

channel.

The greatest visual effect of Bayer cross-talk blurring is the de-saturation of color. Since
the extent of the blurring is often limited to a local 5 by 5 pixel neighborhood, blurring of
the high frequency details of the image will not be as noticeable to the human observer
as is the color corruption. Since the Bayer color filter array has different color filtered
(CFA) pixels next to one another, there will be significant color blurring for small pixels.
Thus, the trade-off between color correction and noise amplification will be the most
significant criterion. This criterion leads us to use the local mean SNR estimate as the
metric in selecting the optimal regularization parameter. Since the HVS sensitivity to
color is greatest for low frequency components [64], [75] (Figure 3.7), the local mean
values are best to use in the correction process. As discussed in this thesis, the HVS is
also sensitive to relative error or local SNR. Thus, the use of the local average SNR is

best to use in the correction of local pixel values and consequently the local color values.

In summary, the advantages of our proposed SCLS SNR method over standard camera
correction methods being used are that our method:

1) s spatially adaptive
2) treats each CCC separately and optimally

3) corrects the green odd and even channels (which have different
cross-talk characteristics)

4) uses sensor characterization models which define pixel SNR values
as a function of pixel signal level

5) is automatically matched to the HVS'’s SNR sensitivity

6) can be implemented as a simple, direct method
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3.5.3 Comparison to Red/Black Ordering

One of the key assumptions and simplifications that we make in our SCLS SNR method
is that each CCC is independent from each other. This assumption will not usually be
valid, since each color channel is typically not independent from the other color
channels. The amount of correlation between color channels changes as a function of
spatial location within a picture. The color channel correlation also varies greatly from
picture to picture. The greatest correlation between color channels will be between the
odd and even green channels of a Bayer CFA imager. This is where the breakdown of

the channel independence assumption will be the most severe.

A multigrid method, such as Red-Black Gauss-Seidel, can be used to parallelize
computations. In these schemes, a set of points (red points) are updated at one step,
and then another set of points (black points) are updated in the next step. For an image,
this would be done on a single channel. The two-color (red/black) approach using a 5-
point Laplacian can be used to separate the coupling between any two points (red or
black points), so that any point can be updated simultaneously. In our application, we
assume each plane is independent. Thus, we are not applying a red/black type sub-
sampling of a color plane. One important feature of our method is that it is not iterative.
Red/black-ordering uses a successive over-relaxation (SOR) type iterative solution,

which would not be applicable to our Bayer cross-talk problem due its constraints.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

Sensor characterization data and camera system image processing information
were utilized to develop image sensor testing and image quality enhancement
methods for commercial CMOS image sensors. The approach we developed

was to link system algorithms to the sensor performance characteristics.

In Chapter 2, we presented novel image sensor PRNU testing methods. Monte
Carlo and probability model-based simulation approaches were used to create
functions which relate measurements of raw block PRNU values to failure rates
for particular sensor applications. These methods allow failure rate curves to be
constructed for specific sensor operating conditions and image processing
settings. Groups of settings can be associated with specific sensor applications.
In the development of our methods, we used the idea that different sensor
applications will have different requirements for quantization (compression)
amounts, acceptable SNR, image processing applied, sensor gain settings,
sensor exposure times, and other operating conditions. We also used the
concept of acceptable degradation to determine sensor operation based PRNU

thresholds. Sensor signal-dependent noise models were used in the process of
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determining these thresholds. Using our proposed PRNU testing methodologies,
we have shown the potential to increase the yield rate of sensors. A single
PRNU measurement per sensor can be used for multiple sensor applications,

which increases testing efficiency and reduces overhead cost.

A novel, low complexity pixel cross-talk correction algorithm that can provide
restoration performance better than heuristic methods currently implemented in
low cost camera systems, was developed in Chapter 3. The use of separate
color channel component (CCC) restoration based on local pixel SNR information
was primarily responsible for the excellent performance of our CCC separated
constrained least squares (SCLS) with local SNR optimization constraint
regularization method (SCLS SNR). The optimal value of each CCC
regularization parameter was determined to be a function of the CCC blurring
filters and the local pixel CCC SNR value. Since there is a wide range in the
different CCC blurring filter stability (ill-condition-ness) and in the spatial color
channels SNR, the use of this optimization of the local CCC regularization
parameter is both appropriate and beneficial. It was shown that the
regularization parameter values for each CCC, as a function of local pixel SNR,
can be calculated and stored in a LUT. Additionally, the corresponding
coefficients for the SCLS SNR convolution filters can be calculated off-line and
stored for real-time use in a camera system. This approach minimizes the
required number of calculations that must be performed in a camera system
during image processing. Cross-talk and signal-dependent noise models,
determined from sensor characterization, were utilized in the development of our

SCLS SNR method.
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4.2 Future Work

42.1 PRNU

In order to acquire a better understanding of the applicability of our PRNU testing
method, error thresholds and error rates need to be determined for a larger set of
sensor applications. A greater set of application requirements, such as data
rates (which determine amount of compression), need to be determined and
used in the PRNU analysis. Allowable error rates for the greater set of sensor
applications should also be found and used in the PRNU distortion analysis. We
need more data on the acceptable PRNU block failure rates per sensor. One
problem with this is that much of the information is company proprietary. Most
importantly, we need to determine quantitatively the yield rate improvement that

one could achieve by using our PRNU testing approach.

We may also want to look at the failure rates for particular PRNU block patterns.
The spatial distribution of pixel gain factors within a block will determine the
spatial frequency PRNU characteristics. This will in turn have an affect on the
perceptual distortion of the block image data. Thus, instead of simply measuring
a standard deviation or maximum/minimum difference of PRNU, we could also
consider the spatial locations of pixel gain variation. During testing, pixel blocks
could be grouped into PRNU distribution ‘classes’, with the allowable distortion

based upon the block PRNU class.

4.2.2 Bayer Cross-Talk Correction

The weakened optimization used in our SCLS SNR algorithm requires further

analysis. The error resulting from neglecting the correlation between different
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CCC components is image dependent, and should be quantified for a

representative set of input images to a camera system.

The SCLS SNR algorithm could be combined with the color correction frequency
domain method that was developed in [61]. We could extend the SCLS SNR
method to be applied within the frequency domain. The algorithm could be
applied to individual subbands obtained from a discrete wavelet transform
(DWT), or to frequency coefficients from the discrete cosine transform (DCT).
This correction method could then be embedded in the compression operations

of JPEG or JPEG 2000.

The DCT domain can be used to segment the image frequency components for
each sensor color plane. At the same time, we can implement the cross-talk and
color correction into the JPEG compression process, similar to the method of
Chapter 3. As shown in Figure 4.1, the white balanced (scaled) raw Bayer data
for the four-color planes would have the DCT applied to them. For each color
plane (R, Ge, Go, B) and each DCT coefficient, in the absence of noise, there
exists a set of inverse blurring coefficients that can be applied to best recover the
corresponding component of color plane coefficients. The DCT coefficient
correction is shown in Figure 4.2. The Cy coefficients are the optimal inverse
blurring coefficients for coefficient i spatial frequency and CCC j to k correction.
A method to derive these coefficients from the ideal spatial domain filters would
have to be developed. In the presence of noise, we would have to adjust the
blurring and color corrections. We could accomplish this by using the scalar
terms Kix sxe Shown in Figure 4.2. The JPEG compression process can then

continue from this point in the standard manner.
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Figure 4.1: DCT coefficients of non-interpolated raw Bayer pixel data.
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Appendix A

CMOS Imager Noise

CMOS image sensors experience noise from numerous noise sources. The resulting
aggregate noise has both time-invariant (fixed-pattern) and time-variant (temporal)
behavior. The use of the term fixed-pattern noise refers to any spatial pattern that does
not change significantly from frame to frame, whereas, the temporal noise changes from
frame to frame [42]. A noise transfer diagram is shown in Figure A.1 for a typical CMOS
imager [35]. The temporal (time variant) noise that CMOS sensors encounter includes
[92]: photon shot noise, capacitive reset (KTC) noise, dark current time-varying noise,
Johnson (thermal or white) noise, and 1/f noise (frequency-dependent). Additionally,
CMOS imagers can suffer significant temporal noise from electrical ground-bounce and
coupling noise problems generated by on-chip logic and ADC circuitry. Fixed pattern
noise (FPN) is generated in CMOS imagers by pixel variations in dark current and
sensitivity, as well as pixel fixed offset. It is common practice to express the values of

the noise sources in root mean square (RMS) electron values.

Photon shot noise is created by the uncertainty due to the quantum nature of light [42].

The measurement process can be considered a Poisson counting process, since the
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sensor is in effect counting the arrival of photons. The probability that n photons will
arrive at a pixel during a time interval T with a photon flux (photon event rate) of r is
given by the probability mass function:

(I’T)n -IT
pr e (A.1)

p(n|rn=

If the number of photons detected by the device is large, then the noise can be well
modeled by a signal-dependent Gaussian distribution [42]. Since the underlying process
is Poisson, the variance of the Gaussian approximation is equal to the mean. This
relationship is very useful in the characterization of image sensors. Each pixel can be
treated as independent from the others. When photon shot noise is much greater than
other sources of noise, then we say that the sensor is shot noise limited [42]. The
signal-to-noise ratio (SNR) can be then determined using only photon shot noise. The
maximum number of electrons that a pixel can hold is called the full well of the pixel [42].
Sensors that have larger full well will have a larger maximum signal to noise ratio when
they are shot noise limited. Smaller pixels have a smaller maximum signal to shot noise

ratio [41]. These effects reduce the sensor’s dynamic range and SNR for small pixels.

Dark current is signal that is generated by the sensor independent of incoming light
signal [42]. Dark current has three main sources of generation. The first is thermal
generation in the depletion region of the photodiode. The second is thermal generation
and diffusion in the bulk material of the sensor. Lastly, dark current is created by surface
states. Dark current can result in both temporal and fixed pattern noise [42]. The
temporal dark current is dark current shot noise. If the number of electrons generated by

dark current is large, then the dark current temporal noise can be modeled as a dark
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current signal-dependent Gaussian distribution. Variation from pixel to pixel in the
amount of dark current generation results in pixel-to-pixel fixed pattern noise. The dark
current is a function of temperature, roughly doubling for every 8°C increase [42]. It is
also directly proportional to the integration time. At higher temperatures and longer
exposure times, the dark current fixed pattern noise can become a dominant noise
source, limiting the SNR of an image. The fixed pattern dark current, or pixel-to-pixel
mean dark current, can be subtracted out from an image frame. However, the temporal
component, dark current shot noise, cannot be removed in this simple manner.
Scientific imagers can be cooled to significantly reduce dark current. However,
commercial consumer imagers usually do not have this option, especially embedded
imaging sensors. Thus, due to dark current concerns as well as motion blur, the
maximum exposure or integration time for an embedded application sensor is limited,

typically to no more than 30 to 60 ms.

One of the dominant sources of temporal noise in CMOS imagers is pixel reset noise
[92], which occurs when the sense node capacitor of the pixel is reset using the reset
transistor. Refer to Figure A.2 for a typical 3T transistor, which has reset, source
follower, and row select transistors. This noise is generally uncorrelated from pixel to
pixel [40], [42]. The reset field-effect transistor switch generates the kTC noise, where k
is Boltzmann’s constant, T is the temperature, and C is the capacitance of the attached
load. The kTC reset noise is due to the thermal noise generated by the resistance within
the reset transistor [42]. After the photodiode is reset, the capacitance of the floating
diffusion is recharged through the noisy reset transistor. As the size of the pixel
photodiode is reduced due to the demands of embedded applications, the capacitance

also decreases. This increases the kKTC noise, as well as decreasing the full-well signal
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level. A passive pixel sensor (PPS) uses a MOS transistor acting as a switch to connect
to the column circuitry. This pixel architecture is limited in performance due to the small
capacitance of the photodiode connected to the large column circuitry readout
capacitance. Adding a small amplifier (source follower) to every pixel results in the
active pixel sensor (APS) architecture. Compared to the PPS, the APS reduces the
pixel reset noise, as well as fixed pattern noise. The imagers used in this document are
all APS CMOS sensors. Reset noise for CMOS imagers usually falls in the range of 20
to 70 noise electrons, depending on the pixel architecture and the sense node sensitivity
(V/e-) [40]. The value of the reset noise can be determined from the Johnson noise

current variance:

o2 = (4KTIR) 4, (A2)

where Af is the noise equivalent bandwidth and is given by Af = RC/4, with C the sense

noise capacitance. Then we have:

o? =KTC (A-3)

The root mean squared (rms) noise in electrons is then:

O = ﬁ , (A4)

q
where q is the electronic charge, and Equation (A.4) gives the uncertainty in the amount
of charge in the capacitor after it has been reset. When uncorrelated double sampling is
used, as with a 3T pixel design, then two uncorrelated pixel resets occur. When these

resets are completely independent, which is a good assumption, then the noise variance
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will double and the rms noise (standard deviation) will increase by the square root of two

(about a 41.4% increase).

There are various definitions of the read noise of a CMOS imager that are used in
literature, that have subtle differences. In this thesis, we will take the read noise to be
the noise obtained from the reading of the pixel itself. It does not include any of the
noise sources down stream of the pixel. It also is completely temporal, not including the
fixed pattern noise sources described in this appendix. It also does not include photon
shot noise. The read noise is independent of the signal. The pixel read noise will
include the pixel reset noise and the temporal noise generated by the pixel’s source
follower transistor. The pixel's source follower transistor is an amplifier, and will thus
have 1/f noise and the white noise [35], [42]. The read noise can be obtained by reading
a pixel at very short exposure time in the dark. If possible, the analog data is read which
removes the noise associated with the on-chip amplifier, which is discussed next. The
read noise is often taken as the noise floor for the image sensor. The dynamic range is
then calculated as the ratio of the full well signal divided by the read noise. Some
references include the dark current noise and down stream temporal noise in the

calculation of dynamic range.

An on-chip amplifier is typically used to gain the signal prior to digitization through the
analog-to-digital converter (ADC). It will usually have variable gain that is used to adjust
the signal to go from rail-to-rail on the ADC. As the light of an image decreases, the
signal data is gained up. The amplifier noise consists of two components, the 1/f noise
and the white noise [42]. When the on-chip amplifier is designed well, the noise from
these sources will be much smaller than the dominant sources, and thus can usually be

neglected.
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Pixel to pixel sensitivity or photo response non-uniformity results in fixed pattern noise
[30]. The pixel sensitivity non-uniformity is caused by small variations in the pixels [42].
The photo response non-uniformity is directly proportional to the input signal strength.
Thus, this form of noise is multiplicative. This fixed pattern noise is typically expressed
as a fraction of the total number of electrons that the pixel contains. Thus, this noise is
characterized as a percentage of the signal. Flat fielding correction methods can be
used to remove this noise [42]. However, this requires a pixel-by-pixel multiplicative
correction that is computationally expensive. Additionally, each pixel can have a fixed
offset that will vary across the pixel array. This fixed voltage offset can exist even when
correlated double sampling (CDS) is performed. The fixed offset is due to difference
between pixels as well as difference between parallel signal processing channels.
Specifically, the column buffers or sample and hold capacitors used for each column of
the pixel array will have some variation. This can result in column fixed pattern noise
(CFPN). The fixed offset can be measured in the dark at close to zero integration time,
and then be removed through subtraction. Through careful pixel design and process

control these noise sources can be minimized.

The process of converting the pixel signal from the analog domain (voltage or electrons)
to a digital number through the analog-to-digital converter (ADC) creates quantization
noise [35], [42]. An uncertainty is created due to a range of analog inputs being mapped
to the same digital output. The mean squared quantization error is the variance (oqz)

due to quantizer round-off, and is given by:

Quse = 05° = E[(v—Vv")7, (A.5)

172



where v is the image data and v’ is the quantized image data. The expected error is a
function of the probability distribution function (pdf) of the image. The usual assumption
is made that the input image probability distribution is uniform, which results in the rms

quantization noise in electrons given by:

_ k(e-/DN)

g, =
q \/E

(A.6)

where k(e-/DN) is the image conversion gain from electrons to digital output. As the
number of bits the ADC uses is increased, the values of k(e-/DN) and o, decrease.
Typically, embedded image sensors use 10-bit ADCs. Usually, the value of o, will be

less than the noise floor.

System noise is temporal noise that is created by sources related to the operation of the
sensor [42],. The on-chip and off-chip electrical circuits can create this noise. The on-
chip circuits include the timing logic and analog to digital converters (ADC). These
circuits can cause clock coupling and ground bounce noise problems. With the size of
the imager dies being reduced, the routing of digital and analog signal lines is very
critical. It can be challenging to keep the analog signal process circuitry clean with all of
the digital signal process circuitry on the same chip. This contributes to CMOS imagers
having difficulty in achieving low-noise performance. Additionally, noise can feed-
through into the image sensor from the system that the sensor is integrated. The power
supply to the sensor can be corrupted with noise that affects the overall noise
performance. Most often, due to the timing constants of the system, the system noise
will manifest itself as row temporal noise (RTN). Fortunately, through careful design, the

system noise of an imager system can be kept small.
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When viewed as an image system, all of the noise sources discussed can be considered

uncorrelated from pixel-to-pixel. The noise sources are functions of the input and output

signal levels, exposure time, and temperature. A signal/noise model for a CMOS image

sensor can be developed using characterization and sensor performance theory. The

model will be a function of the sensor operating conditions,

namely temperature,

exposure time, and input signal level. Signal/noise models are used in Chapters 2 and

3.
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Figure A.1: CMOS imager noise transfer diagram.
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Figure A.2:  Three transistor active pixel based on a photodiode element.
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Appendix B

Photon Transfer Curve

The conversion gain of an imager is defined as the amount of output generated per unit
charge created in the pixel [42]. The number of electrons in the pixel is usually not
known. Thus, the conversion gain must be estimated from measurements or indirectly
calculated. One method that is used to estimate the conversion gain is the photon
transfer method or mean-variance method [68]. The transfer function relating the
number of electrons n stored in the diode a pixel to the pixel’s output in volts v can be

written as:
v = f(n) (B.1)

where f() is an unknown and possibly non-linear function that maps input electrons to
output voltage. Letting p represent the number of photons incident on a pixel, the

quantum efficiency (QE) and conversion gain c4 are given by:
n=nlp (QE) (B.2)

Co(p) = df(N)/dn = £(n) = 1 p (B.3)
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When an image sensor is linear, the conversion gain is independent of input signal,

which can be written as:

cg=F(M)n=pp=F (B.4)

The sensor output signal mean p, and variance o,” can be written as:

M = f Hn t Wyort (B5)
&’ = (F)*0° + O’ , (B.6)

where |, is the mean number of electrons in the pixel diode, Py is the mean offset
voltage of the output (voltage black level), 6,2 is the variance of the output voltage, and
Ouwn’ is the variance of the output voltage that is downstream of the diode. Thus, we
place all forms of noise besides the photon-arrival noise into the term ouu>. The photon-
arrival process is a Poisson process. If the number of photons detected by the device is
large, then the signal can be well modeled by a signal-dependent Gaussian distribution.

The variance of the electrons in the diode is then equal to the mean:
0w’ = Ly (B.7)
Using Equations (B.5) and (B.7), we can write Equation (B.6) as:

o2 = P(FLh) + Gown”

0§/2 = f,(/Jv - ,u\/off) + aﬁwnz (B8)
Then from Equation (B.8) we can write:
cg == d(a’)d(w) (B.9)
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The conversion gain given by Equation (B.9) can be obtained from measured data. We
can generate a similar conversion gain from electrons to digital counts output, cgon, OF
k(e-/DN), using the same logic with the sensor output specified in digital counts. This
can be much more convenient since most CMOS imagers have on chip ADCs. The
digital conversion gain can be determined for all of the operational internal gain settings
of the sensor. The digital conversion gain is usually written as mapping from output DN

to input electrons [68]:

k(e-/DN) = d(zon)/d(obn?) (B.10)

A problem with Equation (B.10) is that it assumes the transfer function to be linear.
However, for a CMOS imager, there can be non-linearity. The capacitance of a p-n
junction diode is dependent on the reverse-bias applied to it. The non-linearity effect of
the photo diode capacitance increasing as the signal level increases causes the noise
sensitivity (V/e-) to decrease and the digital conversion gain (e-/DN) to increase. For
example, there can be a 15% to 20% change for a 1v change in reverse-bias. The
source-follower transistor can also behave non-linearly. However, methods have been
developed to correct for this error [41], [68]. In [68], the slope of the photon transfer
function is modeled as being linearly related to the conversion gain. In [41], the
photodiode gain variation is corrected by assuming that the node capacitance change is
linear with signal. These two corrections are essentially the same, and produce

accurate results.

A complete noise performance of an imaging sensor can then be determined using the
photon transfer technique [41]. The read noise in DN can be converted to electrons by

using the low signal conversion gain, krn(e-/DN). The full well in DN can be converted to
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electrons using the high signal conversion gain krw(e-/DN). Linearity, signal to noise
ratio, dynamic range, and sensitivity can also be determined using the photon transfer
technique. The full well signal is determined from the photon transfer plot by noting the
signal at which the noise suddenly decreases, which signifies a loss of modulation of the
signal. At full well, signal is lost to adjacent pixels. It is convenient to plot the photon
transfer data on a log-log scale, since due to the Poisson probability distribution of
arriving photons, the signal (mean) versus shot noise (standard deviation) will yield a
slope of one-half. A photon transfer curve of an imager that was used to generate SNR
models is shown in Figure B.1 [17]. We use the photon transfer method to help develop
the pixel noise models used in Chapters 2 and 3. A sensor’s photon transfer curve is

used in Section 2.3.2 to show the separate pixel response noise regions.

DVGA K11535 W13 0147TW P3, 3MHz, 30ms, PGAOx00
10 { ——TotalN (RN removed] = - .

: J SHOTN [with RN]
<IN F qvej]

TM [RN removed) [Input Signal & SH Scaled by (k linear at signalfk at signal=0)]

pe at Full Well
— - Full Well Signal

Noise {10-bit DN)

1 10 100 1000
Average Response (10-bit DN)

Figure B.1:  Photon transfer curve for CMOS sensor. K(e-/DN) is 31 at dark level and

36 at saturation level. Read noise is 25 e-, total noise in dark is 28 e-, full
well is 21,000 e- [17].
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Appendix C

Examination of Existing Bayer Cross-Talk

Correction Methods

Cross-talk is the loss of electrons or photons from a pixel to neighboring pixels. Pixel
cross-talk degrades both image sharpness (modulation transfer function, MTF) and
colorimetric accuracy (highly de-saturated, color-muted images). There exist many
restoration methods that can be applied to the Bayer cross-talk problem. However, due
to their complexity, many of these methods cannot be implemented into simple low cost
camera systems. We present in this appendix some of the more important and useful

restoration methods.

C.1 Multi-Channel Methods that Optimize Color Channel
Regularization

The more complex multi-color channel restoration methods allow for the optimization of
the regularization parameter for each color channel separately. These restoration
methods typically employ an iterative solution. In [27], two methods for determining the
regularization parameter are developed, which serve as the foundation for many other
methods: a set theoretic (ST) approach and a constrained least squares (CLS)

optimization. Both of these methods solve the multiple channel regularization equation:
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[HAH+Q'Q]f = AHTy, (C1)

where A is a matrix of N color channel regularization parameters (A;), and is written in

the form:

A[IT O 0 0
0 AJI] 0 0 (C.2)
0 0 AJI] 0
0 0 0 Al

/=

and where [I] is an identity matrix of size M?xM?. The regularization operator, Q, used in
[27] has both 2-D Laplacian (within channel smoothing) and 3-D Laplacian (across
channel smoothing) components. Using a Laplacian smoothing prior simplifies the
problem since it results in a quadratic regularization operator (system of linear
equations) [48]. The objective is to determine the optimal regularization parameters (A;)
of the diagonal matrix A. The ST approach restricts the solution of f to lie within a set S;.
The noise of each color channel, n;, also lies within the sets S,;. The observation of a
color channel y; specifies a set Sy, which contains f. Since each of the sets S, Sgy1, ...
Swyn, contain f, f must lie in the intersection of these sets. The solution f is then taken to

be within the intersection of sets defined for each channel’s solution:
feSevi=[f. (Hif-y) eSnl (C.3)
When ellipsoids are used for the sets Sfand S,;, we have:

|| ni|I>= || Hf = yi||* =<e®and || Qf ||* <E?fori=1,2, ..., N, (C.4)
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Where, e? is proportional to the noise variance in color channel i, and E2 is a
smoothness constraint for color channel i, where H; and Q, are the ith channel M?xNM?
matrices Hi=[H4;, Ha;, ... Hnil and Qi=[Q1i, Q2i, ... Qni] for color channel i. Thus, H; and Q;
are composed of block circulant sub-matrices. The smoothness constraint imposes a
requirement that the high-frequency energy of the de-convolved image is bounded by
the values E; for each channel. The assumption of equal smoothness of channels is
used, giving E = E; for i=1 to N. A solution that is at the center of the ellipsoid that
bounds the intersection of the ellipsoids gives us the values of the regularization

parameters as:

A= (E/ei)2 (C5)

This method requires an estimate of each color channel’s additive noise, e;, as well as
an estimate of the full original image, f. An accurate estimate of f is required to
determine the smoothness constraint or high-energy bounds of the de-convolved image,
E;, for the channels of f. The requirement for an accurate estimate of E; can be overly
restrictive [44]. Iterative methods can be used to determine accurate estimates for the
regularization parameters of Equation (C.5) [48]. It is seen from the solution of this
method that the within color channel smoothing, Q;, and the across color channel
smoothing, Qj;, j#i, is controlled by the same smoothness bounding limit E. This
restriction can result in a sub-optimal result, since the correlation between the color
channels will vary spatially within an image. Additionally, it is noted that this solution
does not consider the interaction of the channels in determining the optimal
regularization values A; for each channel. Each A; term is optimized using only its

channel noise and maximum energy estimations, but each corrected channel will be a
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function of all the observed channels and all of the regularization parameters (1: i=Func{y,
H, Q, Ai=14}). Similarly, in [44], multi-channel restoration is performed using a convex
smoothing functional. It has the obstacle that its iterative solution has high

computational cost.

A Constrained Least Squares (CLS) optimization approach is used in [27] when the

smoothness constraint value E is not known a priori or a satisfactory estimate is not

available. For this method, we seek a solution f which:
minimizes: | Of ||?
subject to: | Hf=yilP=Ini|?=¢e?,fori=1,2, ..., N, (C.6)

where H; is the i"" channel M?xNM? matrix Hi=[H+;, Hz;, ... Hx] and n; is the noise of color
channel i. The solution of the regularization Equation (C.1) subject to these constraints,
Equation (C.6), requires that we must simultaneously find the values of A;, which can be

written as:

Zi(A1, Az, o An) = (] Hil:—yi 1> =]Ini|]®) fori=1,2, ...,N (C.7)

This leads to a nonlinear problem, which has a very high computational cost, since the
roots of the nonlinear functions Zi(A4, Ao, ... Ay) must be found simultaneously to give the
desired A; values. Typically, it is solved using an iterative method, such as Newton
iterations, to find the matrix of A; values (matrix A). Newton’s method involves

calculating the Jacobian of the system (Z;), which has the ij"" element found from [27]:
35= Al Hi f —yi [DIAA)? = 2( Hi f - yi)H AM,QTQF , where (C.8)
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A=[HH+ A'Q'Q] (C.9)

As with the ST method, the amount of within color channel smoothing, Q;, and across
color channel smoothing, Q;, j#, applied are controlled by the same regularization
parameter, A.. The color channel smoothing matrices, Q;, have their coefficients scaled
by the relative signal strengths, || fi ||. But, this does not take into account the local or
global difference of values of the noise terms (e;) of the within and cross color channel
components (CCC). See Section 3.2.2.1 for a definition of CCCs. Thus, the correction
of color channel i will be performed using A; which is applied to data from all of the color
channels, which will have different ratios of signal and noise strengths. Both of the

methods in [27] use global fixed noise variance values.

For both the ST and the CLS methods, the magnitude of the coefficients of the Q matrix
must be determined. As has been stated, the || Qf || operator is a regularizing
functional. The matrix Q must leave large singular values of matrix H unchanged, while
moving small singular values away from zero and not creating any new small singular
values in the solution of Equation (C.1) [27]. The matrix Q also integrates a priori
knowledge of the smoothness of f in the restoration process. Thus, another constraint of
the ST and the CLS methods is the a priori knowledge of the smoothness of f in
determining the Q; matrices for the multi-channel problem. As has been mentioned
earlier, we will use Laplacian forms of the Q; matrices. It has been shown that the
Laplacian is a good regularization operator for images that are highly correlated and
have low-pass characteristics [26]. In most cases, the Laplacian will be a good choice

for the regularization operator. The optimal relative magnitudes of the coefficients of the
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Q; matrices require additional estimations and calculations, increasing the complexities

of these solutions.

Other multi-channel methods include [62], which is a multi-channel MAP method that is
iterative and uses a compound Gauss Markov random field, where the noise is Gaussian
with fixed variance per channel. In [44], a multi-channel restoration iterative method
using convex smoothing functional solution is developed which does not assume a priori
values of the image smoothness or noise bounds. This method is based upon the work
of [27]. The iterative solution has a very computationally expensive cost. An iterative,
multi-channel method that works for different noise types but does not use noise model
information, and uses least mean squares and least mean fourth order combined
smoothing functional is developed in [36]. A high complexity multi-channel Kalman
filtering method that uses cross-channel correlations is developed in [25], which can
work with stationary and non-stationary (spatial variations) models. An iterative
Bayesian approach using Compound Gauss-Markov random fields is used in [63], which

performs well at a high computational cost.

The multi-color channel methods shown in this section use a noise model, but it does not
vary with the signal magnitude. Also, these methods usually employ an iterative
solution, which limits it ability to be implemented in a system. Another key factor that
these existing multi-channel methods do not address is the different degrees of ill-
conditioning of the individual blurring filters corrupting each color channel. These
methods allow for the optimization of the regularization parameter for each color channel
separately, but not for each individual color channel components (CCC) of each color.

Thus, these methods use one regularization value per color channel, without considering
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the individual within and cross CCCs that comprise each color channel. Therefore,
these multi-color channel methods are considered too complex for our target application

and do not possess all of the features (e.g., individual CCC correction) that we require.

C.2 Signal Dependent Noise Model, Non-Direct Method s

There are restoration methods that account for signal dependent (non-uniform) noise,
but these methods are typically complex and non-direct. These methods are thus too
complex to use in our targeted low-cost camera system. The methods referenced here
are for a single channel, but could be extended to the multi-channel case. Iterative
methods that are used to correct a blurred image include the MAP method of [47], which
accommodates signal-dependent noise, is spatially adaptive, but is too complex for our
application since it is an iterative solution. The iterative MAP filter [55] considers signal-
dependent Poisson noise, uses a nonstationary mean and stationary variance model
along with local image statistics. A signal-dependent noise MAP method is presented in
[37] which is solved using an iterative solution. In [50], a signal-dependent noise method
using nonstationary local mean and variance estimations is developed that utilizes
recursive Kalman prediction and filtering. A signal-dependent noise, LLMSE, direct
method is developed in [49] that uses nonstationary estimates from local data and is
adaptive to local data, but is applicable to non-blurring cases only. Gauss-Seidel
iterations are used in the ML and MAP methods of [74], which use a signal-dependent
Poisson model with local updates. In [24], an iterative P-LH (penalized likelihood)
uniform resolution (modified penalty) method using a Poisson model, LIR (local impulse
response), local blurring, and local data is developed. A PWLS (penalized weighted
least squares) method that uses a variance matrix based on Gaussian estimations (1/y

being approximately Poisson) is created [23], where an iterative solution must be used to
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determine the estimations. An iterative P-LH method for uniform spatial resolution using
a Poisson model and locally applied is constructed in [79]. The method of [2] uses a
PWLS approach with a Poisson model (1/y ~ Poisson approximation), that is iterative
due to the use of noise estimations. An iterative, P-ML technique using a Poisson
model, optimal FIM (Fischer Information Matrix) estimation and uniform resolution is

derived in [53].

Some methods use simplified noise models or local estimates, but still require iterative
solutions. A regularized, iterative method that adapts locally using estimates of local
(locally fixed) noise variances (does not use an a prior noise model) is present in [86].
The method uses adaptive regularization parameter and operator to control the amount
of noise smoothing within the image. The method, which is too complex for use in our
targeted camera model, has an operator based on edge or no edge local data. A
bounded noise variance (fixed) method using convex projections is developed in the
iterative solution of [77]. The regularization MAP method of [46] uses fixed Gaussian
noise variance and the image spectrum. A cross-validation estimation of a fixed i.i.d.
noise variance is used in [93]. An iterative regularization with a noise fixed variance is
utilized in [66]. In [48], a regularized, iterative method that uses projection onto convex
sets is developed what uses signal and noise covariances. Spatially adaptive methods
can be used to incorporate non-uniform noise characteristics, however these methods
are iterative. The iterative method of [48] is spatially adaptive using a set theoretic

restoration algorithm.
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C.3 Stochastic Methods

Stochastic regularization methods usually require prior knowledge of the statistics of the
image data, which is then used to regularize the restoration problem. A linear estimation
of the problem can lead to the classical Wiener filter [3]. In general, it is easier to
implement a CLS filter than a Wiener filter, since the CLS filter only requires a simple
constraint instead of power spectrum estimations. It is also easier to extend a CLS filter
to a spatially adaptive form due to its deterministic approach [78]. Additionally, the
performance of stochastic restoration methods is very sensitive to accuracy of
estimations or calculation of the image and noise statistics [93]. A multi-channel Wiener
filtering algorithm that uses within and cross-channel power spectra is presented in [67],

which is too complex for our camera system.

Stochastic methods often require that the covariance of the original image and noise
data be estimated over the entire image, which can be expensive for large images.
Methods also have been developed where these statistics are calculated over a local
area [49]. Stochastic methods do not use deterministic a priori information, such as the
common smoothing or high-frequency constraint. We will be using a smoothness
constraint that allows for the smoothing (reduction) of noise as a function of local pixel
SNR. Taking advantage of the HVS’s sensitivity to low frequency color error [64], [75],
[76], [85], we can use estimates of the local mean values of SNR to determine our

optimal regularization parameters.

Stochastic methods are sensitive to the cross-channel signal correlations, which will vary
for each image and for different areas within an image. This information is expensive to

calculate, and errors in the values used can lead to poor performance. A Stochastic
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method using LMMSE filters (multi-channel Wiener) is developed in [28], where within
and cross-channel correlations are used. The solution is very sensitive to these channel
correlation statistics [93], and requires N*M?log,M operations, which is too complex for
our situation. Many stochastic methods use static values of signal and noise variances
in order to simplify the solution. A regularization method based on fixed noise and signal

variances is developed in [45].

C.4 Methods Using MSE to Determine the Regularizati  on
Parameters

For the deterministic regularization approach, the regularization parameter determines
the trade-off between fidelity to the data and smoothness of the solution. In [26], the
optimal MSE regularization parameter (Anse) is determined from the value that produces
the lowest total objective MSE. This MSE is defined as the sum of the variance of the
noise (which is scaled by the restoration method) and the bias error of the estimate. As
Amse iNCreases, the bias error increases, but the noise variance error (due to the ill-
conditioned blurring filer) decreases. Our method also uses this approach, however we
take it further by looking at the local pixel SNR value. This SNR value is defined as the

corrected pixel value divided by the pixel estimate MSE.

As stated in this thesis, the use of the local SNR is justified by the HVS’s sensitivity to
local signal to noise contrast (SNR) [7], [19] , [56], [73] and to low frequency color errors
[64], [75], [76], [85]. Thus, we use the constraint of a maximum local corrected SNR
value to determine our regularization parameters (for each CCC). Many other methods
exist for determining the value of the regularization parameter to use, such as
constrained least squares (CLS) methods using noise bounds [3], [26], set theoretic (ST)

methods using image high-frequency and noise bounding ellipsoids [26], [48], predicted
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mean square error [26], and maximum likelihood (ML). However, these methods do not
satisfy our stated HVS criteria, and often are not direct methods. Additionally, they
require that the high-frequency energy bound for the de-convolved image is known a
priori or that it be calculated through an iterative process. Using local pixel SNR

estimation does not impose these requirements.

C.5 Simple Direct Solutions

There are several simple and direct solutions to the Bayer cross-talk blurring problem,
but they use assumptions that limit their performance. These methods can be
implemented in low-cost camera systems, but will not produce the color quality, noise
suppression performance, or image sharpness of more complex methods. A simple
computational method with a direction solution is presented in [84] which assumes equal
and independent channel blur. Thus cross-channel blurring, typically the greatest
contributor to color de-saturation (dulling of colors), is not corrected. The method also
assumes fixed noise variance. The multi-channel least squares method of [29] also
does not correct cross-channel blurring. In [54], a simple direct prediction filtering
method is presented which does not use a noise model (assumes stationary, fixed,
known noise variance) or correct the cross-channel blurring. The method’'s main
purpose is to remove the mismatch in green odd/even pixels, which results from the
commonly occurring asymmetrical Bayer cross-talk. This mismatch appears as an
annoying and highly visible fixed-pattern in images. It can be removed by using the ideal
inverse cross-talk filtering (at the cost of noise amplification). A LLMSE (local linear
mean square error) method that considers signal-dependent noise and uses non-
stationary estimates from local data (adaptive to local data) is presented in [49]. This

method does not handle the situation of blurring however, and would not correct cross-
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talk. We have previously developed a simple, direct, heuristic method [59], but it is non-

adaptive both locally and globally.

A typical simple approach used in industry to correct the signal error due to cross-talk
uses a 3-by-3 color matrix correction. This correction essentially performs a LMMSE
color correction. The loss of image sharpness is normally corrected in a separate step,
which typically is concerned with edge sharpness and not inverse filtering. An optimal
3x3 color correction matrix can be determined using linear regression [43] or calculated
from sensor and lighting parameters. The 3x3 color correction matrix Tcc can be broken
down into a 3x3 saturation matrix Tsy and a 3x3 white balance matrix Tyg that only has

terms on its main diagonal, as shown below:

TSat TWB :TCC1
sat1il Tsat12 Tsat1i3 Tygs O 0 ccu Tcciz Tcecis
sat21 Tsat22 Tsat23 | 0 Twesz 0 | = [Tccar Tcecze Tceczs (C.20)
sat3l Tsat32 Tsatz3 | O 0 Tws ccat Tceae Tceess

Using this approach, the white balance matrix corrects for the ambient lighting conditions
(dynamic, scene dependent), and the Ts, matrix coefficients correct for the sensor
dependent responses. These sensor dependent responses include cross-talk, as well
as the responsivity of silicon and the transmissivity of the color filter array (CFA) used.
These corrections allow for the mapping from the device dependent color space to the
CIE color space. This is shown in Figure C.1, which illustrates the processing path of

the camera system.

In order to maintain the white balance of an image, the Ts, matrix must have the

coefficients of each of its rows sum to one. Thus, as the magnitude of the off-diagonal
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saturation terms increase, the on-diagonal terms of Ts, must also increase. This means
that for sensors that have more cross-talk, the Tsy coefficients will have larger values,

and the SNR of the processed images will decrease, due to amplification of the noise.
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Figure C.1:  Typical low-cost camera color correction processing path.

The calculations of the ideal correction coefficients for a 3x3 Tgy matrix are shown in
Figure C.2. The cross-talk coefficients for a DVGA CMOS sensor are used, where the
pixel area applied has been restricted to 3x3 pixels (as is done for simple 3x3 color
corrections). In the signal diffusion table of the figure, the amount of charge that enters
a target pixel (center pixel) and ends up at the specified pixel location is shown. This is

the characterized cross-talk behavior.
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DVGA CMOS sensor Cross- Amount of Signal Diffused to Neighbor Pixels
talk coefs, 3x3 area used,

amount of charge that entered Wave Length
target pixel (center pixel) that
ends up at the specified pixel

Blue Pixel Green Pixel Red Pixel

location

Mean Transfer from Pixel to Pixel Inverse of Mean Transfer from Pixel to Pixel

Inverse Matrix

—

Mean blurred transfer of signal from one pixel type * Reduce to 3x3
to neighboring pixel type.

Inverse matrix operation corrects mean blurring

Reduction from 4x4 to 3x3 correction causes
further blurring (averaging), thus ideal correction
is not possible.

Figure C.2:  Calculations of the color correction matrix for a typical low-cost camera
sensor.

There are several sources of error from using this approach. The mean blurred transfer
of signal from one pixel type to neighboring pixel type is used in constructing a 4x4
cross-talk transfer matrix. This forces the averaging of cross-talk that occurs in different
directions. For example, a blue pixel has four neighboring red pixels, each of which has
a particular cross-talk value. But the sample cross-talk value will end up being used for
all of its red pixel neighbors. The inverse matrix operation will create a mean blurring
correction matrix. Another error is that in order to simplify the camera correction
process, the difference in green even and green odd pixel responsivity is not taken into

account. The correction matrix is reduced from a 4x4 matrix to a 3x3 matrix, which
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introduces a bias error. The 3x3 correction matrix allows the correction to be applied to
a Bayer interpolated pixel triplet (RGB values at pixel location). Thus, an ideal correction
is not possible with this method. By treating the green even and odd pixels the same, a
bias error is created since neither pixel type is corrected using the proper coefficients.
This error increases as the asymmetrical behavior of cross-talk increases. Often, simple
smoothing or median filtering is used to correct this fixed pattern error [54]. But these

methods do not correctly restore the non-blurred image values.

It is also noted that this method has no regularization in place, and cannot account for
different noise levels. A common industry approach is to adjust the ideal 3x3 T¢c matrix
to approach the Tywg matrix as the overall camera system noise increases (or the SNR
decreases). Thus, the coefficients of the saturation matrix are reduced in magnitude
when higher camera system gains are used (indicative of lower lighting levels and lower
SNR). The adjustment is very rough and global (no local effects considered). By using
this adaptive 3x3 matrix approach, the performance at the low quality operating
conditions (low light, low SNR) is improved. As mentioned, the control for this
adjustment is usually tied to camera exposure time, sensor analog gain, and required
digital gain. This idea is shown in Figure C.3 for the same camera system as defined in

Figure C.2.

3x3 Correction Matrix, Tce 3x3 White Balance Matrix, Tws

Decreasing
SNR, Increasing
Camera Gain

—>

Figure C.3: Typical low-cost camera color correction matrix adjustment.
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