CONTRIBUTIONS TO CONTENT-BASED IMAGE RETRIEVAL

by

Hua Xie

A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the
Requirements for the Degree
DOCTOR OF PHILOSOPHY
(ELECTRICAL ENGINEERING)

August 2005

Copyright 2005 Hua Xie



Dedication

To my famaly.

ii



Acknowledgments

I would like to express my deepest gratitude and thanks to my advisor, Dr.
Antonio Ortega, for his guidance, inspiration, support and patience throughout the
years I have been pursuing my Ph.D. degree at the University of Southern California.
He has made my experience at USC greatly rewardable and memorable.

I would like to extend my gratitude to Prof. C.C. Jay Kuo and Prof. Cyrus Sha-
habi for serving on my Dissertation Committee, and Prof. Shrikanth S. Narayanan
and Prof. Zhen Zhang for serving on my Qualifying Exam Committee.

I would like to thank all my friends in the lab, especially Raghavendra Singh,
Zhourong Miao, Naveen Srinivasamurthy, Sang-Yong Lee, Phoom Sagetong, Hui-
Sheng Wang, Hyukjune Chung and Jae Hoon Kim, for making it a pleasant work
environment. I would like to thank Baltasar Beferull-Lozano for a very enjoyable
collaboration.

Last, but not least, I thank my family for their consistent support through these
years. I thank my parents for their unconditional love and letting me to pursue my
dreams; I thank my parents-in-law for taking care of my daughter so that I had time

to finish my work during my last year at school; I thank my daughter for bringing

iii



so much joy to my life. I especially thank my husband, Jing Cao. Without his
companionship, understanding, encouragement and support, it would be impossible
for me to be who I am today.

This research has been funded in part by NASA under grant AIST-0122-0005 and
by Integrated Media Systems Center, a National Science Foundation Engineering

Research Center.

v



Contents

Dedication ii
Acknowledgments iii
List of Tables viii
List of Figures ix
Abstract Xiv
1 Introduction 1
1.1 Motivation . . . . . . . . .. 1
1.2 Data compression for distributed image
retrieval /classification. . . . . ... o000 4
1.2.1 Web-server based access to distributed image
databases . . . . . .. .. ... 6
1.2.2 Content-based image retrieval in Peer-to-Peer networks . . . . 8
1.2.3 Distributed content-based Image Retrieval . . . . . . . .. .. 9
1.2.4 Classified Encoding system . . . . . .. ... ... ... ... 13
1.2.5 'Transform coding techniques . . . . . . . . . ... ... ... 19
1.2.6 Related work and our contribution . . . . ... ... ... .. 24
1.3 Relevance feedback in content-based image
retrieval . . . .. L Lo 26
1.3.1 SVM learning in relevance feedback . . . . . . .. ... .. .. 27
1.3.2  Our contribution . . . . . .. ... ... oL 31
1.4 Outline and contributions of this thesis . . . . .. .. ... ... ... 32
2 Feature compression for content-based image retrieval 34
2.1 Introduction . . . . . . . . . . .. 34
2.2 Probabilistic model for content-based retrieval . . . . . . ... .. .. 37
2.3 Feature compression for minimum distance
classifier . . . . . . . .o 40
2.4 Experimental results . . . .. ... ... ... . . L. 42



2.4.1 Efficiency of storing compressed features . . . . . ... .. .. 43
2.4.2 Evaluation of quantization schemes . . . . . .. ... .. ... 44

3 Entropy- and Complexity-constrained Classified Quantization De-

sign 50
3.1 Introduction . . . . . . . . . . ... 50
3.2 Classified quantization systems . . . . . . . ... .. ... ... ... 53
3.3 Problem formulation . . .. ... .. ... ... ... ... ..., 56
3.4 Proposed Algorithm . . . .. .. .. ... ... . 61
3.4.1 Optimality of proposed algorithm . . . . . .. ... ... ... 67
3.5 Experimental results . . ... ... ... ... ... ... 69
3.5.1 Texture classification . . . . . .. .. ... ... .. ...... 70
3.5.2  Corel Image retrieval . . . . . ... ... ... 0. 73

3.5.3 Rotation-invariant texture classification using steerable features 76

4 Transform Coding for Distributed Image Classification/Retrieval 82

4.1 Introduction . . . . . . . . ..o 82

4.2 Problem definition . . . . ... ... ... oL 90

4.2.1 The standard model of transform coding . . . . . . ... ... 90

4.2.2 Quantization and cost criteria . . . . . . ... 91

4.2.3 Linear discriminant transform . . . . . ... ... .. .. ... 94

4.3 Proposed scheme . . . . ... ... Lo 97
4.4 Relation to Likelihood Ratio Quantization

(LRQ) - - o o 104

4.4.1 Review of Likelihood Ratio Quantization . . . . . . ... . .. 104

4.4.2 LDA transform coding and LRQ . . . . . . .. ... ... ... 106

4.4.3 Optimal bit allocation under high rate analysis . . . .. ... 113

4.5 Experimental results . . . . . .. ... o000 0oL 116

5 A user preference information based kernel for SVM active learning

in content-based image retrieval 120

5.1 Imtroduction . . . . . . . .. ..o 120

5.2  Support vector machines for relevance feedback . . . . ... .. ... 127

5.3 Kernel based on User Preference Information Divergence . . . . . .. 134

5.4 Experiments . . . . . ... oL L 145

5.5 Conclusions and Future work . . . . .. ... ... ... ... ... 153

Bibliography 154

Appendix A
Relations between Similarity Functions for Content-based Image Retrieval 161
A.1 Quadratic distance for Normal density functions . . . . . . . ... .. 161
A.1.1 Mahalanobis distance . . . . . .. .. ... 161

vi



A.2 Kullback-Leibler divergence

vii



List of Tables

3.1 Structure of feature vector. . . . . . . . . . . ... 74

5.1 Top-K accuracy (mean and variance) after 6 relevance feedback it-
erations for various methods. Bold numbers indicate the best per-
former. The parameters chosen are: v = 1 for the RBF kernel,
p=4,A = B =1 for the polynomial kernel, and p = 1 for proposed
UPID kernel. We implemented the query refinement and re-weighting
based on the algorithm by Ruietal.. . . . .. ... ... ... .. .. 150

viii



List of Figures

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

2.1
2.2

Block diagram of content-based Image Retrieval System. The image
features are extracted to represent the content information and stored
in a database of features. Similarity is measured by computing a
distance metric between the feature vectors of query image and those
of database images. . . . . . . . . ..o L Lo

A Web-server based Image Retrieval system for content-based online
search of large, distributed multimedia databases. . . . . ... .. ..

Content-based Image retrieval over Peer-to-Peer networks. . . . . . .

Distributed image retrieval system. When clients are accessing im-
age databases which are remotely located, features are extracted and
compressed to be sent to the database server. . . . . . ... ... ..

2-D layout of an image collection. Visually similar Images are nearby
to each other on this 2D grid. . . . ... ... ... ... .......

A generalized decision tree and its pruned subtree. . . ... ... ..

Block diagram of a classified quantization system. Separate encoders
{a;} are designed for the classes ¢ = 1,..., M. The input vector X is
first classified and then encoded with an encoder specifically designed
foritsclass. . . . . . . . . e

The optimal hyper-plane is the one that separates the positive samples
from the negative ones with maximum margin. . . ... ... .. ..

Structure of a retrieval system using nearest neighbor classifier.

3-level Dyadic wavelet decomposition of an image and the subband
numbering used in this chapter. . . . .. ..o o000 L

ix



2.3 Comparison of classification performance using different techniques.
When JPEG and SPIHT are used, features are extracted from de-
compressed images. Notice the gain in terms of bit rate by storing
the explicit information. Original feature data is stored as 32 bits
per element. We see that even with simplest uniform quantizer 90%
correct classification can be achieved at 8 bits per element. Same per-
formance (100% correct classification rate) as using original data can
be achieved at 4 bits per element by employing our ad hoc quantizer.
The simplified Mahalanobis distance is used for all cases. . . . . ..

2.4 Comparison of classification performance using different quantizers.
Scalar quantizers are nonuniform, the GLA algorithm is run to get
the optimal partition along each dimension with respect to the mod-
ified distortion (Mahalanobis distance is this case). Notice the gain
achieved by bit allocation. The intuition is that this leads to finer
partition along the dimension where classes are prone to mix together
(as evaluated by the Mahalanobis distortion). . . . . ... ... ...

3.1 A generalized decision tree and its pruned subtree. . . .. ... ...

3.2 The block diagram of a classified quantization system. Separate en-
coders {o;} are designed for the classes i = 1,..., M. The input vec-
tor X is first classified and then encoded with encoder specifically
designed for the class. . . . . . .. ... ...

3.3 Structure of the coding system. A bank of stepsizes {A; 1, A2, ..., Ain}
are first applied to the scalar components {x1, zs, ..., zx} of X. Then
independent entropy coding {7 ;,j =1, ..., N} were used to code the
quantization indexes. The decoder 3;; consists of entropy decoding
followed by inverse quantization. X € RY is the reconstructed vector
forinput X e RN. . . ...

3.4 For given multipliers A and y, minimizing the cost function J = D +
AR+ pC is equivalent to finding the point on the R — D — C surface
that is first “hit” by a “plane wave” of slope (A, ). . . . . . . .. ..

3.5 Operational (U, Us) pairs for fixed multiplier A\. Each circle repre-
sents one pair and one corresponding pruned subtree. . . . . . . . ..

3.6 We start with multiplier \;,iziai, prune the tree until Cj is satisfied.
Then update A to A, using the bisection method. Repeat the pro-
cess until Ry is satisfied. . . . . . . . .. .. ... ..

64



3.7 Tree functionals U; and U, for different values of multiplier A. The
x-axis is the complexity U, with the weighting factor w equal to 400.
The y-axis shows the cost functional U;. The operating points are ob-
tained by computing the two functionals of arbitrary subtrees through
two different pruning methods: depth-first and in-order-walk.

3.8 The Rate-Distortion-Complexity surface obtained by proposed opti-
mization framework. We employed traditional mean square error in
this example. The complexity is evaluated as the cost of traversing
the tree plus a weighted storage cost for storing the encoders, with
the weighting factor w = 1 for this example. Rate is computed as the
entropy rate of the quantization outputs. . . .. ... ... .. ...

3.9 Comparison of R-D performance between systems with pre-classification

(using tree lengths 3.8818 and 6.4696) and without pre-classification
(treelength 0). . . . . . ... ...

71

3.10 Comparison of classification performance for systems with pre-classification

(where tree length is 3.90) and without pre-classification. . . . . . . .

3.11 Retrieval Precision vs. rate curve comparing classified encoder and
singleencoder . . . . .. .. Lo o Lo

3.12 Precision-Recall curve comparing the two encoding schemes at differ-
ent operating rates. . . . . . ... ..o Lo

3.13 Average Retrieval Performance with compressed steerable features
using uniform quantization, single encoder with bit allocation, and
classified encoding. The feature extraction uses a 3 level steerable
pyramid with 2 basic angles. . . . . ... ... 0000

3.14 Average Retrieval Performance with compressed steerable features
using uniform quantization, single encoder with bit allocation, and
classified encoding. The feature extraction uses a 3 level steerable
pyramid with 4 basic angles. . . . . ... ... 00000

4.1 Source coding for distributed image classification. . . . . .. ... ..
4.2 Structure of a standard transform coding system. . . . ... ... ..
4.3 A simple example showing the visualization of the scatter metric.

4.4 An example comparing transforms for signal classification and signal
representation [25]. . . . ... Lol o oL

73

xi



4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

5.1

5.2

9.3

Histograms of features projected onto the eigensystem of the scatter
matrix. . . . . . e e e e 99

An example showing the direction vectors from Likelihood Ratio test,
Linear Discriminant Analysis transform, and KLT for 2-dimensional
Gaussian random vectors with identity covariance matrices. The
mean vectors for the two hypothesis are My = [1 2]* and M; = [3 3]*. 109

Example of basis vectors of Likelihood Ratio test, Linear Discriminant
Analysis transform, and KLT for 2-dimensional correlated Gaussian

source with p = 0.2. The mean vectors for the two hypothesis is
My=[1 2'and My =1[-2 —2]. . ... ... ... .. ....... 111

Angle between the principal axis ¢; and W as a function of the cor-
relation coefficient p for correlated Gaussian Sources. . . . . . . . .. 112

Partition induced by applying the proposed greedy bit allocation in
the LDA transform domain. . . . . . .. ... ... ... ....... 117

Partition induced by applying bit allocation using MSE as distortion
metric in the original domain. . . . ... ..o 0 0oL L 117

Example where KLT bases deviate from the bases of LDA. (a) Com-
parison of the classification performance based on two transform cod-
ing schemes. Solid circle: Proposed LDA transform coding with
greedy bit allocation based on classification criteria; Dashed star:

KLT transform coding with bit allocation based on Mean Square Er-
ror. Dashed square: (b)The bases of KLT and LDA for this example. 118

Chernoff distance between the empirical distributions generated from
quantized data for a synthesized Gaussian Markovian source with
correlation coefficient (a) 0.2 (b) 0.8 . . . . . ... ... ... .. 119

The optimal hyperplane is the one that separates the positive samples
from the negative ones with maximum margin. . . ... ... .. .. 129

An example of the partition induced by quantizer A; for component
x;. The dashed and solid bars above each bin represent the marginal
probabilities P(y = +1|z;) and P(y = —1|x;), respectively. . . . . .. 140

An example of the estimated marginal probabilities P(y = +1|z;) and
Ply=—1|z;). . .« o 143

xii



5.4

9.5

2.6

5.7

2.8

An example showing different properties between KL divergence and
standard Euclidean distance. The KL divergence is computed based
the probabilities estimated shown in Figure 5.3. The dot indicates
the location of the query point. We can see that the KL divergences
between the query point and the points located in bins 11 and 12
are small, although bins 11 and 12 are physically distant from the
bin 2. Euclidean distance merely reflects the physical distance in the
low-level feature space. . . . . . . . . . . ... ... ... ...

Top-K accuracy as a function of the number of returned images after
6 relevance iterations. We can see that compared to other methods,
proposed method has a more compact display of the relevant images

(Precision is relatively flat in the beginning and gets a sharper tail off).148

Precision-Recall curves after 3 relevance feedback iterations, compar-
ing five methods: SVM with RBF kernel (Circles), SVM with Poly-
nomial degree 2 (Dashed lines), Query Refinement and Re-weighting
(Cross), SVM with Proposed UPID kernel (Triangles), and SVM with
Linear Kernel (Diamonds). . . . . . . .. .. ... ... .. ......

Comparison of learning accuracy of three different kernels (evaluated
as the top-80 retrieval precision) as a function of the number of rel-
evance feedback iterations. The accuracy without relevance feedback
is 40.78%, it is obtained by a K-Nearest-Neighbor classifier with the
weights equal for all feature components. . . . . .. .. .. ... ..

Precision-Recall curves of proposed scheme after 3 and 6 relevance
feedback iterations using different number of quantization bins for
probability estimation. We can see that neither varying the number of
quantization bins nor having a different quantization scheme has much
effects on the learning performance, and thus the proposed empirical
estimation scheme is very reliable. . . . . . . ... ... 000 L.

xiii



Abstract

Due to the proliferation of multimedia information over the Internet, users are con-
fronted with large amounts of content from many sources around the world. Content-
based retrieval system have been proposed to automatically annotate and index
multimedia information based on their audio/visual contents instead of manually-
entered text keywords. In this thesis, we investigate two major topics related to
content-based retrieval.

First, we propose and analyze efficient compression techniques for distributed
image retrieval systems. The first technique we design is a classified quantization
system. A partial classification is first performed before compressing the data so
that we are able to capture the special characteristics of the classes that are rele-
vant to content-based retrieval. The pre-classifier and the quantization parameters
for each class are jointly searched based on a rate-distortion-complexity optimiza-
tion framework. Substantial improvement in terms of retrieval performance vs. bit
rate, is achieved using the proposed compression scheme as compared to standard

encoding.
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The second technique we consider is to use linear discriminant analysis for trans-
form coding in distributed image classification/retrieval systems. We examine the
optimal transform which compacts the class discrimination information into the low-
est dimensional space, and propose a greedy bit allocation algorithm to minimize
the loss in class separability due to quantization. We analyze the relations between
proposed transform coding and Likelihood Ratio Quantization, and develop high
rate analysis for certain classes of Gaussian distributions.

The second topic addresses relevance feedback, a critical component for content-
based retrieval systems. It has been shown that support vector machines (SVMs) can
be used to conduct effective relevance feedback. In this work, we propose an approach
to derive a novel information divergence based kernel given the user’s preference.
Our proposed kernel function naturally takes into account the statistics of the data
that is available during relevance feedback. Experiments show that the new kernel
achieves significantly higher (about 17%) retrieval accuracy than the standard radial
basis function (RBF) kernel, and can thus become a valid alternative to traditional

kernels for SVM-based active learning in relevance feedback applications.
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Chapter 1

Introduction

1.1 Motivation

With the recent advances in networking technologies and devices for producing and
storing multimedia data (image/video/audio), we have seen fast proliferation of
multimedia information over the Internet during the past few years. Digital images
and videos have become an integral part of human communications. Consider a few

example applications:

e Digital libraries. Draw a sketch of what you have in your mind and find a set
of images which contain similar contents. Or play a few notes and retrieve

pieces of musics similar to the required tune.

e Home entertainment. Home video editing, systems for managing personal

multimedia collections.

e E-Commerce. Personal advertising, directories of e-shops.



Now the question is: given these very large amounts of audio/visual informa-
tion distributed all over the world, how can we efficiently locate and retrieve that
information we are specifically interested in?

Content-based Information Retrieval (CBIR) systems are proposed for automati-
cally indexing and accessing large amounts of information. In such systems, multiple
features (color, texture, shape, etc.) are extracted from the multimedia data as a
summarization of the information contained in the data. Retrieval is performed
based on some similarity matching function, where given an input feature pattern
the goal is to search for similar patterns in the database. Some well known CBIR
systems include QBIC [45], MARS [42], Netra [41] and Photobook [50]. Many ad-
vances have been made in visual feature extraction [70],[73],[69], multi-dimensional
indexing [4],[24],[13], etc. However, there are still many open research issues which
need to be solved before content-based image retrieval can be put into practical use.
In this thesis, we investigate two major topics related to content-based retrieval sys-
tem. While we focus on image retrieval systems in our examples and experiments,
the ideas and concepts can be easily applied to other media types.

First we investigate the limitations of having a centralized system architecture,
where feature extraction, indexing and query processing are all done at a central
database server. This architecture may require significant computation at the central
node and may make it difficult to scale up the system. We argue that one approach

to overcome this limitation is to design a distributed retrieval system, where the



data storage and query computation are shared by users over the network. Users
search and exchange information by sharing with each other over the network the
relevant content features, which contain sufficient information for retrieval. We
propose that by compressing the features we are able to reduce both the transmission
bandwidth and the storage space significantly, without degrading retrieval accuracy.
Different from traditional compression techniques, which are designed to provide the
best perceptual quality under given rate constraints, we design novel compression
techniques tailored for specific classification purposes.

The second topic addresses relevance feedback, a critical component for content-
based retrieval systems. Effective learning algorithms are needed to accurately and
quickly capture the user’s query concept, under the daunting challenges of high
dimensional data and small number of training samples. It has been shown that
support vector machines (SVMs) can be used to conduct effective relevance feedback
in content-based image retrieval. Most recent work along these lines has focused on
how to customize SVM classification for the particular problem of interest. However,
not much attention has been to paid to the design of kernel functions specifically
tailored for relevance feedback problems and traditional kernels have been directly
used in these applications. In this work, we propose an approach to derive an
information divergence based kernel given the user’s preference. Our proposed kernel
function naturally takes into account the statistics of the data that is available

during relevance feedback for the purpose of discriminating between relevant and



non-relevant images. Experiments show that the new kernel achieves significantly
higher (about 17%) retrieval accuracy than the standard radial basis function (RBF)
kernel, and can thus become a valid alternative to traditional kernels for SVM-based

active learning in relevance feedback applications.

1.2 Data compression for distributed image

retrieval /classification

Most existing content-based retrieval systems are focused on signal processing tech-
niques to extract meaningful features, and indexing methods to speed up the database
search. These systems are developed in a centralized fashion as stand-alone appli-
cations where feature extraction, indexing and query processing are all done at the
database server.

But there are many real applications which involve remote access to multimedia
databases in order to retrieve useful visual information in the form of photographs,
scanned articles, satellite images, etc. The remote access to such databases can
be initiated by a client machine forming a query message, and sending this query
information to the remote database server where the query is processed and the

results are sent back to the clients.



Figure 1.1 shows the block diagram of a content-based image retrieval system
based on a Client-Server architecture, where the client and the server are physi-
cally apart. The client may have access to a sample image and communicates with
the remote database server looking for similar images (objects). The server keeps
a collection of images (image database) and their corresponding features (feature
database). Similarity matching is performed between the query feature and features

in the database in order to retrieve similar images.

Feature
Extraction

Image
Database

Feature
Database

imag¢ Query
. Message
—
Feature Qutpuf
Cll ent Extraction Similarity Matching —

Server

Figure 1.1: Block diagram of content-based Image Retrieval System. The image
features are extracted to represent the content information and stored in a database
of features. Similarity is measured by computing a distance metric between the
feature vectors of query image and those of database images.

As compared to text-based indexing, content-based image querying involves more

computation and leads to different design problems. In this thesis, we consider

content-based image retrieval over:



o Web-server based systems. The images are located at each of the database
servers. Clients with different processing power and connecting bandwidth
access the database through a central web-server which processes the query

and forwards it to the target databases.

e Peer-to-Peer networks. Each peer in the network stores a subset of the database
and different files are shared by different peers. When a peer initiates a search,
it broadcasts the query request to all its connecting peers. Each peer receiving
the request will then process it and propagate it on to other peers. Each peer

in the network acts as a client and as a server at the same time.

There are special constraints and requirements in these systems which we have
to consider carefully in order to ensure they work efficiently. These are discussed in

detail in what follows.

1.2.1 Web-server based access to distributed image
databases

Current systems developed to allow users access to distributed multimedia databases
over the Internet are modeled after traditional search engines such as Lycos, Alta
Vista, etc., which, in order to find relevant images, use textual information provided
by the webpages where images are included. Prototype architectures of content-
based image retrieval systems over distributed image databases are proposed in

[3] [44] to address the problem of integrated access in such environments. The
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Figure 1.2: A Web-server based Image Retrieval system for content-based online
search of large, distributed multimedia databases.

architecture of a Web-server based multimedia database retrieval system is shown
in Figure 1.2.

There are three basic components in such systems: Image databases generated
from many sources over the world; a Web server which serves as a common gate-
way linking clients to different image databases; and a number of clients running
a querying interface. The web-server stores a meta database which contains pre-
defined features as well as icons of the images from all the databases. The web-server
contains all the information needed to decide which of the databases may contain
images similar to the query image. When a query is received, the web server runs
a similarity search locally by comparing the query features with the features stored
in the meta database, calculates the likelihood that a given database contains the

target images, and forwards the query request to those database servers that are



most likely to have a related image. As a query the client submits an image or a
region of an image. Features from the query image are extracted at the Web-server
for each type of query supported by the databases. Then similarity of the query
features to the images in the database is computed using an appropriate matching
method. There are several characteristics of this architecture which will affect the
overall system performance. First, all the query processing computations are car-
ried out at the web server. This can represent a significant computation load for
the server, especially when a large number of clients are accessing the server at the
same time. Second, sample images are sent to the web server as queries, which can
cause bandwidth problems due to image sizes and the cumulative effect of multiple

simultaneous queries.

1.2.2 Content-based image retrieval in Peer-to-Peer networks

As another example consider content-based retrieval in Peer-to-Peer (P2P) networks.
Instead of having a dedicated server continuously processing queries from all the
clients and routing the requests to target databases, the P2P network allows each
individual computer to directly share information with each other. Each peer acts as
a server and as a client simultaneously. This exactly fits the real scenario where very
large amounts of multimedia information are produced every day from many sources
all over the world. Each peer can join this information network by simply connecting

to one or more peers. Figure 1.3 shows an example of a typical Peer-to-Peer network



topology. The block diagram shown inside Node A demonstrates the functionalities
of each peer to support content-based retrieval. Each peer in the network keeps a
collection of images and a feature database obtained by extracting features from
those images. It maintains its own index structure of the image collection. When
a peer initiates an image query, it sends the query message to all its connecting
peers. The peers receiving this query request process it and forward it to all their
connecting peers. This process continues as new peers receive a query.

Unlike Web servers, peers are highly transient, joining and leaving the network
on short time scales. This makes the network topology highly dynamic. P2P systems
have no single, well-defined indexing scheme to locate the content information over
the network. Every query is broadcasted to every peer in the network. The query
messages flooding into the network will potentially increase network traffic, causing
slow system responses. For each query received from other peers, the recipient peer

has to extract the features from the query image before any similarity is computed.

1.2.3 Distributed content-based Image Retrieval

As pointed out by several researchers [60] [67], a promising future trend in content-
based image retrieval is to convert the centralized system model into a distributed

computing model. The new model not only allows us to increase the size of image



Node D

Node E

J

Figure 1.3: Content-based Image retrieval over Peer-to-Peer networks.

collections, but also overcomes the scalability bottleneck problem by distributing
the image retrieval processing.

There are several options available to design a distributed content-based image
retrieval system. One option is to keep a full-fledged classification engine locally at
each client (or at each peer) and then contact the server (or the target peer that has
the wanted information) only once the best match images have been identified. This
means that retrieval, feature extraction and similarity matching are all performed
at the clients. Obviously this method requires a minimum amount of transmission
bandwidth since only the image labels need to be transmitted to the server. But

it may be too complex for clients that have limited storage space and processing

10



power. Moreover, if the database at the central server is continually updated, the
information at all the clients also has to be updated continuously, which would be
complicated by the fact that clients are not continuously connected to the network.
The second option is to have the image/video query data compressed and sent to
the remote server, where it will be classified. This means that the black-box shown
in Figure 1.1 at the client is an image encoder. This second method imposes lower
processing burden on the clients, but it may be problematic if bandwidth is limited
and the server response may be slow when a large number clients are connecting
and sending requests to the server at the same time. We propose an intermediate
solution where features are extracted and compressed at the client, then sent to the
server, where they are decoded and used for classification. Performing the feature
extraction at the client leads to a distributed image retrieval system (i.e., the query
processing is distributed between the client and the server). This is shown in Figure
1.4. There are several advantages to employing such a distributed image retrieval

architecture as compared with the first two options:

e Reduced computation at the server, because feature extraction is performed
at the client and feature decoding (which still needs to be performed at the

server) is less complex than feature extraction.

e Lower transmission bandwidth requirement for the clients to communicate
with the server, because the features can be represented with far fewer bits

than the image itself.

11



Note that in particular this approach may enable mobile devices to access the
multimedia content over Internet, since for these devices transmitting requires more

power than processing, and thus it is important to reduce the data volume to be

transmitted.
Image Feature Similarity
— .~ = Encod — . ||
Extraction ncoder| Decoder || matching >
Client Server

Figure 1.4: Distributed image retrieval system. When clients are accessing image
databases which are remotely located, features are extracted and compressed to be
sent to the database server.

Compression is essential in this scenario in order to reduce the overall bandwidth
when a large number of clients are accessing a server at the same time. This problem
becomes worse in peer-to-peer networks since the requests are broadcasted to the net-
work, potentially increasing network congestion and therefore reducing the system
performance. Traditional compression algorithms aim at achieving the best percep-
tual quality of the reconstructed media for a given rate. However in the scenario
of distributed image retrieval we discussed above, the end user of the compressed
data is not a human viewer, but a classifier. To ensure better retrieval/classification
performance, it is beneficial to tailor the compression schemes to this specific appli-
cation. In this thesis, we investigate two coding schemes for this purpose: classified

coding and linear discriminant transform coding. These are introduced next.
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1.2.4 Classified Encoding system

In most existing CBIR systems [13] [45] [42], similar indexing methods are used,
in the sense that tree structures are employed to hierarchically partition the data
space into a number of subregions, each containing a subset of the image objects.
Similarity search corresponds to a range query or a nearest neighbor query on the
tree structures. Hierarchical indexing structures can speed up the retrieval process
in cases where there are a large number of images in the database. As an example,
we show in Figure 1.5 an example of the 2-D layout of an image collection [13], the so
called similarity pyramid. The images are hierarchically partitioned into subgroups.
As we traverse down to the lower level of the pyramid, images within a certain
subgroup are more similar to each other.

Due to the large variations of the image content in the database, designing a
single compression scheme for all the images may be inefficient. Instead, the simi-
larity structure of the images can be exploited to improve compression performance.
Classified encoding for distributed content-based retrieval can be summarized as
follows: If the client has some knowledge about the database, and thus is able to
perform a rough classification of the image submitted by the user, then the query
data can be more efficiently compressed using an encoder specifically designed for
the corresponding image class. The classified compression scheme will increase the
computation complexity at the client. However, the query data can be compressed

with higher accuracy at a lower rate, as compared to using a single encoder for
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Figure 1.5: 2-D layout of an image collection. Visually similar Images are nearby to
each other on this 2D grid.
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all inputs. This improved compression performance may be enough to justify the
added computation cost. We propose an optimization framework that automatically
searches for the best tradeoff between coding efficiency and complexity. Next we in-
troduce this optimization framework in the context of general decision tree classifier
(DTC) [62].

The decision tree classifier (DTC) is a multistage approach that breaks up a
complex decision into a union of several simpler decisions. Various multidimensional
indexing techniques proposed for similarity search in content based retrieval, such
as TV-trees [40], X-tree [5], SS-tree [85], SR-tree [39], M-tree [17], Hybrid-tree [10],
similarity pyramid [13], etc., can be seen as examples of DTCs. A decision tree
structure design strategy can be found in [62] and in references there in. In this
thesis, we assume that the tree structure is known a priori.

A tree T is simply a finite set of nodes, T = {ty, t1, t2, - - -}, where ¢, is the unique
root node. The set of leaf nodes is denoted by 7. In general a subtree S is a subset
of tree 7. A pruned subtree S < 7 is a subtree rooted at the root node ¢y, obtained
by pruning some of the branches of 7. We denote the number of leaf nodes of tree S
by |S|. For more detailed and rigorous definitions of these tree terminologies, refer
to [6] and [62].

Figure 1.6 shows an example of a general decision tree and one of its pruned

subtrees.
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Figure 1.6: A generalized decision tree and its pruned subtree.

Starting from the root, the data space is hierarchically partitioned into a set
of subregions. Each node t is split based on a given decision rule. Each of the
leaf nodes represents a subregion of the data space and stores a subset of the image
objects. We can think of the pruned subtree S as a pre-processing step, i.e., it allows
partitioning the data space into |S| classes. Then we can design separate encoders
for each of the classes. Figure 1.7 shows the block diagram of a classified compression
system. Inputs are first classified and then compressed with compressors specifically
designed for each of the classes. By performing a partial classification using S before
compressing the data, we are able compress in a similar manner feature vectors that
have similar interpretation in a context-based retrieval system. We now list the
main factors that need to be considered for designing such a classified compression

system.
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Figure 1.7: Block diagram of a classified quantization system. Separate encoders
{a;} are designed for the classes i = 1,..., M. The input vector X is first classified
and then encoded with an encoder specifically designed for its class.

Rate constraint. Clients have limited bandwidth to connect to the server and
thus the rate required to represent the features should be limited. Moreover, in mo-
bile communication environments rate constraints also correspond to the amount of
power required at the client to transmit the query message. Assuming that node % is
reached with probability P(t¢) and that the rate for encoding the data corresponding
to node ¢ using encoder A; is r(t), then the overall rate R is the weighted sum of

the rates of all the classes:

R(S,{A}) = Y P(t) x (1) (1.1)

te§
Loss in retrieval/classification accuracy. The classification is based on a re-

constructed version of the original query data. Thus, the distortion introduced by
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lossy compression at the clients will lead to a degradation in classification accuracy.
Thus, ideally we should use the classification error as a distortion metric in designing
the system. However, the classification error can not be easily estimated in most
applications. In this work we approximate the loss in classification performance by
simply using the mean square error (MSE), d(z,%) = |r — Z|* to measure the fi-
delity of reconstructed query data, where x and  are the original and reconstructed

querying data, respectively. The overall distortion is then computed as:

D(S,{A}) =) _P(t) x > d(z, &) (1.2)

te§ TEL

where x € t means x belongs to the class in node ¢. Note that this information is
inferred from training data.

Complexity constraint. As compared to not using compression, our proposed
coarse classification followed by compression will increase the computational and
storage complexity at the clients. Complexity is constrained by the processing power
and memory available at each individual client. We define complexity as a weighted
sum of (i)the expected length of the tree S, which indicates the amount of prepro-
cessing to be performed, and (ii)the number of leaves of S, which is the number of

models that have to be stored at the clients.

C(S) =>_P(t) x (), (1.3)

teS
where [(t) is the length of the path from root o to node t.
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Our goal is to find the optimal pruned subtree S* < 7T to be used as a pre-
classifier and the set of encoders {Af,t+ € S}, such that the overall distortion is
minimized subject to a rate budget R, and complexity constraint C,. This can be

written as follows:

st. R(S,{A()}) < Ry and C(S) < C),

where D* is the optimal distortion, and we optimize the system by selecting the best
subtree with its corresponding quantizers, one per class.

In previous proposed Classified Vector Quantization schemes [55][57] for image
coding, the classifier and the codebook for each class are designed in a sequential
manner and the complexity of the resulting system plays no role in the design process.
Instead, in this thesis, we present a framework where the pre-classifier and the
quantization parameter for each of the classes are searched in a joint manner under

rate and complexity constraints.

1.2.5 Transform coding techniques

In Section 1.2.4, we assumed that the clients have some knowledge about the database,
and the encoder is designed to take into account the information which is relevant for

retrieval. In this section, we formulate content-based image retrieval as a statistical
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classification problem, and consider transform coding techniques aiming at minimiz-
ing the probability of classification error. Instead of assuming that the classifier is
known at the clients, we treat the classifier as a black box and design encoders so as
to preserve discrimination information between classes. Ideally, we would like that
feature vectors with different classes be quantized to different discrete values.
Assume a given feature extraction method and consider a set of labeled images:
each image I in the database D is represented by a pair (X7, Y7), where X is the
feature vector and Y; the underlying semantic class label of image /. Image retrieval
is performed by finding the K most similar objects to the given query feature vector

Q. This leads to a mapping G:

G:Q—-S={I% 2 I, }CD (1.5)

The probability of retrieval error Pr(G(X) # Y) is the probability that the system
is provided a feature vector drawn from class Y and it returns images from classes
other than Y. G(X) is the similarity function that the retrieval system employed to
assign a class label of to a feature vector X.

Suppose we have M classes in the database, content-based image retrieval can
be naturally posed as an M-ary statistical classification problem, where the optimal
mapping is to select as classification label for observation X the label y* having

maximum a posteriori probability P(y*|X):
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G (X) = argnbaXPr(yi\X), 1=1,2,..., M. (1.6)

This is the well known Bayes classifier [25]. The retrieval functions of most existing
prototype CBIR systems can be thought of as special cases of this Bayesian classifier,
where certain assumptions have been made about the class distributions.

The problem we address is that of designing an efficient transform code, which
consists of a linear transform 7', a bank of uniform quantizers {A;}, and entropy
coding v of quantization indices. Our goal is to find the optimal linear transform 7
and the set of quantization stepsizes {A}, such that the probability of classification

error based on the compressed data is minimized for a given rate constraint:

(T*,AY) = arg min P,(X) st. R<R, (1.7)

T7{Ai}

However, in most practical applications, the probability of misclassification can
not be easily evaluated and thus various alternative criteria and measures have been
proposed and used in practice. In particular, researchers have been interested in a
measure of the overlap or class separability.

There are two types of criteria which are frequently used in practice to evaluate
class separability. One is based on a family of functions which give upper bounds
of the Bayes classification error. An example of these criteria is the Chernoff Bound

[76]:
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P, < mi~smie~Palio1) (1.8)

where 7; is the a priori probability, f; the distribution function of class 7, and 0 <
s < 1 is the Chernoff exponent, respectively. Dy is the chernoff distance computed

as:

;;(x))s (1.9)

Dy (fo, f1) = ln/fo(x) ( (@)

In this work we consider a class separability criterion called scatter measure [25].
It is based on a second-order measure of quality that is defined completely in terms of
second-order probabilistic parameters, i.e., means and covariances, of the empirical
data. We consider the within-class scatter Sy, which is the scatter of samples around

their respective class means:

Sw = Y mB{(X - M;)(X - M;)"|yi} (1.10)

=1

M
== Z 7r,~Ei
i=1

and the between-class scatter Sy, which is the scatter of the expected vectors around

the mixture mean, is defined as in [25]:
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Sy = ﬁf:m(Mi — M)(M; — M)* (1.11)

i=1
where 3; and M,; are the covariance matrix and mean vector for the ith class,
respectively, 7; is the a priori probability of class 2 and M is the overall mean vector.

The scatter ratio criterion is computed as:
S=8S,""'Sy (1.12)

We follow the same philosophy underlying the Karhunen-Loéve transform, i.e.,
the transform that is optimal in terms of preserving the maximum signal energy
(measured by covariance) in the fewest transform coefficients. Thus we propose that
the optimal transform in terms of preserving the class separability (measured by
scatter ratio) be defined:

A*Sp A

AT = I AT, A (1.13)

which is the Linear Discriminant Analysis (LDA) transformation proposed in pat-
tern recognition applications [25].
We propose to use LDA as a tool for transform coding in classification applica-

tions. In order to decide the quantization stepsizes {A}}, we propose a greedy bit

allocation which best preserves the discrimination information between classes for
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the given rate constraint. Different from traditional bit allocation, where total dis-
tortion is obtained as the sum of distortion in each dimension, here the classification
information depends on all dimensions. Thus it is not possible to apply standard La-
grangian techniques to allocate rate to each dimension in order to maximize overall
classification performance. To overcome this problem, we propose a greedy scheme
where we start with finest quantization for all dimensions and at next iteration we
choose the dimension to which a coarser quantization shall be applied such that
the magnitude of the ratio of discrimination information loss (measured by class
entropy) to decrease in entropy rate is minimized. This process repeats until the

rate constraint is satisfied.

1.2.6 Related work and our contribution

Optimal transform coding of images for joint classification/reconstruction was con-
sidered in [35]. It was shown that assuming X is a stationary, periodic process under
two hypothesis Hy and H;, the Discrete Cosine Transform (DCT) would produce
uncorrelated components and the optimal transform would be the DCT followed by
a diagonal transform, which can be absorbed into scalar quantization. In their latest
work [36] the same authors showed that when a cost function combining Chernoff
distance (one special case of Ali-Silvey distance) and MSE was used, the Karhunen-

Loeve transform (KLT) is the optimal transform, under the following assumptions:

1. High rate quantization.
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. The same unitary transform C is a decorrelating transform for data generated

under either hypothesis, H;,7 = 0, 1.
. Under hypothesis H;,i = 0, 1, the probability density function f;(X) is a mix-
ture of N; Gaussian with a common mean (assumed to be zero):

N;
Hi: X~ fi=Y ayN(0,%), i=0,1 (1.14)
j=1

where a;; > 0 and 3;7; a;; = 1. Each covariance matrix Y;; is diagonal, hence

Xi,1 < k < N, are uncorrelated under H;,7 =0, 1.

. The transform has to be unitary.

Although assumption 2 approximately holds for natural images, it might not hold

anymore when we deal with image features that are extracted from images for the

purpose of content-based image retrieval/classification. Furthermore, assumption

3 cannot be justified in general: neighboring pixels in natural images are highly

correlated; the feature extraction for content-based retrieval are not necessarily to

have uncorrelated features.

In this work, we design transform coding optimized strictly for a classification

problem. Assuming that the distance between classes is measured by the class

separability criterion based on the scatter measure of (1.12), which is based on the

second-order statistics, i.e., means and covariances, of the empirical data, we present

the following contributions:
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e We demonstrate that the LDA is the optimal linear transform:;

e We design an efficient bit allocation algorithm to split the rate budget among

the transform components, based on classification criteria;

e We derive the relationship between the proposed transform coding and the
optimal solution, Likelihood-Ratio Quantization [54] [52] [38], for Gaussian

Markov sources;

e We extend the high rate analysis of Likelihood Ratio Quantization [53] for
optimal bit allocation in the proposed transform coding for Gaussian Markov

sources.

1.3 Relevance feedback in content-based image

retrieval

There is a major difficulty associated with CBIR schemes: the semantic gap between
low-level features and high-level human concepts. Thus substantial efforts have been
devoted to designing techniques that introduce the user into the loop, so that the
system can learn the user’s particular query preferences. Relevance feedback provides
a way for the user to interactively tune the system to her own interest by asking
whether certain proposed images are relevant or not. The system then learns from
these labeled examples to tune the parameters and returns a new set of similar
images, iteratively repeating this process until the user is satisfied with the result.
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The construction of such a query updating scheme can be regarded as a machine
learning task.

A majority of proposed approaches for relevance feedback in CBIR systems have
been developed based on various forms of feature re-weighting [61][49], where the
weights associated with each feature for a typical K-Nearest-Neighbor classifier are
adjusted based on user feedback. The intuition is to emphasize (i.e., by giving them
a more significant weight in the distance computation) those features that are best
at discriminating between positive samples and negative ones.

A more systematic formulation of the relevance feedback problem can be achieved
by setting up an optimization problem [33]|, where the goal is to find the optimal
linear transformation to map the feature space into a new space, that has the prop-
erty of clustering together positive examples, making it easier to separate them from

negative ones.

1.3.1 SVM learning in relevance feedback

More recently, several researchers have proposed the use of support vector machines
as an active learning method for the relevance feedback problem in content-based
retrieval [11] [32] [14] [31]. We shall briefly review the concept of support vector
machine.

Let {x;,v;},i = 1,---,L,y; € {—1,4+1},x; € R" be the labeled training set.

SVMs are hyperplanes that separate the training data by a maximal margin, with
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all vectors labeled +1 lying on one side and all vectors labeled -1 lying on the other

side (see Figure. 1.8):

w-x;+b > +1 fory =+1 (1.15)

w-x;+b < =1 fory =-1

where w is normal to the hyperplane H. The training vectors that lie on hy-
perplanes Hy : w-x; +b =1 and H; : w-x; + b = —1, are called support vectors.
It can be shown that the margin between the two hyperplanes Hy and H; is sim-
ply ﬁ Thus searching for the optimal separating hyperplane becomes a typical
constrained optimization problem [9]: minimizing || w ||? subject to the constraints
given by (1.15). By introducing Lagrange multipliers, this then leads to maximizing

a Lagrangian objective function:

1
maX(Z o; — 5 Z QG0 YY X - Xj) (116)
i 2
with respect to positive Lagrange multipliers «;;,72 = 1,---, L, subject to constrains

> o5y, = 0.
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Figure 1.8: The optimal hyper-plane is the one that separates the positive samples
from the negative ones with maximum margin.

If the training samples are not linearly separable in the original space y, suppose
that we first map the data to some other Euclidean space H (possibly infinite dimen-
sional) using a mapping ® : y — H. Since the training algorithm only depends on
the inner products between sample vectors, we can define a kernel function K such
that K (x;,x;) = ®(x;) - ®(x;). Then we would only need to replace the inner prod-
uct x; - x; by K(x;,x;) everywhere in the training algorithm (1.16) and would never
need to explicitly compute the mapping ®. The resulting classifier takes the form of
9(x) : = iy K (x3,%) +b. {ai,i =1,---,N,} and b are parameters that can be

learned using quadratic programming [9]. Ny is the number of support vectors.
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In [32], SVMs were first incorporated as an automatic tool to evaluate the prefer-
ence weights of the relative images (one relative image might be closer to the user’s
concept than another), which was then utilized to compute the parameters of a query
refinement [61]. A one-class SVM scheme was developed in [14] that tries to fit a
tight hyper-sphere in the non-linearly transformed feature space (through a kernel)
to include most positive samples. This scheme only employs the positive samples
while totally neglecting the information provided by the negative samples. As an
extension, a biased SVM was proposed in [31] to incorporate negative information
by employing a pair of hyper-spheres, the inner one includes most of the positive
instances while the outer one pushes out most of the negative samples. The unla-
beled samples will then be classified as relevant if falling inside the inner sphere and
non-relevant if falling outside the outer sphere. We can see that a key assumption
made in both schemes is that the positive samples will actually be clustered together
in the transformed space. Clearly, there is no guarantee that this will always hold
true. Whether clustering does occur (in which case these SVM techniques are likely
to be successful) depends on the distribution of positive and negative samples and
on the choice of kernel function.

Typical kernel functions that have been used in practice include: linear, polyno-

mial and radial basis function (RBF):
Linear : K(x,z) = x-z (1.17)

Polynomial : K(x,z) = (Ax-z+ B)? (1.18)
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Radial Basis : K(x,z) = e lxal’ (1.19)

where z is another vector of the same dimension as x and (-) denotes the inner

product of two vectors. A, B, p and ~y are constants which are set a priori.

1.3.2 Our contribution

Since the kernel function is a key factor to determine the discrimination ability of a
SVM in this work we propose a kernel function based on the information divergence
between the probabilities of positive and negative samples inferred from the user’s
preferences. To the best of our knowledge this approach has not been used for
relevance feedback in content-based image retrieval systems. Our work is inspired
by [43] where a Kullback-Leibler (KL) divergence was used to derive the kernel
function for SVM classification in speaker identification and image classification.
Note that in [43] domain knowledge is available to model the data distributions
that are used in computing the KL divergence. Statistical models such as Gaussian
Mixture Models (GMM) or Hidden Markov Models (HMM) can very well model the
data and the Expectation Maximization(EM) algorithm can be employed to learn
and estimate the parameters. A more theoretical analysis of the use of Kullback-
Leibler divergence to derive similarities between image classes, where each image
class is modeled as Gaussian Mixtures, can be found in [80]. Although the idea

of applying the Kullback-Leibler divergence to SVM learning is not new, in this
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work we propose an extension of the framework in [43] for cases where the data

distribution model is not known a priori and has to be inferred from user feedback.

1.4 Outline and contributions of this thesis

The main contributions of this thesis are,

e Novel classified quantization design for distributed image retrieval/classification.
We show how to use the database information in order to design a feature com-
pression scheme. Inputs are first classified and then quantized with quantizers
specifically designed for each of the classes. By performing a partial classifica-
tion before compressing the data, we are able to capture the special character-
istics of the classes that are relevant to content-based retrieval. We propose a
nested optimization framework to jointly search for the optimal pre-classifier
and quantization parameters for the classes, such that the overall distortion is

minimized subject to both rate and complexity constraints.

e FEzxploration of linear discriminant analysis for transform coding in distributed
image classification system. We examine the design of an optimal transform
which compacts the maximum amount of class discrimination information in
lowest dimensional space, and propose a greedy bit allocation algorithm to
minimize the loss in class separability due to quantization. We analyze the

relations between proposed transform codes and Likelihood Ratio Quantization
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(LRQ), which is the optimal solution, and develop high rate analysis for certain

classes of Gaussian distributions.

A Novel user preference information based kernel for SVM active learning
in relevance feedback. We propose an approach to derive an information di-
vergence based kernel given the user’s preference for SVM active learning in
content-based image retrieval. Our proposed kernel function naturally takes
into account the statistics of the data that is available during relevance feed-
back for the purpose of discriminating between relevant and non-relevant im-
ages. Experiments show that the new kernel achieves significantly higher
(about 17%) retrieval accuracy than the standard radial basis function (RBF)
kernel, and can thus become a valid alternative to traditional kernels for SVM-

based active learning in relevance feedback applications.
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Chapter 2

Feature compression for content-based image

retrieval

2.1 Introduction

In content-based image/video retrieval systems, multiple visual features such as
texture, color, shape and motion are extracted automatically and used as indexing
keys. Consider accessing a multimedia database which contains large amounts of
multimedia data. Media in the database is stored in compressed format, while the
feature data is extracted from the media data and stored as meta data to represent
the information content. Thus there is a need to represent efficiently the metadata
that will be used in content-based retrieval. We argue that by compressing this

metadata we will enable more efficient database management and fast retrieval L.

"'Work in this chapter was published in [86]
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Since the JPEG, JPEG 2000, and MPEG standards have been widely used to
compress image and video data, DCT or wavelet domain indexing has attracted a
lot of attention. Shneier et al. [64] exploited the method of extracting indexing keys
from partially decoded JPEG data (i.e., data where Huffman or Arithmetic decoding
has been performed). Direct use of DCT coefficients facilitates the process of feature
extraction by eliminating the need of decoding the image. Similarly, features can
also be extracted from the wavelet domain if a wavelet codec is used for image
compression. Vass et al.[83] proposed a new wavelet coding algorithm and utilized
it to achieve the combined goal of compression and indexing. Compressed domain
indexing reduces system complexity by avoiding decoding the image in the process
of feature extraction, and thus seems to make it unnecessary to store separately
from image. However, these systems are tightly coupled with the underlying coding
schemes and can be indexed only by those features which are extractable from the
compressed domain. Facing various types of queries in real applications, compressed
domain indexing potentially lacks flexibility, because only a limited set of features
are provided.

In order to fulfill different kinds of queries, various feature sets (color, tex-
ture, shape, motion,etc.) are extracted to represent the content information of im-
ages/videos and stored as metadata in some content-based retrieval systems [45] [68].

Besides the global feature information, local feature extraction is often performed
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to provide localized feature information within homogeneous regions [41], thus en-
abling localized queries that search for given features in specific parts of an image.
As databases get larger and larger, storing and transmitting metadata requires sig-
nificant amount of space and transmission bandwidth and is no longer a trivial task.
Consider for example a distributed querying system where the metadata has to be
loaded to the remote query processing engine from the local server, the volume of
metadata may become a big hurdle for efficient use of transmission bandwidth and
fast response to the queries.

In this chapter we propose that by representing metadata in compressed format,
we will reduce the storage requirement and transmission bandwidth for this side
information. We show by a simple texture classification example that we can achieve
an order of magnitude of savings in bit rate, by using compressed features rather
than compressing images for querying.

As will be described in Section 2.2, we assume that vectors of features are used for
retrieval. Thus vector quantization will be a natural choice if there are no complexity
constraints. However in practice, low complexity compression schemes are preferred.
We propose to employ bit allocation in the design of low complexity quantizer which

operates on scalars or lower dimensional vectors.
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2.2 Probabilistic model for content-based retrieval

In general, there are three fundamental components in an image retrieval system [81]:
(i) a feature extraction algorithm, (ii) a feature representation algorithm, and (iii) a
similarity matching function. Image content is represented by a set of feature vectors.
Typical features include color, texture, shape, motion, position, etc. Color content
of an image is mostly represented by color histograms, color sets, or coherence color
vectors. Texture features can be generated in various ways such as wavelet transform
coefficients or Fourier transform coefficients. For example, the texture feature vector
of the kth class in the database F¥ = {u* ok 1 can be constructed using the
mean uF  and the standard deviation o¥  of the energy distribution of the Gabor
wavelet, coefficients [41] for this image class. This set of feature vectors {F*} forms
a representation space F for the entries in the database.

In real applications a querying key Q is generated by the user which specifies
her particular interest (and can be a composite of keys given by the system), then
similarity matching is performed between the query object and a set of candidates
from the database. This process can be viewed as a classification process, where
our goal is to find in the representation set {F*} the closest match to the querying
key Q by a similarity function. The feature representation and similarity matching
function should be designed in such a way that the probability of retrieval error is

minimized.
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A good formulation of the problem of selection of similarity criteria can be found
in the work by Vasconcelos and Lippman in [82]. Given a feature vector Q, the
goal of retrieval is to find the mapping to the set of classes defined for the retrieval

operation:

g:Q— F={F' . . FM} (2.1)

The optimal mapping g* in terms of minimizing the probability of retrieval error

is the Bayes Classifier:

0'(Q) = agmax P(Qly = FHP(y = F*), (2.2)

where P(Q|y = F¥) is the likelihood of observing Q given that we are in the k-th
class and P(y = F*) is the prior probability of class k. As demonstrated in [82], most
of the similarity functions currently in use are special cases of the Bayesian criterion.
In this chapter, we consider the simplest and most commonly used similarity metric,
i.e., the nearest neighbor classifier.

When we assume that the features are Gaussian distributed with equal prior

probabilities, (2.2) leads to a minimum distance classifier:

9"(Q) = argmind(Q, F*), (23)
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where F* is the feature vector for the kth class, and d is a quadratic distance defined

as:

d(Q,F*) = (Q - F*)'B*(Q - F*), (2.4)

where B* is a positive definite weighting matrix. For example, in the case of the
Mahalanobis distance measure, it is assumed that all classes have the same covariance
¥; = B, Vi. Particularly, if the covariance is the identity (B = I), we have a nearest
neighbor classifier d(Q, F¥) = (Q — F¥)!(Q — F¥).

Figure 2.1 shows the structure of the query system using minimum distance
feature matching. This system is basically a Vector Quantizer (VQ) based classifier
v with N outputs, where the goal is to find the best N matches {r;,i =1,..., N} to
a given query feature vector Q among a set of candidates {F*} using the minimum

distance criterion.

Q7 \
L prq

Q ) Find N
e dQF) | Smalest —»
d(Q,F9s| 2

| / 'Nn
d@Q, FM)

Figure 2.1: Structure of a retrieval system using nearest neighbor classifier.
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2.3 Feature compression for minimum distance

classifier

Let the original feature set be F = {F! F? .., FM} where F' is the feature vector
for the i-th image class in the database. Throughout this chapter, we assume query-
by-example for content based retrieval, which means that the system is provided
with an example image represented by feature vector X and the goal is to find the
most similar images to X in the database. We also assume in-database retrieval,
which means the query image X belongs to one of the image classes in the database.

Suppose that the feature vectors F* are L dimensional, then our goal is to design,
under a given rate budget Ry, a good source code (consisting of encoder « and
decoder (3) which maps the L dimensional signal set {F¥ k = 1,..,M} € R to
a smaller set {f*"“, k=1,..,M'} € R", such that after applying the classifier v to
the reconstructed feature vectors ﬁ‘k, the performance degradation caused by the

quantization is minimized.

IPiE*Pe(X) st R<R, (2.5)

Although the probability of retrieval error would be the most desirable distortion
metric to use for our purpose, estimating this metric so that the minimization can
be performed may not be possible in most applications. Alternate metrics, such as

class separability measures can be used, this will be addressed in Chapter 4. In
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this chapter, we will focus on the mean squared error (MSE) distortion metric due
to its simplicity and common usage in nearest neighbor classifier for content based
retrieval. Our goal is to design encoder o and decoder (3, such that the expected

distortion is minimized:

min E(d(X, f(a(X)))) st R<R, (2.6)

a3

Several researchers have addressed the problem of quantization for classification.
Vasconcelos and Lippman [81] studied feature representation with a mixture model
and showed that Vector Quantization can be used to minimize the Bayes classifica-
tion error. A joint design algorithm was developed by Perlmutter et al. [51] aiming
at minimizing both the quantization error and Bayes classification risk. In both
works the dimensions of quantizer and classifier are the same, and the quantizer
was optimized for a Bayes classifier, i.e., encoder and classifier can be seen both as
vector quantizers operating on input vectors of same dimension. For the particu-
lar examples we consider here, this would lead to using quantizers with fairly high
dimension, which may not be practical if low complexity encoders are required. In-
stead, in our work, we address the design of a less complex quantizer which operates
on scalars, or lower dimensional vectors, but still with the goal of minimizing the

overall classification distortion (see (2.6)) resulting from quantization.
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2.4 Experimental results

Here we demonstrate the advantages of representing image content by compressed
features, as compared to compressed images, using a simple texture classification
example [12]. General image retrieval using multiple features is demonstrated in
Chapter 3.

Ten 512 x 512 texture images are drawn from the Brodatz’s texture album [7]
and a set of randomly selected sub-images from the original images are used for our
experiment. Three-level Dyadic wavelet decomposition is performed on the sample
images using 16-tap Daubechies filter and the averaged absolute energies of each
wavelet subband compose the feature vector for texture classification [12]. Figure
2.4 shows the structure of the transformed image and the subband numbering used
in our feature representation.

The i-th element of feature vector F¥ for the k-th image is computed as the norm
in the ¢-th subband of a Dyadic wavelet decomposition of the image. The simplified
Mahalanobis distance is used to perform minimum-distance classification.

In this section we demonstrate that it is efficient to store compressed features as
side information, and we evaluate various quantization schemes in terms of classifi-

cation accuracy and complexity.
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Figure 2.2: 3-level Dyadic wavelet decomposition of an image and the subband
numbering used in this chapter.

2.4.1 Efficiency of storing compressed features

Wavelet based texture classification [12] is performed with JPEG and SPIHT [63]
compressed images, as well as with explicitly stored features (in compressed for-
mat). We compare the classification performance of an ad hoc scalar classification
quantization and uniform quantization (see Figure 2.3). Compared with storing
uncompressed features (32 bits for each element), our ad hoc classification quan-
tizer achieves the same performance at much lower rate (0.7 bits on average for
each element). We also show in the same figure the efficiency of storing features

by comparing with operating on SPIHT and JPEG compressed images. Our results
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show that the same classification performance can be achieved using three orders of

magnitude fewer bits than with SPTHT.

Correct classification rates Using simplified mahalanobis distance
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Figure 2.3: Comparison of classification performance using different techniques.
When JPEG and SPIHT are used, features are extracted from decompressed im-
ages. Notice the gain in terms of bit rate by storing the explicit information. Orig-
inal feature data is stored as 32 bits per element. We see that even with simplest
uniform quantizer 90% correct classification can be achieved at 8 bits per element.
Same performance (100% correct classification rate) as using original data can be
achieved at 4 bits per element by employing our ad hoc quantizer. The simplified
Mahalanobis distance is used for all cases.

2.4.2 Evaluation of quantization schemes

Given the feature vector, VQ would be a natural choice for quantization [26]. How-
ever, as the number of classes M gets larger, the coding complexity becomes higher
due to the increasing variance in the input data. Here we consider several alterna-
tives that are less computationally intensive. The goal is to design a quantizer «
which maps an L dimensional signal set {F* k = 1,..., M} € Rl to a smaller set

{ﬁk, k=1,..,M'} € Rt in a minimum distance sense, under the constraints of rate
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budget R, and complexity of the quantizer. The elements of the vector could be
quantized independently of each other (independent scalar quantization) or parti-
tioned into groups of lower dimensions and quantized using a product code. In the
following sections we compare several alternatives in terms of Rate-Classification

performance and coding complexity.

2.4.2.1 Uniform scalar quantization vs. Bayes VQ

Uniform scalar quantization is the simplest approach we consider. A uniform step
size A can be used for each vector component, so that each component is quantized
independently of each other. In general different stepsizes could be used.

Bayes Vector Quantization (VQ) [51] has demonstrated the possibility of a joint
design of quantizer and classifier, where a Bayes risk is introduced into the distor-
tion measure to minimize both the distortion and the classification error. Then the
quantizer would assign to each input both a quantization index and a classifica-
tion label. This algorithm gives superior classification performance as compared to
other VQQ-based designs for a given classifier and would represent a better approach
to optimize quantization of the classification features than the scalar quantization
approach described above.

However the Bayes V(Q approach has the drawback that performance is optimized
for a given query class. Thus, superior performance is achieved for the specific
query, but performance could suffer significantly if the quantized feature set is used
in a different query. Furthermore, the complexity of VQ grows exponentially with
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the dimensionality of the input space. Thus, an approach such as simple uniform
quantization, where no optimization has been performed, may be a good approach

to quantize the feature vector if the query types are not known a priori.

2.4.2.2 Nonuniform scalar quantization

By nonuniform scalar quantization we mean that the elements of the L dimensional
feature vectors are quantized independently of each other using a set of codebooks.
The codewords are generated independently for each of the dimensions.

To optimize the codebook design, the Generalized Lloyd algorithm(GLA) [26]
can be run in each dimension 7 to minimize the expected distortion. The Lloyd
iteration is terminated when a certain rate has been attained. The total bit budget
is distributed by optimal bit allocation, i.e., we find the allocation R = {b;} for each

dimension such that the overall distortion

L
D =" D(b;) (2.7)
i=1
is minimized subject to
L
b < Ry (2.8)
i=1

D(b;) is the distortion in ith dimension associated with rate b; allocated to it. La-

grangian optimization techniques can be used to solve this problem [23] [65].
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2.4.2.3 Product code

In real cases there exists some correlation between the elements of the feature vector.
Gains in compression can be achieved by exploiting it. Product codes provide a way
of exploiting the correlation between the elements and yet are less computationally
expensive than vector quantization operating on the original input vector. A scalar
quantizer is a particular case of a product code where all subspaces have dimension
1, but in general the dimensions of the subspaces used in the product code are larger
than one.

The method for partitioning the feature vectors is important in the design of a
product code. A product code is optimal if the sub-vectors are independent. One
approach is to estimate pairwise correlation and group correlated elements into sub-
vectors. In this experiment, we partition the elements of the 10-dimensional wavelet
texture feature vector T = {t1, %2, -+, t10} into a set of non-overlapping sub-vectors
according to their correlation, so that the more correlated feature components (as

determined experimentally) are grouped into sub-vectors:

T = {t} (2.9)
T2 == {t2a t5a t8}
T3 = {t37 t67 t9}

Ty = {ta,tr,t10}
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A codebook C; is designed for each sub-vector T; using the GLA algorithm with
respect to a given distortion function D(T;, C;). Here the rate budget Ry is optimally
allocated among these sub-vectors so as to minimize the overall distortion. We com-
pare the performances achieved when using Euclidean distance or modified distortion
function defined in (2.4). The results in Figure 2.4 show that the performance is

significantly better when this modified distance measure is used.

2.4.2.4 Comparison of performance of different quantizers

Figure 2.4 shows the performance achieved with various quantizers. We see that
after optimization (bit allocation with simplified Mahalanobis distortion), signifi-
cantly better performance can be achieved for both scalar quantization and product
code. This can be explained by the fact that finer quantization is chosen along the
dimensions where classification distortion is higher after bit allocation. The product
code approach always performs better than scalar quantization at low bit rates but
results in higher encoding complexity. So the choice of quantizer in a real applica-
tion should be made based on the relative importance of coding effectiveness and

complexity.
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Figure 2.4: Comparison of classification performance using different quantizers.
Scalar quantizers are nonuniform, the GLA algorithm is run to get the optimal par-
tition along each dimension with respect to the modified distortion (Mahalanobis
distance is this case). Notice the gain achieved by bit allocation. The intuition is
that this leads to finer partition along the dimension where classes are prone to mix
together (as evaluated by the Mahalanobis distortion).
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Chapter 3

Entropy- and Complexity-constrained Classified

Quantization Design

3.1 Introduction

In this chapter we address the design of classified encoding schemes for feature
compression in distributed image retrieval /classification systems '. The idea is to
tailor the compression scheme to the specific retrieval task by exploiting information
available about the database.

In most existing CBIR systems [13] [45] [42], similar indexing methods are used,
in the sense that tree structures are employed to hierarchically partition the data
space into a number of subregions, each containing a subset of the image objects.
Similarity search corresponds to a range query or a nearest neighbor query on the

tree structures. The tree structure breaks down a complex decision (an exhaustive

1The work in this chapter was published in [87] [21] [2]
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similarity matching with all the image objects in the database) into stages of simpler
decisions (traversing down the tree, making a decision at each intermediate node
along the path), thus allowing the user to access the database information more
efficiently.

Figure 3.1 shows an example of a general decision tree and one of its pruned
subtree. A tree 7 is simply a finite set of nodes, 7 = {to,t1,%s, -}, where t is
the unique root node. The set of leaf nodes is denoted by 7. In general a subtree
S is a subset of tree 7. A pruned subtree S =< 7 is a subtree rooted at the root
node ty, obtained by pruning some of the branches of 7. We denote the number of
leaf nodes of tree S by |S|. For more detailed and rigorous definitions of these tree
terminologies, refer to [6] and [62].

Starting from the root, the data space is hierarchically partitioned into a set of
subregions. Each node ¢ is split based on some decision rule. Each of the leaf nodes
represents a subregion of the data space and stores a subset of the image objects. As
shown in Figure 3.1, S is one of the pruned subtree which lies above the pruning line.
Taking the subtree S as the pre-classifier, we have a classified quantization system
shown in Figure 3.2. Inputs are first classified and then quantized with quantizers
specifically designed for each of the classes. By performing a partial classification
before compressing the data, we are able to capture the special characteristics of the

classes that are relevant for content-based retrieval.
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Figure 3.1: A generalized decision tree and its pruned subtree.
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In previously proposed Classified Vector Quantization schemes [55][57], the clas-
sifier and the codebook for each class are designed in a sequential manner and the
complexity of the resulting system plays no role in the design process. Instead, in
this chapter, we present a framework where the pre-classifier and the quantization
parameter for each of the classes are searched in a joint manner under rate and
complexity constraints using the Generalized BFOS algorithm [16].

This chapter is organized as follows: Section 3.2 provides a brief description of
classified quantization techniques and introduces the novelty of our work. Section
3.3 states the problem we are addressing and Section 3.4 describes our proposed
algorithm to solve the problem. The performance of our proposed method is evalu-
ated in Section 3.5 based on both the Brodatz texture album [7] and a set of natural

scenes from the Corel image set [18].

3.2 Classified quantization systems

In Classified Quantization systems [55][57], inputs are first classified and then quan-
tized with quantizers specifically designed for each of the classes. Figure 3.2 shows
the block diagram of a generic classified quantization system. There are two com-

ponents involved in a classified quantization system design:

e Source modeling. A classifier is designed to best model the source distributions;
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Figure 3.2: The block diagram of a classified quantization system. Separate encoders
{a;} are designed for the classes i = 1,..., M. The input vector X is first classified
and then encoded with encoder specifically designed for the class.

e Quantization design. Optimal quantization design for each of the classes to

best exploit the source model.

In this work, we address the issue of optimal design of a classified quantizer
in a rate-distortion-complexity framework, for a given decision tree classifier. We
especially focus on decision tree classifiers which are built by nearest neighbor rule
[90][13][59]. The rate and complexity constraints play the role of deciding how much
pre-classification we can afford at the transmitter and what parameters to use for
each of the quantizers.

Classified Vector Quantization (CVQ) was proposed by Ramamurthi and Ger-
sho [55] for image coding. An edge-oriented classifier was first designed to classify
image blocks into either edge blocks or non-edge blocks. Then codebooks were de-

signed specifically for the resulting classes using the LBG algorithm. CVQ achieved
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better perceptual quality with significantly lower complexity as compared to ordi-
nary VQ. Riskin [57] proposed an algorithm to optimally allocate bits among classes
using the Generalized BFOS algorithm for an M-class CVQ. The bit allocation was
modeled as an (M, 1) tree, where the root had M children and each child was a
unary subtree representing a linked list of codebook sizes for the corresponding class
in increasing size order. The process of optimal bit allocation among the M classes
involves assigning a maximum number of bits to each source and then reducing the
number bits in order of increasing magnitude of the ratio of increase in distortion to
decrease in rate. Note that the main difference between [57] and our work is that we
jointly search for the optimal pre-classifier and bit allocation among classes under
both rate budget and complexity constraints. Furthermore, an M-class classifier was
assumed to be fixed during the design of quantizers in [57] and [55], and no complex-
ity constraint was imposed in the system design. In this chapter, we focus on the
optimal design of (i)the pre-classifier, as a pruned version of the original classifier,
and (ii)the quantizers for each of the classes. We assume the original (non-pruned)
decision tree classifier is given.

Various multidimensional indexing techniques have been proposed for similarity
search in content based retrieval, including TV-trees [40], X-tree [5], SS-tree [85],
SR-tree [39], M-tree [17], Hybrid-tree [10], and similarity pyramid [13]. All these
tree indexing methods can be seen as generalized decision tree classifiers [62]. The

idea of classified encoding for distributed content-based retrieval is to allow the
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client perform a coarse classification of the query data, based on a subtree of the
original classification tree. After classification, the query data is compressed using
an encoder that is specifically designed for the corresponding coarse image class.
The classified compression scheme will increase the computation complexity at the
client. However, the query data can be compressed with higher accuracy and lower
rate by using a classified encoder, as compared to a unified encoder, and as will be
seen this improved compression performance may justify the complexity increase in

scenarios where bandwidth is scarce.

3.3 Problem formulation

Reasonable structural restrictions are imposed on the quantizers to simplify our
formulation. A uniform scalar quantizer is employed as the baseline quantizer due
to its simplicity, and entropy coding such as Huffman coding is applied to losslessly
encode the quantization indexes. The stepsizes are chosen from a pre-defined discrete
set. Figure 3.3 shows the structure of such a coding system. Each classified encoder
«; consists of a bank of uniform quantizers {A; 1, A9, ..., A; v} followed by entropy
coding {vi;,j = 1,..., N} of the quantization indexes. The decoder f; ; consists of
entropy decoding followed by inverse quantization. X € RV is the reconstructed

vector for input X € RY.
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Figure 3.3: Structure of the coding system. A bank of stepsizes {A; 1, Aio, ..., Ai n}
are first applied to the scalar components {x1, z,...,zx} of X. Then independent
entropy coding {v;;,j = 1, ..., N} were used to code the quantization indexes. The
decoder 3; ; consists of entropy decoding followed by inverse quantization. X e RV
is the reconstructed vector for input X € RV.

We review tree functionals following the description in [16]. Tree functionals are
real-valued functions defined on trees and their subtrees. Examples of tree function-
als include the average length [(.S), number of leaf nodes |S|, and average distortion
d(S). A tree functional is monotonic if it increases or decreases monotonically as
the tree grows. We now formalize notations of some tree functionals that will be
used in this chapter.

We use S to denote the set of leaf nodes of S. The number of leaf nodes is
represented as |S|. In the context of a classified encoder, |S| equals the number
of different encoders that will be used; P(t) is the probability that a given input
vector traverses node t; I(¢) is the length of the path from root ¢y to node ¢, and
reflects the cost of traversing the classification tree S from root to node ¢; (¢, {A;;})

and d(t,{A;;}) are the operational entropy rate and distortion, respectively, of the
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quantized output for the sample space at node ¢, with the set of quantization stepsizes

{A;;} applied to quantize the data at node t:

N

r(t, {Ai;}) = I;H(iHXEt) (3.1)
d(t,{Ai;}) = I;d($ku§7k‘X€t)

where X € t means that random vector X traverses node ¢, H() represents the
entropy of the quantization indexes.
We define tree functionals D() (distortion), C() (complexity) and R() (rate) as

follows:

D(S,{Ai}) = > P(t) xd(t) (3.2)

R(S,{Ai}) = 2 P@) xr()
C(S, 1Ay} = P x1(t)+wx |3

where w is a positive weighting factor. Note that C(), our complexity metric, is a
weighted sum of computational complexity and the memory required by the classified
encoder, roughly estimated by the number of leaf nodes in the pre-classification tree,

and hence different encoders used.
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Our goal is to find the optimal pruned subtree S* < 7T to be used as a pre-
classifier and the set of stepsizes {A} ipd=1.,N } for quantization of each class
1, such that the overall distortion is minimized subject to a rate budget R, and

complexity constraint Cj.

El
D= S*I?in ZP X Di(Ai1, Aig, .oy Ajn) (3.3)

st. R(S,{Ai;}) < Ry and C(S) < G,

where P; is the probability that a sample belongs to the ith class (the ith leaf node
of S). Instead of solving the constrained problem (3.3), we use Lagrange multipliers

and solve the dual problem [47]:

Igin[{rgjn}{D(S, {Ai}) + A x R(S,{Ai;}) + 1 x C(9)}] (3.4)

where A, > 0. The trade-offs between rate R(), distortion D() and complexity
C() can be explored by adjusting the two multipliers A\ and pu. Now we need to
find the optimal multipliers A and p such that the rate and complexity constraints
are satisfied with equality. This problem is not straightforward since we have two
Lagrange multipliers instead of one.

Recent work in the literature has addressed the problem of bit allocation with
multiple constraints. Cheung proposed a generalized Gersho-Shoham algorithm in

[15] to find the optimal bit allocation among the source coder and the channel coder,
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such that the overall distortion is minimized subject to both source and channel rate

budgets, for known channel conditions.

min{D + /\Rs + /J,RC} s.t. RS < Rs(, and RC < RC(, (35)

where Rg and R are the source coding rate and channel coding rate, Rg, and Ry
the source rate budget and channel rate budget, respectively. The basic idea in
Cheung’s work is to extend the constant-slope concept [47] to 2-dimensional space.
In 1-D case, finding the optimal point which minimizes the cost function J = D+ AR
is equivalent to finding the point in the R — D characteristic that is “hit” first by a
“line wave” of slope A; the Gerhsho-Shorham algorithm [65] addresses the problem
of exactly how the slope A, should be adjusted to approach the target rate budget.
Similarly, in the 2-dimensional case, the optimal solution is the point which is first
“hit” by a “plane wave” with slope (A, ) as shown in Fig. 3.4. The Generalized
Gersho-Shoham algorithm proposed by Cheung in [15] iteratively makes adjustments
to the slopes (), p) such that the operating pair (Rg, Rc) converges to the target
rate constraints.

The major disadvantage of the generalized Gersho-Shoham algorithm is that it
takes many iterations to converge if the initial source-channel pair is very far from
the optimal.

Since we are working with tree structures, this motivates us to look for optimal

pruning methods to solve our problem taking advantage of structure that is specific
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Figure 3.4: For given multipliers A and g, minimizing the cost function J = D +
AR + uC' is equivalent to finding the point on the R — D — C surface that is first
“hit” by a “plane wave” of slope (A, u).

to our problem. In what follows we propose a nested algorithm to iteratively search

for the optimal solution of the problem in (3.4).

3.4 Proposed Algorithm

The BFOS algorithm proposed by Friedman et al. [6] is a Lagrangian technique
based on minimizing the functional J(S) = §(S) + A x {(S) over all pruned subtrees,
with §(S) and [(S) being the average distortion and rate, respectively, of the tree
structured vector quantizer defined on 7 and pruned to S. Chou et al. [16] extended
the BFOS algorithm by generalizing the two components of the cost functional to

any monotonic tree functionals U, (S) and Uy(S). This approach prunes off branches

—A(Ul ,t)

A(lh) @ SO s to obtain successive

T, of tree T in order of increasing slope p =
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optimal pruned subtrees. A(Uj;,t) is the change of the tree functional U; (increase
for U; and decrease for Us) if the branch rooted at node t is pruned off. It was
proven that the generalized BFOS (G-BFOS) algorithm is capable of tracking out
the extreme points which lie on the convex hull of the operating (U;, Us) pairs over
all possible pruned subtrees S < 7.

In our problem, we define the following two tree functionals:

Ui(5,{Ai;}) = D(5,{Ai;}) + A x R(5,{Ai;}) (3.6)

Ua2(S,{Ai;}) = C(S,{Ai;})

As the sample space is hierarchically partitioned by the Nearest-Neighbor clas-
sification tree 7 defined in Euclidean space, within each node ¢ data tends to be
clustered. Due to this clustering property of the classifier, for a fixed multiplier A,
the tree functional U; tends to be monotonically decreasing as the tree grows. This
is because, as the clusters become “smaller” when the tree grows, the distortion
achievable at a given rate is also reduced. On the other hand, the complexity of the
system is monotonically increasing since both the depth of the tree and the number
of encoders become larger. Because U;, U, are monotonic tree functionals as those
described in [16], the generalized BFOS (GBFOS) algorithm can be used for optimal
pruning.

This monotonicity of U; and U, leads to an operational U; — U, function (with a

fixed multiplier \) having the form shown in Figure 3.5. The upper left corner of the

62



curve corresponds to the singleton tree consisting of just the root node #y. It means
there is no pre-classification before quantization. In this case, we have the smallest
encoder complexity (U, is minimum) and worst coding performance (U; is maxi-
mum); The lower right corner of the curve corresponds to the full tree 7', where we
have maximum encoding complexity (U, is maximum), but best coding performance
(U is minimum). Starting from the lower right corner U(T) = (Uy(T), Ux(T)), if
we go clockwise along the convex hull, we get: Ui(T) < Uy(S;) < Uy(Sy) < .. <
U1 (Sim) < Up(to) and Up(T) > Uz(S1) > Us(Ss) > ... > Us(Si) > Us(ty). And we
get a list of nested subtrees: t5 < S, < ... X S5 =57 < 7. Thus we shall be able to
trace out the lower boundary of the convex hull by starting from the full tree and
pruning back to the root. This process is for a fixed multiplier \.

We propose a nested optimization algorithm to jointly search for the optimal
subtree S* and the set of quantization stepsizes {A;;} for a given rate budget and
complexity constraint. Refer to Figure 3.6 for a geometric interpretation of this
nested optimization.

The basic idea is as follows: First initialize the multiplier A; then for this fixed
multiplier, we choose the set of stepsizes which minimize the functional u, (t), Vt € T.
We call this the “tree population” process; then the G-BFOS algorithm is used to
prune the original tree 7 until the complexity constraint C} is satisfied. This process
corresponds to the curve starting from point Ajpirie with the full-length tree (max-

imum complexity) to point Ripiiq. In Figure 3.5 (with multiplier A = Ajpitiar), the
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Figure 3.5: Operational (Uy, Us) pairs for fixed multiplier . Each circle represents
one pair and one corresponding pruned subtree.
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Figure 3.6: We start with multiplier Aj,itq, prune the tree until Cp is satisfied.
Then update A to A,ep using the bisection method. Repeat the process until Ry is

satisfied.

65



slope of this point will equal to multiplier . Now that we have found the optimal
multiplier p to meet the complexity constraint given our choice of A, we need to
adjust A to approach the rate constraints. We compute the resulting operational
rate R with these two multipliers, adjust the multiplier A to A, using the bisection
method [56] and select the quantization parameters at each node with \,¢,. Then
we prune the original tree 7 with the functional u7¢”(¢) updated with multiplier
Anew until the target complexity budget is satisfied, and repeat the process until
convergence. This is shown in Figure 3.6 by the curve A\, = Rpew. Convergence is

shown by the curve A\* — R;. Note that every time we prune, we always start from

the original tree 7. The detailed algorithm is as follows:

Proposed Algorithm : Optimal design of a classified quantizer under entropy and
complexity constraints

Step 0: Initialize \; < A,.

Step 1: Select the quantization parameters at each node t such that uy(t) is min-
imized; prune the tree using G-BFOS until C(S) < Cy. If R)(S) < Ry, let
AP =a x A (a < 1) and repeat Step 1; otherwise go to Step 2.

Step 2: Select the quantization parameters at each node t such that ui(t) = d(t) +
A7 (t) is minimized, prune the tree using G-BFOS until C(S) < Cy. If Ry, (S) > Ry,

let A0 = A\, X % (a < 1) and repeat Step 2; otherwise go to Step 3.
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Dy, =Dy,

Step 3: M\t = |R>\1_R>\u

|, Select the quantization parameters at each node t such
that ui(t) = d(t) + Apexer(t) is minimized. Prune the tree until the complezity con-
straint is satisfied. If Ryeqr = Ry, , Stop; Else if Ryert > Ry, let N = Apext, repeat

Step 3; Else let A, = Apest, repeat Step 3.

3.4.1 Optimality of proposed algorithm

We denote the pre-classification tree by S, the set of quantizers for the classes by

{a;,i=1,..,|5|.}. Let the admissible quantizer set be designated by Q.

Theorem 1 For any real, non-negative multipliers, A > 0 and p > 0, the solution

{5*,{al}} to the unconstrained problem

s {D(S, {ai}) + AR(S, {ai}) + uC(S. {ai})} (37)

is also the solution to the constrained problem (3.3) with the constraints

R(S,{o}) < Ry = R(S™,{o;}) (3.8)

C(S,{a}) < Cy = C(5*, {e}})

The proof of the theorem is an extension of the proof in [65].

Proof: For the solution {S*, {a}}}, we have

D(S"{aj}) + AR(S", {a;}) + pC(5", {a7}) (3.9)



< D(S,{ai}) + AR(S, {ai}) + pC (S, {au})

for all S,S8* < T and {«;},{ca;} € Q. Thus we have:

D(5,{a;}) — D(S,{a}) (3.10)

< AMB(S, {ai}) = R(S™{eg})) + p(C(S; {eu}) = C(5%, {e7}))

This is true for the choices of S and « which satisfy the rate and complexity con-

straints (3.8). Since A > 0 and p > 0, we have:

D(5%,{a;}) — D(S,{eu}) <0 (3.11)

That is, {S*,{a;}} is the optimal solution to the constrained problem.

Proposition 1 The problem of finding:

e An optimal pruned subtree S* < T, and

e the associated optimal set of quantizers {«;} for each of the classes correspond-

ing to the leaf nodes of S.

can be solved by proposed nested algorithm.
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Proof: The nested algorithm first fixes the multiplier A and prunes the tree until
the complexity constraint C} is satisfied. This process corresponds to finding: the
optimal multiplier p* for the given A; the optimal pruned subtree S* and the set of
quantizers {«;} which minimize the cost function J(A, u) = D + AR + pC.

Assume there is another pruned subtree S’ which has the same complexity as S*,

but better coding performance:

D'+ AR < D* + AR". (3.12)

This means that S’ lies on the convex hull of operational (U;,Us) pairs. U;(S') <
U (S*) implies that S* is a pruned subtree of ', i.e., S* < S’. Thus C* < (', which

contradicts our assumption.

3.5 Experimental results

We evaluate the performance of the proposed method based on three image databases:
the Brodatz texture album [7], a subset of the Corel images [18], and a rotated set

of Brodatz texture [8].
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3.5.1 Texture classification

In this experiment, we use Brodatz texture images. We extract n = 200 sub-images
(of size 128 x 128) from different locations of each original image (of size 512 x 512).
We use half of these images for training and the other half for testing. Feature vector
is computed as the energy in the subbands of the wavelet decomposed images using
Daubechies-16 filter. We apply 3 level of decomposition so that the feature vector X
is 10 dimensional. We assume that each Brodatz texture represents a class. We first
build a binary decision tree 7 in a top-down manner using the K-means algorithm
until only one class is left at each leaf node. The clustering for K-means algorithm is
based on the Euclidean distance between feature vectors. The quantization stepsizes
{A; ;} are chosen from a predefined discrete set {32, 16, 8,4,2}. Figure 3.7 shows
examples of operational (U, Us,) pairs for different values of multiplier A\. These
points are obtained by two methods of pruning: Depth-first and In-Order-Walk [19].
We can clearly see the monotonicity of U; and Us.

Figure 3.8 shows the Rate-Distortion-Complexity surface we obtain. We can see
the tradeoff between rate, distortion and complexity of the system and we can verify
the convexity of the surface, as predicted by Goyal and Vetterli [27]. In Figure 3.9, we
show the rate-distortion performance for this coding system with and without pre-
classification. Substantial coding gain is obtained by employing a classified quantizer
instead of a single quantizer, or by using a higher-complexity classification tree. For

example, at coding rate of 2 bits/element, we reduce the MSE from around 700
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Figure 3.7: Tree functionals U; and U, for different values of multiplier A\. The z-axis
is the complexity U, with the weighting factor w equal to 400. The y-axis shows
the cost functional U;. The operating points are obtained by computing the two
functionals of arbitrary subtrees through two different pruning methods: depth-first
and in-order-walk.

to 150 using a pre-classification tree of average length 3.88, to around 20 using a
pre-classification tree of average length 6.47. In real applications, depending on how
much complexity is allowed for the encoder, we are able to choose the best subtree
as the pre-classifier which gives maximum coding gain within the given complexity
constraint.

We also perform texture classification with the compressed data using the deci-
sion tree classifier 7. The result is shown in Figure 3.10. As is clearly shown in the
figure, a lower classification error rate was achieved by using a classified encoder,
as compared to using a single encoder. At transmission rate of 20 bits/vector, a

reduction of 11% in the classification error rate is achieved by using the classified
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Figure 3.8: The Rate-Distortion-Complexity surface obtained by proposed optimiza-
tion framework. We employed traditional mean square error in this example. The
complexity is evaluated as the cost of traversing the tree plus a weighted storage cost
for storing the encoders, with the weighting factor w = 1 for this example. Rate is
computed as the entropy rate of the quantization outputs.
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Figure 3.9: Comparison of R-D performance between systems with pre-classification
(using tree lengths 3.8818 and 6.4696) and without pre-classification (tree length 0).
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Figure 3.10: Comparison of classification performance for systems with pre-
classification (where tree length is 3.90) and without pre-classification.

encoder, with an average pre-classification tree length of 3.9. Although we assume
the traditional mean squared error distortion in this experiment, our results could
be extended to other distortion measures, although further study would be needed

to identify alternative metrics, such as Kullback-Leibler divergence used in [71].

3.5.2 Corel Image retrieval

We use the feature extraction algorithm developed in [13]. The features consist
of color histogram, texture histogram and edge histogram in La*b* color space.
Table 3.1 shows the structure of the feature vector we used for Corel images. The

dimensionality of the feature vector is 99.
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color histogram Dynamic range | Number of bins
L 0---100 8
a* -100 --- 100 16
b* -100 --- 100 16
texture histogram Dynamic range | Number of bins
L 0---100 8
a* 0---200 16
b* 0---200 16
edge histogram Dynamic range | Number of bins
L 0--- 27 9
a* 027 9
b* 0--- 27 9

Table 3.1: Structure of feature vector.
We use 15 classes ? from the Corel image database [18], with 100 images per
class. We use 80% of each class for training and 20% for testing. K nearest neighbors
to the query vector are returned as the retrieval set. The distance function between

two feature vectors is computed as the /; norm:

D(Q,X) = i Qi — X (3.13)

Experimental results are shown in figure 3.11. We performed retrieval for K =
20, 50. The quality of the retrieval result is measured by two quantities: precision
and recall. Precision is the percentage of relevant objects in the retrieved set, it
measures the purity of the retrieval. Recall is a measurement of completeness of

the retrieval, computed as the percentage of retrieved relevant objects in the total

2The classes include Flowers II, Exotic cars, Sunrise and sunsets, Religious stained glass, Ski
scenes, Painting, English country garden, Land of the pyramids, Mayan and Aztec ruins, Divers
and diving, Glacier and mountains, Owls, Arabian horses, Coasts and Fireworks.
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Figure 3.11: Retrieval Precision vs. rate curve comparing classified encoder and
single encoder

relevant set in the database. Figure 3.11 shows the precision of 20 and 50 retrieved
images using the proposed classified encoding and a single encoder. Figure 3.12
shows the precision-recall curve of the two encoding systems operating at various
bit rates. Again, we see that substantial gain is achieved by employing the pro-
posed classified encoder, especially at low operating bit rates. At bit rate around
0.2 bits/sample, our proposed encoding scheme achieves about 7% higher retrieval
precision than a system based on a single encoder. The retrieval performance of
proposed encoder is significantly better than standard single encoder, especially at

low bit rates.
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Figure 3.12: Precision-Recall curve comparing the two encoding schemes at different
operating rates.

3.5.3 Rotation-invariant texture classification using steerable

features

In this section, we address the compression of steerable features proposed by Beferull-
Lozano et al.[2] for rotation-invariant texture image retrieval, using classified encod-
ing 3. The feature extraction is based on the subbands obtained from a steerable
pyramid [66]. Steerable representations are such that from the output produced by
projection onto basis functions, one can obtain output of projection onto rotated

basis functions. Beferull-Lozano proved that the same is true for the computation of

the features [2]: Given the features of an image oriented at any angle ¢, the features

3This was work done in collaboration with Dr.Baltasar Beferull-Lozano.

76



corresponding to the same image but oriented at an angle ¢, can be computed from

the features at angle ¢.

The feature vector is computed as the set of correlation matrices {C'}~ ,, where

C' is the correlation matrix of level | decomposition with elements:

N
Cij = (%) > (i, $i)c! (i, 85) = Gy 1=1,-++, L. (3.14)
1 k=1

We cite the Proposition in [2] without proof.

Proposition 1 Given a steerable representation with J basic angles, the correlation
matrices C’lIG and CY, both evaluated with respect to the same set of basic angles

{é1,...,0;}, are related as follows:

C}, = R(O)CIR'(0),

(¢ —0) as(dr—0) -+ as(é—0)
(3.15)

ai(pe —0) az(pa—0) -+ as(d2—0)

(s —0) ax(ps—0) --- az(d;—10)

In the particular case where the J basic angles are taken to be equally spaced, then

R(6) becomes an orthogonal matrixz for any 6, and therefore, C’lla and C% become

orthogonally equivalent.
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We propose a The similarity measurement D([;, I5) between 2 different images
I, and I, as follows:

D(I4, I,) = Ming (Z ICY, — R(—H)CllzRT(—g)”F> (3.16)

I=1
In words: an angular alignment is first carried out between the two images and
the distance is the minimum one obtained, i.e., when the angular alignment is most
accurate. In this section, we incorporate the rotation-invariance in the DTC based
retrieval by performing angular alignment at each node in the tree and defining
an appropriate distance between an image and a tree node, which ensures that a
best-first-search method works correctly.

In the experiment, the decision tree classifier 7 is built the same way as in Section
3.5.1 based on the feature {C'}% . The distance used for clustering is the /; norm
between two feature vectors. Let () be the feature vector of a query image I, and ¢
be a node in the tree 7. We use D(Q,t) to denote the distance of the query feature
vector () with node t .

In order to ensure that this search algorithm finds the correct closest matches,
we need to define the distance D(Q), t) satisfying the property that D(Q),t) is a lower
bound of the distances of () to all the images in node ¢, and we need to take into

account the angular alignment process. Notice that:

DQ,I) = mind(Q, 1) (3.17)

> main d(Qy, I.) — d(I.,I) (triang. inequality)
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> Hbin d(Qp,I.) — R(t)  (upper bound)

where I, is the centroid in node t, R(t) the radius of node ¢ given by R(t) =
maxyes d(Ie, I) and d(Qy, I) is given by the expression inside the parenthesis in (3.16).
Thus, defining D(Q, t) as D(Q,t) = ming d(Qg, I.) — R(t), then, it is guaranteed that
the best-first-search method will find the correct closest match. Thus, we see that a
crucial differential point in our work is that in the retrieval process using the DTC,
at each node of the tree, alignments between the query (quantized) feature vector
and each of the two representing vectors (corresponding to the two branches) have to
be performed using (3.16). After these two alignments, two distance measurements
are performed and a branch is chosen.

We have evaluated the performance of our proposed method applied to the Bro-
datz texture images [8]. The feature vectors are quantized using:(i) Simple uniform
quantization (same stepsize); (ii) Non-uniform quantization with optimal bit alloca-
tion in a rate-distortion sense [65]; (iii) Classified quantization. We use 2 collections
of texture samples of size 128 x 128. The first collection, which forms the non-rotated
image database, is obtained by partitioning each of the 13 Brodatz (512 x 512)
non-rotated texture images [8] into 16 non-overlapping texture subimages of size
128 x 128 with a total of 208 texture samples. This set is used in training of the
DTC for retrieval. The second collection, which forms the rotated set, is obtained
by partitioning (for each of the 13 texture classes) 4 large texture images oriented

at 30, 60, 90 and 120 degrees also into non-overlapping subimages of size 128 x 128
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and taking the 4 central subimages. In this way, in the second database, there are
also 16 textures for each class and therefore, also the same total number of 208 tex-
tures. A query texture sample is taken from the rotated set and the feature vector
is extracted and quantized using the three quantization schemes mentioned above.
We assume that each quantized component of the feature vector is independently
entropy coded. The M = 16 closest textures from the non-rotated set are obtained
and the average retrieval precision over all the rotated texture samples is measured.

Fig. 3.13 and Fig. 3.14 show the retrieval performance of compressed steerable
feature vectors for J = 2 and J = 4. We can clearly see that the classified quantizer
achieves the best performance among the three quantization schemes. By using
the classified quantizer with average tree length | = 2 (complexity constraint), the
retrieval performance degrades very gracefully. Even with the bit rate reduced to
around 1 bit/element, we can still achieve about the same precision as when using
uncompressed features.

With respect to the retrieval complexity reduction by employing a DTC instead
of a linear search, we have computed the number of distance computations that
have to be performed to find the M = 16 closest matches. Instead of 208 distance
computations as in the case of linear search, the DTC requires on average 121.97 for

J =2 and 39.82 for J = 4.
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Figure 3.13: Average Retrieval Performance with compressed steerable features using
uniform quantization, single encoder with bit allocation, and classified encoding.
The feature extraction uses a 3 level steerable pyramid with 2 basic angles.

Retrieval performance with compressed data (STEERABLE J = 4)
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Figure 3.14: Average Retrieval Performance with compressed steerable features using
uniform quantization, single encoder with bit allocation, and classified encoding.
The feature extraction uses a 3 level steerable pyramid with 4 basic angles.
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Chapter 4

Transform Coding for Distributed Image

Classification /Retrieval

4.1 Introduction

In Chapter 3, we designed a classified quantization scheme for feature compression
in distributed image retrieval systems. In this chapter, we formulate content-based
image retrieval as a statistical classification problem, and consider transform coding
techniques aimed at minimizing the probability of classification error'. We assume a
given feature extraction method and consider a set of labeled images: each image [ in
the database D is represented by a pair (X7, Y;), where X7 is the feature vector and
Y7 the underlying semantic class label of image I. Here we do not explicitly assume
any specific model for X, different application-specific features can be considered

within our framework. For example, these could be the transform coefficients of

1Part of the work is this chapter was published in [88]
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the image in DCT domain [81], pixels in image domain [30], color histograms [45],
Gabor textures [41], etc. Image retrieval is performed by finding the K most similar

objects to the given query feature Q through a mapping G:

G:Q—S={I% I3 . I3}CD (4.1)

The probability of retrieval error Pr(G(X) # Y) is the probability that the
retrieval system is provided a feature vector drawn from class Y and it returns
images from classes other than Y. G(X) is the similarity function that the retrieval
system employed to find underlying class label of observation X. Suppose we have
M classes in the database, content-based image retrieval can be naturally posed as
an M-ary statistical classification problem, where the optimal mapping is to select

as classification label for observation X the label y* having maximum a posteriori

probability P(y*|X):

G (X) = argn%/aXPr(yi\X) 1=1,2,., M (4.2)

This is the well known Bayes classifier [25]. The retrieval functions of most exist-
ing prototype CBIR systems can be thought of as special cases of this Bayesian
classifier, where certain assumptions have been made about the class distributions.
For example, the Mahalanobis distance is used for the Nearest Neighbor Classifier
chosen in QBIC [45]. The nearest-neighbor classification employed by [42] [41] is
a special case of a Bayes classifier assuming Gaussian distributions with identity
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covariance. Vasconcelos and Lippman provided an unifying view of image similarity
in [82]. Refer to Appendix A for an evaluation of the similarity functions currently
used by most CBIR systems.

The Bayes formulation of content-based image retrieval is motivated by the obser-
vation that most CBIR system focus on extracting meaningful features to represent
the image contents, but fail to make good use of this information for classifica-
tion. Simple nearest-neighbor classifiers are often used without taking into account
the data distributions, which may reduce the benefits of selecting good features for
extraction.

In a distributed image retrieval /classification system such as that shown in Figure
4.1, the client acquires the data X, encodes it and transmits to the server. The
server decodes the data and selects the class label for the reconstructed data X.
The classifier G does not have access to the original data X and instead operates on

compressed data.

Feature Network .
| Extraction | E1e0der ———| Decoder Classifier | -g

Client Server

Figure 4.1: Source coding for distributed image classification.

The problem we address is that of designing good source codes (which consists of

encoder « and decoder 3), such that after applying the classifier to the reconstructed
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data X = B(«(X)), the classification error due to data compression is minimized for

a given rate constraint Ry:

min P,(X) st R<R, (4.3)

o G
From (4.2) we see that the M a posteriori probability functions {Pr(y;|X),

i =1,..., M} carry sufficient information for classification. An unconstrained solu-

tion would be to classify the input at the client using uncompressed data X, and

send only the classification label to the server. However there are situations where

client-based classification is not an option, including:

e cases where the client has limited computational and memory resources and
is unable to support a complex classifier [72][46](e.g., Image database, Speech

recognition engine, etc.)

e cases without those complexity constraints but such that the database used
for information retrieval is constantly changing. In this situation it is desirable
to keep the database in a central location, without having to also maintain up

to data version at every single client.

e sensor network scenarios where the data acquired from all the sensors are fused
in a central node in order to estimate the required parameter about target, the

classifier (estimator) has to be kept in the central node [84].
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Thus, in any of the above scenarios it would be preferable to compress the feature
data so that recognition/classification can be remotely handled.

Several authors have studied the problem of optimal quantization for binary
signal detection [54] [52] [38], and have shown that for several choices of performance

criteria, likelihood ratio quantizers (LRQ’s) are optimal.

Definition 1 Given a set of all vectors t = (ty,...,t,—1) € [0,00]97", satisfying 0 <
t < ... <ty < o0. Alikelihood ratio quantizer is the partition A = {5;,i =1, ...,q}

of the sample space x, with each domain ¢; defined by

where /(z) is the Likelihood Ratio Z%(x).

Tsitsiklis studied the extremal properties of Likelihood-Ratio Quantizers in [77]
and established optimal properties of LRQ for quantization problems involving the
maximization of an Ali-Silvey distance [1] and the Neyman-Pearson variant of the
decentralized detection.

In spite of the fact that LRQ is optimal, such a solution is often impractical for
real applications. In a client-server communication model, employing a likelihood
ratio quantizer is equivalent to keeping a full-fledged classifier at the client, which
is what we try to avoid in the first place. Furthermore, it is unknown from the
literature how to generalize the likelihood ratio quantizer to the cases where M > 2

hypothesis need to be classified. In this chapter, based on the idea of maximizing
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the class separability, we show how to design a transform-based encoding system
for distributed classification applications. We focus on transform coding due to its
simplicity, flexibility, and good practical performance.

Traditional transform coding is designed to achieve minimum reconstruction er-
ror for a given bit rate, where the distortion is often evaluated by in terms of mean
square error (MSE), i.e., E(d(X, X)). It has been shown that a good approach for
this purpose is to use an optimal decorrelation transform (Karhunen Loéve Trans-
form) followed by quantization and entropy coding [28]. The main principle is to
compact most of the signal energy in fewest dimensions (energy compaction), and
then allocate bits based on signal variances in each of the dimensions. However, for
quantization in signal classification applications, it is the class separability informa-
tion that we shall preserve, not the representation precision measured by MSE.

Optimal transform coding of the images for joint classification/reconstruction
was considered in [35]. It was shown that assuming X is a stationary, periodic
process under two hypothesis Hy and H;, the Discrete Cosine Transform (DCT)
would produce uncorrelated components and the optimal transform for classifica-
tion/reconstruction would be the DCT followed by a diagonal transform, which can
be absorbed into the scalar quantization. In their latest work [36], the same authors
showed that when a cost function combining Chernoff distance (one special case of
Ali-Silvey distance) and MSE is used, the Karhunen-Loéve transform (KLT) is the

optimal transform, under the following assumptions:
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1. High rate quantization.

2. The same unitary transform C' is a decorrelating transform for data generated

under either hypothesis, H;,7 = 0, 1.

3. Under each hypothesis H;,i = 0,1, the probability density function f;(X) is a

mixture of N; Gaussian with a common mean (assumed to be zero):
N;
Hi: X~ f; =Y ayN(0,%;), i=0,1 (4.5)
7j=1

where ;; > 0 and 32, o;; = 1. Each covariance matrix ¥;; is diagonal, hence
j j=1 ij j ’

Xk, 1 < k < N, are uncorrelated under H;,7 =0, 1.

4. A Unitary transform is used.

Although Assumption 2 approximately holds for natural images, it might not
hold anymore when we deal with image features that are extracted from images for
the purpose of content-based image retrieval. Furthermore, Assumption 3 can not
be justified in general: neighboring pixels in natural images are highly correlated;
the features extracted for content-based retrieval are not necessarily going to be
uncorrelated.

In this chapter, we design transform coding approach optimized only for the
classification problem. Assuming that the distance between classes is measured by

the class separability criterion namely the scatter measure, which is based on the
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second-order statistics, i.e., means and covariances, of the empirical data, we present

the following contributions:

e We demonstrate that the LDA is the optimal linear transform;

e We design an efficient bit allocation algorithm to split the rate budget among

the transform components, based on classification criteria;

e We derive the relationship between the proposed transform coding and the op-
timal solution, likelihood ratio quantization [54] [52] [38], for Gaussian Markov

sources;

e We extend the high rate analysis of Likelihood Ratio Quantization [53] for
optimal bit allocation in the proposed transform coding for Gaussian Markov

sources.

This chapter is organized as follows. In Section 4.2 we define the problem of
designing transform coding for pure classification application. Section 4.3 presents
the optimal transform and proposes a greedy bit allocation scheme. In Section 4.4
we demonstrate the optimality of the proposed scheme for Gaussian Markov sources
by deriving the relation to the LRQ, and extending the high rate analysis by Poor
et. al [53] for optimal bit allocation under the proposed transform coding scheme.
Finally, Section 4.5 provides simulation results using both a real texture classification

example and synthesized Gaussian Markov sources.
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4.2 Problem definition

4.2.1 The standard model of transform coding

Let us define the system under study. The “information source” is denoted by a
real column vector X € RY, or a sequence of such vectors. Each source vector
is assumed to be a realization of M possible random processes with distributions
fisi = 0,1,---, M — 1. In general, these distributions need not to be known as
closed form models and could be empirical, i.e., they could be characterized by a set
of sample vectors.

Transform coding comprises three relatively simple steps: Computation of a lin-
ear transformation, scalar quantization of the transform coefficients, and entropy
coding. Each of the steps operates independently. The structure of transform cod-
ing is shown in Fig. 4.2. The input data X € RY is transformed to {1, Zs, ..., Zn}
by a linear transform 7" € R¥*N. The resulting transform coefficients are sepa-
rately quantized by N scalar quantizers ay, £ = 1, ..., N. The quantization indices
{41,142, ...,in} are represented using an entropy coder by 7. At the decoder, entropy
decoding ! produces the quantization indices, 3; reconstructs the quantized trans-
form coefficient Zy. And finally the synthesis transform U (usually 7 !) is applied
to obtained reconstructed data X.

Without loss of generality, we assume a linear transform 7" followed by a bank of

uniform quantizers {A;}, and independent entropy coding of quantization indices.
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Figure 4.2: Structure of a standard transform coding system.

Our goal is to find the optimal linear transform 7™ and the set of quantization step-
sizes {A}}, such that the probability of classification error based on the compressed

data P,(X) is minimized for a given rate constraint Ry:

(T*,A}) = arg min} P.(X) st. R<R, (4.6)

T{A

4.2.2 Quantization and cost criteria

Information loss in transform coding comes from quantization. The quantizer «
introduces a partition A which consists of a set of non-overlapping cells A = {a;,i =
1,...,q}. Each cell g; is associated with a reconstruction value v;. Any sample X
falling in cell a; after quantization «(X) € a; is reconstructed as X = v; and thus
will be classified to the same classification label as v;.

Quantization performance is measured by the information loss it introduces and
the entropy rate of the quantization indices. For reproduction purposes, MSE is

typically used to describe information loss. Alternate performance criteria must be
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considered when the reconstructed data is to be used for classification. Probability
of misclassification P, is certainly the most desirable criterion. However, in most
practical applications, the probability of misclassification may not be easy to com-
pute and manipulate and thus various alternative criteria and measures have been
proposed and used in practice. In particular, researchers have been interested in a
measure of the class overlap or alternatively class separability.

There are two types of criteria which are frequently used in practice to evaluate
class separability. One is based on a family of functions which give upper bounds of

the Bayes classification error, such as the Chernoff Bound [76]:

P, < i} *mie Dsllo1) (4.7)

where 7; is the a priori probability, f; the distribution function of class 7, and 0 <

s <1 is the Chernoff exponent. D; is the chernoff distance computed as:

Do sy =tn [ 1) (E4Y (19

In this work we consider a class separability criterion called scatter measure [25].
It is based on a second-order measure of quality that is defined completely in terms of
second-order probabilistic parameters, i.e., means and covariances, of the empirical
data. We consider the within-class scatter S, which is the scatter of samples around

their respective class mean:
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Sw = > mE{(X — M)(X — M)"|y:} (4.9)

=1

M
= Z ﬂ-izia
=1

and the between-class scatter Sy, which is the scatter of the expected vectors around

the mixture mean [25]:

Sp = %wi(Mi — M)(M; — M)*, (4.10)

i=1
where 3; and M,; are the covariance matrix and mean vector for the ith class,
respectively, 7; is the a priori probability of class ¢ and M is the overall mean vector.

The scatter ratio criterion is computed as:
S =S.""'Sy (4.11)

Figure 4.3 shows a visualization of the meaning of the scatter measure. The
intuition here is that to have good class separation, we would like different classes
to be as far apart from each other as possible (Sy, is large) and, at the same time,
samples belonging to the same class to be as closely clustered together as possible

(Sw is small).
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Figure 4.3: A simple example showing the visualization of the scatter metric.

4.2.3 Linear discriminant transform

A signal given as an N dimensional vector X € RY is implicitly represented with
respect to the canonical basis for RY. A linear invertible transform T basically
changes the basis through rotation and scaling. A change of basis does not alter
the information in the signal. The reason that transforms are useful for compression
is that simple coding, e.g., scalar quantization and entropy coding, may be more
effective in the transform domain than in the original domain [28].

Typically, the transform coefficients are separately quantized with uniform quan-
tizers. The induced partitioning consists of parallelogram-shaped cells aligned with
the transform bases. It was shown in [28] that the optimal transform for signal rep-
resentation is the Karhunen-Loéve transform. Let S,, denote the covariance matrix
of the information source (which is a mixed distribution from M possible random
processes). The KLT transform is computed as:
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T* = max |T*S,T| (4.12)

TERNXN

where | - | denotes the determinant of a matrix. We can see that the KLT computes
the linear transform that provides optimal energy compaction.

Following the same philosophy as of Karhunen-Loéve transform, which is de-
signed to preserve the signal energy (measured by covariance), we propose that the
optimal transform in terms of preserving the class separability (measured by scatter
ratio) can be computed as:

A'SL,A

A* = (4.13)

T Achixe AtS, A’
which is the linear discriminant analysis (LDA) matrix proposed in pattern recog-
nition application [25].

The idea of exploiting the LDA matrix for transform coding is inspired by the
optimality of LRQ. LRQ leads to a space partition where partition boundaries are
aligned with classification boundaries. An LDA classifier generates a hyperplane
that provides optimal separation between two classes. If the decision boundaries are
to be approximated by linear hyperplanes, LDA will be the optimal transform.

LDA has been proposed in pattern recognition applications to avoid the curse-
of-dimensionality problem. Classification procedures that are analytically or com-
putationally manageable in low-dimensional spaces can become totally impractical
when dimensionality reaches 50 or higher.
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It has been shown in [22] that the matrix A which maximizes the scatter ratio

shown in (4.13) must satisfy:

SpA = AS, A, (4.14)

which is a generalized eigensystem problem. Assuming that S,, is non-singular, we

have:

Sw 'SpLA = MA. (4.15)

This is a standard eigensystem problem. Thus the transform A* that is optimal
in terms of “compacting” the class discrimination information measured by scatter
S 'Sy, is a matrix whose columns consist of the eigenvectors of the matrix Sw 'Sp.

To visualize the fundamental difference between signal representation and signal
classification, let us look at a simple example taken from [25]. Figure 4.4 shows
the distributions of height and weight for males and females. The principal axis
¢, correspond to the basis vector of the KLT transform with largest eigenvalue.
It captures the most energy of the mixture distributions. However, if we project
the distributions to ¢, the marginal density functions of two classes (male and
female) are heavily overlapped. On the other hand, classes are well separated along
direction ¢5. In this sense ¢y preserves more classification information and should be
treated as being more important than ¢,. However, traditional transform coding will
allocate more bits to ¢; than to ¢, due to the larger signal variance along ¢,. This
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is good for representing the signal but bad for preserving classification information.
Thus, new transform and bit allocation schemes are needed to better preserve class

discrimination information.

>
=
[§]

- ,
A
N

x, height

y -

Figure 4.4: An example comparing transforms for signal classification and signal
representation [25].

4.3 Proposed scheme

We propose to an approach based on LDA for transform coding in classification
applications. Since the scatter matrix Sy 'Sp is not necessarily symmetric, the
eigensystem computation in (4.14) could be unstable. We use the method proposed

in [74] for the eigensystem computation.
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Suppose the diagonal factorization of the within-class scatter is Sy, = HAH' (S,
is symmetrical). Compute a new symmetric matrix V by multiplying the between-

class scatter matrix S, by HA™2 and its transpose (HA™2)":

V = (HA 7)'Sp(HA?) (4.16)

Since V is also symmetric, it again can be factored in terms involving a unitary
matrix U and a diagonal matrix E: V = UEU’. Without loss of generality, we

assume that E is sorted in descending order of eigenvalues. We have:
Sp, = HA:UEU’AzH (4.17)
then the scatter matrix can be represented as:
Sy 'S, = HA'H'HA:UEU'A:H' (4.18)

— HA:UEU'A:IH!

= SES!

where S = HA—2U. Thus S is the eigenmatrix of Sw 'S, and E contains the
eigenvalues.
The key idea of linear discriminant analysis is that classes become well sepa-

rated after projecting to the most discriminant directions (the bases of S that have
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larger eigen values), and the class separability information is “compacted” in fewest
dimensions in the transform domain.

As an example, we show in Figure 4.5 the histograms of projected data of the
wavelet feature vectors for two Brodatz textures [7] D1 and D2. The wavelet feature
vector is computed as the norm in subbands of a Dyadic wavelet decomposition of
the image. Details about wavelet feature extraction can be found in Section 2.4. The
example in Figure 4.5 uses as a feature vector the norm in the LL and LH bands of

third level decomposition.

Histogram of projected data along MDF1
15 T T T T T T
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I class 2

0 1 | I
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Histogram of projected data along MDF2
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Figure 4.5: Histograms of features projected onto the eigensystem of the scatter
matrix.

We can see that after projecting onto the eigensystem of the scatter matrix,

most of the class discrimination information is preserved in the direction which
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corresponds to the eigenvector with the largest eigenvalue (the top histogram in
Figure 4.5). Quantization in the transform domain will induce partitions that align
with the directions of class separation. Keeping this in mind, we would expect that
the representation entropy (representing class separability information) in linear
discriminant transform domain can be reduced as compared to the original domain.
This nice property can be used to enable efficient quantization.

After transformation, we need a bit allocation scheme to decide the quantization
stepsizes {A;} for each feature dimension ¢, such that the discrimination informa-
tion between classes is best preserved for the given rate constraint. Different from
traditional bit allocation, where total distortion is obtained as the sum of distortion
in each dimension, here the classification performance depends on all dimensions,
and it is not possible to create separable metric to capture this performance. Thus
it is not possible to apply standard Lagrangian techniques to allocate rate to each
dimension in order to maximize overall classification performance. To overcome this
problem, we propose a greedy bit allocation scheme where we start by using the
finest quantization for all dimensions and at each iteration we choose the dimension
to which a coarser quantization shall be applied such that the magnitude of the ratio
of increase in average class entropy to decrease in entropy rate is minimized. This
process repeats until the rate constraint is satisfied. Following is a formal description

of the proposed bit allocation scheme.
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Let o = {AlL4 = 1,..,N} denote the quantizer at iteration ¢, which ap-
plies quantization stepsize A! to dimension i, and let A* be the resulting par-
tition of the sample space using quantizer al. At iteration ¢ + 1, let a}iﬂ =
{ALAL AR AY} be the quantizer which has the same stepsizes as quan-
tizer o' except for the k—th component, where a larger stepsize than at iteration
t is applied (AL > AL). We denote the resulting partition induced by quan-
tizer a,t! as ALT'. Note that at iteration ¢ + 1, there are N alternative partitions
{AF k= 1,..., N} to choose from. The goal of proposed greedy bit allocation
scheme is to decide which partition to choose at each iteration t.

A partition A consists of many individual cells denoted as a. The samples falling
in the same cell will be reconstructed as the same value (usually the centroid of the
cell), and thus will be classified to the same class by any classifier. We introduce
a misclassification cost which we call class entropy, to be used in the context of
quantization.

Suppose the total number of classes is C' and let {p;(a), p2(a),- - -, pc(a)} denote
the probabilities that vectors corresponding to each class fall within partition cell
a. In practice given a training set, this can be computed as the ratio of the number
of class ¢ samples n;(a) and the total number of samples n(a) in cell a. The class

entropy in cell a is computed as:
c
H(a) = —>_pi(a) x log(pi(a)), (4.19)
i=1
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and the average class entropy for a partition A is computed as:

H(A) = > Pr(a) x H(a). (4.20)

acA

The average entropy rate is computed as the sum of the Shannon entropy [29]
of the quantizer output for each vector component. Let Z; be the coefficient and A;
be the quantization stepsize for the i—th component, respectively. P, = P(kA; <
7; < (k+1)A;) is the probability that the source sample, X = {z;,i = 1,--+, N},
lies in the quantization interval (kA;, (k + 1)4A;]. Note that in order to compute
the Shannon entropy, we consider all source samples and do not separate them by
class. Then we have the Shannon entropy rate for :—th feature vector component

computed as:

k

and the average entropy rate is the sum over all feature vector components:

R= Z R; (4.22)

We need to find at iteration £+ 1 the component 7* along which to apply a coarser
1y t
quantization than at iteration ¢, such that the slope p; = % is minimized.

R(A) is the entropy rate associated with partition A and is computed using (4.22).

This process is continued until the rate constraint is satisfied, i.e., R(A) < R,.
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Let there be ) admissible quantization stepsizes {d1,...,dg}, where §; < J <
... < dg. We associate an index ¢ with each entry ¢;. Thus at iteration ¢, if we have
quantizer o = {1,3,...,1}, we mean that the corresponding stepsizes are: §; for 1,

03 for xs,..., and d; for z. Following is the proposed greedy bit allocation algorithm:

Proposed Algorithm : Greedy bit allocation for quantization in signal classifi-
cation

Step 0: Initializet = 0, o® = {k¥, k9, ..., k% } = {1,1,...,1}. Compute H(A®) and
R(A%).

Step 1: If R(A") < Ry, stop; Elset =t+1, i =0, goto Step 2.

Step 2: i =i+ 1. Let k! = k™' +1 and k. = k;-_l Vj # i. The corresponding

quantizer is of = {kt, .. k!, ... ki }. Compute H(AL) and R(A}) using (4.20) and

H(Af)—H(A*"Y)

(4.22). Then we have p; = RA-T—R(AT)

. If i < N, repeat Step 2;
else, goto Step 3.

~ %k

Step 3: Choose 1* which has the minimum slope p : ©* = mineq10,.. Ny} pi- Let

o' = al., and goto step 1.
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4.4 Relation to Likelihood Ratio Quantization

(LRQ)

In this section we review the concept of Likelihood Ratio Quantization (LRQ) and
show the optimality of LDA transform coding for a certain class of Gaussian distri-
butions. We develop the asymptotic analysis of proposed coding scheme under the

assumption of high rate quantization.

4.4.1 Review of Likelihood Ratio Quantization

Suppose we have two hypothesis H;, H,, and X is a random vector with probability
distribution P;(X) under hypothesis H;. In classical signal detection theory, one
observes one or more realizations of the random vector X and attempts to predict
the hypothesis that generated the observation. However there are many applications
where the observation must be quantized and the classification is constrained to
operate on quantized data. For example, an imaging radar captures and transmits
information to an user whose interest is the likelihood of presence of a particular
target; Or consider decentralized detection applications where sensors obtain and
transmit their observations to a central node that fuses all the information to make
a final decision [75]. Compression is essential to reduce transmission rates. The

problem is to find the optimal quantizer with respect to a performance measure
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of interest. In this chapter, we focus on a performance measure called Ali-Silvey
distance [1].

Let f : ][0, co) — R be a continuous convex function satisfying:

lim £ _ g (4.23)

T—>00 T

The Ali-Silvey distance of two probability measures Py, P; is defined as [77]:

Dy(Po, P1) = [ F(U(2))dPy = Eo(f(¢(x))) (4.24)

where {(z) = % is the likelihood ratio function. Let us use a quantizer o, and let the
quantized data be a random variable with probability mass function ¢(«|H;), under
hypothesis H;, + = 0,1. The quality of quantizer « in terms of discriminating two
hypothesis (Hy, H1) can be measured by the Ali-Silvey distance of the distributions

of the quantized random variables:

F(a) = Dy(q(aHo), q(alHy)) (4.25)

Several authors have studied this problem[54] [52] [38], and have shown that for
several choices of performance criteria, LRQ)s are optimal. Tsitsiklis studied the
extremal properties of LRQs in [77] and established optimality of LRQ for quanti-
zation problems involving the maximization of an Ali-Silvey distance. We now cite

the results in [77] without proof.
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Definition 2 Given a set of all vectors t = (t1,...,t,—1) € [0,00)97t, satisfying
0<t <..<t,1 <oo. A Likelihood Ratio Quantizer is the partition A = {a;,i =

1,...,q} of the sample space, with each domain a; defined by

Proposition 2 The problem of finding a quantizer o that mazimizes the Ali-Silvey

measure F(a) has an optimal solution which is a Likelihood Ratio Quantizer (LRQ)).

Many criteria used to evaluate the distance between distributions are special cases
of the Ali-Silvey distance. For example, we get the Kullback-Liebler divergence when

f(z) = —log(z); the Chernoff distance:

Dy(Py,P1) = ln / 4Py () (Z%Eg) (4.27)

is obtained by setting f(z) = —z® with s € (0, 1); the work by Picinbono and Duvaut

[52] is also a special case of the Ali-Silvey distance with f(z) = =.

4.4.2 LDA transform coding and LRQ

Consider data source whose class conditional probability densities are Gaussian
Pi(z) ~ N(M;,%;), and assume their covariance matrix are identical for each hy-
pothesis (3; = 3,7 = 0,1). We show that LDA transform followed by scalar quan-

tization is the optimal quantization for signal classification.
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Under above assumptions, the solution to the eigenvalue problem in (4.15) for

LDA is the Fisher’s Linear Discriminant [25]:

A* =S, My — M) (4.28)

Assuming equal a priori probabilities, the log Likelihood Ratio between the two

hypothesis Hy and H;:

1 1
log(ﬁ(m)) = —5(,%‘ — Mo)tzo_l(il? — M()) + 5(3? - Ml)tzl_l(.’l} — Ml) (429)
Example 1 The first case we consider is when the covariance matrix is an identity
matrix, i.e., elements from different dimensions are uncorrelated. In this case we

have ¥y = ¥; = 02I. The log likelihood ratio function becomes a linear machine

[22]:

log(4(z)) = W'z + wy (4.30)

where W = My — M; and wy = —#(MSMO — M}M;). The LRQ is equivalent to a
linear transform W followed by scalar quantization. We now show that this linear
transform W is the same as the LDA transform A* in this case.

Here, the within-class scatter matrix Sy = 01—21, and thus can be written as the

LDA transform in (4.28) becomes:
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. 1

We can clearly see that W and A* are actually the same linear transform, there-
fore linear discriminant analysis results in the same decision boundaries as the opti-
mal Likelihood Ratio test.

Now let us look at the principal axis of KLT, which are the eigenvectors of the

average covariance matrix Sy, = Sw + Sp. From LDA we have:

Sw 'SpbA = AA (4.32)

Since Sy, = 0?1, from (4.32) we easily see that SbA = Ao?A. After some simple

manipulation we get:

SmA = (Sw+Sp)A (4.33)

= (A +1)A,

i.e, the covariance matrix of the mixed distribution shares the same eigensystem
with the scatter ratio matrix Sy~ 'Sp. Figure 4.6 shows an example of the direction
vectors from Likelihood Ratio test (4.30), Linear Discriminant Analysis transform
(4.31), and KLT (4.33) for 2-dimensional Gaussian random vectors with identity

covariance matrices:
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["] — Bayes projection

—  KLT,eigen value 1.0144
—— KLT eigen value 7.2050
ar LDA,, eigen value 6.2750

x1

Figure 4.6: An example showing the direction vectors from Likelihood Ratio test,
Linear Discriminant Analysis transform, and KLT for 2-dimensional Gaussian ran-
dom vectors with identity covariance matrices. The mean vectors for the two hy-
pothesis are My = [1 2]* and M, = [3 3]".

10
20_21_[0 1]. (4.34)
The mean vectors for the two hypothesis in this example My = [1 2] and M; =

3 3.

Example 2 The second case we consider is that when the two hypothesis have
same covariance matrix, but there exists correlation between elements of different
dimensions. Decision boundaries from Likelihood Ratio test are represented by a

linear transform W = X~!(M, — M;), which is the same as the LDA transform A*.
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We shall show that the principal axis ¢; from KLT is different from W and A* for
this case, and that as the correlation increases, ¢; becomes more deviated from W.
Using the diagonal factorization of the scatter matrix Sy, and Sy in (4.16) and

(4.17), the eigensystem of the the mixture covariance matrix can be computed as:

Sm = HAH'+HA*UEU‘A*H (4.35)

= HA*U(E + I)(HA®U)

Compared to the factorization of the scatter matrix in (4.18), we see that the
principal axis ¢; from KL T, which corresponds to the first column of matrix HA%U,
will be generally different from the Fishers’ linear discriminant which corresponds to
the first column of matrix HA 3 U. While LDA penalizes the directions where the
within class scatter is large, KLT emphasizes these direction since the within class

scatter contributes to the over signal energy.

Example 3 We now show an example of the deviation of KLT from LDA and

Likelihood Ratio test. In this example the covariance matrix is given by:

ot p
Y= l » o (4.36)
where p is the correlation coefficient between dimensions. We plot in Figure 4.7

an example of the basis vectors W, A* and the KLT transform, with correlation

coefficient p = 0.2. The mean vectors are My =[1 2]' and M; = [-2 —2]%.
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Correlated Gaussian, correlation coefficient = 0.2
T T T T T

— Bayes projection
—  KLT,eigen value 0.8195
—— KLT eigen value 7.4704
LDA,, eigen value 5.3475

X2
o
T

x1

Figure 4.7: Example of basis vectors of Likelihood Ratio test, Linear Discriminant
Analysis transform, and KLT for 2-dimensional correlated Gaussian source with
p = 0.2. The mean vectors for the two hypothesis is My = [1 2]* and M; = [-2 —2]".
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Figure 4.8: Angle between the principal axis ¢; and W as a function of the correlation
coefficient p for correlated Gaussian Sources.

We show in Figure 4.8 the angle between the principal axis ¢; of KLT and the
basis of W (A*) with largest eigenvalue, as a function of the correlation coefficient p.
We can clearly see that the more correlated the dimensions are, the more deviated
the principal axis of the KL.T transform are from the optimal transform of Likelihood
Ratio test. Linear Discriminant transform, on the other hand, is the same as the

optimal transform.
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4.4.3 Optimal bit allocation under high rate analysis

Assume that the two hypotheses are Gaussian distributed with identical covariance
matrices Yo = ¥; = X. Then from Section 4.4.2 we know that LDA transform
coding is optimal in terms of maximizing the distances of the quantized distributions.
Let X = A'X | where A = 7Y(My — M,) is the LDA transform. The optimal
quantization (LRQ) is given by scalar quantization in the transform domain (the

likelihood ratio function is linear):

A* = {bj—l <X < bj,j =1, ,L} (437)

where {b;,i =1,...,L} is a set of real numbers defining the partition lines and L is
the total number of quantization bins.

Consider the scatter ratio of the quantized data in the transform domain:

E1(Q) — Ey(Q))? (4.38)

_(

PO= o+ Q)
where E; is the expectation operator under hypothesis H;, and o7 is the variance
under hypotheses H;. Since the covariance matrices are the same for Hy and Hi,
clearly the denominator in (4.38) will become 03(Q). Then the scatter criterion is
the same as the deflection criterion used by Picinbono in [52].

It was shown in [52] that the optimal partition, in terms of maximizing the deflec-

tion criterion D(Q), is achieved by a “quantization by likelihood ratio” procedure,
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where the partition boundaries are surfaces where the likelihood ratio ¢(X) = %(X )

is constant. This is exactly the LRQ concept we introduced in Section 4.4.1. The

optimal reconstruction value v; associated with partition cell a; which maximizes

the deflection criterion is given by v; = gggz:g The resulting deflection is given
by:
PY(X € a;)
D(Q) = . S 4.39
(@) 2 (X ca) (4.39)

where P;(X € a;) is the probability that a sample X (transform coefficients of sample
X) from hypothesis H; falls in cell a;. We are interested in how the performance
loss (loss in class discrimination information) behaves under fine quantization. By

a simple manipulation, we get:

Pi(
a; €A PO(
= E(C(X)

€ CLZ')

—a) " Pi(X € a;) (4.40)

S
S)
I
S|

which is the generalized divergence E{f(¢(X))} [53] with f(¢) = ¢='(convex func-
tion) and the expectation is taken with respect to probability measure P;. Then as
the quantization stepsize becomes arbitrarily small A — 0, it was shown in [53] that

the discrimination loss due to quantization is quadratic in A:
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E{f(((X))} - B{f(((X)} ~ ?—jE{II vUX) |I* f1(X)} (4.41)

Note that after projecting to the transform space X = A!X, X is a normal
random variable with distribution N(A'M;, A'SA) under hypotheses H;. Without
loss of generality, we assume that M; = m and My, = 0. Then in the transform
domain, the distributions under the two hypotheses are N'(0, %) and N (r?, r?) for H,
and Hi, respectively, and 7?2 = m!3X~'m. Under the assumption of fine quantization,
we calculate the loss in discrimination information D(A) using (4.41) with likelihood

function given as:

U(z) = e =t2" (4.42)
After computation, we get:
1,2
€ 2

Recall that the entropy rate of a uniform scalar quantizer with small cell size A

is approximately [29]:

H(A) 2= h(Y) —log(A), (4.44)
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where h(Y) is the differential entropy of random variable Y. In our case the ran-
dom variable is a mixture of Gaussian TN (0, 72) + TN (r?,r?). Then the optimal
quantization is to find stepsize A* such that cost function J = D(A) + pH(A) is
minimized subject to rate constraint H(A) < R,. For a given multiplier u, taking

the differential of J and letting g—i = 0, we get the optimal stepsize by:

6
A* = ,/eT’f (4.45)

The optimal stepsize can be formed by adjusting p such that rate constraint R,

is satisfied.

4.5 Experimental results

Applying the proposed LDA transform and greedy bit allocation to a four-class (D1,
D2, D3, D4) Brodatz texture example, we show in Figure 4.9 the partition of the
sample space introduced by the proposed scheme. As a comparison, under the same
rate constraint, Figure 4.10 shows the partition resulting from applying bit allocation
using MSE as the distortion metric in the original domain. We can clearly see that
a “purer” partition is achieved at a given rate when the proposed transform coding
was employed.

We show the performance of the proposed method using both a real texture clas-

sification example and synthesized Gaussian Markov sources. The feature vector for
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Partition by transform quantization, with stepsize = 1 for each dimension

Figure 4.9: Partition induced by applying the proposed greedy bit allocation in the
LDA transform domain.

Partition by bit allocation in original domian using MSE
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Figure 4.10: Partition induced by applying bit allocation using MSE as distortion
metric in the original domain.
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Example where KLT deviated from LDA
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Figure 4.11: Example where KLT bases deviate from the bases of LDA. (a) Com-
parison of the classification performance based on two transform coding schemes.
Solid circle: Proposed LDA transform coding with greedy bit allocation based on
classification criteria; Dashed star: KLT transform coding with bit allocation based
on Mean Square Error. Dashed square: (b)The bases of KLT and LDA for this

example.
texture classification is computed as the energy in wavelet subbands. Details of how
the features are obtained can be found in [86]. The three texture classes we used are:
D1, D3, and D4 of Brodatz album [7]. We show in Figure 4.11(a) the classification
performance comparing KLT transform coding and the proposed LDA transform
coding. Bit allocation for KLT transform coding is performed based on MSE. We
can clearly see that our proposed transform coding scheme achieves significantly bet-
ter classification performance than the traditional KLT method, especially at low
rates. At bit rate of 2 bits/sample, the proposed scheme achieves about 13% higher
classification accuracy than KLT transform coding.

We show in Figure 4.12 the Chernoff distance (4.27) between the empirical prob-

ability mass functions Py and P, generated from the quantized data, using KLT
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Figure 4.12: Chernoff distance between the empirical distributions generated from
quantized data for a synthesized Gaussian Markovian source with correlation coef-
ficient (a) 0.2 (b) 0.8
transform coding and our proposed LDA transform coding for a synthesized Gaus-
sian Markov source with covariance matrices given by:
Se=S=| % P (4.46)
0 — <1 — p o2 :
The Chernoff distance is the same as used by [36]. We can clearly see that the
proposed algorithm provides much better separation between classes after compres-
sion than the KLT transform coding scheme, when compared at the same rates. The
more deviated the KLT bases are from the bases of LDA, the larger the performance
gap between the two schemes. When correlation exists between dimensions within

each class, KLT is no longer the optimal transform to use for compression of the

data in classification applications.
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Chapter 5

A user preference information based kernel for
SVM active learning in content-based image

retrieval

5.1 Introduction

In this chapter we address relevance feedback which is a critical component for
content-based retrieval systems'. A major difficulty associated with content-based
image retrieval (CBIR) systems is the semantic gap between low-level features and
high-level human concepts. While in some cases it is easy to map a high level
concept (such as sunset) to low level features (color and shape), in some other cases
such a mapping does not exist. Furthermore, different users may have different

interpretations for the same image, and even the same user may have a different

!Part of the work in this chapter was published in [89]
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interpretation or “feeling” about the same image depending on the applications and
the context of usage.

Thus, substantial efforts have been devoted to designing techniques that place
the “user in the loop”, so that the system can learn the user’s particular query
preferences from time to time.

Relevance feedback allows the user to interactively tune the system to her own
interest by indicating whether certain images provided by the system are relevant
(positive samples) or not (negative samples)?. From the labeled examples, the sys-
tem then learns how to tune the image selection parameters and returns a new set
of similar images, iteratively repeating this process until the user is satisfied with
the result. The construction of such a query updating scheme can be regarded as a
machine learning task. However, relevance feedback learning is different from tradi-
tional machine learning in the sense that the class membership information is not
available beforehand since it is both user-dependent and time varying. As compared
to traditional machine learning, the major challenges associated with relevance feed-

back are:

1. The number of training samples is small relative to the dimensionality of the

data.

2. There exists no a priori model that can provide a statistical characterization

of positive and negative samples.

2Throughout this chapter we will consider relevance feedback provided by the user is restricted
to two categories
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3. Implicitly, the learning algorithm is expected to be low complexity since the

user is interacting with the system in real time.

A majority of proposed approaches for relevance feedback in CBIR systems have
been developed based on various forms of feature re-weighting [61][49], where the
weights associated with each feature for a typical K-Nearest-Neighbor classifier are
adjusted based on user feedback. The intuition is to emphasize those features that
are best at discriminating between positive samples and negative ones by giving
them a more significant weight in the distance computation.

A more systematic formulation of the relevance feedback problem can be achieved
by setting up an optimization problem [33]|, where the goal is to find the optimal
linear transformation that can map the feature space into a new space, having the
property of clustering together positive examples, thus making it easier to separate
them from negative ones.

More recently, several researchers have proposed the use of support vector ma-
chines (SVMs) as an active learning method for the relevance feedback problem in
content-based retrieval [11] [32] [14] [31]. In [32], after each relevance feedback, a
SVM is trained based on the resulting user-labeled images. Then the SVM classifier
is applied to all other images, and produces as an output a class index as well as a
distance score (a margin with respect to the classification boundary). This distance
score can then be utilized for query refinement [61]. A one-class SVM scheme was

developed in [14] that tries to fit a tight hyper-sphere in the non-linearly transformed
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feature space (through a kernel) to include most positive samples. This scheme was
named one-class SVM since it only employs the positive samples, while totally ne-
glecting the information provided by the negative samples. As an extension, a biased
SVM was proposed in [31] to incorporate negative information by employing a pair
of hyper-spheres where the inner one includes most of the positive instances, while
the outer one pushes out most of the negative samples. The unlabeled samples are
then classified as relevant if they fall inside the inner sphere and non-relevant if they
fall outside the outer sphere. We can see that a key underlying assumption made in
these schemes is that the positive samples will actually be clustered together in the
transformed space. Clearly, there is no guarantee that this will always hold true for
an arbitrarily chosen kernel function. Whether clustering does occur (in which case
these SVM techniques are more likely to be successful) depends on the distribution
of positive and negative samples and on the choice of kernel function.

Using the training data set, a support vector machine finds the boundary which
can best separate the classes. The goodness of this separation is measured in terms
of the distance between training data vectors and the hyperplane that separates
the classes. Each choice of kernel function leads to a “modified” distance in the
feature space, and thus to a different ability to discriminate between classes for the
corresponding SVM. Ideally, the kernel should be chosen so as to best reflect the
specific characteristics of the data being classified. Thus, in the relevance feedback

application, a good kernel would tend to minimize the distance between feature
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vectors in the positive class, while increasing the distance between positive vectors
and negative vectors. This chapter proposes an adaptive technique where the kernel
function, and thus the resulting modified distance in the feature space, is updated
with each successive user-provided relevance feedback.

In order to motivate our choice of kernel consider first a simple example where
the feature space can be partitioned into non-overlapping regions, such that all the
objects in any given region belong to a single class, i.e., they are either positive
or negative vectors. If this is the case, then the obvious classification strategy is
to, given a feature vector, determine to which region it belongs and produce as a
classification output the class label of samples in that region. Note that in this case
one could define a “modified distance” that would tend to cluster vectors of equal
class. Trivially, the modified distance would be very small for two vectors located
in regions belonging to the same class, and very large otherwise. This modified
distance between two vectors would be based on the difference in class conditional
probability in the regions each vector belongs to (in this trivial case, class conditional
probabilities for a region are equal to 1 for one class and zero for the other).

Consider now extending this idea to cases where each region contains samples of
both classes, i.e., a given region 7 will contain samples of class +1 with probability p*
and samples of class —1 with probability ¢¢, p* = 1—¢*. The question now is to define
an appropriate distance between vectors, i.e., a distance that takes into account the

different statistical characteristics of their respective regions. Essentially, two regions
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can be considered more “similar”, and thus the vectors in those regions “closer” in
distance, if their statistical characteristics are similar. In this chapter we will show
that this can be achieved with a distributional distance. Moreover, we will argue
that our proposed method will lead to the optimal maximum likelihood solution as
knowledge of the actual underlying probability model improves (i.e., as the feature
space is partitioned into arbitrarily small “regions”, as those we have been using in
this example, and accurate models are known for all regions).

In this chapter we propose a kernel function based on the information divergence
between the probabilities of positive and negative samples inferred from the user’s
preferences. Our proposed approach first infers a simple, non-parametric probabilis-
tic model that can “explain” the training data and characterize the user’s interest.
The model is obtained by quantizing independently each component of each feature
vector and forming histograms of the frequency of occurrence of each class in each
quantization bin (multiple quantization bins per feature vector dimension). For each
quantization bin we thus have an estimate of the marginal probability of positive
and negative samples in the bin. The kernel obtained from these probabilistic mod-
els leads to a distance between vectors that increases if their respective probability
models differ.

By incorporating the probabilistic information into the kernel function, we be-
lieve that some of the advantages of minimum Bayes error classifiers can be combined

with those of trained SVM classifiers. As we will show later in this chapter, a SVM
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classifier with Kullback-Leibler divergence based kernel can match the performance
of an optimal maximum likelihood classifier in extreme cases where the true under-
lying probabilistic model is known. However, when the number of training samples
is small relative to the dimensionality of the data, the performance of a maximum
likelihood ratio classifier suffers, since the probabilistic models can not be effectively
estimated under this scenario. SVMs are adequate tools to address these challenges
since they do not suffer from Hughes phenomenon [9]. In effect, by decoupling prob-
ability model estimation from classification, we are able to select a model that is
appropriate to the dimensionality of the feature vectors and the size of the training
set (i.e., the total number of images on which feedback is provided), and then make
use of it to train the SVM.

To the best of our knowledge this approach has not been used for relevance
feedback in content-based image retrieval systems. Our work is inspired by [43],
where a Kullback-Leibler (KL) divergence was used to derive the kernel function for
SVM classification in speaker identification and image classification. Note that in
[43] domain knowledge is available to model the data distributions that are used in
computing the KL divergence. Statistical models such as Gaussian Mixture Mod-
els (GMM) or Hidden Markov Models (HMM) can very well model the data and
the Expectation Maximization (EM) algorithm can be employed to learn and es-
timate the parameters. A more theoretical analysis of the use of Kullback-Leibler

divergence to derive similarities between image classes, where each image class is

126



modeled as a Gaussian Mixture, can be found in [80]. Although the idea of apply-
ing the Kullback-Leibler divergence to SVM learning is not new, in this chapter we
propose an extension of the framework in [43] for cases such as that of a relevance
feedback application, where the data distribution model is not known a priori and
has to be inferred from user feedback.

We present experiments based on a variety of image categories from the Corel set
(from natural scenes such as Sunsets, Coasts, to human civilizations such as Mayan
& Aztec, Land of the Pyramids). The results show that the new kernel achieves
significantly higher (about 17%) retrieval accuracy than the RBF kernel (the best
among standard SVM kernels), and even better than other kernel choices. Near
100% top-50 retrieval accuracy is achieved using the proposed kernel function after
6 relevance feedback iterations.

The chapter is organized as follows. In Section 5.2 we briefly review the concept
of active learning for relevance feedback using support vector machines. Then we
present our algorithm in Section 5.3. Experimental results are provided in Section

5.4, and Section 5.5 concludes our work.

5.2 Support vector machines for relevance feedback

In what follows we assume a feature extraction mechanism has been chosen so that
each image (or in general each media object) is represented by a feature vector. A

user is presented with a set of images as initial response to a query, and can then
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attach relevance labels to each of the images. These labels are then returned to the
CBIR system in order for a new set of images to be presented to the user.

More formally, suppose that we are given L observations, with each observation
consisting of a pair: a feature vector x; € R", + = 1,...,L, and the associated
semantic class label y;, which can be either +1 (relevant) or -1 (irrelevant), based on
the user feedback. x can be modeled as a random variable drawn from an unknown,
user- and query-dependent distribution with probabilities { P(x|y = +1), P(x|y =
—1)}. The goal of relevance feedback is to learn the mapping g : x; — ¥; based on
the labeled training set.

In the ideal case where we are able to estimate {P(x|y = +1), P(x|y = —1)},

the optimal mapping is simply a maximum likelihood classifier (5.1):

g(x) = arg mZaxP(x\y = 1). (5.1)

Estimation of the underlying probability model is difficult in relevance feedback
applications, where we are confronted with a small sample problem [91], i.e., the
number of available training samples is quite small relative to the dimensionality of
the data. Thus it will be unrealistic to use traditional density estimation techniques
in order to estimate P(x|y). One of the results of this work is that even simple
statistical characterizations, which fall well short of providing a good estimate of

{P(x]y = +1),P(x|ly = —1)}, can in fact provide substantial performance gains
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Figure 5.1: The optimal hyperplane is the one that separates the positive samples
from the negative ones with maximum margin.

over methods that do not take into account the underlying statistical properties of
the user query.

We start by providing a brief review of the basic concepts of Support Vector
Machines, while referring to [78] and [9] for excellent tutorial descriptions on this
subject. In the following, bold typeface will represent vector quantities and normal
typeface will be used for vector components or scalars. Let {x;,y;},i=1,--+,L,y; €
{—1,4+1},x; € R™ be the labeled training set. SVMs are hyperplanes that separate
the training data by a maximal margin between the two data classes, with all vectors
labeled +1 lying on one side and all vectors labeled -1 lying on the other side (see

Fig. 5.1).
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The constraints that have to be met for this separation to occur can be written

as follows:

w-x;,+b > +1 for y;=+1 (5.2)

w-X;+b < =1 for y;=-1

where w is normal to the hyperplane H. The training vectors that lie on hyper-
planes Hy : w-x;+b=1and H, : w-x; +b = —1, are called support vectors. It can
be shown that the margin between the two hyperplanes Hy and H; is simply ﬁ,
thus searching for the optimal separating hyperplane becomes a typical constrained
optimization problem [9]: minimizing || w ||* subject to the constraints given by
(5.2).

Introducing non-negative Lagrange multipliers «;,7 = 1,---, L, one for each of
the constraints in (5.2), leads to an unconstrained optimization, where the goal is

to maximize the following Lagrangian objective function:

1
max(z @i =5 D oYX - ), (5.3)

1,
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with respect to non-negative Lagrange multipliers «;, subject to constraints Y, a;y; =
0. x; - x; is the inner product between vectors x; and x;. Note that there is a La-
grange multiplier o; associated with each training point {x;,y;}. The solution (the

optimal hyperplane) is given by:

w = Zaiyixi (5.4)

In the solution, those points for which «; > 0 are support vectors. The support
vectors lie closest to the decision boundary (see Fig. 5.1). Typically they represent
a small portion of the training data.

One important property of the Lagrangian formulation of the problem, as can be
seen from (5.3), is that the training data only appear in the form of inner products.
This is a crucial property which will allow us to generalize the training procedure
to non linear transformations of the feature space by introducing appropriate kernel
functions.

If the training samples are not linearly separable in the original space y, sup-
pose that we first map the data to some other Euclidean space H (possibly infinite
dimensional) using a mapping ® : x — H. The expectation is that, with a suitable
mapping, the training samples will be more sparsely distributed and therefore can
be more easily separated by a linear hyperplane. In the SVM literature, H is usually
considered to be a Hilbert space, a Euclidean space where an inner product has been

defined. Since the training algorithm only depends on the inner products between
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sample vectors, we can define a kernel function K such that K (x;,x;) = ®(x;)-®(x;),
so that we only need to replace the inner product x; - x; by K(x;,x;) everywhere in
the training algorithm (5.3), without ever having to explicitly compute the mapping
®. Any functional satisfying Mercer’s condition [78] [9] represents a valid kernel.
Through the use of kernels, SVMs may be built and tested in high (possibly infi-
nite) dimensional feature spaces, while maintaining low computational complexity

for training and testing. The resulting classifier takes the form:

N
9(x) : sgn(>_ auy: K (xi,%x) + b). (5.5)
i=1
where {a;,7i =1,---, Ny} and b are parameters that can be learned using quadratic

programming [9]. N is the number of support vectors.

Most of the flexibility and classification power of SVMs resides in the kernel
functions, since these make it possible to discriminate within challenging data sets,
e.g., those where linear discrimination may be suboptimal. Typical kernel functions
include linear, polynomial and radial basis function (RBF), which are defined as

follows:

Linear : K(x,z) = x-z (5.6)
Polynomial : K(x,z) = (Ax-z+ B)? (5.7)
Radial Basis : K(x,z) = e x=l’ (5.8)
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where z is another vector of the same dimension as x and (-) denotes the inner
product of two vectors. A, B, p and 7 are constants which are set a priori. It
is important to note that these kernels are generic and do not explicitly take into
account the statistics of the data set being classified. The Fisher kernel proposed
by Jaakkola [34] is a data-dependent kernel which aims at taking data statistics into
account. Assume there is a generative model P(x|f) that explains well all possible

data. The original input vector x is first mapped to a Fisher score Fy as follows:

Fie = vy log(P(x]0)), (5.9)

then standard kernels can be applied on this score space. Instead of mapping each
object to the gradient log-likelihood vector space as in Fisher Kernel, in [43], the
Kullback-Leibler divergence was directly computed from the distributions of the ob-
jects and was combined with the RBF kernel to compute inner products between
vectors for speech recognition applications. In relevance feedback of content-based
retrieval systems, however, generative models that can be used the underlying prob-
abilistic distribution, e.g., HMMs/GMMs, may not be available. The Fisher kernel
method [34] is inherently parametric, therefore can not be generalized to cases where
only non-parametric estimation is available (e.g., estimation from quantized bins).
We propose to employ non-parametric methods to capture statistical characteristics
of the user’s preference from the positive and negative samples, and we derive a new

kernel called User Preference Information Divergence (UPID). Our scheme makes no
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prior assumptions about the data distribution, which is exactly what we are trying

to learn.

5.3 Kernel based on User Preference Information

Divergence

Our proposed method aims at learning the user’s preferences empirically, through
probabilistic information contained in the user’s feedback, and then using this infor-
mation to derive a kernel that is customized for the specific user and task. We will
first show that if the probabilistic estimate is accurate, performance can approach
that of a maximum likelihood classifier. We will then propose a simple and practical
technique to model the probabilistic information provided by the user feedback.
Consider first the ideal case where we assume the a posteriori probabilities P(y =
+1|x) are known for any observation x. Then, given any two observations x and z
we can compute the Kullback-Leibler divergence between P(y = £1|x) and P(y =

+1|z):

Dlxllz) = Ply = +1jx) IOg(H) + Py = —1|x) log(H).
(5.10)

Note that D(x||z) is not symmetric. Thus, in order to have a valid distance, a
symmetric Kullback-Leibler divergence can be defined as:
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Dy(x,z) = D(x||z) + D(z||x). (5.11)

This distance can then be used to replace the inner product or the Euclidean dis-
tance in the standard kernels in equations (5.6), (5.7) and (5.8) to form a valid
kernel. Under our assumption that an accurate model is available (in a practical
case this would entail having enough training data) we are interested in evaluating
the performance of the SVM classifier obtained using the new kernel.

Consider all the points x which have a given likelihood ratio of a posteriori
probabilities, ¢, i.e., such that:

P(y = +1|x)

A= Ply=—1k)

= (5.12)

it can be easily seen that these points will have a posteriori probabilities P(y =

+1x) = Hil, Ply=-1x) = zj%l' The distance between any such point x and and

a support vector x;,7 = 1,---, Ny can be computed by using equations (5.10) and

(5.11) as follows:

Dy(x,x;) = —H, (P)— Plogl+log({+1) (5.13)
14 14 Pt
—-H, (—— 1 " — log P~
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where P;" and P, are the positive and negative a posteriori probabilities for support

vector x;, respectively. Hy(p) is the binary entropy [20] computed as —plogp — (1 —
p)log(1 — p).

We can see that this distance is only a function of the likelihood ratio ¢ and is
independent of x. Thus any function A() of such a distance (e.g., a function of the
distance that might be used to form the kernel) will be independent of x. Therefore
all the points that have a given likelihood ratio will have the same score with respect

to the support vectors, i.e.,

fx) = 2aiyz-h(Ds(x, X;)) + b (5.14)
_ < sp Ply=+1x)
= C(O), ¥x st — =t

This is equivalent to saying that all the points lying on the decision boundary of a
Maximum likelihood ratio classifier, as represented by equation (5.12) [22] [52], are
mapped to a hyperplane in the high-dimensional feature space (through the kernel)
represented by f(x) = C(¢), which is parallel to the SVM separating hyperplane
H : f(x) = 0. Thus, as is desirable, the decision hyperplanes will contain constant
likelihood ratio feature vectors.

Assume now that all the positive support vectors (which lie on the hyperplane
Hy, as shown in Figure 5.1) have likelihood ratio ¢t and Lagrange multiplier o,

the negative support vectors (which lie on the hyperplane H;) have likelihood ratio
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= ei+ and Lagrange multiplier c_. Assume further that the number of positive and
negative support vectors are equal, N, = N_. Then we are interested in evaluating
the score for all the points which have likelihood ratio £ = 1. From [9] we know that

in this case b = 0. Then the distance score for those points can be computed as:

flx) = Zazyz s (X, X;))

A 1 I
= Za+yz £++1) ?%(m))
b Soun-m( - og(w_fwn
= h(—HQ(%) 1] (£+€: zjazyZ (5.15)

Note that the argument of function h() is the same for £* and 7, thus it can be
factored out of the summation. Taking into account the fact that ZZN;l a;y; = 0, we

have:

=1. (5.16)

which means the SVM classifier using the KL divergence kernel produces an optimal
partition of the space in terms of minimizing Bayes classification risk.
Clearly, this result is important, as it indicates that our proposed method can

approach the optimal classifier if a sufficiently good estimation of the underlying
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probability model is available. However, in relevance feedback applications, there is
no such probabilistic model available since the query concept is unknown and time-
varying. Furthermore, the amount of available training samples is usually very small
relative to the dimensionality of the data, which prevents us from using traditional
methods to estimate the joint probabilistic models. Given these challenges, we
propose to use marginal distributions for each component and derive a kernel based
on marginal divergences between positive and negative probabilities. We show that
by combining this approximate probabilistic model with an SVM, we are able to
effectively capture information about the user’s query concept, even though the
number of training samples is small.

One important conceptual advantage of our proposed technique is that it sepa-
rates the estimation of the underlying probabilistic model from the classification task
itself. Thus, while in our experiments we describe a non-parametric method for den-
sity estimation, application specific probabilistic estimation tools could be brought
to bear in other cases. For example, in some cases a combination of parametric and
non-parametric tools might be used.

For a given feature vector x = (1, Z2,- - -, )", we define the marginal probability
of each label for each component of the feature vector z; as {P(y = +1|z;), P(y =
—1Jz;)}. These marginal distributions for each component z; can be empirically
estimated from the training data (i.e., from the feedback data in our case). Clearly,

this estimation process is challenging because i) z; can in general take values in
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either a large discrete set or a continuous range, and ii) limited amounts of data are
available for training.

Given these challenges, parametric models for {P(y = +1|z;), P(y = —1|z;)}
could be considered but this in turn would imply that some prior assumptions need
to be made about the distributions. Thus, in order to have as much flexibility
as possible, we choose a non-parametric probability estimation approach. In what
follows training data will refer to data obtained by accumulating successive iterations
of user feedback.Thus the amount of available training data increases every time the
user provides feedback.

For each feature vector component x; we define a quantizer A; that consists of B,
reconstruction levels 7, with B; — 1 decision boundaries denoted as {b1,---,bp,_1}.
Thus the quantizer A; partitions the input space into B; non-overlapping regions.
We estimate the probabilities { P(y = +1|z;), P(y = —1|z;) } by counting the number

of samples that fall in each bin:

Y Wy = £D)1(Jma — ru] < Aw)
Sk |z — il < Aw)

Ply==£l|lz; =ry) = (5.17)

where the indicator function 1(-) is equal to one when its argument is true and zero
otherwise. L is the number of labeled training data. z; is the [-th component of
training vector x;. 24y is the size of the quantization interval along dimension [

centered at reconstruction value ry. Figure 5.2 shows an example of the partition
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Figure 5.2: An example of the partition induced by quantizer A; for component
x;. The dashed and solid bars above each bin represent the marginal probabilities
P(y = +1|z;) and P(y = —1|x;), respectively.

induced by quantizer A; for component z;. The dashed and solid bars above each bin
represent the marginal probabilities P(y = +1|z;) and P(y = —1|x;), respectively.

For those quantization bins where there is no training data, we simply set the
marginal probabilities to zero since they make no contribution to differentiating
classes.

Obviously the design of the quantizers, A;, in general may play an important role
in probability estimation. In this chapter we focus on a simple uniform quantization
scheme where all quantization bins in a given feature dimension have the same size

27, which is computed from the dynamic range of the data [max(z;), min(x;)]
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(note that this range may change from iteration to iteration) and the number of

quantization levels applied B;:

max(x;) — min(x;)

Ao = Oy = 2x B
l

(5.18)

We also compare uniform quantization with a non-uniform quantization scheme
which has unequal bin widths. The bin widths and the number of the bins are deter-
mined by minimization of the MSE (mean square error) using the Lloyd algorithm
[26]. Piecewise linear approximations to the marginal probability densities could be
used [48] instead of piecewise constant ones as proposed here. Also more sophisti-
cated techniques, such as the MDL (minimum description length) principle [58], can
potentially be used. In this chapter, we focus on uniform quantization due to its low
complexity (which is a desired property for online learning).

With the probability model we just described we can view a feature vector
x = (z1,Z2, - -,%,)" as a sample drawn from a random source, which has rele-
vance statistics given by PT(x) = (pf,---,p)) and P~ (x) = (p;,---,p,). The
pif = P(y = +1|A;(x;)) are estimated by quantizing the component z; using A,
based on the training data obtained from relevance feedback.

Assume that we wish to estimate the distance between x and z, where z is another

feature vector with probability vectors QT = (¢;f,---,¢") and Q= = (¢, -, q;)-
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Here, our proposed distance based on the Kullback-Leibler divergence of the proba-

bility vectors P and () can be obtained as:

+
D(x||z) = prlog —l+ )+ 3 pi log q—l) (5.19)
=1 l

We assume 0 x log(0) = 0 by continuity arguments. Since the KL divergence is not
symmetric we define based on (5.19) a symmetric distance measure D(x,z) using
(5.11) to obtain a symmetric distance D;. We then define our proposed UPID kernel
function in the generalized form of RBF kernels with the original Euclidean distance

d() replaced by the proposed distance of (5.11):
K(x,z) = e PPs(x2) (5.20)

The distance (5.20) is a positive definite metric [43], thus the proposed UPID
kernel satisfies Mercer’s condition [9]. As the model parameters «;, b and N, are
learned from the training set, we evaluate the likelihood that an unknown object x

is relevant to the query by computing its score f(x):

X:Oz,yZ X, X;) + b, (5.21)

where x; is the ith support vector and there are a total of N, support vectors

(which is determined by the learning process). The larger the score is, the more
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Figure 5.3: An example of the estimated marginal probabilities P(y = +1|z;) and
Ply=—1lz).

likely it is that the unknown object belongs to the relevant class and thus shall be
returned and displayed to the user.

As an example, we show in Figure 5.3 the estimated marginal probabilities
{P(y = +1|z;),P(y = —1|z;)} based on a 15-bin uniform quantization for one
dimension. The training data is collected from accumulation of two relevance feed-
back iterations. Figure 5.4 shows KL divergence based on the estimated probabilities
shown in Figure 5.3, and the standard Euclidean distance (computed as the squared
difference between the centroids of bins).

In this example, the reference point (query point) lies in the second bin (which

is indicated as a dot in figure 5.4). We can see that the standard Euclidean distance
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Comparing KL Distance and Euclidean Distance
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Figure 5.4: An example showing different properties between KL divergence and
standard Euclidean distance. The KL divergence is computed based the probabilities
estimated shown in Figure 5.3. The dot indicates the location of the query point.
We can see that the KL divergences between the query point and the points located
in bins 11 and 12 are small, although bins 11 and 12 are physically distant from
the bin 2. Euclidean distance merely reflects the physical distance in the low-level
feature space.
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solely depends on the physical distance between two points. Instead, the KL distance
is able to capture the probabilistic similarities between two points, even though they
are physically far apart from each other. This can be verified by noting the smaller
KL distances between the query point (located in bin 2) and the points located in

bins 11 and 12.

5.4 Experiments

As an experimental evaluation of the proposed scheme, we compare the performance
of five learning methods: i) the query refinement and re-weighting (QRR) algorithm
[61], ii) SVM using polynomial kernel (Polynomial), iii) SVM using Radial Basis
function kernel (RBF), iv) SVM using our proposed probabilistic kernel (UPID),
and v) SVM using linear kernel (Linear). 1500 real world images are chosen from
the COREL Image CDs [18]. The image set includes 15 different categories®, with
100 images for each category. Our experimental set up is very similar to that of [79],
the only difference being that we replace the categories Auto racing and Roses, with
Ezxotic cars and Flowers, respectively, since we do not have access to the former.
We use 80% of each category (1200 images in total) as the database, and 20% (300
images in total) as the query images. The splitting of the data (80% and 20%) is

chosen to be consistent with standard practice in machine learning.

3Sunset, Coasts, Flowers (volume IT), Exotic cars, Mayan & Aztec, Fireworks, Ski scenes, Owls,
Religious Stained glass, Arabian horses, Glaciers & Mountains, English country gardens, Divers &
diving, Land of the pyramids, and oil paintings.
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We employ the feature extraction algorithm in [13]. Three different features are
extracted to represent the images: color, texture and shape. The color features are
computed as the histograms in CIELab color space. The texture feature is formed
by applying the Sobel operator to the image and histograming the magnitude of the
local image gradient. The shape feature is characterized by histograming the angle
of the edge. Dimensionality of the feature vector we used in our experiments is 72
(the number of bins used for each histogram is 8).

For the experiments, we assume that the query feedback is based on the actual
image categories, i.e., all images corresponding to the same category as as the image
being queried will be deemed relevant and those from other categories will not be
relevant. The quality of the retrieval result is measured by two quantities: precision
and recall. Precision is the percentage of relevant objects in the retrieved set, it
measures the purity of the retrieval. Recall is a measurement of completeness of
the retrieval, computed as the percentage of retrieved relevant objects in the total
relevant set in the database.

When the system is presented with a query image, it will first search for the
K nearest neighbors based on the Euclidean distance between the query image and
each of the images in the database. Then the returned images that belong to the
same category as the query image will be labeled as positive, and all the others in
the returned set labeled as negative. The system learns the new model parameters

and returns a new round of images and repeats this process. The labeled images
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accumulate from iteration to iteration as the system gets more feedback from the
user. For SVM based methods, the parameters o; and b are learned using (5.3)
based on the labeled images. The next round of retrieval will be carried out using
the classifier (5.21) with the new set of parameters. The images with highest score
are most likely to be the target images for the user. For the Query Refinement
and Re-weighting method, we implemented the algorithm proposed in [61]. Then
the new query vector and new weights are used to perform a K-Nearest-Neighbor
classification. The precision and recall are averaged over all the test images.

The SVM learning algorithms are implemented based on the SV M'"%"t library
[37]. Figure 5.6 shows the precision-recall curves comparing proposed method (with
parameter p set to 1), Query Refinement and Re-weighting (QRR), SVM with RBF
kernel (with parameter 7 set to 1), SVM with polynomial kernel (degree p =4, A =
B = 1), and linear kernel. In proposed scheme, we fix the number of quantization
bins for all dimensions to be the same.

Top-K retrieval precision as a function of the number of returned images are
plotted in Figure 5.5. Top-K retrieval precision is defined as the precision evaluated
for the K returned images which have highest similarities to the query image. We can
clearly see that the proposed method achieves significantly higher search accuracy
than the other methods.

Figure 5.6 presents the Precision-Recall curves after 3 relevance feedback itera-

tions, comparing five different methods.
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Figure 5.5: Top-K accuracy as a function of the number of returned images after 6
relevance iterations. We can see that compared to other methods, proposed method
has a more compact display of the relevant images (Precision is relatively flat in the
beginning and gets a sharper tail off).
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Figure 5.6: Precision-Recall curves after 3 relevance feedback iterations, comparing
five methods: SVM with RBF kernel (Circles), SVM with Polynomial degree 2
(Dashed lines), Query Refinement and Re-weighting (Cross), SVM with Proposed
UPID kernel (Triangles), and SVM with Linear Kernel (Diamonds).
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Table 5.1 shows the top-K accuracy (mean and variance) after 6 relevance feed-
back iterations. We can see that SVM based active learning methods perform signif-
icantly better than the query refinement/re-weighting method. SVM with proposed
empirical probabilistic kernel function is the best performer among all SVM based
methods. It achieves almost 100% top-50 accuracy, while RBF kernels get around
92%. Our results are consistent with the results reported in literature using the
standard kernels. The performance of RBF and polynomial were reported for a 4-
category corel dataset in [11]. The top-50 accuracy after 3 iterations are 92.7% for
polynomial degree 4, and 96.8% for RBF. Considering that learning is more accurate

with smaller number of image classes, our results are consistent with theirs.

Algorithm || Top-20 Top-50 Top-80

RBF 97.43+0.44 92.03£0.77 | 80.27+0.79
Polynomial || 94.6040.64 88.69£0.85 | 77.12+0.78
UPID 99.67+0.33 | 99.64+0.33 | 92.05+0.73
Linear 93.97+0.82 87.69£1.07 | 76.08+0.83
QRR 78.17£7.4 71.114£7.56 | 58.15+4.96

Table 5.1: Top-K accuracy (mean and variance) after 6 relevance feedback iterations
for various methods. Bold numbers indicate the best performer. The parameters
chosen are: v =1 for the RBF kernel, p = 4, A = B =1 for the polynomial kernel,
and p = 1 for proposed UPID kernel. We implemented the query refinement and
re-weighting based on the algorithm by Rui et.al.

We also show in figure 5.7 the improvement of the retrieval accuracy as a function

of the number of interaction rounds. It basically gives us an idea about the speed

(how many interactions are needed in order to achieve a certain accuracy) with which

150



100

90 b

@®
o
T
D
>

s |\ e
\°> _______
&
B 7 1
(8]
[}
S
o
o - 4
i 60
Q
o
= -0~ RBF
50 — - Polynomial 4
d UPID
-9~ Linear
40 b
30 1 1 1 1 1 1 1
1 15 2 25 3 35 4 45 5

Iteration

Figure 5.7: Comparison of learning accuracy of three different kernels (evaluated
as the top-80 retrieval precision) as a function of the number of relevance feedback
iterations. The accuracy without relevance feedback is 40.78%, it is obtained by a
K-Nearest-Neighbor classifier with the weights equal for all feature components.

the system is able to capture the query concept through the information provided
at each interaction round.

We see that proposed kernel outperforms the other three most popular kernels.
About 17% higher accuracy is achieved after the first iteration using proposed kernel
as compared to the RBF kernel. This is encouraging since usually very a very small
number of positive samples are available at the beginning of the interaction.

We also investigate the reliability of the proposed empirical estimation scheme
(5.17) to different quantization schemes. We compare uniform quantization at dif-

ferent bin sizes and non-uniform quantization. We test on B; = 10, 15,20 and figure
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Figure 5.8: Precision-Recall curves of proposed scheme after 3 and 6 relevance feed-
back iterations using different number of quantization bins for probability estima-
tion. We can see that neither varying the number of quantization bins nor having
a different quantization scheme has much effects on the learning performance, and
thus the proposed empirical estimation scheme is very reliable.

5.8 shows the precision-recall curves of proposed scheme after 3 and 6 relevance feed-
back iterations. We can see that neither varying the number of quantization bins
nor having a different quantization scheme has a significant effect on the learning
performance. Thus the estimation is reliable, at least for the purpose of improving
classification based on received feedback. Another fact worth noticing is that the
number of labeled positive samples is relatively small in the beginning of the learning
process, and still the accuracy improvement is remarkable after only one relevance

feedback using proposed method (17% higher than RBF kernel, see Fig. 5.7).
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5.5 Conclusions and Future work

In this chapter we proposed a new method of employing the data statistics for
active learning using SVM in content-based image retrieval. The derivation of the
new kernel is empirical and requires no domain knowledge, it is thus a practical
approach for relevance feedback learning tasks where the query concept is not known
and can be time varying. Our experiments have shown promising performance using
proposed scheme compared with other kernels. Our future work includes designing
adaptive methods for estimating the marginal distributions (current version uses
a simple uniform quantization to estimate the probabilities), taking into account
the data imbalance problem (the number of negative samples is much larger than
the number of positive samples), and speeding up of the learning. We are also
investigating how to incorporate the ranking information (i.e., cases when the user

has different degrees of preference for the relevant images) into our framework.
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Appendix A

Relations between Similarity Functions for
Content-based Image Retrieval

Define a set of discriminant functions g;(z),s = 1,..., M. The classifier assign a
feature vector x to class y;, if

gi(xz) > g;(x)  for all j#i. (A1)

The statistical classification can be viewed as a machine that computes M dis-
criminant functions and outputs the classification label with the largest discriminant
[22]. For Bayes classifier, g;(z) is the a posteriori probability Pr(y;|z) or and mono-
tonically increasing function of F(Pr(y;|x)).

Define:

gi(z) = log(Pr(y;|z)) (A.2)
= logp(zly:) + log P(y;)
A.1 Quadratic distance for Normal density functions

If the densities p(z|y;) are multivariate normal: p(x|y;) ~ N(u;, X;), then from (A.2),
we have quadratic discriminant functions:

1 _ d 1
() = —5 (0 = ) (o — ) — Slog(2 x ) — Slog Sl +log P(y)  (A.3)

A.1.1 Mahalanobis distance

If we assume that the covariance matrices are identical for all classes, and assume
equal a priori probabilities, from (A.3) we get:

() =~z = ) ST — ) (A1)
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This is to say: To classify a feature vector x, compute the Mahalanobis distance
(— ;) S (2 — ps), and find the nearest one. This similarity function was employed
by QBIC [45] and MARS [42] for nearest neighbor retrieval. Furthermore if the
covariance is identity ¥; = I, we obtained an Euclidean distance (z — ;) (z — ;)

A.2 Kullback-Leibler divergence

If we assume that the query consists of a collection of N independent query features
x = {x1, ..., tn }, the discriminant function in (A.2) can be written as:

N
Z log P(z;|y;) (A.5)

Applying the law of large numbers we get:

9i(z) N_’TOO E,[log Pr(z|y;)] (A.6)

- /P(x|q)logP(ﬂf|yi)d$
= —KLQIP)

where K L(Q||P;) is the Kullback-Leibler divergence between the query density and
that associated with the i*" image class.

162



