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Abstract

Graphs are fundamental mathematical structures used in various fields to represent data, signals and

processes. Particularly in signal processing, machine learning and statistics, structured modeling of

signals and data by means of graphs is essential for a broad number of applications. In this thesis,

we develop novel techniques to build graph-based models and transforms for signal/data processing,

where the models and transforms of interest are defined based on graph Laplacian matrices. For

graph-based modeling, various graph Laplacian estimation problems are studied. Firstly, we consider

estimation of three types of graph Laplacian matrices from data and develop efficient algorithms

by incorporating associated Laplacian and structural constraints. Then, we propose a graph signal

processing framework to learn graph-based models from classes of filtered signals, defined based

on functions of graph Laplacians. The proposed approach can also be applied to learn diffusion

(heat) kernels, which are popular in various fields for modeling diffusion processes. Additionally,

we study the problem of multigraph combining, which is estimating a single optimized graph from

multiple graphs, and develop an algorithm. Finally, we propose graph-based transforms for video

coding and develop two different techniques, based on graph learning and image edge adaptation, to

design orthogonal transforms capturing the statistical characteristics of video signals. Theoretical

justifications and comprehensive experimental results for the proposed methods are presented.



Chapter 1

Introduction

Graphs are generic mathematical structures consisting of sets of vertices and edges, which are used

for modeling pairwise relations (edges) between a number of objects (vertices). They provide a

natural abstraction by representing the objects of interest as vertices and their pairwise relations

as edges. In practice, this representation is often extended to weighted graphs, for which a set of

scalar values (weights) are assigned to edges and potentially to vertices. Thus, weighted graphs offer

general and flexible representations for modeling affinity relations between the objects of interest.

Many practical problems can be represented using weighted graphs. For example, a broad class

of combinatorial problems such as weighted matching, shortest-path and network-flow [1] are defined

using weighted graphs. In signal/data-oriented problems, weighted graphs provide concise (sparse)

representations for robust modeling of signals/data [2]. Such graph-based models are also useful

for analyzing and visualizing the relations between their samples/features. Moreover, weighted

graphs naturally emerge in networked data applications, such as learning, signal processing and

analysis on computer, social, sensor, energy, transportation and biological networks [3], where the

signals/data are inherently related to a graph associated with the underlying network. Similarly,

image and video signals can be modeled using weighted graphs whose weights capture the correlation

or similarity between neighboring pixel values (such as in nearest-neighbor models) [4, 5, 6, 7, 8, 9].

Furthermore, in graph signal processing [3], weighted graphs provide useful spectral representations

for signals/data, referred as graph signals, where graph Laplacian matrices are used to define ba-

sic operations such as transformation [8, 10], filtering [9, 11] and sampling [12] for graph signals.

Depending on the application, graph signals can be further considered as smooth with respect to

functions of a graph Laplacian, defining graph-based (smoothing) filters for modeling processes such

as diffusion. For example, in a social network, a localized signal (information) can diffuse on the

network (i.e., on vertices of the graph) where smoothness of the signal increases as it spreads over

time. In a wireless sensor network, sensor measurements (such as temperature) can be considered as

smooth signals on a graph connecting communicating sensors, since sensors generally communicate
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with their close neighbors where the measurements are similar (i.e., spatially smooth). However, in

practice, datasets typically consist of an unstructured list of samples, where the associated graph

information (representing the structural relations between samples/features) is latent. For analysis,

learning, processing and algorithmic purposes, it is often useful to build graph-based models that

provide a concise/simple explanation for datasets and also reduce the dimension of the problem

[13, 14] by exploiting the available prior knowledge and assumptions about the desired graph (e.g.,

structural information including connectivity and sparsity level) and the observed data (e.g., signal

smoothness).

The main focus of this thesis is on graph-based modeling, where the models of interest are defined

based on graph Laplacian matrices (i.e., weighted graphs with nonnegative edge weights), so that the

basic goal is to optimize a graph Laplacian matrix from data. For this purpose, various graph learning

problems are formulated to estimate graph Laplacian matrices under different model assumptions on

graphs and data. The graph learning problems studied in this thesis can be categorized as follows:

1. Graph learning from data via structured graph Laplacian estimation: An optimization frame-

work is proposed to estimate different types of graph Laplacian matrices from a data statistic

(e.g., covariance and symmetric kernel matrices), which is empirically obtained by using the

samples in a given dataset. The problems of interest are formulated as finding the closest graph

Laplacian fit to the inverse covariance of observed signal/data samples in a maximum a pos-

teriori (MAP) sense. The additional prior constraints on the graph structure (e.g., graph con-

nectivity and sparsity level) are also incorporated into the problems. The proposed framework

constitutes a fundamental part of this work, since the optimization problems and applications

considered throughout the thesis involve estimation of graph Laplacian matrices.

2. Graph learning from filtered signals: In this class of problems, the data is modeled based on

a graph system, defined by a graph Laplacian and a graph-based filter (i.e., a matrix function

of a graph Laplacian), where the observed set of signals are assumed to be outputs of a graph

system with a specific type of graph-based filter. In order to learn graphs from empirical

covariances of filtered signals, an optimization problem is formulated for joint identification

of a graph Laplacian and a graph-based filter. The proposed problem is motivated by graph

signal processing applications [3] and diffusion-based models [15] where the signals/data are

intrinsically smooth with respect to an unknown graph.

3. Graph learning from multiple graphs: An optimization problem called multigraph combining

is formulated to learn a single graph from a dataset consisting of multiple graph Laplacian

matrices. This problem is motivated by signal processing and machine learning applications

working with clusters of signals/data where each cluster can be modeled by a different graph,

and an optimized ensemble model is desired to characterize the overall relations between the

objects of interest. Especially when a signal/data model is uncertain (or unknown), combining
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multiple candidate models would allow us to design a model that is robust to model uncertain-

ties. Besides, multigraph combining can be used to summarize a dataset consisting multiple

graphs into a single graph, which is favorable for graph visualization in data analytics.

In order to solve these classes of graph learning problems, specialized algorithms are developed.

The proposed methods allow us to capture the statistics of signals/data by means of graphs (i.e.,

graph Laplacians), which are useful in a broad range of signal/data-oriented applications, discussed

in Sections 1.2 and 1.3. Among different possible applications, this thesis primarily focuses on video

coding, where the goal is to design graph-based transforms (GBTs) adapting to characteristics of

video signals in order to improve the coding efficiency. Two distinct graph-based modeling techniques

are developed to construct GBTs derived from graph Laplacian matrices:

1. Instances of a structured graph Laplacian estimation problem are solved to learn graphs based

on empirical covariance matrices obtained from different classes of video block samples. The

optimized graphs are used to derive GBTs that effectively capture statistical characteristics of

video signals.

2. Graph Laplacian matrices are constructed on a per-block basis by first detecting image edgesa

(i.e., discontinuities) for each video block and then modifying weights of a predetermined graph

based on the detected image edges. Thus, the resulting graph represents a class of block signals

with a specific image edge structure, from which an edge-adaptive GBT is derived.

The main contributions of the thesis on graph-based modeling and video coding are summarized in

Section 1.4.

1.1 Notation, Graphs and Graph Laplacian Matrices

In this section, we present the notation and basic definitions related to graphs and graph Laplacian

matrices used throughout the thesis.

1.1.1 Notation

Throughout the thesis, lowercase normal (e.g., a and θ), lowercase bold (e.g., a and θ) and uppercase

bold (e.g., A and Θ) letters denote scalars, vectors and matrices, respectively. Unless otherwise

stated, calligraphic capital letters (e.g., E and S) represent sets. O(·) and Ω(·) are the standard

big-O and big-Omega notations used in complexity theory [1]. The rest of the notation is presented

in Table 1.1.

aWe use the term image edge to distinguish edges in image/video signals with edges in graphs.
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1.1.2 Graphs and Their Algebraic Representations

In this thesis, the models of interest are defined based on undirected, weighted graphs with nonneg-

ative edge weights, which are formally defined as follows.

Definition 1 (Weighted Graph). The graph G= (V, E , fw, fv) is a weighted graph with n vertices

in the set V = {v1, . . . , vn}. The edge set E = { e | fw(e) 6= 0, ∀ e∈Pu} is a subset of Pu, the set of

all unordered pairs of distinct vertices, where fw((vi, vj))≥ 0 for i 6= j is a real-valued edge weight

function, and fv(vi) for i=1, . . . , n is a real-valued vertex (self-loop) weight function.

Definition 2 (Simple Weighted Graph). A simple weighted graph is a weighted graph with no

self-loops (i.e., fv(vi) = 0 for i = 1, . . . , n).

Weighted graphs can be represented by adjacency, degree and self-loop matrices, which are used to

define graph Laplacian matrices. Moreover, we use connectivity matrices to incorporate structural

constraints in our formulations. In the following, we present formal definitions for these matrices.

Definition 3 (Algebraic representations of graphs). For a given weighted graph G = (V, E , fw, fv)
with n vertices, v1, . . . , vn:

• The adjacency matrix of G is an n× n symmetric matrix, W, such that (W)ij = (W)ji =

fw((vi, vj)) for (vi, vj) ∈ Pu.

• The degree matrix of G is an n × n diagonal matrix, D, with entries (D)ii =
∑n
j=1(W)ij

and (D)ij = 0 for i 6= j.

• The self-loop matrix of G is an n × n diagonal matrix, V, with entries (V)ii = fv(vi) for

i = 1, . . . , n and (V)ij = 0 for i 6= j. If G is a simple weighted graph, then V = O.

• The connectivity matrix of G is an n× n matrix, A, such that (A)ij = 1 if (W)ij 6= 0, and

(A)ij = 0 if (W)ij = 0 for i, j = 1, . . . , n, where W is the adjacency matrix of G.

• The generalized graph Laplacian of a weighted graph G is defined as L=D−W+V.

• The combinatorial graph Laplacian of a simple weighted graph G is defined as L=D−W.

Definition 4 (Diagonally Dominant Matrix). An n×n matrix Θ is diagonally dominant if |(Θ)ii|≥∑
j 6=i |(Θ)ij | ∀i, and it is strictly diagonally dominant if |(Θ)ii|>

∑
j 6=i |(Θ)ij | ∀i.

Based on the defintions above, any weighted graph with positive edge weights can be represented

by a generalized graph Laplacian, while simple weighted graphs lead to combinatorial graph Lapla-

cians, since they have no self-loops (i.e., V=O). Moreover, if a weighted graph has nonnegative

vertex weights (i.e., V≥O), its corresponding generalized Laplacian matrix is also diagonally dom-

inant. Furthermore, graph Laplacian matrices are symmetric and positive semidefinite. So, each of
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them has a complete set of orthogonal eigenvectors, u1,u2, . . . ,un, whose associated eigenvalues,

λ1 ≤ λ2 ≤ · · · ≤ λn are nonnegative real numbers. Specifically for combinatorial Laplacians of con-

nected graphs, the first eigenvalue is zero (λ1 = 0) and the associated eigenvector is u1 =(1/
√
n)1.

In this thesis, we consider three different types of graph Laplacian matrices, which lead to the

following sets of graphs for a given vertex set V.

• Generalized Graph Laplacians (GGLs):

Lg = {L |L � 0, (L)ij ≤ 0 for i 6= j} . (1.1)

• Diagonally Dominant Generalized Graph Laplacians (DDGLs):

Ld = {L |L � 0, (L)ij ≤ 0 for i 6= j, L1 ≥ 0} . (1.2)

• Combinatorial Graph Laplacians (CGLs):

Lc = {L |L � 0, (L)ij ≤ 0 for i 6= j, L1 = 0} . (1.3)

Moreover, the problems of interest include learning graphs with a specific choice of connectivity

A, that is, finding the best weights for the edges contained in A. In order to incorporate the

given connectivity information into the problems, we define the following set of all graph Laplacians

depending on A:

L(A)=



L∈L

∣∣∣∣∣∣
(L)ij≤0 if (A)ij=1

(L)ij=0 if (A)ij=0
for i 6= j



 , (1.4)

where L denotes a set of graph Laplacians (which can be Lg, Ld or Lc).
The sets described in (1.1)–(1.4) are used to specify Laplacian and connectivity constraints in

our problem formulations.

1.2 Applications of Graph Laplacian Matrices

Graph Laplacian matrices have multiple applications in various fields. In spectral graph theory [16],

basic properties of graphs are investigated by analyzing characteristic polynomials, eigenvalues and

eigenvectors of the associated graph Laplacian matrices. In machine learning, graph Laplacians are

extensively used as kernels [15, 17], especially in clustering [18, 19, 20] and graph regularization [21]

tasks. Moreover, in graph signal processing [3], basic signal processing operations such as filtering

[9, 11], sampling [12], transformation [8, 10] are extended to signals defined on graphs associated

with Laplacian matrices. Although the majority of studies and applications primarily focus on

CGLs (and their normalized versions) [16, 22], which represent graphs with zero vertex weights
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(i.e., graphs with no self-loops), there are recent studies where GGLs [23] (i.e., graphs with nonzero

vertex weights) are shown to be useful. Particularly, GGLs are proposed for modeling image and

video signals in [7, 8], and their potential machine learning applications are discussed in [24]. In

[25], a Kron reduction procedure is developed based on GGLs for simplified modeling of electrical

networks. Furthermore, DDGLs are utilized in [26, 27, 28] to develop efficient algorithms for graph

partitioning [26], graph sparsification [27] and solving linear systems [28]. Our work discussed in the

rest of the thesis complements these methods and applications by proposing efficient algorithms for

estimation of graph Laplacians from data. The following section reviews some basic concepts from

graph signal processing, which is a major area for our methods, because CGLs are extensively used.

1.3 Signal/Data Processing on Graphs: Graph-based Trans-

forms and Filters

Traditional signal processing defines signals on regular Euclidean domains, where there is a fixed no-

tion of frequency defined by the Fourier transform characterizing the smoothness of signals. Graph

signal processing aims to extend basic signal processing operations on irregular non-Euclidean do-

mains by defining signals on graphs, where the notion of frequency is graph-dependent. Specifically,

the graph frequency spectrum is defined by eigenvalues of the graph Laplaciana, λ1 ≤ λ2 ≤ · · · ≤ λn,

which are called graph frequencies, and its eigenvectors u1,u2, . . . ,un are the harmonics (basis vec-

tors) associated with the graph frequencies. Based on the eigenvectors of a graph Laplacian matrix,

the graph-based transform (GBT)b is formally defined as follows.

Definition 5 (Graph-based Transform or Graph Fourier Transform). Let L be a graph Lapla-

cian of a graph G. The graph-based transform is the orthogonal matrix U, satisfying UTU = I,

obtained by eigendecomposition of L=UΛUT, where Λ is the diagonal matrix consisting of eigen-

values λ1, λ2, . . . , λn (graph frequencies).

For a given graph signal x = [x1 x2 · · · xn]
T

defined on a graph G with n vertices, where xi is attached

to vi (i-th vertex), the GBT of x is obtained by x̂ = UTx where x̂ denotes the GBT coefficientsc.

GBTs provide useful (Fourier-like) spectral representations for graph signals. As illustrated in

Figure 1.1, the variation of GBT basis vectors gradually increase with the graph frequencies, and

the basis vectors corresponding to low frequencies are relatively smooth.

To quantify smoothness of a graph signal x, a common variation measure used in graph signal

processing is the graph Laplacian quadratic form, xTLx, which can be written in terms of edge and

aIn [29], adjacency matrices are used to define graph spectra. In this thesis, we adopt the graph Laplacian-based
construction in [3].

bGBTs are also commonly referred as graph Fourier transforms (GFTs) [3].
cIn Chapter 5, we design GBTs for video coding, where the video blocks are considered as graph signals and the

resulting GBT coefficients are encoded.
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(a) λ1 = 0, x = u1 (b) λ2 = 0.1392, x = u2 (c) λ8 = 4.1149, x = u8 (d) λ9 = 4.3028, x = u9

(e) λ1 = 0, x = u1 (f) λ2 = 0.6972, x = u2 (g) λ8 = 4.3028, x = u8 (h) λ9 = 5, x = u9

Figure 1.1: Illustration of GBTs derived from two different simple graphs with 9 vertices (i.e., 9× 9
CGLs), where all edges are weighted as 1. The basis vectors associated with λ1, λ2, λ8 and λ9 are
shown as graph signals, attached to vertices. Note that the notion of frequency (in terms of both
GBTs and associated graph frequencies) changes depending on the underlying graph. For example,
the additional edges in (f) lead to smaller signal differences (pairwise variations) at most of the
vertices that are originally disconnected in (b).

vertex weights of G as

xTLx =

n∑

i=1

(V)ii x
2
i +

∑

(i,j)∈I
(W)ij (xi − xj)2

(1.5)

where (W)ij = −(L)ij , (V)ii =
∑n
j=1(L)ij and I={(i, j) | (vi, vj)∈E} is the set of index pairs of

vertices associated with the edge set E . A smaller Laplacian quadratic term (xTLx) indicates a

smoother signal (x), and for combinatorial Laplacians (simple weighted graphs), the smoothness

depends only on edge weights (W), since there are no self-loops (i.e., V=O). In graph frequency

domain, the above measure can be written in terms of GBT coefficients, x̂i = uT
ix for i = 1, . . . , n,

and graph frequencies λ1, λ2, . . . , λn as

xTLx = xTUΛUTx =

n∑

i=1

(xTui)λi(ui
Tx) =

n∑

i=1

λix̂
2
i . (1.6)

Moreover, the filtering operation for graph signals is defined in graph spectral (GBT) domain. We
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(a) Input x1 (b) Output y1,β for β = 0.5 (c) Output y1,β for β = 1 (d) Output y1,β for β = 2

(e) Input x2 (f) Output y2,β for β = 0.5 (g) Output y2,β for β = 1 (h) Output y2,β for β = 2

Figure 1.2: Input-output relations of graph systems defined by h(L) = exp(−βL) for different β,
where L is the CGL associated with the shown graph whose all edges are weighted as 1. For given
input graph signals (a) x1 and (e) x2, the corresponding output signals are (b–d) y1,β = exp(−βL)x1

and (f–h) y2,β = exp(−βL)x2 for β = {0.5, 1, 2}. Note that the output signals become more smooth
as the parameter β increases.

formally define graph-based filters (GBFs)a as follows.

Definition 6 (Graph-based Filter). Let L be a graph Laplacian of a graph G. The graph-based filter

is a matrix function h of graph Laplacian matrices, h(L) = Uh(Λ)UT, where U is the graph-based

transform and (h(Λ))ii=h((Λ)ii)=h(λi) ∀i.

By definition, a graph-based filter h serves as a scalar function of λ (i.e., graph frequencies), so that

we have

h(L) = Uh(Λλ)UT =

n∑

i=1

h(λi)uiui
T. (1.7)

Essentially, a GBF h maps graph frequencies λ1, . . . , λn to filter responsesb h(λ1), . . . , h(λn). GBFs

are used to define graph system as follows.

Definition 7 (Graph System). A graph system is defined by a graph G and a graph-based filter

h such that the input-output relation of the system is y=h(L)x, where L is a graph Laplacian

associated with G, and x is the input signal vector.

For a given input graph signal x, the graph system output y = h(L)x is obtained by modulating

aIn Chapter 3, GBFs are used in modeling classes of filtered signals.
bFilter responses corresponding to the eigenvalues with multiplicity more than one have the same value. Formally,

if λi = λi+1 = · · · = λi+c−1 for some i > 1 and multiplicity c > 1, then h(λi) = h(λi+1) = · · · = h(λi+c−1).
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the GBT coefficients of the input signal in x̂ = UTx using h(Λλ) as

y = h(L)x = Uh(Λλ)UTx = Uh(Λλ)x̂ =

n∑

i=1

h(λi)x̂iui, (1.8)

where x̂i = uT
ix for i = 1, . . . , n as in (1.6). As an example, Figure 1.2 illustrates input-output

relations of graph systems defined by h(L) = exp(−βL) for three different β parameters. The

matrix function exp(−βL) is called the exponential decay GBF, which is one of the GBFs used for

modeling smooth graph signals in Chapter 3, where the parameter β determines the smoothness of

the output signal.

1.4 Contributions of the Thesis

1.4.1 Graph-based Modeling

Graph Learning From Data: Structured Graph Laplacian Estimation

A general optimization framework is proposed in Chapter 2 for learning/estimating graphs from data.

The proposed framework includes (i) formulation of various graph learning problems, (ii) their prob-

abilistic interpretations and (iii) associated algorithms. Specifically, graph learning problems are

posed as estimation of graph Laplacian matrices from some observed data under given structural

constraints (e.g., graph connectivity and sparsity level). Particularly, we consider three types of

graph Laplacian matrices, namely, GGLs, DDGLs and CGLs. From a probabilistic perspective, the

problems of interest correspond to maximum a posteriori (MAP) parameter estimation of Gaussian-

Markov random field (GMRF) models, whose precision (inverse covariance) is a graph Laplacian

matrix. For the proposed graph learning problems, specialized algorithms are developed by incorpo-

rating the graph Laplacian and structural constraints. Our experimental results demonstrate that

the proposed algorithms outperform the current state-of-the-art methods [30, 31, 32, 33, 34] in terms

of accuracy and computational efficiency.

Graph Learning From Filtered Signals: Graph System Identification

In Chapter 3, a novel graph signal processing framework is introduced for building graph-based

models from classes of filtered signals, defined based on functions of a graph Laplacian matrix. In

this framework, the graph-based modeling is formulated as a graph system identification problem

where the goal is to learn a weighted graph (graph Laplacian) and a graph-based filter (function of a

graph Laplacian). An algorithm is proposed to jointly identify a graph and an associated graph-based

filter (GBF) from multiple signal/data observations under the assumption that GBFs are one-to-one

functions. The proposed approach can also be applied to learn diffusion (heat) kernels [15], which

are popular in various fields for modeling diffusion processes. In addition, for a specific choice of
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graph-based filters, the proposed problem reduces to a graph Laplacian estimation problem. Our

experimental results demonstrate that the proposed approach outperforms the current state-of-the-

art methods [31, 32, 34]. We also implement our framework on a real climate dataset for modeling

of temperature signals.

Graph Learning From Multiple Graphs: Multigraph Combining

Chapter 4 of this thesis addresses the multigraph combining problem, which we define as designing

an optimized graph from multiple graphs. Specifically, an optimization problem is formulated to

find the best graph Laplacian that minimizes weighted sum of maximum likelihood (ML) criteria

corresponding to given graph Laplacians. Based on the optimality conditions of the problem, an

algorithm is proposed. Our experimental results show that the proposed solution provides better

modeling compared to the commonly used averaging method.

1.4.2 Graph-based Transforms for Video Coding

In many state-of-the-art compression systems, signal transformation is an integral part of the en-

coding and decoding process, where transforms provide compact representations for the signals of

interest. Chapter 5 of this thesis proposes GBTs for video compression, and develops two different

techniques to design them. In the first technique, we solve specific instances of the GGL estimation

problem by using the graph Laplacian estimation algorithms developed in Chapter 2, and the opti-

mized graphs are used to design separable and nonseparable GBTs. The optimality of the proposed

GBTs is also theoretically analyzed based on 1-D and 2-D Gaussian-Markov random field (GMRF)

models for intra and inter predicted block signals. The second technique develops edge-adaptive

GBTs (EA-GBTs) in order to flexibly adapt transforms to block signals with image edges (discon-

tinuities) in order to improve coding efficiency. The advantages of EA-GBTs are both theoretically

and empirically demonstrated. Our experimental results demonstrate that the proposed transforms

can outperform the traditional Karhunen-Loeve transform (KLT).
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Table 1.1: List of Symbols and Their Meaning

Symbols Meaning

G | L weighted graph | graph Laplacian matrix

h, hβ | β graph-based filter | filter parameter β

λi, λi(L) i-th eigenvalue of L in ascending order

V | E | Sc vertex set | edge set | complement of set S
Pu set of unordered pairs of vertices

|S| cardinality of set S
n | k number of vertices | number of data samples

N block size (N ×N) of an image/video patch

O | I matrix of zeros | identity matrix

0 | 1 column vector of zeros | column vector of ones

W | A adjacency matrix | connectivity matrix

D | V degree matrix | self-loop matrix

H | α regularization matrix | regularization parameter

Θ−1 | Θ† inverse of Θ | pseudo-inverse of Θ

ΘT | θT transpose of Θ | transpose of θ

det(Θ) | |Θ| determinant of Θ | pseudo-determinant of Θ

(Θ)ij entry of Θ at i-th row and j-th column

(Θ)i,: | (Θ):,j i-th row vector of Θ | j-th column vector of Θ

(Θ)SS submatrix of Θ formed by selecting indexes in S
(θ)i i-th entry of θ

(θ)S subvector of θ formed by selecting indexes in S
≥ (≤) elementwise greater (less) than or equal to operator

Θ � 0 Θ is a positive semidefinite matrix

Θ � 0 Θ is a positive definite matrix

Tr | logdet(Θ) trace operator | natural logarithm of det(Θ)

diag(θ) diagonal matrix formed by elements of θ

ddiag(Θ) diagonal matrix formed by diagonal elements of Θ

p(x) probability density function of random vector x

x ∼ N(0,Σ) zero-mean multivariate Gaussian with covariance Σ

x ∼ U(a, b) uniform distribution on the interval [a, b]

‖θ‖1, ‖Θ‖1 sum of absolute values of all elements (`1-norm)

‖Θ‖1,off sum of absolute values of all off-diagonal elements

‖θ‖22, ‖Θ‖2F sum of squared values of all elements

‖Θ‖2F,off sum of squared values of all off-diagonal elements



Chapter 2

Graph Learning from Data:

Structured Graph Laplacian

Estimation

The focus of this chapter is on learning graphs (i.e., graph-based models) from data, where the

basic goal is to find the nonnegative edge weights of a graph in order to characterize the affinity

relationship between the entries of a signal/data vector based on multiple observed vectors. For this

purpose, we propose a general framework where graph learning is formulated as the estimation of

different types of graph Laplacian matrices from data. Specifically, for a given k× n data matrix X

consisting of k observed data vectors with dimension n, the problems of interest are formulated as

minimization of objective functions of the following form:

Tr (ΘS)− logdet (Θ)︸ ︷︷ ︸
D(Θ,S)

+ ‖Θ�H‖1︸ ︷︷ ︸
R(Θ,H)

, (2.1)

where Θ is the n × n target matrix variable and S denotes the data statistic obtained from X.

Depending on the application and underlying statistical assumptions, S may stand for the sample

covariance of X or a kernel matrix S=K(X,X) derived from data, where K is a positive definite

kernel function (e.g., polynomial and RBF kernels). R(Θ,H) is the sparsity promoting weighted

`1-regularization term [40] multiplying Θ and a selected regularization matrix H element-wise, and

D(Θ,S) is the data-fidelity term, a log-determinant Bregman divergence [41], whose minimization

corresponds to the maximum likelihood estimation of inverse covariance (precision) matrices for

multivariate Gaussian distributions. Thus, minimizing (2.1) for arbitrary data can be interpreted as

Most of the work presented in this chapter is published in [35, 36, 37]. MATLAB [38] implementations of the
proposed algorithms are available online [39].
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Figure 2.1: The set of positive semidefinite matrices (Mpsd) containing the sets of diagonally dom-
inant positive semidefinite matrices (Md), generalized (Lg), diagonally dominant (Ld) and combi-
natorial Laplacian (Lc) matrices. The corresponding classes of GMRFs are enumerated as (1)–(5),
respectively. In this work, we focus on estimating/learning the sets colored in gray.

finding the parameters of a multivariate Gaussian model that best approximates the data [42, 43].

In addition to the objective in (2.1), our formulations incorporate problem-specific Laplacian and

structural constraints depending on (i) the desired type of graph Laplacian and (ii) the available

information about the graph structure. Particularly, we consider three types of graph Laplacian

matrices which are GGL, DDGL and CGL matrices (defined in Chapter 1) and develop novel tech-

niques to estimate them from data (i.e., data statistic S). As illustrated in Figure 2.1 and further

discussed in Section 2.3, the proposed graph Laplacian estimation techniques can also be viewed

as methods to learn different classes of Gaussian-Markov random fields (GMRFs) [44, 45], whose

precision matrices are graph Laplacians. Moreover, in our formulations, structural (connectivity)

constraints are introduced to exploit available prior information about the target graph. When

graph connectivity is unknown, graph learning involves estimating both graph structure and graph

weights, with the regularization term controlling the level of sparsity. Otherwise, if graph connec-

tivity is given (e.g., based on application-specific assumptions or prior knowledge), graph learning

reduces to the estimation of graph weights only.

This chapter is organized as follows. In Section 2.1, we discuss the related studies and our

contributions. Section 2.2 formulates our proposed problems and summarizes some of the related

formulations in the literature. Section 2.3 discusses the probabilistic interpretation of our proposed

problems. In Section 2.4, we derive necessary and sufficient optimality conditions and develop novel

algorithms for the proposed graph learning problems. Experimental results are presented in Section

2.5, and some concluding remarks are discussed in Section 2.6.
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2.1 Related Work and Contributions

2.1.1 Sparse Inverse Covariance Estimation

In the literature, several approaches have been proposed for estimating graph-based models. Demp-

ster [46] originally proposed the idea of introducing zero entries in inverse covariance matrices for

simplified covariance estimation. Later, a neighborhood selection approach was proposed for graph-

ical model estimation [47] by using the Lasso algorithm [48]. Friedman et al. [30] formulated a reg-

ularization framework for sparse inverse covariance estimation and developed the Graphical Lasso

algorithm to solve the regularized problem. Some algorithmic extensions of the Graphical Lasso

are discussed in [42, 49], and a few computationally efficient variations are presented in [50, 51, 52].

However, inverse covariance estimation methods, such as the Graphical Lasso, search for solutions in

the set of the positive semidefinite matrices (Mpsd in Figure 2.1), which lead to a different notion of

graphs by allowing both negative and positive edge weights, while we focus on learning graphs with

nonnegative edge weights, associated with graph Laplacian matrices (Lg, Ld or Lc in Figure 2.1).

Although graph Laplacian matrices represent a more restricted set of models (attractive GMRFs)

compared to positive semidefinite matrices (modeling general GMRFs), attractive GMRFs cover an

important class of random vectors whose entries can be optimally predicted by nonnegative linear

combinations of the other entries. For this class of signals/data, our proposed algorithms incorpo-

rating Laplacian constraints provide more accurate graph estimation than sparse inverse covariance

methods (e.g., Graphical Lasso). Even when such model assumptions do not strictly hold, the pro-

posed algorithms can be employed to find the best (closest) graph Laplacian fit with respect to the

Bregman divergence in (2.1) for applications where graph Laplacians are useful (see Section 1.2).

2.1.2 Graph Laplacian Estimation

Several recent publications address learning of different types of graph Laplacians from data. Clos-

est to our work, Slawski and Hein address the problem of estimating symmetric M-matrices [53],

or equivalently GGLs, and propose an efficient primal algorithm [54], while our recent work [55]

proposes an alternative dual algorithm for GGL estimation. Our work addresses the same GGL

estimation problem as [54, 55], based on a primal approach analogous to that of [54], but unlike

both [54] and [55], we incorporate connectivity constraints in addition to sparsity promoting reg-

ularization. For estimation of CGLs, Lake and Tenenbaum [33] also consider minimization of the

objective function in (2.1), which is unbounded for CGLs (since they are singular matrices). To

avoid working with singular matrices, they propose to optimize a different target matrix obtained

by adding a positive constant value to diagonal entries of a combinatorial Laplacian, but no efficient

algorithm is developed. Dong et al. [31] and Kalofolias [32] propose minimization of two objective

functions different from (2.1) in order to overcome issues related to the singularity of CGLs. In-

stead, by restricting our learning problem to connected graphs (which have exactly one eigenvector
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with eigenvalue 0), we can directly use a modified version of (2.1) as the objective function and

develop an efficient algorithm that guarantees convergence to the optimal solution, with significant

improvements in experimental results over prior work.

2.1.3 Graph Topology Inference

There are also a few recent studies that focus on inferring graph topology (i.e., connectivity) in-

formation from signals assumed to be diffused on a graph. Particularly, Segarra et al. [34] and

Pasdeloup et al. [56] focus on learning graph shift/diffusion operators (such as adjacency and Lapla-

cian matrices) from a set of diffused graph signals, and Sardellitti et al. [57] propose an approach

to estimate a graph Laplacian from bandlimited graph signals. None of these works [34, 56, 57]

considers the minimization of (2.1). In fact, techniques proposed in these papers directly use the

eigenvectors of the empirical covariance matrix and only optimize the choice of eigenvalues of the

Laplacian or adjacency matrices under specific criteria, for the given eigenvectors. In contrast, our

methods implicitly optimize both eigenvectors and eigenvalues by minimizing (2.1). The problem of

learning diffusion-based models is addressed in Chapter 3.

2.1.4 Summary of Contributions

In this work, we address estimation of three different types of graph Laplacian with structural

constraints. For CGL estimation, we propose a novel formulation for the objective function in

(2.1), whose direct minimization is not possible due to the singularity of CGLs. Our formulation

allows us to improve the accuracy of CGL estimation significantly compared to the approaches

in [33, 31, 32]. For GGL estimation, the prior formulations in [54, 55] are extended in order to

accommodate structural constraints. To solve the proposed problems, we develop efficient block-

coordinate descent (BCD) algorithms [58] exploiting the structural constraints within the problems,

which can significantly improve the accuracy and reduce the computational complexity depending

on the degree of sparsity introduced by the constraints. Moreover, we theoretically show that the

proposed algorithms guarantee convergence to the optimal solution. Previously, numerous BCD-

type algorithms are proposed for sparse inverse covariance estimation [42, 30, 49] which iteratively

solve an `1-regularized quadratic program. However, our algorithms are specifically developed for

graph Laplacian estimation problems, where we solve a nonnegative quadratic program for block-

coordinate updates. Finally, we present probabilistic interpretations of our proposed problems by

showing that their solutions lead to optimal parameter estimation for special classes of GMRFs, as

depicted in Figure 2.1. While recent work has noted the relation between graph Laplacians and

GMRFs [6, 59], this chapter provides a more comprehensive classification of GMRFs and proposes

specific methods for estimation of their parameters.
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2.2 Problem Formulations for Graph Learning

2.2.1 Proposed Formulations: Graph Laplacian Estimation

For the purpose of graph learning, we formulate three different optimization problems for a given S,

a connectivity matrix A and a regularization matrix H. In our problems, we minimize the function

in (2.1) under the set constraint Θ ∈ L(A) defined in (1.4), where the choices of L and A determine

the Laplacian and connectivity constraints, respectively.

Based on the Laplacian constraints on Θ (i.e., nonnegativity of edge weights), a regularization

matrix H can be selected such that R(Θ,H) term in (2.1) is compactly written as

‖Θ�H‖1 = Tr (ΘH) . (2.2)

For example, the following standard `1-regularization terms with parameter α can be written in the

above form as,

α‖Θ‖1 = Tr (ΘH) where H = α(2I− 11T), (2.3)

and

α‖Θ‖1,off = Tr (ΘH) where H = α(I− 11T). (2.4)

Note that α‖Θ‖1,off applies `1-regularization to off-diagonal entries of Θ only (see in Table 1.1).

Since the trace operator is linear, we can rewrite the objective function in (2.1) as

Tr (ΘK)− logdet(Θ) where K=S+H, (2.5)

which is the form used in our optimization problems. Note that the nonnegativity of edge weights

allows us to transform the nonsmooth function in (2.1) into the smooth function in (2.5) by rewriting

the regularization term as in (2.2).

In what follows, we formally introduce three different optimization problems with Laplacian and

structural constraints.

Problem 1 (GGL Problem). The optimization problem formulated for estimating generalized graph

Laplacian (GGL) matrices is

minimize
Θ

Tr (ΘK)− logdet(Θ)

subject to Θ ∈ Lg(A)
(2.6)

where K=S+H as in (2.5), and the set of constraints Lg(A) leads to Θ being a GGL matrix.

Problem 2 (DDGL Problem). The diagonally dominant generalized graph Laplacian (DDGL)
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estimation problem is formulated as

minimize
Θ

Tr (ΘK)− logdet(Θ)

subject to Θ ∈ Ld(A)
(2.7)

where the additional Θ1 ≥ 0 constraint in Ld(A) ensures that all vertex weights are nonnegative,

and therefore the optimal solution is a diagonally dominant matrix.

Problem 3 (CGL Problem). The combinatorial graph Laplacian (CGL) estimation problem is

formulated as
minimize

Θ
Tr (ΘK)− log|Θ|

subject to Θ ∈ Lc(A)
(2.8)

where the objective function involves the pseudo-determinant term (|Θ|), since the target matrix Θ

is singular. However, the problem is hard to solve because of the |Θ| term. To cope with this, we

propose to reformulate (2.8) as the following problema,

minimize
Θ

Tr (Θ(K + J))− logdet(Θ + J)

subject to Θ ∈ Lc(A)
(2.9)

where the Θ1=0 constraint in Lc(A) guarantees that the solution is a CGL matrix, and J = u1u1
T

such that u1 = (1/
√
n)1 is the eigenvector corresponding to the zero eigenvalue of CGL matrices.

Proposition 1. The optimization problems stated in (2.8) and (2.9) are equivalent.

Proof. The problems in (2.8) and (2.9) have the same constraints. To prove their equivalence, we

show that their objective functions are also the same. First, note that

Tr (Θ(K + J)) = Tr (ΘK) +
1

n
Tr (Θ11T) = Tr (ΘK)

since Θ1=0 based on the CGL problem constraints. Next, we can write

logdet(Θ + 1/n11T) = log

(
n∏

i=1

λi(Θ + 1/n11T)

)
(2.10)

where λi(Θ) denotes the i-th eigenvalue of Θ in ascending order (λ1(Θ) ≤ · · · ≤ λn(Θ)). Since the

eigenvector corresponding to the first (zero) eigenvalue (i.e., λ1(Θ) = 0) is u1 = 1/
√
n 1, by the

aAn alternative second-order approach is proposed to solve (2.9) in [60], which is published after the initial version
of this work [36]. Yet, the equivalence of (2.8) and (2.9) is not discussed in [60].
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problem constraints (i.e., by definition of CGL matrices), we have that

Θ +
1

n
11T = (λ1(Θ)︸ ︷︷ ︸

0

+1)u1u1
T +

n∑

i=2

λi(Θ)uiui
T. (2.11)

Since the determinant of a matrix is equal to the product of its eigenvalues, from (2.11) we have

logdet(Θ + 1/n11T) = log

(
1 ·

n∏

i=2

λi(Θ)

)
= log|Θ|.

Therefore, the problems in (2.8) and (2.9) are equivalent.

Proposition 2. Problems 1, 2 and 3 are convex optimization problems.

Proof. The function logdet(Θ) defined over positive semidefinite matrices (Θ � 0) is a concave

function (see [61] for a proof), and Tr(·) is a linear function. Thus, the overall objective function

is convex. The graph Laplacian constraints form a convex set. Since we have a minimization of a

convex objective function over a convex set, the problems of interest are convex.

In Problems 1, 2 and 3, prior knowledge/assumptions about the graph structure are built into the

choice of A, determining the structural constraints. In practice, if the graph connectivity is unknown,

then A can be set to represent a fully connected graph, A=Afull =11T−I, and the regularization

matrix H (or the parameter α for the `1-regularizations in (2.3) and (2.4)) can be tuned until the

desired level of sparsity is achieved.

2.2.2 Related Prior Formulations

In this section, we review some of the related problems previously proposed in the literature.

Sparse Inverse Covariance Estimation [30]. The goal is to estimate a sparse inverse covariance

matrix from S by solving:

minimize
Θ�0

Tr (ΘS)− logdet (Θ) + α‖Θ‖1. (2.12)

In our work, we are interested in minimization of the same objective function under Laplacian and

structural constraints.

Shifted CGL Estimation [33]. The goal is to estimate a shifted CGL matrix, which is defined by

adding a scalar value to diagonal entries of a combinatorial Laplacian matrix:

minimize
Θ�0, ν≥0

Tr (ΘS)− logdet (Θ) + α‖Θ‖1

subject to Θ = Θ̃ + νI

Θ̃1 = 0, (Θ̃)ij ≤ 0 i 6= j

(2.13)
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where ν denotes the positive scalar (i.e., shift) variable added to diagonal elements of Θ̃, which is

constrained to be a CGL matrix, so that Θ is the target variable. By solving this problem, a CGL

matrix Θ̂ is estimated by subtracting the shift variable as Θ̂=(Θ−νI). However, this generally

leads to a different solution than our method.

Proposition 3. The objective functions of Problem 3 and the shifted CGL problem in (2.13) are

different.

Proof. The optimal ν cannot be zero, since the objective function is unbounded for ν = 0. By

assuming that α = 0 (without loss of generality), the objective function in (2.13) can be decomposed

as follows

J (Θ̃) + νTr(S)−
n∑

i=2

log

(
1 +

ν

λi(Θ̃)

)
− log(ν) (2.14)

where J (Θ̃) is the objective of Problem 3 with H = O.

Graph Learning from Smooth Signals [31, 32]. The goal is to estimate a CGL from n-

dimensional signals that are assumed to be smooth with respect to the corresponding graph:

minimize
Θ�0

Tr (ΘS) + α1‖Θ‖2F

subject to Θ1 = 0, Tr (Θ) = n, (Θ)ij ≤ 0 i 6= j
(2.15)

where the sum of degrees is constrained as Tr (Θ) = n. This is a limitation that is later relaxed in

[32] by introducing the following problem with regularization parameters

minimize
Θ�0

Tr (ΘS)+α1‖Θ‖2F,off−α2

n∑

i=1

log ((Θ)ii)

subject to Θ1 = 0, (Θ)ij ≤ 0 i 6= j

(2.16)

where the constraints in (2.15) and (2.16) lead to a CGL solution. The following proposition relates

the objective function in (2.16) with α1 = 0 to the objective in our proposed CGL estimation

problem.

Proposition 4. The objective function in Problem 3 with α = 0 is lower-bounded by the objective

function in (2.16) for α1 = 0 and α2 = 1.

Proof. For α1 = 0 and α2 = 1, the objective function in (2.16) is written as Tr(ΘS)−∑n
i=1 log((Θ)ii).

By using Hadamard’s inequality det(Θ) ≤ ∏n
i=1(Θ)ii [62] and taking the log of both sides, the

following bound is obtained

Tr(ΘS)−
n∑

i=1

log((Θ)ii) ≤ Tr(ΘS)− logdet(Θ) (2.17)
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where the right-hand side is the objective function in Problems 1, 2 and 3 with α = 0, as desired.

Graph Topology Inference. Various approaches for graph topology (connectivity) inference from

data (under diffusion-based model assumptions) have been proposed in [34, 56, 57]. As the most

related to our work, Segarra et al. [34] introduce a sparse recovery problem to infer the graph topology

information from the eigenbasis, U, associated with a graph shift/diffusion operator. Specifically

for CGL estimation, the following problem is formulated:

minimize
Θ�0,Λ

‖Θ‖1

subject to Θ = UΛUT

Θ1 = 0, (Θ)ij ≤ 0 i 6= j

(2.18)

where the eigenbasis U is the input to the problem, so that the goal is to find the set of eigenvalues

(i.e., the diagonal matrix Λ) minimizing ‖Θ‖1. Note that the problems in [34, 56, 57] require that

U be given (or calculated beforehand), while our goal is to directly estimate a graph Laplacian so

that both U and Λ are jointly optimized.

The estimation of Laplacians from data under diffusion-based assumptions be discussed later in

Chapter 3.

2.3 Probabilistic Interpretation of Proposed Graph Learning

Problems

The proposed graph learning problems can be viewed from a probabilistic perspective by assuming

that the data has been sampled from a zero-mean n-variate Gaussian distributiona x ∼ N(0,Σ=Ω†),

parametrized with a positive semidefinite precision matrix Ω, defining a Gaussian Markov random

field (GMRF)

p(x|Ω) =
1

(2π)
n/2|Ω† |1/2

exp

(
−1

2
xTΩx

)
, (2.19)

with covariance matrix Σ=Ω†. Based on its precision matrix (Ω), a GMRF is classified as [44, 45]:

• a general GMRF if its precision Ω is positive semidefinite,

• an attractive GMRF if its precision Ω has nonpositive off-diagonal entries,

• a diagonally dominant GMRF if its precision Ω is diagonally dominant,

• an intrinsic GMRF if its precision Ω is positive semidefinite and singular.

aThe zero-mean assumption is made to simplify the notation. Our analysis can be trivially extended to a multi-
variate Gaussian with nonzero mean.
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The entries of the precision matrix Ω can be interpreted in terms of the following conditional

dependence relations among the variables in x,

E
[
xi |(x)S\{i}

]
= − 1

(Ω)ii

∑

j∈S\{i}
(Ω)ijxj (2.20)

Prec
[
xi |(x)S\{i}

]
= (Ω)ii (2.21)

Corr
[
xixj |(x)S\{i,j}

]
= − (Ω)ij√

(Ω)ii(Ω)jj
i 6= j, (2.22)

where S= {1, . . . , n} is the index set for x = [x1 x2 · · · xn]
T
. The conditional expectation in (2.20)

represents the minimum mean square error (MMSE) prediction of xi using all the other random

variables in x. The precision of xi is defined as in (2.21), and the relation in (2.22) corresponds to

the partial correlation between xi and xj (i.e., correlation between random variables xi and xj given

all the other variables in x). For example, if xi and xj are conditionally independent ((Ω)ij=0),

there is no edge between corresponding vertices vi and vj . For GMRFs, whose precision matrices

are graph Laplacian matrices (i.e., Ω = L), we can show that there is a one-to-one correspondence

(bijection) between different classes of attractive GMRFs and types of graph Laplacian matrices by

their definitions, as illustrated in Figure 2.1:

• L is a GGL matrix (L∈Lg) if and only if p(x|L) is an attractive GMRF,

• L is a DDGL matrix (L ∈ Ld) if and only if p(x|L) is an attractive, diagonally dominant

GMRF,

• L is a CGL matrix (L∈Lc) if and only if p(x|L) is an attractive, DC-intrinsic GMRF.

Note that, in our characterization, the GMRFs corresponding to CGL matrices are classified as DC-

intrinsic GMRFs, which are specific cases of intrinsic GMRFs [44] with no probability density along

the direction of the eigenvector u1 =1/
√
n1 associated with the zero eigenvalue (λ1(L)=0). On the

other hand, if L is a nonsingular GGL matrix, then x has a proper (non-degenerate) distribution.

Moreover, for Ω = L, the xTΩx term in (2.19) becomes the graph Laplacian quadratic form

stated in (1.5), which is used to quantify smoothness of graph signals [3]. In our formulations, the

Laplacian quadratic from xTLx relates to the trace term in our objective function, which is derived

based on the likelihood function for GMRFs as discussed in the following.

The proposed graph learning problems can be probabilistically formulated as parameter estima-

tion for attractive GMRFs from data. Assuming that k independent, identically distributed samples,

xi for i = 1, . . . , k, are obtained from an attractive GMRF with unknown parameters, the likelihood

of a candidate graph Laplacian L can be written as

k∏

i=1

p(xi|L)=(2π)
− kn2 |L†|− k2

k∏

i=1

exp

(
−1

2
xi

TLxi

)
. (2.23)
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Let L(w,v) be defined by edge weight and vertex weight vectors w = [fw(e1), . . . , fw(em)]
T

and

v = [fv(v1), . . . , fv(vn)]
T
, where n is the number of vertices, and m=n(n−1)/2 is the number of all

possible (undirected) edges. The maximization of the likelihood function in (2.23) can be equivalently

formulated as minimizing the negative log-likelihood, that is

L̂ML = argmin
L(w,v)

{
−k

2
log|L|+1

2

k∑

i=1

Tr (xi
TLxi)

}

= argmin
L(w,v)

{Tr (LS)− log|L|}
(2.24)

where S is the sample covariance matrix, and L̂ML denotes the maximum likelihood estimate of

L(w,v). Moreover, we can derive maximum a posteriori (MAP) estimation problems by incorpo-

rating the information known about L into a prior distribution p(L) as

L̂MAP = argmin
L(w,v)

{Tr (LS)− log|L|−log(p(L))} . (2.25)

For example, we can choose the following m-variate exponential prior for sparse estimation of w,

p(w) = (2α)mexp (−2α1Tw) for w ≥ 0, (2.26)

so that the MAP estimation in (2.25) can be written as follows:

L̂MAP = argmin
L(w,v)

{Tr (LS)− log|L|−log(p(w))}

= argmin
L(w,v)

{Tr (LS)− log|L|+2α‖w‖1}

= argmin
L(w,v)

{
Tr (LS)− log|L|+α‖L‖1,off

}
(2.27)

where the resulting minimization is equivalent to the objective of our problems with the regulariza-

tion in (2.4).

Proposition 5. Let the data model be x ∼ N(0,L†) as in (2.19). Then, Problems 1, 2 and 3 are

specific instances of the maximum a posteriori estimation problem in (2.25).

Proof. With proper choices of the prior p(L) in (2.25), the objective function in (2.1) can be con-

structed for any H, except the pseudo-determinant term |Θ| needed for estimating CGL matrices.

For this case, Proposition 1 shows that we can equivalently formulate (2.25) in the form of Problem

3. The construction in (2.25)–(2.27) can be trivially extended for the weighted `1-regularization.

Also, the connectivity and Laplacian constraints in Problems 1, 2 and 3 can be incorporated in a

Bayesian setting by choosing spike-and-slab prior and improper prior distributions [63] on v and

w, so that spike priors correspond to zero edge weights, and slab priors allow nonnegative edge
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weights.

Hence, our graph learning problems can be interpreted as MAP parameter estimation for different

classes of attractive GMRFs. Thus, when the data model assumptions are satisfied, solving our

problems produces the optimal parameters in MAP sense. Given S, which is obtained from the

data, the solution of (2.25) corresponds to the closest Laplacian in terms of a regularized log-

determinant divergence criterion [41]. In practice, in order to capture nonlinear relations between

random variables, different types of kernels (e.g., polynomial and RBF kernels) can also be used to

construct S.

2.4 Proposed Graph Learning Algorithms

Problems 1, 2 and 3 can be solved using general purpose solvers such as CVX [64]. However, these

solvers generally implement second-order methods that require calculation of a Hessian matrix and

are therefore computationally inefficient. Simpler gradient descent algorithms would also be com-

putationally complex, since the full gradient calculation of the objective function involves inverting

the current estimate of the Laplacian matrix at each iteration (e.g., see the derivative of (2.34) in

(2.38)). In order to develop efficient methods, we propose iterative block-coordinate descent algo-

rithms [58], where each iterate (block-coordinate update) is obtained by fixing some of the elements

in the set of target variables while updating the rest. Thus, the original problem is decomposed into

a series of lower-dimensional subproblems that are relatively easier to solve. Particularly, at each

iteration, the update variables are formed by a row/column of the target graph Laplacian matrix

(Θ), and they are updated by solving the subproblem derived based on the optimality conditions

of corresponding Laplacian estimation problem, where the available structural constraints are also

incorporated into the subproblem. Basically, to estimate an n×n graph Laplacian matrix, our algo-

rithms iteratively update rows/columns of Θ and its inverse (C), so that the cycle of n row/column

updates is repeated until convergence is achieved. Also, depending on the type of target Laplacian,

our algorithms potentially apply projections to satisfy the Laplacian constraints.

In what follows, we first provide matrix update formulas used to efficiently update entries of Θ

and C in our algorithms (Section 2.4.1). Then, Algorithms 1 and 2 are presented with the deriva-

tions of subproblems based on the optimality conditions of corresponding graph learning problems.

Specifically, Algorithm 1 is proposed to solve Problems 1 and 2 (Section 2.4.2), while Algorithm 2

solves Problem 3 (Section 2.4.3). Finally, the convergence and computational complexity of proposed

algorithms are analyzed (Section 2.4.4).
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2.4.1 Matrix Update Formulas

The proposed algorithms exploit the following formulas to update the target variable Θ and its

inverse C iteratively.

Row/column updates. Updating the u-th row/column of Θ results in updating all the elements

in its inverse C=Θ−1, which can be obtained by the matrix inversion lemma [65],

(PTΘP)−1 =




Θu θu

θT

u θu




−1

= PTCP =




Cu cu

cT
u cu




=




(
Θu −

θuθ
T

u

θu

)−1

−Cu
θu
θu

−θT

u

θu
CT
u

1

θu
− θT

uCuθu
θ2
u




(2.28)

where the permutation matrix P is used to arrange updated and fixed elements in block partitions,

so that the submatrix Θu represents the elements that remain unchanged, while vector θu and scalar

θu (i.e., θu = (Θ)uu) are the u-th row/columns Θ, which are being updated. Based on the block

partitions in (2.28), we can calculate C, using updated θu and θu, for fixed Θu as follows:

Cu =

(
Θu −

θuθ
T

u

θu

)−1

= Θ−1

u −
Θ−1

u θuθ
T

uΘ
−1

u

θu − θT

uΘ
−1

u θu
, (2.29)

cu = −Cu
θu
θu

= − Θ−1

u θu
θu − θT

uΘ
−1

u θu
, (2.30)

cu =
1

θu − θT

uΘ
−1

u θu
, (2.31)

where Θ−1
u can be calculated from partitions of updated C as,

Θ−1

u = Cu − cuc
T

u/cu. (2.32)

Diagonal updates. After adding a scalar value ν to (Θ)ii, we use the Sherman-Morrison formula

[66] to update C as

Ĉ = Θ̂−1 = (Θ + ν δiδi
T)
−1

= C− νCδiδi
TC

1 + νδi
TCδi

, (2.33)

where δi is the vector whose entries are zero, except for its i-th entry which is equal to one.

2.4.2 Generalized Laplacian Estimation

Derivation of the optimality conditions. To derive necessary and sufficient optimality con-

ditions, we use Lagrangian duality theory [67, 61], which requires introducing a set of Lagrange

multipliers (i.e., dual variables) and a Lagrangian function. For Problems 1 and 2 the Lagrangian
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functions have the form,

− logdet(Θ) + Tr (ΘK) + Tr(ΘM), (2.34)

where M is the matrix of Lagrange multipliers associated with the constraints. In particular, for

Problem 1, M=M1+M2, with multiplier matrices, M1 and M2, whose entries are

(M1)ij = (M1)ji =





µ
(1)
ij ≥ 0 if (A)ij = 1, i 6= j

0 if (A)ij = 0, i 6= j

0 if i = j

(2.35)

(M2)ij = (M2)ji =





µ
(2)
ij ∈ R if (A)ij = 0, i 6= j

0 if (A)ij = 1, i 6= j

0 if i = j

(2.36)

for i, j = 1, . . . , n where µ
(1)
ij and µ

(2)
ij are the Lagrange multipliers associated with inequality and

equality constraints in Problem 1, respectively. For Problem 2, M = M1 +M2−M3 so that M1 and

M2 are as in (2.35) and (2.36), and M3 consists of Lagrange multipliers (denoted as µ
(3)
i ) associated

with the constraint Θ1 ≥ 0. The entries of M3 are

(M3)ij = µ
(3)
i + µ

(3)
j where µ

(3)
i ≥ 0, µ

(3)
j ≥ 0 (2.37)

for i, j = 1, . . . , n. By taking the derivative of (2.34) with respect to Θ and setting it to zero, we

obtain the following optimality condition,

−Θ−1 + K + M = O, (2.38)

and the necessary and sufficient optimality conditions [61] for Problem 1 are

−Θ−1 + K + M = O

(Θ)ij ≤ 0 if (A)ij = 1, i 6= j

(Θ)ij = 0 if (A)ij = 0, i 6= j

Θ � 0 (M1)ij(Θ)ij = 0

(2.39)

where M = M1 + M2. For Problem 2, the multiplier matrix is M = M1 + M2−M3, and the

corresponding optimality conditions include those in (2.39) as well as:

Θ1 ≥ 0 (M3)ii(Θ1)i = 0. (2.40)

Subproblems for block-coordinate descent updates. In our algorithm, we solve instances of
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the subproblem derived based on the optimality conditions of Problem 1. So, letting C=Θ−1 and

using the conditions in (2.39), the optimality conditions for the u-th row/column of Θ can be written

as:

− cu + ku + mu = 0 (2.41)

− cu + ku = 0 (2.42)

where the vectors, cu, ku and mu, and the scalars, cu, ku and mu, are obtained by partitioning

C, K and M, as in (2.28) such that cu = (C)uu, ku = (K)uu and mu = (M)uu = 0. By using the

relations in (2.30) and (2.31), we can rewrite (2.41) as

Θ−1

u θucu + ku + mu = 0. (2.43)

Based on the relations in (2.39) and (2.42) the optimality conditions for the u-th column of Θ (i.e.,

θu) include

Θ−1

u θuku + ku + mu = 0

(θu)i ≤ 0 if (au)i = 1

(θu)i = 0 if (au)i = 0

(2.44)

where θu and au are obtained by partitioning Θ and A as in (2.28), respectively, and the optimality

conditions on mu follow from (2.35) and (2.36). Based on the above optimality conditions, in (2.39)

and (2.44), the optimal update for the u-th row/column of Θ (i.e., θu) corresponds to the solution

of the following quadratic program:

minimize
θu

1

2
k2
uθ

T

uΘ
−1

u θu + kuθ
T

uku

subject to (θu)i ≤ 0 if (au)i = 1

(θu)i = 0 if (au)i = 0

(2.45)

The above problem can be simplified by eliminating its equality constraints determined by A (i.e.,

au), so that we formulate an equivalent version of (2.45) as the following nonnegative quadratic

program [68], whose solution satisfies the optimality conditions in (2.44),

minimize
β

1

2
βTQβ − βTp

subject to β ≥ 0

(2.46)

where
β = −(θu)S p = (ku/ku)S Q = (Θ−1

u )SS

S = {i | (au)i = 1}
(2.47)
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so that β is the vector whose elements are selected from the original variable vector θu based on index

set S. For example, if S = {1, 2, 5}, then β = −[(θu)1 (θu)2 (θu)5]
T
. Similarly, Q is constructed by

selecting rows and columns of Θ−1

u with index values in S, so the resulting Q is a submatrix of

Θ−1

u . It is important to note that the connectivity constraints (i.e., A or au) allow us to reduce the

dimension of the variable θu and therefore, the dimension of (2.45).

For Problem 2, based on the conditions in (2.39) and (2.40), we can similarly formulate a

quadratic program to update u-th row/column of Θ:

minimize
θu

1

2
c2uθ

T

uΘ
−1

u θu + cuθ
T

uku

subject to (θu)i ≤ 0 if (au)i = 1

(θu)i = 0 if (au)i = 0

− θT

u1 ≤ θu

(2.48)

where θu=(Θ)uu. The above problem is also a nonnegative quadratic program. To solve (2.48) for

all u, we first iteratively update each row/column of Θ by solving the subproblem in (2.46). After

completing a cycle of n row/column updates, we modify the diagonal entries of the updated Θ,

so that it satisfies the constraints in (2.48). The diagonal update parameters (ν) are the optimal

solutions of the following projection problem for given Θ:

minimize
ν

‖Θ− Θ̂‖2F
subject to Θ̂ = Θ + diag(ν) Θ̂ ∈ Ld

(2.49)

where ν is the vector of update parameters, and Ld denotes the set of diagonally dominant gener-

alized Laplacian matrices.

Proposed Algorithm. Algorithm 1 is proposed to solve Problems 1 and 2 for a given connectivity

matrix A, type of desired Laplacian matrix (i.e., Lg or Ld) and regularization matrix H. Basically,

the proposed algorithm iteratively updates each row/column of the working estimate of Laplacian

matrix (Θ̂) and its inverse (Ĉ) by solving the subproblem in (2.46). The main reason of updating C

is that the derived subproblem is parametrized by Θ−1

u , which depends on C as formulated in (2.32).

In Algorithm 1, the for loop in lines 5–12 implements the cycle of n row/column updates, where the

update formulas (see lines 7, 9 and 10) are derived based on the relations in (2.29)–(2.32). If we are

interested in solving Problem 1 (if L=Lg), then the algorithm skips the lines 13–19. For Problem

2 (for L=Ld) the for loop between the lines 14–18 iteratively modifies the diagonal elements of Θ̂

by solving the projection problem in (2.49) ensuring that the resulting Θ̂ is a diagonally dominant

matrix. The inverse of Θ̂ (i.e., Ĉ) is also iteratively updated, accordingly (see line 16). The overall

procedure is repeated until a stopping criterion (line 20) has been satisfied.
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Algorithm 1 Generalized Graph Laplacian (GGL)

Input: Sample statistic S, connectivity matrix A, regularization matrix H, target Laplacian set L
and tolerance ε

Output: Θ and C
1: Set K = S + H
2: Initialize Ĉ = ddiag(K) and Θ̂ = Ĉ−1

3: repeat
4: Set Θ̂pre = Θ̂
5: for u = 1 to n do
6: Partition Θ̂, Ĉ, K and A as in (2.28) for u
7: Update Θ̂−1

u = Ĉu − ĉuĉ
T
u/ĉu

8: Solve (2.46) for β with Q, p and S in (2.47)

9: Update θ̂u and θ̂u using the solution β̂ from above:

(θ̂u)S = −β̂ (θ̂u)Sc = 0

θ̂u = 1/ku + β̂TQβ̂

10: Update ĉu, ĉu and Ĉu:

ĉu = 1/(θ̂u − θ̂T

uΘ̂
−1

u θ̂u) ĉu = Θ̂−1

u θ̂u/ĉu

Ĉu = Θ̂−1

u + ĉuĉ
T

u/ĉu

11: Rearrange Θ̂ and Ĉ using P for u as in (2.28)
12: end for
13: if L = Ld (target Laplacian is a DDGL) then
14: for i = 1 to n do
15: if (Θ̂1)i < 0 then ν = −(Θ̂1)i
16: Set (Θ̂)ii = (Θ̂)ii + ν and update Ĉ using (2.33)
17: end if
18: end for
19: end if
20: until criterion(Θ̂, Θ̂pre) ≤ ε
21: return Θ = Θ̂ and C = Ĉ

2.4.3 Combinatorial Laplacian Estimation

Derivation of the optimality conditions. Similar to our derivations in the previous subsection,

in order to derive optimality conditions, we first define the Lagrangian function corresponding to

Problem 3 as follows,

− logdet(Θ + J) + Tr (Θ(K + J)) + Tr(ΘM), (2.50)

where M = M1 + M2 + M4 consists of Lagrange multipliers associated with the constraints in (2.9)

such that M1 and M2 are as defined in (2.35) and (2.36), and the entries of M4 are

(M4)ij = µ
(4)
i + µ

(4)
j where µ

(4)
i ∈ R, µ(4)

j ∈ R (2.51)
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Algorithm 2 Combinatorial Graph Laplacian (CGL)

Input: Sample statistic S, connectivity matrix A, regularization matrix H and tolerance ε
Output: Θ and C

1: Set J=(1/n)11T K̃=S+H+J

2: Initialize Ĉ = ddiag(K̃) and Θ̂ = Ĉ−1

3: repeat
4: Set Θ̂pre = Θ̂
5: for u = 1 to n do
6: Partition Θ̂, Ĉ, K̃ and A as in (2.28) for u
7: Calculate Θ̂−1

u = Ĉu − ĉuĉ
T
u/ĉu

8: Solve (2.58) for β with Q, p and S in (2.59)

9: Update θ̂u and θ̂u using the solution β̂ from above:

(θ̂u)S = ((1/n)1− β̂) (θ̂u)Sc = (1/n)1

θ̂u = 1/k̃u + (β̂ − (1/n)1)TQ(β̂ − (1/n)1)

10: Update ĉu, ĉu and Ĉu:

ĉu = 1/(θ̂u − θ̂T

uΘ̂
−1

u θ̂u) ĉu = Θ̂−1

u θ̂u/ĉu

Ĉu = Θ̂−1

u + ĉuĉ
T

u/ĉu

11: Rearrange Θ̂ and Ĉ using P for u as in (2.28)
12: end for
13: for i = 1 to n do
14: if (Θ̂1)i − 1 6= 0 then ν = −(Θ̂1)i + 1

15: Set (Θ̂)ii = (Θ̂)ii + ν and update Ĉ using (2.33)
16: end if
17: end for
18: until criterion(Θ̂, Θ̂pre) ≤ ε
19: return Θ = Θ̂− J and C = Ĉ− J

for i, j = 1, . . . , n. Based on the Lagrangian stated in (2.50), the necessary and sufficient optimality

conditions for the problem in (2.9) are

−Θ̃−1 + K̃ + M1 + M2 + M4 = O

(Θ̃)ij ≤ 1/n if (A)ij = 1, i 6= j

(Θ̃)ij = 1/n if (A)ij = 0, i 6= j

Θ̃ � 0 Θ̃1 = 1 (M1)ij ((Θ̃)ij − 1/n) = 0

(2.52)

where Θ̃ = Θ + J, C̃ = (Θ + J)−1 and K̃ = K + J. The matrices M1, M2 and M4 are defined as in

(2.35), (2.36) and (2.51), respectively. For the u-th row/column of Θ̃, the first optimality condition

in (2.52) reduces to

− c̃u + k̃u + mu = 0 (2.53)

− c̃u + k̃u +mu = 0 (2.54)
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where the condition in (2.53) can also be stated using the relations in (2.30) and (2.31) as

Θ̃−1

u θ̃uc̃u + k̃u + mu = 0. (2.55)

Subproblem for block-coordinate descent updates. Based on the optimality conditions stated

in (2.52) and (2.55), we derive the following quadratic program solved for updating u-th row/column

of Θ̃,

minimize
θ̃u

1

2
c̃2uθ̃

T

uΘ̃
−1

u θ̃u + c̃uθ̃
T

uk̃u

subject to (θ̃u)i ≤ 1/n if (au)i = 1

(θ̃u)i = 1/n if (au)i = 0

− (θ̃u − (1/n)1)T1 = θ̃u − (1/n)

(2.56)

By changing variables θ̃u = θu + (1/n)1, θ̃u = θu + (1/n) and dividing the objective function with

c̃2u, we rewrite (2.56) as a quadratic program of the standard form,

minimize
θu

1

2
θT

uΘ̃
−1

u θu + θT

u

(
k̃u
c̃u

+
1

n
Θ̃−1

u 1

)

subject to (θu)i ≤ 0 if (au)i = 1

(θu)i = 0 if (au)i = 0

− θT

u1 = θu

(2.57)

which can be simplified by eliminating the equality constraints as follows,

minimize
β

1

2
βTQβ − βTp

subject to β ≥ 0

(2.58)

where
β = −(θu)S p = (k̃u/k̃u + (1/n)Θ̃−1

u 1)S

Q = (Θ̃−1

u )SS S = {i | (au)i = 1}.
(2.59)

In order to solve (2.57) for all u, we first iteratively update each row/column by solving the nonneg-

ative quadratic program in (2.58). After each cycle of n row/column updates, the diagonal entries of

the resulting matrix (Θ̃) are modified to satisfy the combinatorial Laplacian constraints −θT

u1=θu

for u= 1, . . . , n in (2.57). The diagonal update parameters are optimized by solving the following

projection problem for given Θ̃

minimize
ν

‖Θ̃− Θ̂‖2F
subject to Θ̂ = Θ̃ + diag(ν) (Θ̂− J) ∈ Lc

(2.60)
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where ν is the vector of update parameters, Lc denotes the set of combinatorial Laplacian matrices

and J=(1/n)11T.

Proposed Algorithm. Algorithm 2 is proposed to solve Problem 3 for a given connectivity matrix

A and regularization matrix H. Although the basic structures of Algorithms 1 and 2 are similar,

Algorithm 2 has three major differences. Firstly, the algorithm does not directly estimate the target

Laplacian matrix (i.e., Θ). Instead, it iteratively solves for the matrix Θ̃=Θ + J whose entries are

shifted by (1/n). Secondly, the subproblem solved for updating each row/column and the associated

update formulas are different (see lines 8, 9 and 10 in Algorithm 2). Thirdly, the for loop in lines

13–17 maintains that the estimate of Θ̃ leads to a CGL matrix (via the Θ̂− J transformation) by

solving the projection problem in (2.60).

In Algorithm 2, we propose to estimate the shifted matrix Θ̃ because of the singularity of

combinatorial Laplacian matrices, by their construction. However, our result in Proposition 1 shows

that one can solve the CGL problem in (2.8) by solving the equivalent problem in (2.9). Based

on this result, we derive optimality conditions for (2.9), and develop Algorithm 2 which iteratively

estimates Θ̃ until the convergence criterion has been satisfied. Then, the optimal Θ is recovered by

subtracting J from the estimated Θ̃ as in line 19 of Algorithm 2.

2.4.4 Convergence and Complexity Analysis of Algorithms

Convergence. The following proposition addresses the convergence of our proposed algorithms

based on the results from [58, 67, 69].

Proposition 6. Algorithms 1 and 2 guarantee convergence to the global optimal solutions of Prob-

lems 1, 2 and 3.

Proof. In minimization of a strictly convex and differentiable function over a convex set, (with a

proper selection of the step size) a block-coordinate descent algorithm guarantees convergence to

the optimal solution [67, 58]. As stated in Proposition 2, all of our problems of interest are convex.

Also, the objective functions are differentiable (see in Section 2.4). Moreover, convergence conditions

(see in [67]) require that each block-coordinate update be optimal (i.e., each iteration optimally

solves the subproblem associated with selected coordinate directions). In Algorithms 1 and 2, this

condition is also satisfied, since nonnegative quadratic programs (subproblems) are derived using

optimality conditions, so each of their solutions leads to optimal block-coordinate (row/column)

updates. These subproblems are also strictly convex, since the Q matrix in (2.46) and (2.58) is

positive definite throughout all iterations. To prove this, we use the following Schur complement

condition on partitions of Θ as in (2.28),

Θ � 0 ⇐⇒ Θu � 0 and θu − θT

uΘ
−1

u θu > 0. (2.61)

where Θu (and therefore, Θ−1

u ) is fixed and positive definite from the previous iteration. Noting that
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both algorithms initialize Θ and C as (diagonal) positive definite matrices, θu − θT

uΘ
−1

u θu = 1/cu > 0

by (2.31), then the updated Θ is also positive definite. Since both algorithms solve for the optimal

row/column updates at each iteration, based on the result in [67], this proves convergence to the

optimal solution for Problem 1. For Problems 2 and 3, Algorithms 1 and 2 implement a variation of

the general projected block-coordinate descent method, whose convergence to the optimal solution is

shown in [69]. Also, it is trivial to show that additional updates on diagonal elements (see in (2.33))

maintain positive definiteness of Θ and C. Therefore, both algorithms guarantee convergence to the

optimal solution.

Complexity. In Algorithms 1 and 2, each block-coordinate descent iteration has O(Tp(n)+n2)

complexity where O(Tp(n)) is the worst-case complexity of solving the subproblem with dimension

n, and the n2 term is due to updating Θ̂−1
u . After a cycle of n row/column updates, updating a

diagonal entry of Θ̂ and its inverse, Ĉ, also has O(n2) complexity. Depending on the sparsity of

solutions (i.e., graphs) the complexity can be reduced to O(Tp(s) + n2) where s is the maximum

number of edges connected to a vertex (i.e., number of non-zero elements in any row/column of

Θ). Moreover, both proposed algorithms use diagonal matrices to initialize Θ̂ and Ĉ. In practice,

better initializations (i.e., “warm starts”) and randomized implementations [58] can be exploited to

reduce the algorithm runtime. To solve the subproblems in (2.46) and (2.58), which are specifically

nonnegative quadratic programs, we employ an extension of Lawson-Hanson algorithm [70] with a

block principal pivoting method [71]. Since nonnegative quadratic programs require varying number

of iterations to converge for each row/column update, it is hard to characterize the overall complexity

of our algorithms. Yet, the complexity of solving the subproblems is Tp(n) = Ω(n3), which can be

significantly reduced if the solutions are sparse (Tp(s)=Ω(s3) for s-sparse solutions). In Section 2.5,

we present empirical complexity results for the proposed algorithms.

2.5 Experimental Results

In this section, we present experimental results for comprehensive evaluation of our proposed graph

learning techniques. Firstly, we compare the accuracy of our proposed algorithms and the state-of-

the-art methods, where the datasets are artificially generated based on attractive GMRFs. Specifi-

cally, our GGL and DDGL estimation methods based on Algorithm 1 (GGL and DDGL) are evaluated

by benchmarking against the Graphical Lasso algorithm (GLasso) [30]. Algorithm 2 (CGL) is com-

pared to the methods proposed for estimating shifted CGL matrices (SCGL) [33] and learning graphs

from smooth signals (GLS) [31, 32], as well as the graph topology inference approach (GTI) proposed

in [34]. Secondly, empirical computational complexity results are presented, and the advantage of

exploiting connectivity constraints is demonstrated. Thirdly, the proposed methods are applied to

learn similarity graphs from a real categorical dataset with binary entries, and the results are visu-

ally investigated. Finally, we evaluate the effect of model mismatch and of incorporating inaccurate
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(a) G(64)grid : 8×8 grid graph (b) G(64,0.2)ER : Erdos-Renyi graph (c) G(64,0.2,0.9)M : Modular graph
with 4 modules

Figure 2.2: Examples of different graph connectivity models, (a) grid (b) Erdos-Renyi (c) modular
graphs used in our experiments. All graphs have 64 vertices.

connectivity constraints on graph Laplacian estimation.

2.5.1 Comparison of Graph Learning Methods

Datasets. In order to demonstrate the performance of the proposed algorithms, we create several

artificial datasets based on different graph-based models. Then the baseline and proposed algorithms

are used to recover graphs (i.e., graph-based models) from the artificially generated data. To create

a dataset, we first construct a graph, then its associated Laplacian matrix, L, is used to generate

independent data samples from the distribution N(0,L†). A graph (i.e., L) is constructed in two

steps. In the first step, we determine the graph structure (i.e., connectivity) based on one of the

following three options (see Figure 2.2):

• Grid graph, G(n)
grid, consisting of n vertices attached to their four nearest neighbors (except the

vertices at boundaries).

• Random Erdos-Renyi graph, G(n,p)
ER , with n vertices attached to other vertices with probability

p.

• Random modular graph (also known as stochastic block model), G(n,p1,p2)
M with n vertices and

four modules (subgraphs) where the vertex attachment probabilities across modules and within

modules are p1 and p2, respectively.

In the second step, the graph weights (i.e., edge and vertex weights) are randomly selected based

on a uniform distribution from the interval [0.1, 3], denoted as U(0.1, 3). Note that this procedure

leads to DDGLs, which are used in comparing our Algorithm 1 against GLasso. For evaluation of

Algorithm 2, the edge weights are randomly selected from the same distribution U(0.1, 3), while all

vertex weights are set to zero.
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Experimental setup. For comprehensive evaluation, we create various experimental scenarios by

choosing different graph structures (grid, Erdos-Renyi or modular) with varying number of vertices.

Particularly, the GGL, DDGL and GLasso methods are tested on graphs consisting of 64 or 256

vertices. Since SCGL and GTI approaches [33, 34] do not currently have an efficient algorithm, the

CGL estimation methods are only evaluated on graphs with 36 vertices. We also test the performance

of the proposed methods with and without connectivity constraints. For each scenario, Monte-Carlo

simulations are performed to test baseline and proposed algorithms with varying number of data

samples (k). All algorithms use the following convergence criterion with the tolerance ε = 10−4,

criterion(Θ̂, Θ̂pre) =
‖Θ̂− Θ̂pre‖F
‖Θ̂pre‖F

≤ ε , (2.62)

where Θ̂ and Θ̂pre denote the graph parameters from current and previous steps, respectively (see

Algorithms in 1 and 2).

In order to measure graph learning performance, we use two different metrics,

RE(Θ̂,Θ∗) =
‖Θ̂−Θ∗‖F
‖Θ∗‖F

(2.63)

which is the relative error between the ground truth graph (Θ∗) and estimated graph parameters

(Θ̂), and

FS(Θ̂,Θ∗) =
2 tp

2 tp + fn + fp
(2.64)

is the F-score metric (commonly used metric to evaluate binary classification performance) calculated

based on true-positive (tp), false-positive (fp) and false-negative (fn) detection of graph edges in

estimated Θ̂ with respect to the ground truth edges in Θ∗. F-score takes values between 0 and 1,

where the value 1 means perfect classification.

In our experiments, since SCGL and GLasso methods employ α‖Θ‖1 for regularization, we use

the same regularization in our proposed methods (i.e., the matrix H is selected as in (2.3) for

Problems 1, 2 and 3) to fairly compare all methods. Monte-Carlo simulations are performed for

each proposed/baseline method, by successively solving the associated graph learning problem with

different regularization parameters (i.e., α, α1 and α2) to find the (best) regularization minimizing

RE. The corresponding graph estimate is also used to calculate FS. Particularly, for the GGL, DDGL,

CGL, SCGL and GLasso methods, α is selected from the following set:

{0} ∪ {0.75r(smax

√
log(n)/k) | r = 1, 2, 3, . . . , 14}, (2.65)

where smax =maxi 6=j |(S)ij | is the maximum off-diagonal entry of S in absolute value, and the scaling

term
√

log(n)/k is used for adjusting the regularization according to k and n as suggested in [72, 73].

For both of the GLS methods [31, 32] addressing the problems in (2.15) and (2.16), α1 is selected
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from {0}∪{0.75rsmax | r = 1, 2, 3, . . . , 14}, and for the problem in (2.16) the parameter α2 is selected

by fine tuning. For GLS [31], the Tr(Θ) = n constraint in (2.15) is set as Tr(Θ) = Tr(Θ∗). Since

GLS [32] and GTI [34] approaches generally result in severely biased solutions with respect to the

ground truth Θ∗ (based on our observations from the experiments), their RE values are calculated

after normalizing the estimated solution Θ as Θ̂ = (Tr(Θ∗)/Tr(Θ))Θ.
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(a) Average performance results for learning generalized graph Laplacian matrices: The proposed methods GGL(α)
and DDGL(α) outperform GLasso(α). The degree of improvement achieved by GGL(A, α) and DDGL(A, α), incor-
porating the connectivity constraints, is also demonstrated.
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(b) Average performance results for learning combinatorial graph Laplacian matrices: The proposed CGL(α)
method outperforms all baseline approaches, and the difference increases as gets k/n larger. Incorporating the
connectivity constraints (i.e., CGL(A, α)) naturally improves the performance.

Figure 2.3: Comparison of the (a) GGL and (b) CGL estimation methods: The algorithms are tested
on grid (G(n)

grid) and random graphs (G(n,0.1)
ER and G(n,0.1,0.3)

M ).

Results. Figure 2.3 demonstrates graph learning performances of different methods (in terms of

average RE and FS) with respect to the number of data samples, used to calculate sample covariance

S, per number of vertices (i.e., k/n). In our results, GGL(A, α), DDGL(A, α) and CGL(A, α) refer

to solving the graph learning problems with both connectivity constraints and regularization, where

the constraints are determined based on the true graph connectivity. GGL(α), DDGL(α) and CGL(α)

refer to solving the problems with `1-regularization only (i.e., without connectivity constraints).
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As shown in Figure 2.3, our proposed methods outperform all baseline approaches (namely

GLasso [30], SCGL [33], GLS [31, 32] and GTI [34]) in terms of both RE and FS metrics. Naturally,

incorporating the connectivity constraints (e.g., in GGL(A, α) and CGL(A, α)) significantly improves

the graph learning performance. However, for small k/n, it may not provide a perfect FS, even if the

true graph connectivity is given. This is because there may not be a sufficient number of data samples

to effectively recover the graph information. Specifically for k/n≤1, both S and the estimated graph

Laplacian have low-rank. Since low-rank graph Laplacians correspond to disconnected graphs (i.e.,

graphs with more than one connected components), they can cause false-negative (fn) detections

which reduce FS. Furthermore, the proposed methods outperform all baseline approaches regardless

of the size of the graph (n) and the connectivity model (A). As an example, for fixed k/n=30, Table

2.1 compares average RE results for different graph connectivity models and number of vertices (n

for 64 and 256). Also, Figures 2.4 and 2.5 illustrate sample GGL and CGL estimation results and

compare different methods.

Table 2.1: Average relative errors for different graph connectivity models and number of vertices
with fixed k/n = 30

Connectivity models
Average RE(n = 64) | Average RE(n = 256)

GLasso(α) GGL(α) GGL(A, α)

G(n)
grid 0.079 | 0.078 0.053 | 0.037 0.040 | 0.027

G(n,0.1)
ER 0.105 | 0.112 0.077 | 0.082 0.053 | 0.053

G(n,0.1,0.3)
M 0.102 | 0.124 0.075 | 0.081 0.051 | 0.053

For estimation of GGL matrices, Figure 2.3a demonstrates that the best set of results are obtained

by solving the DDGL problem, DDGL(A, α) and DDGL(α). This is expected since the random data

samples are generated based on DDGL matrices (as part of our experimental setup), and exploiting

additional information about the type of graph Laplacian improves graph learning performance.

Generally, solving the GGL problem, GGL(A, α) and GGL(α), also provides a good performance,

where the difference between GGL and DDGL is often negligible. Moreover, both of the proposed

GGL(α) and DDGL(α) methods (i.e., Algorithm 1) perform considerably better than GLasso, espe-

cially when the number of data samples (k/n) is small, since exploiting Laplacian constraints fulfills

the model assumptions of attractive GMRFs. For estimation of CGL matrices, Figure 2.3b shows

that CGL (i.e., Algorithm 2) provides significantly better performance with increasing number of data

samples (k/n) as compared to the SCGL, GLS and GTI approaches. Particularly, SCGL and GLS have

limited accuracy even for large number of samples (e.g., k/n≥100). The main reason is due to their

problem formulations, where SCGL [33] optimizes a shifted CGL instead of directly estimating a

CGL matrix as stated in (2.13). The GLS and GTI methods solve the problems in (2.15), (2.16) and

(2.18), whose objective functions are derived without taking multivariate Gaussian distributions into
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Figure 2.4: Illustration of precision matrices (whose entries are color coded) estimated from S for
k/n = 30: In this example, (a) the ground truth is a GGL associated with a grid graph having n=64
vertices. From S, the matrices are estimated by (b) inverting S, (c) GLasso(α) and (d) GGL(α). The
proposed method provides the best estimation in terms of RE and FS, and the resulting matrix is
visually the most similar to the ground truth Θ∗.
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Figure 2.5: Illustration of precision matrices (whose entries are color coded) estimated from S for
k/n = 30: In this example, (a) the ground truth is a CGL associated with a grid graph having
n= 36 vertices. From S, the matrices are estimated by (b) GLS(α1), (c) GTI and (d) CGL(α). The
proposed method provides the best estimation in terms of RE and FS, and the resulting matrix is
visually the most similar to the ground truth Θ∗.

account. Specifically, the objective in (2.16) serves as a lower-bound for the maximum-likelihood

criterion in (2.24) (see Proposition 4). Besides, the performance difference against GTI is substantial

[34] across different k/n, and GTI generally does not converge if S has low-rank (i.e., k/n < 1), so

those results are not available.

2.5.2 Empirical Results for Computational Complexity

Figure 2.6 compares the computational speedups achieved by our proposed algorithms over GLasso,

which is implemented according to the P-GLasso algorithm presented in [49]. In our experiments, the

algorithms are tested on Erdos-Renyi graphs with n = 64 vertices (G(64,p)
ER ). By varying the parameter

p, we evaluate the speedups at different graph sparsity levels (p = 1 means a fully connected graph).

For each p, 10 different graphs and associated datasets (with k/n=1000) are generated as discussed
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Figure 2.6: Computational speedup as compared to GLasso (T̄GLasso/T̄ ).

in the previous section. The speedup values are calculated using T̄GLasso/T̄ , where T̄ and T̄GLasso

denote average execution times of the test algorithm (Algorithm 1 or 2) and GLasso algorithm,

respectively. Since GLasso is approximately 1.5 times faster than both GLS methods [31, 32] on

average, and the other methods [33, 34] do not have efficient implementations, we only use GLasso

as the baseline algorithm in this experiment.

As shown in Figure 2.6, the proposed methods provide faster convergence than GLasso regardless

of p (i.e., sparsity level), and the computational gain is substantial for learning sparse graphs (e.g.,

p ≤ 0.3), where incorporating the connectivity constraints contributes to an additional 2 to 3-fold

speedup over the methods without exploiting connectivity constraints. In the worst case, for dense

graphs (e.g., p ≥ 0.8), our methods converge approximately 5 times faster than the GLasso. This

is mainly because, at each iteration, GLasso solves an `1-regularized quadratic program [30, 49]

having a nonsmooth objective function, and it is generally harder to solve compared to the (smooth)

nonnegative quadratic program in (2.46).

2.5.3 Illustrative Results on Real Data

We present some illustrative results to demonstrate that the proposed methods can also be useful

to represent categorical (non-Gaussian) data. In our experiments, we use the Animals dataset

[74] to learn weighted graphs, where graph vertices denote animals and edge weights represent the

similarity between them. The dataset consists of binary values (0 or 1) assigned to d=102 features

for n = 33 animals. Each feature corresponds to a true-false question such as, “has lungs?”, “is

warm-blooded?” and “lives in groups?”. Using this dataset, the statistic matrix S is calculated as
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S=(1/d) XXT+(1/3) I where X is the mean removed n× d data matrix. The (1/3) I term is added

based on the variational Bayesian approximation result in [42] for binary data. Then, S is used

as input to the GLasso, GGL and CGL methods. Here, we only compare methods minimizing the

objective function in (2.1) which is shown to be a suitable metric for binary data in [42, 43].

Figure 2.7 illustrates the graphs constructed by using GLasso, GGL and CGL with different reg-

ularization parameters. The positive and negative edge weights estimated by GLasso are shown

side-by-side in Figures 2.7a and 2.7d, where the magnitudes of negative weights are substantially

smaller than most of the positive weights. In other words, positive partial correlations are more

dominant than negative partial correlations in the precision matrix. Since the proposed GGL and

CGL find graphs with nonnegative edge weights (i.e., closest graph Laplacian projections with no

negative edge weights), the corresponding results are similar to the graphs with nonnegative weights

in Figures 2.7a and 2.7d. The results follow the intuition that larger positive weights should be

assigned between animals considered to be similar. Such pairs of animals include (gorilla,chimp),

(dolphin,whale), (dog,wolf) and (robin,finch).

2.5.4 Graph Laplacian Estimation under Model Mismatch

In the case of a model mismatch (i.e., when data is not generated by a GMRF with a graph Laplacian

as its precision matrix), the proposed methods allow us to find the closest graph Laplacian fit with

respect to the original model in the log-determinant Bregman divergence sense. Figure 2.8 illustrates

two examples (simulating sparse and dense mismatches) where the ground truth precision matrices

Ω have both negative and positive edge weights (Figure 2.8a). From their true covariances Σ=Ω−1,

GLasso recovers the original model by allowing both positive and negative edge weights (Figure 2.8b).

On the other hand, the proposed GGL finds the closest graph Laplacian with respect to the ground

truth (Figure 2.8c). As shown in the figure, GGL maintains all the edges with positive weights and

also introduces additional connectivity due to the negative weights in the ground truth Ω. Note

that this form of projection (based on log-determinant Bregman divergence) does not necessarily

assign zeros to the corresponding negative edge weights. In general, the identification of edges with

positive weights under model mismatches is nontrivial, as also pointed out in [54].

2.5.5 Graph Laplacian Estimation under Connectivity Mismatch

We now evaluate empirically the effect inaccurate selection of connectivity matrices (A), used to

determine the connectivity constraints in our problems. For this purpose, in our experiments, we

randomly construct multiple 64× 64 GGL matrices based on Erdos-Renyi graphs with p=0.1 (i.e.,

G(64,0.1)
ER ) and generate datasets associated with the GGLs, as discussed in Section 2.5.1. Then, the

proposed GGL method is employed to estimate graphs from generated data using different connec-

tivity constraints, whose corresponding connectivity matrices are obtained by randomly swapping
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(d) GLasso(α = 0.02): (Left) Positive and (Right) absolute negative weights
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Figure 2.7: The graphs learned from Animals dataset using methods GLasso(α), GGL(α) and CGL(α):
GGL(α) leads to sparser graphs compared to the others. The results follow the intuition that larger
positive weights should be assigned between similar animals, although the dataset is categorical
(non-Gaussian).
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Figure 2.8: Illustration of precision matrices whose entries are color coded, where negative (resp.
positive) entries correspond to positive (resp. negative) edge weights of a graph: (a) Ground truth
precision matrices (Ω) are randomly generated with (top) sparse and (bottom) dense positive entries
(i.e., negative edge weights). From the corresponding true covariances (Σ), the precision matrices
are estimated by (b) GLasso(α = 0) and (c) GGL(α = 0) methods without `1-regularization.

the entries of the true connectivity matrix to simulate connectivity mismatches. Specifically, a 5%

mismatch is obtained by randomly exchanging 5% of the ones in A with zero entries.

Figure 2.9 compares the accuracy of GGL estimation with connectivity constraints under dif-

ferent levels (5%, 10%, 15% and 25%) of connectivity mismatch against the GGL estimation with

true connectivity constraints (i.e., GGL(A)) and without using any connectivity constraints (i.e.,

GGL(Afull)). The results show that using slightly inaccurate connectivity information can be useful

when the number of data samples is small (e.g., k/n<5), where the performance is similar to GGL(A)

and can outperform GGL(Afull), even though there is a 25% mismatch (GGL(A25%)). However, the

performance difference with respect to GGL(A) increases as the number of data samples increases

(e.g., k/n > 10), where both GGL(A) and GGL(Afull) performs substantially better. In this case,

the graph estimation without connectivity constraints (GGL(Afull)) can be preferred if connectivity

information is uncertain.
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Figure 2.9: Average relative errors for different number of data samples (k/n), where GGL(A)
exploits the true connectivity information in GGL estimation, and GGL(Afull) refers to the GGL
estimation without connectivity constraints. Different levels of connectivity mismatch are tested.
For example, GGL(A5%) corresponds to the GGL estimation with connectivity constraints having a
5% mismatch. No `1-regularization is applied in GGL estimation (i.e., α = 0).

2.6 Conclusion

In this chapter, we have formulated various graph learning problems as estimation of graph Lapla-

cian matrices, and proposed efficient block-coordinate descent algorithms. We have also discussed

probabilistic interpretations of our formulations by showing that they are equivalent to parameter

estimation of different classes of attractive GMRFs. The experimental results have demonstrated

that our proposed techniques outperform the state-of-the-art methods in terms of accuracy and com-

putational efficiency, and both can be significantly improved by exploiting the additional structural

(connectivity) information about the problem at hand.



Chapter 3

Graph Learning from Filtered

Signals: Graph System

Identification

In Chapter 2, we have proposed algorithms for learning three different types of Laplacian matrices,

where models of interest are defined by graph Laplacians only. The present chapter extends Chapter

2 by (i) introducing more general graph-based models based on graph systems, defined by a graph

(i.e., graph Laplacian) and a graph-based filter (i.e., a matrix function of a graph Laplacian) as

illustrated in Figure 3.1, and (ii) proposing an algorithm to learn parameters of a graph system from

multiple signal/data observations.

For graph-based modeling, graph systems provide a general abstraction where graphs repre-

sent pairwise relations between the samples, and graph-based filters (GBFs)a determine the signal

smoothness. With this construction, we formulate the graph-based modeling as a graph system

identification (GSI) problem with an `1-regularized maximum likelihood (ML) criterion, where the

goal is to jointly identify a graph Laplacian L and a GBF h from signals/data. In order to solve

the GSI problem, we propose an alternating optimization algorithm that first optimizes the graph

by fixing the GBF, and then designs the GBF by fixing the graph. The proposed algorithm involves

three main steps:

• Graph-based filter (GBF) identification: For a given graph Laplacian L, the purpose of this

step is to design a GBF h, whose inverse function (i.e., h−1) is used for the prefiltering step

discussed next.

A version of the work presented in this chapter will be submitted for publication subsequently [75].
aA formal definition for graph-based filters is given in Section 1.3 (see Definition 6).

43
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• Prefiltering : We perform an inverse filtering operation (h−1) on observed signals, then the

prefiltered signals are used in graph Laplacian estimation. We show that this step of our

algorithm significantly improves the accuracy of graph estimation.

• Graph Laplacian Estimation: To learn graphs from prefiltered signals, we employ the CGL

estimation algorithm introduced in Chapter 2. Although the present chapter focuses on graphs

associated with CGL matrices, the algorithm can be simply extended for different types of

graph Laplacian matrices.

The proposed algorithm is developed under the general assumption that h is a one-to-one function,

hence its inverse function h−1 exists. Based on this condition, we specifically consider the parametric

GBFs listed in Table 3.1, which are one-to-one functions and have useful applications discussed in

Section 3.2.3. The first three GBF types in the table define basic scaling and shifting operations,

and the exponential decay and β-hop localized GBFs provide diffusion-based models. These GBFs

can also be used for modeling different classes of smooth graph signals satisfying that most of the

signal energy is concentrated in the low graph frequenciesa, since they yield larger filter responses

(hβ) in lower graph frequencies (λ) as illustrated in Figure 3.2.

In order to accommodate the GBFs in Table 3.1 into our algorithm (i.e., the GBF identification

step), we propose specific methods to find the filter parameter β that fully characterizes the GBF.

For a selected GBF type, our proposed algorithm guarantees optimal identification of β and L

in an `1-regularized ML sense for frequency shifting, variance shifting and β-hop localized GBFs.

However, for frequency scaling and exponential decay GBFs, our algorithm cannot find the optimal β

in general, but it guarantees that the estimated L is optimal up to a constant factor. In practice, the

type of GBF and its parameter β can also be selected based on the prior knowledge available about

the problem and the application. In this case, different GBFs and their parameters can be tested

until the estimated graph and GBF pair achieves the desired performance (e.g., in terms of mean

square error, likelihood or sparsity) where the parameter β serves as a regularization parameter,

which can be used for tuning smoothness of the signal for example.

Moreover, our algorithm can be extended to support different types of GBFs with more than one

filter parameter by introducing specific methods to identify their parameters. As long as a specified

GBF (h) has an inverse function (h−1), the prefiltering and graph Laplacian estimation steps can be

directly utilized to learn graphs from signals/data.

This chapter is organized as follows. Section 3.1 presents the related work. We formulate the

graph system identification problem and discuss its variations in Section 3.2. In Section 3.3, we

derive optimality conditions and develop methods for the graph system identification. Experimental

results are presented in Section 3.4 and Section 3.5 draws some conclusions.

aGraph signals satisfying this condition are analogous to low-pass signals in classical signal processing.



CHAPTER 3. GRAPH LEARNING FROM FILTERED SIGNALS 45

x0 x
L graph Laplacian 

graph-based filter h
h(L)

Figure 3.1: Input-output relation of a graph system defined by a graph Laplacian (L) and a graph-
based filter (h). In this work, we focus on joint identification of L and h.

Table 3.1: Graph-based filter (GBF) functions with parameter β and corresponding inverse functions.
Note that λ† denotes the pseudoinverse of λ, that is, λ† = 1/λ for λ 6= 0 and λ† = 0 for λ = 0.

Filter Name hβ(λ) h−1

β (s)

Frequency scaling

{
1
βλ λ > 0

0 λ = 0

{
1
βs s > 0

0 s = 0

Frequency shifting (λ+ β)† 1
s − β

Variance shifting λ† + β (s− β)†

Exponential decay exp(−βλ) −log(s)/β

β-hop localized

{
1
λβ

λ > 0

0 λ = 0

{(
1
s

) 1
β s > 0

0 s = 0
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Figure 3.2: Graph-based filters with different β parameters as a function of graph frequency hβ(λ).
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3.1 Related Work and Contributions

Some of the related studies have already discussed in the context of graph Laplacian estimation (in

Chapter 2). In this section, we revisit them by pointing out their main differences with respect to

our work in the present chapter. Table 3.2 summarizes the related studies by comparing against our

work in terms of target variables, underlying assumptions and optimization criteria.

Table 3.2: An overview of the related work on learning graphs from smooth/diffused signals (NA:
No assumptions, L: Localized, 1-1: one-to-one function).

References Target Variable(s)
Assumptions

Optimization Criterion
Graph Filter Signal

[31, 32] graph Laplacian NA NA NA regularized Laplacian
quadratic form

[34] shift operator NA NA NA `1-norm of shift operator

[56] adjacency matrix NA NA NA trace of adjacency

[76]
GBF

source locations
Given NA L least squares

[77]
multiple heat kernels

source locations
NA Heat

kernel
L regularized least squares

[78] polynomials of adjacency Sparse Poly-
nomial

NA least squares

This work
graph Laplacian

GBF (Table 3.1)
NA 1-1 NA regularized maximum

likelihood

As discussed in Chapter 2, the problems in (2.15) and (2.16) are solved to estimate CGL matrices

from smooth signals [31, 32], yet GBFs are not considered in their formulations. In [34, 56], the

authors focus on learning graph shift/diffusion operators (such as adjacency and graph Laplacian

matrices) from a complete set of eigenvectors that has to be computed from observed data. Par-

ticularly, Segarra et al. [34] solve the sparse recovery problem in (2.18) to infer the topology of a

graph, and Pasdeloup et al. [56] focus on the estimation of an adjacency matrix by solving a trace

minimization problem. In fact, the problems in [34] and [56] are equivalent if the target matrix is

constrained to be a CGL matrix, since the problems of minimizing ‖L‖1 and Tr(L) over the set of

CGL matrices (i.e., L ∈ Lc) lead to the same solution. Although our approach also requires a set

eigenvectors to be computed, they are not directly used to estimate a graph. Instead, the computed

eigenvectors are used for the prefiltering step, then a graph is estimated from the prefiltered signals

by minimizing a regularized ML criterion. Segarra et al. [76] discuss the joint identification of a

GBF and a sparse input (localized sources) from a set of observed signals for a given graph. Thanou
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et al. [77] further address the estimation of a graph in a similar setting with localized sources and

propose a dictionary-based method where a graph estimation problem is solved to construct a dic-

tionary consisting of multiple diffusion kernels, and the resulting dictionary is used for identifying

the localized sources in the diffusion process. Although the present chapter focuses on the GSI

problem without locality assumptions on diffused signals, when a single diffusion kernel is used in

the dictionary and no locality assumptions are imposed, the problem in [77] becomes analogous to

our problem of interest and specifically reduces to the CGL estimation problem in (2.15) originally

proposed by Dong et al. [31]. Yet, in our algorithm, we solve a different problem with a regularized

ML criterion (i.e., Problem 3 introduced in Chapter 2) to estimate graphs from prefiltered signals.

The proposed algorithm can be used as an alternative method to construct a dictionary as in [77]

for identifying localized sources, which is out of the scope of the present work. Moreover, Mei and

Moura [78] address the estimation of polynomials of adjacency matrices by solving a regularized

least-squares problem. As their counterparts, polynomials of graph Laplacians can be used to ap-

proximate the GBFs in Table 3.1 as well as many other types filters such as bandlimited GBFs [57].

Since polynomial filters provide more degrees of freedom in designing GBFs, they can be considered

as more general compared to our GBFs of interest. However, they are not one-to-one functions

in general, so the proposed algorithm (i.e., the prefiltering step) cannot be applied to polynomial

filters. Additionally, the algorithm proposed in [78] can only guarantee the optimality of solutions

in mean-square sense under a very restrictive set of assumptions which require the polynomials of

adjacency matrices to be sparsea. Our proposed algorithm provides stronger optimality guarantees

in a regularized ML sense without imposing any assumptions on the sparsity of graphs, yet the

GBFs of interest are more restrictive than polynomial filters. The identification of graph systems

with polynomial filters will be studied as part of our future work.

To the best of our knowledge, this is the first work that (i) formulates the graph-based modeling

problem as identification of graph systems (with the types of GBFs in Table 3.1) under a regularized

ML criterion and (ii) proposes an algorithm based on prefiltering to jointly identify a graph and

a GBF. The existing related studies consider optimization of different criteria (see Table 3.2), and

none of them propose a prefiltering-based procedure for graph estimation. Since diffusion kernels [15]

are special cases of graph systems, which are equivalent to the graph systems with an exponential

decay filter, our proposed method can be used to learn diffusion kernels from signals/data, which

are popular in many applications [21, 17, 79].

3.2 Problem Formulation: Graph System Identification

Our formulation is based on the following general assumption on a GBF h, which holds for the GBFs

in Table 3.1.

aIn practice, powers of adjacency matrices lead to dense matrices.
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Assumption 1. We assume that a graph-based filter h(λ) is a nonnegative and one-to-one function

of λ.

3.2.1 Filtered Signal Model

We formulate the graph system identification problem in a probabilistic setting by assuming that

the observed (filtered) signals have been sampled from a zero mean n-variate Gaussian distribution

x ∼ N(0,Σ=h(L)),

p(x|h(L)) =
1

(2π)
n/2|h(L)|1/2

exp

(
−1

2
xTh(L)†x

)
, (3.1)

with the covariance Σ=h(L) defined based on a graph Laplacian L and a GBF h. The signal model

in Chapter 2 is a special case of (3.1), which can be shown by choosing the GBF h in (3.1) as

h(λ) = λ† =





1/λ λ > 0

0 λ = 0
that is h(L) = L†. (3.2)

Then, replacing the h(L) term in (3.1) with L† leads to the GMRF model in (2.19), whose precision

(inverse covariance) is Ω = h(L)† = L. Obviously, for a general GBF, h(L)† does not always have a

graph Laplacian form.

From the graph signal processing perspective, the random signal x in (3.1) can be considered

as the output of a graph system (see in Figure 3.1 and Definition 7) defined by a graph Laplacian

matrix L and a GBF h̄(L) for the input x0 ∼ N(0,Σ0). Without loss of generality, we assume that

the input is a white Gaussian noise x0 ∼ N(0, I) and choose h̄(L) =
√
h(L), so the covariance of the

output x = h̄(L)x0 is

Σ = E[xxT] =
√
h(L)E[x0x

T

0]
√
h(L)

T

=
√
h(L)

√
h(L)

T

= h(L) (3.3)

as in (3.1), since E[x0x
T
0] = I. Note that for a more general (colored) input model, x0 ∼ N(0,Σ0),

the whitening transform T=Σ−1/2

0 can be used to write Σ as

Σ = E[xxT] =
√
h(L)TE[x0x

T

0]T
√
h(L)

T

= h(L). (3.4)

Moreover, for modeling smooth graph signals, it is reasonable to choose h(λ) to be a monotonically

decreasing functiona satisfying h(λ1) ≥ h(λ2) ≥ · · · ≥ h(λn) > 0, where the graph frequencies (i.e.,

eigenvalues of L) are ordered as 0 = λ1 ≤ λ2 ≤ · · · ≤ λn. Thus, the corresponding covariance matrix

Σ = h(L) represent graph signals whose energy is larger in lower graph frequencies. On the other

aAll of the GBFs in Table 3.1 are monotonically decreasing functions on the interval λ ∈ (0,∞). The exponential
decay and frequency shifting GBFs further satisfies h(λ1) ≥ h(λ2) at the zero frequency (i.e., 0 = λ1 ≤ λ2), while for
the other GBFs, we have h(λ2) ≥ h(λ1).
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hand, the inverse covariance h(L)
†

leads to a variation operator that is similar to a graph Laplaciana

L, which is essentially a special case of h(L)
†

if the GBF is chosen as in (3.2). The quadratic term

xTh(L)
†
x in the exponent of (3.1) can be compactly written as

xTh(L)
†
x = xTUh(Λλ)†UTx = xTUΛ†σUTx (3.5)

by using the GBT U, which jointly diagonalizes L = UΛλU
T and h(L) = Uh(Λλ)UT = UΛσUT,

where the diagonal matrices Λλ = diag([λ1 λ2 · · ·λn]T) and Λσ = diag([σ2
1 σ

2
2 · · ·σ2

n]T) are composed

of the graph frequencies and GBF responses, respectively. Note that the nonnegativity condition in

Assumption 1, that is, σ2
i = h(λi)≥ 0 for i = 1, . . . , n, ensures that the covariance Σ = h(L) is a

positive semidefinite matrix. In terms of the GBF responses (i.e., h(λi) = σ2
i for i = 1, 2, . . . , n), we

can rewrite (3.5) as

xTh(L)
†
x = xTUh(Λλ)†UTx =

n∑

i=1

1

h(λi)
x̂2
i =

n∑

i=1

1

σ2
i

x̂2
i . (3.6)

where x̂i = uT
ix and ui denotes the i-th column of U associated with the graph frequency λi. Since

the ordering of the inverse GBF responses, 1/σ2
1 ≤ 1/σ2

2 ≤ · · · ≤ 1/σ2
n, is consistent with the ordering

of graph frequencies λ1 ≤ λ2 ≤ · · · ≤ λn, xTh(L)
†
x provides a variation measure such that a smaller

xTh(L)
†
x means a smoother signal x. As a special case, choosing h(λ) = λ† reduces (3.6) to the

quadratic graph Laplacian form in (1.6).

3.2.2 Problem Formulation

Our goal is to estimate the graph system parameters L and h based on k random samples, xi for

i=1, . . . , k, obtained from the signal model p(x|Σ) in (3.1) by maximizing the likelihood of Σ=h(L),

that is
k∏

i=1

p(xi|Σ)=(2π)
− kn2 |Σ|− k2

k∏

i=1

exp

(
−1

2
xi

TΣ†xi

)
. (3.7)

The maximization of (3.7) can be equivalently stated as minimizing its negative log-likelihood, which

leads to the following problem for estimating the graph system parameters L and h,

(L̂, ĥ) = argmin
L,h

{
1

2

k∑

i=1

Tr
(
xi

Th(L)
†
xi

)
− k

2
log|h(L)

†|
}

= argmin
L,h

{
Tr
(
h(L)

†
S
)
− log|h(L)

†|
} (3.8)

aIn Chapter 1, the graph Laplacian quadratic form xTLx in (1.6) is used to quantify the variation of a signal x
on the graph associated with L.
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where S is the sample covariance calculated using k samples, xi for i = 1, 2, . . . , k. In our problem

formulation, we additionally introduce a sparsity promoting weighted `1-regularization, ‖L�H‖1
for robust graph estimation, where H is symmetric regularization matrix and � denotes element-wise

multiplication. Thus, the proposed graph system identification problem is formulated as follows:

minimize
L�0,β

Tr(hβ(L)
†
S)−log|hβ(L)

†|+‖L�H‖1

subject to L 1 = 0, (L)ij ≤ 0 i 6= j

(3.9)

where β is the parameter for a given type of filter hβ from Table 3.1, and H denotes the regularization

matrix. The constraints ensure that L is a CGL matrixa. In this work, we particularly choose

H = α(2I − 11T) so that the regularization term in (3.9) reduces to the standard `1-regularization

α‖L‖1 with parameter α.

3.2.3 Special Cases of Graph System Identification Problem and Appli-

cations of Graph-based Filters

Graph Learning. The problem in (3.9) can be reduced to the CGL problem proposed in Chapter

2 by choosing the filter hβ to be the frequency scaling or β-hop localized GBFs with β = 1, so that

we obtain hβ(λ) = λ† and hβ(L) = L† as in (3.2). Since hβ(L)
†

= L, we can rewrite the objective

function in (3.9) as

Tr(LS)−log|L|+‖L�H‖1 (3.10)

which is the objective function of graph learning problems discussed in Chapter 2.

Graph Learning from Noisy Signals. The variance shifting filter corresponds to a noisy signal

model with variance β = σ2. Specifically, assuming that the noisy signal is modeled as x̂ = x + e,

where x ∼ N(0,L†) denotes the original signal, and e ∼ N(0, σ2I) is the additive white Gaussian

noise vector independent of x with variance σ2. Therefore, the noisy signal x̂ is distributed as

x̂ ∼ N(0, Σ̂ = L†+σ2I). The same model is obtained by variance shifting filter with β=σ2 so that

hβ(λ) = λ† + β and hβ(L) = L† + βI = L† + σ2I. (3.11)

Graph Learning from Frequency Shifted Signals. For the shifted frequency filter with pa-

rameter β, we have

hβ(λ) = (λ+ β)† and hβ(L) = (L + βI)†. (3.12)

aThe formulation can be trivially extended for different types of graph Laplacians (e.g., generalized graph Lapla-
cian) discussed in Chapter 2.
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By substituting hβ(L) with (L+βI)†, the problem in (3.9) can be written as

minimize
L̃�0,β≥0

Tr(L̃S)−log|L̃|+‖L̃�H‖1

subject to L̃ = L+βI, L1 = 0, (L)ij ≤ 0 i 6= j

(3.13)

which is the shifted combinatorial Laplacian (SCGL) estimation problem in (2.13) that is originally

proposed in [33].

Diffusion Kernel Learning. The diffusion kernel on a graph G [15] is the matrix exponential of

L, that is

exp(−βL) = lim
t→∞

(
I− βL

t

)t
t ∈ N, (3.14)

where L is the graph Laplacian associated with G and the parameter β is a real number called

diffusion bandwidth.

To learn diffusion kernels, defined in (3.14), our proposed problem in (3.9) can be modified by

choosing hβ(λ) as the exponential decay filter, so we get

hβ(L)=Uhβ(Λ)UT =Uexp(−βΛ)UT =exp(−βL) (3.15)

based on Definitions 5 and 6.

Diffusion kernels are used to model a basic class of random diffusion processes [15]. Suppose

that the random process is obtained by diffusion of the initial random vector x(0) whose entries are

independent, zero-mean random variables, denoted as (x(0))i for i= 1, 2, . . . , n, with variance σ2,

the random diffusion over a graph G is formulated recursively as

x(t+ 1) = x(t)− rLx(t) = (I− rL)x(t) t ∈ {0, 1, . . . } (3.16)

where t represents the time index, L is the graph Laplacian of G and the real number r ∈ (0, 1) is

the diffusion rate of the process. On i-th vertex of the graph G, we can write the random process in

(3.16) as

(x(t+ 1))i = (x(t))i + r
∑

j∈Ni
(W)ij ((x(t))j−(x(t))i) (3.17)

for all i where W is the adjacency matrix of the graph G, and Ni is the set of vertex indices

neighboring i-th vertex (vi). More compactly, (3.16) can be written as

x(t) = G(t)x(0) where G(t) = (I− rL)
t
. (3.18)
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The covariance of x(t) is

(Σ(t))ij = E [(G(t)x(0))i(G(t)x(0))j ]

= E

[(
n∑

k=1

(G(t))ik(x(0))k

)(
n∑

l=1

(G(t))jl(x(0))l

)]
,

(3.19)

which simplifies by using independence of x(0) as

(Σ(t))ij = σ2
n∑

k=1

((G(t))ik(G(t))kj) = σ2(G(t)2)ij . (3.20)

Therefore, the covariance matrix leads to

Σ(t) = G(t)2 = σ2 (I− rL)
2t
. (3.21)

To adjust the time resolution of the process, we replace t with t/∆t and r with r∆t in G(t) so that

G(t) = σ

(
I− rL

1/∆t

)t/∆t
. (3.22)

For arbitrarily small ∆t, G(t) converges to a matrix exponential function of L,

Σ̃(t) = σ2 lim
∆t→0

(
I− rL

1/∆t

)2t/∆t

= σ2exp(−2rtL) (3.23)

which is equivalent to exponential decay filtering operation in Table 3.1 with β(t) = −2rt. For

arbitrarily large t (i.e., when the diffusion reaches steady-state), the covariance is

lim
t→∞

Σ̃(t) = lim
t→∞

n∑

i=1

exp(−2rtλi)uiui
T =

σ2

n
11T, (3.24)

whose all entries have the same value, since we have λ1 = 0 for CGLs. Thus, the statistical properties

eventually become spatially flat across all vertices as intuitively expected for a diffusion process. Yet,

for a nonsingular L (e.g., a GGL), the process bahaves differently so that the signal energy vanishes,

since the above limit converges to the n×n zero matrix as t gets larger.

Graph Learning from β-hop Localized Signals. To learn graphs from β-hop localized signals,

where β is a positive integer, the GBF can be selected as h(λ) = (λ†)β so that the corresponding

inverse covariance (precision) matrix in (3.9) is h(L)†=Lβ , which is generally not a graph Laplacian

matrix due to the exponent β. However, it defines a β-hop localized operation on a graph associated

with L, and the corresponding signal model leads to β-hop localized signals, in which each sample

depends on samples located within the neighborhood at most β-hops away.
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Algorithm 3 Graph System Identification

Input: Sample covariance S, graph-based filter type hβ
Output: Graph Laplacian L and β filter parameter

1: Obtain U and Λs via eigendecomposition S=UΛsU
T

2: Initialize parameter β̂: Apply the initialization method in Section 3.3.3 for variance/frequency
shifting GBFs. For the other types of GBFs, apply a positive random initialization.

3: repeat
4: Prefilter the sample covariance S:

Spf = (h−1

β̂
(S))† = U(h−1

β̂
(Λs))

†UT (3.25)

5: Estimate L from prefiltered data (Spf):

L̂← Run Algorithm 2 to solve the problem in (3.33)

6: Update filter parameter β̂ or skip if β̂ is optimal:

β̂ ← Apply filter-specific update discussed in Section 3.3.3

7: until convergence has been achieved
8: return Graph system parameters L̂ and β̂

3.3 Proposed Solution

Algorithm 3 is proposed to solve the graph system identification problem in (3.9) for a given sample

covariance S and a selected type of graph-based filter hβ . After obtaining U and Λs via eigende-

composition of S and initialization of the parameter β (see lines 1 and 2), the algorithm performs

three main steps to find the optimal graph Laplacian L and the filter parameter β:

1. Prefiltering step applies an inverse filtering on the sample covariance S to reverse the effect

of filter h in the graph system. Without the prefiltering step, it may be impossible to effec-

tively recover L from S, since Σ† = h(L)† is generally not a graph Laplacian. The proposed

prefiltering allows us to effectively estimate the original eigenvalues of L (i.e., Λλ) from the

prefiltered covariance Spf in (3.25).

2. Graph Laplacian estimation step uses Algorithm 2 developed for estimating the CGL L̂ from

prefiltered covariance Spf.

3. Filter parameter selection step finds the best matching β for the graph system. Depending on

the type of GBF, we propose different methods for parameter selection.

In the rest of this section, we derive the optimality conditions and discuss prefiltering, graph

Laplacian estimation and filter parameter selection in Sections 3.3.1, 3.3.2 and 3.3.3, respectively.

The optimality conditions are derived based on the following assumption on the number of data

samples used to compute the sample covariance S (i.e., k).
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Assumption 2. We assume that the number of data samples (k) used for estimating the sample

covariance S is asymptotically large (i.e., k → ∞), so the sample covariance S converges to the

actual covariance matrix Σ almost surely by the strong law of large numbers. Thus, we have S = Σ

by the assumption.

Note that this is a theoretical assumption used to derive the optimality conditions for the graph

system identification problem. In practice, the proposed algorithm (Algorithm 3) works regardless

of the number of data samples used to obtain the sample covariance S.

3.3.1 Optimal Prefiltering

Based on Assumption 2, we have a graph-based transform matrix U satisfying L=UΛλU
T, h(L)

†
=

Uh(Λλ)
†
UT and S=Σ=UΛσUT. By change of variables, the objective function in (3.8) becomes

J (U, h(Λλ)) = Tr(Uh(Λλ)
†
UTUΛσUT)− log|Uh(Λλ)

†
UT| (3.26)

which is simplified using properties of Tr(·) and |·| as

J (h(Λλ)) = Tr(h(Λλ)
†
Λσ)− log|h(Λλ)

†| (3.27)

where the graph-based filter h and the diagonal matrix of graph frequencies Λλ are unknown. By

letting φi=h(λi)
†
=(h(Λλ)

†
)ii and σ2

i =(Λσ)ii for i=1, 2, . . . , n, we can write (3.27) as

J (φ) =

n∑

i=1

(
φiσ

2
i − log(φi)

)
, (3.28)

where φ = [φ1 φ2 · · · φn]
T
. In minimization of the convex function (3.28), the optimal solution

satisfies the following necessary and sufficient conditions [67] obtained by taking the derivative of

(3.28) with respect to φi and equating to zero,

∂J (φ)

∂φi
=

1

φi
− σ2

i = 0. (3.29)

By change of variables, the optimality conditions can be stated as

h(λi) = (h(Λλ))ii = (Λσ)ii = σ2
i ∀i. (3.30)

Based on Assumption 1, we can also write (3.30) as

h−1(h(λi)) = λi = h−1(σ2
i ) ∀i, (3.31)
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where h−1 is inverse function of h. By using the matrix notation, we can state (3.31) more compactly

as

h−1(S) = Uh−1(Λσ)UT = UΛλU
T = L. (3.32)

This condition shows that we can find the optimal Laplacian L via inverse filtering (inverse pre-

filtering) h−1(S). Yet, (3.32) is satisfied only if Assumption 2 holds, which requires infinitely many

samples (i.e., k → ∞) to estimate the sample covariance S. Thus, using (3.32) does not lead to

a Laplacian matrix in practice. In order to address this problem, Algorithm 3 first estimates the

prefiltered sample covariance Spf as in (3.25), then employs Algorithm 2 to find the best graph

Laplacian from Spf by minimizing the criterion in (3.10).

3.3.2 Optimal Graph Laplacian Estimation

For a graph-based filter h (or hβ) satisfying the optimal prefiltering condition in (3.31), the graph

system identification problem in (3.9) can be written as the following graph learning problem,

minimize
L�0

Tr(LSpf)− log|L|+‖L�H‖1

subject to L 1 = 0, (L)ij ≤ 0 i 6= j
(3.33)

where Spf =(h−1(S))† is obtained by prefiltering the covariance S. This problem is discussed in detail

in Chapter 2 where we have developed Algorithm 2 (CGL) to solve (3.33).

3.3.3 Filter Parameter Selection

Depending on the type of GBF (in Table 3.1), we propose different methods for choosing the filter

parameter β.

Initialization for Variance/Frequency Shifting Filters. Assuming that the optimal prefiltering

condition in (3.31) holds, for both variance and frequency shifting GBFs, the optimal β is found

by calculating σ2
1 = u1

TSu1 where u1 is the eigenvector associated with the zero eigenvalue of the

Laplacian ((Λλ)11 =λ1 =0). Specifically,

• if hβ(λ) is a variance shifting filter, we get

hβ(λ1) = σ2
1 = u1

TSu1 = λ
†
1 + β, (3.34)

since λ1 =λ
†
1 =0, the optimal β satisfies

β = u1
TSu1 = σ2

1 . (3.35)
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• if hβ(λ) is a frequency shifting filter, we obtain

hβ(λ1) = σ2
1 = u1

TSu1 = 1/(λ1 + β) = 1/β, (3.36)

so the optimal β satisfies

β = 1/(u1
TSu1) = 1/σ2

1 . (3.37)

Since the optimal β can be directly estimated from S as in (3.35) and (3.37), Algorithm 3 uses the

optimized initial β (in line 2) for prefiltering, and then estimates L, so that the filter parameter

update (line 6) is skipped for graph systems with frequency and variance shifting filters.

Exponential decay and Frequency Scaling Filters. Assuming that the condition in (3.31)

holds and L̂ is the solution of (3.33) where Spf is obtained by prefiltering with parameter β̂.

• If hβ(λ) is a frequency scaling filter, the prefiltering gives

h−1

β̂
(σ2
i ) : λ1 = σ2

1 = 0,
β

β̂
λi =

1

β̂σ2
i

i = 2, . . . , n. (3.38)

• If hβ(λ) is an exponential decay filter, we have

h−1

β̂
(σ2
i )=− log(σ2

i )

β̂
=− log(exp(−βλi))

β̂
=
β

β̂
λi. (3.39)

Based on (3.38) and (3.39), for any selected β̂, the resulting graph Laplacian satisfies L̂ = (β/β̂)L

where L and β denote the original graph system parameters. So, Algorithm 3 finds the optimal

combinatorial Laplacian L up to a constant scale factor β/β̂, and the parameter β̂ can be tuned so

that the desired normalization (scaling factor) for L is achieved.

β-hop Localized Filter. For estimation of the optimal hop count β in Algorithm 3, prefiltering

with β̂ gives,

h−1

β̂
(σ2
i ) : λ1 =σ2

1 =0, λ
β/β̂
i =

(
1

σ2
i

)1/β̂

i = 2, . . . , n. (3.40)

Since this requires the graph learning step to estimate Lβ/β̂ , which is not a graph Laplacian in

general, Algorithm 3 cannot guarantee optimal graph system identification unless β = β̂. In order

to find the optimal β, we perform a line search for given range of integers optimizing the following:

β̂ = argmin
β̂∈N

||hβ̂(L̂)− S||F . (3.41)
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3.4 Results

3.4.1 Graph Learning from Diffusion Signals/Data

We evaluate the performance of our proposed graph system identification (GSI) method (i.e., Al-

gorithm 3) by benchmarking against the current state-of-the-art approaches proposed for learning

graph from smooth signals (GLS) [31, 32] as well as the graph topology inference (GTI) in [34].

The proposed GSI is also compared against the CGL estimation algorithm (CGL [36]) in Chapter

2 (i.e., using Algorithm 2 without prefiltering) and the inverse prefiltering (IPF) approach, which

estimates a graph Laplacian matrix by inverting the prefiltered covariance, Spf in (3.25), so that

L̂ = h−1

β (S) = S
†
pf. For this purpose, we generate several artificial datasets based on the signal model

in (3.1), defined by a graph Laplacian (L) and a GBF (hβ) where the dataset entries are generated

by random sampling from the distribution N(0, hβ(L)). Then, the generated data is used in the

proposed and benchmark algorithms to recover the corresponding graph Laplacian L. We repeat

our experiments for different L and hβ where graphs are constructed by using three different graph

connectivity models:

• Grid graph, G(n)
grid, consisting n vertices attached to their four nearest neighbors (except the

vertices at boundaries).

• Random Erdos-Renyi graph, G(n,p)
ER , with n vertices attached to other vertices with probability

p = 0.2.

• Random modular graph (also known as stochastic block model), G(n,p1,p2)
M with n vertices and

four modules (subgraphs) where the vertex attachment probabilities across modules and within

modules are p1 =0.1 and p2 =0.2, respectively.

Then, the edge weights of a graph are randomly selected from the uniform distribution U(0.1, 3), on

the interval [0.1, 3]. For each L and hβ pair, we perform Monte-Carlo simulations to test average

performance of proposed and benchmark methods with varying number of data samples (k) and

fixed number of vertices (n = 36)a. To measure the estimation performance, we use the following

two metrics:

RE(L̂,L∗) =
‖L̂− L∗‖F
‖L∗‖F

(3.42)

which is the relative error between the ground truth graph (L∗) and estimated graph parameters

(L̂), and

FS(L̂,L∗) =
2 tp

2 tp + fn + fp
(3.43)

aMethods are evaluated on small graphs (with n = 36 vertices), since GTI [34] is implemented using CVX [64] and
do not currently have an efficient and scalable implementation. The proposed and the other benchmark methods are
more efficient and can support larger graphs.
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is the F-score metric (commonly used metric to evaluate binary classification performance) calculated

based on true-positive (tp), false-positive (fp) and false-negative (fn) detection of graph edges in

estimated L̂ with respect to the ground truth edges in L∗. F-score takes values between 0 and 1,

where the value 1 means perfect classification.

In our experiments, for the proposed GSI, the regularization parameter α in (3.33) is selected

from the following set:

{0} ∪ {0.75r(smax

√
log(n)/k) | r = 1, 2, 3, . . . , 14}, (3.44)

where smax =maxi 6=j |(S)ij | is the maximum off-diagonal entry of S in absolute value, and the scaling

term
√

log(n)/k is used for adjusting the regularization according to k and n as suggested in [72, 73].

Monte-Carlo simulations are performed for each proposed/baseline method, by successively solving

the associated problem with different regularization parameters to find the best regularization that

minimizes RE. The corresponding graph estimate is also used to calculate FS. For all baseline

methods [31, 32, 34], the required parameters are selected by fine tuning. Since CGL [36], GLS

[31, 32] and GTI [34] approaches generally result in severely biased solutions with respect to the

ground truth L∗ (based on our observations from the experiments), RE values are calculated after

normalizing the estimated solution L as L̂ = (Tr(L∗)/Tr(L))L. Note that, this normalization also

resolves the ambiguity in identification of graph systems with exponential decay and frequency

scaling filters up to a scale factor (discussed in Section 3.3.3).

Figures 3.3 and 3.4 depict the performance of different methods applied for estimating graphs

from signals modeled based on exponential decay filters (diffusion kernels) and β-hop localized filters.

As shown in Figures 3.3 and 3.4, the proposed GSI significantly outperforms all baseline methods,

including the state-of-the-art GLS [31, 32] and GTI [34], in terms of average RE and FS metrics.

The performance difference between GSI and CGL [36] demonstrates the impact of the prefiltering

step, which substantially improves the graph learning accuracy. Similarly, the performance gap

between GSI and IPF shows the advantage of Algorithm 3 compared to the direct prefiltering of

input covariance (S) as in (3.32), where GSI provide better graph estimation especially when number

of data samples (i.e., k/n) is small. Besides, Figures 3.5 and 3.6 illustrate two examples from the

experiments with grid graphs for the case of k/n= 30, where the proposed GSI constructs graphs

that are the most similar to the ground truth (L∗).

3.4.2 Graph Learning from Variance/Frequency Shifted Signals

In this subsection, we compare the CGL estimation performance of GSI, CGL [36] and SCGL [33]

methods from signals modeled based on variance and frequency shifting GBFs. As discussed in

Section 3.2.3, the covariance matrices for signals modeled based on these GBFs with parameter β

are
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• Σ = L†+βI for variance shifting,

• Σ = (L+βI)† for frequency shifting.

where L denotes the associated combinatorial Laplacian.

In our experiments, we construct 10 random Erdos-Renyi graphs (G(n,p)
ER ) with n = 36 vertices

and p = 0.2, then generate Σ for each GBF by varying β between 0 and 1. To evaluate the effect of

β only, we use actual covariance matrices instead of sample covariances as input to the algorithms.

So, GSI, CGL and SCGL estimate a graph Laplacian L from Σ. The average RE results are presented

in Tables 3.3 and 3.4 for various β.

Table 3.3 shows that the proposed GSI significantly outperforms CGL for β > 0, and the average

RE difference increases as β gets larger. This is because the variance shifting GBF leads to the noisy

signal model with the covariance in (3.11) where β represents the variance of the noise (σ2), and the

prefiltering step allows GSI to perfectly estimate the parameter β from Σ by using (3.35) so that
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Figure 3.3: Average RE and FS results for graph estimation from signals modeled based on exponen-
tial decay GBFs tested with β = {0.5, 0.75} on 10 different grid, Erdos-Renyi and modular graphs
(30 graphs in total). The proposed GSI outperforms all baseline methods in terms of both RE and
FS.
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Figure 3.4: Average RE and FS results for graph estimation from signals modeled based on β-hop
localized GBFs tested with β = {2, 3} on 10 different grid, Erdos-Renyi and modular graphs (30
graphs in total). The proposed GSI outperforms all baseline methods in terms of both RE and FS.
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0 2.9746

(a) The ground truth CGL
(L∗)

0 1.8932

(b) GLS [31]:
(RE,FS)=(0.4019,0.6172)

0 2.6617

(c) GTI [34]:
(RE,FS)=(0.1201,0.7229)

0 3.2115

(d) GSI:
(RE,FS)=(0.0340,0.9917)

Figure 3.5: A sample illustration of graph estimation results (for k/n = 30) from signals modeled
using the exponential decay GBF with β= 0.75 and L∗ is derived from the grid graph in (a). The
edge weights are color coded where darker colors indicate larger weights. The proposed GSI leads to
the graph that is the most similar to the ground truth.

0 2.9307

(a) The ground truth CGL
(L∗)

0 2.9115

(b) GLS [31]:
(RE,FS)=(0.4045,0.6890)

0 2.0173

(c) GTI [34]:
(RE,FS)=(0.2118,0.6030)

0 3.0194

(d) GSI:
(RE,FS)=(0.0274,0.9833)

Figure 3.6: A sample illustration of graph estimation results (for k/n = 30) from signals modeled
using the β-hop localized GBF with β= 2 and L∗ is derived from the grid graph in (a). The edge
weights are color coded where darker colors indicate larger weights. The proposed GSI leads to the
graph that is the most similar to the ground truth.

the covariance is prefiltered as in (3.25) based on the optimal β. The prefiltering step can also be

considered as a denoising operation (reversing the effect of variance shifting GBFs) on the signal

covariance before the graph estimation step, while CGL work with noisy (i.e., shifted) covariances,

which diminish the CGL estimation performance. For β = 0 (i.e., Σ is noise-free), the problem (3.9)

reduces to the CGL estimation problem in [36], so both GSI and CGL lead to the same average RE.

For the frequency shifting GBFs with β > 0, GSI performs slightly better than SCGL, since SCGL

is implemented using a general purpose solver CVX [64], which generally produces less accurate

solutions compared to our algorithm. Moreover, our algorithm is approximately 90 times faster than

SCGL on average, and significantly outperforms SCGL for β = 0, since SCGL method is developed

for shifted covariance matrices (i.e., L + βI) where β needs to be strictly positive.
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Table 3.3: Average Relative Errors for Variance Shifting GBF

Filter parameter (β)

Method 0 0.1 0.3 0.5 0.7 0.9

CGL [36] 2×10−4 0.60 0.79 0.85 0.88 0.89

GSI 2× 10−4

Table 3.4: Average Relative Errors for Frequency Shifting GBF

Filter parameter (β)

Method 0 0.1 0.5 0.9

SCGL [33] 0.2354 6.7×10−4 6.6×10−4 6.2×10−4

GSI 1.6× 10−4

(a) 45th day (Winter) (b) 135th day (Spring) (c) 225th day (Summer) (d) 315th day (Autumn)

Figure 3.7: Average air temperatures (in degree Celsius) for (a) 45th, (b) 135th, (c) 225th and (d)
315th days over 16 years (2000-2015). Black dots denote 45 states.

3.4.3 Illustrative Results on Temperature Data

In this experiment, we apply our proposed method on a real (climate) dataseta consisting of air

temperature measurements [80]. We specifically use the average daily temperature measurements

collected from 45 states in the US over 16 years (2000-2015), so that in total there are k = 5844

samples for each of the n=45 states. Figure 3.7 shows samples of average temperature signals, which

are spatially smooth across different states. Also, the Rocky Mountains region has lower average

temperature values as compared to the other regions in the western USb.

The goal of this experiment is to learn graphs (with 45 vertices) associated with exponential

decay and β-hop localized filters from temperature data and investigate the effect of filter type and

parameter β on the resulting graphs, representing the similarity of temperature conditions between

the 45 states. For modeling temperature signals, a diffusion kernel is a good candidate, because it is

aNCEP Reanalysis data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their website
at http://www.esrl.noaa.gov/psd/

bThe Rocky Mountains cross through the states of Idaho, Montana, Wyoming, Utah, Colorado and New Mexico.
For example, in Figure 3.7b, the areas with temperature values between 0 and 10 degrees Celsius (colored in green)
correspond to the Rocky Mountains region approximately.
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0 83.3921

(a) β-hop localized GBF with β = 1

0 4.7463

(b) β-hop localized GBF with β = 5

0 0.80833

(c) β-hop localized GBF with β = 10

0 9.5083

(d) Exponential decay with β = 0.25

0 4.7722

(e) Exponential decay with β = 0.5

0 0.81572

(f) Exponential decay with β = 3

Figure 3.8: Graphs learned from temperature data using the GSI method with exponential decay and
β-hop localized GBFs for fixed β parameters where no regularization is applied (i.e., H is set to the
zero matrix). The edge weights are color coded so that darker colors represent larger weights (i.e.,
more similarities). The graphs associated with exponential decay GBF leads to sparser structures
compared to the graphs corresponding to β-hop localized GBFs.

a fundamental solution of the heat equationa, which describes the distribution of heat in a physical

environment [81].

Figure 3.8 illustrates the graphs estimated using the GSI method without `1-regularization (i.e.,

H in (3.9) is set to the zero matrix). As shown in the figure, larger edge weights are assigned between

vertices (i.e., states) that are closer to each other in general, since temperature values are mostly

similar between states within close proximity. However, the distance between states is obviously

not the only factor effecting the similarity of temperature values. For example, in Figures 3.8b–

3.8f, the weights are considerably small between the states in the Rocky Mountains region and

their neighboring states in the east (e.g., Nebraska and Kansas) due to the large differences in

altitude. Note also that different choices of GBFs can lead to substantially different similarity

graphs. Especially for the β-hop localized GBF with β = 1 (corresponding to the CGL method), the

resulting graph is significantly different than the results in Figures 3.8b and 3.8c, since the 1-hop

localized filter does not lead to a diffusion model. The graphs associated with exponential decay

GBF leads to sparser graphs, better revealing the structure of the signal, compared to the graphs in

aThis is the reason that diffusion kernels are also known as heat kernels in the literature.
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Figures 3.8a–3.8c. The structure of the graphs in Figures 3.8d–3.8f are similar for different β because

of the relation in (3.39) for the exponential decay filter. For example, increasing β from 0.25 to 0.5

approximately halves edge weights, as shown in Figures 3.8d and 3.8e. Besides, the distribution of

edge weights for β-hop localized GBFs becomes more similar to the ones in Figures 3.8d–3.8f as β

gets larger.

3.5 Conclusion

We have introduced a novel graph-based modeling framework by (i) formulating the modeling prob-

lem as the graph system identification from signals/data and (ii) proposing an algorithm that jointly

identifies a graph and a graph-based filter. The proposed framework supports various types of graph-

based filters which include diffusion kernels as a special case. Our experimental results have demon-

strated that the proposed method outperform the state-of-the-art approaches in terms of modeling

accuracy.



Chapter 4

Graph Learning from Multiple

Graphs: Multigraph Combining

In the previous two chapters, we have studied methods to learn graphs from data under two different

model assumptions based on attractive GMRFs and graph systems. The present chapter focuses

on a different graph learning problem, called multigraph combining, where the goal is to learn a

single graph from multiple graphs (i.e., the observed data consist of a list of graphs). We partic-

ularly consider combining simple weighted graphs (i.e., graphs with no self-loops) associated with

combinatorial graph Laplacians (CGLs)a and propose a three-step formulation based on a maximum

likelihood (ML) criterion. In the first two steps, the common graph-based transform (CGBT) and

common graph frequency (CGF) estimation problems are proposed to estimate a GBT (Û) and a

diagonal matrix (Λ̂) consisting of graph frequencies. By exploiting the optimality conditions of the

problems, we propose a method that estimates the best CGBT and CGFs in an ML sense. The

third step involves estimating a CGL matrix based on the optimized Û and Λ̂, where we employ

Algorithm 2 described in Chapter 2 to learn a CGL matrix.

This chapter is organized as follows. Section 4.1 presents the related work. Section 4.2 first

formulates the multigraph combining problem. In Section 4.3, we introduce the proposed solution.

Experimental results are presented in Section 4.4, and Section 4.5 draws some conclusions.

4.1 Related Work

In the literature, there is only a limited number of studies on graph combining. The authors in

[83, 84] propose graph combining to improve spectral clustering and semi-supervised learning with

multiple graphs, respectively. However, their approaches are based on weighted averaging of graphs,

An earlier version of the work in this chapter is published in [82].
aThe work in this chapter can be trivially extended to learn other types of graph Laplacians.

64
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which have no theoretical guarantees. Additionally, our CGBT estimation problem is closely related

to common principal component (CPC) estimation originally introduced in [85], where the goal

is finding an orthogonal matrix that jointly diagonalizes multiple covariance matrices in an ML

sense, and an iterative algorithm for this problem is developed in [86]. Our CGBT problem can be

viewed as a variation of the CPC problem with graph Laplacian matrices. Another variation of the

CPC problem was also studied in blind source separation [87], and the JADE algorithm [88] was

introduced for joint diagonalization with a Frobenius-norm criterion. Algorithmically, our algorithm

for the CGBT estimation problem is very similar to the ones in [86, 88], which are all based on Jacobi-

like iterations [89]. Yet, our algorithm iteratively updates an orthogonal matrix (i.e., a CGBT) based

on pairwise projections on graph Laplacian matrices, while [86] and [88] use covariance matrices. To

the best of our knowledge, none of the prior studies address the CGF estimation problem. Note that

the graph topology inference problem [34] stated in (2.18) applies the same type of decomposition

on the target variable (i.e., Θ = UΛUT) to estimate graph frequencies (i.e., Λ) for a given GBT

(i.e., U). Since the graph combining problem is not considered in [34], U is first obtained by the

eigendecomposition of a single covariance matrix, and then Λ is estimated from U by solving an `1-

minimization problem, while we sequentially solve CGBT and CGF estimation problems to optimize

U and Λ from multiple graphs based on an ML criterion.

4.2 Problem Formulation for Multigraph Combining

Our formulation is based on the following two basic assumptions on graphs:

• (Number of vertices) All of the given graphs have the same vertex set V with n vertices.

• (Connected graphs) Each of the given graphs is a connected graph.

The proposed three-step formulation is derived from the following general optimization problem for

given positive semidefinite matrices K1, . . . ,KL and positive weights k1, . . . , kL:

minimize
U,Λ

L∑

l=1

kl (Tr (ΘKl)− log|Θ|)

subject to Θ = UΛUT UTU = I

Θ ∈ Lc

(4.1)

where the orthogonal matrix U and the diagonal matrix Λ are the target variables, and Lc denotes

the set of CGLs as stated in (1.3). The weights k1, . . . , kL can be selected to adjust the contribution

of each K1, . . . ,KL in the problem, so that choosing a larger weight kl increases the contribution of

Kl in the minimization. Depending on the choices/types of K1,K2, . . . ,KL, the problem has two

variants:
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• (Statistical) For given L sample covariance matrices S1, . . . ,SL corresponding to L groups

(clusters) of data, the problem in (4.1) can be solved to estimate a graph Laplacian from L

groups of data by setting Kl = Sl for l = 1, . . . , L.

• (Deterministic) For given L graph Laplacian matrices (e.g., CGLs) L1, . . . ,LL, setting Kl = L
†
l

in (4.1) for l = 1, . . . , L leads to the multigraph combining problem, which is the problem of

interest in this chapter.

Note that (4.1) is nonconvex due to the orthogonality constraint (i.e., UTU = I), which makes it

hard to solve for U and Λ directly. Thus, we present a three-step formulation for the multigraph

combining problem by decomposing (4.1) into the following three subproblems:

• Common graph-based transform (CGBT) problem is formulated with the goal of estimating a

CGBT U and multiple diagonal matrices Λ1, . . . ,ΛL from given K1, . . . ,KL as follows:

minimize
U,Λ1,...,ΛL

L∑

l=1

kl (Tr (ΛlU
TKlU)− log|Λl|)

subject to UTU = I

(4.2)

The basic purpose of this step is to find the best orthogonal transform U by minimizing

the weighted ML criterion above in (4.2). Then, the resulting diagonal matrices, denoted as

Λ̂1, . . . , Λ̂L, are used in the next step to optimize a CGF matrix.

• Common graph frequency (CGF) problem is formulated to estimate a CGF matrix Λ from the

diagonal matrices Λ̂1, . . . , Λ̂L obtained by solving (4.2) as:

minimize
Λ

L∑

l=1

kl

(
Tr(ΛΛ̂

†
l )− log|Λ|

)
(4.3)

• Since the estimated CGBT and CGF matrices (i.e., Û and Λ̂) generally do not lead to a CGL

matrix, we propose the following CGL problem, discussed in Chapter 2, to optimize a CGL

based on Û and Λ̂:
minimize

Θ
Tr(ΘS)− log|Θ|

subject to Θ ∈ Lc
(4.4)

where S = ÛΛ̂†ÛT, and Lc denotes the set of CGLs. This step can be viewed as a projection

for finding the closest CGL matrix with respect to the S in an ML sense.

As an alternative to the above three-step formulation, the problem in (4.1) can be solved without

splitting the target variable Θ into U and Λ, so that it reduces to the CGL problem in (4.4)

where S = 1/ksum

∑L
l=1 kl Kl such that ksum =

∑L
l=1 kl is the normalization factor. In this case,
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the multigraph combining is simply carried out by first computing a weighted summation of input

matrices K1,K2, . . . ,KL defining S and then solving the CGL problem with S as the input. Yet, our

formulation introduces CGBT and CGF problems by decomposing the target variable as Θ = UΛUT,

which has two main advantages over directly solving the CGL problem. Firstly, splitting the target

variable Θ into U and Λ introduces more degrees of freedom for an algorithm to search for the best

solutions, so that solving the CGBT and CGF problems potentially leads to better estimation of

U and Λ in an ML sense. This advantage will be empirically demonstrated later in Section 4.4.

Secondly, for a given set of L input CGLs L1, . . . ,LL, directly solving the CGL problem requires

us to compute the pseudoinverse of each CGL to have Kl = L
†
l for l = 1, . . . , L used in calculating

the S, which can be infeasible for large L because of the computationally intensive pseudoinverse

operation. However, the proposed three-step formulation allows us to work with CGLs directly, since

a CGBT (U) is invariant to pseudoinverses of input CGLs, and also corresponding graph frequencies

can be simply obtained for a given U by using Λl = UTLlU.

In order to justify our three-step formulation, the following section presents the statistical deriva-

tions of the proposed problems as well as their optimality conditions used to develop our algorithm.

4.2.1 Statistical Formulation and Optimality Conditions

Let xl be an n-variate Gaussian random vector xl ∼ N(0,L
†
l ) for l = 1, 2, . . . , L. Given k̃l = kl + 1

independent random vectors the random data matrix Xl = [x
(1)
l x

(2)
l · · · x(k̃l)

l ] leads to the random

empirical covariance matrix Sl = (1/kl)XlX
T

l . Then, the corresponding scatter matrix S̃l = klSl

has a Wishart distribution, S̃l ∼ W(L
†
l , kl), which is a common data model used in covariance

estimation. Since S̃l are independent for l = 1, 2, . . . , L, the likelihood function of L1,L2, . . . ,LL is

p({S̃l}Ll=1|{Ll}Ll=1) =

L∏

l=1

Cl|L†l |−
kl
2 exp

(
−kl

2
Tr (LlSl)

)
(4.5)

where Cl is a constant that does not depend on Ll. Thus, we can write negative log-likelihood

objective function as follows,

JNLL(L1,L2, . . . ,LL) =

L∑

l=1

kl (−log|Ll|+Tr (LlSl)) , (4.6)

which leads to the objective function of the proposed problem in (4.1) for Θ = L1 = · · · = LL where

Θ is the target variable that combines L1, . . . ,LL. Without loss of generality, the weights k1, . . . , kL

can be normalized by dividing (4.6) with the constant ksum =
∑L
l=1 kl, so that

∑L
l=1 kl/ksum = 1.

Common Graph-based Transform (CGBT) Estimation. In order to find the best CGBT
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matrix, we introduce the following constraint on CGL matrices,

CCGBT : Ll = UΛlU
T for l = 1, 2, . . . , L, (4.7)

where U denotes the orthogonal CGBT matrix that we seek to obtain, which is supposed to (approx-

imately) jointly diagonalize L1, . . . ,LL, and {Λl}Ll=1 is the corresponding set of diagonal matrices

consisting of graph frequencies. Based on (4.7), we can rewrite JNLL objective function in (4.6) as

JNLL(U, {Λl}Ll=1) =

L∑

l=1

kl (−log|Λl|+Tr (ΛlU
TSlU)) (4.8)

Since λ
(l)
1 = 0 for l = 1, .., L and u1 = (1/

√
n)1 by properties of CGL matrices, we can simplify

(4.8) as follows,

JNLL(Ũ, λ̃) =

L∑

l=1

kl

n∑

j=2

(
−log(λ

(l)
j ) + λ

(l)
j uT

jSluj

)
, (4.9)

where uj is the j-th column of U and λ
(l)
j = (Λl)jj . Also, the variables {uj}nj=2 and {λ(l)

2 , . . . , λ
(l)
n }Ll=1

are compactly denoted by Ũ and λ̃, respectively. Thus, the minimization of the negative log-

likelihood in (4.6) under the constraint CCGBT leads to the following problem,

minimize
Ũ,λ̃

L∑

l=1

kl

n∑

j=2

(
−log(λ

(l)
j ) + λ

(l)
j uT

jSluj

)

subject to uT

iuj =





1 i = j

0 i 6= j

(4.10)

which is equivalent to the CGBT problem in (4.2). The optimization problem in (4.10) is nonconvex

due to its orthogonality constraints. Thus, we derive necessary conditions for local optimality using

the Lagrange multiplier theorem [67]. The Lagrangian function associated to (4.10) is

JLAG(Ũ, λ̃,µ) = JNLL(Ũ, λ̃) +

n∑

i=2

µi(u
T

iui − 1) + 2
∑

2≤i<j≤n
µiju

T

iuj , (4.11)

where µ denotes Lagrange multipliers {µi}ni=2 and {µij}2≤i<j≤n associated with the equality con-

straints in (4.10). Note that the last summation term of (4.11) is simplified by exploiting the sym-

metry between multipliers (µij = µji). Taking partial derivatives with respect to primal variables

(Ũ, λ̃) and equating to zero, we obtain following system of equations:

∂JLAG(Ũ, λ̃,µ)

∂λ
(l)
j

=

L∑

l=1

kl

(
− 1

λ
(l)
j

+ uT

jSluj

)
= 0, (4.12)
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∂JLAG(Ũ, λ̃,µ)

∂uj
=

L∑

l=1

2klλ
(l)
j Sluj + 2µjuj + 2

∑

2≤i<j≤n
µijui = 0. (4.13)

Since kl, λ
(l)
j and uT

jSluj are all nonnegative, (4.12) can be simplified as

1/λ
(l)
j = uT

jSluj . (4.14)

By multiplying (4.13) with uT
j from the left, we get

L∑

l=1

2klλ
(l)
j uT

jSluj + 2µj = 0. (4.15)

Then, replacing uT
jSluj with 1/λ

(l)
j , as stated in (4.14), leads to

µj = −
L∑

l=1

kl for j = 2, . . . , n. (4.16)

By multiplying (4.13) with (1/2)uT

h from the left, we get

L∑

l=1

klλ
(l)
j uT

hSluj + µhj = 0 j = 2, . . . , n, h 6= j. (4.17)

Then, switching h and j indexes leads to

L∑

l=1

klλ
(l)
h uT

jSluh + µjh = 0 h = 2, . . . , n, j 6= h. (4.18)

Subtracting (4.18) from (4.17) results in the following equation,

uT

h

(
L∑

l=1

kl(λ
(l)
j − λ

(l)
h )Sl

)
uj = 0 j, h = 2, . . . , n, j 6= h, (4.19)

where λ
(l)
j = 1/(uT

jSluj) and λ
(l)
h = 1/(uT

hSluh) by (4.14). Based on (4.14) and (4.19), the necessary

optimality conditions for the CGBT are

uT

h

(
L∑

l=1

kl(λ
(l)
j − λ

(l)
h )Sl

)
uj = 0 for j, h = 2, . . . , n, j 6= h, (4.20)

uT

jSluj = 1/λ
(l)
j for j = 2, . . . , n, (4.21)

both of which obviously hold if U jointly diagonalizes S1, . . . ,SL, since each uT

hSluj term would be
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equal to zero for h 6=j and 1/λ
(l)
j for h=j≥2. However, for a given U that cannot jointly diagonalize

the empirical covariances, the weighted combinations of S1, . . . ,SL in (4.20) measure the deviation

from diagonality for each uj and uh pair, and it is used in our algorithm to update columns of U

(discussed in Section 4.3). Note that the overall effect of Sl on the deviation depends not only on the

number of data samples (kl) but also on graph frequencies (λ
(l)
j and λ

(l)
h ) where the corresponding

weight is kl(λ
(l)
j −λ

(l)
h ). The other condition in (4.21) is used in CGF estimation discussed next.

Common Graph Frequency (CGF) Estimation. To find the best CGF from multiple graph

frequency matrices Λ1, . . . ,ΛL, we introduce the following constraint on graph Laplacians,

CCGF : Ll = ÛΛÛT for l = 1, 2, . . . , L (4.22)

where Û is an optimal solution to the CGBT problem in (4.10), and Λ = diag([λ1 λ2 · · · λn]T) is

the diagonal matrix we want to estimate. By using (4.22), we can rewrite JNLL(L1,L2, . . . ,LL) =

JNLL(Λ) in (4.6) as,

JNLL(Λ) =

L∑

l=1

kl

(
−log|Λ|+Tr

(
ΛÛTSlÛ

))
. (4.23)

Since the first eigenvalue of a CGL matrix is zero, we simplify the above equation as,

JNLL(λ2, . . . , λn) =

L∑

l=1

kl

n∑

j=2

(
−log(λj) + λjû

T

jSlûj
)

(4.24)

where ûj is the j-th column of Û and λj = (Λ)jj . By using the optimality condition 1/λ
(l)
j = ûT

jSlûj

in (4.21), we get

JNLL(λ2, . . . , λn) =

L∑

l=1

kl

n∑

j=2

(
−log(λj) + λj/λ

(l)
j

)
(4.25)

whose minimization leads to the CGF problem in (4.3). By taking the derivative of (4.25) with

respect to λj and equating it to zero, we obtain

∂JNLL(λ2, . . . , λn)

∂λj
=

L∑

l=1

kl

(
− 1

λj
+

1

λ
(l)
j

)
= 0. (4.26)

Since (4.25) is a convex function, (4.26) is the necessary and sufficient optimality condition for the

CGF estimation, which can be compactly written as

1

λj
=

∑L
l=1 kl/λ

(l)
j∑L

l=1 kl
=

∑L
l=1 kl/λ

(l)
j

ksum
j = 2, 3, . . . , n. (4.27)

Therefore, the optimal common graph frequency λj is a weighted sum of 1/λ
(1)
j , . . . , 1/λ

(L)
j , where
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Algorithm 4 Multigraph Combining Algorithm

Input: CGLs {Ll}Ll=1, positive weights {kl}Ll=1, initial matrix Uinit and error tolerance ε.

Output: Combined graph Laplacian L̂
1: Û← CGBT({Ll}Ll=1, {kl}Ll=1,Uinit, ε) (i.e., apply Algorithm 5 to estimate a CGBT)

2: {sj}nj=2 =
{

1
ksum

∑L
l=1(kl/û

T
jLlûj)

}n
j=2

3: λ1 = 0 {λj}nj=2 = {1/sj}nj=2

4: {(Λ̂)jj}nj=1 = {λj}nj=1

5: L̂← Solve the problem in (4.4) with Ŝ = ÛΛ̂†ÛT to estimate L̂.

6: return L̂

the weights depend on the number of observations (e.g., kl) used to calculate the sample covariances

(e.g., Sl).

Proposition 7. If Û, Λ̂1, . . . , Λ̂L are the optimal solutions of (4.2), then the CGF estimation

problem in (4.3) has the following closed form solution, the diagonal matrix Λ with entries

(Λ)11 = 0 and (Λ)jj =

∑L
l=1 kl∑L

l=1 kl/λ̂
(l)
j

for j = 2, 3, . . . , n, (4.28)

where λ̂
(l)
j = (Λ̂l)jj.

Proof. The proof follows from (4.23)–(4.27).

Combinatorial graph Laplacian (CGL) Estimation. Assuming that CGBT and CGF matri-

ces (i.e., Û and Λ̂) are optimal, the best CGL can be simply obtained by L̂ = ÛΛ̂ÛT. However,

estimating the optimal Û is generally not feasible in practice, since the associated problem is non-

convex so that an estimated Û is typically a local optimal solution. Moreover, for a given set of

graph Laplacian matrices, there may be no orthogonal matrix that satisfies CCGBT (i.e., that jointly

diagonalizes L1, . . . ,LL). Thus, in general, L̂ = ÛΛ̂ÛT is not a graph Laplacian matrix. In order to

find the closest CGL to the estimated ÛΛ̂ÛT term, we propose to solve the CGL problem in (4.4)

where S = ÛΛ̂†ÛT is analogous of the sample covariance in the original CGL problem discussed in

Chapter 2.

4.3 Proposed Solution

In order to find the best CGL matrix L̂ that combines L graph Laplacian matrices {Ll}Ll=1, we

propose Algorithm 4, where we first solve the problem stated in (4.2) to find the best CGBT Û (see

line 1). We then estimate the CGF matrix (see lines 2–4) based on the condition stated in (4.27).

Finally, the best CGL is found by solving the optimization problem in (4.4) (see line 5). Note that

Algorithm 4 calls Algorithm 5 to find the best CGBT.
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Algorithm 5 Common Graph-based Transform Algorithm (CGBT)

1: function CGBT({Ll}Ll=1,Uinit, {kl}Ll=1, ε)
2: U = Uinit

3: do
4: Upre = U
5: for all (h, j) pairs such that 2 ≤ h, j ≤ n and h 6= j do
6: uh = (U):,h uj = (U):,j

7: {Ql}Ll=1 =

{[
1/(uT

hLluh) 1/(uT

hLluj)

1/(uT
jLluh) 1/(uT

jLluj)

]}L

l=1

8: R← Best Rotation({Ql}Ll=1, {kl}Ll=1, ε)
9: V = [uh uj ]R

10: (U):,h = (V):,1 (U):,j = (V):,2

11: end for
12: while ||U−Upre||F ≥ ε (stopping criterion)
13: return U
14: end function

15: function Best Rotation({Ql}Ll=1, {kl}Ll=1, ε)
16: R = I
17: do
18: Rpre = R T = 0
19: r1 = (R):,1 r2 = (R):,2

20: for l = 1 to L do
21: δ

(l)
1 = 1/(rT

1Qlr1) δ
(l)
2 = 1/(rT

2Qlr2)

22: T = T + kl(δ
(l)
1 − δ

(l)
2 )Ql

23: end for
24: θ = 1

2arctan
(

2 (T)1,2
(T)1,1−(T)2,2

)

25: R =

[
cos(θ) −sin(θ)

sin(θ) cos(θ)

]

26: while ||R−Rpre||F ≥ ε (stopping criterion)
27: return R
28: end function

In Algorithm 5, we present the CGBT algorithm proposed to solve the nonconvex optimization

problem in (4.2). In a nutshell, for a given initial guess Uinit, weights {kl}Ll=1 and error tolerance ε,

the CGBT algorithm iteratively solves the equation in (4.20) by pairwise updating the columns of U

(see lines 6–10). Specifically, the for loop at line 5 iterates over all (h, j) pairs for h, j = 2, . . . , n and

h 6= j until the ε-convergence has been reached (see line 26). At each iterate, an optimized (2× 2)

rotation matrix R is used to update uh and uj (i.e., columns of U) so that (4.20) is satisfied (see

lines 8–10). To find the best rotation, another iterative procedure is used as depicted in Algorithm

5 between lines 15–28.
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4.4 Results

In this section, we present our experimental results demonstrating the performance of our multigraph

combining algorithm which solves (4.1) with k1 = k2 = · · · = kL = 1. For given L graph Laplacian

matrices, L1, . . . ,LL, we compare the proposed Algorithm 4 by benchmarking against the following

two methods:

1. (Averaging method) The averaging method combines graphs as

Lavg =
1

L

L∑

l=1

Ll, (4.29)

2. (CGL method) The CGL problem in (4.4) is solved to combine graphs by setting the input

matrix S as

S =
1

∑L
l=1 kl

L∑

l=1

kl L
†
l =

1

L

L∑

l=1

L
†
l (4.30)

since k1 = k2 = · · · = kL = 1. The solution (i.e., combined CGL) is denoted as Lcgl.

We use two different metrics to measure the graph combining performance. The first metric is called

coding gain which is a popular metric used in information theory and compression [90]. This metric

is used to measure how well a designed CGBT U diagonalizes L† as follows,

cg(U,L) =

( ∏n
i=1(L†)ii∏n

i=2(UTL†U)ii

)1/n

. (4.31)

The second metric we use is the graph Laplacian quadratic form in (1.5) to measure average variation

of k signals ({yi}ki=1) with respect to a graph Laplacian L as,

av({yi}ki=1,L) =
1

k

k∑

i=1

yT

iLyi. (4.32)

In our experiments, for each input graph L1, . . . ,LL we randomly pick k = 1000×n samples from the

distribution xl ∼ N(0,L
†
l ), and measure the average variation (av) with respect to combined graphs,

L̂, Lavg and Lcgl. On the other hand, the coding gain is directly calculated for each input graph

L1, . . . ,LL using GBTs Û, Uavg and Ucgl obtained from L̂, Lavg and Lcgl, respectively. Figures

4.1 and 4.2 illustrate input graphs with line and mesh structures and their combined graph results,

L̂ and Lavg, respectively. Corresponding coding gain and average variation results are presented in

Tables 4.1–4.4. According to these results, proposed graph combining algorithm outperforms both

averaging and CGL methods by providing larger coding gain and lower average variation.
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Table 4.1: Coding gain (cg) results for the line graphs in Figure 4.1

cg L1 L2 L3 L4 L5 Average

Û 0.8298 0.8586 0.9066 0.8319 0.8812 0.8616

Uavg 0.8216 0.8102 0.8160 0.8125 0.8061 0.8133

Ucgl 0.8554 0.8591 0.8566 0.8565 0.8583 0.8572

Table 4.2: Average variation (av) results for the line graphs in Figure 4.1

av L1 L2 L3 L4 L5 Average

L̂ 15.0063 14.5198 13.4222 15.0538 13.9226 14.3850

Lavg 21.1885 21.0094 21.1003 21.1065 21.0882 21.0986

Lcgl 15.0628 14.9598 15.0286 15.0051 15.0065 15.0126

Table 4.3: Coding gain (cg) results for the graphs in Figure 4.2

cg L1 L2 L3 L4 Average

Û 0.9791 0.8981 0.9604 0.8799 0.9294

Uavg 0.9050 0.8549 0.9521 0.8801 0.8981

Ucgl 0.8673 0.8997 0.9310 0.9184 0.9041

Table 4.4: Average variation (av) results for the graphs in Figure 4.2

av L1 L2 L3 L4 Average

L̂ 2.6637 3.4654 1.8542 3.8498 2.9583

Lavg 5.6080 7.0555 3.6657 7.6316 5.9902

Lcgl 3.9964 4.5259 2.6581 4.9227 4.0258

4.5 Conclusions

We have introduced a novel framework for graph combining by (i) introducing a new problem for-

mulation with a maximum likelihood criterion and by (ii) proposing a solution involving common

graph-based transform estimation and common graph frequency estimation. The experimental re-

sults have showed that the proposed multigraph combining method leads to a better model compared

to the average graph model in terms of two well-known metrics, coding gain and quadratic Laplacian

cost. The applications of the proposed framework to compression, such as designing aggregate mod-

els for clusters of signals/data, and to machine learning problems, such as clustering, are possible

future directions on this work.
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(a) Input graphs: L1,L2,L3,L4,L5

 

 

0 1

(b) Combined graph L̂
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(c) Combined graph Lavg
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(d) Combined graph Lcgl

Figure 4.1: Combining L = 5 line graphs with n = 16 vertices. Edge weights are color coded between
0 and 1. Each input graph have only one weak edge weight equal to 0.1 while all other edges are
weighted as 0.95.
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(d) Combined graph Lcgl

Figure 4.2: Combining L = 4 mesh-like graphs with n = 5 vertices. Edge weights are color coded
between 0 and 1.



Chapter 5

Graph-based Transforms for Video

Coding

Predictive transform coding is a fundamental compression technique adopted in many block-based

image and video compression systems, where block signals are initially predicted from a set of avail-

able (already coded) reference pixels, then the resulting residual block signals are transformed (gen-

erally by a linear transformation) to decorrelate residual pixel values for effective compression. After

prediction and transformation steps, a typical image/video compression system applies quantization

and entropy coding to convert transform coefficients into a stream of bits. Figure 5.1 illustrates a

representative encoder-decoder architecture comprising three basic components, (i) prediction, (ii)

transformation, (iii) quantization and entropy coding, which are also implemented in state-of-the-art

compression standards such as JPEG [94], HEVC [95] and VP9 [96]. This chapter focuses mainly on

the transformation component of video coding by developing graph-based techniques to design or-

thogonal transforms adapting to statistical characteristics of block residual signals. We also present

theoretical justifications for the proposed techniques.

In predictive transform coding of video, the prediction is typically carried out by choosing among

multiple intra and inter prediction modes to exploit spatial and temporal redundancies in block

signals. On the other hand, for the transformation, generally a single transform such as the discrete

cosine transform (DCT) is separably applied to rows and columns of each residual block. The main

problem of using fixed block transforms is the implicit assumption that all residual blocks share the

same statistical properties. However, residual blocks can have very diverse statistical characteristics

depending on the video content and the prediction mode, as will be demonstrated by some of the

experiments in this chapter. The latest video coding standard, HEVC [95], partially addresses this

problem by additionally allowing the use of asymmetric discrete sine transform (ADST or DST-7)

Earlier versions of the work in this chapter are published in [8, 91, 91, 92, 7]. A journal version of this work will
be submitted for publication subsequently [93].

77
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Figure 5.1: Building blocks of a typical video encoder and decoder consisting of three main steps,
which are (i) prediction, (ii) transformation, (iii) quantization and entropy coding.

for small (4× 4) intra predicted blocks [97]. Yet, it has been shown that better compression can be

achieved by using data-driven transform designs that adapt to statistical properties of residual blocks

[98, 99, 100, 101, 102, 103, 104, 105]. The majority of prior studies about transforms for video coding

focus on developing transforms for intra predicted residuals. Ye and Karczewicz [98] propose the

mode-dependent transform (MDT) scheme where a Karhunen-Loeve transform (KLT) is designed

for each intra prediction mode. More recently in [99, 100], the MDT scheme is implemented on the

HEVC standard, where a single KLT is trained for each intra prediction mode offered in HEVC.

Moreover in [101, 102, 103, 104], authors demonstrate considerable coding gains outperforming the

MDT method by using the rate-distortion optimized transformation (RDOT) scheme, which suggests

designing multiple transforms for each prediction mode. From the predetermined set of transforms,

the encoder selects a transform by minimizing a rate-distortion (RD) cost. Since the RDOT scheme

allows encoders to flexibly select a transform on a per-block basis, it provides better adaptation to

residual blocks with different statistical characteristics as compared to the MDT scheme. However,

all of these methods rely on KLTs, which are constructed by the eigendecomposition of sample

covariance matrices. In this work, we propose a graph-based modeling framework to design GBTsa,

where the models of interest are defined based on GMRFs whose inverse covariances are graph

Laplacian matrices as discussed in Chapter 2. Specifically, in our framework, we propose two different

approaches to construct graph Laplacian matrices based on data (i.e., video signals) under specific

structural constraints. Our approaches can be interpreted as methods to regularize covariance

matrices used in order to derive KLTs by introducing Laplacian and structural constraints, which

aGBT is formally defined in Definition 5 (see in Chapter 1).
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potentially leads to a better (inverse) covariance estimation (i.e., better models to characterize

signals/data) as discussed in Chapter 2.

The following two distinct methods are proposed to develop classes of GBTs for video coding,

called GL-GBTs and EA-GBTs:

• Graph learning for GBT (GL-GBT) design: The GGL estimation problem (Problem 1 in

Chapter 2) is used to estimate a GGL from training data, and the estimated graph Laplacian

matrix is used to derive the GBT, called the GL-GBT. The proposed method allows us to

impose structural constraints on the graph Laplacian in order to design graphs with desired

connectivity. As the KLT, GL-GBT is learned from a sample covariance, but in addition, it

incorporates Laplacian and structural constraints reflecting the inherent model assumptions

about the video signal. The proposed graph learning approach can be used to design GBTs

for MDT and RDOT schemes.

• Edge-adaptive GBT (EA-GBT) design: To adapt transforms for block signals with image

edgesa, we develop edge-adaptive GBTs (EA-GBTs) which are designed on a per-block basis.

These lead to a block-adaptive transform (BAT) scheme, where transforms are derived from

graph Laplacians whose weights are modified based on image edges detected in a residual

block.

From a statistical learning perspective, the main advantage of GL-GBT over KLT is that GL-GBT

requires learning fewer model parameters to be obtained from training data, and thus potentially

leads to a more robust transform allowing better compression for the block signals outside of the

training dataset. In addition, EA-GBTs provide per-block transform adaptation that is not appli-

cable to KLTs. However in practice, transform coding schemes such as RDOT and BAT require

to encode additional side information, called transform signaling overhead, which is used by the

decoder to identify the transforms used at the encoder. Thus, it is important for any transform

coding scheme to consider the rate-distortion (RD) tradeoff [106]. For example, in RDOT scheme,

the number of GL-GBTs/KLTs trained for each mode should be limited so that the designed trans-

forms capture common block characteristics with low signaling overhead. Similarly, for EA-GBTs

the encoder should make a decision for each block, i.e., whether to send the detected edge (graph) in-

formation or to use a fixed transform such as DCT. In our experiments, we comprehensively evaluate

the performance of different transforms considering the rate-distortion tradeoff.

The main contributions of this chapter can be summarized as follows:

• The graph learning techniques proposed in Chapter 2 are used to develop separable and non-

separable GBTs, called GBST and GBNT respectively, and their theoretical justifications for

coding residual block signals modeled based on GMRFs are presented. In addition to the 1-D

GMRF models used to design GBSTs for intra and inter predicted signals in our previous work

aWe use the term image edge to distinguish edges in image/video signals with edges in graphs.
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[8], a general 2-D GMRF model is presented for GBNTs, and the optimality of proposed GBTs

is analyzed.

• EA-GBTs are applied for intra and inter predicted blocks, while our prior work in [92] focuses

only on inter predicted blocks. In addition to the experimental results, we further derive some

theoretical results and discuss the cases in which EA-GBTs are useful.

• We present graph-based interpretations of proposed models and statistical characteristics of

signals in terms of entries of graph Laplacian matrices. Also, we show that different types of

DCTs and DSTs, including the DCT-2 and DST-7 used in HEVC, are specific examples of

GBTs.

In the literature, there are a few studies on model-based transform designs for video coding. Most

related to our work, Han et. al. [97] present a single parameter 1-D GMRF and discuss the cases

where ADST (DST-7) is optimal for coding intra predicted signals. Hu et. al. [107] extend this model

by introducing another parameter to represent piecewise-smooth signals and use that to develop

transforms for depth map coding. Although the models introduced in [97, 107] are analogous to our

1-D GMRF introduced for intra predicted signals, our model is defined using multiple parameters

(i.e., weights of a line graph) so that it is more general than [97, 107]. In addition, [97] and [107]

focus only on separable transforms and do not consider inter predicted signals. In [6, 108], the

authors present a graph-based probabilistic framework for predictive video coding, and use it to

justify the optimality of DCT. However, optimal graph/transform design is out of their scope. In

our previous work [7], we present an extensive comparison of various instances of different graph

learning problems for 2-D nonseparable image modeling. This chapter theoretically and empirically

validates one of the conclusions in [7], which suggests the use of GBTs derived from GGL matrices.

Moreover, several edge-adaptive transform approaches have been proposed. Shen et. al. [109] propose

edge adaptive transforms (EAT) specifically for depth map compression. Although our proposed

EA-GBTs adopt some basic concepts originally introduced in [109], our graph construction method

is different (in terms of image edge detection) and provides better compression for residual signals.

Hu et. al. [110] extends EATs for piecewise-smooth image compression and applies them for depth

map coding, while our work focuses on encoding intra and inter predicted blocks.

This chapter is organized as follows. Section 5.1, introduces 1-D and 2-D GMRFs used for

modeling the video signals and discusses graph-based interpretations. In Section 5.2, GL-GBT design

problem is formulated as a graph Laplacian estimation problem, and solutions for optimal GBNT

and GBST construction are proposed. Section 5.3 presents EA-GBTs. Graph-based interpretations

of residual block signal characteristics are discussed in Section 5.4 by empirically validating the

theoretical observations. The experimental results are presented in Section 5.5 and Section 5.6

draws concluding remarks.
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ynyn�1y1 y2 y3
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Figure 5.2: 1-D GMRF models for (a) intra and (b) inter predicted signals. Black filled vertices
represent the reference pixels and unfilled vertices denote pixels to be predicted and then transform
coded.

(a) (b)

Figure 5.3: 2-D GMRF models for (a) intra and (b) inter predicted signals. Black filled vertices
correspond to reference pixels obtained (a) from neighboring blocks and (b) from other frames via
motion compensation. Unfilled vertices denote the pixels to be predicted and then transform coded.

5.1 Models for Video Block Signals

For modeling video block signals, we use Gaussian Markov random fields (GMRFs), which provide

a probabilistic interpretation for our graph-based framework as presented in Chapter 2.

In statistical modeling of image/video signals, it is generally assumed that adjacent pixel values

are positively correlated [4, 5]. The assumption is intuitively reasonable for video signals, since

neighboring pixel values are often similar to each other due to spatial and temporal redundancy.

With this general assumption, we propose attractive GMRFs to model intra/inter predicted video

block signals, where Figures 5.2 and 5.3 illustrate the 1-D and 2-D GMRFs used to design separable

and nonseparable GBTs (GBSTs and GBNTs), respectively. We formally define GBST and GBNT

as follows.
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vec
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Figure 5.4: Separable and nonseparable transforms: (Left) For an N×N image/video block, separable
transforms (e.g., GBSTs) are composed of two (possibly distinct) N×N transforms, Urow and Ucol,
applied to rows and columns of the block. (Right) Nonseparable transforms (e.g., GBNTs) apply
an N2×N2 linear transformation using U.

Definition 8 (Graph-based Separable Transform (GBST)). Let Urow and Ucol be N × N GBTs

associated with two line graphs with N vertices, then the GBST of X is

X̂ = UT

colXUrow, (5.1)

where Urow and Ucol are applied to each row and each column of an N × N block signal X,

respectively.

Definition 9 (Graph-based Nonseparable Transform (GBNT)). Let U be an N2×N2 GBT asso-

ciated with a graph with N2 vertices, then the GBNT of N×N block signal X is

X̂ = block(UTvec(X)), (5.2)

where U is applied on vectorized signal x = vec(X), and the block operator restructures the signal

back in block form.

Figure 5.4 shows separable and nonseparable transforms applied on a block signal.

In the rest of this section, we first present three different 1-D GMRFs for intra and inter predicted

signals, as well as an edge model. Then, we introduce a 2-D GMRF generalizing these models.

5.1.1 1-D GMRF Models for Residual Signals

In order to model rows/columns of N×N block residual signals, we construct 1-D GMRFs based

on first-order autoregressive (AR) processes. Specifically, depending on type of the prediction (i.e.,
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intra/inter), a set of reference samples, denoted as y, is used to predict x = [x1 x2 · · · xn]T which

represents n=N samples in a row/column of a blocka. Assuming that the optimal causal (MMSE)

predictor p is used for intra/inter prediction, the precision matrix of the resulting residual signal,

r = x− p, is then derived to define the 1-D GMRF of r.

Intra predicted signal model. For modeling intra predicted signals as a 1-D GMRF, illustrated

in Figure 5.2a, we formulate the following stochastic difference equations, which generalize the

models in [97, 107] by allowing arbitrary ρi correlation parameters, which are fixed in [97, 107], for

i = 0, . . . , n− 1,

x1 = ρ0(y + d) + e1

x2 = ρ1x1 + e2

...

xn−1 = ρn−2xn−2 + en−1

xn = ρn−1xn−1 + en

(5.3)

where the reference sample y is used to predict n samples in x = [x1 x2 · · · xn]T. The random

variable d ∼ N(0, σ2
d) models the distortion due to compression in the reference sample y, and

ei ∼ N(0, σ2
e) is the noise in xi with a fixed variance σ2

e . The spatial correlation coefficients between

samples are denoted by ρ0, ρ1, . . . , ρn−1, and we also assume that random variables d and ei are

independent for i=1, . . . , n.

The relations in (5.3) can be written more compactly in vector form as Qx = y1 + d1 + e where

y1 = [(ρ0y) 0 · · · 0]
T
, d1 = [(ρ0d) 0 · · · 0]

T
, e = [e1 e2 · · · en]

T
and

Q =




1 0 · · · · · · · · · 0

−ρ1 1 0
...

0 −ρ2 1
. . .

...

...
. . .

. . .
. . .

. . .
...

...
. . . −ρn−2 1 0

0 · · · · · · 0 −ρn−1 1




. (5.4)

Since x = Q−1y1 + Q−1(d1 + e) where p = Q−1y1 is the optimal prediction for x, the resulting

residual vector is r = x− p, and its covariance matrix is

Σr = Q−1E [(e + d1)(e + d1)T] (Q−1)T. (5.5)

aFor 1-D models, the number of vertices (n) are equal to the number of pixels (N) in a row/column of an N ×N
block.
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Inverting the covariance matrix gives us the precision matrix,

Ωintra = Σr
−1 = QT (E [eeT + d1d

T

1])
−1

Q

=
1

σ2
e

QT




1
1+βd

0 · · · 0

0 1
...

...
. . . 0

0 · · · 0 1




Q,
(5.6)

which defines our 1-D GMRF model for the residual signal r. This is explicitly stated in (5.9) where

βd = (ρ0σd)2

σ2
e

.

Inter predicted signal model. In modeling inter predicted signals, we have n reference samples,

y1, . . . , yn, used to predict n samples in x = [x1 x2 · · · xn]T, as shown in Figure 5.2b. So, we derive

the following difference equations by incorporating multiple reference samples as

x1 = ρ̃1(y1 + d1) + e1

x2 = ρ1x1 + ρ̃2(y2 + d2) + e2

...

xn−1 = ρn−2xn−2 + ρ̃n−1(yn−1 + dn−1) + en−1

xn = ρn−1xn−1 + ρ̃n(yn + dn) + en

(5.7)

where di ∼ N(0, σ2
di

) denotes the distortion due to compression in the reference sample yi and

ei ∼ N(0, σ2
e) is the noise in sample xi. The random variables ei and di are also assumed to be

independent. In addition to the spatial correlation coefficients ρ1, . . . , ρn−1, our model includes

temporal correlation coefficients, ρ̃1, . . . , ρ̃n.

The recursive relations in (5.7) can also be written in vector form, that is Qx = y2 + d2 + e

where Q is given in (5.4), y2 = [ρ̃1y1 ρ̃2y2 · · · ρ̃nyn]
T

and d2 = [ρ̃1d1 ρ̃2d2 · · · ρ̃ndn]
T
. We write x =

Q−1y2 + Q−1(d2 + e) where p = Q−1y2 is the optimal prediction for x. So, the resulting residual

vector is r = x− p = Q−1(d2 + e) and its covariance is

Σr = Q−1E [(e + d2)(e + d2)T] (Q−1)T. (5.8)
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By inverting the covariance matrix Σr, we obtain the precision matrix

Ωinter = Σ−1

r = QT (E [eeT + d2d
T

2])
−1

Q

=
1

σ2
e

QT




1
1+γ1

0 · · · 0

0 1
1+γ2

...

...
. . . 0

0 · · · 0 1
1+γn




Q,
(5.12)

where γi =
(ρ̃iσdi )

2

σ2
e

for i=1, . . . , n. The explicit form of the precision Ωinter is stated in (5.10).

Edge-based residual model. In this model, we extend intra/inter predicted signal models by

introducing an image edge, which is modeled using a random variable t ∼ N(0, σt
2) representing a

sharp signal transition. For example, to extend (5.3) with an image edge at xi, we have

x1 = ρ0y + e1

x2 = ρ1x1 + e2

...

xi−1 = ρi−2xi−2 + ei−1

xi = ρi−1xi−1 + ei + t

xi+1 = ρixi + ei+1

...

xn = ρn−1xn−1 + en

(5.13)

where ei is defined as in (5.3), and it is statistically independent of t. In vector form, we can

write x = Q−1y1 + Q−1(e + t) and p = Q−1y1, where Q is as stated in (5.4), y1 = [(ρ0y) 0 · · · 0]
T
,

e = [e1 e2 · · · en]
T

and t = [0 · · · 0 t 0 · · · 0]
T
. Then the residual signal is r = x − p = Q−1(e + t).

Thus, the covariance of the residual r is

Σr = Q−1E [(e + t)(e + t)T] (Q−1)T, (5.14)
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and the corresponding precision matrix is

Ωedge = Σ−1

r = QT (E [eeT + ttT])
−1

Q

=
1

σ2
e

QT




1 0 · · · · · · · · · · · · 0

0
. . .

. . .
. . .

. . .
. . .

...

...
. . . 1 0

. . .
. . .

...

...
. . . 0 1

1+αt
0

. . .
...

...
. . .

. . . 0 1
. . .

...

...
. . .

. . .
. . .

. . .
. . . 0

0 · · · · · · · · · · · · 0 1




Q,
(5.15)

which is explicitly stated in (5.11) where αt = σt
2

σ2
e

. Although this model is derived for intra pre-

diction, a similar edge-based model can be trivially constructed for inter prediction based on (5.7).

Also, a special case of this model with ρi = 1 for i = 1, . . . , n is considered in [110].

Attractive 1-D GMRFs and DCTs/DSTs as GBTs. The 1-D GMRF models discussed above

are attractive if ρ1, ρ2, . . . , ρn−1 are nonnegative. In this case, the corresponding precision matrices

in (5.9)–(5.11) are GGL matrices.

Moreover, DCT and DST can be considered as special cases of GBTs associated with line graphs

(i.e., 1-D attractive GMRFs). The relation between different types of DCT and graph Laplacians are

originally discussed in [111] where DCT-2 (which is the type of DCT used extensively in image/video

compression) is shown to be equal to the GBT derived from a uniformly weighted line graph (i.e.,

ρi = 1 for i = 1, . . . , n in 1-D GMRFs presented above) with no self-loops (i.e., all vertex weights

are zero). Thus, the corresponding graph Laplacian for the n-point DCT-2 is

Lu =




1 −1 0

−1 2 −1

. . .
. . .

. . .

−1 2 −1

0 −1 1




(5.16)

which is a CGL matrix. In [8, 107], it has been shown that DST-7 (i.e., ADST used in HEVC

standard) is GBT derived from the GGL L=Lu+V where V=diag([1 0 · · · 0]T), which includes a

self-loop at vertex v1 with weight fv(v1)=1. Based on the results in [111, 112], various other types of

n-point DCTs and DSTs can be characterized based on GGLs with different vertex weights at v1 and
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vn. Table 5.1 summarizes the graphs corresponding to different types of DCTs and DSTs, which are

GBTs derived from graph Laplacians of the form L̃=Lu+Ṽ where Ṽ=diag([fv(v1) 0 · · · 0 fv(vn)]T).

Table 5.1: DCTs/DSTs corresponding to L̃ with different vertex weights.

Vertex weights fv(v1)=0 fv(v1)=1 fv(v1)=2

fv(vn)=0 DCT-2 DST-7 DST-4

fv(vn)=1 DCT-8 DST-1 DST-6

fv(vn)=2 DCT-4 DST-5 DST-2

Moreover, we can justify the use of DCT-2 and DST-7 in practice by analyzing the 1-D intra

and inter predicted models. For this purpose, we assume that parameters ρi for i = 0, 1, . . . , n − 1

approach to 1 (i.e., ρi → 1), since video pixels are typically highly correlated in practice. Then,

based on the precision matrices in (5.9) and (5.10), we can show that the optimal GBT leads to

• DCT-2 if σd � σe for the intra predicted model (if intra prediction performance is bad),

• DST-7 if σd � σe for the intra predicted model (if intra prediction performance is good),

• DCT-2 if γ1 = · · · = γn for the inter predicted model (if inter prediction performance is similar

across pixels).

5.1.2 2-D GMRF Model for Residual Signals

By extending the 1-D models discussed above, we introduce a general 2-D GMRF model for intra

and inter predicted N×N block signals, depicted in Figure 5.3. For this purpose, we derive the

precision matrix of the residual signal obtained by predicting the signal x = [x1 x2 · · · xn]T with

n = N2 from np reference samples in y = [y1 y2 · · · ynp ]T (i.e., predicting unfilled vertices using

black filled vertices in Figure 5.3). In our model, x and y are zero-mean and jointly Gaussian with

respect to the following attractive 2-D GMRF:

p([ x
y ] |Ω) =

1

(2π)
n/2|Ω|−1/2

exp

(
−1

2
[ x
y ]

T
Ω [ x

y ]

)
. (5.17)

where the precision matrix Ω and the covariance matrix Σ = Ω−1 are partitioned as

Ω =




Ωx Ωxy

Ωyx Ωy


 =




Σx Σxy

Σyx Σy




−1

= Σ−1. (5.18)

Irrespective of the type of prediction (intra/inter), the optimal (MMSE) prediction of x from the

reference samples in y is

p = E[x|y] = ΣxyΣ−1

y y = −Ω−1

x Ωxyy, (5.19)
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and the resulting residual vector is r = x− p with covariance

Σr = Σx|y = E[rrT] = E[(x− p)(x− p)T]

= E[xxT + ppT − 2xpT]

= Σx + ΣxyΣ−1

y Σyx − 2ΣxyΣ−1

y Σyx

= Σx −ΣxyΣ−1

y Σyx.

(5.20)

By the matrix inversion lemma [65], the precision matrix of the residual r is shown to be equal to

Ωx, that is the submatrix in (5.18),

Σ−1

r = (Σx −ΣxyΣ−1

y Σyx)−1 = Ωx. (5.21)

Since we also have Σx = (Ωx −ΩxyΩ−1
y Ωyx)−1 by [65], the desired precision matrix can also be

written as

Ωresidual = Σ−1

r = Ωx = Σ−1

x + ΩxyΩ−1

y Ωyx. (5.22)

Proposition 8. Let the signals x ∈Rn and y ∈Rnp be distributed based on the attractive GMRF

model in (5.17) with precision matrix Ω. If the residual signal r is estimated by minimum mean

square error (MMSE) prediction of x from y (i.e, r=x−E[x|y]), the residual signal r is distributed

as an attractive GMRF whose precision matrix is a generalized graph Laplacian (i.e., Ωresidual in

(5.22)).

Proof. The proof follows from equations (5.17)–(5.22).

Proposition 8 also applies to the 1-D models in (5.3), (5.7) and (5.13) which are special cases of

(5.17) with precision matrices as stated in (5.9)–(5.11).

5.1.3 Interpretation of Graph Weights for Predictive Coding

For graph-based interpretation of our models, we first present two different formulations of GMRFs,

and then investigate the effect of graph weights based on these two forms.

GMRFs in Predictive Form. Let x=[x1 x2 · · · xn]T be a random vector drawn from a GMRF

whose precision matrix is Ω, so that the entries of the error vector e are obtained by the optimal

MMSE prediction,

ei = xi −
∑

j∈S\{i}
gijxj for i = 1, . . . , n (5.23)

where gij denotes the optimal MMSE prediction coefficient such that gii = 0 for i = 1, . . . , n, and

S={1, . . . , n} is the index set for x. Letting the variance of random variable ei be

σ2
i = E

[
e2
i |(x)S\{i}

]
, (5.24)
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we write the following conditional distribution

p(xi|xj for i 6= j) =
1√

2πσ2
i

exp


− 1

2σ2
i


xi −

∑

j∈S\{i}
gijxj




2

 (5.25)

from which the entries of the precision matrix can be written in terms of gij and σ2
i as follows:

(Ω)ij =




− 1
σ2
i
gij if i 6= j

1
σ2
i

if i = j
. (5.26)

More compactly, the precision matrix Ω is given by

Ω = Λ−1

σ (I−G) (5.27)

where Λσ is the diagonal matrix whose entries are (Λσ)ii = σ2
i for i = 1, . . . , n, and G is the

prediction coefficient matrix whose entries are (G)ij = gij , so that in matrix form

G = I−ΛσΩ. (5.28)

which is generally not a symmetric matrix, while Ω is symmetric by definition. Since (Λσ)ii = 1/(Ω)ii,

the diagonal entries of G are zero (i.e., (G)ii = 0 for all i) by (5.28). Specifically for attractive GM-

RFs, (G)ij are nonnegative for all i and j.

GMRFs in Laplacian Quadratic Form. Based on Proposition 8, the distribution of residual

signals, denoted as r, is defined by the following GMRF whose precision matrix Ω is a GGL matrix

L,

p(r|L) =
1

(2π)
n/2|L|−1/2

exp

(
−1

2
rTLr

)
, (5.29)

where the quadratic term in the exponent can be decomposed in terms of graph weights as stated

in (1.5)

rTLr =

n∑

i=1

(V)ii r
2
i +

∑

(i,j)∈I
(W)ij (ri − rj)2

(5.30)

where r = [r1 · · · rn]
T
, (W)ij =−(L)ij , (V)ii =

∑n
j=1(L)ij and I = {(i, j) | (vi, vj)∈E} is the set of

index pairs of all vertices associated with the edge set E .

Interpretation of Graph Weights. Based on the Laplacian quadratic form given in (5.29) and

(5.30), it is obvious that the distribution of the residual signal r depends on edge weights (W) and

vertex weights (V) where

• assigning larger (resp. smaller) edge weights (e.g., (W)ij) increases the probability of having

a smaller (resp. larger) squared difference between corresponding residual pixel values (e.g.,
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ri and rj),

• assigning larger (resp. smaller) vertex weights (e.g., (V)ii) increases the probability of pixel

values (e.g., ri) with smaller (resp. larger) magnitude.

In addition, the characterization of the precision matrix (i.e., L) in terms of gij and σ2
i in (5.26)

reveals the interplay between prediction and graph weights. Specifically, assuming that the prediction

coefficients, gij for j = 1, . . . , n, are given, the variance of the prediction error at vertex vi, σ
2
i , gets

smaller (resp. larger) as either one or both of the following statements are satisfied,

• degree at vertex vi, (D)ii, gets larger (resp. smaller)

• vertex weight (V)ii gets larger (resp. smaller)

which are based on (L)ii=(D)ii+(V)ii=1/σ2
i by (5.26). Since the degree matrix D is defined using

W, a good prediction may lead to increase in both edge and vertex weights. For the case of video

coding, the contribution of edges and vertices depends mainly on statistics of the block signal and

the type of the prediction. We experimentally investigate the effect of edge and vertex weights in

Section 5.4.

5.2 Graph Learning for Graph-based Transform Design

5.2.1 Graph Learning: Generalized Graph Laplacian Estimation

As justified in Proposition 8, the residual signal r ∈ Rn is modeled as an attractive GMRF, r ∼
N(0,Σ = L†), whose precision matrix is a GGL denoted by L. To find the best GGL from a set of

residual signals {r1, . . . , rk} in a maximum likelihood sense, we solve the GGL estimation problem

(i.e., Problem 1 in Chapter 2) without the `1-regularization, which is explicitly stated as follows:

minimize
L�0

Tr (LS)− logdet(L)

subject to (L)ij ≤ 0 if (A)ij = 1

(L)ij = 0 if (A)ij = 0

(5.31)

where S = 1
k

∑k
i=1 riri

T is the sample covariance of residual signals, and A is the connectivity matrix

representing the structure of the graph (i.e., set of graph edges). In order to optimally solve (5.31),

we employ Algorithm 1 discussed in Chapter 2.

5.2.2 Graph-based Transform Design

To design separable and nonseparable GBTs, we first solve instances of (5.31), which is denoted as

GGL(S,A). Then, the optimized GGL matrices are used to derive GBTs.
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Graph-based Separable Transforms (GBST). For the GBST design, we solve two instances of

(5.31) to optimize two separate line graphs used to derive Urow and Ucol in (5.1). Since we wish

to design a separable transform, each line graph can be optimized independentlya. Thus, our basic

goal is finding the best line graph pair based on sample covariance matrices Srow and Scol created

from rows and columns of residual block signals. For N × N residual blocks, the proposed GBST

construction has following steps:

1. Create the connectivity matrix Aline representing a line graph structure with n = N vertices

as in Figure 5.2.

2. Train two N×N sample covariances, Srow and Scol, from N rows and N columns of residual

blocks in the dataset.

3. Solve instances of the problem in (5.31), GGL(Srow,Aline) and GGL(Scol,Aline), by using Algo-

rithm 1 in Chapter 2 to learn generalized graph Laplacian matrices Lrow and Lcol, respectively.

4. Perform eigendecomposition on Lrow and Lcol to obtain GBTs, Urow and Ucol, which define

the GBST as in (5.1).

Graph-based Nonseparable Transforms (GBNT). Similarly, for N ×N residual block signals,

we propose following steps to design a GBNT:

1. Create the connectivity matrix A based on a desired graph structure. For example, A can

represent a grid graph with n = N2 vertices as in Figure 5.3.

2. Train N2×N2 sample covariance S using residual block signals in the dataset (after vectorizing

the block signals).

3. Solve the problem GGL(S,A) by using Algorithm 1 in Chapter 2 to estimate the generalized

graph Laplacian matrix L.

4. Perform eigendecomposition on L to obtain the N2×N2 GBNT, U defined in (5.2).

5.2.3 Optimality of Graph-based Transforms

It has been shown that KLT is optimal for transform coding of jointly Gaussian sources in terms of

mean-square error (MSE) criterion under high bitrate assumptions [115, 116, 117]. Since the GMRF

models discussed in Section 5.1 lead to jointly Gaussian distributions, the corresponding KLTs are

optimal in theory. However, in practice, a KLT is obtained by eigendecomposition of the associated

sample covariance, which has to be estimated from a training dataset where (i) data samples may

not closely follow the model assumptions (e.g., GMRFs), and (ii) the number of data samples may

aAlternatively, joint optimization of the transforms associated with rows and columns has been recently proposed
in [113, 114].
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not be sufficient to accurately recover the parameters. As a result, the sample covariance may lead

a poor estimation of the actual model parameters. From the statistical learning theory perspective

[118, 119], the advantage of our proposed GL-GBT over KLT is that KLT requires learning O(n2)

model parameters while GL-GBT only needs O(n). Therefore, our graph learning approach provides

better generalization in learning the signal model by taking into account variance-bias tradeoff.

This advantage can also be justified based on the following error bounds characterized in [120, 73].

Assuming that k residual blocks are used for calculating the sample covariance S, under general set

of assumptions, the error bound for estimating Σ with S derived in [120] is

||Σ− S||F= O

(√
n2log(n)

k

)
, (5.32)

while estimating the precision matrix Ω by using the proposed graph learning approach leads to the

following bound shown in [73],

||Ω− L||F= O

(√
nlog(n)

k

)
, (5.33)

where L denotes the estimated GGL. Thus, in terms of the worst-case errors (based on Frobenius

norm), the proposed method provides a better model estimation as compared to the estimation

based on the sample covariance. Section 5.5 empirically justifies the advantage of GL-GBT against

KLT.

5.3 Edge-Adaptive Graph-based Transforms

The optimality of GL-GBTs relies on the assumption that the residual signal characteristics are the

same across different blocks. However, in practice, video blocks often exhibit complex image edge

structures that can degrade the coding performance when the transforms are designed from average

statistics without any classification based on image edges. In order to achieve better compression

for video signals with image edges, we propose edge-adaptive GBTs (EA-GBTs), which are designed

on a per-block basis by constructing a graph-based model whose parameters are determined based

on the salient image edges in each residual block. In this work, EA-GBTs are defined by using the

following two parameters:

• Eedge is a subset of edges indicating the locations (of image edges) where the difference between

pixel values are large,

• sedge ≥ 1 is a parameter representing the level of difference between pixel values (i.e., sharpness

of the image edge).
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(a) Initial graph (b) Residual block signal
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(c) Constructed graph

(d) Constructed EA-GBT basis patches

Figure 5.5: An illustration of graph construction for a given 8×8 residual block signal where wc = 1
and we = 0.1, and the corresponding GBT. The basis patches adapt to the characteristics of the
residual block. The order of basis patches is in row-major ordering.

5.3.1 EA-GBT Construction

To design EA-GBTs on a per-block basis, we construct a graph for a given N ×N block as follows:

1. We create a nearest neighbor (4-connected) graph G with edge weights all equal to a fixed

constant wc.

2. On a given residual block, we apply Prewitt operator to calculate gradient in vertical and

horizontal direction, and then detect image edges based on thresholding on the gradient values.
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3. Based on the detected image edges, we determine the set of edges Eedge in graph G and then

modify the corresponding edge weights by setting them to we = wc/sedge.

4. The resulting graph is used to construct the associated GBT is constructed as in Definition 5.

Figure 5.5 illustrates an example of graph construction for the 8× 8 block signal (Figure 5.5b) and

the resulting EA-GBT (Figure 5.5d), which captures the characteristic of the residual block. Note

that EA-GBT construction can also be viewed as a classification procedure where each residual

block (such as in Figure 5.5b) is assigned to a class of signals modeled based on a graph (such as in

Figure 5.5c) determined through image edge detection.

The above procedure results in nonseparable EA-GBTs, yet it can be trivially modified for

separable EA-GBTs by designing line graphs based on given image edge locations. In terms of the

1-D edge-based residual model in (5.13), the proposed EA-GBT corresponds to the case where ρi is

fixed to a positive constant wc for i = 1, . . . , n, the parameter sedge is sedge =(1 + αt), and the edge

set Eedge represents a single image edge located between vertices vi and vi+1. By letting wc = σ2
e = 1,

the resulting precision matrix in (5.11) becomes

Ωedge =




2 −1 0 · · · · · · · · · · · · · · · · · · 0

−1 2 −1
. . .

. . .
. . .

. . .
. . .

. . .
...

0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . . −1 2 −1

. . .
. . .

. . .
. . .

...

...
. . .

. . . −1 1 + we −we
. . .

. . .
. . .

...

...
. . .

. . .
. . . −we 1 + we −1

. . .
. . .

...

...
. . .

. . .
. . .

. . . −1 2 −1
. . .

...

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 0

...
. . .

. . .
. . .

. . .
. . .

. . . −1 2 −1

0 · · · · · · · · · · · · · · · · · · 0 −1 1




(5.34)

where we = wc/sedge = 1/(1 +αt) is the weight of the edge connecting vertices (pixels) vi−1 and vi.

In order to evaluate the effect of the parameter sedge on pixel values, we generate k = 50000 samples

r1, . . . , rk based on an attractive GMRF whose precision matrix is (5.34) with we = 1/sedge (i.e.,

a 1-D edge-based model with an image edge between vi−1 and vi), and the generated samples are

scaled to have 8-bit intensity values within the range [0, 255]. Then, the average intensity difference
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Table 5.2: Average absolute valued intensity differences (mdiff) between pixels connected by the edge
with weight we = wc/sedge for various sharpness parameters (sedge).

sedge = wc/we 1 2 5 10 20 40 100 200

mdiff 3.99 5.64 8.93 12.65 17.89 25.30 40.13 56.26

between the pixels attached to vertices vi−1 and vi is estimated as

mdiff =
1

k

k∑

j=1

|(rj)i−1 − (rj)i|. (5.35)

Table 5.2 shows the estimatedmdiff values for different sedge parameters, wheremdiff is approximately

equal to 4 for sedge = 1 and increases with sedge. For example, mdiff approximately triples when

sedge = 10. In other words, the degree/sharpness of discontinuity between the pixels at vertices

vi−1 and vi becomes three times as large. Moreover, for 2-D GMRF models, we can make a similar

analysis based on (5.25), (5.26) and (5.30). Assuming that the 2-D GMRF model has image edges

around a pixel xi, then the prediction from neighboring pixels (as in (5.23)) would be naturally

difficult where the prediction coefficients (gij) have smaller values and the error variance (σ2
i ) is

larger. Since (Ω)ij=−gij/σ2
i by (5.26), this leads to smaller edge weights (wij=−(Ω)ij) and also a

smaller degree (i.e., (Ω)ii). Figure 5.6 illustrates the effect of sedge by showing random block samples

generated from 2-D GMRF models having an image edge with different sedge parameters, where the

image edge (i.e., transition) becomes more visually apparent as sedge increases.

Although EA-GBTs can provide efficient coding for transform coefficients, the overall coding

performance may not be sufficient due to signaling overhead of graph information to the decoder

side, especially if multiple graph weight parameters are used to model image edges (e.g., sharpness).

By taking the rate-distortion tradeoff into account, we propose to use a single parameter (sedge) to

model image edges, and for efficient representation of detected edges (i.e., Eedge), we employ the

state-of-the-art binary edge-map codec called arithmetic edge encoder (AEC) [121].

5.3.2 Theoretical Justification for EA-GBTs

We present a theoretical justification for advantage of EA-GBTs over KLTs. In our analysis, we

assume that the signal follows our 1-D edge-based residual signal model in (5.13), where the location

of an image edge l is uniformly distributed as

P(l = j) =





1
N−1 for j = 1, . . . , N − 1

0 otherwise
(5.36)
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(a) sedge = 10 (b) sedge = 20 (c) sedge = 100

Figure 5.6: Two random block samples obtained from three 2-D GMRF models having an image
edge at a fixed location with three different sharpness parameters (sedge = {10, 20, 100}). A larger
sedge leads to a sharper transition across the image edge.

where N is the number of pixels (vertices) on the line graph. This construction leads to a Gaussian

mixture distribution obtained by N − 1 edge-based signal models, that is

p(x) =

N−1∑

j=1

P(l = j)N(0,Σj) (5.37)

where Σj denotes the covariance of the model in (5.13) with an edge between pixels vj and vj+1

(i.e., the transition variable t is located at vj+1). In general, x does not have a jointly Gaussian

distribution, so the KLT obtained from the covariance of x (which implicitly performs a second-order

approximation of the distribution) can be suboptimal in MSE sense [122]. On the other hand, the

proposed EA-GBT removes the uncertainty coming from the random variable l by detecting the

location of the image edge in pixel (vertex) domain, and then constructing a GBT based on the

detected image edge. Yet, EA-GBT requires allocating additional bits to represent the image edge

(side) information, while KLT only allocates bits for coding transform coefficients.

To demonstrate the rate-distortion tradeoff between KLT and EA-GBT based coding schemes,

we set the model parameters of (5.13) so that the corresponding precision matrix has the form

in (5.34) with different edge locations. Based on the classical rate-distortion theory results with
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Figure 5.7: Coding gain (cg) versus sedge for block sizes with N = 4, 8, 16, 32, 64. EA-GBT provides
better coding gain (i.e., cg is negative) when sedge is larger than 10 across different block sizes.
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Figure 5.8: Coding gain (cg) versus bits per pixel (R/N) for different edge sharpness parameters
sedge = 10, 20, 40, 100, 200. EA-GBT provides better coding gain (i.e., cg is negative) if sedge is larger
than 10 for different block sizes.
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high-bitrate assumptions the distortion can be written as a function of bitrate [115, 116, 117],

D(R̄) =
N

12
22H̄d2−2R̄ (5.38)

with

R̄ =
R

N
and H̄d =

1

N

N∑

i=1

Hd((c)i) (5.39)

where R denotes the total bitrate allocated to code transform coefficients in c=UTx, and Hd((c)i)

is the differential entropy of transform coefficient (c)i. For EA-GBT, the R is allocated to code both

transform coefficients (Rcoeff
EA-GBT) and side information (Redge), so we have

R = Rcoeff
EA-GBT +Redge = Rcoeff

EA-GBT + log2(N − 1) (5.40)

while for KLT, the bitrate is allocated only to code transform coefficients (Rcoeff
KLT), so that R = Rcoeff

KLT.

Figure 5.7 depicts the coding gain of EA-GBT over KLT for different sharpness parameters (sedge)

in terms of the following metric, called coding gain,

cg(DEA-GBT, DKLT) = 10 log10

(
DEA-GBT

DKLT

)
(5.41)

where DEA-GBT and DKLT denote distortion levels measured at high-bitrate regime for EA-GBT

and KLT, respectively. EA-GBT provides better compression for negative cg values in Figure 5.7

which appear when the sharpness of edges sedge is large (e.g., sedge > 10). Moreover, the coding loss

is negligible even if the image edge is not sharp (e.g., sedge < 2) for large block sizes (e.g., N = 64).

Note that the distortion function in (5.38) is derived based on high-bitrate assumptions. To char-

acterize rate-distortion tradeoff for different bitrates, we employ the reverse water-filling technique

[123, 115] by varying the parameter θ to obtain rate and distortion measures as follows

R(D) =

N∑

i=1

1

2
log2

(
λi
Di

)
(5.42)

where λi is the i-th eigenvalue of the signal covariance, and

Di =




λi if λi ≥ θ
θ if θ < λi

(5.43)

so that D =
∑N
i=1Di.

Figure 5.8 illustrates the coding gain formulated in (5.41) achieved at different bitrates, where

each curve correspond to a different sedge parameter. Similar to Figure 5.7, EA-GBT leads to a
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better compression if the sharpness of edges, sedge, is large (e.g., sedge > 10 for R/N > 0.6)a. At

low-bitrates (e.g., R/N=0.5), EA-GBT can perform worse than KLT for sedge =20, 40, yet EA-GBT

outperforms as bitrate increases.

5.4 Residual Block Signal Characteristics and Graph-based

Models
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Figure 5.9: Sample variances of residual signals corresponding to different prediction modes. Each
square corresponds to a sample variance of pixel values. Darker colors represent larger sample
variances.

In this section, we discuss statistical characteristics of intra and inter predicted residual blocks,

and empirically justify our theoretical analysis and observations in Section 5.1. Our empirical results

are based on residual signals obtained by encoding 5 different video sequences (City, Crew, Harbour,

Soccer and Parkrun) using the HEVC reference software (HM-14) [95] at 4 different QP paremeters

(QP ={22, 27, 32, 37}). Although the HEVC standard does not implement optimal MMSE prediction

(which is the main assumption in Section 5.1), it includes 35 intra and 8 inter prediction modes,

aTable 5.2 shows the effect of different sharpness parameters (sedge) on pixel values.
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which provide reasonably good prediction for different classes of block signals.

Naturally, residual blocks have different statistical characteristics depending on the type of pre-

diction and the prediction mode. Figure 5.9 illustrates the sample variances of 8× 8 residual blocks

for different prediction modesa and leads us to the following observations:

• As expected, inter predicted blocks have smaller sample variance (energy) across pixels com-

pared to intra predicted blocks, because inter prediction provides better prediction with larger

number of reference pixels as shown in Figure 5.3.

• In intra prediction, sample variances are generally larger at the bottom-right part of residual

blocks, since reference pixels are located at the top and left of a block where the prediction

is relatively better. This holds specifically for planar, DC and diagonal modes using pixels on

both top and left as references for prediction.

• For some angular modes including intra horizontal/vertical mode, only left/top pixels are used

as references. In such cases the sample variance gets larger as distance from reference pixels

increases. Figure 5.9c illustrates sample variances corresponding to the horizontal mode.

• In inter prediction, sample variances are larger around the boundaries and corners of the

residual blocks mainly because of occlusions leading to partial mismatches between reference

and predicted blocks.

• In inter prediction, PU partitions lead to larger residual energy around the partition boundaries

as shown in Figure 5.9f corresponding to horizontal PU partitioning (N×2N) .

Figures 5.10–5.15 depict the graphs (i.e., normalized edge and vertex weights) optimized for

residuals obtained by 4 intra and 2 inter prediction modes, whose corresponding sample variances

are shown in Figure 5.9. In the figures, grid and line graphs are estimated based on the GBNT

and GBST construction procedures, which involve solving the GGL estimation problem in (5.31)

as discussed in Chapter 2 in detail. Inspection of Figures 5.10–5.15 leads to following observations,

which validate our theoretical analysis and justify the interpretation of model parameters in terms

of graph weights discussed in Section 5.1:

• Irrespective of the prediction mode/type, vertex (self-loop) weights tend to be larger for the

pixels that are connected to reference pixels. Specifically, in intra prediction, graphs have

larger vertex weights for vertices (pixels) located at the top and/or left boundaries of the

block (Figures 5.10-5.13), while the vertex weights are approximately uniform across vertices

in inter prediction (Figures 5.14 and 5.15).

• In intra prediction, the grid and line graphs associated with planar and DC modes are similar

in structure (Figures 5.10 and 5.11), where their edge weights decrease as the distance of edges

aFor 4×4 and 16×16 residual blocks, the structure of sample variances are quite similar to the ones in Figure 5.9.
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to the reference pixels increase. Also, vertex weights are larger for the pixels located at top

and left boundaries, since planar and DC modes use reference pixels from the both sides (top

and left). These observations indicate that the prediction performance gradually decreases for

pixels increasingly farther away from the reference pixels.

• For intra prediction with horizontal mode (Figure 5.12), the grid graph has larger vertex

weights at the left boundary of the block. This is because the prediction only uses reference

pixels on the left side of the block. Due to this reason, the line graph associated to rows has

a large self-loop at the first pixel, while the other line graph has no dominant vertex weights.

However, grid and line graphs for the diagonal mode (Figure 5.13), are more similar to the

ones for planar and DC modes, since the diagonal mode also uses the references from both top

and left sides.

• For inter prediction with PU mode 2N ×2N (do not perform any partitioning), the graph

weights (both vertex and edge weights) are approximately uniform across the different edges

and vertices (Figure 5.14). This shows that the prediction performance is similar at different

locations (pixels). In contrast, the graphs for the PU mode N ×2N (performs horizontal

partitioning) leads to smaller edge weights around the PU partitioning (Figure 5.15). In the

grid graph, we observe smaller weights between the partitioned vertices. Among line graphs,

only the line graph designed for columns has a small weight in the middle, as expected.

5.5 Experimental Results

5.5.1 Experimental Setup

In our experiments, we generate two residual block datasets, one for training and the other for testing.

The residual blocks are collected by using HEVC reference software (HM version 14) [95]. For the

training dataset, residual blocks are obtained by encoding 5 video sequences, City, Crew, Harbour,

Soccer and Parkrun, and for the test dataset, we use 5 different video sequences, BasketballDrill,

BQMall, Mobcal, Shields and Cactus. The sequences are encoded using 4 different quantization

parameters, QP = {22, 27, 32, 37}, and transform block sizes are restricted to 4 × 4, 8 × 8 and

16 × 16. In both datasets, residual blocks are classified based on the side information provided by

the HEVC encoder [95]. Specifically, intra predicted blocks are classified based on 35 intra prediction

modes offered in HEVC. Similarly, inter predicted blocks are classified into 7 different classes using

prediction unit (PU) partitions, such that 2 square PU partitions are grouped as one class and other

6 rectangular PU partitions determine other classes. Hence, we have 35+7 = 42 classes in total.

For each class and block size, the optimal GBST, GBNT and KLT are designed using the residual

blocks in training dataset, while EA-GBTs are constructed based on the detected image edges. The

details of transform the construction are discussed in Sections 5.2 and 5.3.
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Figure 5.10: Edge weights (left) and vertex weights (right) learned from residual blocks obtained by
intra prediction with planar mode.
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Figure 5.11: Edge weights (left) and vertex weights (right) learned from residual blocks obtained by
intra prediction with DC mode.
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Figure 5.12: Edge weights (left) and vertex weights (right) learned from residual blocks obtained by
intra prediction with horizontal mode.
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Figure 5.13: Edge weights (left) and vertex weights (right) learned from residual blocks obtained by
intra prediction with diagonal mode.
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Figure 5.14: Edge weights (left) and vertex weights (right) learned from residual blocks obtained by
inter prediction with PU mode 2N × 2N .
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Figure 5.15: Edge weights (left) and vertex weights (right) learned from residual blocks obtained by
inter prediction with PU mode N × 2N .
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To evaluate the performance of transforms, we adopt the mode-dependent transform (MDT)

and the rate-distortion optimized transform (RDOT) schemes. The MDT scheme assigns a single

transform trained for each mode and each block size. In RDOT scheme, the best transform is selected

from a set of transforms T by minimizing the rate-distortion cost J(λrd) = D + λrdR [106] where

the multiplier λrd = 0.85× 2(QP−12)/3 [95] depends on QP parameter. In our simulations, different

transform sets are chosen for each mode (i.e., class) and block size. Specifically, the RDOT scheme

selects either the DCT or the transform designed for each mode and block size pair, so that the

encoder has two transform choices for each block. Note that, this requires the encoder to send one

extra bit to identify the RD optimized transform at the decoder side. For EA-GBTs, the necesary

graph (i.e., image edge) information is also sent by using the arithmetic edge encoder (AEC) [121].

After the transformation of a block, the resulting transform coefficients are uniformly quantized,

and then entropy coded using arithmetic coding [124]. The compression performance is measured

in terms of Bjontegaard-delta rate (BD-rate) [125].

5.5.2 Compression Results

The following four tables compare the BD-rate performances of different transforms:

• Table 5.3 demonstrates the overall coding gains obtained by using KLTs, GBSTs and GBNTs

with MDT and RDOT schemes for intra and inter predicted blocks. According to the results,

GBNT outperforms KLT irrespective of the prediction type and coding scheme. This validates

our observation that the proposed graph learning method leads to a more robust transform

than KLT. For inter prediction, GBST performs slightly better than GBNT, since the inter

predicted residuals tend to have a separable structure as shown in Figures 5.14 and 5.15.

Moreover, RDOT scheme significantly outperforms MDT.

• Table 5.4 compares the RDOT coding performance of KLTs, GBSTs and GBNTs on resid-

ual blocks with different prediction modes. In RDOT scheme the transform sets are TKLT =

{DCT,KLT}, TGBST = {DCT,GBST} and TGBNT = {DCT,GBNT}, which consist of DCT

and a trained transform for each mode and block size. The results show that GBNT consis-

tently outperforms KLT for all prediction modes. Similar to Table 5.3, GBST provides slightly

better compression compared to KLT and GBST. Also for angular modes (e.g., diagonal mode)

in intra predicted coding, GBNT significantly outperforms GBST as expected.

• Table 5.5 shows (i) the coding gains obtained by using GL-GBTs (i.e., GBNTs) over KLTs

and (ii) the amount of training data used to design transforms in terms of k/n, where k is the

number of data samples and n is the number of vertices (i.e., number of pixels in the model).

For all cases, k/n is larger than 1000, so that the training dataset has sufficient amount of

data as empirically shown in Section 2.5.1 where relative errors (RE) are very close to zero for

k/n = 1000. Hence, the performance gain obtained by GL-GBT over KLTs is not due to lack
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of data, yet it is mainly because GL-GBTs provide better generalization compared to KLTs.

Also, the BD-rates in Table 5.5 demonstrates that the level of coding gains largely depend

on the residual signal characteristics rather than k/n. Note that having a small k/n does

not indicate whether the BD-rate would be larger or smaller. For example, the gain is larger

for Planar mode even though k/n is smaller for DC mode, where the opposite is the case in

comparison of diagonal and horizontal modes.

• Table 5.6 demonstrates the RDOT coding performance of EA-GBTs for different modes. As

shown in the table, the contribution of EA-GBT within the transform set TGL-GBT+EA-GBT =

{DCT,GL-GBT,EA-GBT} is limited to 0.3% for intra predicted coding, while it is approxi-

mately 0.8% for inter coding. On the other hand, if the transform set is selected as TEA-GBT =

{DCT,EA-GBT} the contribution of EA-GBT provides considerable coding gains, which are

approximately 0.5% for intra and 1% for inter predicted coding.

Table 5.3: Comparison of KLT, GBST and GBNT with MDT and RDOT schemes in terms of
BD-rate (% bitrate reduction) with respect to the DCT. Smaller (negative) BD-rates mean better
compression.

Transform
Intra Prediction Inter Prediction

MDT RDOT MDT RDOT

KLT −1.81 −6.02 −0.09 −3.28

GBST −1.16 −4.61 −0.25 −3.89

GBNT −2.04 −6.70 −0.18 −3.68

5.6 Conclusion

In this work, we discuss the class of transforms, called graph-based transforms (GBTs), with their

applications to video compression. In particular, separable and nonseparable GBTs are introduced

and two different design strategies are proposed. Firstly, the GBT design problem is posed as a

graph learning problem, where we estimate graphs from data and the resulting graphs are used

to define GBTs (GL-GBTs). Secondly, we propose edge-adaptive GBTs (EA-GBTs) which can be

adapted on a per-block basis using side-information (image edges in a given block). We also give

theoretical justifications for these two strategies and show that well-known transforms such as DCTs

and DSTs are special cases of GBTs, and graphs can be used to design generalized (DCT-like or DST-

like) separable transforms. Our experiments demonstrate that GL-GBTs can provide considerable

coding gains with respect to standard transform coding schemes using DCT. In comparison with the

Karhunen-Loeve transform (KLT), GL-GBTs are more robust and provide better generalization.

Although coding gains obtained by including EA-GBTs in addition to GL-GBTs in the RDOT

scheme are limited, using EA-GBTs only provides considerable coding gains over DCT.
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Chapter 6

Conclusions and Future Work

In this thesis, we propose novel techniques to build graph-based models from signals/data where

the models of interest are defined based on graph Laplacian matrices. Particularly, three categories

of graph learning problems are addressed for graph-based modeling. Firstly (in Chapter 2), an

optimization framework is proposed to estimate three types of graph Laplacian matrices (i.e., GGLs,

DDGLs and CGLs defined in Section 1.1) from data under structural constraints. For each type

of graph Laplacian, specialized block-coordinate descent algorithms are developed by incorporating

the structural constraints. From the probabilistic perspective, proposed algorithms can be viewed as

methods to estimate parameters of attractive GMRFs, whose precision matrices are graph Laplacian

matrices (as discussed in Section 2.3). Our comprehensive experimental results demonstrate that our

proposed algorithms provide more accurate and computationally efficient graph learning as compared

to the state-of-the-art approaches in [30, 31, 32, 33, 34]. The proposed methods can be useful in

applications that involve learning a similarity graph to represent affinity relations between the entries

of a dataset. Depending on the application, learning specific type of graph Laplacian matrices (GGL,

DDGL or CGL matrices) can also be useful (as discussed in Section 1.2). The present work primarily

focuses on applications of graph-based models used to design transforms for video coding, and other

related applications such as spectral clustering [18, 19, 20], graph-based regularization and denoising

[21, 79, 9] are considered as part of the future work. In addition, some of the ideas proposed in

[50, 51, 52] for efficient and large-scale sparse inverse covariance estimation can be implemented in

our algorithms as extensions. Secondly (in Chapter 3), the graph-based modeling is formulated as

a graph system identification problem, where the aim is to jointly identify a combinatorial graph

Laplacian (CGL) matrix and a graph-based filter (GBF) from a set of observed signals. In this

work, we specifically consider the identification graph systems with the GBFs in Table 3.1, and

propose a novel alternating optimization algorithm, which iteratively solves for a CGL and a GBF.

At each iteration, a prefiltering operation defined by the estimated GBF is applied on the observed

signals, and a CGL is estimated from prefiltered signals by solving Problem 3 in Chapter 2. The

109
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experimental results demonstrate that our proposed algorithm outperforms the existing methods

on modeling smooth signals and learning diffusion-based models [31, 32, 33, 34] in terms of graph

estimation accuracy. The proposed approach can be used to learn diffusion kernels from signals/data,

which are special cases of graph systems widely used in many applications [21, 17, 79]. Our future

work focuses on the extensions of our algorithm for joint identification of graphs and polynomial

filters (i.e., estimation of polynomials of graph Laplacians), which can provide more degrees of

freedom in designing filters than the GBFs in Table 3.1. Thirdly (in Chapter 4), the multigraph

combining problem is studied and a novel algorithm is proposed to optimize a single graph from

a dataset consisting of multiple graph Laplacians. Our simulation results show that the proposed

algorithm provides better graph-based models than (i) the commonly used averaging method and (ii)

the direct Laplacian estimation approach in terms of both coding gain and graph Laplacian quadratic

form (signal smoothness) metrics. The proposed combining method can also be used to build an

aggregate/ensemble graph-based model from clusters/groups of data samples. For example, multiple

graph Laplacians can be estimated from clusters of data samples by using the methods in Chapters

2 and 3 so that each graph is associated with a cluster, and then the proposed multigraph combining

algorithm can be employed to learn an aggregate graph-based model. This type of approach can

be useful in developing optimized transforms for coding clusters of signals/data. In the case of

video coding, multigraph combining can be used to develop graphs from multiple edge-based models

(discussed in Section 5.3) in order to adapt block characteristics with different edge structures or to

combine graph-based models obtained from clusters of samples associated with different intra/inter

modes (discussed in Section 5.4). In our future work, we will explore applications of multigraph

combining to design transforms for video coding.

Finally in (Chapter 5), two distinct methods are developed to construct graph-based transforms

(GBTs) for video compression. In one method, instances of the GGL estimation problem (i.e.,

Problem 1 in Chapter 2) with line and grid graph (connectivity) constraints to learn the optimal

graph weights from residual block samples, and the resulting line and grid graphs are used to derive

separable and nonseparabe GBTs (GL-GBTs), respectively. The other method constructs a graph

(i.e., an edge-based residual model discussed in Section 5.3) for each residual block based on detected

image edges, so that the corresponding GBT (EA-GBTs) are adapted on a per-block basis. The

proposed methods are theoretically and empirically justified. The experimental results demonstrate

that proposed GL-GBTs can provide better compression than KLTs, and EA-GBTs can achieve

considerable coding gains over DCT. However, the overall contribution of EA-GBT over GL-GBT

remains limited (in terms of BD-rates). Our future work includes extending our edge-based model

for image edges with smooth transitions (e.g., ramp edges [91]) in order to improve EA-GBT designs.

Also, practical implementations of GBTs on a state-of-the-art encoder are considered as part of the

future work.
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