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Abstract

Real-time multimedia services over the Internet face some fundamental challenges due to

time constraints of those applications and network variations in bandwidth, delay and

packet loss rate. Our research addresses the problem of network-adaptive video coding

and streaming based on source codecs that provide scalability to match the network

environments.

The first part of the thesis focuses on scheduling algorithm design for network-adaptive

video streaming. We extend previous work on rate-distortion optimized video streaming

to address more general coding techniques that support multiple decoding paths to en-

hance adaptation flexibility. Prior work had only considered a single decoding path.

Examples of multiple decoding paths include cases where there are multiple redundant

representations of the media data or where error concealment is used. An example of

these codes is our proposed multiple description layered coding (MDLC), which com-

bines the advantages of layered coding and multiple description coding. This work is

composed of several main components: (1) a new source model called directed acyclic

hyperGraph (DAHG) to estimate the expected end-to-end distortion; (2) rate-distortion

based scheduling algorithms to adjust dynamically the system’s real-time redundancy to

match the channel behavior; and (3) performance analysis on both source redundancy and

xiii



transport redundancy. Experimental results show that the proposed streaming framework

can provide a very robust and efficient video communication for real-time applications

over lossy packet networks.

The second part proposes a framework for adaptive scalable video coding using Wyner-

Ziv techniques. The current scalable video coding standards suffer to some degree from

a combination of lower coding performance and higher coding complexity, as compared

to non-scalable coding. A key issue is how to exploit temporal correlation efficiently in

scalable coding. We propose a novel scalable coding approach by introducing distributed

source coding in enhancement layer prediction in order to achieve a better coding per-

formance with reasonable encoding complexity. Experimental results show significant

improvements in coding efficiency over MPEG-4 FGS, especially for video sequences with

high temporal correlation.
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Chapter 1

Introduction

1.1 Motivation

Recent technological developments in computing, compression, storage devices, and high-

speed networks have made it feasible to provide real-time multimedia services over the

Internet. Different from data communications, which are usually not under strict de-

lay constraints, real-time multimedia communication is delay sensitive, i.e., data become

useless when arriving late. Real-time delivery of live or pre-encoded (stored) video plays

an important role in real-time multimedia. For distribution of live video, such as video

conferencing or the live broadcast of an event, encoding and decoding must be accom-

plished in real-time. In many other applications, such as video on demand, video content

is pre-encoded and stored for later viewing. Pre-encoded video has the advantage that it

does not have the real-time encoding constraint. Thus, it allows more complicated and

efficient encoding techniques. For example, multiple redundant representations can be

created in advance for the same video content.
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The most popular and widely deployed media communication applications are likely to

be those that are accessible over the Internet, through both currently predominant wired

and emerging wireless channels. Video transmission on these networks is characterized

by variations in channel bandwidth, delay and packet loss rate, which can severely affect

the reproduction quality of the video delivered through the network. In addition, the

increasing heterogeneity of networks and network access devices makes video streaming

more difficult. Thus, real-time multimedia communication over the Internet and wireless

networks has posed a number of challenges [23, 27, 76, 88].

To address these challenges, we propose network-adaptive video coding and trans-

mission solutions. Specifically, we aim at providing efficient, robust, scalable and delay-

constrained media coding and streaming. The traditional rate control techniques [54, 75]

aim to optimize the media quality for a fixed bit rate. This poses a problem when multi-

ple users are trying to access the same media source through different network links and

with different computing powers. Even in the case of a single user accessing one media

source over a link, when this link suffers from varying channel conditions, relying on a

complex rate-control algorithm to make rate adjustments in real time may not be practi-

cal (for example, if the changes in rate have to occur in a very short time frame). Thus,

it is highly desirable to provide scalability through different video coding methods and

transport mechanisms. Scalability refers to the ability of recovering physically meaning-

ful image or video information by decoding only part of the compressed bitstreams. It is

very useful in two aspects: (1) providing error resilience to combat potential transmission

errors, and (2) enabling dynamic content adaptation to different network and terminal

characteristics and user requirements.
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Layered coding (LC) [44] and multiple description coding (MDC) [29, 89] have been

proposed as two different kinds of “quality adaptation” schemes for video delivery over the

current Internet or wireless networks. LC addresses the problem of network bandwidth

variation through a sequence of dependent layers, while MDC provides error resilience by

introducing redundancy explicitly into its independent descriptions. Most research com-

paring LC and MDC [13, 43, 53, 63, 65, 72, 101] leads to the conclusion that LC and MDC

can each be preferable in different scenarios (e.g., low packet loss rate and long end-to-

end delay for LC vs. high loss rate and short delay for MDC), though a few [13, 53] also

show that LC with good rate allocation and scheduling techniques may outperform MDC

over a broad range of scenarios. This motivates us to create a new multiple description

layered coding (MDLC) approach by combining the advantages of LC and MDC to pro-

vide a graceful adaptation over a wider range of application and network scenarios (see

Chapter 2). The MDLC codec produces multiple redundant representations increasing

the flexibility with which a video server can adapt to varying network conditions, without

re-encoding the video stream or completely switching between different encoding modes

on the fly. But in order to fully exploit the adaptation flexibility of a MDLC codec with

redundancy, the system requires an intelligent transport mechanism.

Scalable coding techniques make it easier for media servers to adapt to varying net-

work conditions in real time. To do this, an intelligent transport mechanism is required

to select the right packets (layers or descriptions) to send at a given transmission time

to maximize the playback quality at the decoder. Some recent work has been focused

on rate-distortion optimized scheduling algorithms for scalable video streaming [11, 19–

21, 50, 51]. In this case, each packet is not equally important due to different distortion

3



contributions, playback deadlines, and packet dependencies caused by temporal predic-

tion and layering. Runtime feedback information is exploited to make transport decisions

based on current network condition and transmitted packet status (i.e., received or not).

However, those works are mainly focused on encoding techniques, such as layered coding,

which generate packets that can only be decoded following a single decoding path (SDP):

a packet can be decoded with distortion reduction d only when all of its dependent data

units are received and decodable; otherwise, it contributes 0. In fact, a source codec that

supports multiple decoding paths (MDP) can greatly enhance adaptation flexibility of a

streaming system. Multiple decoding paths can arise when multiple redundant represen-

tations of the same video content are created or when error concealment techniques are

used. Examples of these codecs include MDLC and multiple independently encoded video

streams. Compared to a SDP codec, a MDP codec introduces two additional features

that the existing scheduling techniques fail to address: (1) redundancy across data units,

and (2) more than one decoding choice is available for a given data unit, each with a

different distortion reduction, when different subsets of its dependent data units are re-

ceived. In our research, we extend the streaming framework in [19, 20] to address a more

general problem where multiple decoding paths exist, by taking into account both depen-

dency and redundancy relations among data units. The proposed rate-distortion based

scheduling algorithms in Chapter 3 can dynamically adjust the system’s real-time redun-

dancy to match the channel behavior, thus achieving better overall expected end-to-end

performance.

Unfortunately, all current scalable video coding standards suffer to some degree from

a combination of lower coding performance and higher coding complexity, as compared to

4



non-scalable coding. A key issue is how to exploit temporal correlation efficiently in scal-

able coding. It is well known that motion prediction increases the difficulty of achieving

efficient scalable coding because scalability leads to multiple possible reconstructions of

each frame [66]. In this situation either (i) the same predictor is used for all layers, which

leads to either drift or coding inefficiency, or (ii) a different predictor is obtained for each

reconstructed version and used for the corresponding layer of the current frame, which

leads to added complexity. MPEG-2 SNR scalability with a single motion-compensated

prediction (MCP) loop and MPEG-4 FGS exemplify the first approach. Some advanced

approaches with multiple MCPs are described in [7, 33, 66, 79, 93]. Distributed source

coding (DSC) techniques based on network information theory provide a different and

interesting viewpoint to tackle these problems. DSC first arose in the context of informa-

tion theoretical problems, with compression bounds established in the 1970s by Slepian

and Wolf [73] for distributed lossless coding and by Wyner and Ziv [94] for lossy coding

with decoder side information (SI). But initial results did not address practical design.

Recently, DSC has become an area of increasing research interest in the signal processing

community for its potential applications [3, 58, 60, 69] in both video coding (e.g., error

robustness to channel losses or reduced encoding complexity) and multiterminal commu-

nication systems (e.g., sensor networks). In this research, we are particularly interested

in the problem of source coding with SI that is only known by decoder. In closed-loop

prediction (CLP), in order to prevent drift at the decoder, the encoder needs to generate

the same predictor that will be available at the decoder. Instead, a DSC encoder only

needs to have access to the correlation structure between the current signal and the pre-

dictor. Thus there is no need to reproduce the decoded signal at the encoder as long as

5
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Figure 1.1: Delay components of a communication system. Adapted from [54].

the correlation structure is known, or can be found. Based on DSC principles, we propose

a Wyner-Ziv scalable (WZS) coder in Chapter 4 that can achieve higher coding efficiency

(up to 3 - 4.5 dB gain over MPEG-4 FGS for video sequences with high temporal cor-

relation), by selectively exploiting the high quality reconstruction of the previous frame

in the enhancement layer coding of the current frame. This creates a multi-layer Wyner-

Ziv prediction “link”, connecting the same bitplane level between successive frames, thus

providing improved temporal prediction as compared to MPEG-4 FGS, while keeping

complexity reasonable at the encoder.

In the rest of this chapter, we will first provide an overview of a video communication

system, and then give brief reviews on the related areas of scalable coding, distributed

source coding, and rate-distortion optimized packet scheduling. The contributions of the

thesis are summarized at the end of the chapter.

1.2 Overview of a Video Communication System

1.2.1 Delay-Constrained Video Transmission

Figure 1.1 provides an abstraction of a real-time video communication system in terms of

delay components. In contrast to data communication or to simple media downloading,
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real-time video streaming is often subject to strict delay constraints. The main difference

with respect to downloading applications is that media playback starts as data is still

being received, so that playback could be interrupted if the decoder ran out of data to

decode. As data starts to reach the client, decoding does not start immediately. Instead

the client waits for a predetermined startup delay in order to accommodate enough data

for decoding. Both encoder and decoder buffers can be used to smooth out the bit

rate variation produced by the encoder as well as the channel delay variation, so that the

decoded video can be played out at a constant frame rate. Note that when considering pre-

encoded media, the encoding delay does not exist, as the video has already been encoded

and is ready for transmission. In general, video streaming applications impose some

restriction on the initial startup delay. Furthermore, the end-to-end delay requirement

imposes a constraint on the encoding rate for each frame, or the number of layers to be

transmitted for a scalable bit stream.

1.2.2 Bandwidth Variation and Transmission Impairments

Most currently deployed networks provide no quality of service (QoS) guarantees. Thus it

is expected that both network conditions and the available bandwidth of the underlying

network may change during a real-time video communication session. Different types of

transmission errors may occur, e.g., packet erasure errors or bit errors in IP or wireless

based networks. Random bit errors may ultimately lead to erasures in a variable-length

coded bit stream, since a single bit error can cause the remaining bits in a data packet to

be undecodable. For real-time video, data packets are also treated as lost if they arrive
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at the decoder after the playback deadline. Here we assume that when data losses occur,

packets are lost.

It is well known that compressed video streams are vulnerable to transmission im-

pairments due to the variable-length coding and motion-compensated temporal prediction

widely used in current video standards. Thus it is necessary to provide efficient mecha-

nisms to address bandwidth fluctuation and packet losses in real-time video applications

in order to provide a graceful quality degradation.

1.2.3 Motion-Compensated Temporal Prediction

Predictive coding is an important technique in image and video coding. The purpose of

prediction is to exploit the redundancy between the samples to be coded. Temporal pre-

dictive coding using motion-compensated prediction has been widely employed in existing

video coding standards, such as the MPEG and ITU-T H.26x families. The block-based

hybrid video coding, the core of all the international video coding standards, effectively

combines motion-compensated temporal prediction (MCP) and transform coding [88].

Each video frame is divided into a number of blocks with either fixed or variable block

sizes. The encoding and decoding process for a block in the typical block-based hybrid

video coding system is depicted in Figure 1.2. A block is first predicted from a few

previously reconstructed reference frames using block-based motion estimation. The mo-

tion vector (MV) indicates the displacement between the current block and the selected

reference block. The predicted block is then formed from the reference frame by using

motion compensation with the estimated MV. The prediction error block is coded using

the DCT transform, quantization and finally variable-length entropy coding (VLC). It
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Figure 1.2: Block diagram for encoder and decoder in a typical block-based hybrid video
coding system. ME: motion estimation, MC: motion compensation, FM: frame mem-
ory, DCT: discrete cosine transform, IDCT: inverse DCT, VLC: variable-length entropy
coding, VLD: variable-length entropy decoding, Q: quantization.

is also noted from Figure 1.2 that the same reconstruction process is required at both

the encoder and decoder. The introduction of CLP-based MCP also makes the coded

bit stream very sensitive to transmission errors, which may cause error propagation over

time. Distributed source coding techniques to be discussed in Section 1.4 lead to an

alternative to closed-loop prediction by providing an open-loop prediction framework.

1.3 Scalable Coding

A scalable compressed bitstream typically contains multiple embedded subsets, each of

which represents the original video content in a particular amplitude resolution (so called

SNR scalability), spatial resolution (spatial scalability), temporal resolution (temporal
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scalability) or frequency resolution (frequency scalability, also known in some cases as

data partitioning). Scalable coders can have either coarse granularity or fine granularity,

and they usually lead to a decrease in compression performance as compared to non-

scalable coding. Thus, the design goal in scalable coding is to minimize the reduction in

coding efficiency while enabling sufficient scalability to match the network requirements.

In this section, we will briefly discuss several SNR scalability techniques in current video

coding standards, particularly MPEG-2 SNR scalability and MPEG-4 Fine Granularity

Scalability (FGS). A brief review of multiple description coding is also included at the

end of this chapter. More detailed descriptions of these techniques can be found in

[34, 35, 44, 76, 88].

1.3.1 MPEG-2 SNR Scalability

International video coding standards typically standardize decoders rather than encoders.

Figure 1.3 shows the two-layer SNR scalable decoder defined in the MPEG-2 video stan-

dard [34]. It can be extended to the multi-layer coding scenario in a straightforward way.

The reconstructed DCT coefficients from all the layers are added together before passing

through the single inverse DCT (IDCT) and the MCP loop to produce the decoded frame.

The enhancement-layer information of previous reference frames is used in the MCP loop

for constructing both base and enhancement layers of the current frame. Several encoder

configurations have been proposed in the literature [7, 92]. One approach [92] is to ap-

ply a single MCP loop at the encoder that also uses the enhancement-layer information.

This leads to drift when the enhancement layer is not received by the decoder. A more

complicated pyramid encoder [7] uses multiple MCP loops, with one MCP loop per layer

10



V 
L 
D 

Q-1 IDCT 

MC 

FM 

Motion vectors 

Base layer 
bit stream 

Reconstructed 
video 

VLD Q-1 

 

Enhancement 
layer bit stream 

 

+ + 

 
Figure 1.3: MPEG-2 SNR decoder.
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Figure 1.4: Simplified diagram of FGS encoder structure used in MPEG-4 Microsoft
reference software.

to control drift in case the higher layers are lost. The frame memory at each layer of the

encoder corresponds to the state of the decoder frame memory assuming all its higher

layers are not decoded.

1.3.2 Fine Granularity Scalability (FGS) and its Variants

MPEG-2 SNR scalability usually supports only a small number of enhancement layers

due to the coding efficiency degradation and extra encoder complexity introduced for each

enhancement layer in the pyramid encoder. Thus, the quality can only improve as rate

increases in larger discrete steps. A common characteristic for those coarse granularity
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scalable coding techniques is that the enhancement layer can contribute to end-to-end

distortion reduction only if it is entirely decoded. In other words, it does not provide any

partial enhancement. MPEG-4 fine granularity scalability (FGS) [44] provides a way to

improve the quality with much smaller incremental steps. Figure 1.4 shows a simplified

diagram of the FGS encoder structure used in the MPEG-4 Microsoft reference software.

There are three major differences between FGS and MPEG-2 SNR scalability. First,

the enhancement-layer bit stream of FGS can be truncated at arbitrary bit positions

within each frame to provide partial enhancement proportional to the number of bits

decoded. Second, FGS does not use the enhancement information of the previous frames

to predict the current frame in motion-compensation loop. Instead, the enhancement layer

is represented by coding the residual error based on current base-layer reconstruction.

Compared to MPEG-2 SNR scalability, this approach avoids drift but results in lower

coding efficiency. Finally, the FGS enhancement layer is coded using bit-plane coding,

i.e., the quantization step sizes are in descending powers of two.

FGS provides fine granularity bit-rate scalability, channel adaptation, and elegant

error recovery from occasional data losses or errors in enhancement layers [44]. However,

it suffers from the disadvantage of low coding efficiency. A number of FGS variants

have been proposed to exploit further the temporal correlation in the enhancement layer.

Examples include progressive FGS (PFGS) [93], motion-compensation based FGS (MC-

FGS) [79], and leaky prediction based FGS (LP-FGS) [33]. These techniques share a

common feature in that they employ one or more additional MCP loops for enhancement

layers of P and B frames (or B frames only), for which a certain number of FGS bitplanes,

M , are included in the enhancement-layer MCP loop, to improve the coding efficiency. In
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this case prediction drift will occur within the FGS layers when fewer than M bitplanes

are received. M is chosen by considering the trade-off between the coding efficiency and

prediction drift. LP-FGS also introduces a second parameter α to adjust the amount

of predictive leak to control the construction of the reference frame at the enhancement

layer.

Rose and Regunathan [66] also proposed an estimation-theoretic (ET) approach with

multiple motion-compensation loops for general SNR scalability. In this approach, the

enhancement-layer predictor is optimally estimated by considering all the available infor-

mation from both base and enhancement layers. It can be easily extended into the FGS

framework. However, the underlying CLP prediction requires the encoder to generate all

possible decoded versions for each frame, so that each of them can be used to generate

a prediction residue. Thus complexity is high at the encoder, especially for multi-layer

coding scenarios.

1.3.3 Multiple Description Coding

Layered coding (LC) as both MPEG-2 SNR scalability and MPEG-4 FGS can enhance

adaptation of a video delivery system. But it requires strong protection for base layer via

either FEC or ARQ schemes. Multiple description coding (MDC) has emerged as another

promising approach to combat transmission errors. A multiple description (MD) coder

generates several bit streams for the original video source (referred to as descriptions),

so that each description alone provides acceptable quality and incremental improvement

can be achieved with additional descriptions received. Each description is individually

packetized, and transmitted through separate channels or through one physical channel
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that is divided into several virtual channels by using appropriate time interleaving tech-

niques. Each description can be decoded independently to provide an acceptable level of

quality. For this to be true, all the descriptions must have some basic information about

the source, and therefore redundancy is introduced between different descriptions.

A number of MD coders have been proposed, including overlapping quantization

[71, 78], correlating linear transforms [87], polyphase transform and subband coding [39],

and interleaved spatial-temporal sampling [90]. A comprehensive review of various MD

algorithms, particularly for image communications is presented in Goyal’s paper [29].

Motion-compensation prediction is a fundamental component in current video coding

standards. Since MD coders are designed to “tolerate” channel losses, MD video coders

that incorporate motion-compensated prediction must take into account two basic prob-

lems: mismatch control and redundancy allocation. Depending on the trade-off between

these two problems, Wang et al. have categorized the possible predictors for a MD coder

into three classes [89]: (1) predictors that introduce no mismatch using either two indi-

vidual predictors or a single predictor based on information common to both descriptions,

(2) a single predictor identical to that used by a single-prediction predictive encoder that

minimizes the prediction error while causing mismatch unless both descriptions have

been received, and (3) predictors that have parameters to control the trade-off between

prediction efficiency and the amount of mismatch. When combined with multiple path

transport (MPT) [5, 6, 48, 55], MDC can exploit path diversity to improve error resilience,

traffic dispersion and load balancing in the network.

The major difference between LC and MDC is that LC proposes a hierarchical de-

composition while MDC decomposes the source signal into non-hierarchical, correlated
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descriptions. Thus, MDC does not require special treatment of packets by retransmissions

or using FEC to guarantee adequate quality, as LC does for the base layer. It makes MDC

particularly useful for those networks that do not support feedback or retransmission, or

those applications that only allow very short delay, thus making retransmission unac-

ceptable. However, MDC introduces significant redundancy between the descriptions,

which reduces the coding efficiency. This observation motivates us to design an adaptive

approach to combine the advantages of MDC and LC so as to provide robustness over a

wide range of network scenarios and application requirements. Our proposed approach,

multiple description layered coding, will be discussed in Chapter 2.

1.4 Distributed Source Coding

This problem has been studied in the information theory literature back in the 1970s,

starting with the work of Slepian and Wolf for distributed lossless coding and that of

Wyner and Ziv on “rate-distortion with side information” for the lossy coding. However,

the emergence of practical applications has only occurred recently. In this section, we

first review the fundamental principles of Slepian-Wolf and Wyner-Ziv coding, and then

discuss some practical applications focusing on distributed video compression. A detailed

review on this topic was also presented in Girod et al.’s recent paper [26]. The theoretical

problem of successive refinement of information in the Wyner-Ziv setting will be described

in Chapter 4 where we design a Wyner-Ziv scalable codec based on this setting.

Figure 1.5 shows the problem of source coding with side information. If the side infor-

mation (SI) Y were known at both encoder and decoder, then the problem of compressing
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Figure 1.5: source coding with side information, adapted from Figure 1 in [58]. (a) SI Y
is available at both the encoder and decoder; (b) SI Y is available at the decoder only.

the source X is well known: the theoretical rate of X is given by H(X|Y ) for lossless

compression and RX|Y (D) for lossy compression, where H(X|Y ) is the conditional en-

tropy of X given Y , and RX|Y (D) is the rate-distortion function if Y is available at both

the encoder and decoder. A practical approach in this case is to use differential pulse-

code modulation (DPCM). We are now interested in the case where Y is available at the

decoder, but not at the encoder. Consider first the problem where X and Y are corre-

lated discrete-alphabet memoryless sources and X is to be compressed losslessly. The

Slepian-Wolf Theorem [73] establishes the achievable rate region Rx ≥ H(X|Y ), which is

the same as if Y is also available at the encoder. Later Wyner and Ziv [94] extended this

work to the lossy compression cases, for which X and Y can be continuous with infinite

alphabets. The Wyner-Ziv rate-distortion function R∗
X|Y (D) is then defined as the lower

bound of the achievable rate for a given distortion D = E[d(X|X̂)]. Wyner and Ziv
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proved that R∗
X|Y (D) ≥ RX|Y (D), a possible rate penalty existing when the encoder can-

not access to Y . Furthermore, R∗
X|Y (D) = RX|Y (D) in the case of Gaussian memoryless

sources with quadratic distortion measure. By using a duality argument, Pradhan and

Ramchandran recently generalized R∗
X|Y (D) = RX|Y (D) to the more general case where

source X is the sum of arbitrarily distributed SI Y and independent Gaussian noise [57].

Distributed source coding (DSC) is related to channel coding in that Y can be re-

garded as a noisy version of X produced by a virtual channel. Instead of performing FEC

to protect against the transmission errors introduced by the real channel, we send the

parity or syndrome bits to the decoder to correct the “errors” introduced by the virtual

dependence channel. The decoder can then perform channel decoding with both infor-

mation from parity bits and side information Y . The first constructive framework for

creating practical codes for DSC was distributed source coding using syndromes (DIS-

CUS), proposed by Pradhan and Ramchandran [58], where a scalar and trellis-based

coset construction was presented. Since then, more sophisticated channel codes based on

turbo or low-density parity check (LDPC) codes have been applied to DSC by a number

of researchers [1, 8, 25, 42, 46]. For Wyner-Ziv coding, Zamir et al. [97, 98] proposed a

constructive framework based on nested linear/lattice codes. This was further studied

by Servetto [70] who considered the design of lattice quantizers and presented a perfor-

mance analysis at high rates. Xiong et al. [95] developed a Wyner-Ziv coding framework

consisting of a nested quantizer followed by a Slepian-Wolf coder.

Recently proposed Wyner-Ziv coding techniques for video applications fall into several

categories. First, the emergence of mobile devices, such as wireless video sensors or

mobile cameraphones, inspires a new class of video compression applications that require
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low-complexity encoding. Motion estimation is the most time-consuming component in

traditional MCP-based encoders. The main difference between Wyner-Ziv coding and

CLP-based approaches (for example, MCP) is that Wyner-Ziv coding only needs to know

the correlation structure between the current signal and the predictor, rather than the

exact predictor value. Therefore, it is possible in Wyner-Ziv video codecs to move the

motion estimation unit to the decoder in order to reduce the encoder complexity. Puri and

Ramchandran [59–61] and Girod et al. [2, 3, 26] have proposed several different Wyner-Ziv

video coding schemes based on this principle. The second class of applications is to use

Wyner-Ziv coding for error resilience. Sehgal et al. [67, 69] proposed a Wyner-Ziv coding

scheme to prevent error propagation in predictively encoded video. In addition, Wyner-

Ziv coding can also be applied in multiple description coding [38] or layered coding [68, 96].

In [96], Xu and Xiong proposed an MPEG-4 FGS-like scheme by treating a standard

coded video as a base layer, and building the bit-plane enhancement layers using Wyner-

Ziv coding with current base and lower layers as SI. Our Wyner-Ziv scalable approach, to

be presented in Chapter 3, can achieve higher coding efficiency by selectively exploiting

the high quality reconstruction of the previous frame in the enhancement layer bitplane

coding of the current frame.

1.5 Rate-distortion Optimized Packet Scheduling

Achieving real-time video delivery can be very challenging given the limited channel band-

width as well as packet loss rate and transmission delay variations. It is well recognized

that an ideal transport mechanism should adapt to the actual channel conditions, such
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as channel bandwidth, delay and packet loss statistics. Chou and Miao [19, 20] provided

a rate-distortion optimized framework of packet scheduling over a lossy packet network.

They considered streaming as a stochastic control problem, with the goal of determining

which packets to be sent (and when and how), in order to maximize the expected end-to-

end quality under an average rate constraint. A directed acyclic graph (DAG) model was

proposed to capture the dependencies between packets such that it is possible to attach

more importance to packets on which multiple other packets depend. The details of this

algorithm will be reviewed in Section 3.2. To reduce the scheduling complexity, Miao

and Ortega [50, 51] proposed an expected run-time distortion based scheduling (ERDBS)

algorithm which simply uses a greedy solution by explicitly considering the effects of data

dependencies and delay constraints into a single importance metric. The rate-distortion

framework in [19, 20] can be applied in a series of scenarios, including packet scheduling

at the sender [19, 20], at the receiver [21], or at the intermediate proxy [11].

End-to-end distortion estimation is a challenging problem in rate-distortion based

scheduling algorithms. When the dependency among packets is modelled by a DAG,

Chou and Miao [19, 20] computed the distortion contribution of a packet based on the

assumption of a single decoding path: a packet can be decoded only when all of its parents

are received and decodable. One example of this is layered coding. Cheung and Tan

introduced a more general formulation based on the DAG model [15] to include the case

where a packet can assume different distortion contributions when different subsets of its

dependent packets are available. They considered all possibilities of decoding and delivery

scenarios, which leads to significant increases in complexity. In our approach, we propose a

new directed acyclic hypergraph (DAHG) on the top of a DAG, by introducing additional
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objects to explicitly represent the source redundancy among packets which arises from a

given source coding approach (e.g., MDLC) in order to enhance the adaptation flexibility.

Compared to [15], our DAHG model provides a more systematic way to represent source

codecs that support multiple decoding paths with reasonable complexity. All of the

above methods assign distortion on a per packet basis, and calculate the expected end-

to-end distortion of a GOP based on the packet relationship represented in the source

model. Zhang et al. proposed an alternative approach [100] by estimating the expected

distortion of a GOP at runtime based on the stored distortion information of this GOP for

several selected reference vectors of packet loss probability. Compared to above methods,

this approach can only provide an approximation of the expected distortion via a first-

order Taylor expansion. The approximation accuracy depends on the number of reference

vectors and smoothness of the expected distortion over a range of packet loss probabilities.

1.6 Contributions of This Research

The main contributions of our research include the following:

1. Network-adaptive video streaming [83, 85, 86].

• We develop a novel coding approach, namely, multiple description layered cod-

ing (MDLC), which combines hierarchical scalability of LC with the reliability

introduced by MDC.

• We extend the rate-distortion optimized streaming framework proposed in

[19, 20] to operate on a general class of coding formats that explicitly support

redundancy in their coding structures. Such codecs (e.g., MDLC) produce
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multiple redundant representations, which facilitate server adaptation to vary-

ing network conditions, without re-encoding the video stream or completely

switching between different encoding modes on the fly. We first introduce a

new directed acyclic hypergraph (DAHG) to represent the data dependencies

and correlation between different video packets, from which the expected end-

to-end distortion for a group of packets can be estimated accurately. Based on

the DAHG model, we then develop two rate-distortion based packet schedul-

ing algorithms: one extended from the Lagrangian optimization proposed in

[19, 20], and another one based on a greedy solution derived from the Taylor

analysis of the expected distortion.

• We observe two types of redundancy, namely, source redundancy and transport

redundancy, in the proposed streaming framework. We investigate the impacts

of both redundancies on error control for a lossy packet network.

2. Wyner-Ziv Scalable predictive coding [81, 82, 84].

• We propose a practical video coding framework based on distributed source

coding principles, with the goal to achieve efficient and low-complexity scal-

able coding. Starting from a standard predictive coder as base layer (such as

MPEG-4 baseline video coder in our implementation), the proposed Wyner-

Ziv scalable coder can achieve higher coding efficiency, by selectively exploiting

the high quality reconstruction of the previous frame in the enhancement layer

coding of the current frame.
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• Correlation estimation at the encoder is a challenging problem in Wyner-Ziv

coding. We propose two simple and efficient algorithms, namely, direct esti-

mation and model-based estimation, to explicitly estimate at the encoder the

parameters of a model to represent the correlation between the current frame

and an optimized side information available only at the decoder. Our estimates

closely match the actual correlation between the source and the decoder side

information.

• Since the temporal correlation varies in time and space, we propose a block-

based adaptive mode selection algorithm for each bit-plane, so that it is pos-

sible to switch between different coding modes.

The rest of the thesis is organized as follows. We discuss the MDLC codec in Chapter

2. Then we describe the rate-distortion based scheduling framework for a general class

of sources with redundancy in Chapter 3. The Wyner-Ziv scalable coding is presented in

Chapter 4. Finally, conclusions and future work are provided in Chapter 5.
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Chapter 2

Multiple Description Layered Coding (MDLC)

2.1 Introduction

In this chapter we present an efficient multiple description layered coding (MDLC) system

for robust video communication over unreliable channels. Recent technological develop-

ments and the rapid growth of Internet and wireless networks make it feasible and more

attractive to provide real-time video services over them. However the current best-effort

Internet does not offer any QoS guarantees. The congestion, routing delay and fluctu-

ations of network conditions can all result in the packet loss or large delay during the

transmission, and thus greatly degrade the received video quality.

A traditional method to provide bandwidth adaptation and error resilience in lossy

transmission environments is layered coding (LC) [34, 35, 44], in which a video sequence

is coded into a base layer and one or more enhancement layers. The base layer provides a

minimum acceptable level of quality, and each additional enhancement layer incrementally

improves the quality. Thus, graceful degradation in the face of bandwidth drops or

transmission errors can be achieved by decoding only the base layer, while discarding
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one or more of the enhancement layers. The enhancement layers are dependent on the

base layer, and cannot be decoded if the base layer is not received. Thus LC requires the

base layer to be highly protected, which can be achieved via either strong forward error

correction (FEC) or automatic repeat request (ARQ) schemes. FEC has the drawback

of requiring increased bandwidth, even in cases when errors do not occur, while ARQ

may not be a practical alternative if the round-trip time (RTT) is long relative to the

end-to-end delay in the application. Some recent work [11, 19–21, 50, 51] has proposed

rate-distortion optimized scheduling algorithms for layered video streaming, by attaching

different importance to each packet, and thus determining the optimal transmission policy

of each packet based on their importance.

Another alternative to reliable communication is multiple description coding (MDC)

[29, 39, 71, 78, 87, 89, 90]. With this coding scheme, a video sequence is coded into a num-

ber of separate bit streams (referred to as descriptions), so that each description alone

provides acceptable quality and incremental improvement can be achieved with addi-

tional descriptions. Each description is individually packetized, and transmitted through

separate channels or through one physical channel that is divided into several virtual

channels by using appropriate time interleaving techniques. Each description can be de-

coded independently to provide an acceptable level of quality. For this to be true, all the

descriptions must have some basic information about the source, and therefore they are

likely to be correlated.

There have been some researches on performance comparison between LC and MDC.

In [63], Reibman et al. first evaluated the performance of LC and MDC for transmission

over binary symmetric channels and random erasure channels using FEC codes. Singh et
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al. compared MDC without retransmission to LC with retransmission through network

simulations [72]. In [65], Reibman et al. further studied the performance of LC and MDC

for transmission over an EGPRS wireless network through either one or two correlated

wireless channels. In [43], Lee et al. performed a comprehensive comparison between LC

and MDC in multi-path environments under different error control scenarios including no

error control, ARQ-based and FEC-based error control for both LC and MDC. Zhou et

al. examined the performance of LC and MDC with or without retransmissions based on

rate-distortion lower bounds combined with the effect of excess rate and delay incurred

from retransmissions [101]. Since these performance comparisons depend on the actual

coder implementations and underlying network environments, observations from these re-

searches are not completely consistent. But most of these studies lead to a common belief

that (1) MDC outperforms LC in network scenarios with high error rate, long RTT or

stringent real time requirements [43, 63, 72, 101]; and (2) error control techniques such as

ARQ or FEC are very useful for both LC and MDC [43, 63, 101]. Some recent work also

studied the performance of LC and MDC when an advanced transport mechanism is used.

In [53], Nguyen et al. showed that with good packet allocations LC outperforms MDC

under various network conditions. In [13], Chakareski et al. described a large variation

in relative performance between LC and MDC depending on the employed transmis-

sion scheme. Both works further demonstrate the importance of transport mechanisms

optimized for a given source coding technique, complementing traditional transport tech-

niques such as ARQ or FEC.

The above observation motivates us to look for an adaptive approach to combine LC

and MDC in order to exploit their individual benefits, so as to provide reliable video
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communication over a wider range of network scenarios and application requirements.

The main novelty of our work is to demonstrate that it is possible to combine LC with

MDC, by adding a standard-compatible enhancement to MPEG-4 version 2 [36]. The

new multiple description layered coding (MDLC) approach presented here introduces

redundancy in each layer so that the chance of receiving at least one base layer description

is greatly enhanced. Furthermore, though LC and MDC each achieve good performance

in different limit cases (e.g., long end-to-end delay for LC vs. short delay for MDC), the

proposed MDLC system can address intermediate cases as well. As in a LC system with

retransmission, the MDLC system can take advantage of a feedback channel that indicates

which descriptions have been correctly received. Thus we will show that a low redundancy

MDLC system can be implemented with runtime packet scheduling system proposed in

Chapter 3 based on a priori channel knowledge and runtime feedback information. The

goal of our scheduling algorithm is to find a proper on-line packet scheduling policy to

maximize the playback quality at the decoder. This chapter is focused on the discussion of

the proposed MDLC technique, and the scheduling algorithm for MDLC and its extension

to a general class of coding problems with source redundancy will be described in detail

in Chapter 3.

Closely related research on combining LC and MDC includes work by Chou et al.

[22] and by Kondi [41]. In [22], the authors start from an MDC coder that is realized by

applying unequal cross-packet FEC to different parts of a scalable bitstream [4], and then

convert the descriptions into a base layer and an enhancement layer. In [41], the proposed

codec relaxes the hierarchy of LC by producing a base layer and two multiple description
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Figure 2.1: Structure of the proposed MDLC codec.

enhancement layers, where the base layer is required for decoding and the two enhance-

ment layers can be decoded independently of each other. Both works optimize source

redundancy at the encoding stage. In contrast, our proposed MDLC codec produces

multiple redundant representations increasing the flexibility with which a video server

can adapt to varying network conditions. An MDLC system can dynamically adjust the

run-time redundancy of the compressed bit streams during transmission, for either a live

or pre-encoded video, by applying a rate-distortion optimized scheduling algorithm.

The chapter is organized as follows. In Section 2.2 we describe the proposed MDLC

approach. Simulation results are presented in Section 2.3. Finally we conclude our work

in Section 2.4.

2.2 Proposed MDLC Codecs

2.2.1 General Structure

Our general approach to MDLC video coding uses an MDC encoder to generate two base

layer descriptions BL1 and BL2, as shown in Figure 2.1. Then the base layer MDC
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decoder in the MDLC encoder module mimics the three possible decoding scenarios at

the receiver: both descriptions received or either one received. For the case when both

descriptions are received, it reproduces the base layer as Ŝ, and the difference between

the original video input S and Ŝ is coded with a standard encoder such as MPEG-4

FGS into an enhancement layer stream EL0. For the case when only one description is

received, the base layer decoder generates a low quality reproduction Ŝ1 or Ŝ2, and feeds

the difference into two enhancement layer encoders separately to create EL1 and EL2.

The key advantage of our MDLC scheme is that it combines the LC hierarchical

scalability coding scheme with the reliability introduced by adding redundancy to the

base layer by using multiple descriptions. With a well-designed scheduling algorithm, the

sender can choose only one base layer description and its corresponding enhancement layer

to be sent to the receiver, as in a standard LC system, in situations where the channel

losses are low. Or it can send both base layer descriptions and their enhancement layer

streams to get the maximum protection when channel conditions worsen. EL0 is sent

instead of either EL1 or EL2 to reduce the redundancy when both BL1 and BL2 are

received, or expected to be received with high probability. The sender can select the

packets to be transmitted at any given time during the transmission session based on the

feedback information, in such a way as to maximize the playback quality at the decoder.

The proposed decoder system, depicted in Figure 2.1, is composed of two parts: base

layer MDC decoder, and enhancement layer switch and decoder. The base layer MDC

decoder will generate a reproduction S̃ which will be Ŝ, Ŝ1 or Ŝ2 depending on what was

received. The enhancement layer switch then selects which EL stream to decode given
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what base layer was received. Finally, the decoded base layer and enhancement layer will

be combined together to generate the final video output.

Given the general structure in Figure 2.1, a very important part of an MDLC codec

design is determining how to construct base layer descriptions using a specific MDC

algorithm. In the following discussions, we propose two MDLC codecs using different

base layer MDC approaches, one based on DCT duplication and alternation, and the

other based on MPEG-4 FGS temporal scalability (FGST) with temporal subsampling.

2.2.2 Codec 1: DCT Duplication and Alternation

We first propose a simple MDLC codec, where the base layer descriptions are formed by

simple duplication and alternation of the DCT coefficients. The base layer is obtained by

applying a coarse quantizer to the original video in DCT domain. We create our multiple

base layer descriptions by repeating important information, such as the motion vectors in

inter mode and DC coefficients in intra mode. For the rest of the DCT coefficients, we just

alternate them into the two descriptions. For example, if a macroblock is assigned to BL1,

then its neighboring macroblocks are assigned to BL2. Information from both descriptions

is combined before making predictions for the future frames. We first used this codec in

[83] to demonstrate the advantage of MDLC over either LC or MDC. While this design

is simple, we expect that more complex schemes, such as combining with an optimal

rate-distortion splitting [62, 64], would lead to improvements in overall performance.
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Figure 2.2: MDLC scheme based on MPEG-4 FGST. I: I-frame, P: P-frame, F: the
enhancement layer generated by coding the residual between the original frame and its
base layer reconstruction, FT: the enhancement layer generated by FGST using forward
prediction from the base layer of its previous frame. The subscript of each label indicates
the frame number. EL0 in Figure 2.1 is not shown here as it is simply composed of Fi

identical to either EL1 or EL2 based on the frame index.

2.2.3 Codec 2: based on MPEG-4 FGST with Temporal Subsampling

In this approach, we use video redundancy coding (VRC) [91] to create an MDC base

layer, by partitioning a video sequence into two subsequences each of which mainly con-

tains either odd or even frames. At the base layer, each subsequence is coded indepen-

dently as an IPP sequence, where only the first frame (I-frame) of each group of pictures

(GOP) is shared between both subsequences, as shown in Figure 2.2. Coding efficiency

is reduced because the motion-compensated prediction using a past frame farther apart

is usually less efficient than using the immediately past frame. If both descriptions are

received correctly, each bit stream is decoded independently to produce the even and odd

frames that are interleaved for the final base layer reconstruction. However, if only one

description is received, the missed description can be estimated by simply copying the

closest adjacent frame in the correctly received description or using more complicated

motion interpolation techniques by exploiting both past and future frames [5].
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In order to construct an MDLC codec, we introduce additional fine granularity bit-

rate scalability by generating enhancement layers form the base layer descriptions. For

each subsequence, as shown in Figure 2.2, we create enhancement layer descriptions with

the MPEG-4 FGS temporal scalability (FGST) approach [44]. Each enhancement layer

description codes the difference between the original picture and a reference picture recon-

structed from its corresponding base layer description in bit-plane coding of the residual

DCT coefficients. The residual DCT coefficients are obtained from different references

depending on whether a frame is coded in the base layer description or not. Without loss

of generality, consider the P-frame with an odd-index, i, in Figure 2.2. Its enhancement

layer EL1 represents the residue between frame i and its BL1 reconstruction, denoted

by Fi, while its EL2 is generated using forward prediction from the BL2 reconstruction

of the previous frame i− 1, denoted FTi, which contains the enhancement-layer motion

vectors as well. At the decoder, depending on what base layer description is received, the

enhancement layer can choose to decode either all (e.g., when both base layer descrip-

tions are received) or a subset of the descriptions (when only one base layer description is

received). The final enhancement layer quality is the one with the best quality achieved

by all decodable descriptions.

This MDLC approach is used in Chapter 3 as an example to demonstrate the efficiency

of our scheduling algorithm for source codecs with redundancy. It is noted that this

particular approach has a number of practical advantages in addition to the general

features common to MDLC techniques. First, in addition to SNR quality, it provides

temporal scalability that leads to a good reconstruction at half the original frame rate

even when only one description is received. Second, it can be easily combined with

31



multiple path transport to improve error resilience. Third, it is straightforward to expand

the current approach to more than two descriptions by splitting the frames evenly into

multiple independent subsequences and coding each enhancement layer description using

the same FGST approach. Last, it has the flexibility to provide unbalanced base layer

descriptions by using different quantization steps for each description, which is useful to

cover a wide range of bit rates for bandwidth adaptation.

2.3 Experimental Results

We investigate the end-to-end distortion performance of the proposed MDLC technique,

by comparing it with both LC and MDC. Here we use the MDLC approach based on

MPEG-4 FGST to code video sequences. MPEG-4 FGS is used as the LC implementation,

and the MDC system uses the same multiple description generating method as our MDLC

for the base layer. The comparisons between MDLC and LC are discussed in detail

in Section 3.5, which show that MDLC outperforms LC even when a rate-distortion

(R-D) optimized packet scheduling algorithm is used. This is because having a source

representation with built-in error resilience, through source redundancy, enables MDLC

to provide an end-to-end performance that is less affected by packet losses, particularly

in the case of poor channel conditions, such as high packet loss rate and short playback

delay.

In this section, we compare the MDLC approach with a set of MDC schemes using

different quantization parameters (QP). All of these schemes use an R-D optimized packet

scheduling algorithm, based on Lagrangian optimization, described in Chapter 3. The
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Figure 2.3: Rate-distortion curves of MDC codecs with different quantization parameters,
MD1 and MD2 of MDLC for Foreman and Mobile measured at the encoder without
transmission impacts.
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video sequences used in the experiments are Foreman (QCIF) and Mobile (CIF). The

encoding parameters of MDLC and streaming system setup are described in Section 3.5.

In addition to the MDC codec that uses the same QP as that for the MDLC base layer,

we employ two other MDC codecs with finer quantization steps to increase the achievable

R-D range. Figure 2.3 shows the compression efficiencies of these MDC codecs, MD1

and MD2 of MDLC for Foreman and Mobile measured at the encoder. The three R-D

operating points of each MDC codec are obtained by assuming that either one or both

descriptions are received.

Figure 2.4 shows a performance comparison between these schemes when the packet

loss rate (PLR) is 15% and the playback delay (denoted by w) is 320 ms. The MDLC

approach provides a similar or better performance than its corresponding MDC approach

using the same base layer QP over the bandwidth range tested in the simulation. How-

ever, the relative performance between MDLC and other MDC approaches (i.e., QP=8 or

4) depends on the available transmission rate. This can be explained as follows, by con-

sidering both compression efficiency and rate scalability of a source codec. Since MDLC

provides a more graceful degradation of reconstruction quality through layered coding,

the performance gain of MDLC over MDC increases at lower transmission rates, when a

client may not receive any descriptions for some frames in the MDC case. At medium

or high transmission rates, as more and more packets are received at the client, MDLC

may perform worse than an MDC approach because of their respective compression effi-

ciencies. For example, in Figure 2.3 (a), the MDC approach with QP=8 can achieve 34.3

dB of luminance PSNR at 240 Kbps in a perfect channel, while MDLC can only achieve

less than 32 dB. Correspondingly, in Figure 2.4 (a), we can see that this MDC approach
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Figure 2.4: Performance comparison between MDLC and a set of MDC schemes with
different quantization parameters for Foreman and Mobile.
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outperforms MDLC between 300 Kbps and 700 Kbps. As the transmission rate increases

further, MDLC may outperform MDC again, as all descriptions of MDC or MDLC can

be delivered to the client on time and the reproduction quality at the decoder is bounded

by the achievable reconstruction quality at the encoder. In summary, MDLC provides

a more graceful bandwidth adaptation in the event of varying transmission bandwidth,

compared to the sharp change in end-to-end quality typical of a MDC system. Mean-

while, source redundancy introduced in an MDLC codec improves its error resilience in

a lossy packet environment.

2.4 Conclusions

In this chapter we proposed a new approach, multiple description layered coding (MDLC),

which combines the hierarchical scalability of LC with the reliability introduced by MDC.

The MDLC codec produces multiple redundant representations, enhancing the adaptation

flexibility to varying network conditions. Experimental results show that the proposed

MDLC system provides more robust and efficient video communication over a wider range

of network scenarios and application requirements.
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Chapter 3

Rate-Distortion Based Scheduling of Video with Multiple

Decoding Path

3.1 Introduction

Internet multimedia applications, such as live video streaming, distance learning and video

on demand services, are becoming increasingly popular. Given the best-effort service

offered by the current Internet, video transmission is inevitably affected by the network

variations in bandwidth, delay and packet loss rate, and thus it is imperative to provide

some means to deal with the transmission impairments. Instead of traditional error-

resilient encoding techniques that introduce redundancy in the bit stream level, this

chapter extends the rate-distortion optimized streaming framework proposed in [19, 20]

to operate on a general class of coding formats that explicitly support redundancy in

their coding structure by, for example, producing multiple redundant representations of

the video content. Note that in the absence of adaptation the redundancy levels may not
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match those required by the actual network conditions. Here we propose an on-line rate-

distortion based scheduling algorithm that can dynamically adjust the system’s real-time

redundancy to match the channel behavior so as to achieve better overall quality.

A variety of techniques have been proposed to address error control in the litera-

ture, including forward error correction, delay-constrained retransmission [32], intra/inter

mode switching [99], reference picture selection [28, 37], dynamic packet dependency con-

trol [45], layered coding with unequal error protection [4], soft ARQ for layered streaming

media [56], and multiple description coding [29, 89]. An important recent advance to video

streaming is the rate-distortion optimized packet scheduling (RaDiO) framework initially

proposed by Chou and Miao [19, 20]. This work formalized packet dependencies as a

directed acyclic graph (DAG), prioritized packets based on their importance, and sched-

uled them so as to minimize a Lagrangian cost function combining expected distortion

and rate. Some techniques have been proposed to reduce the complexity of the origi-

nal algorithm. Miao and Ortega [49, 50] simplified the approach by running a greedy

algorithm that explicitly combines the effects of data dependencies and delay constraints

into a single importance metric. Chou and Sehgal [21] presented simplified methods to

approximate the optimized policies. Chakareski et al. [10] proposed a family of simplified

distortion models to approximate the end-to-end distortion produced by arbitrary packet

loss patterns. Recent work by De Vleeschouwer et al. [80] improved the performance of

greedy scheduling algorithm by delaying some packet scheduling decisions to avoid prema-

ture retransmissions. The sender-driven rate-distortion framework in [19] has also been

extended into other transmission scenarios, including packet scheduling at the receiver

[21], at an intermediate proxy [11], or taking into consideration path diversity [12].
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Previous work on rate-distortion optimized video scheduling is mainly focused on

encoding techniques, such as layered coding [44], which generate packets that can only

be decoded following a single decoding path (SDP): a packet can be decoded only when

all the packets it depends on are received and decodable. However, source codecs that

explicitly support redundancy to combat transmission errors usually produce multiple

decoding paths (MDP): there are multiple ways to decode a packet, each with a different

distortion reduction depending on which packets, among those it depends on, are received.

One example of these codecs is multiple description layered coding (MDLC) proposed in

[83], which combines the hierarchical scalability of layered coding (LC) with the reliability

of multiple description coding (MDC) so as to provide graceful adaptation over a wider

range of application and network scenarios. Other coding examples with MDP include

multiple independent encodings or decoding with error concealment.

The scheduling problem becomes more challenging when considering multiple decod-

ing paths. In addition to challenges arising in the framework of [19, 20], such as delay

constrained delivery, channel conditions and data dependency, the scheduling algorithm

has to take into account the correlation or redundancy between data units, which is

needed for end-to-end distortion estimation. The basic RaDiO framework [19, 20] ad-

dressed this problem using a simple DAG model to represent data dependency only, and

is thus limited to coding scenarios that have a single decoding path. For example, it im-

plicitly excludes the possibility of having multiple descriptions, in which several decoding

choices are possible based on which descriptions are received. Cheung and Tan [15] intro-

duced a more general formulation based on the DAG model to include the case where a

packet can be decoded in different ways. They considered all possibilities of decoding and
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delivery scenarios, which leads to significant increases in complexity. In our approach,

we introduce new additional components on top of a DAG, in order to explicitly repre-

sent source redundancy among packets. Thus, compared to [15], our approach provides

a more systematic way to represent source codecs that support multiple decoding paths

with reasonable complexity.

This chapter, extending our prior work [83, 85], focuses on developing a general stream-

ing framework for a class of scenarios that employ redundant source coding structures. In

[83], we proposed a heuristic scheduling algorithm for a simplified MDLC codec with only

I-frames, and then presented a preliminary version of our general streaming framework

in [85]. The present chapter extends our prior work by generalizing the source model to

include a general class of source coding approaches such as MDLC with motion predic-

tion, multiple independent encodings and so on, by refining the optimization scheduling

algorithms, by introducing an improved MDLC predictive coder, and by evaluating per-

formance under various redundancies for a number of video sequences. Specifically, in this

chapter, we first propose a new Directed Acyclic HyperGraph (DAHG) source model to

represent both data dependencies and correlation between different video data units. The

DAHG model introduces the concepts of multiple decodable states and multiple decoding

paths, from which the expected end-to-end distortion D for a group of packets can be

estimated accurately, when given a vector of packet loss probabilities, ε, for each packet

in the group. In addition, a Taylor series expansion of D in terms of ε reveals important

properties for different coding scenarios, depending on whether source redundancy exists

or not. We then propose two rate-distortion adaptive packet scheduling algorithms, one
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based on Lagrangian optimization with the iterative descent approach proposed in [19]

and another one based on a greedy solution derived from the Taylor expansion.

It is noted that, in addition to source redundancy explicitly produced at the encoding

stage, the proposed streaming framework implicitly introduces a transport redundancy

by allowing retransmission of a packet without waiting for either a negative acknowledge-

ment (NAK) from the receiver or a timeout. In this case it is possible for the sender

to transmit a packet multiple times so that more than one copy of a given packet may

be correctly received at the decoder. We term this resulting rate penalty the transport

redundancy introduced by the scheduling algorithm. This is different from most tradi-

tional ARQ approaches applied in video applications that only retransmit a packet upon

the detection of a packet error or loss. This type of redundancy has not been explicitly

studied in previous research. In this work, we investigate the impacts of both transport

and source redundancy on the error control for a lossy packet network. From our experi-

ments we make the following observations. First, regardless of whether source redundancy

exists or not, a well-controlled transport redundancy through the Lagrangian optimized

scheduling algorithm can improve the end-to-end performance in a delay-sensitive appli-

cation. Second, in the absence of transport redundancy, source redundancy helps combat

channel errors especially in high packet loss rate or under stringent delay constraints.

Finally, these two types of redundancy can complement each other and achieve efficient

video streaming even with very poor channel conditions, for example, at very high packet

loss rates or relatively long RTT as compared to the end-to-end delay.

In this chapter, we use the MDLC codec proposed in Section 2.2.3 as an example

to evaluate the scheduling algorithm performance under different types of redundancies.
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Results demonstrate the benefits on error robustness provided by both source and trans-

port redundancies, and show that our proposed system with both redundancies achieves

the best end-to-end performance on real-time video communication over a wide range of

network scenarios.

Rate-distortion optimized streaming with source redundancy has also been applied to

multiple independent encodings [40] and decoding with error concealment [12]. Unlike

these techniques which address a particular source coding approach, we formalize the

general coding relation between data units in a more structured source model that can

represent various source coding approaches including these two examples. Compared to

stream switching often used in commercial streaming systems [9, 23], our approach enables

finer switching at the packet level rather than the stream level, and further allows more

flexible adaptation options than simple switching.

The chapter is organized as follows. In Section 3.2, we briefly review the basic RaDiO

framework in [19]. Section 3.3 describes a general DAHG source model that uses the

MDLC as an example, the expected end-to-end distortion, and the analysis of its Taylor

expansion. Section 3.4 proposes the rate-distortion based scheduling algorithms based on

the DAHG model, and describes the concept of transport redundancy. Simulation results

are presented in Section 3.5. Conclusions and future work are discussed in Section 3.6.

3.2 Review of Basic RaDiO Framework

In this section we briefly review the rate-distortion optimized streaming framework of

[19]. A compressed media stream is packetized into packets or data units. Here, we
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Figure 3.1: A DAG example for a LC system.

simply assume each data unit is put into one packet, and in the following discussion we

do not differentiate between a data unit and a packet. The source dependencies between a

group of data units are modelled as a directed acyclic graph (DAG), in which each vertex

represents a data unit, and each directed edge from data unit i to data unit j indicates

the decoding dependence of j on i, i.e., data unit j can only be decoded if i is received

and decoded. Figure 3.1 shows a DAG representing a LC system containing a group of

I-P frames, with each frame having a base layer and an enhancement layer. Note that this

dependency structure corresponds to a typical fine granularity scalability (FGS) codec.

Associated with each data unit l in the graph are three constant quantities: its size rl

in bytes, its time deadline tl, i.e., the time by which it must arrive at the receiver to be

useful for decoding, and its distortion value dl, i.e., the amount by which the distortion

of the decoded video will decrease if l is decoded on time at the receiver. The model

implicitly assumes that when each data unit becomes decodable the total distortion is

reduced by its distortion value.

The streaming system decides whether, when and how to transmit each data unit

in a way that maximizes the playback quality at the decoder under the given network

conditions and application requirements. This framework assumes that data units are

transmitted at discrete intervals of time. At each transmission time, a data unit is
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chosen for transmission from those whose deadlines fall within a limited time window.

Transmission decisions for such a group of data units at discrete times can be described

by a transmission policy π. For a group of L data units, π = [π1, · · · , πL], in which πl is

a binary vector indicating whether data unit l will be transmitted or not at each of the

available transmission opportunities, unless there is an acknowledgement that l has been

received. At each transmission time, the algorithm determines which data units to send

by optimizing its transmission policy for the current transmission opportunity together

with a complete plan for future transmission opportunities that will likely happen. The

optimal policy π∗ is the one that minimizes the expected Lagrangian cost function

J(π) = D(π) + λR(π), (3.1)

where D(π) is the expected end-to-end distortion and R(π) is the expected transmission

rate for a given π. Based on the DAG model, D(π) is given by

D(π) = D0 −
∑

l

dl

∏

l′¹l

(1− ε(πl′)) (3.2)

where D0 is the distortion of the media stream if no packets are decoded, ε(πl) is the

packet loss probability of data unit l under policy πl (strictly speaking, the probability

that l is lost or does not arrive at the receiver on time), and
∏

l′¹l(1− ε(πl′)) is the

probability that l is decodable. l′ ¹ l refers to the set of data units that must arrive at

the receiver for l to be decoded. The given policy π also induces an expected number of

transmission times, β(πl), for each data unit l, and R(π) =
∑

l rlβ(πl).
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An iterative descent algorithm was proposed in [19] to find π∗. The algorithm starts

with an initial policy, and then proceeds to minimize (3.1) iteratively until J(π) converges.

At each iteration step, (3.1) is minimized with respect to πl while fixing the transmission

policies of other data units, πl′ , l′ 6= l. The optimization is done for different data units

in a round-robin order. To optimize πl, (3.1) can be rewritten as J(πl) = ε(πl)+ λrl
al

β(πl),

where al is the partial derivative of (3.2) with respect to ε(πl), indicating the sensitivity

(or importance) of receiving data unit l to the overall distortion. π is re-optimized at

each transmission opportunity to take into account the feedback information and possible

changes of the group of data units since the previous transmission opportunity.

3.3 Source Modelling for Redundant Representations

3.3.1 Directed Acyclic Hypergraph (DAHG)

When a video sequence is encoded into multiple redundant representations, source re-

dundancy is introduced between two data units, where each of them can be decoded

independently to create different representations of the same source unit. Such examples

include BL1 and BL2 corresponding to the same frame in MDLC, or data units that

contain individual independent encodings of a frame with different quantization parame-

ters. The key problem here is how to represent the redundancy between data units, and

furthermore the possible availability of multiple decoding paths due to the redundancy.

To address this class of source coding formats, we introduce a new source model called

Directed Acyclic HyperGraph (DAHG) to represent both dependency and redundancy
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relationships between different video data units. A DAHG is a generalization of a DAG

G = (V,E) where

1. Each vertex C ∈ V , rather than being a simple node, is composed of a set of nodes,

each pair of which is connected by an undirected edge. We name this type of vertex

a “clique”, representing a collection of data units that produce multiple redundant

representations of the same source coding unit, such as a frame or a SNR layer of

a frame in scalable coding. Each node (or data unit) in a clique represents one

encoded version of this source unit, and an undirected edge connecting two nodes

in the same clique indicates the redundancy between different encoded versions. A

pair of nodes i and j are called siblings, and we write i ∼ j.

2. An edge (C1, C2) ∈ E, directed from clique C1 to clique C2, is used to represent

that decoding of C2 is directly dependent on C1. C1 is said to be a parent of C2,

and C2 is said to be a child of C1. A path is a sequence of vertices such that from

each of its vertices there is a directed edge to the next vertex in the sequence. If a

path leads from C1 to C2, then C1 is said to be an ancestor of C2, and C2 is said

to be a descendant of C1, written as C1 ≺ C2 or C2 Â C1. Each parent of C2 is

certainly an ancestor of C2. On the other hand, C1 being an ancestor but not a

parent of C2 indicates an undirected decoding dependence between C1 and C2. For

example, this would be the case with last P-frame in a GOP (as C2) depending on

the first I-frame (as C1) through the other intermediate P-frames.

Figure 3.2 shows an example DAHG for the proposed MDLC scheme shown in Figure

2.2. Each frame i contains a base layer clique Ci1 and an enhancement layer clique Ci2.
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Figure 3.2: The DAHG model of the MDLC scheme shown in Figure 2.2. One of the two
base layer nodes (filled with gray color), which has zero data size, is decoded as a copy
or motion interpolation from the other description. We label each node sequentially as
l1, l2, · · · starting from frame 1. Specifically, in frame 2, l3, l4, l5 and l6 correspond to
BL1, BL2, EL1 and EL2, respectively.

Since the I-frame of each GOP is coded without redundancy, its base and enhancement

layer cliques contain only one node each. Clique Ci1 of each P frame i consists of two

nodes representing BL1 and BL2, respectively. One of them is generated by copying

(or using motion interpolation on) neighboring frames coded in the other description,

such as l3 of C21 in the figure. While this node does not require bits being sent, it does

produce a distortion reduction. Clique Ci2 contains nodes EL1 and EL2. Directed edges

connecting cliques represent either SNR dependence or temporal dependence. There are

two directed edges entering C32, including (C31, C32) for SNR dependence and (C21, C32)

for temporal dependence. Thus, C31 and C21 are parents of C32. C11 is an ancestor

of C32 as a path (C11, C21, C31, C32) leads from C11 to C32. Figure 3.3 models multiple

independent encodings of a video sequence, where the sequence is independently coded

twice with different quantization steps using a typical non-scalable codec. Each clique

contains two nodes to represent each encoded version. The same graph model can also
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Figure 3.3: Another example of DAHG to represent multiple independent encodings of a
video sequence. This model can also be used to represent error concealment.

be applied to a simple “copy previous frame” error concealment method, where one of

the two nodes in each clique represents a duplicate copy of the previous frame as an

approximation of the current frame.

Assume that a clique contains N data units. Since each unit can be either received

correctly or not received (due to loss or because it is not transmitted in the first place),

there are a total of 2N possible states for the clique. A clique state is represented by

a length-N binary string s, with each bit indicating the status of a data unit in the

clique. Let bl denote the corresponding bit location of data unit l in s; the blth bit of

s is 1 (mathematically, s[bl] = 1) if l arrives at the receiver on time and is 0 otherwise.

bl is set to 1 for those nodes that have a size of zero bits, since they are regarded as

being always received1. Zero state of a clique is then defined as the state such that no

data units are received, and all the other states that have at least one data unit received

are called non-zero states. Note that a non-zero clique state does not necessarily mean

that this clique is decodable. Decoding of a clique also depends on the states of its

ancestor cliques, which will be discussed later. In addition, it is convenient to define

B
(s)
C = {l|l ∈ C, s[bl] = 1} and B̄

(s)
C = {l|l ∈ C, s[bl] = 0} to represent two different sets

of data units in C based on their state s.

1Examples of this type of nodes are given in Figures 3.2 and 3.3. Essentially these nodes are created
to separate the direct contribution of a packet to reducing distortion, which requires transmission, from
its indirect contribution via interpolation or error concealment, which requires no additional transmission
rate once the original packet has been received.
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In a directed acyclic graph, a decoding path leading to a vertex can be constructed

as an ordered list of its ancestors in the decoding order. In past works that code a video

sequence into a single encoded version, such as single description coding, a vertex has only

1/0 states, i.e., either received or not. Thus each vertex node along a decoding path must

be received in order for the current node to be decoded, and this forms a single decoding

path. In contrast, in the case of source coding with redundancy, a clique can be decoded

once all its ancestor cliques are received in a non-zero state. Moreover, each clique in the

ordered ancestor list can take multiple non-zero states, with different state combinations

resulting in possibly different decoded versions of the current clique. A decoding path

leading to clique C is then defined as a particular combination of all C’s ancestor clique

states. Multiple decoding paths become possible as each ancestor may have multiple

clique states. In order to use the same mathematical notation, we simply assume there is

one virtual decoding path leading to those cliques that do not have parents. Figure 3.4(a)

shows the concept of multiple clique states and multiple decoding paths using the MDLC

in Figure 3.2 as an example.

In general a complete set of decoding paths leading to C contains all the combinations

of C’s ancestor clique states. Thus theoretically the number of decoding paths may in-

crease exponentially in the number of ancestor cliques preceding C. However, in practical

pre-encoded applications, given a decoder implementation and possible simplification of

source modelling, there are only a small number of effective decoding paths. For a given

decoder implementation, a clique representing a source unit can only be decoded into a

limited number of versions. Many of decoding paths producing the same reconstruction

can thus be merged into one decoding path, while some other paths that lead to poor
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Figure 3.4: Description of multiple clique states and multiple decoding paths using cliques
C11, C21 and C22 in Figure 3.2 as an example. (a) Multiple clique states and multiple
decoding paths. In frame 2, l3 is decoded to be a direct copy of the reconstructed frame
1, and l4 produces a reconstructed frame with better quality than l3. Each circle in the
figure is labelled by a combination of decoding path and clique state in the form “decoding
path : clique sate”. A decoding path is represented by a concatenation of each ancestor
clique state. Nothing before the colon in C11 indicates that it has no parents and there is
only a virtual decoding path leading to C11. (b) Distortion related parameters assigned
to frame 2.
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quality solutions are ignored by the decoder. For example, cross-description decoding of

EL2 based on BL1 or EL1 based on BL2 is ignored since the information added by the

cross enhancement layer is very small. In addition, even when a decoder supports certain

decoding paths, a source model for the purpose of scheduling can also choose to discard

some of these paths in order to reduce the computation complexity, at the penalty of

some performance loss.

In summary, DAHG is different from DAG mainly in two aspects: (1) multiple de-

coding paths in DAHG vs. single decoding path in DAG, and (2) multiple decodable

clique states in DAHG vs. 0/1 state of the data unit (i.e., it is either decodable or not) in

DAG. Estimating expected end-to-end distortion under a DAHG model will be discussed

in detail in Section 3.3.3.

3.3.2 Parameters Associated with DAHG

As in [19], each data unit l has a size rl in bytes and a time deadline tl by which it must

arrive at the receiver to be useful for decoding. However, the distortion reduction of a

data unit in a DAHG model can take different values depending on the decoding path

in which it is decoded. Let QC be the set of decoding paths leading to C. Then we

can represent the distortion reduction of data unit l in the clique by a distortion vector

dl = [d(1)
l , d

(2)
l , ..., d

(q)
l , ..., d

(|Qc|)
l ], where d

(q)
l is the distortion reduction if l is decoded in

the qth decoding path, and |.| denotes the cardinality of the set. Setting d
(q)
l to 0 will

force the scheduler not to transmit data unit l given the qth decoding path. This can

be used to eliminate certain undesirable clique state combinations, and thus reduce the

number of effective decoding paths in a DAHG.

51



Though each of the data units in clique C can produce a certain distortion reduction,

the total distortion reduction when more than one data unit is received correctly is usually

less than the sum of their respective distortion reductions. Let SC be the set of all clique

states in C. We introduce a redundancy matrix IC = [I(s,q)
C ] of dimension |SC | × |QC |,

to represent the redundancy between different data units inside the same clique C. The

redundancy of C, when it is in state s and decoded in the qth decoding path, is stored

as an entry in row s and column q of the redundancy matrix. I
(s,q)
C is defined as

I
(s,q)
C =

∑

l∈B
(s)
C

d
(q)
l − d

(s,q)
C , (3.3)

where d
(s,q)
C is the total distortion reduction of C if it is decoded in state s and the qth

decoding path. An important property of this model is that, as the DAG model, the

distortion reduction is still additive at the clique level; however, the amount by which the

distortion decreases when a node is decoded depends not only on the state of its ancestor

cliques but also on whether its siblings in the same clique are decodable. Figure 3.4(b)

lists the distortion vectors and redundancy matrices for frame 2 of the MDLC example

shown in Figure 3.2.

3.3.3 Expected End-to-End Distortion

Suppose we already have a DAHG model to represent a group of L data units, with each

data unit being packetized into one packet. We can now estimate the expected end-to-end

distortion of this group of packets (GOPkt) when given a vector of packet loss probability

(PLP) providing a loss probability for each packet in the group. Recall that a packet is
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considered lost if it is either lost or arrives at the decoder too late to be played. We now

define the “transmission state” as the PLP vector which accounts for the transmission

schedules and the channel conditions. Let εl be the PLP of packet l ∈ {1, ..., L} and let

ε = [ε1, ..., εL] be the real-time transmission state. Computation of expected distortion in

a DAHG for a given ε differs from that in [19] by introducing two new concepts, multiple

decoding paths and multiple decodable clique states.

To help us write an expression of the expected distortion, we first derive some related

probabilities. The probability of occurrence of clique state s is given by

p
(s)
C =

∏

l∈B
(s)
C

(1− εl)
∏

l′∈B̄
(s)
C

εl′ (3.4)

Recall that a decoding path leading to clique C is defined by a particular combination of

the clique states of all its ancestors. Thus the probability of occurrence of decoding path

q can be written in terms of the probabilities of those clique states as

p
(q)
C =

∏

C′≺C,sC′∈q

p
(sC′ )
C =

∏

l∈A
(q)
C

(1− εl)
∏

l′∈Ā
(q)
C

εl′ (3.5)

where A
(q)
C =

⋃
C′≺C,sC′∈q B

(sC′ )
C , and Ā

(q)
C =

⋃
C′≺C,sC′∈q B̄

(sC′ )
C . We now can write the

expected distortion as a function of the transmission state

D(ε) = D0 −
∑

C

∑

q∈QC

p
(q)
C [

∑

s∈SC

p
(s)
C d

(s,q)
C ] (3.6)
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where D0 is the distortion of the GOPkt if no packets are decoded, d
(s,q)
C =

∑
l∈B

(s)
C

d
(q)
l −

I
(s,q)
C directly derived from (3.3), and p

(s)
C and p

(q)
C are defined in (3.4) and (3.5), respec-

tively.

Both transmitting and receiving a packet cause a state transition from a state ε1 to

another state ε2. The Taylor expansion of D in terms of ε reveals different characteristics

of state transitions for different coding scenarios. The distortion reduction when receiv-

ing a packet in a multiple-decoding-path scenario depends on more factors than that in

a single-decoding-path scenario, because the redundancy between packets plays an im-

portant role. Thus, in this case, an optimal scheduling algorithm should be designed to

take into account both dependency and redundancy such that the end-to-end distortion

is minimized at the decoder.

The Taylor expansion of (3.6) at the current state ε̃ is given by

D(ε) =
∞∑

k=0

[
1
k!

(∆ε · ∇�0)kD(ε0)]�0=�̃

= D(ε̃) +
∑

i

ai(εi − ε̃i) +
∑

i,j

aij(εi − ε̃i)(εj − ε̃j) + . . . (3.7)

where we denote ai = ∂D
∂εi

the first-order partial derivative of D with respect to εi,

aij = ∂2D
∂εi∂εj

the second-order partial derivative, and so on. Note that (3.7) only contains

linear terms, since

∀ 1 ≤ j ≤ k, if ∃ mj ≥ 2, then
∂nD

∂εm1
i1

, · · · , ∂εmk
ik

= 0
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derived directly from (3.6). ai indicates the importance of packet i in terms of its contribu-

tion to the overall distortion reduction given the current transmission state. As receiving

a packet will not increase the overall distortion for any coding application, ai ≥ 0 for

any i. The second or higher-order terms take effect when there is more than one packet

whose PLP has changed from a reference state. For example, ∂2D
∂εi∂εj

shows that a future

change of εj , as packet j is transmitted or its ACK/NAK is received, may affect the

importance of transmitting packet i at the current time. To see this, we approximate

ai by its first-order Taylor expansion at ε̃, ai(ε) ≈ ai(ε̃) +
∑

j aij(εj − ε̃j). Assume that

packet j will be transmitted or will arrive at the receiver when the state transits from ε̃

to ε, then εj < ε̃j . In this case, aij will lead to a change in ai as follows: when aij < 0,

ai increases and vice versa. In other words, the transmission or arrival of packet j may

increase or reduce the current importance of packet i depending on the sign of aij .

Now we compare the difference between single decoding path and multiple decoding

paths in terms of the properties of the first-order and second-order partial derivatives of

D. First consider the single decoding path case. The expected end-to-end distortion in

this case is given in (3.2). We derive its partial derivatives as

∂D

∂εi
=

∑

lºi

dl

∏

l′¹l,l′ 6=i

(1− εl′) (3.8)

∂2D

∂εi∂εj
= −

∑

lºi,j

dl

∏

l′¹l,l′ 6=i,j

(1− εl′) (3.9)

The right hand side of (3.8) can be written as the sum of two terms f1 and f2, where

f1 = di
∏

l′≺i(1− εl′) corresponds to the original distortion of packet i weighted by the

probability of receiving all its ancestors, and f2 =
∑

lÂi dl
∏

l′¹l,l′ 6=i(1− εl′) indicates the
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importance of packet i to its descendant packets. From (3.9), we can conclude ∂2D
∂εi∂εj

≤ 0

for any i and j, since εl′ ≤ 1 for any l′.

When multiple decoding paths are possible, we derive its first-order derivative from

(3.6) as

∂D

∂εi
= f1 + f2 + f3 + f4 (3.10)

with

f1 =
∑

q∈QC

p
(q)
C [

∑

s∈SC ,i∈B
(s)
C

d
(s,q)
C

∏

l∈B
(s)
C ,l 6=i

(1− εl)
∏

l∈B̄
(s)
C

εl]

f2 = −
∑

q∈QC

p
(q)
C [

∑

s∈SC ,i∈B̄
(s)
C

d
(s,q)
C

∏

l∈B
(s)
C

(1− εl)
∏

l∈B̄
(s)
C ,l 6=i

εl]

f3 =
∑

CÂCi

∑

q∈QC ,i∈A
(q)
C

[
∏

l∈A
(q)
C ,l 6=i

(1− εl)
∏

l∈Ā
(q)
C

εl] · [
∑

s∈SC

p
(s)
C d

(s,q)
C ]

f4 = −
∑

CÂCi

∑

q∈QC ,i∈Ā
(q)
C

[
∏

l∈A
(q)
C

(1− εl)
∏

l∈Ā
(q)
C ,l 6=i

εl] · [
∑

s∈SC

p
(s)
C d

(s,q)
C ]

where Ci represents the clique that contains packet i. f1 indicates the packet importance

due to its own distortion reduction; f2 represents redundancy when both i and its sibling

packets are received; f3 shows the distortion reduction achieved by the descendant cliques

of Ci in the decoding paths that require i to be received; and f4 represents the impact

of receiving i on the descendant cliques of Ci in the remaining decoding paths which do

not require i to be received. The signs of these terms indicate whether it is desirable to

transmit i or not when different packets have been received at the decoder in the past,

as a positive (or negative) term will increase (or decrease) the value of ∂D
∂εi

.

We now give a concrete example to clearly illustrate how to calculate the expected

distortion for the MDLC scheme in Figure 3.2 and the properties of its partial derivatives
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in the case of multiple decoding paths. Here we only consider cliques C11, C21 and C22.

Let εi denote the packet loss probability of data unit li in Figure 3.2. Since l3 is a direct

copy of l1 without the need to send any bits, ε3 = 0. We use the notation of Figure 3.4

for distortion related parameters.

(1) Calculation of expected distortion: The expected distortion D is given by

D = D0 −∆DC11 −∆DC21 −∆DC22 (3.11)

where

∆DC11 = (1− ε1)d1

∆DC21 = (1− ε1)
[

ε4 1− ε4

]
×




d3

d4




∆DC22 = (1− ε1)
[

ε4 1− ε4

]
× dC22 × pC22

with dC22 =




0 d
(1)
5 d

(1)
5

d
(2)
6 d

(2)
5 max(d(2)

5 , d
(2)
6 )


 , pC22

=




ε5(1− ε6)

(1− ε5)ε6

(1− ε5)(1− ε6)




correspond-

ing to the non-zero clique states of C22 in the order [01], [10] and [11]. Each entry of dC22

at row q and column s gives the distortion reduction of C22 along the qth decoding path

in state s. The sth element of pC22
is the probability of occurrence of C22 at state s.

(2) First-order partial derivatives: Take l4 as an example to show the importance of

∂D
∂ε to the system’s behavior. Written in the same way as (3.10), ∂D

∂ε4
is derived from

(3.11) with f1 = (1 − ε1)d4, f2 = −(1 − ε1)d3, f3 = (1 − ε1)(dC22(2) × pC22
), and
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f4 = −(1− ε1)(dC22(1)×pC22
), where dC22(q) (q = 1, 2) is the qth row of dC22 . From the

sign of the above terms, we can see that transmission of l3 is more favorable when f1 and

f3 are significant, and less favorable when f2 and f4 become dominant.

(3) Second-order partial derivatives: Assuming now l1 and l4 have been transmitted

but without receiving acknowledgements yet, the current state ε̃ = [ε1, ε3, ε4, ε5, ε6] =

[ε1, 0, ε4, 1, 1], 0 ≤ ε1, ε4 ≤ 1. Consider the following second-order derivatives at ε̃,

• ∂2D
∂ε4∂ε6

= −(1− ε1)d
(2)
6 ≤ 0, since l6 is dependent on l4 for decoding;

• ∂2D
∂ε5∂ε6

= (1 − ε1)(1 − ε4)IC22 [11] ≥ 0, since l5 and l6 have redundancy with each

other.

Though it is complicated to derive a general equation of ∂2D
∂εi∂εj

from (3.6), we can

see from the above example that, in the case of multiple decoding paths, ∂2D
∂εi∂εj

can be

either non-negative or non-positive. In contrast, ∂D
∂εi∂εj

≤ 0 for single decoding path.

This shows that, in the case of single decoding path, the arrival of one packet at the

receiver can increase, or at least not reduce the importance of the other packets, in terms

of distortion reduction. However, when there are multiple decoding paths, due to the

redundancy between packets which affects the high-order terms, the future transmission

of packets may decrease the current importance value of a packet that contains redundant

information.
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3.4 Scheduling Algorithms with DAHG

In this section we study two rate-distortion adaptive packet scheduling algorithms using

our proposed DAHG source model, one based on Lagrangian optimization using an it-

erative descent algorithm [19, 20], and another one based on a greedy solution derived

from the Taylor analysis in Section 3.3.3. Finally, we introduce the concept of transport

redundancy in terms of the retransmission penalty observed at the client, and discuss its

role in both scheduling algorithms.

3.4.1 System Architecture

Figure 3.5 shows an end-to-end video transmission system, in which each video frame is

encoded, transmitted and decoded in real-time within some acceptable delay period. The

input video is compressed into multiple redundant representations, e.g., using MDLC. For

a packet-switched network, these streams are packetized and then fed into the transmis-

sion buffer. At each transmission time t, we make a selection decision only among packets

whose playback deadlines fall within a time-varying transmission window [lag(t), lead(t)].

The time window will advance with t, and thus each packet has a limited number of trans-

mission opportunities. lag(t) is defined such that any packet whose playback deadline is

earlier than lag(t) could not arrive at the receiver on time if it were transmitted at t.

lead(t) implies the earliest time that a packet is eligible for transmission. [19] has pro-

posed a number of ways to set lead(t) by considering the receiver buffer implementation

and the application playback delay. Here we assume the end-to-end delay for each frame

will be constant and equal to the initial playback delay w. Thus, lead(t) = lag(t) + w.
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Figure 3.5: Streaming system architecture.

Each transmission at time t is subjected to a constraint of the admissible channel rates

during this time interval. The receiver sends an acknowledgement (ACK) back to the

sender as soon as it receives a packet. With the feedback information, the sender can

estimate the channel conditions such as packet loss rate and round-trip time (RTT).

In our research, we simply model the network as an i.i.d. packet erasure channel with

a fixed RTT. That means that a packet sent at t is lost with probability ε independent of t.

By time t+RTT, the sender will receive an ACK if the packet is received at the decoder;

otherwise the packet is considered lost or corrupted. We also assume that the back

channel is error-free. Thus, given the transmission policy that there are n transmission

times of packet l in the last RTT, the expected PLP of packet l at time t is given by

εl =





0 if the sender has received an ACK of packet l by t,

εn otherwise.
(3.12)

More complicated network models, such as random network delay and lossy back channel,

can be easily combined into our streaming architecture and scheduling algorithms. The
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major difference for various network models is how to estimate the expected packet loss

probability in (3.12) given a transmission policy. This part has been carefully studied in

[19]. In this chapter, we focus on the design of an efficient scheduling algorithm by taking

into account both dependency and redundancy between packets.

3.4.2 Optimization Problem Formulation

The goal of scheduling is to minimize the playback distortion for a streaming session, by

adapting to the network conditions and application requirements. Though we work with a

more general streaming framework that allows multiple decoding paths, we can follow the

same problem formulation as originally proposed in [19] for streaming applications with

single decoding path. Suppose we wish to transmit a group of L packets whose playback

deadlines fall in a limited time window, and the packets are transmitted at discrete

time intervals evenly distributed in a time window with a maximum of N transmission

opportunities. Let πl = [v0, · · · , vN−1] be the transmission policy for packet l along the

N transmission opportunities, where vi = 1 indicates “send packet l” and vi = 0 “do

not send packet l” at the ith time interval. We are interested in finding an optimal

transmission policy π� = [π1, · · · , πL] for this group of packets such that the expected

end-to-end distortion is minimized subject to the data rate constraint, i.e.,

π� = argmin
�:R(�)≤Rb

D(π). (3.13)

Since the expected PLP εl for packet l is a function of its transmission policy πl, the

expected end-to-end distortion D also depends on π. Note that we consider expected
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distortion because there is uncertainty about the actual decoded video quality; changes

in channel bandwidth, packet loss rate, and so forth will affect the quality of received

video.

3.4.3 Lagrangian Optimization Algorithm

As proposed in [19], the constrained optimization problem in (3.13) can be cast as an

unconstrained optimization problem using a Lagrange multiplier λ,

π� = argmin
�

D(π) + λR(π). (3.14)

Let β(πl) and ε(πl) be the expected number of transmission times and the expected PLP

for packet l under πl, respectively. Then the expected rate of the group of L packets

R(π) =
∑

l rlβ(πl), and the expected distortion D(π) is given by (3.6) using the DAHG

model. Our proposed scheduling algorithm is composed of two components: (1) at each

transmission time t, the iterative descent optimization algorithm proposed in [19] is used

to update π� for a given λ, by taking into account the source rate-distortion information,

current channel condition, transmission history and receiver feedback; (2) a window-based

rate-control algorithm is applied regularly (e.g., at each transmission time) to adjust λ

such that the average output rate of the scheduler is matched to the channel bandwidth.

First, the iterative descent algorithm in [19] is used to optimize π� for coding ap-

plications with multiple decoding paths. For completeness, the Lagrangian optimization

algorithm tailored to our DAHG model is summarized in Algorithm 1. The major differ-

ence from [19] is that, at each optimization step, we derive the expected distortion from
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Algorithm 1 Lagrangian(t, λ, πt−1)

1: n = 0: initialize πl = {πl,t−1, 0, . . . , 0} for each packet l, and calculate εl = ε(πl),
βl = β(πl), D = D0 −

∑
C

∑
q∈QC

p
(q)
C [

∑
s∈SC

p
(s)
C d

(s,q)
C ], R =

∑
l rlβl, J = D + λR

2: repeat
3: n = n + 1
4: select packet l to optimize at step n in a round-robin order
5: al = ∂D

∂εl
obtained from (3.10)

6: π∗l = argminπl
ε(πl) + λrl

al
β(πl)

7: εl = ε(π∗l ), βl = β(π∗l ), D = D0 −
∑

C

∑
q∈QC

p
(q)
C [

∑
s∈SC

p
(s)
C d

(s,q)
C ], R =

∑
l rlβl,

J = D + λR
8: until

∣∣J (n) − J (n−1)
∣∣ < Threshold

9: return π� = [π∗1, · · · , π∗L]

a DAHG model instead of a DAG, as the DAHG can well represent both dependency and

redundancy between packets. The input parameter πt−1 represents the optimal trans-

mission policy determined at previous time t− 1. Since all the future transmission plans

following current time t will be re-optimized, the function Lagrangian is only interested

in the segment of πt−1 that stores the transmission history up to t− 1. Let πl,t−1 denote

the lth component of this past segment in πt−1. We first initialize the transmission policy

πl of each packet to be the one with no further transmissions, i.e., setting all the future

transmission actions as 0 in Algorithm 1. At each iteration step, the Lagrangian cost J is

minimized with respect to πl of a selected packet l while keeping the policies of all other

packets fixed. Upon convergence, πl of each packet is optimized for its complete window

of transmission opportunities. Then the transmitter takes transmission actions at t, and

the optimization procedure will be repeated at t + 1.

Second, in order to approach the channel bandwidth limit, we propose a window-based

rate control scheme. That is, at each time, λ is fixed for all packets in the transmission

window. The rate budget Rb is increased when a new frame enters into the transmission
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Algorithm 2 Window Based Rate Control(t, Rb)

1: if t = 0 then
2: Rb = 0
3: if M new frames come in then
4: Rb = Rb + M ∗ channel bandwidth ∗ frame interval
5: use bi-section algorithm to find an appropriate λ with rate constraint Rb

6: call Lagrangian(t, λ, πt−1)
7: Rb = Rb −

∑
l:πl(t)=1 rl

8: return Rb

window, and decreased when packets are sent out. At each transmission time, we apply

the bisection algorithm to find an appropriate λ for Rb. This approach is different from

those that fix λ for each group of frames or the whole session in that it can quickly

respond to channel bandwidth changes and use the bandwidth in a more efficient way.

The rate control algorithm is summarized in Algorithm 2.

3.4.4 Greedy Algorithm

Since only the current transmission action in π is used at any given time, instead of de-

termining the complete transmission policy for each packet over all possible transmission

opportunities (e.g., as used in the above Lagrangian optimization), we could choose to

use a greedy approach by selecting the currently most important packet from the group

of L candidate packets. Previous research work [50] has proposed similar solutions for

single-decoding-path applications. Here, we derive the greedy algorithm for multiple-

decoding-path codecs from the Taylor expansion of the expected distortion. Given the

past transmission history of packet i, let πi,0 be a transmission schedule such that packet

i is not transmitted at the current time t and all future time steps, and let πi,1 be the
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same transmission schedule as πi,0 except that packet i will be transmitted at t. Send-

ing packet i at t induces a state transition from ε(πi,0) to ε(πi,1), and thus leads to a

distortion reduction by

∆D
(t)
i = D(ε(πi,0))−D(ε(πi,1)) = ai(εi,0 − εi,1) = ai(1− ε)εi,0 (3.15)

derived from (3.7), where εi,0 and εi,1 are the PLP of packet i given the schedule πi,0 or

πi,1, respectively. In fact, εi,0 is the expected PLP of packet i at t given its transmission

history as calculated in (3.12), and we simplify the notation to εi. ∆D
(t)
i indicates the

importance of sending packet i at the current time t when no further transmissions are

considered. To favor packets with early playback deadlines, we introduce a multiplier εmi

in (3.15), where mi is designed to approximate the number of possible retransmissions

by2

mi = (ti − t)/RTT. (3.16)

That is because the future possible transmissions for packet i will decrease the importance

of sending it at t. Ignoring the constant term (1 − ε), for comparing the importance of

sending each packet at t and taking into account the packet size ri, we have the metric

ci = εmiεi
ai

ri
(3.17)

for each packet and select the one with the largest ci to send. Note that ai is calculated

at the current state with the assumption that there are no future transmissions of other

2Strictly speaking, the number of possible retransmissions can be much larger than the given mi for a
system that allows retransmissions without waiting.
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Algorithm 3 Greedy

1: for all 1 ≤ i ≤ L do
2: ci = εmiεi

ai
ri

3: Find the largest ci, say j (i.e. cj ≥ ci for any i 6= j)
4: return j

packets. Algorithm 3 summarizes the proposed greedy technique. At each transmission

time, we choose the most important packets to send by running this algorithm iteratively

until the channel rate allocated to this time interval is used up.

A main problem of the greedy algorithm is that it ignores the possibility of future

transmissions of other packets. As Section 3.3.3 points out, for applications with multi-

ple decoding paths, the future transmission of a packet may either increase or decrease

the importance value of another packet depending on their coding relation. Thus, in

an optimal algorithm future transmission probabilities of packets would have increased

impact, through the higher-order derivatives of the Taylor expansion, on the decision at

the current transmission opportunity. Another problem may arise from possible future

retransmissions of the packet itself, for which this algorithm introduces a multiplier on

the importance metric to approximate this impact on the current decision. In Section 3.5,

we will see that the greedy algorithm experiences a certain performance loss compared to

Lagrangian optimization. Other work has studied improved greedy scheduling algorithm

to address these problems. Our previous MDLC work in [83] proposed a double time win-

dow control to intentionally introduce an extra waiting period for MD2 such that it can

only be transmitted relatively safely in a future time to avoid unnecessary redundancy

with MD1. This helps when the acknowledgements generated by early transmissions of

MD1 are likely to arrive at the sender soon. In order to avoid the penalty introduced
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by premature retransmissions, [80] proposed to delay some packet scheduling decisions.

However, for a general coding scenario that provides multiple decoding paths, we have

not achieved a systematic solution to address the possible future (re)transmissions for

the packet itself and its related packets (through either dependency or redundancy). We

are now working on a possible solution by taking into account the higher-order partial

derivatives described in Section 3.3.3.

3.4.5 Transport Redundancy

Traditional ARQ approaches request retransmission only upon detection of lost or overly

delayed packets. Thus the number of retransmissions is very limited for delay constrained

real-time video communication. In comparison, our extended streaming framework, to-

gether with the one originally proposed in [19] for single decoding path, allows unlimited

retransmission of a packet before the playback deadline in the sense that it can retransmit

a packet without waiting for a timeout or NAK from the receiver. This approach essen-

tially relieves the delay problem caused by retransmissions. However, it may introduce

a rate penalty when both retransmitted and original packets are correctly received at

the decoder. We call this “transport redundancy”, since the client receives redundant

information3.

One possible variation of the proposed scheduling algorithms is to mimic the tradi-

tional ARQ systems by limiting the retransmission of a packet until the last transmission

of this packet has not been acknowledged within a predefined timeout. Based on our

3If the original packet is not correctly received at the decoder, the duplicated packet contributes to
the end-to-end distortion, and thus here we do not count it as a transport-redundant packet.

67



system assumption with a fixed RTT, the timeout is simply defined to be equal to one

RTT. In other systems where the network produces a random delay, the timeout can be

set as the mean RTT plus some tolerance (e.g., three times the standard deviation of the

RTT, as is frequently used in ARQ systems). This is different from the original schedul-

ing algorithms in that it completely or almost completely avoids the cost penalty due

to the transport redundancy. However, if retransmission is controlled appropriately in

the case where there is no waiting, the end-to-end performance can be improved without

introducing longer delay. We will compare the performance of the scheduling algorithms

with or without transport redundancy in Section 3.5.

3.4.6 Complexity Analysis

The complexity of the Lagrangian optimization approach is on the order of NλNiL2N

at each transmission time, where Ni is the number of iterations performed until the

algorithm converges for a given λ, and Nλ is the number of iterations for the rate control

algorithm to adjust λ to meet the rate limit. The time period to adjust λ could cross

multiple transmission times in order to reduce the complexity. L is the number of packets

available for transmission in the time window, and N is the number of transmission

opportunities of a packet. The complexity of the Greedy approach is O(L) since each

packet only needs to be traversed once to choose the most important packet to send at a

given time. Note that the limited retransmission variants of the proposed algorithms lead

to decreases in complexity as the number of packets to be considered for transmission at

each transmission opportunity decreases. Instead of considering L, we consider only those

that have not been transmitted or have been transmitted in the distant past (e.g., one
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RTT ago) without acknowledgement. In addition, for Lagrangian optimization algorithm,

the searching space of an optimal transmission policy for each packet is greatly reduced

by the retransmission limitation.

3.5 Experimental Results

In this section, we examine the performance of the proposed streaming framework for

video codecs with multiple decoding paths. The video sequences are coded using the

proposed MDLC approach based on MPEG-4 FGST. Three standard test sequences are

used: Akiyo (QCIF), Foreman (QCIF) and Mobile (CIF). The first 200 frames of each

sequence are coded at 30f/s with a constant quantization step size. Each group of pictures

(GOP) has 10 frames coded in IPP format. Specifically, at the base layer, 5 frames

correspond to MD1 and 6 frames to MD2 in each GOP. Base layer reconstruction of

missing frames is done by simply copying the past frame from the other description.

Each base layer packet includes a complete frame. The enhancement layer of a frame in

each description is coded bit-plane by bit-plane, with each bit-plane put into one packet.

The performance is measured in terms of the average luminance peak signal-to-noise ratio

(PSNR) in decibels of the decoded video frames at the receiver as a function of various

system parameters, such as available channel bandwidth, packet loss rate (PLR), RTT

and application playback delay (denoted by w). In all experiments, the channel RTT is

set to 200 ms, and each packet has transmission opportunities every 80 ms. We performed

100 rounds for each experimental scenario and the results shown are the average of these

rounds.
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Akiyo QCIF (w = 320ms)
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Foreman QCIF (w = 640ms)
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Foreman QCIF (Greedy scheduling algorithm)
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Figure 3.6: Comparison between scheduling algorithms at PLR=0.15 for various playback
delays. The base layer quantization parameters for Mobile, Akiyo, and Foreman are set
to 12, 20, and 20, respectively.

3.5.1 Comparison between Scheduling Algorithms

In addition to Lagrangian optimization and greedy algorithm, we also include in a com-

parison with a heuristic scheduling algorithm based on ARQ with prioritized transmission.

In this algorithm, when the sender has not received the ACK of a packet after one RTT,

it puts the packet back to the transmission queue for retransmission. The scheduler

differentiates descriptions and layers by a predefined priority order. We choose the one

that is observed in general to achieve better performance than the other orders. That is,

BL1, EL1, BL2, EL2, in decreasing order of priority, which sends the MD1 first and
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then MD2 for increased redundancy if additional rate is available. Among packets with

the same priority class, priority is given to those with earlier playback deadlines. Both

Lagrangian optimization and the greedy algorithm allow retransmissions without waiting

for a timeout.

Figures 3.6(a)-(c) show the performance comparison between these systems when

PLR = 0.15. First, the Lagrangian method provides substantial gains over the heuristic

approach for the whole range of bandwidths under consideration at various playback

delays. The performance gain is in the range of 1-7 dB and decreases as the playback

delay increases. The heuristic approach prioritizes different descriptions and layers in a

predefined order without exploiting rate-distortion information of source packets. Thus,

the predefined order may lead to a mismatch between the added redundancy and that

required by the system conditions. For example, it does not introduce enough redundancy

in the case of short delay as shown in Figure 3.6(a), in that MD2 is not transmitted until

all base and enhancement layers of MD1 have been sent. Furthermore, the number

of retransmissions is restricted to be low due to the delay requirement. Therefore, the

transmission of less significant enhancement layers of MD1 is more likely a waste of

bandwidth due to the loss of its more significant layers. Second, the Lagrangian method

outperforms the greedy algorithm by up to 3 dB, and both algorithms achieve similar

performance in the short playback delay case of Figure 3.6(a). The greedy algorithm tends

to introduce more redundancy in the system since it makes scheduling decisions without

considering possible future packet transmissions. In some sense, the greedy algorithm is

not able to exploit a longer playback delay in a cost-efficient way. Finally, the greedy

algorithm performs better than the heuristic approach in most cases, since it exploits
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the knowledge of distortion impact of a packet loss on the reconstructed video quality.

However, in the case of long playback delay, the greedy algorithm performs poorly in

some transmission rates for the reasons we just explained.

3.5.2 Redundancy’s Role in Adaptive Streaming

We now describe a detailed performance analysis when the two types of redundancy,

namely source and transport redundancy, are used in the streaming system. We use

the Lagrangian optimization algorithm as a default scheduling algorithm unless other-

wise explicitly mentioned. For all the experiments, we use LC as a representative single-

decoding-path (SDP) codec, and MDLC as an example of multiple-decoding-path (MDP)

codecs. In order to emphasize the differences in the end-to-end reconstructed quality due

to the transmission impacts and the adaptation flexibility introduced by source redun-

dancy, we adjust the base layer quantization parameters (QP) so MDLC and LC perform

similarly in terms of coding efficiency. Figure 3.7 shows the base layer QP and rate-

distortion curves of LC, MD1 and MD2 of MDLC for Mobile and Foreman measured

at the encoder without any transmission impact. Three scenarios are considered in the

experiments. In the first one, we compare the performance with or without transport

redundancy for each type of codec. In the second scenario, when transport redundancy is

not available, we compare the performance of SDP and MDP codecs, i.e., LC and MDLC.

Finally, the third scenario under consideration represents a combination of the above two

kinds of redundancy. Specifically, in this scenario, we examine streaming performance

when both source redundancy and transport redundancy are introduced in the streaming

system.

72



0 200 400 600 800 1000 1200
26

28

30

32

34

36

38

40

Rate (Kbps)

P
S

N
R

−
Y

 (
dB

)

Foreman QCIF

MD1(QP=20)
MD2(QP=20)
LC(QP=24)

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000
24

26

28

30

32

34

36

38

Rate (Kbps)

P
S

N
R

−
Y

 (
dB

)

Mobile CIF

MD1(QP=12)
MD2(QP=12)
LC(QP=12)

(b)

Figure 3.7: Rate-distortion curves of LC, MD1 and MD2 of MDLC for Foreman and
Mobile measured at the encoder without transmission impacts.

3.5.2.1 Transport Redundancy

We first examine in Figure 3.8 the performance of streaming Foreman, as a function of

the available transmission rate and playback delay when LC and MDLC are used, re-

spectively. Here, as discussed in Section 3.4.5, unlimited retransmission corresponds to

the scheduling algorithms that allow retransmissions without waiting, while limited re-

transmission indicates the case where retransmissions have to wait till a timeout period.

First, it can be seen that, for both source codecs, unlimited retransmission outperforms

limited retransmission with a significant margin over the entire range of transmission

rate. This is due to the fact that for the former approach the chance of multiple retrans-

missions is greatly increased without incurring an unacceptable delay, and therefore the

additional bandwidth can be efficiently used to retransmit the most important packets

so as to improve the end quality at the receiver. Since the set of possible choices for π in

(3.14) for limited retransmission is a subset of the corresponding set of unlimited retrans-

mission, the Lagrangian optimization should ideally always achieve better performance
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Foreman QCIF LC (PLR = 0.15)
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Foreman QCIF MDLC (PLR = 0.3)
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Foreman QCIF MDLC (PLR = 0.15)
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Figure 3.8: The impact of transport redundancy on streaming performance when using
Lagrangian optimization algorithm.
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when removing the retransmission restriction. Transport redundancy is well adjusted

by Lagrangian optimization such that retransmissions are not wasted by exploiting the

statistical knowledge of the channel and past transmission history. For example, it is

observed that, if the playback delay is long enough, the scheduler chooses to wait for

one RTT before initiating a new retransmission, so that the retransmission only occurs

if the sender does not receive the ACK. However, for an algorithm that does not take

into account future packet transmissions, transport redundancy introduced by unlimited

retransmissions may deteriorate the algorithm performance as shown in Figure 3.6(d)

with bandwidth below 200 Kbps when the greedy algorithm is used. Second, the perfor-

mance gain of LC through transport redundancy tends to be more significant than that

of MDLC in the same system setting. As seen in Figures 3.8 (a) and (c) at w = 320 ms,

the gain reaches up to 9 dB for LC and 4 dB for MDLC at high transmission rates. This

is because source redundancy in MDLC provides a benefit similar to that of transport

redundancy in terms of improving error robustness in a lossy packet network. Finally we

observe that the performance difference between unlimited and limited retransmission is

larger under poor channel conditions, such as high PLR and short playback delay. Thus

limited retransmission may be appropriate as a lower complexity scheduling technique in

the case of low PLR and long playback delay.

3.5.2.2 Source Redundancy without Transport Redundancy

We then compare in Figure 3.9 the performance of LC and MDLC in the absence of trans-

port redundancy, i.e., when Lagrangian algorithm is used with limited retransmissions.

MDLC provides a significant gain over LC in the case of short playback delay and high
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Foreman QCIF (PLR = 0.3)
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Mobile CIF (PLR = 0.15)
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Foreman QCIF (PLR = 0.15)

15

19

23

27

31

35

39

0 200 400 600 800 1000 1200

Transmission rate (Kbps)

P
S
N
R
-Y
 (
d
B
)

LC, w = 160ms
LC, w = 320ms
LC, w = 640ms
MDLC, w = 160ms
MDLC, w = 320ms
MDLC, w = 640ms

 

(d)

Mobile CIF (PLR = 0.05)
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Foreman QCIF (PLR = 0.05)
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Figure 3.9: Comparing LC and MDLC with limited retransmissions. The performance
at w = 160 ms and PLR = 0.3 for both sequences is not included in the figure as the low
PSNR achieved is out of acceptable range.
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PLR, where source redundancy introduced by multiple descriptions greatly improves er-

ror robustness. The performance gain achieves up to 8 dB for both Mobile and Foreman

when w = 160 ms at PLR = 0.15. As w increases, the performance of LC improves as

the number of possible retransmissions increases, and finally is close to that of MDLC

at w = 640 ms. However, at very high PLR (e.g., PLR = 0.3), MDLC outperforms LC

again with a gain of 1-3 dB when w = 640 ms. In very few cases, there is a penalty of up

to 0.6 dB for MDLC over LC. This maybe be due to the possible local minimum involved

in the Lagrangian optimization of MDLC. To summarize the results, source redundancy

provides significant benefits on robust video communication especially in the case of high

PLR and short playback delay, which is known to be a very difficult environment for video

communication. When system conditions become favorable, source redundancy may not

be necessary considering the additional complexity it introduces.

3.5.2.3 Source Redundancy with Transport Redundancy

The final comparison is between LC and MDLC when transport redundancy is applied,

i.e., when using the Lagrangian optimization algorithm with unlimited retransmissions.

Figure 3.10 shows the performance of streaming Mobile and Foreman under the same

system settings as Figure 3.9. Note that in this case the performance difference between

MDLC and LC is not as large as in the previous case. This is expected as it is no

longer necessary to wait for a timeout and thus packet retransmission becomes possible

even in a delay-sensitive application, where end-to-end delay is of the order of the RTT.

The scheduling algorithm essentially provides unequal levels of transport redundancy to

different packets based on their estimated importance, and thus overcomes the sensitivity
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Foreman QCIF (PLR = 0.3)
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Mobile CIF (PLR = 0.15)
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Figure 3.10: Comparing LC and MDLC with unlimited retransmissions.
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of a LC system to transmission losses. But we can still observe a performance gain of up to

6 dB at w = 160 ms and PLR = 0.3. Similar to the second experiment, the performance

gain varies as a function of channel conditions, and is larger for high PLR and low playback

delay. Thus we can conclude that transport redundancy and source redundancy can both

improve the end-to-end performance by enhancing the error robustness. Furthermore,

the best performance is achieved when both types of redundancies are applied in the

streaming system. Such a system can achieve efficient video streaming even under very

poor channel conditions, such as for very high PLR or relatively long RTT compared to

the playback delay.

3.6 Conclusions

In this chapter we have extended recent work on rate-distortion based video scheduling to

the general case where multiple decoding paths are possible. We proposed a new source

model called Directed Acyclic Hypergraph (DAHG) to describe the decoding dependence

and redundancy between different data units. Based on this model, we have proposed

two rate-distortion based scheduling algorithms, i.e., the Lagrangian optimization and

greedy algorithm. Experimental results demonstrate the performance improvement by

exploiting coding relation and rate-distortion information of data units in the scheduling

algorithms. The results show that our proposed system with both source and transport

redundancy can provide very robust and efficient real-time video communication over

lossy packet networks.
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Chapter 4

A Framework for Adaptive Scalable Video Coding Using

Wyner-Ziv Techniques

4.1 Introduction

Scalable coding is well-suited for video streaming and broadcast applications as it fa-

cilitates adapting to variations in network behavior, channel error characteristics and

computation power availability at the receiving terminal. Predictive coding, in which

motion compensated predictors are generated based on previously reconstructed frames,

is an important technique to remove temporal redundancy among successive frames. It

is well known that predictive techniques increase the difficulty of achieving efficient scal-

able coding because scalability leads to multiple possible reconstructions of each frame

[66]. In this situation either (i) the same predictor is used for all layers, which leads to

either drift or coding inefficiency, or (ii) a different predictor is obtained for each recon-

structed version and used for the corresponding layer of the current frame, which leads

to added complexity. MPEG-2 SNR scalability with a single motion-compensated pre-

diction loop and MPEG-4 FGS exemplify the first approach. MPEG-2 SNR scalability
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uses the enhancement-layer (EL) information in the prediction loop for both base and

enhancement layers, which leads to drift if the EL is not received. MPEG-4 FGS provides

flexibility in bandwidth adaptation and error recovery because the enhancement layers

are coded in “intra” mode, which results in low coding efficiency especially for sequences

that exhibit high temporal correlation.

Rose and Regunathan [66] proposed a multiple motion-compensated prediction loop

approach for general SNR scalability, in which each EL predictor is optimally estimated

by considering all the available information from both base and enhancement layers.

Several alternative multi-layer techniques have also been proposed to exploit the temporal

correlation in the EL inside the FGS framework [33, 79, 93]. They employ one or more

additional motion-compensated prediction loops to code the EL, for which a certain

number of FGS bit-planes are included in the EL prediction loop to improve the coding

efficiency. Traditional closed-loop prediction (CLP) techniques have the disadvantage of

requiring the encoder to generate all possible decoded versions for each frame, so that

each of them can be used to generate a prediction residue. Thus, the complexity is high

at the encoder, especially for multi-layer coding scenarios. In addition, in order to avoid

drift, the exact same predictor has to be used at both the encoder and decoder.

Distributed source coding techniques based on network information theory provide a

different and interesting viewpoint to tackle these problems. Several video codecs using

side information (SI) at the decoder [3, 26, 60, 61, 67, 69] have been recently proposed

within the Wyner-Ziv framework [94]. These can be thought of as an intermediate step

between “closing the prediction loop” and coding each frame independently. In closed-

loop prediction in order for the encoder to generate a residue it needs to generate the
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same predictor that will be available at the decoder. Instead, a Wyner-Ziv encoder only

requires the correlation structure between the current signal and the predictor. Thus

there is no need to generate the decoded signal at the encoder as long as the correlation

structure is known, or can be found.

Some recent work [68, 74, 77, 96] has addressed the problem of scalable coding in the

distributed source coding setting. Steinberg and Merhav [74] formulated the theoretical

problem of successive refinement of information in the Wyner-Ziv setting, which serves

as the theoretical background of our work. In our work, we target the application of

these principles to actual video coding systems. The two most related recent algorithms

are in the works by Xu and Xiong [96] and Seghal et al. [68]. There are a number of

important differences between our approach and those techniques. In [96], the authors

presented a scheme similar to MPEG-4 FGS by building the bit-plane ELs using Wyner-

Ziv coding (WZC) with the current base and more significant ELs as SI, ignoring the

EL information of the previous frames. In contrast, our approach explores the remain-

ing temporal correlation between the successive frames in the EL using WZC to achieve

improved performance over MPEG-4 FGS. In [68], multiple redundant Wyner-Ziv encod-

ings are generated for each frame at different fidelities. An appropriate encoded version

is selected for streaming, based on the encoder’s knowledge of the predictor available at

the decoder. This scheme requires a feedback channel and additional delay and thus it is

not well-suited for broadcast or low-delay applications. In short, one method [96] ignores

temporal redundancy in the design, while the other [68] creates separate and redundant

enhancement layers, rather than a single embedded enhancement layer. In addition to

these approaches for SNR scalability, Tagliasacchi et al. [77] have proposed a spatial
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and temporal scalable codec using distributed source coding. They use the standards-

conformant H.264/AVC to encode the base layer, and a syndrome-based approach similar

to [61] to encode the spatial and temporal enhancement layers. Motion vectors from the

base layer are used as coarse motion information so that the enhancement layers can

obtain a better estimate of the temporal correlation. In contrast, our work focuses on

SNR scalability.

We propose, extending our previous work [81, 84], an efficient solution to the problem

of scalable predictive coding by recasting it as a Wyner-Ziv problem. Our proposed

technique achieves scalability without feedback and exploits both spatial and temporal

redundancy in the video signal. In [84] we introduced the basic concept on a first-

order DPCM source model, and then presented a preliminary version of our approach

in video applications in [81]. Our approach, Wyner-Ziv scalable coding (WZS), aims at

applying in the context of Wyner-Ziv the CLP-based estimation-theoretic (ET) technique

in [66]. Thus, in order to reduce the complexity, we do not explicitly construct multiple

motion-compensation loops at the encoder, while, at the decoder, SI is constructed to

combine spatial and temporal information in a manner that seeks to approximate the

principles proposed in [66]. In particular, starting from a standard CLP base-layer (BL)

video coder (such as MPEG-4 in our implementation), we create a multi-layer Wyner-

Ziv prediction “link”, connecting the same bit-plane level between successive frames. The

decoder generates the enhancement-layer SI with either the estimation theoretic approach

proposed in [66] or our proposed simplified switching algorithm to take into account all the

available information to the EL. In order to design channel codes with appropriate rates,
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the encoder estimates the correlation between the current frame and its enhancement-

layer SI available at the decoder. By exploiting the EL information from the previous

frames, our approach can achieve significant gains in EL compression, as compared to

MPEG-4 FGS, while keeping complexity reasonably low at the encoder.

A significant contribution of our work is to develop a framework for integrating WZC

into a standard video codec to achieve efficient and low-complexity scalable coding. Our

proposed framework is backward compatible with a standard base-layer video codec.

Another main contribution of this work is to propose two simple and efficient algorithms

to explicitly estimate at the encoder the parameters of a model to describe the correlation

between the current frame and an optimized SI available only at the decoder. Our

estimates closely match the actual correlation between the source and the decoder SI.

The first algorithm is based on constructing an estimate of the reconstructed frame and

directly measuring the required correlations from it. The second algorithm is based on an

analytical model of the correlation structure, whose parameters the encoder can estimate.

The chapter is organized as follows. In Section 4.2, we briefly review the theoretical

background of successive refinement for the Wyner-Ziv problem. We then describe our

proposed practical WZS framework and the correlation estimation algorithms in Sections

4.3 and 4.4, respectively. Section 4.5 describes the codec structure and implementation

details. Simulation results are presented in Section 4.6, showing substantial improvement

in video quality for sequences with high temporal correlation. Finally, conclusions and

future work are provided in Section 4.7.
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Figure 4.1: Two-stage successive refinement with different side information Y1 and Y2 at
the decoders, where Y2 has better quality than Y1, i.e. X → Y2 → Y1.

4.2 Successive Refinement for the Wyner-Ziv Problem

Steinberg and Merhav [74] formulated the theoretical problem of successive refinement of

information, originally proposed by Equitz and Cover [24], in a Wyner-Ziv setting (see

Fig. 4.1). A source X is to be encoded in two stages: at the coarse stage, using rate R1,

the decoder produces an approximation, X̂1 with distortion D1 based on SI Y1. At the

refinement stage, the encoder sends an additional ∆R refinement bits so that the decoder

can produce a more accurate reconstruction, X̂2, with a lower distortion D2 based on SI

Y2. Y2 is assumed to provide a better approximation to X than Y1 and to form a Markov

chain X → Y2 → Y1. Let R∗
X|Y (D) be the Wyner-Ziv rate-distortion function for coding

X with SI Y . A source X is successively refinable if [74]:

R1 = R∗
X|Y1

(D1), and R1 + ∆R = R∗
X|Y2

(D2). (4.1)

Successive refinement is possible under a certain set of conditions. One of the conditions,

as proved in [74], requires that the two SIs, Y1 and Y2, be equivalent at the distortion

level D1 in the coarse stage. To illustrate the concept of “equivalence”, we first consider

the classical Wyner-Ziv problem (i.e., without successive refinement) as follows. Let Y
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be the SI available at the decoder only, for which a joint distribution with source X is

known by the encoder. Wyner and Ziv [94] have shown that

R∗
X|Y = min

U
[I(X; U |Y )] (4.2)

where U is an auxiliary random variable, and the minimization of mutual information

between X and U given Y is over all possible U such that U → X → Y forms a Markov

chain and E[d(X, f(U, Y ))] ≤ D. For the successive refinement problem, Y2 is said to

be equivalent to Y1 at D1, if there exists a random variable U achieving (4.2) at D1 and

satisfying I(U ;Y2|Y1) = 0 as well. In words, when Y1 is given, Y2 does not provide any

more information about U .

It is important to note that this equivalence is unlikely to arise in scalable video coding.

As an example, assume that Y1 and Y2 correspond to the BL and EL reconstruction of

the previous frame, respectively. Then, the residual energy when the current frame is

predicted based on Y2 will in general be lower than if Y1 is used. Thus, in general, this

equivalence condition will not be met in the problem we consider and we should expect

to observe a performance penalty with respect to a non-scalable system. Note that one

special case where equivalence holds is that where identical SIs are used at all layers, i.e.,

Y1 = Y2. For this case and for a Gaussian source with quadratic distortion measure the

successive refinement property holds [74]. Some practical coding techniques have been

developed based on this equal SI property, e.g., in the work of Xu and Xiong [96], where

the BL of the current frame is regarded as the only SI at the decoder at both the coarse

and refinement stages. However, as will be shown, constraining the decoder to use the
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same SI at all layers leads to suboptimal performance. In our work, the decoder will use

the EL reconstruction of the previous frame as SI, outperforming an approach similar to

that proposed in [96].

4.3 Proposed Prediction Framework

In this section, we propose a practical framework to achieve Wyner-Ziv scalability for

video coding. Let video be encoded so that each frame i is represented by a base layer

BLi, and multiple enhancement layers ELi1, ELi2, ..., ELiL, as shown in Fig. 4.2. We

assume that in order to decode ELij and achieve the quality provided by the j-th EL, the

decoder will need to have access to: (1) the previous frame decoded up to the j-th EL,

ELi−1,k, k ≤ j, and (2) all information for the higher significance layers of the current

frame, ELik, k < j, including reconstruction, prediction mode, BL motion vector for

each Inter-mode macroblock, and the compressed residual. For simplicity, the BL motion

vectors are reused by all EL bit-planes.

With the structure shown in Fig. 4.2, a scalable coder based on WZC techniques

would need to combine multiple SIs at the decoder. More specifically, when decoding the

information corresponding to ELi,k, the decoder can use as SI decoded data corresponding

to ELi−1,k and ELi,k−1. In order to understand how several different SIs can be used

together we first review a well-known technique for combining multiple predictors in the

context of closed-loop coding (Section 4.3.1 below). We then introduce an approach

to formulate our problem as one of source coding with side information at the decoder

(Section 4.3.2).
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Figure 4.2: Proposed multi-layer prediction problem. BLi: the base layer of the ith
frame. ELij : the jth EL of the ith frame, where the most significant EL bit-plane is
denoted by j = 1.

4.3.1 Brief Review of ET Approach

In this section we briefly review the ET approach proposed in [66]. The temporal evolution

of DCT coefficients can be usually modelled by a first-order Markov process

xk = ρxk−1 + zk, xk−1⊥zk (4.3)

where xk is a DCT coefficient in the current frame and xk−1 is the corresponding DCT

coefficient in the previous frame after motion compensation. Let x̂b
k and x̂e

k be the base

and enhancement layer reconstruction of xk, respectively. After the BL is generated we

know that xk ∈ (a, b), where (a, b) is the quantization interval generated by the BL. In
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addition, assume that the EL encoder and decoder have access to the EL reconstructed

DCT coefficient x̂e
k−1 of the previous frame. Then the optimal EL predictor is given by

x̃e
k = E[xk|x̂e

k−1, xk ∈ (a, b)]

≈ ρx̂e
k−1 + E[zk|zk ∈ (a− ρx̂e

k−1, b− ρx̂e
k−1)].

(4.4)

The EL encoder then quantizes the residual

re
k = xk − x̃e

k. (4.5)

Let (c, d) be the quantization interval associated with re
k, i.e., re

k ∈ (c, d), and let e =

max(a, c + x̃e
k) and f = min(b, d + x̃e

k). The optimal EL reconstruction is given by

x̂e
k = E[xk|x̂e

k−1, xk ∈ (e, f)]. (4.6)

The EL predictor in (4.4) can be simplified in the following two cases: (1) x̃e
k ≈ x̂b

k if

correlation is low, ρ ≈ 0, or the total rate is approximately the same as the BL rate, i.e.,

x̂e
k−1 ≈ x̂b

k−1; (2) x̃e
k ≈ x̂e

k−1 for cases where temporal correlation is higher or such that

the quality of the BL is much lower than that of EL.

Note that in addition to optimal prediction and reconstruction, the ET method can

lead to further performance gains if efficient context-based entropy coding strategies are

used. For example, the two cases x̃e
k ≈ x̂b

k and x̃e
k ≈ x̂e

k−1 could have different statistical

properties. In general, with the predictor of (4.4), since the statistics of zk tend to be

different depending on the interval (a−ρx̂e
k−1, b−ρx̂e

k−1), the encoder could use different
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entropy coding on different intervals [66]. Thus, a major goal in this chapter is to design

a system that can achieve some of the potential coding gains of conditional coding in the

context of a WZC technique. To do so we will design a switching rule at the encoder that

will lead to different coding for different types of source blocks.

4.3.2 Formulation as a Distributed Source Coding Problem

The main disadvantage of the ET approach for multi-layer coding resides in its complex-

ity, since multiple motion-compensated prediction loops are necessary for EL predictive

coding. For example, in order to encode EL21 in Fig. 4.2, the exact reproduction of EL11

must be available at the encoder. If the encoder complexity is limited, it may not be

practical to generate all possible reconstructions of the reference frame at the encoder. In

particular, in our work we assume that the encoder can generate only the reconstructed

BL, and does not generate any EL reconstruction, i.e., none of the ELij in Fig. 4.2 are

available at the encoder. Under this constraint we seek efficient ways to exploit the tem-

poral correlation between ELs of consecutive frames. In this chapter, we propose to cast

the EL prediction as a Wyner-Ziv problem, using Wyner-Ziv coding to replace the closed

loop between the respective ELs of neighboring frames.

We first focus on the case of two-layer coders, which can be easily extended to multi-

layer coding scenarios. The basic difference at the encoder between CLP techniques, such

as ET, and our problem formulation is illustrated in Fig. 4.3. A CLP technique would

compute an EL predictor

x̃e
k = f(x̂e

k−1, x̂
b
k) (4.7)
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where f(·) is a general prediction function (in the ET case f(·) would be defined as in

(4.4)). Then, the EL encoder would quantize the residual re
k in (4.5) and send it to the

decoder.

Instead, in our formulation, we assume that the encoder can only access x̂b
k, while

the decoder has access to both x̂b
k and x̂e

k−1. Therefore, the encoder cannot generate the

same predictor x̃e
k as (4.7) and cannot explicitly generate re

k. Note, however, that x̂b
k, one

of the components in (4.7), is in fact available at the encoder, and would exhibit some

correlation with xk. This suggests making use of x̂b
k at the encoder. First, we can rewrite

re
k as

re
k = xk − x̃e

k = (xk − x̂b
k)− (x̃e

k − x̂b
k) (4.8)

and then to make explicit how this can be cast as a Wyner-Ziv coding problem, let

uk = xk − x̂b
k and vk = x̃e

k − x̂b
k. With this notation uk plays the role of the input signal

and vk plays the role of SI available at the decoder only. We can view vk as the output

of a hypothetical communication channel with input uk corrupted by correlation noise.

Therefore, once the correlation between uk and vk has been estimated, the encoder can

select an appropriate channel code and send the relevant coset information such that

the decoder can obtain the correct uk with SI vk. Section 4.4 will present techniques to

efficiently estimate the correlation parameters at the encoder.

In order to provide a representation with multiple layers coding, we generate the

residue uk for a frame and represent this information as a series of bit-planes. Each bit-

plane contains the bits at a given significance level obtained from the absolute values of all

DCT coefficients in the residue frame (the difference between the base layer reconstruction
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Figure 4.3: Basic difference at the encoder between the CLP techniques such as ET and
our proposed problem: (a) CLP techniques, (b) our problem setting.

and the original frame). The sign bit of each DCT coefficient is coded once in the bit-plane

where that coefficient becomes significant (similar to what is done in standard bit-plane

based wavelet image coders). Note that this would be the same information transmitted

by an MPEG-4 FGS technique. However, differently from the intra bit-plane coding in

MPEG-4 FGS, we create a multi-layer Wyner-Ziv prediction link, connecting a given

bit-plane level in successive frames. In this way we can exploit the temporal correlation

between corresponding bit-planes of uk and vk, without reconstructing vk explicitly at

the encoder.

4.4 Proposed Correlation Estimation

Wyner-Ziv techniques are often advocated because of their reduced encoding complexity.

It is important to note, however, that their compression performance depends greatly on

the accuracy of the correlation parameters estimated at the encoder. This correlation

estimation can come at the expense of increased encoder complexity, thus potentially

eliminating the complexity advantages of WZC techniques. In this section, we propose

estimation techniques to achieve a good tradeoff between complexity and coding perfor-

mance.
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Figure 4.4: Discrete memoryless channel model for coding uk: (a) binary channel for
bit-planes corresponding to absolute values of frequency coefficients (i.e., uk,l at bit-plane
l), (b) discrete memoryless channel with binary inputs (“-1” if ul

k < 0 and “1” if ul
k > 0)

and three outputs (“-1” if vl
k < 0, “1” if vl

k > 0 and “0” if vl
k = 0) for sign bits,

4.4.1 Problem Formulation

Our goal is to estimate the correlation statistics (e.g., the matrix of transition probabilities

in a discrete memoryless channel) between bit-planes of same significance in uk and vk.

To do so, we face two main difficulties. First, and most obvious, x̂e
k−1, and therefore vk,

are not generated at the encoder as shown in Fig. 4.3. Second, vk is generated at the

decoder by using the predictor x̃e
k from (4.7), which combines x̂e

k−1 and x̂b
k. In Section

4.4.2 we will discuss the effect of these combined predictors on the estimation problem,

with a focus on our proposed mode-switching algorithm.

In what follows the most significant bit-plane is given the index “1”, the next most

significant bit-plane index “2”, and so on. uk,l denotes the l-th bit-plane of absolute

values of uk, while ul
k indicates the reconstruction of uk (including the sign information)

truncated to its l most significant bit-planes. The same notation will be used for other

signals represented in terms of their bit-planes, such as vk.
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In this work, we assume the channel between source uk and decoder SI vk to be

modeled as shown in Fig. 4.4. With a binary source uk,l, the corresponding bit-plane

of vk, vk,l, is assumed to be generated by passing this binary source through a binary

channel. In addition to the positive (symbol “1”) and negative (symbol “-1”) sign outputs,

an additional output symbol “0” is introduced in the sign bit channel to represent the

case when SI vk = 0.

We propose two different methods to estimate crossover probabilities, namely, (1) a

direct estimation (Section 4.4.3), which generates estimates of the bit-planes first, then

directly measures crossover probabilities for these estimated bit-planes, and (2) a model-

based estimation (Section 4.4.4), where a suitable model for the residue signal (uk − vk)

is obtained and used to estimate the crossover probabilities in the bit-planes. These two

methods will be evaluated in terms of their computational requirements, as well as their

estimation accuracy.

4.4.2 Mode-Switching Prediction Algorithm

As discussed in Section 4.3, the decoder has access to two SIs, x̂e
k−1 and x̂b

k. Consider

first the prediction function in (4.7) when both SIs are known. In the ET case, f(·)

is defined as an optimal prediction as in (4.4) based on a given statistical model of zk.

Alternatively, the optimal predictor x̃e
k can be simplified to either x̂e

k−1 or x̂b
k for a two-

layer coder, depending on whether the temporal correlation is strong (choose x̂e
k−1) or

not (choose x̂b
k).

Here we choose the switching approach due to its lower complexity, as compared to

the optimal prediction, and also because it is amenable to an efficient use of “conditional”
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entropy coding. Thus, a different channel code could be used to code uk when x̃e
k ≈ x̂b

k

and when x̃e
k ≈ x̂e

k−1. In fact, if x̃e
k = x̂b

k, then vk = 0, and we can code uk directly via

entropy coding, rather than using channel coding. If x̃e
k = x̂e

k−1, we apply WZC to uk

with the estimated correlation between uk and vk.

For a multi-layer coder, the temporal correlation usually varies from bit-plane to bit-

plane, and thus the correlation should be estimated at each bit-plane level. Therefore, the

switching rules we just described should be applied before each bit-plane is transmitted.

We allow a different prediction mode to be selected on a macroblock (MB) by macroblock

basis (allowing adaptation of the prediction mode for smaller units, such as blocks or DCT

coefficients may be impractical). At bit-plane l, the source uk has two SIs available at

the decoder: ul−1
k (the reconstruction from its more significant bit-planes), and x̂e

k−1 (the

EL reconstruction from the previous frame). The correlation between uk and each SI is

estimated as the absolute sum of their difference. When both SIs are known, the following

parameters are defined for each MB,

Eintra =
∑

MBi
|uk − ul−1

k |

Einter =
∑

MBi
|uk − (x̂e

k−1 − x̂b
k)| =

∑
MBi

|xk − x̂e
k−1|,

(4.9)

where only the luminance component is used in the computation. Thus, we can make the

mode decision as follows: WZS-MB (coding of MB via WZS) mode is chosen if

Einter < Eintra. (4.10)
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Otherwise, we code uk directly via bit-plane by bit-plane refinement (FGS-MB), since it

is more efficient to exploit spatial correlation through bit-plane coding.

In general mode-switching decisions can be made at either encoder or decoder. Making

a mode decision at the decoder means deciding which SI should be used to decode WZC

data sent by the encoder. The advantage of this approach is that all relevant SI is

available. A disadvantage in this case is that the encoder has to estimate the correlation

between uk and vk without exact knowledge of the mode decisions that will be made

at the decoder. Thus, because it does not know which MBs will be decoded using each

type of SI, the encoder has to encode all information under the assumption of a single

“aggregate” correlation model for all blocks. This prevents the full use of conditional

coding techniques discussed earlier.

Alternatively, making mode decisions at the encoder provides more flexibility as differ-

ent coding techniques can be applied to each block. The main drawback of this approach

is that the SI x̂e
k−1 is not available at the encoder, which makes the mode decision diffi-

cult and possibly suboptimal. In this chapter, we select to make mode decisions at the

encoder, with mode switching decisions based on the estimated levels of temporal corre-

lation. Thus Einter cannot be computed exactly at the encoder as defined in (4.9), since

x̂e
k−1 is unknown; this will be further discussed once specific methods to approximate

Einter at the encoder have been introduced.

4.4.3 Direct Estimation

For the l-th bit-plane, 1 ≤ l ≤ L, where L is the least significant bit-plane level to be

encoded, we need to estimate the correlation between uk,l and vk given all uk,j (1 ≤
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j < l) which have been sent to the decoder. While, in general, for decoding uk all the

information received by the decoder can be used, here, we estimate the correlation under

the assumption that to decode bit-plane l, we use only the l most significant bit-planes

of the previous frame. The SI for bitplane l in this particular case is denoted by v̌k(l),

which is unknown at the encoder.

We compute v̄k(l) at the encoder to approximate v̌k(l), 1 ≤ l ≤ L. Ideally we would

like the following requirements to be satisfied: (1) The statistical correlation between

each bit-plane uk,l and v̌k(l), given all uk,j (1 ≤ j < l) can be well approximated by the

corresponding correlation between uk,l and v̄k(l); and (2) v̄k(l) can be obtained at the

encoder in a simple way without much increased computational complexity. This can be

achieved by processing the original reference frame xk−1 at the encoder. We first calculate

the residual

sk = xk−1 − x̂b
k (4.11)

at the encoder, and then generate bit-planes sl
k, in the same way as the ul

k are generated.

Let v̄k(l) = sl
k for 1 ≤ l ≤ L. While v̄k(l) and v̌k(l) are not equal, the correlation

between v̄k(l) and uk,l provides a good approximation to the correlation between v̌k(l)

and uk,l, as is seen in Fig. 4.5, which shows the probability that ul
k 6= sl

k (i.e. the values

of uk and sk do not fall into the same quantization bin), as well as the corresponding

crossover probability between uk and decoder SI v̌k(l). The crossover probability here is

an indication of the correlation level.

SI sl
k can be used by the encoder to estimate the level of temporal correlation, which

is again used to perform mode switching and determine the encoding rate of the channel
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Figure 4.5: Measurement of approximation accuracy for Akiyo and Foreman sequences.
The crossover probability is defined as the probability that the values of the source uk and
side information do not fall into the same quantization bin. The average and maximum
absolute differences over all frames between the two crossover probabilities are also shown.

codes applied to MBs in WZS-MB mode. Replacing the term (x̂e
k−1 − x̂b

k) in (4.9) by sl
k,

Einter is redefined as

Einter =
∑

MBi

|uk − sl
k|. (4.12)

Clearly, the larger Eintra, the more bits will be required to refine the bit-plane in FGS-

MB mode. Similarly Einter gives an indication of the correlation present in the i-th

MB between ul
k and sl

k, which are approximations of uk and vk at the l-th bit-plane,

respectively. To code MBs in WZS-MB mode, we can further approximate the ET optimal

predictor in (4.4) by taking into account both SIs, ul−1
k and sl

k, as follows: If sk is within

the quantization bin specified by ul−1
k , the EL predictor is set to sl

k; however, if sk is

outside that quantization bin, the EL predictor is constructed by first clipping sk to the

closest value within the bin and then truncating this new value to its l most significant

bit-planes. For simplicity, we still denote the improved EL predictor of the lth bit-plane

as sl
k in the following discussion.
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Table 4.1: Channel parameters and the a priori probabilities for the 3rd bit-plane of
frame 3 of Akiyo CIF sequence when BL quantization parameter is 20 (with the same
symbol notation as Fig. 4.4).

Pr(uk,l = 1) p01 p10 Pr(sign(ul
k) = 1) α β

0.13 0.019 0.14 0.49 0.13 0.001

At bit-plane l, the rate of the channel code used to code uk,l (or the sign bits that

correspond to that bit-plane) for MBs in WZS-MB mode is determined by the encoder

based on the estimated conditional entropy H(uk,l|sk,l) (or H(sign(ul
k)|sign(sl

k)) ). For

discrete random variables X and Y , H(X|Y ) can be written as

H(X|Y ) =
∑
yi

Pr(Y = yi)H(X|Y = yi), (4.13)

where both Pr(Y = yi) and H(X|Y = yi) can be easily calculated once the a priori prob-

ability of X and the transition probability matrix are known. The crossover probability,

for example p01 in Fig. 4.4 (a), is derived by counting the number of coefficients such

that uk,l = 0 and uk,l 6= sk,l. Table 4.1 shows an example of those parameters for both

uk,l and the sign bits. Note that the crossover probabilities between uk,l and sk,l are very

different for source symbols 0 and 1, and therefore an asymmetric binary channel model

will be needed to code uk,l as shown in Fig. 4.4 (a). However, the sign bit has almost the

same transitional probabilities whenever the input is -1 or 1, and is thus modelled as a

symmetric discrete memoryless channel in Fig. 4.4 (b).

In terms of complexity, note that there are two major steps in this estimation method:

i) bit-plane extraction from sk and ii) conditional entropy calculation (including the count-

ing to estimate the crossover probabilities). Bit-planes need to be extracted only once per
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frame and this is done with a simple shifting operation on the original frame. Conditional

entropy will be calculated for each bit-plane based on the crossover probabilities estimated

by simple counting. In Section 4.5 we will compare the complexity of the proposed WZS

approach and the ET approach.

4.4.4 Model-based Estimation

In this section we introduce a model-based method for correlation estimation that has

lower computational complexity, at the expense of a small penalty in coding efficiency.

The basic idea is to estimate first the probability density functions (pdf) of the DCT

residuals (uk, vk, zk = vk − uk), and then use the estimated pdf to derive the crossover

probabilities for each bit-plane.

Assume that uk, vk, zk are independent realizations of the random variables U, V, and

Z, respectively. Furthermore, assume that V = U + Z, with U and Z independent.

We start by estimating of the pdf’s fU (u) and fZ(z). This can be done by choosing

appropriate models for the data samples, and estimating the model parameters using one

of the standard parameter estimation techniques, e.g., maximum likelihood estimation,

expectation-maximization (EM), etc. Note that since the vk are not available in our

encoder, we use sk to approximate vk in the model parameter estimation.

Once we have estimated fU (u) and fZ(z) we can derive the crossover probabilities at

each bit-plane as follows. Recall that we consider there is no crossover when uk, vk fall

into the same quantization bin. This corresponds to the event denoted by the shaded
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Figure 4.6: Crossover probability estimation. The shaded square regions Ai correspond
to the event that crossover does not occur at bit-plane l.

square regions in Fig. 4.6. Hence we can find the estimate of the crossover probability at

bit-plane l (denoted as p̂(l)) by

p̂(l) = 1− I(l), (4.14)

where I(l) is given by

I(l) =
∑

i

∫ ∫

Ai

fUV (u, v)dudv =
∑

i

∫ ∫

Ai

fU (u)fV |U (v|u)dudv. (4.15)

I(l) is simply the probability that U, V fall into the the same quantization bin. The

conditional pdf fV |U (v|u) can be obtained as

fV |U (v|u) = fZ(v − u) (4.16)

and the integral in (4.15) can be readily evaluated for a variety of densities. In practice

we only need to sum over a few regions, Ai, where the integrals are non-zero.
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We found that U and Z can be well-modeled by mixtures of two zero-mean Laplacians

with different variances. We use the EM algorithm to obtain the maximum-likelihood

estimation of the model parameters, and use (4.15) and (4.16) to compute the estimates

of the crossover probabilities.

The main advantage of this model-based estimation approach as compared with the

direct estimation is that it incurs less complexity and requires less frame data to be

measured. In our experiment the EM was operating on only 25 % of the frame samples.

Moreover, since the model parameters do not vary very much between consecutive frames

(Fig. 4.7) it is viable to use the previous estimates to initialize the current estimation

and this can usually lead to convergence within a few iterations. Once we have found

the model parameters, computing the crossover probability of each bit-plane from the

model parameters requires only negligible complexity since this can be done using closed-

form expressions obtained from the integrals in (4.15). However, the approach suffers

some loss in compression efficiency due to the inaccuracy in the estimation. We can

assess the compression efficiency by evaluating the entropy function on the estimates of

the crossover probabilities (which gives the theoretical limit in compressing the bit-planes

given the estimates [46]), and compare to that of the direct estimation. Experiments using

video frames from the Akiyo sequence show that with base layer quantization parameter

(QP) set to 31 and 20, the percentage differences in entropy are about 2.5% and 4.7%,

respectively. However, the percentage difference is 21.3% when the base layer QP is set to

8. This large deviation is due to the fact that with QP equal to 8, the base layer is of very

high quality, so that the distribution of U has a higher probability of zero, which is not

102



0 5 10 15 20 25 30

0.57

0.58

0.59

0.6
Mixing probability

0 5 10 15 20 25 30
15.5

16

16.5
Standard deviation of the 1st Laplacian

0 5 10 15 20 25 30
1.7

1.8

1.9
Standard deviation of the 2nd Laplacian

Frame number

Figure 4.7: Model parameters of uk estimated by EM using the video frames from Akiyo.

well captured by our model. Note, however, that such high quality base layer scenarios

are in general of limited practical interest.

4.5 Codec Architecture and Implementation Details

Fig. 4.8 depicts the WZS encoding and decoding diagrams implemented based on the

MPEG-4 FGS codec. Let Xk, X̂b
k and X̂e

k be the current frame, its BL and EL recon-

structed frames, respectively.
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Figure 4.8: Diagram of WZS encoder and decoder. (a) WZS encoder, (b) WZS decoder.
FM: frame memory, ME: motion estimation, MC: motion compensation, SI: side infor-
mation, BL: base layer, EL: enhancement layer, VLC: variable-length encoding, VLD:
variable-length decoding.
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4.5.1 Encoding Algorithm

At the base layer, the prediction residual ek in DCT domain, as shown in Fig. 4.8 (a), is

given by

ek = T (Xk −MCk[X̂b
k−1]), (4.17)

where T (.) is the DCT transform, and MCk[.] is the motion-compensated prediction of

the kth frame given X̂b
k−1. The reconstruction of ek after base layer quantization and

dequantization is denoted by êb
k.

Then, at the enhancement layer, as in Section 4.3.2, we define

uk = ek − êb
k = T (Xk −MCk[X̂b

k−1])− êb
k. (4.18)

The encoder SI sk is constructed in a similar way as (4.11), while taking into account the

motion compensation and DCT transform as

sk = T (MCk[Xk−1]− X̂b
k). (4.19)

Both uk and sk are converted into bit-planes.

Based on the switching rule given in Section 4.4.2, we define our mode selection

algorithm as shown in Fig. 4.9. At each bit-plane, we first decide the coding mode on the

MB-basis as in Fig. 4.9 (a), and then in each MB we will decide the corresponding modes

at the DCT block level to include the two special cases ALL-ZERO and WZS-SKIP (see

Fig. 4.9 (b)). In either ALL-ZERO or WZS-SKIP mode, no additional information is sent

to refine the block. The ALL-ZERO mode already exists in the current MPEG-4 FGS

105



 

 

MBBL=intra? 

Einter < Eintra? 

MBEL =  
WZS-MB 

MBEL =  
FGS-MB 

Y 

Y 

N 

N 

 

All zeros? 
uk,l = 0 

MBEL=FGS-MB 

BLKEL= WZS 

Y 

N 

Y 

N 

l l
k ku s=  for the 

whole block? 

N 

Y 

WZS-SKIP FGS ALL-ZERO 

(a) MB-based (b) Block-based 

Figure 4.9: The block diagram of mode selection algorithm.

syntax. For a block coded in WZS-SKIP, the decoder just copies the corresponding block

of the reference frame1. All the blocks in FGS mode are coded directly using MPEG-4

FGS bit-plane coding.

For blocks in WZS mode, we apply channel codes to exploit the temporal correlation

between neighboring frames. Here, we choose low-density parity check (LDPC) codes

[46, 47] for their low probability of undetectable decoding errors and near-capacity coding

performance. A (n, k) LDPC code is defined by its parity-check matrix H with size

n × (n − k). Given H, to encode an arbitrary binary input sequence c with length n,

we multiply c with H and output the corresponding syndrome z with length (n − k)

[46]. In a practical implementation, this involves only a few binary additions due to the

low-density property of LDPC codes. At bit-plane l, we first code the binary number

uk,l for all coefficients in the WZS blocks, using LDPC codes to generate syndrome bits

1The WZS-SKIP mode may introduce some small errors due to the difference between the SI at the
encoder and decoder.
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at a rate determined by the conditional entropy in (4.13). We leave a margin of about

0.1 bits above the Slepian-Wolf limit (i.e., the conditional entropy) to ensure that the

decoding error is negligible. Then, for those coefficients that become significant in the

current bit-plane (i.e., coefficients that were 0 in all the more significant bit-planes and

become 1 in the current bit-plane) , their sign bits are coded in a similar way using the

sign bits of the corresponding sk as SI.

The adaptivity of our scalable coder comes at the cost of an extra coding overhead. It

includes: (1) the prediction modes for MBs and DCT blocks, (2) the a priori probability

for uk,l (based on our experiments we assume a uniform distribution for sign bits) and

channel parameters, and (3) encoding rate (1− k/n). A 1-bit syntax element is used to

indicate the prediction mode for each MB at each bit-plane. The MPEG-4 FGS defines

a most significant bit-plane level for each frame, which is found by first computing the

residue with respect to the corresponding base layer for the frame and then determining

what is the minimum number of bits needed to represent the largest DCT coefficient

in the residue. Clearly, this most significant bit-plane level varies from frame to frame.

Note that representation of many DCT blocks in a given frame is likely to require fewer

bit-planes than the maximum number of bit-planes for the frame. Thus, for these blocks,

the first few most significant bit-planes to be coded are likely to be all zero (for these

blocks the residual energy after interpolation using the base layer is low, so that most

DCT coefficients will be relatively small). To take advantage of this the MB prediction

mode for a given bit-plane is not sent if all its six DCT blocks are ALL-ZERO. Note

also that the number of bits needed to represent the MB mode is negligible for the
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Table 4.2: Coding overhead for News sequence.

Bit-plane 1 2 3 4
Overhead percentage (%) 19.8 9.6 7.5 4.6

least significant bit-planes, as compared to the number of bits needed to code the bit-

planes. It is also worth pointing out that this mode selection overhead is required as

well for a closed-loop coder that attempts to exploit temporal correlation through the

mode-switching algorithm. For a MB in WZS-MB mode, the block mode (either WZS

or WZS-SKIP) is signaled by an additional 1-bit syntax. This overhead depends on the

number of MBs in WZS-MB mode, and a good entropy coding can be applied to reduce

the overhead, since we have observed in our experiments that the two different modes

have biased probabilities (see Fig. 4.11). The encoding rate of syndrome codes varies

from 1/64 to 63/64 in incremental steps of size 1/64, and thus 6 bits are used to code the

selected encoding rate. We use a fixed-point 10 bit representation for the different kinds

of probabilities to be sent to the decoder. An example of the total overhead percentage at

each bit-plane, which is calculated as the ratio between the number of overhead bits and

the number of total bits to code this bit-plane, is given in Table 4.2 for News sequence.

4.5.2 Decoding Algorithm

Decoding of the EL bit-planes of Xk proceeds by using the EL reconstruction of the

previous frame X̂e
k−1 to form the SI for each bit-plane. The syndrome bits received are

used to decode the blocks in WZS mode. The procedure is the same as at the encoder,
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except that the original frame Xk−1 is now replaced by the high quality reconstruction

X̂e
k−1 to generate SI

vk = T (MCk[X̂e
k−1]− X̂b

k). (4.20)

The corresponding SI at each bit-plane is formed by converting vk into bit-planes. The

decoder performs sequential decoding since decoding a particular bit-plane can only be

done after more significant bit-planes have been decoded.

We modified the conventional LDPC software [47, 52] for the Slepian-Wolf approach

by taking the syndrome information into account during the decoding process based on

probability propagation. We follow a method similar to that described in [46, 98] to

force the search of the most probable codeword in a specified coset determined by the

syndrome bits. One main difference is that the a priori probability of the source bits

uk,l (p0 = Pr(uk,l = 0) and p1 = 1 − p0) is also considered in the decoding process. The

likelihood ratio for each variable node at bit-plane l is given by

LLR = logPr(uk,l=1|vk,l)

Pr(uk,l=0|vk,l)

=





log p10

1−p01
+ logp1

p0
, if vk,l = 0,

log1−p10

p01
+ logp1

p0
, if vk,l = 1.

(4.21)

where pij is the crossover probability defined in Fig.4.4 (a). The syndrome information is

considered in the same way as in [46] when calculating the likelihood ratio at the check

node.
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4.5.3 Complexity Analysis

In our approach, the base layer structure is the same as in an MPEG-4 FGS system.

An additional set of frame memory, motion-compensation (MC) and DCT modules is

introduced for the EL coding at both the encoder and decoder. The MC and DCT

operations are only done once per frame even for multi-layer coding. In comparison,

the ET approach requires multiple motion-compensation prediction loops, each of which

needs a separate set of frame memory, MC and DCT modules, as well as additional

dequantization and IDCT modules to obtain each EL reconstruction. More importantly,

for each EL, the ET approach needs to repeat all the operations such as reconstruction and

prediction. Though our proposed approach requires correlation estimation at the encoder

as discussed in Section 4.4, the additional complexity involved is very limited, including

simple shifting, comparison and +/− operations. Therefore, the proposed approach can

be implemented in a lower complexity even for multiple layers.

It should be noted that the complexity associated with reconstructing the enhance-

ment layers can be a significant portion of the overall encoding complexity in a closed-loop

scalable encoder. While it is true that full search motion estimation (ME) (in base layer)

may require a large amount of computational power, practical encoders will employ some

form of fast ME, and the complexity of ME module can be substantially reduced. For

example, [14] reports that ME (full-pel and sub-pel) takes only around 50% of the overall

complexity in a practical non-scalable video encoder employing fast ME. As a result, the

complexity of closing the loop (motion compensation, forward and inverse transforms,

quantization and inverse quantization) becomes a significant fraction of overall codec
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Figure 4.10: WZS-MB percentage for sequences in CIF and QCIF formats (BL quanti-
zation parameter=20, frame rate=30Hz).

complexity. Moreover, we need to perform these operations in every enhancement layer

in a closed-loop scalable system (while usually we perform ME only in base layer). In

addition to computational complexity reduction, our system does not need to allocate

the frame buffers to store the reconstructions in each enhancement layer. This can lead

to considerable savings in memory usage, which may be important for embedded appli-

cations.

4.6 Experimental Results

Several experiments have been conducted to test the performance of the proposed WZS

approach. We implemented a WZS video codec based on the MPEG-4 FGS reference

software. In the experiments, we used the direct correlation estimation method, as it can

lead to better compression efficiency as compared the model-based approach.

111



Akiyo CIF

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4
bit plane level

b
lo

ck
 m

o
d

e 
p

er
ce

n
ta

g
e

ALL-ZERO

FGS

WZS

WZS-SKIP

 
 
 
 
 

(a)

Coastguard QCIF

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4
bit plane level

b
lo

ck
 m

o
d

e 
p

er
ce

n
ta

g
e

ALL-ZERO

FGS

WZS

WZS-SKIP

 
(b)

Figure 4.11: Percentages of different block modes for Akiyo and Coastguard sequences
(BL quantization parameter=20, frame rate=30Hz).
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4.6.1 Prediction Mode Analysis

In this section we analyze the block prediction modes at each bit-plane for various video

sequences. Fig. 4.10 shows that the percentage of MBs in WZS-MB mode exceeds 50%

for most video sequences (in some cases surpassing 90%, as in bit-plane 3 for Akiyo

and Container Ship). Therefore there is potentially a large coding gain over MPEG-4

FGS with our proposed approach. The percentage of MBs in WZS-MB is on average

higher for low-motion sequences (such as Akiyo) than for high-motion sequences (such as

Coastguard), especially for lower significance bit-planes. Moreover, this percentage varies

from bit-plane to bit-plane. For the most significant bit-planes, the FGS-MB mode tends

to be dominant for some sequences (such as Akiyo and News), due to the low quality of

the EL reconstruction of the previous frame. When the reconstruction quality improves,

as more bit-planes are decoded, the temporal correlation is higher and the WZS-MB

mode becomes dominant, for example for bit-planes 2 and 3 in Fig. 4.10. However, the

WZS-MB percentage starts to drop for even lower significance bit-planes. This is because

the temporal correlation decreases for these bit-planes which tend to be increasingly

“noise-like”.

The DCT block mode distribution in Fig. 4.11 illustrates how the motion character-

istics of the source sequence affect the relative frequency of occurrence of each MB type.

The Akiyo sequence has a much larger WZS-SKIP percentage, and a larger percentage of

WZ coded blocks, than Coastguard ; thus Akiyo sees more significant reductions in coding

rate when WZS is introduced. In contrast, for Coastguard the percentage of blocks in

WZS mode is less than that in FGS mode starting at bit-plane 4, thus showing that
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as motion in the video sequence increases the potential benefits of exploiting temporal

correlation in the manner proposed in this chapter decreases. Note that neither Fig. 4.10

nor Fig. 4.11 include the least two significant bit-planes since the PSNR range for these

bit-planes are not of practical interest.

4.6.2 Rate-distortion Performance

4.6.2.1 Coding efficiency of WZS

In this section we evaluate the coding efficiency of the proposed WZS approach. Sim-

ulation results are given for a series of test sequences in CIF (352 × 288) and QCIF

(176× 144) resolutions with frame rate 30Hz. Akiyo and Container Ship sequences have

limited motion and low spatial detail, while the Coastguard and Foreman sequences have

higher motion and more spatial detail. News sequence is similar to Akiyo, but with more

background motion.

In addition to the MPEG-4 FGS and nonscalable (single layer) coding, we also com-

pare our proposed approach with a multi-layer closed-loop (MCLP) system that exploits

EL temporal correlation through multiple motion-compensation loops at the encoder.

The same MPEG-4 baseline video coder is used for all the experimental systems (note

that the proposed WZS framework does not inherently require the use of a specific BL

video coder). The first video frame is intra-coded and all the subsequent frames are

coded as P-frame (i.e., IPPP...). The BL quantization parameter (QP) is set to 20. Prior

to reporting the simulation results, we give a brief description of our proposed system

together with the MCLP system.
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Proposed WZS system. The DCT blocks are coded in four different modes as described

in Section 4.6.1. An LDPC code is used to code those blocks in WZS mode at each

bit-plane to exploit the EL correlation between adjacent frames. The encoding rate is

determined by the correlation estimated at the encoder without constructing multiple

motion-compensation loops. To limit the error introduced by WZS-SKIP mode due to

the small difference between the encoder and decoder SI, we disable WZS-SKIP mode

once every 10 frames in our implementation.

Multiple closed-loop (MCLP) system. This system is an approximation to the ET

approach discussed in Section 4.3.1 through the mode-switching algorithm. We describe

the coding procedure for each enhancement layer as follows. To code an EL which cor-

responds to the same quality achieved by bit-plane l in MPEG-4 FGS the encoder goes

through the following steps. (i) Generate the EL reconstruction of the previous frame

up to this bit-plane level, which we denote x̂l
k−1. (ii) Follow a switching rule similar to

that proposed for the WZS system to determine the prediction mode of each MB, i.e.,

inter mode is chosen if Einter < Eintra, and the FGS mode is chosen otherwise. Since

the EL reconstruction is known at the encoder, it can calculate Einter directly using the

expression of (4.9). (iii) Calculate the EL residual re
k following (4.5) by using x̂l

k−1 as the

predictor for inter mode, and the reconstruction of the current frame with more signif-

icant ELs x̂l−1
k as the predictor for FGS mode. (iv) Convert re

k to bit-planes, and code

those bit-planes that are at least as significant as bit-plane l (i.e., quantize to the lth

bit-plane) to generate the compressed bitstream.

Figs. 4.12-4.14 provide a comparison between the proposed WZS, nonscalable coder,

MPEG-4 FGS and the MCLP coder. The PSNR gain obtained by the proposed WZS
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Figure 4.12: Comparison between WZS, nonscalable coding, MPEG-4 FGS and MCLP
for Akiyo and Container Ship sequences.
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Figure 4.13: Comparison between WZS, nonscalable coding, MPEG-4 FGS and MCLP
for Coastguard and Foreman sequences.

approach over MPEG-4 FGS depends greatly on the temporal correlation degree of the

video sequence. For sequences with higher temporal correlation, such as Akiyo and Con-

tainer Ship, the PSNR gain of WZS is greater than that for lower temporal correlation

sequences, such as Foreman, e.g., 3-4.5 dB PSNR gain for the former, as compared to

0.5-1 dB gain for the latter.
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Figure 4.14: Comparison between WZS, nonscalable coding, MPEG-4 FGS and MCLP
for News sequence.

To demonstrate the efficiency of Wyner-Ziv coding for WZS blocks, we compare the

proposed coder to a simplified version that uses only the ALL-ZERO, FGS, and WZS-

SKIP modes (which we call the “WZS-SKIP only” coder). The “WZS-SKIP only” coder

codes the WZS blocks in FGS instead. Fig. 4.15 shows that, for both Akiyo and Coast-

guard sequences, there is a significant improvement by adding the WZS mode. Note that

the PSNR values for a given bit-plane level are exactly the same for the two coders. The

only difference is the number of bits used to code those blocks that are coded in WZS

mode. Thus the coding gain of Wyner-Ziv coding (exploiting temporal correlation) over

the original bit-plane coding (that does not exploit temporal correlation) can be quanti-

fied as a percentage reduction in rate We present this in two different ways as shown in

Tables 4.3 and 4.4 2. Table 4.3 provides the rate savings for only those blocks in WZS

mode. It can be seen that Akiyo achieves larger coding gain than Coastguard due to

higher temporal correlation. Table 4.4 provides the overall rate savings (i.e., based on

2It is usually required for a LDPC coder to have a large code length to achieve good performance. If
the number of WZS blocks is not enough for the required code length we force all blocks in the bit-plane
to be coded in FGS mode instead. This happens, for example, for the most significant bit-plane of most
sequences. Thus, only the results for bit-planes 2-4 are shown in these tables.
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Figure 4.15: Comparison between WZS and “WZS-SKIP only” for Akiyo and Coastguard
sequences.

Table 4.3: Rate savings due to WZS for WZS blocks only (percentage reduction in rate
with respect to using FGS instead for those blocks).

Bit-plane level 2 3 4
Akiyo 24.66 31.20 26.71

Coastguard 19.98 22.91 19.19

Table 4.4: Overall rate savings due to WZS (percentage reduction in overall rate as
compared to FGS).

Bit-plane level 2 3 4
Akiyo 10.98 16.61 16.11

Coastguard 8.38 8.68 6.08

the total rate needed to code the sequence). These rate savings reflect not only the effi-

ciency of coding each WZS block by Wyner-Ziv coding but also the percentage of blocks

that are coded in WZS mode.

As seen from Figures 4.12-4.14, there is still a performance gap between WZS and

MCLP. We compare the main features of these two approaches that affect the coding

performance in Table 4.5. It should be clarified that occasionally, at very high rate for

low-motion sequences, the MCLP approach can achieve similar (or even better) coding

performance than the nonscalable coder. That is because bit-plane coding is more efficient
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Table 4.5: Comparisons between MCLP and WZS

Multiple closed-loop approach Wyner-Ziv scalability approach

1. Exploits temporal correlation through
closed-loop predictive coding

2. Efficient bit-plane coding (run, end-of-
plane) of the EL residual in (4.5) to ex-
ploit the correlation between consecu-
tive zeros in the same bit-plane

3. The residual error between the source
and EL reference from the previous
frame may increase the dynamic range
of the difference and thus cause fluc-
tuations in the magnitude of residue
coefficients (as the number of refine-
ment iterations grows, the magnitude
of residues in some coefficients can
actually increase, even if the overall
residual energy decreases).

4. Each EL has to code its own sign map,
and therefore for some coefficients the
sign bits are coded more than once.

1. Exploits temporal correlation through
Wyner-Ziv coding

2. Channel coding techniques designed
for memoryless channels cannot ex-
ploit correlation between source sym-
bols

3. The source information to be coded is
exactly the same as the EL bit-planes
in MPEG-4 FGS, and therefore there
are no fluctuations in magnitude and
no additional sign bits are needed.

4. An extra encoding rate margin is
added to compensate for the small mis-
match between encoder and decoder
SI as well as for the practical chan-
nel coders which cannot achieve the
Slepian-Wolf limit exactly.

than nonscalable entropy coding when compressing the high-frequency DCT coefficients.

We believe that the performance gap between WZS and MCLP is mainly due to the

relative inefficiency of the current channel coding techniques as compared to bit-plane

coding. We expect that large rate savings with respect to our present WZS implemen-

tation can be achieved if better channel codes are used, that can perform closer to the

Slepian-Wolf limit, or more advanced channel coding techniques are designed for more

complex channels, which can take advantage of the existence of correlation among channel

errors.

119



Table 4.6: The base layer PSNR (dB) for different QP.

Base layer QP 31 20 8
Akiyo 32.03 33.61 38.05

Container Ship 26.97 28.93 34.11
News 29.17 31.23 36.09

4.6.2.2 Rate-distortion performance vs. base layer quality

It is interesting to consider the effects of the base-layer quality on the EL performance

of the WZS approach. We use Akiyo, Container Ship and News sequences in the ex-

periment. Table 4.6 shows the base layer PSNR (for luminance component only) for

several sequences under different base layer quantization parameter (QP) values. The

PSNR gains obtained by the proposed WZS approach over MPEG-4 FGS are plotted in

Fig. 4.16. The coding gain achieved by WZS decreases if a higher quality base layer is

used, as seen from Fig. 4.16 when the base layer QP decreases to 8. That is because

the temporal correlation between the successive frames is already well exploited by a

high-quality base layer. This observation is in agreement with the analysis in Section

4.3.1.

4.6.2.3 Comparisons with Progressive Fine Granularity Scalable (PFGS)

coding

The PFGS scheme proposed by Wu et al. [93] improves the coding efficiency of FGS, by

employing an additional motion compensation loop to code the EL, for which several FGS

bit-planes are included in the loop to exploit EL temporal correlation. Fig. 4.17 compares

the coding performance between WZS and PFGS for Foreman sequence. WZS performs
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Figure 4.16: The PSNR gain obtained by WZS over MPEG-4 FGS for different base layer
qualities.
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Figure 4.17: Compare WZS with MPEG-4 PFGS for Foreman CIF sequence (Base layer
QP=19, frame rate=10Hz). The PFGS results are provided by Wu et al. from [31].

worse than PFGS. In addition to the limitation of current techniques for Wyner-Ziv

coding, the performance gap may come from the difference of the prediction link structure

between these two approaches. WZS creates a multi-layer Wyner-Ziv prediction link to

connect the same bit-plane level in successive frames. However, in PFGS, usually at least

two or three FGS bit-planes are used in the EL prediction for all the bit-planes. Thus,

this structure is beneficial to the most significant bit-planes (for example, the 1st or 2nd

bit-plane) as they have higher-quality reference than what they would in WZS.

On the other hand, our proposed WZS techniques can be easily combined with a

PFGS coder such that the more significant bit-planes can be encoded in a closed-loop

manner by PFGS techniques, while the least significant bit-planes are predicted through

Wyner-Ziv links to exploit the remaining temporal correlation. Fig. 4.10 shows that

for some sequences (especially those with low-motion) the temporal correlation for some

lower significance bit-planes (e.g., bit-plane 4) is still high, so that WZS-MB mode is

chosen for a considerable percentage of MBs. Thus, we expect that further gain would

be achieved with our techniques over what is achievable with PFGS.
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4.7 Conclusions

We have presented a new practical Wyner-Ziv scalable coding structure to achieve high

coding efficiency. By using principles from distributed source coding, the proposed coder

is able to exploit the enhancement-layer correlation between adjacent frames without

explicitly constructing multiple motion-compensation loops, and thus reduce the encoder

complexity. In addition, it has the advantage of backward compatibility with standard

video codecs by using a standard CLP video coder as base layer. Two efficient methods are

proposed for correlation estimation based on different trade-off between the complexity

and accuracy at the encoder even when the exact reconstruction value of the previous

frame is unknown. Simulation results show much better performance over MPEG-4 FGS

for sequences with high temporal correlation and limited improvement for high-motion

sequences. Though we implemented the proposed Wyner-Ziv scalable framework in the

MPEG-4 FGS software as bit-planes, it can be integrated with other SNR scalable coding

techniques.

Further work is needed within the proposed framework to improve coding efficiency

and provide flexible bandwidth adaptation and robustness. In particular, the selection

of efficient channel coding techniques well suited for distributed source coding deserves

additional investigation. Another possible reason for the gap between our proposed coder

and a nonscalable coder is due to less accurate motion compensation prediction in the

enhancement layer when sharing motion vectors with the base layer. This can be im-

proved by exploring the flexibility at the decoder, an important benefit of Wyner-Ziv
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coding, to refine the enhancement layer motion vectors by taking into account the re-

ceived enhancement layer information from the previous frame. In terms of bandwidth

adaptation, the current coder cannot fully achieve fine granularity scalability, given that

the LDPC coder can only decode the whole block at the bit-plane boundary. There is

recent interest on punctured LDPC codes [30], and the possibility of using this code for

bandwidth adaptation is under investigation. In addition, it is also interesting to evalu-

ate the error resilience performance of the proposed coder. In principle, the Wyner-Ziv

coding has more tolerance on noise introduced to the side information.
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Chapter 5

Conclusions and Future Work

In this thesis we have addressed the problem of network-adaptive video coding and stream-

ing, particularly for those source coding algorithms that provide scalability to match

changes in the network environment.

First, we extend the rate-distortion optimized streaming (RaDiO) framework proposed

in [19, 20] to address a more general coding scenario, where multiple decoding paths are

possible. The source encoder produces redundant encoded data to provide flexibility

for the scheduling algorithm to choose the right subset of data units to send, based on

the current network conditions and previous transmission history. This approach allows

the system redundancy to be optimized dynamically at the streaming stage rather than

those pre-optimized at the encoding stage. Therefore, the proposed streaming framework

is more appropriate for adaptation in a wide range of network environments. In terms of

source coding, we propose a new coding algorithm that supports multiple decoding paths,

namely, multiple description layered coding (MDLC), which combines the advantages of

layered coding (LC) and multiple description coding (MDC). Experimental results show

that, when applied together with the extended RaDiO framework, the proposed MDLC
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system provides more robust and efficient video communication over a wider range of

network scenarios and application requirements.

Second, we propose a novel scalable coding approach by introducing distributed source

coding (DSC) in the enhancement-layer prediction, to achieve a better coding perfor-

mance with reasonable encoding complexity. In this approach the decoder complexity

increases as compared to existing approaches. Specifically, in order to reduce the encod-

ing complexity, we do not explicitly construct multiple motion-compensation loops at the

encoder, while, at the decoder, side information (SI) is constructed to combine spatial

and temporal information in a manner that seeks to approximate the ET approach in [66].

Experimental results show improvements in coding efficiency of 3-4.5 dB over MPEG-4

FGS for video sequences with high temporal correlation.

It is worth noting that some of the novel concepts proposed in this research are not

limited to scalable coding. For example, the rate-distortion optimized streaming frame-

work can support the case of multiple independently encoded non-scalable bit streams.

The DSC principle has also shown great potential to provide important functionalities

which are difficult to achieve using traditional techniques. One example is to provide

flexible playback at the decoder, by for example supporting both backward and forward

frame-by-frame playback [17]. Despite the fact that this research has achieved interesting

results and proposed a number of novel algorithms, there are still relevant topics or ideas

that can be addressed in future research. We describe several possible research directions

as follows:

• Source Optimization for the Extended RaDiO Framework. Our current work has

proposed rate-distortion optimized scheduling algorithms for a given source codec
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with redundancy. Although optimization of source redundancy (e.g., in a MDC

codec) has been studied by many researchers when simple scheduling algorithms

are used, the appropriate redundancy allocation for such a source codec (e.g., MDC

or MDLC) is still an open issue when the coder is to be used along with an intelligent

scheduling algorithm.

• Packet Scheduling Algorithms for Peer-to-Peer (P2P) Systems. P2P video stream-

ing is highly difficult due to the increased uncertainty about the number of avail-

able peers and bandwidth throughput from each sender. The scheduling algorithm

should decide not only which packets to send and when to send them, but also

from which peer to send them. The optimization should consider system-level is-

sues, such as the peer and path stability, and the congestion level of the network.

Furthermore, it should also provide efficient coordination among peers to tolerate

a certain peer’s failure to provide service.

• Study of Trade-Off between Entropy Coding and DSC. DSC replaces the traditional

entropy coding by a representation (e.g., syndrome codes) based on a channel code.

Thus, for a particular source it is hard to exploit the biased symbol probabilities

and the correlation inside the symbol sequence. Future work should start from

a detailed study of the tradeoffs between entropy coding and DSC-based coding

under different scenarios, and consider techniques to combine entropy coding and

DSC-based codes.

• Source-Adaptive Correlation Estimation for DSC. Correlation estimation is a key

issue to impact the coding performance. Current approaches [16, 18, 26] tend to
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oversimplify the correlation structure and then apply an advanced channel code

(e.g., LDPC code or turbo code) to hope for good coding performance. This may

be applicable for simple source-SI characteristics, for example, the additive Gaus-

sian white noise channel (AWGN). But video signals are so complex that a unified

correlation structure may fail to capture correlation information that is potentially

useful for coding efficiency. Thus, it may be interesting to consider an alternative

approach by developing a more complicated correlation structure to increase the

adaptivity to the source, following a similar idea to that applied in H.264, with

the introduction of more prediction modes. In this case a simple channel code (of

short length due to a possible small-unit based correlation estimation) with good

correlation structure may achieve better coding performance. Here, decoding errors

are possible due to the short-length weak channel code and the algorithm should

provide a way to limit the error propagation.
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