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Abstract

Compression of digital images has been a topic of research for many years and a

number of image compression standards has been created for di�erent applications.

The role of compression is to reduce bandwidth requirements for transmission and

memory requirements for storage of all forms of data. While today more than ever be-

fore new technologies provide high speed digital communications and large memories,

image compression is still of major importance, because along with the advances in

technologies there is increasing demand for image communications, as well as demand

for higher quality image printing and display.

In this work we focus on some key new technologies for image compression, namely

wavelet based image coders. Wavelet coders apart from o�ering superior compres-

sion ratios have also very useful features such as resolution scalability, i.e. they allow

decoding a given image at a number of di�erent resolutions depending on the applica-

tion. We start by presenting in a simple manner a collection of tools and techniques

to apply wavelet �ltering in images, ranging from boundary extension to fast imple-

mentations. We continue by exploiting the use of rate distortion theory in trying to

achieve very high compression ratios for a wavelet coder. The results we report are

among the best in the literature. We apply rate distortion theory on a per coe�cient

basis combining a theoretical analysis with an online probability estimation.

After presenting the rate distortion algorithm we focus on techniques to reduce

the complexity of generic wavelet coders. One of the main contributions of this

work is the ability to compress an image with a wavelet coder without the need to

bu�er the complete image. The memory requirements of the proposed approach are
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orders of magnitude lower than other algorithms proposed up to date, which would

require bu�ering of the entire image. This limited low memory implementation is

key in enabling widespread commercial use of wavelet image coding and has been

incorporated in the informative part of the upcoming JPEG2000 standard.
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two sibling bands may be used in context formation. The parent band

will be used if it is not the DC band. When encoding the 3 subbands

in one level, the �rst has no sibling, the second has one sibling and the

third has two siblings. . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 (a) Five level dyadic decomposition, or the so called mallat decompo-

sition. (b) Five level separable decomposition. . . . . . . . . . . . . . 60

4.4 Gain in PSNR with respect to the single class as a function of the

number of classes. For each image we can see 5 curves corresponding

to 5 di�erent rates. The PSNR gain is larger for higher rates. Moreover

the gain achieved by increasing the number of classes varies from image

to image, from 1dB to up to 3dB. . . . . . . . . . . . . . . . . . . . . 61

5.1 One level decomposition for �lters of length L = 2S + 1 = 9. We need

eight memory elements, which are represented by a shift register. The

delay between input and output is S = 4 samples. . . . . . . . . . . 71

5.2 Cascade of two levels of wavelet decomposition. The delay for the �rst

level is S, the delay for the second level is 2S and the total delay for

both levels is S + 2S. The time units for the delay are considered in

the input sampling rate. . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 One dimensional analysis and synthesis decomposition trees, the delay

involved in the analysis/synthesis �lter banks is depicted, the memory

needed increases exponentially with the number of levels. The major

factor for memory is the syncronization bu�ers and not the �ltering

bu�ers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



xii

5.4 Consideration of both synthesis and analysis �lter banks reveals the

need for syncronization bu�ers. Two bu�ers z�S are needed to form a

queue for the x(0)(n) samples. . . . . . . . . . . . . . . . . . . . . . . 75

5.5 (a) Five level dyadic tree decomposition. The multiplications needed

for the whole decomposition are 8
3
XY L. (b) Five levels decomposition

in the horizontal direction for all lines, followed by a dyadic decompo-

sition in the vertical direction. The memory needs are the same as in

the previous case, the multiplications needed are 10
3
XY L . . . . . . . 78

5.6 Full system with analysis �lter bank, encoder, decoder and synthesis

�lter bank, we consider 5 levels of decomposition. The FIFO bu�ers

can become part of the encoder and decoder, in order to reduce the

total memory size. Encoder and decoder need to be able to work with

each band independent of the others. The �ltering bu�er for level n

consists of L lines of length 2�nX. The data 
ow is as follows: we

read image data, pass through the �ltering blocks for the appropriate

levels, send data to the encoder and inverse the process in order to

reconstruct the image. . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.7 Context information for magnitude encoding. For each subband we

keep a line of context information. In this Figure we see the relative

position of the wavelet coe�cient �i to be encoded and the context

information around it. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1 Lifting structure for a two channel analysis �lter bank. . . . . . . . . 94

6.2 Lifting structure for a two channel synthesis �lter bank. . . . . . . . . 95

6.3 (a) Non causal (b) causal (c) modi�ed causal lifting steps. . . . . . . 96

6.4 Analysis lifting structure with causal lifting steps P(z);U(z), the syn-

thesis structure can be derived in a similar manner. . . . . . . . . . 97

6.5 Modi�ed lifting representation analysis �lter bank, with �ltering dis-

jointed from delay units. Blocks [Pi] do not include any delay, instead

they reads multiple input data from the delay lines z�l0 and z�g0 . . . 99

6.6 Analysis lifting structure with causal lifting steps and minimum mem-

ory requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.7 Delay line for one band of an analysis �lter bank. . . . . . . . . . . . 105

6.8 Delay line along with the �ltering elements for one band of an analysis

�lter bank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



xiii

List of Abbreviations

DCT - Discrete Cosine Transform

DFT - Discrete Fourier Transform

DPCM - Di�erential Pulse Code Modulation

DSP - Digital Signal Processor

DVD - Digital Versatile Disc

FBI - Federal Bureau of Investigation

FFT - Fast Fourier Transform

FIR - Finite Impulse Response �lter

IDCT - Inverse Discrete Cosine Transform

IDFT - Inverse Discrete Fourier Transform

IIR - In�nite Impulse Response �lter

ISO - International Standardization Organization

JBIG - Joint Bi-level Image experts Group

JPEG - Joint Pictures Experts Group



xiv

IWT - Inverse Wavelet Transform

KLT - Karhunen Lo�eve Transform

LOT - Lapped Orthogonal Transforms

LPTV - Linear Periodically Time Variant System

LSI - Linear Shift Invariant System

LTV - Linear Time Variant System

MPEG - Moving Pictures Experts Group

MSE - Mean Square Error

PCM - Pulse Code Modulation

PSNR - Peak Signal to Noise Ratio

SIMD - Single Instruction Multiple Data

QMF - Quadrature Mirror Filter

SNR - Signal to Noise Ratio

WT - Wavelet Transform



1

Chapter 1

Introduction to Image

Compression

Contents

Compression of digital images plays a key role in image storage and transmission.

In this chapter we will give a brief introduction to general image compression, and

wavelet image compression in particular.

1.1 Bandwidth, Memory, Computations and

Compression

The advances in technology the last decades have made the use of digital images a

commonality in everyday life. While the usefulness of digital images in communicat-

ing information is not questionable, the cost of storing and transmitting images is

much larger compared to storage and transmission of text, so that for example image

databases require more storage than document archives. While series of still images

can form a video sequence, still images are treated in a di�erent way than video im-

ages. In video we are dealing with a three dimensional space, with the third dimension

being time. Video images are usually of limited size compared to still images which
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might be orders of magnitude larger, but video images need to be transmitted at a

certain rate for real time display.

The amount of data transmitted through the Internet doubles every year, and a

large portion of that data is images. Reducing the bandwidth needs of any given

device will result in signi�cant cost reductions and will make use of the device more

a�ordable. Magnetic hard discs (HD), CD's, DVD's of larger capacity are released

every year, in response to greater demand for storage of digital data. The use of digital

cameras, both still and video, is becoming more widely accepted. Image compression

o�ers ways to represent an image in a more compact way, so that one can store more

images and transmit images faster. The advantages of image compression come at

the expense of numerical computations, and therefore we can trade o� computations

for storage or bandwidth. Before storing or transmitting an image we process it in

such a way that will require fewer bits for its representation.

Technologies addressing increase of bandwidth of a given channel, increase of the

size of a memory device and increase in the number of computations per second

performed by a CPU, have been developing simultaneously without any sign of sat-

uration. Memory sizes are only limited by the physical size of the device, if we place

two discs one next to the other we double the capacity of the system. The same is

true for computations, as two processors have twice the computational power of a

single processor. However the problem of just duplicating a processor or a memory

unit is bandwidth. If we duplicate a processor we need to make sure that the two

processors can communicate with each other at high enough rates and we can access

all memory units through the same bus. It seems that bandwidth, memory and com-

putations are closely interrelated, and which one is more important depends on the

speci�c application. Compression algorithms can be thought of as means to trade o�

computation, memory and bandwidth as seen in Figure 1.1. A compression algorithm

tries to o�er the best trade o� among the three factors, for a given application. For

example if we are limited in terms of memory we can spend more computational time

to compress the image and make sure it �ts into the given memory size. If we are

computation limited we can store the image as is with no compression or with limited
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Memory

Bandwidth

Computation
Factors to be considered
in algorithm development

Figure 1.1: Complexity trade o�s. Memory, computations and bandwidth are of

major importance on algorithm development.

compression with a simple compression algorithm.

1.2 Historical background on Image Compression

and Compression Standards

Image compression algorithms have been the subject of research both in academia

and industry for many years. Today, while signi�cantly improved algorithms have

been achieved and compression performance is better than a decade ago, there is still

room for new technologies. The �rst widely adopted international image compression

standard was JPEG [49, 71] which was introduced in the late eighties. JPEG is

based on DCT followed by entropy coding based on either Hu�man coding [46, 84,

90] or binary arithmetic coding [58, 80, 90, 105]. It has been widely used from the

printing industry to Internet applications. For example all high-end printers compress

the image to be printed before they actually send it to the print engine, and most

images transmitted through the internet are JPEG compressed. JPEG is intended

for continuous tone images of more than one bit depth. Algorithms for binary images
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work in a di�erent way, JBIG-1 and JBIG-2 are the standards covering this area.

JPEG and JBIG are part of other standards, such as facsimile transmission standards

[48], the FlashPix �le format [42], the TIFF �le format [1], and page description

languages like PDF.

In recent years researchers have been using the discrete wavelet transform in com-

pression systems. In 1983 Burt and Anderson [7] were the �rst to introduce multi-

resolutional analysis in image compression. While their approach seemed counter in-

tuitive at the �rst glance, given that it increased the number of samples to be coded,

their results were promising. Mallat [63] was the �rst to point out the connection

between multiresolutional analysis and the wavelet transform. Daubechies [31] has

studied the discrete wavelet transform and has made it a popular tool in the scienti�c

community. Some of the �rst papers on wavelet image compression [3,83,85,93] pre-

sented excellent compression performance results and gave a lot of intuition behind

the use of the wavelet transform in image compression. A number of researchers [107]

have described the same principles of wavelet image compression by looking at it

from a system perspective, using �lter banks, and subband decomposition, and refer

to wavelet coding as subband coding. Subband coding and wavelet coding essentially

refer to the same system, the description of the system is from a slightly di�erent

point of view. In subband coding the emphasis is in the frequency domain unlike

wavelet coding where the emphasis is in the space domain [98].

Numerous organizations have been using wavelet compression algorithms as their

own, internal compression standards. An example is the FBI [44] where there was

a need for storing large data-bases of �nger-prints and JPEG did not satisfy their

requirements. Only more recently was there a decision by the ISO to standardize

a wavelet coder in JPEG2000 [59]. Until recently [17] all proposed wavelet coders

would require bu�ering the whole image, computing the wavelet transform in a frame

bu�er, application of a quantization on the wavelet coe�cients and entropy coding

of the generated indexes. Wavelet coders could indeed perform very well, but their

complexity was well above the complexity of the current JPEG standard. Complexity

issues on wavelet coders have only been emphasized by researchers in the last few
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Figure 1.2: Generic Image Encoder and Decoder. E ! Entropy Encoder, Q !

Quantizer, T ! Transform. E�1 ! Entropy Decoder, Q�1 ! Inverse Quantizer,

T �1 ! Inverse Transform

years, as the JPEG2000 standard process has exposed the complexity of wavelet

coders. Our work [17] was among the �rst to address low memory wavelet coding.

There are two major classes of image compression algorithms, namely lossy and

lossless algorithms. Lossless algorithms preserve the image data, i.e. original and

reconstructed images are exactly the same. In lossy image compression original and

reconstructed images may or may not be identical in a strict mathematical sense, but

to a human observer they may look the same, so the goal is to achieve compression

that is visually lossless. Both lossy and lossless compression algorithms are used today

in a broad range of applications, from transmitting satellite images, to web browsing

to image printing and scanning. With lossy compression algorithms we can achieve

signi�cantly larger compression ratios compared to lossless algorithms.

1.3 A Generic Image Compression System

Most image coders consist of transform, quantization and entropy coding, as seen in

Figure 1.2. The transform block is in general a reversible operation, i.e. a cascade of

a forward and an inverse transform blocks is the identity operation. T T �1fargg =
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T �1T fargg = arg. Quantization on the other hand introduces some loss. The quan-

tizer usually maps an interval of real numbers to a single index, constituting the

only lossy part of the coding system i.e., Q�1Qfargg 6= arg. It is lossy because the

knowledge of an index is only enough to give us the corresponding interval in the

real line but not the exact number in the real line. The entropy coder is the building

block responsible for compression, it maps more frequent indexes to small codewords

and less frequent indexes to larger codewords. It is also a reversible operation i.e.,

E�1Efargg = arg. A large portion of the computational complexity of a compression

system is due to the entropy coding part of the system. More compression usually

translates to higher computational complexity. In general arithmetic [58] and Hu�-

man coding [46] are the most common choices. Arithmetic coding is intended for

high-end applications where complexity is not a concern, but compression perfor-

mance is, while Hu�man coding is intended for low-end applications where simplicity

is more important. Typically the most memory intensive element is the transform,

as will be explained in chapter 5. Quantization on the other hand is a much sim-

pler process than the transform or the entropy coder. For the JPEG decompressor

for example with optimized C code, the Hu�man decoding contributed to 60% of

the execution time with DCT contributing 30% and quantization only 6% 1 for a

Pentium-II processor. When talking about quantization we refer to scalar quanti-

zation. While we could also use vector quantization the complexity would be much

higher and therefore we only focus on scalar quantization.

1.4 The Discrete Wavelet Transform

The one-dimensional wavelet transform is a particular linear transformation of a sig-

nal. Let x be our input signal and y be the output signal. Then the input output

1The remaining 4% was spend on function calls and marker parsing.
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relation for a generic linear transform is:

y =

"
y0

y1

#
=

"
M0

M1

#
x =Mx; (1.1)

where, in the case of two channel wavelet transform, both matricesM0;M1 are sparse

with non-zero elements only across the diagonal region. Moreover each row ofM0;M1

is a shifted version of an other:

Mi =

2
66666664

:: :: :: :: :: :: :: :: :: :: :: :: ::

:: 0 a

(i)

k�1 a

(i)

k�2 :: a

(i)
1 a

(i)
0 0 0 :: :: :: ::

:: :: 0 0 a

(i)

k�1 a

(i)

k�2 :: a

(i)
1 a

(i)
0 0 0 ::

:: :: :: :: 0 0 a

(i)

k�1 a

(i)

k�2 :: a

(i)
1 a

(i)
0 0 ::

:: :: :: :: :: :: :: :: :: :: :: :: ::

3
77777775
; i = 0; 1

(1.2)

Two channel wavelet transforms generate two subsequences y0, y1 from any one given

sequence x. The wavelet transform is a critically sampled transform, i.e., the number

of samples at the input is the same as the number of samples at the output. The

size of the output vector y is equal to the size of the input vector x, and the size

of each one of y0 and y1 is half the size of x. The wavelet transform is a reversible

transform and the inverse transform usually has the exact same structure as the

forward transform. Some wavelet transforms are orthogonal, but the most useful

class of wavelet transforms for image compression is the class of so called bi-orthogonal

wavelet transforms [88]. Bi-orthogonal transforms are the only transforms that can

have the linear phase property [97], which turns out to be very useful as explained in

chapter 2. There are two reasons for the popularity of these transforms, one is the

fast implementations possible by using �ltering operations as seen in Figure 1.3, the

other is the multiresolutional representations they allow. An interesting property of

the wavelet transform is the following: assume that x is a signal that contains mostly

low pass information, then y0 will also have low pass information and the \shape"

of y0 will resemble that of x, unlike the y1 samples which will capture the detail
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Figure 1.3: (a) Two channel analysis �lter bank, (b) two channel synthesis �lter bank.

information of the signal x. Referring to 1.3, half of the output (y0) is obtained by

�ltering the input with �lter H(z) and down-sampling by a factor of two, while the

other half of the output (y1) is obtained by �ltering the input with �lter G(z) and

down-sampling by a factor of two again. H(z) is a low pass �lter, while �lter G(z) is

a high pass �lter.

We will not discuss the 1D wavelet transform in detail, and refer to standard

texts [88, 97, 98] for more information. Instead we will mention brie
y a few inter-

esting properties of the 2D wavelet transform. In two dimensions we usually apply

�ltering both horizontally and vertically. Filtering in one direction results in decom-

posing the image in two \components". The total number of \components" we have

after vertical and horizontal decompositions is four. From now on we will refer to

these \components" as image subbands, LL,HL,LH,HH. One of the four subbands, the

LL subband, will contain low pass information, which is essentially a low resolution

version of the image. Subband HL will contain low pass information vertically and

high pass information horizontally, and subband LH will contain low pass information

horizontally and high pass information vertically. Finally, subband HH will contain

high pass information in both directions. From Figure 1.4(a) we see that subband

LL is more important than the other 3 subbands, as it represents a coarse version

of the original image. The multiresolutional features of the wavelet transform have
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Figure 1.4: (a) One level wavelet transform in both directions of a 2D signal. The

LL subband contains the most information about the image, while all other subbands

constitute the high resolution information for the image. (b) Two levels of wavelet

transform in both directions.

contributed to its popularity. We can encode subband LL alone and add to the en-

coded bit stream information about the subbands HL,LH,HH. Then the decoder is

responsible to decide whether to decode only LL or all subbands.

1.4.1 Compressing Wavelet Coe�cients

Subband data are usually real numbers, therefore they require a signi�cant number

of bits in their representation, and do not directly o�er any form of compression.

However by looking at the subband data we �nd out that the majority of the coe�-

cients in the high frequency subbands are very small. Moreover there is little if any

correlation between coe�cients in the subband data2.

The �rst approach towards compressing wavelet data is to apply a quantizer in

all the coe�cients, where uniform and dead-zone quantizers are the most common

2An exception is the top level in the decomposition, i.e. the low pass (LL) band.
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Figure 1.5: (a) Dead-zone quantizer, (b) Uniform quantizer with symmetry around

zero, (c) Uniform quantizer centered around zero. The circles \�" represent numbers

on the real axis, while the small vertical lines \j" denote partitions for quantization

bins.

choices, as seen in Figure 1.5. After quantization we select an entropy coder to com-

press the quantization indexes. Little or no gain can be achieved by using linear

prediction on the subband data. However context based classi�cation is always pos-

sible even if prediction is not. Almost all popular coders [3, 16, 17, 83, 85, 93] de�ne

techniques to classify the subband data into di�erent sets or classes based on past

encoded information. Then it is possible to take advantage of the di�erent statistics

in each class. There exists some cross-correlation between the same spatial locations

in subbands LH,HL,HH. While exploiting this for of correlation usually costs a lot in

terms of complexity it can be used to achieve better compression performance, as we

will discuss later in the thesis in chapter 4.

1.5 Image Quality Metrics

As discussed above, in lossy compression the reconstructed image is not the same as

the original image, so that individual pixels values may be di�erent from the values

in the original image. In order to measure the quality of the reconstructed image we

need to introduce a quality metric, ideally one that is correlated to visual appearance.

Clearly if original and reconstructed images cannot be distinguished by the human eye
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Figure 1.6: Rate distortion curves for MSE and visual appearance metrics. For high
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and decoded images are perceptually indistinguishable.

then our compression algorithm performs very well. De�nition of perceptual metrics

is a very hard problem and it is di�cult to �nd the point in the rate distortion curve

in Figure 1.6 for an image where we transition from visually lossless to visually lossy.

This transition point di�ers, depending up on the viewing angle, the viewing distance

the display medium and the viewer himself. Instead, the peak signal to noise ratio

(PSNR) between the original and the reconstructed image is a common choice. PSNR

is a function of the MSE (Mean Square Error) and is de�ned as follows:

PSNR , 10 log10
MAX

2

MSE

; (1.3)

Where MAX is the maximum possible intensity value in the image. For example

for eight bit depth images MAX = 28 � 1 = 255, and for images with d bits depth

MAXd = 2d � 1.

The PSNR metric is the most popular metric of image quality used in compression.

Occasionally pure MSE or SNR numbers have been used in testing algorithms,

and in some cases the L1 norm has also been used. That is, the maximum error

between original and reconstructed image is used as a distortion metric. However for

convenience PSNR will be the only metric used in the thesis.
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1.6 Bit stream features

There are certain features in an image coder that are of interest, such as for example

the ability of the coder to decode di�erent resolutions of the image, a property de�ned

as resolution scalability. Here by resolution we mean the size of the reconstructed

image. We can classify all resolution scalable coders into two di�erent classes, namely

resolution progressive coders and resolution parsable coders. A resolution progressive

coder is a system where the decoder can reconstruct a lower resolution of the image

by just decoding the �rst portion of the bit stream, the resolution parsable term refers

to the system that can reconstruct a lower resolution of the image by going through

the bit stream and extracting only certain portions of it. In both cases no complete

decoding of the whole bit stream is needed.

Image coders can be further classi�ed into SNR progressive and SNR parsable

coders. Instead of an intermediate resolution we reconstruct the full resolution image,

but we are interested on image quality not image resolution. By decoding more and

more bits we can get a higher quality image (higher SNR.) Another very interesting

property of some coders is the ability to decode only certain regions of an image, the

so called random access property. A coder can support decoding of arbitrary shaped

regions or of any rectangular shaped region, like for example the coder in [9]. Region

of interest encoding and decoding is also related to random access. For region of

interest encoding we only encode an arbitrary shaped region of the input image, and

discard the rest of the image, that does not fall into the region of interest.

Resolution scalability can be achieved by encoding whole subbands one after the

other, without interleaving bits from di�erent subbands [16,19]. SNR scalability can

be achieved by distributing encoded bits from one subband into the whole bit stream

in an optimal way as done for example in [9, 83, 92]. Random access can be achieved

by independently encoding portions of the whole image [42]. Wavelet tree coders

like [83,85] can be modi�ed to support random access. All image coders can support

random access by tiling the image and encoding each tile independently of the rest.
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1.7 Rate Control

Since image compression is usually a non real time operation, it would appear that

compression does not have the rate control problems of video compression. In video we

need to transmit image frames in real time. For example we might need to compress

at the constant rate of 30 frames per second and thus we need to design a rate

control algorithm to make sure that output bu�ers do not over
ow. In still image

compression rate control is not needed when dealing with small images. But when

compressing larger images rate control might be as important as in video applications.

Many devices, such as high quality printers and scanners, are required to compress an

image with a certain compression ratio. An input image is fed into the compression

algorithm and the compressed bit stream is meant to be stored in a �xed size memory.

We need to make sure that under the worst case scenario the compressed bit stream

will �t into the �xed size memory. In practice the compressed bit stream may occupy

only a portion of the physical memory. By aiming at utilizing the whole memory, we

would have the highest quality images, but we would run the risk of bu�er over
ow,

in which case we would lose part of the image. The best solution to the problem is to

be able to control our rate as we encode the image. There are many di�erent solutions

to the problem (see for example [92]). Most approaches are based on bit-plane coding

as will be discussed later

Rate control does not apply to lossless compression scenarios, where we cannot

adjust in any way the size of the compressed bit stream. The compression ratio will

depend upon the image itself and the algorithm we are using and we cannot force a

minimum compression ratio. For example for lossless compression of white noise we

cannot achieve any compression at all.

1.8 Color Spaces and Digital Imaging

Color spaces are very important in digital imaging and have di�erent e�ects in image

compression algorithms [38, 53, 71]. All natural images can be represented by three
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components. Some of the most common color spaces are RGB, Lab, Y CbCr, Y UV ,

CMY , CMYK
3. Color spaces can be separated into two di�erent categories, device

dependent and device independent spaces. Device dependent spaces are such that

the values of all the components are set with respect to a given device, while device

independent color spaces refer to color spaces where the values in all components are

set with respect to a given standard [38,53,66] and do not depend on the characteris-

tics of any speci�c input or output device. All input devices like scanners and digital

cameras provide color data in a device dependent color space, and the data is then

converted to a device independent color space by a device dependent transformation.

Device independent data can go through any image processing algorithm, including

compression and decompression. When data has to be sent to an output device like a

printer or a monitor, device independent data is converted to a device dependent color

space. It is alway preferable to compress data in a device independent color space, so

that we can output the compressed bit stream to any output device without the need

to know where the data came from. The most common technique for compression

of color images is to use a color space where there is not much correlation between

the three components, as for example Lab. A common choice is to also sub-sample

the chrominance components by a factor of two in each dimension and compress each

component independently of the others. This approach has been used within the

JPEG standard and will also be used in the upcoming JPEG2000 standard. There is

some correlation between di�erent components in an image and it is possible to get

better compression results by jointly compressing all three components, but such an

approach has not been proved useful in practice for two reasons:

1. We do not expect signi�cant gains by joint coding of all components. When

encoding each color component separately, the luminance component requires

many more bits to encode than the two chrominance components. A color

transform decorrelates the three color components, so there is almost no linear

3Color spaces with more than three components are mainly used for printing.
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correlation among the three components. If we try to jointly encode all compo-

nents we can only reduce the number of bits slightly for the two chrominance

components, which already represent a very small portion of the bit stream.

2. In some cases, e.g., block and white printing and display it is desirable to decode

only the luminance component of an image and thus it is convenient to be able

to decode luminance independently of chrominance.

When evaluating compression algorithms we will concentrate on gray scale images

because it is much easier to compare results and draw conclusions. MSE is the most

common metric of image quality when working with gray scale images. Dealing with

color images MSE is not so informative of the image quality since it depends on the

color space and a lot of color spaces are non linear4. Compression algorithms for

color images need to be compared based on visual criteria. We will not discuss color

spaces any more in this thesis, instead we will concentrate on gray scale images and

compare results based on MSE.

1.9 Overview and contributions of the thesis

In chapters 2 and 3 we introduce the reader to the problems that will discuss later

in the thesis. They are of fundamental importance to understanding the material

in chapters 4 and 5. The material we present in chapters 2 and 3 applies to any

wavelet coder. In chapter 2 we discuss the implementation of the wavelet transform,

on �nite support signals as those encountered in image compression. The wavelet

transform is just a mathematical tool and is intended for in�nite support signals. Even

though special treatment at the borders of the image has been studied by a numbers

of researchers, there is no comprehensive reference for practical implementations.

We provide a complete analysis of all possible cases when dealing with the image

boundaries. In chapter 3 we discuss entropy coding techniques used in wavelet based

4Nonlinear color spaces are color spaces that are derived from standard RGB with a non linear

mapping.
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Figure 1.7: Digital Imaging path. On the left we see a generic system for digital image

acquisition and consumption, on the right we see the same path for the transmission

of an image from the scanner to the printer.
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image coding with emphasis on arithmetic coding, and the role of adaptivity.

The key contributions of this work are in chapters 4, 5 and 6 . In chapter 4

we focus on rate distortion performance, with out purpose being to achieve as good

quality as possible for a given bit rate. This will serve as a benchmark for other

coders we consider in this dissertation. The key contribution of this work is the use

of rate distortion theory to jointly quantize and entropy encode a subband of wavelet

coe�cients. In chapter 5 we propose a novel way of applying the wavelet transform

in image compression applications where we minimize the memory needed for wavelet

transform and compression. This low memory wavelet transform has been adopted

by the JPEG2000 committee and it is highly likely that it will become part of the

evolving standard. A key disadvantage of past wavelet coders was their excessive

memory requirements. In order to compress an image these algorithms would always

need to bu�er the whole input image in some form, either the original image or the

wavelet coe�cients of the whole image. In chapter 5 we present a complete solution

to the problem of excessive memory requirements. The memory needs with our pro-

posed approach are proportional to the width of the image and the �lter length, unlike

other approaches that need to bu�er the whole image. Moreover we combine the low

memory wavelet transform with a simple entropy coder in order to demonstrate that

such and approach can indeed be useful in a practical compression scheme. In chapter

6 we re�ne our results from chapter 5 by using lifting structures. Lifting structures

lead to lower memory as well as to lower computational complexity as compared to

convolution implementations. We also elaborate on the advantages of lifting struc-

tures when dealing with boundary signal extensions. Lifting implementations have

been studied only recently and more research in the area is needed.
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Chapter 2

Finite Support Wavelet Transforms

Contents

The discrete wavelet transform in equation (1.2) can only be applied directly

to in�nite support signals, as the matrix in equation (1.2) is banded [88], that is

it has in�nite support. However in all imaging applications our input signal has

�nite support. Since causality is usually not an issue in image processing, special

treatment of the image boundaries can be used in dealing with the �nite support.

Several researchers in the signal processing community have addressed processing at

the boundaries when �ltering �nite length signals [4, 6, 64, 65, 87].

There are two ways to deal with a �nite support signal, we can extend the signal so

that it has in�nite support [87] or we can modify the matrices in (1.2), to have �nite

dimensions [43]. While both approaches have their merits, for image compression the

best choice is the one that decorrelates the input signal in the best possible way, while

preserving features such as orthogonality and perfect reconstruction.
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2.1 Boundary Treatment

2.1.1 Zero padding

When �ltering we can assume that the pixel values of an image outside its bounds

are zero. This will cause two major problems. If we assume critical sampling1, that

is the number of input samples is equal to the number of output samples, the wavelet

transform will not be perfect reconstruction. The lower resolution subbands very often

happen to be of size less than 16 � 16, in this case a small error in the boundaries

will translate to a much larger error in the full resolution image. If we can a�ord not

to have critical sampling, nonzero wavelet coe�cients will appear outside the image

boundary. Perfect reconstruction will be possible by using those additional samples,

that is the number of output coe�cients will be larger than the number of input

coe�cients.

A second problem is that by assuming a zero padding at the boundaries we are

introducing a lot of high frequencies that do not exist in the original image. Image

compression algorithms are based on the assumption that most of the energy in an

image is at the low frequencies. By introducing high frequencies we make it more

di�cult to compress an image and the compression ratio su�ers. Therefore zero

padding is not an acceptable solution for image compression.

2.1.2 Circular convolution

An alternative to zero padding is circular �ltering, where we assume the image repeats

itself in�nitely many times in the 2D plane. The output of the WT, i.e., the WT

coe�cients, will retain the same periodic structure. This approach does solve the

problem of requiring more wavelet coe�cients than image pixels, since in this case

the wavelet coe�cients form a two dimensional periodic signal with period the size

of the image. However this approach introduces extra high frequencies, since what

appears in the left hand side of an image is not the same as the right hand side of the

1Another term for critically sampled transforms is non-expansive
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image. Periodic extension o�ers perfect reconstruction and can be acceptable in some

cases, but the compression performance of any given algorithm will tend to su�er.

2.1.3 Boundary �lters

Zero padding and circular �ltering are approaches that will work on any signal and

any wavelet kernel, but are not suitable for image compression. Another approach

that will work with any �lter and any signal would be to design boundary �lters, so

that the matrices in equation 1.2 would have �nite support. This approach for �nite

signal wavelet decomposition is explained in detail in [43]. The basic idea is to change

a few entries in the matrices Mi and reduce them to a block triangular form:

M0

i =

2
664
Jui 0 ::

0 Bi 0

:: 0 Jli

3
775 (2.1)

Where the matrices Bi are of �nite dimensions, the matrices J
u
i and J

l
i are of in�nite

dimensions in one direction and M0

i � Mi. Most entries of M0

i are the same as

the corresponding entries of Mi with only few exceptions around the bounds of Bi,

Jui and Jli. If matrices Bi instead of Mi are used for �ltering, we can work with

�nite length signals, and the whole approach leads to time varying �lter banks. The

time varying term refers to that not all input pixels are treated in the same way,

the pixels on the borders are transformed in a slightly di�erent manner, which is

equivalent to changing the wavelet transform as a function of the location we are at.

Most elements of matrices Bi are the same as the ones in Mi, the only di�erences

are around the matrix bounds. We change the least number of coe�cients from the

original matrices Mi in order to reduce them to a block triangular form, while at

the same time preserving the low pass or high pass nature of the convolution kernels

corresponding the the matrices. The design involves selection of few parameters in a

way that around the bounds the �lters corresponding to the transform are close to the

original �lter bank. The drawback is that we need to design boundary �lters for each
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Filter

Length

(L)

Signal

Length

(�)

Analysis
Synthesis

Lowpass

left

Synthesis

Lowpass

right

Synthesis

Highpass

left

Synthesis

Highpass

right

Odd Even W W H H W

Odd Odd W W* W* H* H*

Even Even H H H -H -H

Even Odd H H W -H +(0)-W

Table 2.1: Type of extension for analysis and synthesis �ltering to the left and to the

right bound of the signal. The � indicates that W;H can be interchanged while �H

denotes that apart from extension we also multiply the extended signal by �1. The

(0) denotes that we also need to account for the appearance of zeros as seen later on

this chapter.

individual �lter bank; changing the coe�cients for the wavelet kernel would require

designing new boundary �lters. Moreover all pixel values around the boundary of

the image would be treated in a special way. If the boundary �lters are designed

carefully we will not be introducing high frequencies, but we will still be having some

di�erent behavior around the bounds of the image.

2.1.4 Symmetric extension

As an alternative to the above approaches, we can use symmetric extension of the

signal at the boundaries, as long as the �lter kernel is also symmetric [6]. Symmetric

extension works very well since it does not introduce more high frequencies than

already exist in an image and \treats" all image pixels in the exact same way, in the

sense that all pixels are �ltered with the same kernel. Symmetric extension is of such

fundamental importance that most wavelet coders are restricted to using symmetric

�lters in order to allow the use of symmetric extensions2. The only orthogonal �lter

that can also be symmetric is the Haar �lter [88]. If we want to have symmetric

kernels we need to use bi-orthogonal rather than orthogonal �lters. The exact type of

symmetric extension depends on the �lter length, the signal length and also whether we

2Symmetric �lters are also referred to as linear phase �lters
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Figure 2.1: Whole point (W) and half point (H) extension
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Figure 2.2: Even length signal, Odd length �lters, highlighted coe�cients are sampling

points. L�i = Li, H�i = Hi

are considering the analysis or the synthesis �lter banks. In the following paragraphs

we cover all the di�erent cases of symmetric extension in the most general settings

providing a valuable reference to anyone who wants to implement any speci�c wavelet

kernel.

2.1.5 Whole point/ half point extension

Consider a signal xn; n = 0; 1; 2; 3 : : : , we can have two types of symmetric extension

at the boundary of the signal, whole point extension (W) as seen in Figure 2.1(W)
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Figure 2.3: Even length signal, even length �lters, highlighted coe�cients are sam-

pling points. L�i = Li�1, H�i = �Hi�1

and half point (H) extension as seen in Figure 2.1(H). In the H extension case the

�rst sample x0 is repeated, while the W extension case x0 is the only sample not

to repeat itself. In wavelet �ltering we use symmetric extension in such a way that

after �ltering the wavelet coe�cients still possess a symmetry around the boundaries.

We need to be able to �nd the coe�cients outside the boundaries based only on

coe�cients inside the image. It turns out that we need to consider four di�erent

cases, for odd or even signal length � and odd or even �lter length L. In table 2.1 we

present the type of extension that we use for the analysis signal, the synthesis high-

pass and synthesis low-pass signals, at the beginning and at the end of the signal.
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Figure 2.4: Odd length signal, Odd length �lters, highlighted coe�cients are sampling

points. L�i = Li, H�i = Hi

We refer to the beginning of the signal as the left bound and the end of the signal as

the right bound. Another issue when using symmetric extension on the boundaries is

how to center the analysis and synthesis �lters around the signal to be �ltered. The

details of the �ltering operations can be seen in Figures 2.2, 2.3, 2.5 and 2.4. Where

xi is the input signal i = 0; 1; : : :N�1, Li; Hi are the low pass and high pass �lters in

the �lter bank, li and hi are the low pass and high pass �ltered versions of the input

before sub-sampling.

For even length signals, low-pass and high-pass channels have the exact same

number of samples. For odd length signals we have the freedom to assign more

coe�cients to the low-pass or to the high pass channels. For convenience, in this
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Figure 2.5: Odd length signal, even length �lters, highlighted coe�cients are sampling

points. L�i = Li�1, H�i = �Hi�1

thesis in the case of odd length signals we are assigning more samples to the low-pass

channel than the high pass channel. The only reason for such a choice is that we can

thus achieve more levels of decomposition.

2.1.6 Point Symmetric Extension

A less well known variation on the above presented symmetric extension type is the

point symmetric extension [54]. The policy for boundary extension is the same as

the one in the previous section, the di�erence is that the extension is around a point
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Figure 2.6: Symmetric and point symmetric boundary extension.

instead of a line as seen in Figure 2.6.

There are certain advantages and disadvantages of such a policy for extending a

signal at the boundary. Point symmetric extension preserves �rst and second3 order

derivatives of the signal instead of setting them to zero. This fact alone is extremely

helpful in reducing boundary artifacts when blocks of the image are transformed

independently. The disadvantage is that the extended signal depends on the last

signal sample which might be quantized at the decoder side, in which case we have

some precision errors.

The above presented point symmetric extension has not been as widely accepted

as the symmetric extension of section 2.1.5.

2.2 Interleaved �ltering on the synthesis �lter bank

In the analysis �lter bank the conventional way to reconstruct a given signal is to

up-sample the low pass, up-sample the high pass, �lter each one of them separately

and add the two results as seen in Figure 1.3b. It is possible to avoid the two di�erent

�ltering operations if we interleave low pass and high pass signals to create one signal

3Second order derivative is set to zero
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that is twice as long as the two individual signals. Doing so we can skip the up-

sampling process. In this case when we apply �ltering we need to also interleave the

wavelet �lter coe�cients. Detailed examples can be seen in Figures 2.2, 2.3, 2.5 and

2.4. Li; Hi coe�cients correspond to the analysis low pass and high pass �lters while

Li;Hi correspond to the synthesis interleaved �lters. Interleaved �ltering usually

leads to faster and simpler implementations, since we only need to go through the

output data once. Interleaved �ltering was �rst used in an implementation of the

SPIHT coder in [83].

2.3 Variable complexity inverse WT

When performing the inverse wavelet transform all coe�cients usually come from

an entropy decoder or a dequantizer. Thus we expect to have a lot of zeros among

the coe�cients, and it is possible to take advantage of the large number of zero

coe�cients and avoid �ltering altogether. Therefore in the inverse wavelet transform,

when we implement the convolution of a �lter with a signal we can check if certain

portions of our signal are zero. If that is the case we can avoid �ltering and instead

set the output to zero. The main problem with such approaches is that the number

of comparisons with zero involves some computational cost. Also if after comparing

with zero a given region is not zero, we will still need to go ahead with the �ltering

operation. Consider an input signal xn; n = 0; 1; 2; : : : a �lter h0; h1; : : : hL�1 and an

output signal yn; n = 0; 1; 2; : : : the input output relation is:

yn =

L�1X
k=0

xn�khk (2.2)

If we want to speed up the implementation of the convolution for each output sample

we need L comparisons per sample. We compare xn�k; k = 0; 1; : : : L � 1 to zero,

and if all those numbers are zero we do not continue the convolution. Instead we

set the output to zero. If at least one of those values is nonzero we need to multiply

the non-zero coe�cients with the corresponding �lter coe�cients. Computationally
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testing for zeros in a window of the input signal turns out to be complex. A much

better approach is to check each input sample xn. If it is zero we move on to the

next sample, if it is nonzero we add its contribution to the output sequence yn. The

algorithm is as follows:

1. if xn is zero f n n+ 1, go to step 1 g else go to step 2

2. for k = 0; 1; 2; : : : ; L� 1, yn+k  yn+k + xnhk

3. n n+ 1 go to step 1

Even though theoretically the above approach may o�er some bene�ts in terms

of complexity reductions, in practice those bene�ts can rarely be of any use. The

reason is that the savings are highly irregular as the processor cannot predict when

a coe�cient is signi�cant or not, and as a result the processor pipeline is disturbed,

because of the di�erent paths we need to follow depending on the coe�cients that

we observe. In modern DSP's multiplications can be performed in one cycle, so the

above analysis may not even apply at all. Another interesting direction of research

is the use SIMD type of instructions on a general purpose processor, in this case we

can apply the same operation on multiple data at the same time. Future computers

will provide more and more SIMD type of instructions so we will need to revisit the

complexity issues based on the latest computer architectures.

A di�erent approach has been proposed in [35], where the IWT is combined with

the inverse decoding in a wavelet tree across di�erent levels of decomposition. This

approach can indeed speed up computations and works best when used along with a

tree based coder.

2.4 Bit reversal and interleaving

We call interleaved, data structures such that wavelet coe�cients from di�erent de-

composition bands are clustered together, thus allowing spatial localization to be

preserved. Instead, in non-interleaved data structures all coe�cients corresponding
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to the same frequency band are stored together. Wavelet transforms have certain

similarities to the FFT, given that data interleaving (bit reversal) is needed in both

cases in order to get the correct order of transformed coe�cients. Interleaved data

in the wavelet transform lead to tree representations, while non-interleaved data lead

to subband representations. It is not clear whether it is preferable to encode spa-

tially clustered coe�cients or frequency clustered coe�cients. This will depend on

the application.

Consider the case of a one dimensional two channel �lter bank. The input to

the �lter bank is a signal xn; n = 0; 1; 2; : : : ; 2N � 1, the output is comprised of

two signals y00; y
0
1; : : : ; y

0
N�1 and y

1
0; y

1
1; : : : ; y

1
N�1. We can place those two signals

in di�erent memory locations, so that we will have two di�erent frequency bands

separated from each other. We can also interleave the two signals into one signal

y = fy00; y
1
0; y

0
1; y

1
1 : : : ; y

0
N�1; y

1
N�1g. The same principle applies for an arbitrary num-

ber of decomposition levels, where we can have the samples from di�erent bands,

located in di�erent memory locations or we can interleave them. Interleaving leads

to spatial localization of all coe�cients, while separate positioning leads to frequency

localization. Tree coders work better with interleaved data while subband coders

work better with non-interleaved data, by tree coder we mean a coder that works

with trees of wavelet coe�cients from di�erent decomposition levels.

From a computational complexity point of view when working with a large number

of decomposition levels it is preferable to have non-interleaved data. The reason is

that, for interleaved data, samples from the same band are located further apart,

so processing of a given band requires more data to go through the cache. The

complexity here depends on the cache hits, since the number of operations to be

performed will be the same. For a small number of decomposition levels the opposite

is true, that is, interleaved data is preferred, since the distance between data from

the same subband is upper bounded to a small number.

Interleaved data can be put in non interleaved form by using a bit reversal table

and vice versa. Bit reversal is used when implementing the FFT. Wavelet transforms
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can be implemented in-place using similar structures to the butter
ies in FFT, fol-

lowed by bit reversal in a similar manner to FFT. Lifting implementations are very

well suited for such tasks, as will be seen in chapter 6.

2.5 Issues in Hardware Designs

The majority of new compression schemes based on wavelets and arithmetic coding

are implemented in software, and therefore their complexity analysis is based on

software. Hardware implementations of individual components of the system such

as arithmetic coding or wavelet transforms have been studied independently by a

number of authors [11], but there has been no comprehensive study of the hardware

architectures for a complete compression system, since such systems are not widely

used, if used at all, as of today. Designs for individual systems have been performed

but no complete compression system design is known to exist. Something that has

been greatly overlooked is the fact that practical devices such as printers need to

compress images of hundreds of millions of pixels and it is not feasible to bu�er

the complete image. For large images the bottleneck in the whole design is the

bandwidth needs of any algorithm. It is extremely di�cult to pass the data around

all the di�erent components of a system for the whole image, in a reasonable time.

There have been designs addressing video images of sizes no more that 1K by 1K,

but to the best of our knowledge there is no work addressing large size images. It will

be of great interest to investigate some possible hardware architectures and see what

are the complexity tread-o�s compared to software implementations. In hardware,

numerical operations are not as time consuming as in software, but on the other hand

memory accesses are much more expensive.

The objective of the hardware designer is to design a system that can encode

wavelet coe�cients at the rate the wavelet transform engine generates them. Thus

the entropy coding and the transform engine need to be balanced. In this way we can

fully utilize all components of the system without one component being idle, while

another is working full speed. It is of great importance that all components work
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in parallel, in this way we get the best performance out of the hardware or the best

performance for the minimum number of gates.

We will not elaborate more on hardware design issues in the rest of the thesis,

since that requires detailed knowledge of the speci�c system, but we will always try

to take into consideration the basic principles of hardware designs as explained in this

section.
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Chapter 3

Entropy Coding

Contents

In this chapter we will discuss brie
y a few issues related to entropy coding. We

will review the basics of entropy coding and emphasize that code design problems

translate to probability estimation. We will also discuss entropy coding and probabil-

ity estimation techniques that are used in image compression and for non-stationary

data.

3.1 Introduction

Entropy coding is of fundamental importance in any compression system. The term

coding refers to a mapping C from a discrete random variable x 2 X to a �nite length

string C(x) from an alphabet B. This �nite length string is called a codeword. The

most common alphabet for the representation of codewords is the binary alphabet

B = f0; 1g. The purpose of entropy coding is to map the most probable symbols to

shorter codewords and the less probable symbols to longer codewords. In this way

the expected length for the representation of a sequence can be minimized. Entropy

coding has been studied extensively in information theory [90]. In image compression

applications the most common entropy coding techniques are Hu�man coding and
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arithmetic coding. The expected length L(C) of a source code C(x) for a random

variable X with probability mass function p(x) is given by:

L(C) =
X
x2X

p(x)l(x) bits; (3.1)

where l(x) is the length of the codeword for x.

3.1.1 De�nition of Entropy

Consider a discrete random variable X with values from set X , and probability mass

function p(x) = Pr(X = x); x 2 X , the entropy H(X) of the random variable X is

de�ned as follows:

H(X) = �
X
x2X

p(x) log2 p(x) bits (3.2)

Entropy denotes the minimum average number of bits needed to represent an instance

of the random variable X. Entropy of a random variable represents the lower bound

of the expected length for any code for that variable. That is, no code for a given

variable X can achieve a bit rate lower than the entropy.

Entropy can de�ned only if we have a well de�ned probability model for the

random variable X, without a probability model p(x) entropy cannot be de�ned and

used [70]. Moreover it has to be emphasized that the bound L(C) � H(X) applies

only given that the probabilistic model and the coding technique are based on the

same model of the source. Thus if H(X) is based on a �rst order model P (X = x)

but we use a vector coder x1; x2 ! C(x1; x2) the average length of the code can be

less than H(X), when there is some dependence between x1 and x2.

3.1.2 Hu�man Codes

Within the class of codes that map one input alphabet symbol into one codeword,

Hu�man codes are optimal for any given source. That is, there is no other code with
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smaller average expected length. It can be proved [90] that the average length L of

Hu�man codes is within one bit from the entropy, that is:

H(X) � L < H(X) + 1 (3.3)

Based on the above equation we can see that for sequences with entropy much larger

than one bit per pixel, H(X) >> 1, Hu�man codes are very e�cient, but for sources

with entropy less than one, H(X) < 1, the e�ciency of Hu�man codes is not guaran-

teed. Hu�man codes are optimal codes that map one symbol to one codeword, but

if we consider mapping 2 symbols to one codeword we can achieve better codes and

the bounds in 3.3 change dramatically. In the case where we encode N symbols in

one codeword using Hu�man codes, the bounds in 3.3 become [90]:

H(X) � L < H(X) +
1

N

(3.4)

That is, asymptotically as we encode larger and larger blocks of data with one code we

can achieve performance arbitrary close to the entropy of the source (we assume and

i.i.d. source). The design of Hu�man codes for encoding vectors of symbols becomes

complicated. Moreover the size of the codebook becomes prohibitively large. A better

alternative to using higher dimension Hu�man codes is to employ arithmetic coding.

3.1.3 Arithmetic Coding

The principle behind arithmetic coding is the encoding of a sequence of values x0; x1; : : : xn

with one codeword. Arithmetic codes can asymptotically achieve the entropy of a

source as the size of the encoded sequence becomes larger and larger, provided that

the source is stationary and the statistics of the source are known. Arithmetic coding

involves computing the probability of the sequence x0; x1; : : : ; xn�1 as a product of

the individual probabilities, p = p0p1p2 : : : pn�1 and mapping the probability p to a

codeword. The encoder does not need to scan the whole sequence in order to gener-

ate the codeword. Instead, it can start generating bits of the codeword after going
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through the �rst symbols in the sequence. Arithmetic coding is essentially a way of

encoding a sequence without direct use of a codebook.

Arithmetic coding performs very well for sequences with very low entropy where

Hu�man codes lose their e�ciency. They are always asymptotically optimal for sta-

tionary sources. But none of the above features of arithmetic coding has made it as

popular as its ability to work with di�erent probability models pi. Hu�man codes

can also be made adaptive but the complexity of such a task is higher as compared

to arithmetic coding. Thus arithmetic coding owes its popularity to a large degree to

their ability to adapt to changing input statistics.

3.1.4 Hu�man versus Arithmetic Coding

In many compression standards like JPEG, entropy coding takes more than 60% of

the time for compressions ratios of about 8 : 1. Techniques such as Hu�man coding,

or even Golomb [41] codes, are usually faster than arithmetic coding. However the

performance will su�er if we directly use a Hu�man code instead of arithmetic coding.

Moreover adaptivity for non-arithmetic coders is usually more complex. But there are

a few alternatives techniques where one can avoid using arithmetic coding altogether

as for example [104]. This will be of great interest for any practical compression

system.

3.2 Adaptation in Entropy Coding

In arithmetic coding we can change our estimate of the probability mass function of

the source symbols. As long as both encoder and decoder use the exact same proba-

bilities, the code will be uniquely decodable. For sources for which the distribution is

not known a priory we can start with a uniform distribution and adapt the distribu-

tion based on the statistics of the encoded data. For sources such that the �rst order

statistics change over time we can keep our estimated model of the source as we move

along, so that we can have a very e�cient code for a source with varying statistics.
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Arithmetic coding separates coding from modeling, and is close to optimal as long

as our probability model re
ects the statistics of our data. We translate the code

design problem to a probability estimation problem; the more accurate our estimates

the better the performance of our code.

3.2.1 Probability estimation

Consider a sequence of symbols x from the set X = f!0; !1; !2; : : : !N�1g, let T [] be

a table, with entries denoting the number of times each symbol !k occurred in the

sequence x. That is T [k] = q, if !k occurred q times. Let s =
PN�1

i=0 T [i]. An estimate

of the probability of symbol !k is p(est)[k] = T [k]=s. That is in s tries !k occurred

T [k] times. When we start counting we set all values in the table T [] equal to one.

For a stationary source the number p(est)[k] will converge to the actual probability

p[k] of !k as the number of observations goes to in�nity. In a computer, the entries

of the table T [] have �nite precision and we cannot store an in�nitely large number

there. For practical reasons we usually restrict the maximum number that we can

store in the table to 216 � 1, that is each entry in the table occupies two bytes. In

order to avoid over
ow each time we update an entry to the table we check if the

number s =
PN�1

i=0 T [i] is larger than a threshold � . If it is larger than � we divide

all entries of the table by two, that is T [k] (T [k] + 1)=2; k = 0; 1; : : : ; N � 1.

For stationary sources, during the adaptation process all the entries of the table T []

move from a transient state to a steady state. In the steady state, there is some 
uc-

tuation around a convergence point, due to the �nite precision of the implementation.

The initialization of the entries in the table T [] will have an e�ect on the speed of

convergence. It was found based on experiments that having all entries equal to one

as the initial value makes the algorithm adapt faster. It is also worth pointing out

that the state of our table will never go back to all entries equal to one. Normalization

will only occur when s > � . Starting with another state other than all entries equal

to one will make it harder to adapt if the initial state is not the steady state. For

example if the actual probability of one entry is equal to zero and we have started
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with an initial entry equal to a large number it will take much longer to reach conver-

gence. The above described procedure of estimating a probability of a source is very

useful for non-stationary data. For non-stationary data the re-normalization of the

entries in the table T [] gives us a powerful tool to estimate adaptively the probability

mass function of continuously changing data. The greater the non-stationary nature

of our data the smaller the parameter � needs to be. This form of re-normalization

is equivalent to a \forget factor" used in a lot of adaptive algorithms. Also the above

mentioned techniques have certain similarities to simulated annealing used in function

minimization [73].

3.3 Bit plane coding versus whole word coding

There are two di�erent approaches to entropy encoding a sequence of numbers x from

a set X . The �rst approach is to use an M -ary code to encode each sample from the

sequence, where M = jX j. A second approach is to take the binary representation

of each number x and encode each bit of x using a binary entropy coder. From now

on we will call the �rst approach whole word coding and the later binary coding. In

general, for pure lossless compression, binary coding does not o�er any advantages

and is rarely used. The bene�ts of binary coding appear when we combine entropy

coding with quantization. In this case we can use bitplane coding , i.e., send the

most signi�cant bits of all inputs �rst, then the second most signi�cant, etc. Bitplane

encoding enables a successive approximation to quantization and is used in progressive

encoding and lossy to lossless compression.

Even if progressive encoding is not desired we may still prefer to implement a bi-

nary coder instead of a whole word coder. In hardware implementations of arithmetic

coding it is more complex to implement anM -ary coder than to implementM binary

arithmetic coders. This is because in hardware memory accesses are more expensive

than addition or shift operations.

In many applications it is desired to be able to progressively decode a given im-

age, to do so we need to use bit plane coding of the wavelet coe�cients. This is a
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requirement in the new JPEG2000 standard and has been addressed by a number of

researchers. What is missing in this area is an analysis of how much more progressive

transmission costs in terms of memory. In the case of progressive encoding/decoding

the encoder usually needs to bu�er the whole bit stream or at least parts of the bit

stream if not the complete image in some cases. Some insight on the subject will be

given in chapter 5. We will not consider bit plane binary coding in the rest of the

thesis in great detail since our focus in this work is not on progressive encoding, or

other features of interest but rather on compression performance along with memory

utilization.

3.4 Fast Hu�man Decoding, Canonical Hu�man

codes

Hu�man encoding is a relatively simple operation, since it is a one to one mapping

from an index to a codeword. Computational complexity is some of the lowest of any

coding algorithm. One cannot say the same for Hu�man decoding. The typical way

to decode a bit stream is to parse through it and check bit after bit. Each time we

read a bit from the bit stream we travel through the nodes of the Hu�man tree [55].

Once we have reached a leaf node we have decoded a whole codeword and we can

start over again to decode the next symbol.

We cannot decode two codewords in parallel and the decoding process is strictly

sequential. Also within a codeword we need to decode bit after bit. A somewhat

better approach to the problem is to use a look-up table for decoding. If we know

that the largest codeword is of length L, we can use a look-up table of length 2L to

decode the bit stream. We pass L bits of the bit stream to the lookup table and

the entry to the table gives us the length of the codeword, since we now know the

length of the codeword we can �nd the codeword itself. Working in this fashion we

can decode the whole bit stream. The problem with this approach is that it does not

scale very well as the maximum codeword length L increases. For example for 16 bit
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codewords we need 65536 = 216 bytes to store the look up table.

A di�erent approach is to use normalized Hu�man codes as described in [55, 84].

For a given source of symbols there is a family of Hu�man codes that gives the same

compression performance. Within this family of Hu�man codes there is only one with

the following two properties.

� Shorter codes have a numerically (if �lled with zeros to the right) higher value

than longer codes.

� Within the same length, numerical values of Hu�man coders increase with al-

phabet. That is, the Hu�man codes for each length are sorted in an ascending

order.

There are some advantages of using these (or similar) rules and produce a canonical

Hu�man code. The �rst rule guarantees that no more than the d(log2(alphabet size))e

rightmost bits of the code can di�er from zero. The �rst rule also allows an e�cient

decoding. Both rules together allow a complete reconstruction of the code knowing

only the code lengths for each symbol. Canonical Hu�man codes are used within the

JPEG [71] baseline standard. They allow a concrete representation of the code as

well as fast decoding.

Even though canonical Hu�man codes allow fast decoding, look-up table decoding

is usually faster for small alphabet sizes. So in practice a combination of the two is

used. We �rst try to decode with a small look-up table, if decoding is possible we

continue with the next symbol, if decoding is not possible we go ahead with the

standard procedure to decode canonical Hu�man codes. More details can be found

in [84].
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Chapter 4

Rate Distortion Optimal Adaptive

Encoding

Contents

In this chapter we present an adaptive image coding algorithm based on novel

backward-adaptive quantization, classi�cation and rate distortion techniques. The

rate distortion selection is done in one pass with minor complexity overhead and

without the need for extensive search or multiple passes. Moreover the probability

models for each context are adapted to past encoded data and no overhead information

has to be sent to the decoder. Our results are comparable or in most cases better

than the recent state of the art. The main contribution of this work is the use of rate

distortion techniques in adaptive encoding applications, jointly optimizing quantizer

and entropy coder in one system.

4.1 Background

Over the past few years adaptivity has become an essential component of state of

the art image coders, in particular those based on wavelets. Several researchers have

advocated making adaptive in various ways the basic components in a wavelet-based

image coder, namely, the tree-structured �lter bank [114], the �lters themselves, the
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quantizers [9, 115] and the entropy coders [83, 85, 93]. In this work we concentrate

on the issue of adaptive quantization and entropy coding for a �xed �lter bank. The

novelty comes from the joint consideration of quantizer and entropy coder, where

we use rate distortion criteria at the encoder in order to make optimal decisions,

about both entropy coder and quantizer on each individual pixel. We use context

modeling and classi�cation and model the distribution of our source as a mixture of

distributions. Context modeling was directly used in [93] while in [83, 85] context

information was taken into account by using a zero-tree data structure which enables

the joint transmission of zero-valued coe�cients present at the same spatial location

across several frequency bands.

We are considering a context-based adaptive arithmetic coder similar to that pro-

posed in [103] with two major di�erences being (i) we operate in the subband domain,

rather than the image domain and (ii) our contexts are determined based on past

quantized data rather than the original data as in the lossless compression scheme

of [103]. Our approach is simpler than adaptive quantization methods and may also

be better suited to high rates where the layered coding approaches lose some of their

bene�ts. A similar context based adaptation is presented in [62], our main di�erence

with the approach in [62] is the use of online joint rate distortion optimization on each

individual pixel, unlike [62] where there is no such consideration. We also di�er from

the coder used in the JPEG2000 veri�cation model in a few respects. For example we

use a non binary arithmetic coder, we use rate distortion criteria to encode wavelet

coe�cients and unlike JPEG2000 we consider quantization and coding jointly on each

individual coe�cient. As will be seen our coder can be thought of as a lossy encoding

of �ne quantized indices.

4.1.1 Algorithm Basics

We �rst provide a brief outline of our algorithm. Given an image we apply a wavelet

transform and weight each subband by an appropriate factor. We scan the subbands

in a predetermined order. Within a subband we classify each coe�cient to be encoded
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based on past encoded coe�cients. To each class corresponds a probability model for

the distribution of the wavelet coe�cients in the class and based on this model we

decide on how to encode and quantize a coe�cient, using rate distortion theory. After

encoding each coe�cient we update the probability model corresponding to its class.

In the next section we give a theoretical background for quantization, rate distortion,

entropy coding and control of image quality. The introductory material is necessary

to understand our choices later in the chapter.

4.2 Quantization and Optimal Quantizer Design

A quantizer Q is a mapping from the real lineR to aK-point setQ, Q : R ! C, where

Q = fq0; q1; q2; : : : ; qK�1g � R . Input images are stored in digital form and after ap-

plication of the wavelet transform the wavelet coe�cients require more precision than

the original pixel values and are usually stored in 
oating point format. Quantization

is used to reduce the number of bits needed for their representation. Strictly speaking

wavelet coe�cients are not continuous but this is a very good approximation.

The quantizer resolution r is de�ned as r = log2K. Each quantizer is de�ned

by its output levels qi; i = 0; 1; : : : ; K � 1 and its partition cells Ri = (xi�1; xi). An

input value x is mapped to qi if and only if x 2 Ri. A measure of performance for

a quantizer is the distortion D it induces on the input signal x. A very common

distortion measure is the L� norm:

D� = (

KX
i=0

Z
Ri

f(x)(x� qi)
�
dx)

1
� (4.1)

Where f(:) is the probability density function (pdf) of x. Our objective when de-

signing a quantizer is to minimize the distortion measure D�. There is a general

procedure to design such a quantizer known as Lloyd-Max iteration [40]. This pro-

cedure is not guaranteed to achieve a global optimum but is at least guaranteed to

achieve a local optimal solution that depends on the initial conditions. The design is

an iterative process based on two conditions. Consider that we are at iteration n and
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we are going to the next iteration n+1. The �rst condition is the centroid condition:

q

(n+1)
i = E[X

���X 2 R(n)
i ] (4.2)

and the second condition is the midpoint condition:

x

(n+1)
i =

q

(n)

i�1 + q

(n)

i

2
(4.3)

Where q
(n)
i ; i = 0; 1; : : : are the output levels, R

(n)
i ; i = 0; 1; 2; 3 : : : are the partition

cells, and x

(n)
i ; i = 0; 1; 2; 3 : : : are the bounds between partition cells at the nth

iteration. Optimal quantizers depend heavily upon the input distribution and they

need to be designed for each input source. Even though they are guaranteed to

minimize an error metric, they have not been proved to be particularly useful as a

stand alone system in image compression, because:

1. The optimal quantizer depends upon the input source and di�erent images have

di�erent statistics.

2. Design of an optimal quantizer is an iterative procedure and computationally

expensive

3. The quantizer is only a part of a much larger system and needs to be considered

as such so that optimal quantization does not imply that an optimal compression

system will be achieved

4. The structure of the quantizer will a�ect the entropy coder and the entropy

coder needs to be designed based on the quantizer output

4.2.1 Jointly Optimal Quantizer and Entropy Coder

In order to specify the quantized value qi of a sample x we only need an index i. This

index will be further entropy coded and mapped to a codeword �(i). Our objective in

image compression is to minimize distortion for a given rate, rather than to minimize
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distortion for a given quantizer, so we need to consider design of a quantizer and

entropy coder jointly. There exists a procedure to design an optimal1 entropy coder

for a given source. This process leads to Hu�man codes [90]. There is also a whole

theoretical framework for rate distortion in information theory [90]. The objective is

to minimize a distortion metric D subject to a maximum possible bit rate, R � R0.

This objective if formulated as a constrained minimization problem, as explained

in [12, 61], will lead to an unconstrained minimization of a metric of the form:

J = D + �R (4.4)

where D is the distortion, R is the rate and � � 0 the Lagrange multiplier. The

parameter � needs to be adjusted so that the target bit rate of R0 is achieved. For

each value of � the system will be optimal for a bit rate R = R(�) and the goal

will be to �nd � such that R(�) = R0 The Lloyd-Max design for a quantizer can

be generalized [12] to include rate distortion measures as in (4.4). In this case the

centroid condition remains the same:

q

(n+1)

i = E[x
���x 2 Ri] (4.5)

and the midpoint condition becomes the generalized midpoint condition.

R

(n+1)
i = fx : J(x; q

(n)
i ) < J(x; q

(n)
j ); i 6= jg (4.6)

At the end of each step we also need to redesign our entropy coder to re
ect the new

statistics for the distribution of the quantized indexes. The whole Lloyd-Max design

is based on training, and thus we need to know our source and design the quantizer

based on the source. The design is computationally intensive and needs to be applied

to every source sequence to be compressed. After the design, quantizer and entropy

coder parameters need to be sent as overhead to the decoder along with the actual

compressed bit stream.

1Optimal under the assumption of a one to one mapping from a source symbol to a codeword
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Since the quantizer is considered jointly with the entropy coder, it is not clear

what the respective contributions of quantizer and entropy coder are to the coder

performance. One might claim that a \bad" quantizer if combined with an appropri-

ate entropy coder might be as good as the above mentioned optimal design. Moreover

locally optimal solutions might hinder the global optimum. These are some of the

reasons for not using the above mentioned algorithm in practical image compression

systems.

Instead it is preferable to use a �xed uniform quantizer throughout the whole

image. The entropy coder can be adapted on the 
y to the input statistics and in this

way it is not necessary to redesign the quantizer. The quantizer remains �xed, and the

output of the quantizer is used to collect statistics that are used by the entropy coder.

Overall this leads to a much simpler system, both computationally and conceptually.

Also uniform quantizers are much simpler to implement than quantizers with variable

bin size; The adaptation on the 
y is essential in all image compression algorithms

since image data are not stationary and we need to be able to adapt our models in

order to take full advantage of a coder. Uniform quantization, followed by optimal

entropy coding has been proved to be very close to the rate distortion curves under

relatively non restrictive conditions [34, 72], and thus in what follows we will use

uniform quantizers.

4.2.2 High Resolution Quantizers

The term high resolution quantizer [61] refers to quantizers where the quantization

intervals Ri are small compared to the variation of the input signal [40]. Assume a

random variable x with pdf f(:) and letM = maxfxg, m = minfxg, where M and m

can be �nite or in�nite. Consider a uniform quantizer with quantization step size �

and assume � is small enough such that within an interval of width � the function

f(�) is practically constant. Let the reconstruction point for the inverse quantizer be

exactly in the middle of the interval [n�; n� +�), that is n�+�=2. Consider the

L� norm, L�fxg = (Ex�)
1
� , where E denotes expectation, and let us calculate the
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quantization error:

(L�fx� x̂g)
� =

1X
n=�1

Z n�+�

n�

(�� n�+
�

2
)�f(�)d� �

1X
n=�1

Z n�+�

n�

(�� n�+
�

2
)�f(n�)d� =

1X
n=�1

��+1

2�(�+ 1)
f(n�) =

��

2�(�+ 1)

That is:

D� = L�fx� x̂g =
�

2(�+ 1)
1
�

: (4.7)

We consider the general L� norm here but later we will concentrate on the L1 norm

for simplicity. The reason for taking a generic approach is that we are trying to cover

both L1 and L2 norms at once. Consider the rate distortion measure J� = D
�
� + �R

where R is the rate and D� is the distortion. We want to minimize J� subject to

a constraint R � R0. We know the distortion D� as a function of the quantization

step size �, but we also need to evaluate the entropy H(x̂) as a function of the same

quantity �. We will consider a few di�erent particular cases before we give a more

general estimate of the entropy.

1. Assume that x has a uniform distribution, that is, f(�) is constant. Since � is

relatively small, we can assume that x̂ has a discrete uniform distribution. In

this case the entropy will be:

H(x̂) = log2
M �m

�
= log2(M �m)� log2�(bits) (4.8)

2. Assume that x has Laplacian distribution, that is, f(�) = 1
2
�e

��j�j. In this case

x̂ has a 'two sided' geometric distribution. The di�erential entropy of x is:

h(x) = �

Z
1

�1

f(�) ln f(�)d� = � ln
�

2
+ 1 (nats) = � log2 � +

1

ln 2
+ 1 (bits)

(4.9)
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De�ne � as:

� = e
���

; (4.10)

The probability that a sample falls into the nth bin [n�; n�+�) is:

pn =
1

2
�
jnj(1� �) (4.11)

The entropy of the quantized variable x̂ is:

H(x̂) =

1X
n=�1

pn ln pn =
�

1� �
ln � + ln

1� �

2
(nats) (4.12)

If we consider a high resolution quantizer, that is for ��! 0 we have � � 1���

H(x̂) = � ln
��

2
�

1���

��
ln(1���) � h(x)� ln� (nats) (4.13)

the rate needed for encoding of the quantizer indexes is: R = h(x)� log2� bits.

In both cases 1 and 2 the rate depends on the logarithm of the quantization step size

log2�. This observation can be generalized by the following theorem.

Theorem 1 Let H(x̂) be the entropy of the quantized variable x̂ obtained from a

continuous variable x using a uniform quantizer with step size �. Then:

H(x̂) � h(x)� log2� bits (4.14)

The conditions for the theorem to hold is that � is su�ciently small compared to

the variation in the pdf of the random variable x. h(:) stands for di�erential entropy

while H(:) stands for discrete entropy.

Proof: See Appendix A.

The above theorem will be very useful when trying to use rate distortion theory

in making decisions on how to quantize wavelet coe�cients.
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4.2.3 Control of image quality

If we use a uniform quantizer throughout the whole image, the quantizer step size will

control the image quality. For small enough �, based on equation (4.7) the MSE in

the transform domain will beMSE = �2
=12. If we assume an orthonormal transform

the MSE will be the same in the image domain and the PSNR will be:

PSNR � 10 log10
12MAX

2

�2
(4.15)

In this way we can control the image quality by varying the quantization step size �,

for example we can achieve a target PSNR by selecting the appropriate step size �.

In our algorithm the only parameter we can vary is �. Before starting to compress

an image we can set a target quality (PSNR) and choose the appropriate step size

� to achieve that.

4.3 Proposed Rate Distortion Encoding Scheme

We consider coding and quantization jointly according to Figure 4.1. The quantization

cannot be considered as a separate process as explained earlier. Our reconstruction

levels are integer multiples of �. We thus approximate the real line with the set of

integers, where each integer n represents the real number n�. The only reason we

selected such a representation is simplicity. For each wavelet coe�cient x we transmit

the index n that is optimal in the rate distortion sense, i.e. the one that minimizes:

J�(x; n�) = jx� n�j
� + �R(n) (4.16)

From the set of available integers n we can easily select the one that minimizes (4.16)

for a given �. The rate R(n) can be found directly from the probability table used

in conjunction with the arithmetic coder. However, the Lagrange multiplier �, which

will be �xed for all coe�cients, will have to be determined . We now provide a

derivation of the optimal value for �, under relatively non restrictive conditions.
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Figure 4.1: Block diagram of the quantization and entropy coding parts of the sys-

tem. There is a closed loop formed by the rate distortion optimized quantizer and

the probability table estimation. The quantizer makes decisions based on the given

probability model and the probability model is adapted based on the output of the

quantizer.

4.3.1 Optimal choice for the Lagrange Multiplier

The parameter � will depend on the desired bit rate R0 and the parameters of the data

to be encoded. It needs to be estimated before we start encoding wavelet coe�cients.

As it turns out the choice of � does not depend on the input distribution but only on

the quantization step size �. If we take expectations in (4.16) we have:

J�(�) = EfJ�(x; n�)g = Efjx� n�j� + �R(n)g =
��

2�(� + 1)
+ �(h(x)� log2�)

(4.17)
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We then substitute equations (4.7) and (4.14) in (4.17) and minimize J� subject to

the constraint R � R0,

min
�
fJ�g

R � R0

9>>=
>>;)

min
�
f

��

2�(�+ 1)
+ �(h(x)� log2�)g

h(x)� log2� � h(x)� log2�0

9>>>=
>>>;
)

@

@�
f

��

2�(� + 1)
+ �(h(x)� log2�)g = 0

� � �0

9>>>=
>>>;
)

����1

2�(�+ 1)
� �

1

� ln 2
= 0

� � �0

9>>>=
>>>;
)

� = ���
�
0 ; �� =

� ln 2

2�(1 + �)

So in this case:

J�(x; x̂) = jx� n�0j
� +��

0��R(n) (4.18)

or we can normalize J�(x; n�) as:

J
0

�(~x; n) ,
J�(x; n�)

��
= j

x� n�

�
j� + ��R(n) = j~x� nj

� + ��R(n) (4.19)

where ~x = x=�. Thus the coding procedure would be to compute ~x, then �nd n that

minimizes (4.19). It is very common, for the set of integers n we consider in equation

(4.19), the solution to be a relatively large number, e.g., ranging from �255 to 255.

In this case a full search might be very expensive, so we now propose a fast way of

searching for the optimal solution.
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4.3.2 Fast search for the optimal solution

Up to now we considered a general metric L� for the quantization error. From now

on we will concentrate on the L1 norm. The reason for such a choice is simplicity.

When we use RD allocation decisions we need to evaluate a number �� as in (4.19).

Obviously, the simplest choice is � = 1 which leads to performing a simple absolute

value operation j�j. In the case of the L1 norm equation (4.19) becomes:

J
0

1(~x; n) = j~x� nj+ �1R(n) (4.20)

Let n0 = bx=�c = b~xc and let nopt be the optimal choice in the rate distortion sense,

i.e. the one that minimizes 4.20. Then, by de�nition of optimality we have that

J
0

1(~x; nopt) = j~x � noptj + �1R(nopt) � J
0

1(~x; n0), leading to j~x � noptj � J
0

1(~x; n0), so

that we can bound nopt as:

~x� J 01(~x; n0) � nopt � ~x + J
0

1(~x; n0) (4.21)

The above equation states that the optimal solution is in the interval S = [~x �

J
0

1(~x; n0); ~x + J
0

1(~x; n0)] \ [nmin; nmax]. Moreover, there are only a �nite and small

number of solutions in the interval, since the solution needs to be a multiple of the

step size.

Let the possible set of solutions beW = f�0; �1; : : : ; �jSj�1g, we need to go through

all the elements of the set W and choose the one that minimizes the cost metric J 01.

Evaluation of the rate R(n) involves taking the logarithm of the probability p, i.e.,

R = � log2 p. The probability p is the ratio of an element q = T [n] to the sum s of

all the elements of T [], s =
P

j T [j], i.e., p = q=s. Then we can write:

J
0

1(~x; n) = j~x� nj � �1 log2
q(n)

s(n)
= j~x� nj � �1 log2 q(n) + �1 log2 s(n) (4.22)

Since the term �1 log2 s(n) is common to all possible solutions we only consider the
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other two terms, that is, we de�ne:

J
00

1 (~x; n) , j~x� nj � �1 log2 q(n) (4.23)

Computationally, the evaluation of the logarithmmight turn out to be very expensive,

but we can use an approximation to the logarithm, e.g., we can evaluate only the

integer part of the logarithm. An even better approach is to use a lookup table 	[],

where the size of the lookup table will be 2� and � is the number of bits used to store

the frequency counts in the probability estimation. Equation (4.23) then becomes:

J
00

1 (~x; n) = j~x� nj+	[T [n]] (4.24)

We can use equation 4.23, restrict our search to the set S and use a lookup table

for the logarithm. Using all these approaches we can signi�cantly speed up our rate

distortion selection. For example, for typical images the reduction in complexity when

using these techniques instead of full search with the complete cost function is of the

order of at least 3 times.

4.4 Exploiting Local Energy Clustering

Energy in frequency subbands after wavelet transform tends to be clustered, so that

large coe�cients tend to occur in groups. This can be exploited to increase coding

e�ciency. Suppose that we have transmitted a number of coe�cients xk; k = 0 : : : n

of the wavelet representation of our image. Then based on the past we can try to

estimate the next coe�cient that we need to transmit. Many experiments have shown

that traditional linear prediction is not a very e�cient predictor in image subbands.

In a compression scheme using linear prediction, the di�erence between the current

coe�cient and a predictor obtained from previously quantized coe�cients is sent.

Since linear correlation of wavelet coe�cients tends to be close to zero and prediction

results in doubling of the dynamic range, little gain is in general achieved with this

method. However context information is useful when it comes to adapting the entropy



54

coder, as was demonstrated in [103] in a lossless image coding scenario. In this work

we use a neighborhood of previously quantized coe�cients to determine, from a �nite

set of choices, which probability model to use for the entropy coder. The motivation

is simple; when surrounding coe�cients are close to zero it is more likely that the next

coe�cient will also be zero. The coe�cient in the same position in the previous band

also o�ers some information about the value of the current coe�cient. Our proposed

context formation and classi�cation is performed by computing:

ŷ =
X
i

wij ij (4.25)

where  i is a previously quantized coe�cient and i covers all the previously quantized

coe�cients in the neighborhood of our current coe�cient. The weights wi are chosen

to be inversely proportional to the distance from our current coe�cient to the position

corresponding to  i. The coe�cients  i used for context are depicted in Figure 4.2.

The class 
 to which each coe�cient is assigned is:


 = maxfc; dlog2(ŷ + 1)eg; c = number of classes� 1 (4.26)

The total number of classes used in the �nal experiments was 13 as explained in

Section 4.5.5. We do not use an actual log2 function on 
oating point data, instead

we convert ŷ to an integer where dlog2e is trivially implemented. There is no particular

optimization in the design of the context formation. The operator j:j introduces the

non linearity needed to exploit the magnitude correlation. The weights wi are chosen

in a way such that closer coe�cients have larger contribution to the context formation

than coe�cients that are further away from the current pixel location. The log2()

operator was also chosen since it was observed that the distribution of the values of

ŷ was approximately geometric. That is, most values of ŷ were close to zero with

very few values of ŷ much larger than zero. The log2() operator ensures that we get

a roughly uniform distribution of the points in all classes. In this way, we use small

length intervals to de�ne classes in the low magnitude case where most classes occur,
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 0  1  2

Parent Band Sibling Band 1 Sibling Band 2

 3  4  5  6  7

 8  9  10  11  12  13  14

 15  16  17 x

Figure 4.2: Context used for the computation of ŷ. The parent band and up to two

sibling bands may be used in context formation. The parent band will be used if it

is not the DC band. When encoding the 3 subbands in one level, the �rst has no

sibling, the second has one sibling and the third has two siblings.

while we use long length intervals for the classes in the high magnitude case where

fewer samples occur.

4.4.1 Recursive Context Formation

Our proposed context formation as seen in (4.25) requires some computation to be

performed each time we consider a new coe�cient. This computation can be seen

to be equivalent to an FIR �lter. In Chapter 5 we use a much simpler technique

to compute the context with very good results. In fact, the later approach carries

information about the context from farther away than the approach in this section.

When forming the context we do not need to restrict ourselves to any form of linear

�ltering and we can use any linear or non-linear technique. In any case it might

be preferable to recursively evaluate the context information and use the previously

computed context in order to evaluate the next one. Such techniques are of great

interest since they will speed up the coder signi�cantly [111]. Certain similarities to

IIR �ltering are also present in the later formulation (Chapter 5).
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4.5 Description of the Algorithm

The proposed algorithm can be summarized as follows:

Step 1 Compute the wavelet transform for the whole image and weight all subbands

appropriately as described in Section 4.5.4

Step 2 Initialize all probability models to a uniform distribution.

Step 3 Start scanning all the bands from low to high resolution in a predetermined

order.

Step 4 When a band is �rst visited send themaximum andminimum of its quantized

coe�cients (normalized with quantization step size �)

Step 5 Scan each subband, line by line, left to right top to bottom

Step 6 Classify each new coe�cient x into a class 
 based on equation (4.25)

Step 7 For the class 
 chosen in the previous step, transmit the codeword closest to

x in the rate distortion sense, according to equation (4.23).

Step 8 Update the statistics for class 


Step 9 Continue until all the coe�cients in a subband have been scanned. (go to

step 6)

Step 10 Continue until all subbands have been scanned. (go to step 4)

Notice that the whole algorithm is simple, as no explicit training is required,

the bulk of the complexity comes from computing the wavelet transform and the

arithmetic coder, rather than from the quantization itself. The rate distortion for-

mulation makes our encoder/decoder asymmetric, i.e. all the search complexity is at

the encoder while the decoder only needs to use the reproduction level chosen by the

encoder.
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4.5.1 Adaptation Strategies

The issue of initialization of the entropy coders is non-trivial since di�erent im-

ages have di�erent characteristics and explicit initialization may require a signi�cant

amount of side information.

It is useful to observe that on the top levels of our wavelet decomposition the

wavelet coe�cient distribution is almost uniform, but as we move towards the bottom

levels this distribution gets more and more peaked around zero. We can use the same

probability models for the entropy coders throughout the whole pyramidal structure,

starting with a uniform distribution on the top level. The distributions \learnt" at a

higher level are used to initialize the distribution at lower levels. Thus the statistics

are learnt on the 
y as we move towards to bottom of our pyramid and no initialization

is required for each subband. Whenever a new band is visited we transmit explicitly

the minimum and maximum coe�cient in this band. While this is not necessary it is

useful because by knowing the dynamic range of our data we reduce the size of our

probability tables.

4.5.2 Subband Skipping and Resolution scalability

In the case where in a given band both minimum and maximum are equal to zero we

do not transmit any coe�cient from this band, we just move on to the next subband.

It is worth pointing out that this fact alone gives us a resolution scalable coder. We

can skip the subbands corresponding to higher resolution in order to encode/decode

a smaller resolution image. This also speeds up our coder, since at low rates some

subbands may turn out to have no nonzero value coe�cients, and in this case we do

not encode any coe�cient for the whole subband.

4.5.3 Inverse quantization

The inverse quantization, unlike the widely used dead-zone quantizer, is just a mul-

tiplication operation. Let v be the quantized index, the reconstructed value �̂ will
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be:

�̂ = v �� (4.27)

It is not possible to further decrease the MSE by optimizing the inverse quantization,

as is the case for example when using a uniform quantizer. The encoder already

optimized the bit stream for the optimal reconstruction points and no better recon-

struction points can be found. This is a fundamental di�erence between our approach

and most techniques used up to now in di�erent image coders.

4.5.4 Subband Weighting

Wavelet data in di�erent subbands contribute to the quality of the reconstructed

image in a di�erent way. We need to assign a certain number of bits to each subband in

a way that an error metric in the reconstructed image is minimized. This corresponds

to an optimal bit allocation among the subbands. Since we do not have any direct way

of controlling the exact number of bits assigned to each subband, we can instead adjust

the quantization step size to each subband. We mentioned in the previous sections

that we are using a uniform quantizer for all the data, but the size of the quantizer

needs to be adjusted properly to each subband. A better solution to adjusting the

quantization step size to each subband is to use the same step size through out all

the subbands, but weight each subband appropriately. The e�ect of both methods

is the same, but the latter approach is computationally simpler, since the weighting

factors can be incorporated into the �lter coe�cients.

Bit allocation is very important in image compression. Consider for example

the case where the coe�cients in one subband are multiplied by a large number.

Then, our algorithm will spend a signi�cant amount of bits on this subband which is

undesirable. We need to introduce appropriate normalization factors for each subband

to avoid those situations. Assume that subband k was obtained from the original

image after �ltering with �lters f0; f1; : : : fV (k). These �lters could have been applied

either vertically or horizontally. Let, �k be the �lter corresponding to the convolution
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of all the above �lters.

�k(n) = f1(n) � f2(n) � � � � fV (k)(n) (4.28)

The input output relation for the subband data can be modeled as: y(n) = �k(n) �

x(n), or in the frequency domain Y (!) = �k(!)X(!). We want to keep the en-

ergy constant through out the entire transform i.e., quantitatively we would like to

have
R �
��
j�k(!)j

2
d! =

P
n �k[n]

2 = 1. This will keep the mean square errors in the

transform domain the same as in the image domain. The normalization factor �k to

achieve that corresponds to the L2 norm of �k which is:

�k = (

1X
n=�1

j�k(n)j
2)

1
2 (4.29)

Thus before applying any form of rate distortion optimization or any quantization we

normalize each subband by the corresponding factor �k. The normalization factors

can also be incorporated into the �lter coe�cients, in this way we save one multi-

plication per pixel for the whole image. The normalization gives up the equivalent

e�ect of using an orthogonal �lter bank even when that is not the case, more detailed

analysis can be seen in [96] .

4.5.5 E�ect of the number of classes on performance

In this section we will examine the e�ect the number of classes in the classi�cation

scheme has on the rate distortion curves for di�erent images. Theoretically, for large

enough data sets the larger the number of classes the more accurate the statistics

derived from the data. The key point is that there should be enough data to learn

the statistics for each class. If the number of classes is large the number of samples in

each class will be very small and every e�ort to learn statistics will fail. We thus need

to keep a balance between number of classes and number of samples in each class 2.

Another issue of major importance is that data is not stationary. Probability model

2The log() operator is particularly useful for this purpose
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(a) Dyadic split decomposition (b) Separable decomposition

Figure 4.3: (a) Five level dyadic decomposition, or the so calledmallat decomposition.

(b) Five level separable decomposition.

estimation tries to keep track of characteristics of the data. In the degenerate case of

a large number of classes, statistic estimation may harm performance, as too many

classes result in samples in the same class being located far apart in the image, so

there might not be much correlation between data in the same class. From a purely

complexity point of view we want to restrict ourselves to a small number of classes.

The fewer the classes the smaller the amount of memory needed to store the model

parameters, which will also translates to speed advantages. We evaluated the PSNR

for �ve di�erent rates for four images, for di�erent number of classes. The results

are depicted in Figure 4.4. We observe that the optimal number of classes is slightly

larger than ten. For more than 13 classes the results did not change signi�cantly, so

in our experiments we used 13 classes.

For images with a lot of high frequencies the PSNR gains obtained with clas-

si�cation are larger when compared to smooth images. Higher order correlation is

present in images with a lot of texture, so classi�cation is more likely to work better

in regions with a lot of texture. Also note that the gains are higher at high rates.

This is due in part to the fact that at low rates the high magnitude classes contain

very few coe�cients.
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Figure 4.4: Gain in PSNR with respect to the single class as a function of the number

of classes. For each image we can see 5 curves corresponding to 5 di�erent rates. The

PSNR gain is larger for higher rates. Moreover the gain achieved by increasing the

number of classes varies from image to image, from 1dB to up to 3dB.
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4.6 Experimental Results

In table 4.1 we present results for two di�erent �lter banks and for two di�erent decom-

positions, as seen in Figure 4.3. For images with a lot of high frequency content the

separable decomposition in Figure 4.3(b) is preferable, unlike smooth images where

the decomposition in Figure 4.3(a) is better. Generally speaking, for very low rates

the decomposition in Figure 4.3(b) is also preferable. We have used two sets of �lters

the Daubechies 9-7 tap �lter, and a 28-28 tap �lter bank designed with a program

down-loaded from http://saigon.ece.wisc.edu/~waveweb/QMF/software.html .

The last column in table 4.1 corresponds to the case of forming our context without

any information from previous bands. The results in this case are on the average

about 0:1dB worse than the case where we use information from previous bands. Our

results on average are some of the best reported in the literature. The bit stream is

not embedded, so we need several iterations in order to achieve the exact bit rate.

The bit stream of the current coder does not have all the features present in a coder

like [92], though is conceptually simpler to understand and does not use any form of

bit plane coding.

4.7 Future Work

In this chapter we presented a novel approach for wavelet image coding. Based on

theoretical analysis of rate distortion theory we developed an encoder with excellent

performance. One of the key points of this work is that we do not use a bit plane

coder but instead a whole coe�cient coder. We used arithmetic coding through

out our work because of the ease of adaptivity. Non adaptive entropy coders would

signi�cantly increase the speed of our system. The number of classes was limited

because of the context dilution phenomenon. If we do not adapt our entropy coder we

can increase the number of classes to virtually any number. Such a system would be

of great interest both from theoretical point of view, given the challenge of designing

or modeling our �xed probability models, but also from practical point of view, since
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it would o�er an extremely simple solution to wavelet image coding.
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Rate
SPIHT

[83]

VM

3.2A

[92]

RD

9-7

(4.3a)

RD

28-28

(4.3a)

RD

9-7

(4.3b)

RD

28-28

(4.3b)

RD

9-7

(4.3a�)

Lena 0:125 31.10 31.22 31.32 31.44 30.89 31.07 31.25

512 � 512 0:25 34.13 34.28 34.45 34.58 33.96 34.12 34.38

0:50 37.24 37.43 37.60 37.69 37.11 37.31 37.53

1:00 40.45 40.61 40.86 40.91 40.34 40.30 40.78

Barbara 0:125 24.84 25.55 25.39 25.75 26.45 26.91 25.41

512 � 512 0:25 27.57 28.55 28.32 28.87 29.40 30.00 28.37

0:50 31.39 32.48 32.29 33.01 33.17 33.80 32.25

1:00 36.41 37.37 37.40 37.98 37.82 38.39 37.21

Goldhill 0:125 28.47 28.49 28.61 28.63 28.69 28.73 28.60

512 � 512 0:25 30.55 30.71 30.75 30.77 30.77 30.86 30.73

0:50 33.12 33.34 33.45 33.50 33.35 33.48 33.43

1:00 36.54 36.72 36.95 37.03 36.77 36.94 36.93

Bike 0:125 25.82 26.49 26.16 26.20 26.39 26.62 26.03

2560 � 2048 0:25 29.12 29.76 29.43 29.57 29.39 29.61 29.39

0:50 33.00 33.68 33.47 33.46 33.02 33.29 33.37

1:00 37.69 38.29 38.27 38.19 37.45 37.72 38.16

Woman 0:125 27.27 27.46 27.67 27.78 27.60 27.78 27.63

2560 � 2048 0:25 29.89 30.15 30.36 30.49 30.16 30.35 30.33

0:50 33.54 33.81 34.12 34.22 33.76 33.94 34.04

1:00 38.24 38.67 38.92 38.97 38.46 38.65 38.85

Table 4.1: Comparison between our method and [83, 92] for images: Barbara, Lena,

Goldhill, Bike and Woman, the last two images are part of the test images for

JPEG2000. We used �ve levels of vertical decomposition with the two decompo-

sitions in �gure 4.3. We have also used two di�erent �lter banks, the 9-7 Daubechies

and a 28-28 tap �lter bank. In the last column (�) we did not use the parent bands

to form context information. Moreover we used a recursive context formation that

will be described in Chapter 5.



65

Chapter 5

Line Based Wavelet Transform and

Coding

Contents

This chapter addresses the problem of low memory wavelet image compression.

While wavelet or subband coding of images has been shown to be superior to more

traditional transform coding techniques, little attention has been paid until recently

to the important issue of whether both the wavelet transforms and the subsequent

coding can be implemented in low memory without signi�cant loss in performance.

We present a complete system to perform low memory wavelet image coding. Our

approach is \line-based" in that the images are read line by line and only the min-

imum required number of lines is kept in memory. The main contributions of our

work are two. First, we introduce a line-based approach for the implementation of

the wavelet transform, which yields the same results as a \normal" implementation,

but where, unlike prior work, we address memory issues arising from the need to

synchronize encoder and decoder. Second, we propose a novel context-based encoder

which requires no global information and stores only a local set of wavelet coe�cients.

This low memory coder achieves performance comparable to state of the art coders

at a fraction of their memory utilization.
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5.1 Introduction

Memory is an important constraint in many image compression applications. In some

cases, especially for mass market consumer products such as printers or digital cam-

eras, this is due to the need to maintain low costs. In other cases, even if su�cient

memory is available (e.g., image encoding/decoding in a PC or workstation), ine�-

cient memory utilization may limit scalability and hinder overall performance. For

example, if for a given algorithm doubling of the image size results in doubling of the

memory requirements, the practicality of using the algorithm over a wide range of

systems may be questionable.

Existing Discrete Cosine Transform (DCT) based compression algorithms such

as those de�ned under the JPEG standard [71] are very e�cient in their memory

utilization because, if needed, they can operate on individual image blocks and thus

the minimum amount of memory they require is low indeed (e.g., a system could

conceivably be implemented so as to manipulate a single image block at a time).

Wavelet based coders have been shown to outperform DCT based coders in terms of

compression e�ciency, but their implementations have not yet reached the stage of

maturity of DCT based approaches [71]. Memory e�ciency is in fact one of the key

issues to be addressed before a widespread deployment of wavelet based techniques

takes place and it is currently one area of major research activity within the JPEG2000

standardization process [59].

Algorithms such as those in [8,16,52,62,83,85,112,115], are representative of the

state of the art in wavelet coders. All of these algorithms assume that the wavelet

transform (WT) for the whole image has been computed so that all the corresponding

coe�cients are available in the coding process. Global image information1 is used in

various ways including, among others, classi�cation (e.g., [52]), initialization of the

probability models used by a quantizer or arithmetic coder [16, 62, 115] or selection

of speci�c decompositions of the signal [112]. It is also worth noting that even if no

1i.e., information that can only be obtained after the whole image has been transformed. Ex-

amples of global information include the maximum and minimum coe�cient values in one subband,

the energy per subband, histograms of coe�cient values in a subband, etc.
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global information has to be measured, algorithms that provide progressive transmis-

sion [83,85] might require to store the complete set of wavelet coe�cients. The above

mentioned algorithms were developed with the goal of achieving competitive compres-

sion performance and thus memory utilization was not a major consideration in their

development. These algorithms are typically required to bu�er the whole image at

the encoder, so that memory usage increases proportionally to the image size, with-

out such factors as �lter length, or the number levels of the wavelet decomposition

a�ecting signi�cantly the memory utilization.

Low memory implementations of wavelet transforms were �rst addressed in [102],

which only considered one-dimensional (1D) transforms and did not consider the

synchronization issues that arise when both forward and inverse transform memory

requirements are considered. Interest in memory issues has recently increased as

memory needs for the WT have been found to be the one of the main bottlenecks

for wavelet-based image compression. There have been several recent studies of hard-

ware issues in the implementation of the WT [11,33]. Many of these studies consider

an in-depth analysis of the whole wavelet transform system, including architecture

level optimizations and memory usage as in [11], but do not consider the joint de-

sign of transform and compression algorithm to guarantee low memory operation.

In addition, much of this work has focused on video compression implementations,

where images can be orders of magnitude smaller than some of those processed in the

hard-copy industry, and thus the proposed approaches might not scale well to large

image sizes. For example, typical designs consider an on chip memory to handle the

�ltering operations [2] and such memory can become prohibitively large when images

of hundreds of millions of pixels or more have to be processed.

Assume that a particular WT implementation can handle small images e�ciently.

Obviously there are approaches to use such an implementation for wavelet coding of

large images. The most immediate approach is to tile the large image and encode

each tile independently of the others, i.e., as if each tile were a separate image. While

tiling is a simple approach it can present some serious drawbacks, especially if the

tile size is small with respect to the image size. For example as compression is
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performed independently, blocking artifacts may appear at the boundaries between

tiles. Moreover, since it is not easy to allocate bits among the tiles (since the wavelet

coe�cients of all the tiles are not known and each tile is treated independently) the

performance degradation due to tiling may be severe.

An alternative and more e�cient approach can be found in the recent work of Cos-

man and Zeger [28,29]. Here, the memory utilization of the encoder is left unchanged

and a standard algorithm (e.g. [83]) can be used to compress the image. The whole

image is bu�ered at the encoder, but the order of transmission of the bit-stream is

altered from that used in a normal implementation so that the memory utilization

at the decoder is reduced. The basic idea is to have the decoder receive \local" sets

of encoded wavelet coe�cients so that the inverse wavelet transform can be started

without having to wait for all the coe�cients to be decoded. Performance can be

further improved by selecting �lters so that the number of coe�cients required at the

decoder remains small (this can be achieved for example by choosing shorter �lters

for �ltering along the vertical direction.) We refer the reader to [28, 29] for further

details.

In summary, the recent work on memory e�cient wavelet image coding does not

consider a complete coding system but concentrates instead on the WT or the com-

pressor alone, or only considers either encoder or decoder, but not both.

Our proposed approach di�ers from earlier work in several ways. First, we con-

sider the overall memory utilization and propose a system with reduced memory

at both encoder and decoder, whereas [102] and [28, 29] addressed only the memory

usage at encoder and decoder, respectively. We thus consider the memory needed

for synchronization between encoder and decoder (e.g. a minimum memory forward

wavelet transform may require a high memory inverse wavelet transform). Second,

we consider a complete coding system, i.e., including both WT and quantization plus

entropy coding, and propose a novel context-based compression approach to provide

high compression performance with reduced memory utilization. With respect to

existing coders, the degradation in performance is modest (e.g., less than 0:5dB in

average with respect to [16]) although we do not support progressive transmission
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as [83, 85]. In terms of memory utilization our results show reductions of almost two

orders of magnitude with respect to widely available implementations of wavelet im-

age coders. In fact, our proposed low memory WT implementation has been adopted

within the latest version of the JPEG 2000 veri�cation model.

Our proposed system includes a line-based implementation of the WT, where we

assume the image data is available one image line at a time. We begin by analyzing the

minimummemory requirements to compute the wavelet transform in Section 5.2. An-

alyzing the 1D WT allows us to discuss the various ways in which memory is utilized,

including �ltering but also synchronization between encoder and decoder. We extend

these analysis to the two-dimensional (2D) WT and propose an implementation that

requires the minimum number of image lines to be stored for a given �lter length

and number of levels of decomposition. With this approach the memory needs of

the encoder and decoder depend only on the width of the image (rather than the

total size as in a traditional row column �ltering implementation) which signi�cantly

enhances the scalability of the system. Moreover, appropriate choices of �lters (e.g.,

short �lters for the vertical �ltering) can be used as in [28, 29] to further reduce the

memory requirements.

In Section 5.3 we then propose a backward adaptive context-based coding scheme

which utilizes only a reduced number of coe�cients stored at the encoder or decoder

at a given time. While this approach precludes the use of any global information

we show that competitive performance can be achieved because, as has been shown

in [16, 52, 62, 115], there exists signi�cant localization of energy within wavelet sub-

bands, which can be e�ciently exploited with context-based methods. We provide a

complete description of our algorithm and highlight the modi�cations that had to be

undertaken with respect to our earlier context-based coding approaches [16] in order

to compensate for the lack of global information.

Our experimental results are presented in Section 5.4, where we include compar-

isons with several algorithms [8,16,71,83], which all have signi�cantly larger memory

requirements. Our results indicate that the low memory approach we propose can
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achieve excellent compression performance with signi�cantly lower memory utiliza-

tion. In section 5.5 we revise the main contributions of our work.

5.2 Line-based 2D wavelet transform

Image data is usually acquired in a serial manner. For example, a very common

way to acquire image data is to scan an image one line at a time. Throughout this

chapter we will assume our system operates with this line-by-line acquisition. Given

this, our objective in this section will be to design a 2D, WT that requires storing a

minimum total number of lines. The assumption is that images are stored in memory

only while they are used to generate output coe�cients, and they are released from

memory when no longer needed.

Obviously, performing a 1D WT on a single line can be done without signi�cant

memory. However, in order to implement the separable 2D transform the next step is

to perform column �ltering and here memory utilization can become a concern. For

example, a completely separable implementation would require that all the lines be

�ltered before column �ltering starts and thus memory sizes of the order of the image

size will be required. The obvious alternative is to start column �ltering as soon as

a su�cient number of lines, as determined by the �lter length, has been horizontally

�ltered. For example for a one level decomposition if we use 9-7 tap �lters we only

need 9 lines of the image in order to start the column �ltering and generate the �rst

line of output wavelet coe�cients.

This online computation approach, which is described in more detail in [102] for

the 1D case, will form the basis of our wavelet �ltering. This will allow us to store in

memory only a reduced number of input lines. The memory needs, as will be discussed

in what follows, depend not only on the �lter length but also on the number of levels of

decomposition and the type of decomposition. For example generic wavelet packet [77]

decompositions require di�erent structures than a dyadic tree decomposition and need

to be considered separately. In addition, the order in which lines of wavelet coe�cients

are generated at the analysis �lter bank is not the same order the synthesis �lter-bank
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Figure 5.1: One level decomposition for �lters of length L = 2S + 1 = 9. We need

eight memory elements, which are represented by a shift register. The delay between

input and output is S = 4 samples.

expects them and we will thus need to introduce some additional \line management"

functionality to synchronize encoder and decoder.

5.2.1 One dimensional wavelet transform

Let us consider �rst an implementation of a 1D WT, where the system receives data

sequentially, one pixel at a time. Let L = 2S + � be the maximum length of the

�lters used in the analysis �lter-bank, which can be either odd or even, for � = 1

and � = 0, respectively. In the next sections, without loss of generality, we will only

consider the odd length �lter case. The even length �lter case can be treated in a

similar way. For compression e�ciency we use symmetric extensions throughout this

chapter. Similar delay analysis can be found in [102], although synchronization delays

were not considered there.

Consider �rst a single stage of the WT. At time zero we start receiving data and

store it in a shift register as seen in Figure 5.1. At time S we have received enough data

to �ll the entire input bu�er, i.e., we have received S+1 samples and after symmetric

extension we can have the total of L = S+1+S samples we need for �ltering. Thus,
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Figure 5.2: Cascade of two levels of wavelet decomposition. The delay for the �rst

level is S, the delay for the second level is 2S and the total delay for both levels is

S + 2S. The time units for the delay are considered in the input sampling rate.

the delay for generating output coe�cients for one level of decomposition is S. Note

that it is more e�cient to generate two coe�cients at a time as shown in Figure 5.1,

i.e., we read two input samples at a time and generate both a low-pass and a high

pass coe�cient.

Consider now a two-level decomposition, as shown in Figure 5.2. Let � be the

sample rate (in samples per second) at the input of the �lter-bank. Then the sample

rate at the output of the �rst level will be 2�1�. Let us consider the interval between

input samples (i.e., 1=� seconds) as our basic time unit. Each individual �lter-bank

introduces an S sample delay. However the input to the second �lter-bank arrives at

a lower rate 2�1�, due to down-sampling. Thus to begin �ltering and see the �rst

outputs of the second �lter-bank we will have to wait (i) S time units for the �rst

output of the �rst level �lter-bank to be generated, and then (ii) another 2S time

units until su�cient samples have been generated at rate 2�1�. Thus, the total delay

from input to output of the second level in the system of Figure 5.2 is the sum of

those individual delays, i.e., S + 2S input samples.

This analysis can be easily extended to the the case where an N -level decompo-

sition is used. Assume that the levels in this decomposition are indexed from 0 to

N � 1, where 0 corresponds to the �rst level, 1 corresponds to the second level, and

so on. It will take 2nS time intervals for S samples to be loaded in the nth level �lters

and this will happen only after outputs have been generated by levels 0 to n�1. Thus



73

the total delay from the input to the output of an N level �lter-bank will be the sum

of all the individual delays for each level, DN = S +2S + 22S + 23S + � � �+2N�1S =PN�1

k=0 2kS = (2N � 1)S. The delay from the nth level to the output will be the

same as the delay from the input to the output of an N � n level decomposition, i.e.,

Dn;N = DN�n = (2N�n � 1)S.

The memory needed for �ltering will be L samples2 for each level of decomposition,

i.e., the total will be L �N if we use a dyadic tree decomposition. In general we will

just need an additional memory of size L for each additional 2-channel �lter-bank

added to our wavelet tree.

In the synthesis �lter-bank the delays from input to output are the same as in the

analysis �lter-bank and are thus a function of the number of levels of decomposition.

Note that, referring to Figs. 5.2 and 5.4, the synthesis �lter-bank will not be able

to process x
(0)
1 until it has processed a su�cient number of x

(1)
0 ; x

(1)
1 coe�cients to

generate x
(0)
0 . However the analysis bank generates x

(0)
1 with less delay than x

(1)
0 ; x

(1)
1 .

Thus we will need to store a certain number of x
(0)
1 samples while the x

(1)
0 ; x

(1)
1 sam-

ples are being generated. We will call the required memory to store these samples

synchronization bu�ers.

Because 2S samples at level 1 are produced before the �rst sample at level 2 is

produced, we will need a synchronization memory of 2S samples (see Figure 5.4).

The required memory can be split into two bu�ers of size S pixels, with one bu�er

assigned to the analysis �lter-bank and the other to the synthesis �lter-bank.

In the more general N -level case the delay for samples to move from level n to

level N � 1 is DN�n. The synchronization bu�er for level n is equal to the delay for

data to move from level n to level N � 1 which is also DN�n, thus the total bu�er

size needed for synchronization is TN =
PN�1

k=0 DN�k =
PN

k=1Dk = (2N � N � 1)S.

2Implementations with memory sizes of S + 1 samples (or lines) are also possible, but here

we assume storage of L lines to facilitate the description of the synchronization problems. More

e�cient approaches based on lifting implementations or lattice structures, can asymptotically bring

the memory needs from L down to S +1. For example the lattice structure used in [33] can help in

reduce both complexity and memory. These structures will not be considered here since the memory

savings are �lter dependent and do not signi�cantly a�ect our proposed solution. Lifting or lattice

structures can be used within our framework to provide additional memory reductions.
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Figure 5.3: One dimensional analysis and synthesis decomposition trees, the delay

involved in the analysis/synthesis �lter banks is depicted, the memory needed in-

creases exponentially with the number of levels. The major factor for memory is the

syncronization bu�ers and not the �ltering bu�ers.

For a �ve level decomposition the size of the synchronization bu�ers can be seen in

Figure 5.3.

As a conclusion, for the 1D case when considering both analysis and synthesis

banks, our design will have to optimize memory for both �ltering and synchronization.

In the above analysis we have kept analysis and synthesis �lter-banks symmetric in

terms of memory needs. However, synchronization bu�ers can be easily assigned to

either the analysis or the synthesis �lter-banks if it is necessary to make one more

memory-e�cient than the other. In the rest of the chapter we will only consider

symmetric systems. In summary, for 1D signals and N levels of decomposition, the

memory needs for the nth level will consist of

� a �ltering bu�er of size L, and

� a synchronization bu�er of size DN�n = (2N�n � 1)S.

Therefore the total memory size needed for N levels of decomposition in a symmetric

system is: Ttotal;N = (2N �N �1)S+NL. Note that as the number of levels becomes

large synchronization bu�ers become a major concern.
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Figure 5.4: Consideration of both synthesis and analysis �lter banks reveals the need

for syncronization bu�ers. Two bu�ers z�S are needed to form a queue for the x(0)(n)

samples.

5.2.2 Two dimensional wavelet transform

Let us now generalize our memory analysis to two dimensions. As a simplifying as-

sumption we assume that horizontal �ltering is performed in the usual manner, i.e.,

our memory budget allows us to store complete lines of output coe�cients after hor-

izontal �ltering. Thus, after each line is received all the corresponding �lter outputs

are generated and stored in memory, requiring a memory of size X for each line,

where X is the width of the image. Thus we can now apply the above analysis to

the vertical �ltering operation, except that the input to the WT is now comprised

of lines of output coe�cients generated by horizontal �ltering and thus the memory

sizes shown above have to be adjusted to account for line bu�ering requirements.

The exact memory requirements depend on the structure of decomposition. Fig-

ures 5.5(a) and (b) depict the common dyadic tree decomposition and a \hybrid"

decomposition, which have the same memory requirements. Let us concentrate on

the decomposition of Figure 5.5(a). In order to implement a one level decomposition

vertically we need to bu�er L lines3. At the second level of the decomposition again

we will need to bu�er L lines, but the length of each line will be X=2 coe�cients,

because in the dyadic composition the second level decomposition is only applied to

3As indicated before, implementations with only S+1 lines are possible. They are not considered

here since the memory savings in this case come at the cost of a more complicated system.
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the low pass coe�cients generated by the �rst level. Thus the width of our image

is reduced by two each time we move up one level in the decomposition, and, corre-

spondingly, the memory needs are reduced by half each time. For N levels we will

need
PN�1

k=0 2�kL = 2(1�2�N)L \equivalent" image lines for �ltering (refer to Figure

5.6). As N grows the required number of lines tends to 2L, and the corresponding

memory becomes 2LX i.e., asymptotically we only need a number of lines equal to

twice the �lter length. The above analysis is valid for both encoder and decoder as

long as we use the decompositions in Fig. 5.5.

As in the 1D case, synchronization issues have to be addressed because coe�cients

from the �rst level of decomposition are generated by the analysis bank before co-

e�cients from higher levels, while the synthesis �lter-bank requires the higher level

coe�cients before it can use the coe�cients from the �rst level. For example in a

two-level decomposition we will need to store the HL0;LH0;HH0 bands
4 since these

bands become available before the HL1;LH1;HH1 bands, and the synthesis �lter-bank

has to start processing data from the second level before it can process data from the

�rst level.

Thus, as in the 1D case, in an N -level decomposition the synchronization delay

required for data at level n is DN�n = (2N�n�1)S lines5, where the width of each line

is the width of a subband at a particular level, e.g., the width of one line at level n will

be 2�n�1X, due to down-sampling and the use of a dyadic decomposition. Because

4 bands are generated at each level, but only one (i.e. the LL band) is decomposed

further, we will need synchronization bu�ers for the remaining three subbands. Thus

the synchronization bu�ers for level n will have a total size of 3 � (2N�n�1)S �2�n�1X

pixels and the total memory needed for synchronization will be:

T

(2d)

N = 3

N�1X
k=0

(2N�k � 1)SX2�k�1 = (2 � 2N + 2�N � 3)XS (5.1)

From (5.1) we see that the size of the delay bu�er increases exponentially with the

4Index 0 corresponds to the �rst level of decomposition
5Note that we express this delay in terms of number of input lines, instead of pixels
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number of levels, while as discussed before the memory needed for �ltering is upper

bounded by 2LX pixels. Thus, as the number of decomposition levels grows, the

�ltering requirements remain relatively modest, while the size of the synchronization

bu�ers tends to grow fast. However, memory-e�cient implementations are still pos-

sible because the �ltering bu�ers hold data that is accessed multiple times, while the

synchronization bu�ers are only delay lines (FIFO queues). This is a key distinction

because, as will be described later, the data in the synchronization bu�ers will only

be used by the decoder and therefore it can be quantized and entropy coded so that

the actual memory requirements are much lower.

In summary, for an N -level dyadic decomposition, we will need

� �ltering bu�ers for up to 2LX pixels, and

� synchronization bu�ers for T
(2d)

N = (2 � 2N + 2�N � 3)XS pixels.

The decomposition of Fig. 5.5(b) can be implemented with the same memory as

that of Fig. 5.5(a). For the case of Fig. 5.5(b), we perform �ve levels of horizon-

tal decomposition when we �rst read a line and we skip horizontal �ltering in all

the subsequent decomposition levels in Figure 5.6. This decomposition gives better

compression results for images having a signi�cant part of their energy in the high

frequencies. For a speci�c wavelet packet decompositions the exact structure of a

line-based implementation would have to be determined on a case-by-case basis, and

thus the above formulas do not apply. However, special decompositions such as the

one in Figure 5.5(b), having the same memory requirements as the simple \dyadic

tree" decomposition, can provide some of the gains of a wavelet packet decomposition,

while being memory e�cient.

5.2.3 Example

To illustrate our WT algorithm let us consider an example, with N = 5 levels of

decomposition. Refer to Figure 5.6. After �ltering, data from decomposition level

n are passed on to decomposition level n + 1. Assume we are at level 2 and we
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Figure 5.5: (a) Five level dyadic tree decomposition. The multiplications needed for

the whole decomposition are 8
3
XY L. (b) Five levels decomposition in the horizontal

direction for all lines, followed by a dyadic decomposition in the vertical direction.

The memory needs are the same as in the previous case, the multiplications needed

are 10
3
XY L

are receiving data from level 1. Each time we receive a line we perform horizontal

�ltering and we store the data into a circular bu�er that can hold L lines. After

we have received S + 1 lines we can perform vertical symmetric extension inside the

bu�er. We will end up with L lines that have already gone through a horizontal

decomposition and we are then ready to perform vertical �ltering. We can generate

2 output lines at once since we have all the necessary input lines. One line will have

vertical low pass information and the other will have vertical high pass information.

Moreover, half the coe�cients in each line will contain horizontal low pass information

and the other half will contain horizontal high pass information. As output we have

four lines LL2;LH2;HL2;HH2 of length half the length of our vertical bu�er at this

level. The LL2 line needs to go to the next decomposition level, i.e., level 3, while

the lines LH2;HL2;HH2 need to go through the synchronization bu�er FIFO2. The

width of each input line for level n is 2�nX, while the width for each output line is

2�n�1X. This process continues for each level of decomposition, up to the last level

(level N � 1).
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5.2.4 Speed advantages

The WT implementation described in the previous sections provides signi�cant mem-

ory savings, as compared to a \naive" row column �ltering implementation, which

will require a memory size of the order of the image size. This memory e�ciency is

advantageous also in terms of computation speed. Obviously, the number additions

and multiplications is exactly the same in our line-based implementation as in the

row column �ltering implementation. However in image compression applications we

frequently deal with large images such that the whole image does not �t into the

processor cache memory. If the cache memory is insu�cient all the image pixels will

have to be loaded into cache several times in the course of the WT computation.

For example, in a software environment the operating system and the processor are

responsible for loading and unloading certain parts of the whole image into cache, and

a memory ine�cient approach will result in increased memory management overhead.

In the naive approach, output coe�cients generated by horizontal �ltering will have

to be removed from the cache, then reloaded when column �ltering is performed.

Instead, in our proposed system, the enforced \locality" of the �ltering operations

makes it more likely that strips of the image get loaded into the cache only once 6.

This fact alone reduces the tra�c through the buses of the processor and cuts the

bandwidth for memory access by orders of magnitude. Cache memory is around 5

times faster than main memory, so we expect speed ups of around 5 times by using

our approach. In software implementations these were indeed our observations in

simulations. Also the larger the size of the image the greater the speed advantages

o�ered by our algorithm. No optimization was performed in our code and yet to the

best of our knowledge our algorithm provides the fastest currently available software

implementation.

6Of course, depending of the size of the cache relative to the image size, we might need to load

them more than once.
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5.3 Low memory entropy coding

5.3.1 Desired characteristics of a low memory compression

scheme

In order to use our low-memory WT for an image compression application, and still

keep the memory needs low, we need to ensure that wavelet coe�cients are compressed

soon after they have been generated. Wavelet coe�cients are generated line by line in

an interleaved fashion (i.e., as mentioned earlier, �ltering operations generated both

high-pass and low-pass data for a given input line), and therefore it will be useful to

be able to encode the data in the order it is generated. Obviously, bu�ering all the

coe�cients from a certain band before they are coded increases memory requirements

and should be avoided. Thus a low-memory encoder should be able to code data as

soon as it becomes available, bu�ering up only a few lines before encoding (rather

than entire subbands) and avoiding having to go through the wavelet coe�cients more

than once.

It should be noted that if providing an embedded bit stream is required it will be

necessary to perform several passes through the data and thus the memory require-

ments will be larger. An embedded coder will typically send the most signi�cant bits

of all the wavelet coe�cients, whereas a memory e�cient approach would tend to

transmit coe�cients (down to maximum level of signi�cance) as they are produced.

If an embedded bit-stream is desired then it will be necessary to store all the wavelet

coe�cients (so that the most signi�cant bits of all coe�cients can be sent �rst). Al-

ternatively, with the appropriate bit-stream syntax, it may be possible to generate an

embedded bit-stream by �rst storing a compressed image and then reordering the bit-

stream before transmission (as in [92]). In either case, an embedded output requires

more bu�ering than our proposed approach.

As indicated earlier, to reduce the synchronization memory requirements, it will be

preferable to store compressed data in those bu�ers after compression. This is clearly

advantageous since wavelet coe�cients are usually kept in 
oating point format (32
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bits) while after compression they can be stored with about one bit per coe�cient

on average. Thus one should keep in compressed form as much data as possible and

avoid bu�ering uncompressed wavelet data.

5.3.2 Line based entropy coder

We now describe our proposed low-memory coding strategy, based on context model-

ing and classi�cation along with arithmetic coding and probability estimation. Pro-

cessing is based on the lines of wavelet coe�cients produced by the WT. Each band

is encoded separately, i.e. we do not use any kind of information from one band in

order to encode another. Moreover no global information is required. Our purpose

is to demonstrate that a line-based transform combined with a line-based coder can

be competitive in terms of compression performance, at a fraction of the memory

requirements of a more general algorithm like [8, 16, 62, 83, 85].

In the rest of the chapter we will assume that all subband data are quantized with

the same dead-zone quantizer, that is the step size � of the quantizer is the same for

all subbands. The quantization operation is a mapping from a wavelet coe�cient �

to the index v = b
�

�

c. The inverse quantization is a mapping from the index v to an

estimate �̂ of the original wavelet coe�cient �.

�̂ =

8>><
>>:

(v + 1=2) � � if v > 0

(v � 1=2) � � if v < 0

0 otherwise

(5.2)

We assume appropriate normalization of the �lter coe�cients, as discussed in [16], in

order to compensate for the fact that the biorthogonal �lter-banks we use here (to take

advantage of the symmetry properties) do not have norm one. This normalization

allows us to use the same quantization step size for each band.
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Figure 5.6: Full system with analysis �lter bank, encoder, decoder and synthesis �lter

bank, we consider 5 levels of decomposition. The FIFO bu�ers can become part of the

encoder and decoder, in order to reduce the total memory size. Encoder and decoder

need to be able to work with each band independent of the others. The �ltering bu�er

for level n consists of L lines of length 2�nX. The data 
ow is as follows: we read

image data, pass through the �ltering blocks for the appropriate levels, send data to

the encoder and inverse the process in order to reconstruct the image.
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Introduction to Context Modeling

Context modeling is used in various forms in many compression algorithms. It has

been the central component of lossless compression algorithms like [47,104,109], and

is also widely applied in lossy compression environments [16, 62, 115]. We de�ne the

context information for a coe�cient as the information we can obtain from the neigh-

boring previously quantized and encoded coe�cients7. Obviously context information

is only useful if the data exhibits some sort of correlation, as is the case when consider-

ing wavelet coe�cients obtained from �ltering natural images. Consider for example

a one dimensional signal x0; x1; x2; : : : . Context information corresponding to a coef-

�cient xn can be any function of the form �n = f(xn�1; xn�2; xn�3; : : : ). Usually we

only consider a small �nite window, that is, the number of arguments for the function

f() is small. The context information �n can be useful as a general form of prediction

for xn, where our objective is not to predict the value of xn itself, but rather to char-

acterize the distribution of xn given �n. For example, if �n = jxn�1j+ jxn�2j+ jxn�3j,

i.e, is the sum of the magnitudes of three previously quantized coe�cients, then small

values of �n may correspond to a probability function for xn that is highly peaked

around zero (i.e. another small coe�cient is likely), while larger values of �n may

correspond to an almost uniform distribution for xn (i.e. large magnitude wavelet

coe�cients will tend to appear in clusters). Note, that if each value of �n had to be

assigned a di�erent probability model, the system would quickly become impracti-

cal (excessive number of models as compared to the amount of data would result in

context dilution.) Thus, in practice, a �nite number of classes or probability models

N is used so that a given xn is assigned to one of these N classes depending on the

context. Since the possible values of �n may be very large, selecting the N classes is

similar to quantizing �n into N discrete values.

7We assume that only causal contexts are used to avoid having to send any side information to

the decoder.
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Context Modeling and low memory

We now describe a low memory context modeling approach that is well suited for our

line-based transform, refer to Fig. 5.7. For each subband we keep only one line of

context information, where the context contains both sign and magnitude information

from previous lines. As a context we will use a weighted average of all previous

lines of wavelet coe�cients. This approach is a good compromise that allow us to

maintain low memory while at the same time being able to include in the context more

information than that corresponding to the previous line. Let �i; i = 0; : : : ; K � 1

be the quantized wavelet coe�cients in one line of a certain subband, where K is the

width of a line. Let ci; i = 0; : : : ; K � 1 be the context information for magnitude in

this subband. We start at the top of the subband with all ci equal to zero and update

each ci after we encode a pixel of value �i as follows:

ci =

(
j�ij �i 6= 0

ci=2 otherwise
(5.3)

The scanning within a subband is, left to right, top to bottom. If a coe�cient is

found to be non-zero (at the given quantization level), we keep its absolute value

as the context information in the current position in a line. However if the current

coe�cient is zero we divide the previous context information by 2, so as to lower

(but not set to zero) the neighborhood magnitude. The factor of 2 is chosen for

simplicity of implementation, and there was no particular optimization involved. The

above way of forming context information is equivalent to looking to several previous

lines at a time and using the information from the nearest nonzero coe�cient in

the vertical direction. The advantage of our approach is that we are doing it in a

computationally much more e�cient way since we accumulate all context information

in one line. Context information ci is kept in �xed point format, so we expect to have

ci = 0 in areas having many zeros, i.e., a non zero coe�cient does not \propagate"

more than few lines or samples in the context information. Apart from the context

related to the magnitude of past encoded coe�cients we also keep context information
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for the sign of the coe�cients from the previous line, a coe�cient can either be positive

\+", negative \-", or zero \0". Note that the sign we store here is that of the actual

coe�cient in the line in that position. We need 2 bits for each coe�cient in order to

keep this information, the context information for the sign is:

si = signf�ig =

8>><
>>:

0 if �i = 0

1 if �i > 0

�1 if �i < 0

(5.4)

The total memory needed for storing the context information for all subbands is

three equivalent image lines. We need 3 lines of length X=2 for the �rst level of

decomposition, 3 lines of length X=8 for the second level, and in general 3 lines of

length 2�n�1 for the nth level. The total bu�er size is TC =
PN�1

i=0 3 � 2�n�1X =

3(1� 2�N)X, which tends to 3X as N grows.

Classi�cation and Encoding

In the rest of the chapter we will use a function encodefv
����g, to represent encoding a

number v given a discrete probability model �. encodefg will use arithmetic coding

and encode-rawfv[�]g will represent the function of sending the � least signi�cant

bits of v, without any form of entropy coding. For the cases where we are encoding

a single bit we use the function encode-bitf�
����g, in order to emphasize that we are

encoding a single bit.

Based on the context information ci (see Figure 5.7) we classify each new coe�cient

�i into a class 
i, among 15 possible classes, as follows:

�i = ci + 2ci�1 + ci+1 + (ci�3jjci�2jjci+2jjci+3) (5.5)


i =

8>><
>>:

14 if �i > 214 � 1

0 if �i = 0

1 + blog2 �ic otherwise

(5.6)
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ci ci+1 ci+2 ci+3

ci�3 ci�2 ci�1 �i

Figure 5.7: Context information for magnitude encoding. For each subband we keep

a line of context information. In this Figure we see the relative position of the wavelet

coe�cient �i to be encoded and the context information around it.

Where jj stands for logical \or",

�jj� =

(
0 if � = 0 and � = 0

1 otherwise

The motivation behind this scheme is to keep the contribution of ci�3; ci�2; ci+2; ci+3

to the context formation to a minimum. The selection of the 1 + blog2 :c operator,

is mostly for simplicity since it represents the number of signi�cant bits. Moreover

using a logarithmic rule for quantization into classes also accounts for the fact that

in typical images neighborhoods with small context magnitude (�i small) are more

likely than those with high magnitude. Thus a logarithmic rule allows us to have

more classes at low magnitude than at high magnitude.

Class 
i = 0 corresponds to a coe�cient where all its neighbors are zero, so that

we expect j�ij to be very close to zero, for values of 
i further away from zero the

distribution of j�ij is much less peaked around zero. Up to 15 classes can occur, but

in practice the number of classes that are used depends up on the bit rate. If we

happen to have large enough wavelet coe�cients, or high bit rate, all 15 classes might

be used, but if we are encoding at low bit rates only a portion of the 15 classes might

occur.

After classi�cation we encode a bit denoting if our current coe�cient �i is sig-

ni�cant or not, the encoding of this bit is conditioned upon the class 
i, sending

information denoting if our current coe�cient �i is signi�cant or not corresponds to
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class sign 
ip g1 g0

0 NO 0 0

1
NO + 0

YES - 0

2
NO 0 -

YES 0 +

3
NO - -

YES + +

4
NO + -

YES - +

g0

g1 x

Table 5.1: Context formation for sign encoding/decoding. We only use the sign from

the two nearest neighbors for context formation. We exploit symmetry by using a

sign 
ipping technique and we thus reduce the number of classes from nine to �ve.

g0; g1 are the signs of the wavelet coe�cients at the corresponding locations.

encode-bitfj�ij > 0
���
ig. If a given coe�cient is found to be signi�cant, we also

encode a parameter li:

li = blog2 j�ijc (5.7)

This parameter denotes the extra number of LSBs8 needed to represent the magnitude

of j�ij, given that j�ij > 0. We follow by a raw encoding of the li LSBs of j�ij. As

an example, assume9 j�ij = 000011101, li = 4. If the decoder knows the value of li

it can then �nd the highest order nonzero bit of �i, and with the transmission of li

more bits, j�ij will have been completely transmitted.

The sign of �i is subsequently encoded using a separate context modeling, based

on the sign of the two nearest neighbors. Each neighbor can be either zero, positive or

negative so that we have a total of nine di�erent combinations. By using a technique

known as sign 
ipping [109] we can reduce the number of classes from nine to �ve. In

sign 
ipping we take advantage of certain symmetries present in the context formation,

8Least signi�cant bits
9The over-lined bit is the highest order nonzero bit, while the underlined bits are the additional

li LSBs that will be sent to the decoder.
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as seen in Table 5.1. Let us consider an example. Assume that both neighbors g0; g1

are positive and let p; 1�p be the probability that a new coe�cient x has the same sign

or not, respectively, as its neighbors. We can assume that the probability of \same

sign" will be the same if both g0; g1 are negative and thus we only characterize the

probability of having a sign change and assume these are roughly the same regardless

of the sign g0; g1 have, as long as their sign is the same.

State information/ Arithmetic Coder

We use an arithmetic coder that operates with di�erent probability models where the

probability model depends on the class 
i. For each class, we keep track of symbol

occurrences so as to update the probability model. The models needed for each band

are:

� Five binary models for sign encoding

� 15 binary models for encoding signi�cance information,where each model cor-

responds to a class 


� One model B of up to 14 symbols for encoding the number li from (5.7). This

model will be used as an M -ary model with 0 < M � 14 by considering the

�rst M symbols. As explained in section 5.3.2, li will always be bounded by a

number M for each line.

Therefore we will need 5 + 15 + 14 = 34 words per subband in order to store

the probability model information. As can be deduced from the foregoing discussion,

context modeling does not represent a signi�cant memory overhead to our system as

compared to the memory needed for �ltering.

Algorithm

After wavelet transform and quantization, with the same dead-zone quantizer for all

the coe�cients, the algorithm for encoding a line corresponding to one subband can

be described as follows:
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1. For each new line encode-rawfL[15]g, where L = blog2(1 + maxi j�ij)c is the

number of bits needed to represent the largest coe�cient in a row line. If L > 0

go to step 2 else return to step 1. This allows us to determine the maximum

value for li and to skip lines that are all zero.

2. Classify each new wavelet coe�cient �i into a class 
i according to equations

(5.5) and (5.6).

3. encode-bitfj�ij > 0
���
ig (Encode whether �i is zero or not, by using the cor-

responding model 
i ) and update the statistics for model 
i.

4. if j�ij > 0 f

� encodefli

���B(M)g where li = blog2 j�ijc, M = dlog2 Le, B
(M) means that we

are using model B as an M�ary model, since we know that li < M .

� form a class wi for the encoding of the sign according to table 5.1

� encode-bitf�i > 0
���wig and update the statistics for model wi.

� encode-rawfj�ij
[li]g, that is we encode the li LSBs of j�ij.

g else go to step 5

5. update the context information according to equation (5.3)

6. if not end of line go to the next pixel (step 2)

7. if not end of image go to the next line (step 1)

5.4 Experimental Results and Memory Analysis

In Table 5.2 we present PSNR results for �ve di�erent images along with compar-

isons with algorithms in [8,16,83] and also JPEG [71] with arithmetic coding10. Our

10In order to provide a fair comparison with a DCT based technique we select the arithmetic

coding based JPEG (JPEG-AR) rather than baseline JPEG. The memory requirements are very

similar and the compression performance better for JPEG-AR. All the wavelet coders we consider

use arithmetic coding.
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results are not always the best but are competitive at a fraction of the complexity

and memory utilization. It is worth repeating that our algorithm is one pass and

there are no rate distortion optimization decisions made at any stage. The memory

requirements depend upon the �lter length in our �lter-bank, the number of levels

in the decomposition, the type of decomposition itself, and the width of the image.

The height of the image does not a�ect the memory needs. The transform can be

implemented in only 2LX pixels of memory independently of the number of levels of

decomposition, the encoder and decoder are responsible for handling the synchroniza-

tion bu�ers. Even though the synchronization bu�ers grow exponentially with the

number of decomposition levels, we can bring their size down by orders of magnitude

if we keep them in compressed form. The memory needed for context modeling is 3X

pixels. The overall memory needs for our algorithm are the lowest reported in the

literature for wavelet coders.

In Table 5.3 we present the exact memory usage for all algorithms [8, 16, 71, 83],

as measured in an HP-Kayak workstation running windows NT, the memory needs of

our algorithm are much closer to JPEG than any of the above mentioned algorithms.

The scaling problems of wavelet coders can be seen clearly by observing the numbers

in table 5.3. In many practical applications images of hundreds of millions of pixels

need to be compressed, but in many cases it is impossible to bu�er the whole image.

Tiling the image causes blocking artifacts and degrades the performance. In table 5.2

for the column corresponding to [8] we forced the algorithm to work with tiles of size

128� 128, this con�guration corresponds to memory needs slightly above our current

algorithm, but the performance of the wavelet coder in this case falls below that of

JPEG-AR.

It is worth pointing out that we do not use a bit plane coder for the re�nement

bits as for example [8]. Instead we are encoding each quantized wavelet coe�cient

at once, without the need for multiple passes. The results, as compared to bit plane

coders [8, 83, 85], are still very competitive. We compensate for not entropy coding

some bits by the use of a higher order arithmetic coder to encode the number li of

those bits.
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Rate SPIHT [83] C/B [16] JPEG-AR VM2.0 [8] This work

Lena 0.125 31.10 31.32 28.45 30.93,(27.96) 31.05

512 � 512 0.25 34.13 34.45 31.96 34.03,(31.36) 34.20

0.50 37.24 37.60 35.51 37.16,(34.75) 37.35

1.00 40.45 40.86 38.78 40.36,(38.60) 40.47

Barbara 0.125 24.84 25.39 23.69 24.87,(23.27) 25.20

512 � 512 0.25 27.57 28.32 26.42 28.17,(25.38) 28.18

0.50 31.39 32.29 30.53 31.82,(29.20) 31.87

1.00 36.41 37.40 35.60 36.96,(33.79) 36.68

Goldhill 0.125 28.47 28.61 27.25 28.48,(26.84) 28.49

512 � 512 0.25 30.55 30.75 29.47 30.58,(29.21) 30.64

0.50 33.12 33.45 32.12 33.27,(31.88) 33.27

1.00 36.54 36.95 35.57 36.81,(35.47) 36.66

Bike 0.125 25.82 26.16 24.88 25.75,(21.89) 25.92

2560 � 2048 0.25 29.12 29.43 28.20 29.30,(24.83) 29.17

0.50 33.00 33.47 32.11 33.28,(29.30) 33.04

1.00 37.69 38.27 36.39 38.08,(34.39) 37.66

Woman 0.125 27.27 27.67 26.05 27.23,(24.09) 27.51

2560 � 2048 0.25 29.89 30.36 28.83 29.79,(26.12) 30.14

0.50 33.54 34.12 32.47 33.54,(28.80) 33.74

1.00 38.24 38.92 37.11 38.30,(32.96) 38.47

Table 5.2: Comparison between our method and [8, 16, 71, 83] for images: Barbara, Lena,

Goldhill, Bike and Woman, the last two images are part of the test images for JPEG2000.

We used �ve levels dyadic decomposition with 9-7 tap �lters.(JPEG-AR stands for JPEG

compression with the addition of arithmetic coding.) For algorithm [8] the numbers in

parenthesis correspond to tiles of size 128� 128.

5.5 Conclusions and Future Work

In this chapter we have developed a technique for line based wavelet transforms,

analyzed the memory needs of the transform and separated the memory needed in

two di�erent categories, namely �ltering memory and synchronization memory. We

pointed out that the synchronization memory can be assigned to the encoder or

the decoder and that it can hold compressed data. We provided an analysis for

the case where both encoder and decoder are symmetric in terms of memory needs

and complexity. We described a novel entropy coding algorithm that can work with
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very low memory in combination with the line-based transform, and showed that

its performance can be competitive with state of the art image coders, at a fraction

of their memory utilization. The whole system can also be used as a tool for WT

implementation in low memory, and in fact line based transforms as implemented in

this work have been incorporated into the JPEG 2000 veri�cation model. It is also

worth mentioning that we can use compression to deal with the memory growth of

the synchronization bu�ers, even in applications where compression is not the main

objective, but where memory is an issue.

To the best of our knowledge, our work is the �rst to propose a detailed implementation

of a low memory wavelet image coder. It o�ers a signi�cant advantage by making a

wavelet coder attractive both in terms of speed and memory needs. Further improve-

ments of our system especially in terms of speed can be achieved by introducing a

lattice factorization of the wavelet kernel or by using the lifting steps. This will reduce

the computational complexity and complement the memory reductions mentioned in

this work.

Image Size 2560 � 2048 3312 � 5120 6624 � 5120

Compressed 650K 2.1M 4.2M

SPIHT [83] 27M 81M *

C/B [16] 21M 67M 92M

JPEG [71] 688K 720K 720K

VM2.0 [8] 51M 97M *

This work 850K 1.3M 1.3M

(1.5M) (3.4M) (5.5M )

Table 5.3: Memory usage for algorithms [8, 16, 71, 83] for tree di�erent image sizes

5:2; 16:9 and 33:9 Mbytes. All images were compressed at 1b/p. The numbers were

obtained using a personal computer, with 128M of memory. Numbers in parenthesis

for the line based algorithm correspond to the memory needed for the algorithm plus

memory for bu�ering of the complete bit stream. Memory usage was measured for

the decoder but for all the above algorithms encoder and decoder are symmetric. The

\*" corresponds to cases where the memory needs exceeded the machines limitations

.
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Chapter 6

Lifting, Memory and Complexity

Contents

All publications on the lifting scheme up to now [10, 89] consider non-causal sys-

tems, where the assumption is that the whole input signal is bu�ered. This is prob-

lematic if we want to use lifting in a low memory scenario. In this chapter we present

an analysis for making a lifting implementation of a �lter bank causal, while at the

same time reducing the amount of delay (or memory) needed for the whole system.

The amount of memory needed for the lifting implementation of any �lter bank can

be shown to be always smaller than the corresponding convolution implementation.

The amount of memory savings is �lter bank dependent, it ranges from 0% for the

Haar transform to 40% for a 2 � 10 �lter bank. The amount of savings depends on

the number of lifting steps as well as the length of the lifting steps used.

We will also elaborate on the use of boundary extensions on each lifting step

instead of the whole signal. This leads to lower memory requirements as well as

simpler implementations.

6.1 Lifting Structures

There have been a number of publications that propose constructing wavelet trans-

forms as a series of lifting and dual lifting steps [10,89], or prediction and update steps.
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Figure 6.1: Lifting structure for a two channel analysis �lter bank.

The lifting approach to WT allows for arbitrary decompositions including nonlinear

�lters. Complexity trade-o�s for this approach have not yet been studied in depth.

There has been no general theoretical formulation of the memory reduction potential

of using lifting implementation of wavelets. Consider the lifting structure in Figures

6.1 and 6.2, where �lters Pk(z) and Uk(z) may or may not be causal. The structure

provides an easy way to understand the lifting implementation for one dimensional

signals.

In the Figures we do not take into account scaling of the two channel outputs for

normalization of the wavelet coe�cients. That is, we can multiply the two outputs in

Figure 6.1 by constant numbers and then divide the inputs in Figure 6.2 by the same

numbers in order to have for example DC gain of one. These normalization factors

are not considered since they do not have any impact on our analysis.

The assumption is that we are applying the one �lter step in the whole signal and

we continue with the next step. We follow the update/predict steps in the sequence

they appear for the whole signal length, one step at a time. A \naive" implementation

would consist of applying each �lter, for example P0(z), to the whole signal, storing

the result, then applying U0(z) to the output that was stored. Memory of the order of

the signal length is needed in this case. In this chapter we will study how to implement

such systems with minimal memory, i.e., such that outputs can be produced as soon

as su�cient inputs are available.
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Figure 6.2: Lifting structure for a two channel synthesis �lter bank.

6.1.1 Nonlinear perfect reconstruction systems

The system in Figure 6.2 is the exact inverse of the one in Figure 6.1, so that the

cascade of the two systems will be the identity operator. The basic idea in this lifting

structure is to partition the original signal xn into two sets; one set with even samples

and the other set with odd samples. In the analysis �lter bank we try to predict the

values in one set based on values from the other set. In the synthesis �lter bank

we perform the exact opposite operations, we remove the prediction added in the

analysis.

Prediction and update operators can have any form. For example we can apply

linear or non linear operator and we can even quantize the di�erent prediction values.

The �lter bank implemented using a lifting structure will always be perfect recon-

struction. It may not posses some energy preserving properties1, but even after the

introduction of any non-linearities perfect reconstruction will be guaranteed, because

all prediction is done within closed loops. Perfect reconstruction is especially useful

when we want to use a �lter-bank in a lossless compression system. In this case we

usually cannot a�ord to encode real numbers, but by using a lifting structure we can

have a system that operates on integers, without the need for increased precision on

the input data [10]. Moreover, with lifting structures �xed point implementations are

1The energy of the image is not the same as the energy of the transformed coe�cients
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Figure 6.3: (a) Non causal (b) causal (c) modi�ed causal lifting steps.

made possible. We do not have to keep the least signi�cant bits in the predict and

update stages. This is important because hardware �xed point implementations are

substantially cheaper than 
oating point equivalents.

6.2 Lifting Implementations in Low Memory

The system in Figure 6.1 may have to be used as causal system, for example for audio

processing applications or for a low memory wavelet transform. That is, we may not

have access to the whole signal at once and, instead we may receive input samples

one sample at a time. We would like to process data as we receive them and therefore

we need to have a causal system. Our goal is given that samples are received one at

a time to generate outputs while bu�ering the minimum number of data. In this case

the systems in Figures 6.1 and 6.2 need to be modi�ed and some delay lines need to

be inserted into the system.

Assume that we have a series of Np prediction steps and Nu update steps, where

each prediction step is followed by an update step. If we have an odd total number of

lifting steps the last one will be a prediction step and will not be followed by an update

step. We assume that we start the lifting decomposition by �rst applying a prediction

step and then an update step. If we happen to have two or more prediction steps

following each other then we can combine them in a single prediction step. So, based

on the above observations, without loss of generality we can assume that Np = Nu



97

)0(
ny

)1(
ny

nx
22

22 0lz−

1−z

00 lmz −− 11 −− −− NN lmz

1−− Nmz

...

...

...

01 mlz −−

�N-1(z)�N-1(z)�0(z)�0(z) �0 (z)�0 (z) �N-1(z)�N-1(z)

+

-

+

-

Figure 6.4: Analysis lifting structure with causal lifting steps P(z);U(z), the synthesis

structure can be derived in a similar manner.

or Np = Nu + 1, which are the only two possible situations for any two channel �lter

bank. That is, the number of prediction steps is either equal to the number of update

steps or one more than the number of update steps.

Let the kth prediction Pk(z) and update steps Uk(z) steps be:

Pk(z) = p�lkz
lk + p�lk+1z

lk�1 + � � �+ p0z
0 + � � �+ pgk�1z

�gk+1 + pgkz
�gk (6.1)

and

Uk(z) = u�mk
z
mk + u�mk+1z

mk�1 + � � �+ u0z
0 + � � �+ ufk�1z

�fk+1 + ufkz
�fk (6.2)

Let P(z) be a causal version of P (z) obtained by shifting by z
�lk , and U(z) be a

causal version of U(z) obtained by shifting by z�mk :

Pk(z) = p�lk + p�lk+1z
1 � � �+ pgk�1�lkz

�gk+1�lk + pgk�lkz
�gk�lk (6.3)

Uk(z) = u�mk
+ u�mk+1z

1 � � �+ u�mk+fk�1z
�fk�mk+1 + ufk�mk

z
�fk�mk (6.4)

Let us introduce the operators C and A denoting the causal and anti-causal parts of

a signal, that is:
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Cf

1X
i=�1

aiz
�ig =

1X
i=0

aiz
�i (6.5)

and

Af

1X
i=�1

aiz
�ig =

1X
i=1

aiz
i (6.6)

The anti-causal parts of P (z) and U(z) are:

AfPk(z)g = p�lkz
lk + p�lk�1z

lk�1 + � � �+ p1z
1
; (6.7)

and

AfUk(z)g = u�mk
z
mk + u�mk�1z

mk�1 + � � �+ u�1z
1
: (6.8)

While the causal parts of P (z) and U(z) are:

CfPk(z)g = p0 + p0z
1 + � � �+ pgk�1z

�gk+1 + pgkz
�gk

; (6.9)

and

CfUk(z)g = u0 + u1z
1 + � � �+ ufk�1z

�fk+1 + ufkz
�fk

: (6.10)

The orders of the causal and anti-causal parts of Pk(z) and Uk(z) are:

orderfCfPk(z)gg = g0; orderfAfPk(z)gg = l0 (6.11)

orderfCfUk(z)gg = f0; orderfAfUk(z)gg = m0 (6.12)
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Figure 6.5: Modi�ed lifting representation analysis �lter bank, with �ltering dis-

jointed from delay units. Blocks [Pi] do not include any delay, instead they reads

multiple input data from the delay lines z�l0 and z�g0 .

The lengths of the predict and update steps Pk(z) and Uk(z) are:

LengthfPk(z)g = 1 + orderfCfPk(z)gg+ orderfAfPk(z)gg = 1 + g0 + l0 (6.13)

LengthfUk(z)g = 1 + orderfCfUk(z)gg+ orderfAfUk(z)gg = 1 + f0 +m0 (6.14)

We can force all �ltering steps in Figure 6.1 to be causal by introducing appropriate

delays. In Figures 6.3a,b we see a single lifting step implementation with a non causal

(a) or a causal (b) structure. The complete modi�ed analysis system is depicted in

Figure 6.4.

The main problem in forcing the system to be causal is the increased amount of

memory or delay needed. The system in Figure 6.4 requires more delay than the one

in Figure 6.3, due to the z�lk and z
�mk delays that were introduced to produce a

causal system. We can combine the memory needed for �ltering Pk(z) and the delay

line z�lk in between consecutive lifting steps by using the single modi�ed block in

Figure 6.3c. The complete analysis system with the use of the cell2 in Figure 6.3c is

seen in Figure 6.5. If we combine adjacent delays from two cells into a single delay

element we get Figure 6.6. The quantities 
k; �k are de�ned as:

2By cell we refer to either a prediction or an update step seen in Figure 6.3
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Figure 6.6: Analysis lifting structure with causal lifting steps and minimum memory

requirements.


k , maxflk; fk�1g; k = 0; 1; 2 : : : ; N � 1 (6.15)

�k , maxfgk; mkg; k = 0; 1; 2 : : : ; N � 1 (6.16)

In the above equations we assume that:

lk = gk = 0; for k 6= 0; 1; 2 : : : ; Np � 1; (6.17)

and

mk = fk = 0; for k 6= 0; 1; 2 : : : ; Nu � 1 (6.18)

The above two conditions are used to avoid special cases in the de�nitions (6.15) and

(6.16). The total memory TS needed for the lifting system in �gure 6.6 is:

TS =

Np�1X
k=0


k +

Nu�1X
k=0

�k +

Np�1X
k=0

lk +

Nu�1X
k=0

mk (6.19)

The above memory does not include the two samples for input and output. The lifting

system described in this section is a two input two output system and as such there
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is also need to bu�er the two input samples. In this case the total memory needed

to implement the �lter bank is TA = TS + 2. For the case where lk = l; gk = g; k =

0; 1; 2; : : : ; Np � 1, mk = m; fk = f; k = 0; 1; 2; : : : ; Nu � 1 and Nu = Np = N .

TS = N(l +m + f + g) (6.20)

For example for the 9� 7 tap �lters:

T

(9�7)

S = 1 + 1 + 1 + 1 = 4 (6.21)

6.3 Lifting implementations of �lters

In Appendix B we give several �lter coe�cients for convolution and lifting implemen-

tations as presented in the JPEG2000 standardization meetings [24]. In all cases the

memory needed for the lifting structure implementation is signi�cantly smaller than

that needed for the straight forward convolution implementation. The total memory

needed for the system is denoted by TS. To this memory we need to add the memory

from the two input samples, since the system is a two input two output operator.

However, in many cases, depending on our system design, we may not have to ac-

count for this memory as part of the WT system memory. Since the input and output

memory locations will be provided by another system, for example the image reader

or writer. This is the reason we decided not to include the two additional samples of

delay in TS. Still we do include values of TA.

In Table 6.1 we present data for nine di�erent �lters, the length of the low pass

and the high pass �lters llow; lhigh, the memory TS and the memory TA, along with

the percentage of memory saving for each �lter.

6.3.1 Lifting steps, �lter symmetry and fast implementations

For a lifting structure to achieve perfect reconstruction no symmetry is needed. Be-

cause of the structure, arbitrary prediction/update �lters can be used and perfect
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Filter llow lhigh TS TA = TS + 2 memory savings

9� 7 9 7 4 6 33:33%

13� 7 13 7 6 8 38:46%

9� 3 9 3 4 6 33:33%

5� 3 5 3 2 4 20:00%

13� 11 13 11 8 10 9:09%

5� 11 5 11 7 9 18:18%

2� 6 2 6 2 4 33:33%

2� 10 2 10 4 6 40:00%

2� 2 2 2 0 2 0:00%

Table 6.1: Memory savings for di�erent �lters according to appendix B

reconstruction will still be guaranteed. However, intuitively it is reasonable to use

symmetric �lters, since there is no reason why a coe�cient to the left of our current

location should be less signi�cant than a coe�cient to the right and vice versa. Im-

posing symmetry helps in reducing numerical operations; as symmetric �lters have

approximately half the complexity of the equivalent non-symmetric �lters of same

length.

Consider a symmetric �lter P (z):

P (z) =

N�1X
j=0

pj(z
�j + z

j) (6.22)

a convolution of a signal xn with the �lter will be implemented as follows:

yn =

1X
i=�1

(xn�i + xn+i)pi (6.23)

when we are performing �ltering along the vertical direction in two dimensional signals

we need to perform all operations in lines instead of samples. In this case we will

need to add two lines and multiply the result with the corresponding �lter coe�cient.

Symmetry is a key point to fast implementations of a wavelet transform in software.

Moreover we should scan along the image in the horizontal direction as much
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as possible and try to avoid vertical scanning. The reason is that image data are

stored line by line and therefore by scanning in the same order we reduce the memory

accesses to a minimum. The key operation needed is the ability to add two lines

together and multiply the result by the appropriate coe�cient. Adding two lines and

multiplying the result by a single number is a highly regular operation, it is highly

predictable and does not cause and disturbances in the pipeline of a processor.

The issues of scanning the data in di�erent directions for complexity reductions

did not arise in the JPEG standard since the number of coe�cients in a DCT block

is very small, instead the main focus was on reducing the number of additions and

multiplications. In wavelet transforms it is more bene�cial to concentrate on memory

patterns than on multiplication reductions. For example the 9-7 Daubechies �lter

bank requires more multiplications per pixel than the DCT transform. Moreover

the data manipulations in both cases follow completely di�erent patterns, and more

savings are possible by memory re-arrangements than by reducing the number of

additions and multiplications.

In all of the above examples the lifting steps were symmetric and were derived from

symmetric �lters. For symmetric �lter banks it is always possible to design lifting

structures with symmetric lifting steps [32]. Moreover even length �lters correspond

to odd length lifting steps, while odd length �lters correspond to even length lifting

steps.

Theorem 2 Let h(z) = (�1)�hh(z�1)z�h and g(z) = (�1)�gg(z�1)z�g be the two low

pass and high pass �lters of an analysis, symmetric, bi-orthogonal �lter bank. Every

lifting step of the form p(z) = (�1)�h+�gp(z�1)z
�
h
��g

2 applied to the original pair of

�lters will lead to a new symmetric, bi-orthogonal �lter bank.

Proof: See Appendix C.

Theorem 3 Every two channel �lter bank can be implemented with only symmetric

and antisymmetric set of lifting steps.

Proof: See Appendix D.



104

The above theorems are very important since symmetric systems reduce the

implementation complexity of a given �lter bank by a factor of two. Theorem 2

gives us a way to design a symmetric �lter bank based on lifting steps, we can start

with a small number of lifting steps and keep increasing the number of lifting steps

while at the same time preserving the linear phase properties.

6.3.2 Boundary extensions and lifting steps

When working with lifting steps at the boundaries of a signal and wanting to take

advantage of symmetric extensions, we can extend the original signal in the same

way we do for the convolution implementation. Even though this will work and will

give the exact same result as the convolution implementation it is preferable not to

do so. The reason is that in order to perform symmetric extension along the vertical

direction we need to bu�er a number of lines equal to half the �lter length in a bu�er

outside our system. This increases signi�cantly our memory requirements and also

does not allow us to take advantage of the powerful lifting structures.

A much better solution to the problem is to perform symmetric extension, as we go

through each individual lifting step. In this way we can utilize the memory allocated

for lifting without a need for any additional memory. For example at the end of the

image when we reach a boundary we do not have any lines in the input, so we recycle

the lines already stored inside the bu�er. We just need to know we have reached the

end of the image. The same applies to the beginning of the image, in the beginning

of the image we read a line and we copy this line to a location in an internal bu�er

line. When �ltering if we need to go beyond the beginning of the image we just reuse

the lines we already have in the bu�er. This o�ers a systematic way of dealing with

the boundaries since each individual lifting step is responsible for it's own symmetric

extension. No secondary system is needed to feed the whole lifting structure.

A simpler way of looking on this approach is by considering each lifting step as

a stand alone system. Consequently, the amount of symmetric extension needed at

the boundaries is much smaller than by considering the complete �lter bank. Each
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Delay Element

Input Output

Figure 6.7: Delay line for one band of an analysis �lter bank.

lifting step performs symmetric extension based on the data it receives from the

previous lifting step. Related work has also been independently performed in [50,51]

for di�erent purposes.

When working with lifting structures symmetric extension is not the only choice.

In chapter 2 we described the various choices with convolution implementation of

a �lter bank. When working with lifting we can have almost arbitrary boundary

conditions without compromising on perfect reconstruction as can be deduced from

[89]. We can for example use repetition on each lifting step, so instead of using

symmetric extension we can instead just repeat the last sample of our signal. Lifting

implementations will always give us perfect reconstruction. The reason we will not

elaborate more on this issue is that repetition does not allow us a uni�ed approach

in both convolution and lifting implementations of wavelets.

6.3.3 Software/Hardware Architectures For Lifting

Implementations on Images

The direct lifting algorithm is probably the most e�cient approach for �ltering in

the horizontal direction when working with images. The direct algorithm works in

place as described in [89], i.e. we read one line of the original image and we process

everything in place. Even symmetric extensions can be handled in place. In the case

of symmetric extensions we do not need to extend the input signal instead we can
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Input Output

Figure 6.8: Delay line along with the �ltering elements for one band of an analysis

�lter bank.

achieve the same e�ect by using boundary �lters as explained in Chapter 2. The

design of boundary �lters is trivial in the case of lifting structures.

In the vertical direction special treatment is needed as mentioned above. The

best way to implement the lifting structure is to allocate two delay lines one for the

even samples and another for the odd samples. Even samples will become low pass

coe�cients while odd samples will become high pass coe�cients. The length of each

delay line can be derived from Figure 6.6. The length for the even samples will beP
i �i +

P
i li elements while the delay for the odd samples will be

P

i +

P
imi.

Those will be the total lengths of the delay lines, but the lines will not be \straight",

as it can be seen from Figure 6.7. Each line might have a number of branches equal

to the number of lifting steps originating from this line. An example of the whole

system with the delay line and �ltering can be seem in Figure 6.8. From the latest

Figure 6.8 one can see that our proposed approach not only minimizes the total

memory needed for �ltering but also minimizes the delay between input and output.

The approach is not only bene�cial for software it might also be extremely useful in

hardware, since by using this structure we do not need to have multiple accesses to

our data, the algorithm becomes one pass unlike the direct implementation which

requires a number of passes equal to the number of lifting steps.
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6.3.4 Asymptotic memory savings

Asymptotically, as the �lter length grows the amount of memory savings will tend

to 50%, this is the exact same savings that we are getting in terms of numerical

computations as explained in [32]. The proof of the amount of memory savings

is essentially the same as the one presented in [32] for the number of numerical

operations.

6.4 Conclusions and future work

In this chapter we described how to use a lifting structure as a causal system. We

explained why lifting implementations proposed up to now cannot be causal. By

forcing a lifting implementation to be causal we achieved a substantial amount of

memory savings. Memory savings also translate to speed advantages on a general

purpose processor. We gave a procedure to move from a lifting structure of a given

length to a lifting structure of larger length, while preserving symmetry. Symmetry

is of fundamental importance in reducing computational complexity. We described a

process to apply symmetric extension on the bounds of a signal for the case of lifting

�ltering without the need for additional memory, we achieved this by extending the

signal on each individual lifting step instead of the whole original signal. The e�ect

is the same as the extension of the whole signal.

There are a lot of open problems in this area. It will be of great practical interest to

investigate design algorithms to derive a symmetric lifting structure from a symmetric

�lter bank. It would also be of interest to design �lter banks directly in the lifting

form. An even more detailed description of lifting implementations in causal form, in

a step-by-step approach would be of interest along with description of computational

tricks. This could serve as a reference to people implementing lifting in software or

hardware.
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Appendix A

Proof of Theorem 1

Assume that f(x) is a continuous function, or has a �nite number of discontinuities,

using Riemann sums [76] we have.

H(x̂) = �

1X
i=�1

f(x̂i)� log2(f(x̂i)�) = (A.1)

�

1X
i=�1

f(x̂i)� log2 f(x̂i)�

1X
i=�1

f(x̂i)� log2� = (A.2)

��

1X
i=�1

f(x̂i) log2 f(x̂i)�� log2�

1X
i=�1

f(x̂i)�!
�!0

(A.3)

�

Z
1

�1

f(x) log2 f(x)dx� log2�

Z
1

�1

f(x)dx = (A.4)

h(x)� log2� (A.5)

We thus have a relation between di�erential entropy h(x) and discrete entropy

H(x̂) for a quantized continuous variable.
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Appendix B

Example lifting structures

13-7 Filter Bank

L(13;7) =
1

29

h
�1 0 18 �16 �63 144 348 144 �63 �16 18 0 �1

i

H(13;7) =
1

24

h
1 0 �9 16 �9 0 1

i
(B.1)

P

(13;7)
0 =

1

24

h
�1 9 9 �1

i
; U

(13;7)
0 =

1

25

h
�1 9 9 �1

i
(B.2)

Nu = Np = 1; l0 = 2; g0 = 1; m0 = 1; f0 = 2; 
0 = 2; �0 = 1 (B.3)

TS = l0 +m0 + 
0 + �0 = 6 (B.4)

TA = TS + 2 = 8 (B.5)
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9-7 Filter Bank

L(9;7) =
1

26

h
1 0 �8 16 46 16 �8 0

i

H(9;7) =
1

24

h
1 0 �9 16 �9 0 1

i (B.6)

P

(9;7)
0 =

1

22

h
�1 9 9 �1

i
; U

(9;7)
0 =

1

22

h
1 1

i
(B.7)

Nu = Np = 1; l0 = 2; g0 = 1; m0 = 0; f0 = 1; 
0 = 1; �0 = 1 (B.8)

TS = l0 +m0 + 
0 + �0 = 4 (B.9)

TA = TS + 2 = 6 (B.10)

9-3 Filter Bank

L(9;3) =
1

27

h
3 �6 �16 38 90 38 �16 �6 3

i

H(9;3) =
1

2

h
�1 2 �1

i (B.11)

P

(9;3)
0 =

1

2

h
1 1

i
; U

(9;3)
0 =

1

26

h
�3 19 19 �3

i
(B.12)

Nu = Np = 1; l0 = 1; g0 = 0; m0 = 1; f0 = 2; 
0 = 1; �0 = 1 (B.13)

TS = l0 +m0 + 
0 + �0 = 4 (B.14)

TA = TS + 2 = 6 (B.15)
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5-3 Filter Bank

L(5;3) =
1

23

h
�1 2 6 2 �1)

i
; H(5;3) =

1

2

h
�1 2 �1

i
(B.16)

P

(5;3)
0 =

1

2

h
1 1

i
; U

(5;3)
0 =

1

22

h
1 1

i
(B.17)

Nu = Np = 1; l0 = 1; g0 = 0; m0 = 0; f0 = 1; 
0 = 1; �0 = 0 (B.18)

TS = l0 +m0 + 
0 + �0 = 2 (B.19)

TA = TS + 2 = 4 (B.20)

13-11 Filter Bank

L(13;11) =
1

210

h
�3 0 22 0 �125 256 724 256 �125 0 22 0 �3

i

H(13;11) =
1

28

h
�3 0 25 0 �150 256 �150 0 25 0 �3

i
(B.21)

P

(13;11)
0 =

1

28

h
3 �25 150 150 �25 3

i
; U

(13;11)
0 =

1

22

h
1 1

i
(B.22)

Nu = Np = 1; l0 = 3; g0 = 2; m0 = 0; f0 = 1; 
0 = 3; �0 = 2 (B.23)

TS = l0 +m0 + 
0 + �0 = 8 (B.24)

TA = TS + 2 = 10 (B.25)
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5-11 Filter Bank

L(5;11) =
1

23

h
�1 2 6 2 �1)

i

H(5;11) =
1

27

h
�1 2 7 0 �70 124 �70 0 7 2 �1

i (B.26)

P

(5;11)
0 =

1

2

h
1 1

i
; U

(5;11)
0 =

1

2

h
1 1

i
; P

(5;11)
1 =

1

24

h
�1 1 1 �1

i
(B.27)

Nu = 2; Np = 1; l0 = 1; g0 = 1; m0 = 0; f0 = 0; l1 = 2; g1 = 1;


0 = 1; �0 = 1; 
1 = 2
(B.28)

TS = l0 + l1 +m0 + 
0 + �0 + 
1 = 7 (B.29)

TA = TS + 2 = 9 (B.30)

2-6 Filter Bank

L(2;6) =
1

2

h
1 1

i
; H(2;6) =

1

23

h
1 1 �8 8 �1 �1

i
(B.31)

P

(2;6)
0 = 1 ; U

(2;6)
0 =

1

2
; P

(2;6)
1 =

1

22

h
�1 0 1

i
; (B.32)

Nu = 2; Np = 1; l0 = 0; g0 = 0; m0 = 0; f0 = 0; l1 = 1; g1 = 1;


0 = 0; �0 = 0; 
1 = 1
(B.33)

TS = l0 + l1 +m0 + 
0 + �0 + 
1 = 2 (B.34)

TA = TS + 2 = 4 (B.35)
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2-10 Filter Bank

L(2;10) =
1

2

h
1 1

i

H(2;10) =
1

27

h
�3 �3 22 22 �128 128 �22 �22 3 3

i (B.36)

P

(2;10)
0 = 1 ; U

(2;10)
0 =

1

2
; P

(2;10)
1 =

1

26

h
�3 22 0 �22 3

i
(B.37)

Nu = 2; Np = 1; l0 = 0; g0 = 0; m0 = 0; f0 = 0; l1 = 2; g1 = 2;


0 = 0; �0 = 0; 
1 = 2
(B.38)

TS = l0 + l1 +m0 + 
0 + �0 + 
1 = 4 (B.39)

TA = TS + 2 = 6 (B.40)

2-2 Filter Bank (Haar)

L(2;2) =
1

2

h
1 1

i
; H(2;2) =

h
�1 1

i
(B.41)

P

(2;2)
0 = 1 ; U

(2;2)
0 =

1

2
(B.42)

Nu = Np = 1; l0 = 0; g0 = 0; m0 = 0; f0 = 0; 
0 = 0; �0 = 0 (B.43)

TS = l0 + l1 +m0 + 
0 + �0 = 0 (B.44)

TA = TS + 2 = 2 (B.45)
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9-7 Filter Bank Daubechies (
oating point)

This is the popular Daubechies 9-7 �lter bank:

L(9;7) =
h
0:026749 �0:016864 �0:078223 0:266864 0:602949

0:266864 �0:078223 �0:016864 0:026749

i

H(9;7) =
h
�0:045636 0:028772 0:295636 �0:557543 0:295636 0:028772 �0:045636

i
(B.46)

P

(9;7)D
0 = �1:586134342

h
1 1

i
; U

(9;7)D
0 = �0:05298011854

h
1 1

i

P

(9;7)D
1 = 0:8819110762

h
1 1

i
; U

(9;7)D
1 = 0:4435068522

h
1 1

i (B.47)

Nu = Np = 1; l0 = 2; g0 = 1; m0 = 0; f0 = 1; 
0 = 1; �0 = 1 (B.48)

TS = l0 +m0 + 
0 + �0 = 4 (B.49)

TA = TS + 2 = 6 (B.50)

13-7 Filter Bank CRF

L(13;7) =
1

28

h
�1 0 14 16 �31 �80 164 �80 �31 16 14 0 �1

i

H(13;7) =
1

24

h
�1 0 9 16 9 0 �1

i
(B.51)

P

(13;7)CRF
0 =

1

24

h
�1 9 9 �1

i
; U

(13;7)CRF
0 =

1

24

h
�1 5 5 �1

i
(B.52)
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Nu = Np = 1; l0 = 2; g0 = 1; m0 = 1; f0 = 2; 
0 = 2; �0 = 1 (B.53)

TS = l0 +m0 + 
0 + �0 = 6 (B.54)

TA = TS + 2 = 8 (B.55)
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Appendix C

Proof of Theorem 2

h(z) = (�1)�hh(z�1)z�h (C.1)

g(z) = (�1)�gg(z�1)z�g (C.2)

After application of one additional lifting step p(z) the new high pass �lter hnew(z)

will be:

hnew(z) = h(z)� p(z2)g(z) (C.3)

The new high pass �lter hnew(z) will be symmetric if and only if:

hnew(z) = (�1)�z�hnew(z
�1), (C.4)

h(z)� p(z2)g(z) = (�1)�z�(h(z�1)� p(z�2)g(z�1)), (C.5)

h(z) (1� (�1)�h+�z��h+�)| {z }�g(z) (p(z2)� p(z�2)(�1)�g+�z��g+�)| {z } = 0 (C.6)

if we set the two terms multiplying h(z) and g(z) equal to zero we will achieve the

desired symmetry properties, therefore:
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1� (�1)�h+�z��h+� = 0; p(z2)� p(z�2)(�1)�g+�z��g+� = 0, (C.7)

� = �n; � + �h = even; p(z) = (�1)�g+�hz
��g+�h

2 p(z�1) (C.8)

so we have theorem 2.
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Appendix D

Proof of Theorem 3

Every function f(z) can be written in the form

f(z) = fe(z) + fo(z) (D.1)

where

fe(z) =
1

2
(f(z) + f(z�1)) (D.2)

and

fo(z) =
1

2
(f(z)� f(z�1)) (D.3)

are the odd and even parts, and fe(z
�1) = fe(z), fo(z

�1) = �f(z).

So after decomposition of a �lter bank into lifting steps we can always split a

single step into two lifting steps one symmetric and the other antisymmetric.


