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2.2.2 Proposed ǭ−NNS Problem Setting . . . . . . . . . . . . . . 24
2.2.3 Error Rate, Accumulation, Significance, and Variation . . . 26

2.3 Interpretation of NNS Approximation Using ǭ Measure . . . . . . . 28
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probabilities. ǭ measure is equal to the mean value of a given dis-
tribution. ET based acceptance curve would appear as a vertical
line, determining a certain distribution to be classified acceptable or
unacceptable depending on their mean value (ǭ). . . . . . . . . . . . 27
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Abstract

As the system complexity increases and VLSI chip circuit becomes more highly

condensed and integrated towards nano-scale, the requirement of 100% exact exe-

cution of designed operations and correctness for all transistors and interconnects

is prohibitively expensive, if not impossible, to meet in practice. To deal with these

problems, defect tolerance (DT) and fault tolerance (FT) techniques at the design

and manufacturing stages have been widely studied and practiced. FT and DT

techniques ideally try to mask all effects of faults and internal errors by exploit-

ing and managing redundancies, which leads to more complex and costly system

to achieve hopefully ideal or at least acceptable output quality at the expense of

additional complexity cost.

On the other hand, a recently introduced error tolerance (ET) approach is an ex-

ercise of designing and testing systems cost-effectively by exploiting the advantages

of a controlled relaxation of system level output quality precision requirement. The

basic theme of ET approach is to allow erroneous output leading to imperceptible

degree of system level quality degradation in order to simplify and optimize the cir-

cuit size and complexity, power consumption, costs as well as chip manufacturing

yield rate. Motivation of ET approach is two-fold: By exploiting certain range of

distortions/errors which lead to negligible impact on system level performance, i)

a significant portion of manufactured dies with such minor imperfection of physi-

cal origin can be saved, thus increasing overall effective yield, and ii) considerable

circuit simplification and high power efficiency is attainable by systematically and

purposefully introducing such distortions/errors.
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With a primary focus on similarity search problem within the scope of this

ET concept, this thesis presents several methodologies to deal with the problems

of system complexity and high vulnerability to hardware defects and fabrication

process variability and consequently a lower yield rate.

Many real world similarity search problems present serious computational bur-

den and remain a long standing challenge as they involve high dimensional search

space, often largely varying database, and increasingly more dynamic and user-

interactive search metrics. This leads to complexity (response time, circuit/power

complexity) becoming more important criterion for a successful design. Thus, great

potential benefit of ET concept can be reaped in such area.

First part of this thesis studies similarity search problem and presents a novel

methodology, called quantization based nearest-neighbor-preserving metric approxi-

mation algorithm(QNNM ), which leads to significant complexity reduction in search

metric computation. Proposed algorithm exploits four observations: homogeneity

of viewpoint property, concentration of extreme value distribution, NN-preserving

not distance-preserving criterion, fixed query info during search process. Based

on these, QNNM approximates original/benchmark metric by applying query-

dependent non-uniform quantization directly on the dataset, which is designed to

minimize the average NNS error, while achieving significantly lower complexity,

e.g., typically 1-bit quantizer. We show how the optimal query adaptive quantizers

minimizing NNS error can be designed “off-line” without prior knowledge of the

query information to avoid the on-line overhead complexity and present an effi-

cient and specifically tailored off-line optimization algorithm to find such optimal

quantizer.

Three distinguishing characteristics of QNNM are statistical modeling of dataset,

employing quantization within a metric, and query-adaptive metric, all of which

allow QNNM to improve performance complexity trade-off significantly and provide

robust result especially when the problem involves non-predefined or largely vary-

ing data set or metric function due to its intrinsic flexibility from query to query

change.
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With motion estimation (ME) application, QNNM with coarsest 1-bit quantizer

per pixel (note that a quantizer for each pixel is different to exploit the correlation

of input distribution) results in on average 0.01dB performance loss while reducing

more than 70% to 98% metric computation cost.

Second part of the thesis, we present a complete analysis of the effect of inter-

connect faults in NNS metric computation circuit. We provided a model to capture

the effect of any fault (or combination of multiple faults) on the matching met-

ric. We then describe how these errors in metric computation lead to errors in

the matching process. Our motivation was twofold. First, we used this analysis

to predict the behavior of NNS algorithms and MMC architectures in the presence

of faults. Second, this analysis is a required step towards developing efficient ET

based acceptability decision strategies and can be used to simplify fault space, sep-

arate acceptable/unacceptable faults, and consequently simplify testing. Based on

this model, we investigated the error tolerance behavior of NNS process in the pres-

ence of multiple hardware faults from both algorithmic and hardware architecture

point of views by defining the characteristics of the search algorithm and hardware

architecture that lead to increased error tolerance.

With ME application, our simulation showed that search algorithms satisfying

error tolerant characteristics we defined perform up to 2.5dB higher than other

search methods in the presence of fault, and they also exhibit significant complexity

reduction (more than 99%) without having to compromise with the performance.

Our simulation also showed that if error tolerant hardware architecture is used, the

expected error due to a fault can be reduced by more than 95% and more than

99.2% of fault locations within matching metric computation circuits result in less

than 0.01dB performance degradation.

Throughout this thesis, motion estimation process for video coding and vector

quantization for image coding are tested as example applications to numerically

evaluate and verify our proposed algorithms and modeling in actual practical ap-

plication setting.
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Chapter 1

Introduction

1.1 Relaxing the Requirement of Exact Solutions

A computer is an electronic device (hardware) designed to manipulate data accord-

ing to prescribed logical operations (software). Computers, over half a century,

have moved deeply towards becoming everyday commodities and are embedded

in practically every aspect of our daily lives from laptops and PDAs to mobile

phones, digital cameras, toys, and all sorts of electronic appliances/devices. As its

range of applications and our dependence on such devices continue to increase, the

complexity of computer hardware and software has also increased.

The progress of semiconductor manufacturing technology towards deep sub-

micron feature sizes, e.g., sub-100 nanometer technology, has created a growing

impact of hardware defects and fabrication process variability, which lead to re-

duction in both initial and mature yield rates1 [34]. It is becoming economically

more difficult to produce close to 100% correct circuits as they become more highly

condensed and integrated towards nanoscale. The profitability of manufacturing

such digital systems heavily depends on the fabrication yield since lower yield rates

1Yield is defined as the proportion of operational circuits to the total number fabricated.
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can increase the chip manufacturing/verification/testing cost and delay their time-

to-market. Computer software also has been increasingly complex and has become

more vulnerable to system operation/programming errors (bugs).

We first introduce some related terminology. Manufacturing defect is any un-

planned imperfection on the wafer such as scratches from wafer mishandling, or the

result of undesired chemical and airborne particles deposited on the chip during

manufacturing process [32]. But not all defects lead to faults, affecting the circuit

operation. Causes of fault include design error, manufacturing defects, external

disturbance, system misuse. An error is a manifestation of a fault in a system,

where an element produces different logical value from its intended one. A fault in

a system can occur without causing an error, which is referred to as latent fault. A

failure occurs when a running system deviates from its designed behavior/function

due to errors.

1.1.1 Fault and Defect Tolerant System

The requirement of 100% bug-free software and/or 100% correctness for transistors

and interconnects (fault free) is prohibitively expensive, if not impossible, to meet

in practice. To deal with these problems, defect tolerance (DT) and fault tolerance

(FT) techniques at the design and manufacturing stages have been widely studied

and practiced [32] [29].

Fault tolerance is the ability of a system to continue to provide correct ser-

vice /operation of given task even in the presence of internal faults (either hard-

ware failures or software errors), while defect tolerance refers to any circuit de-

sign/implementation that provides higher yield than the one without defect toler-

ance technique applied [6]. These approaches aim at masking all effects of defects or

2



faults such that no error occurs at any output of a faulty system. Correct operation

typically implies no error at any system output but certain types of errors might be

acceptable depending on its severities. Although there exist many variations, the

basic theme of all fault and defect tolerance techniques is to introduce/manage some

form of redundancies/safeguards and extra functionalities in terms of the hardware,

software, information, and/or time [33]. In other words, components that are sus-

ceptible to defects or faults are replicated, such that if a component fails, one or

more of the non-failed replicas will continue to perform correct operations with no

appreciable disruption. Note that both fault and defect tolerance approaches as-

sume the ideal/exact output requirement and try to perform the exact action and

produce the precise output. While it is very hard to devise absolutely foolproof,

100% reliable system, the more we strive to reduce the probability of error, the

higher the cost. To put it differently, FT and DT techniques lead to more complex

system to achieve hopefully the ideal or at least acceptable output so that the high

quality reliability is attained at the expense of additional complexity cost.

For some applications such as medical devices or financial applications, the exact

precise execution of designed operations without error is critical even if it comes

with extra costs to safeguard and guarantee the output quality. However, for the

enormous domain of other applications such as systems dealing with multimedia

information, search engines, or power sensitive mobile devices, controlled relaxation

of output quality precision is desirable and advantageous. This is because many

applications of these kinds share a key characteristic of being able to tolerate certain

types of errors at the system outputs within certain levels of severities. Furthermore,

many complex problems and tasks entail approximation and estimation techniques

at the algorithmic level to obtain the solution. Also note that most approximation

algorithms proposed are not optimized in terms of circuit complexity (primarily
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optimized in time and space complexity with respect to the input size) and the

measures they employ to specify what constitutes exact or optimal solution often

does not accurately capture the notion of user quality. Therefore the restriction on

exact precision in solution quality is, realistically speaking, an over-idealization.

For such systems and applications, a new application-oriented paradigm, error

tolerance is recently introduced.

Definition of error tolerance [6] A circuit is error tolerant with respect

to an application if (1) it contains defects that cause internal errors and might

cause external errors, and (2) the system that incorporates this circuit produces

acceptable results.

1.1.2 Error Tolerant System

In this thesis we particularly focus on this application-oriented error tolerance (ET)

approach [6] which is fundamentally different from FT or DT. Within the scope

of error tolerance concept, we develop in following chapters several methodologies

which allow to deal with the problem of system complexity and high vulnerability

to internal errors and faults in a different perspective.

The error tolerance approach assumes that the performance requirement itself

is relaxed from the exact solution to an acceptable range of solutions and tries to

exploit and maximize the benefit of this relaxed performance constraint to signif-

icantly simplify and optimize the circuit size and complexity, power consumption,

costs as well as yield rate. Thus, the basic theme of ET approach is to sacrifice ex-

act output quality to an acceptable range of output quality of system (results might

be erroneous but by inappreciable or imperceptible degree of quality degradation)

to make the system “simpler” and cost-effective, whereas FT and DT techniques
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Figure 1.1: Simple illustration of error tolerance concept. Relaxing the requirement
of exact solution/output to a small range ǫtol of near-optimal/ acceptable solution
may dramatically reduce the cost. Cost can be interpreted as computational/ circuit
complexity, power, manufacture, verification, testing cost and others. Curves or
slopes of this trade-off relation can be controlled by different ET(approximation)
algorithms or ET based design/ synthesis/ testing strategies. Curves shown in this
figure are collected from different applications (motion estimation for video coding
and vector quantization for image coding) when our proposed ET based algorithm
(QNNM in Chapter 2) is applied.

lead to more complex and costly system to achieve hopefully the ideal or at least

acceptable output. Fig. 1.1 shows a simplified illustration of the error tolerance

approach.

The importance of error tolerance approach also lies in its potential to signif-

icantly enhance the effective yield at the testing stage. Classical test techniques

have certain deficiencies when applied to error-tolerant systems. First, they deal

only with pass (perfect:fault free) versus fail (imperfect:faulty) whereas error tol-

erant testing makes use of the gray area between perfect and imperfect by further

partitioning faulty dies into more categories. In addition, classical test techniques

ignore error characteristics and, at most, relate errors to fault location. Error toler-

ance technique, on the other hand, does not focus only on fault location but rather

on identifying the quantitative and qualitative implications of a defect. Finally,
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Figure 1.2: Simplified illustration of a typical digital circuit design flow. ET ap-
proach, i.e., relaxed constraints on performance, may be applied to each design and
synthesis phase.

classical tests are universal for a given part, whereas error tolerant testing might

require application-specific tests [6].

Fig. 1.2 shows a typical digital circuit design flow consisting of a series of distinct

activities that are typically (although not necessarily) performed in sequence. Error

tolerance techniques can be applied to each phase from high level synthesis to logic

level synthesis phase as well as testing phase. Refer to [1] [6] for further details on

error tolerant computing and its related research.

In this thesis, we study one of the most fundamental problems called proxim-

ity problems in the context of error tolerance approach and present several ET

based algorithms from the algorithmic level to hardware architecture and testing

level. We primarily focus on the nearest neighbor search (NNS) problem, for it

is central in a vast range of applications. Many real world NNS problems present

serious computational burden and remain a long standing challenge as they involve

high dimensional search space, often largely varying dataset, and increasingly more

dynamic and user-interactive search metrics. We first present a novel ET based

NNS algorithm called, quantization based nearest-neighbor-preserving metric ap-

proximation algorithm (QNNM ) which provides a solution to significantly simplify
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the metric computation process while preserving the fidelity of the minimum dis-

tance ranking based on statistical modeling of data set (Chapter 2). In Chapter 3,

we provide a model that estimates the impact of the manufacturing faults (single

as well as multiple) within a NNS metric computation circuit on the search perfor-

mance. We further derive the characteristics of the search algorithms and hardware

architectures that lead to increased error tolerance property (i.e., reduced impact of

a given fault on the output performance). Motion estimation process for video cod-

ing and vector quantization for data compression are tested as example applications

for our study to verify our results numerically.

In the rest of this chapter, brief description of NNS problem (Section 1.2.1), two

example applications, motion estimation (Section 1.2.2) and vector quantization

(Section 1.2.3), and the overview and goal of this thesis (Section 1.3) are provided.

1.2 Proximity Problems

The proximity problem is a class of geometric problems in computational geome-

try which involve estimation of distances between geometric objects. Some exam-

ple proximity problems on points include closest pair problem, diameter (furthest

pair) problem, NNS, k-NNS, approximate NNS problems, minimum spanning tree,

variants of clustering problems, range query, reverse query, batched query, and

bi-chromatic problems.

Although in this thesis, techniques primarily focusing on the NNS problem are

studied and developed, it is possible to apply and extend the same concept of our

work to other proximity problems.
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1.2.1 Nearest Neighbor Search (NNS) Problem

1.2.1.1 Definition of NNS problem

NNS problem we primarily consider in this thesis is simply defined as: given N

points in metric space, with preprocessing allowed, how quickly can a nearest neigh-

bor of a new given query point q be found?

That is, suppose U is a set and d is a distance measure (metric) on U such that

d : U × U → [0,∞), taking pairs of objects in U and returning a nonnegative real

number. Given a set R ⊂ U of N objects and a query object q ∈ U in a metric

space M = (U, d), NNS problem is to find efficiently the (approximately) nearest

or most similar object in the set R to a query q (min {d(q, s)|s ∈ R}).

We chose NNS problem as a good example where the error tolerance property

can be well exploited for the following reasons described below.

1.2.1.2 Central to a wide range of applications

This is among the most fundamental problems and a basic component of most

proximity problems and it is also of major importance to a wide range of appli-

cations. NNS problem appears with different names (e.g., post office problem,

proximity search, closest point search) in a diverse literature in the area of com-

putational geometry, statistics [23], data analysis/mining, biology [44], information

retrieval [45] [22], pattern recognition/classification [20], data compression [24],

computer graphics [39], artificial intelligence [43]. Typically the features of each

object of interest are represented as a point in a vector space RD and the metric d

is used to measure similarity between objects. Most optimization problems requir-

ing finding a point/object minimizing or maximizing a given cost function can be

also seen a special case of NNS problem.
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1.2.1.3 Computational challenge

While it is of major importance to a wide range of applications, many real world

search problems present serious computational burden and remain challenging as

they take place in a very high dimensional search space (in the order of hundreds or

thousands). Furthermore, some applications involve data set R arbitrarily varying

from query to query (e.g., motion estimation) or even user controllable/interactive

search metric d which may also change from query to query. There has been ex-

tensive research and a multitude of algorithms proposed to reduce computational

complexity of these problems in terms of query time, storage space, and preprocess-

ing complexity. But very little work has been done with respect to the efficiency of

metric evaluation and circuit complexity.

NNS problem is also appropriate for the ASIC (application-specific integrated

circuit) customized chip rather than for the general-purpose one, since it involves

very heavy data access, regularized and repetitive computations in distance evalu-

ation for every pair of objects. This adds extra advantage of applying application-

specific error tolerance approach to NNS problem.

1.2.1.4 Tends to be tolerant to approximation

Pursuing the exact NNS solution becomes meaningful if a specification of what

constitutes optimal solution, i.e., metric measure for NNS case, is accurate. Math-

ematically formulated metric function itself is often the approximation of certain

quality of dissimilarity, e.g., perceptual similarity between images, and does not

accurately capture the notion of user quality. Strictly speaking, even the physical

distance can be seen as an approximation since for the ease of computation, the

physical distance is represented with a single number that is the average of a series
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of distance measurement for each dimension, e.g., sum of measurements for each

dimension, while more accurate description of proximity should be associated with

a distribution of each dimensional distance. Meaning, even the nearest in physical

distance may not be the true nearest.

Furthermore, the significance of “nearest” neighbor decreases as dimensionality

increases while many real world problems are posed with high dimensionality [3].

This is because as dimensionality increases, distribution of random objects in terms

of distance tends to be concentrated at the same distance.

Therefore finding the exact nearest neighbor may not be as meaningful as it

appears to be and small distance difference based on a given metric seldom matters

in practice. Also over years, researchers have shown that approximation allows sim-

plification of algorithm in terms of computational complexity as well as hardware

architectures while performance is often as good as the exact solution. Especially

in high dimensional search space (D > 10) as is the case in many practical applica-

tions, almost all NNS algorithms allow a certain degree of approximation due to the

exponentially increasing time and space requirement of exact NNS computation.

Furthermore, note that NN metric is only to identify/preserve NN information

and not the distance itself. Thus, as long as nearest-neighbor can be identified,

not all metric computation has to be done blindly to full precision and one could

maintain fine precision only where it is needed for instance.

In the following section, we introduce motion estimation and compensation pro-

cess for video coding and vector quantization process for data compression as exam-

ple applications of NNS problem. These specific applications are chosen to evaluate

our analytical results numerically on actual real world applications and to verify

them experimentally.
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1.2.2 Motion Estimation Process

One of the key factors of video compression efficiency is how well the temporal

redundancy is exploited by motion compensated prediction. Motion compensation

is a technique to represent a picture in terms of the transformation of a reference

picture which is previously transmitted/stored in advance so the compression ef-

ficiency can be improved. Block motion compensation (BMC) is most commonly

used, where the frames are partitioned into non-overlapping blocks of pixels (e.g.,

macroblocks of 16×16 pixels). Each block is predicted from a block of equal size in

the reference pictures (previous and/or future frames) as illustrated in Fig. 1.3. The

blocks are shifted to the position of the predicted block, where the shift is repre-

sented as a motion vector (MV). There are many variations from this simple form

of motion estimation including variable block sizes, subpel accurate MV search,

weighted prediction, etc. But the basic theme of motion estimation(ME) process

is to determine motion vectors which maximize the efficiency of prediction or the

compression efficiency. Thus, performance of ME process is critical to optimize

coding in a rate distortion sense.

The ME process comprises a search strategy of the motion displacement offset

(motion vector) for inter picture predictive coding and a matching metric computa-

tion. Practically, it is infeasible to use the ideal metric that computes the ultimate

effect, including transform, quantization, and entropy coding, of all possible motion

vectors (MVs) to select the best MV. Therefore, a simpler metric has been used

instead, which searches for the MV that minimizes certain distance metric prior

to residual coding from a certain set of candidate MVs. The search strategy of

the ME process determines the set of candidate MVs and its refining process so

that it tends to optimize the trade-off between complexity and performance. The
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Figure 1.3: Motion estimation process. Current block as a query vector aims to
selecting a motion vector that minimizes the distance metric.

cost/matching metric function which is also referred to as a distortion measure cap-

tures the prediction error; commonly l1 or l2 norms are used, i.e. Sum of Absolute

Differences (SAD) or Sum of Squared Differences (SSD). After the encoder selects

the MV that minimizes cost, it encodes the difference block (prediction residual)

between the original and motion compensated blocks. Each residual block is trans-

formed, quantized, and entropy coded. Fig. 1.3 shows a block diagram of motion

compensated hybrid video coding scheme.

The motion estimation process for video coding is a particularly interesting ap-

plication in the context of error tolerance due to its computational and memory

intensive characteristics, the characteristic of compression itself (i.e., the lossy rep-

resentation of uncompressed signals), and also the limited capacity of human visual

perception ability.

ME can be seen as a NNS problem with a current block being a query object

q and a set of candidate MVs from the reference pictures being a data set R. A
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difference with respect to the typical NNS problem is that a data set R is not fixed

over queries and essentially R changes with q.

ME process tends to pose significant computational burden. For the simplest

ME scheme using only 16×16 block size with a single reference frame and linear

search with a search range ±32 could take more than 80% of the total encoding

power of a video encoding system. Computational penalty of ME can be much

worse if it includes other commonly used ME settings such as bi-predictive coding,

multiple reference pictures, and variable block sizes.

1.2.3 Vector Quantization for Data Compression

A vector quantizer encodes a multidimensional vector space into a finite set of

values from a discrete subspace of lower dimension. A lower-space vector requires

less storage space, so vector quantization (VQ) is often used for lossy compression

of data such as image, video, audio or for voice recognition (statistical pattern

recognition).

VQ maps D-dimensional vectors in the vector space RD into a finite set of

vectors Y = {yi : i = 1, 2, , N}. Each vector yi is called a code vector and the set

of all the code vectors, Y , is called a codebook. A vector space RD is partitioned

into N code cells (clusters) C = {Ci : i = 1, 2, , N} of non-overlapping regions

where each region Ci, called Voronoi region, is associated with each codeword/code

vector, yi. Each Voronoi region Ci is defined by:

Ci = {x ∈ RD : ‖x − yi‖ ≤
∥∥x − yj

∥∥ ,∀j 6= i}

where VQ maps each input vector x ∈ Ci in code cell Ci to the code vector yi.
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the set of all the code vectors is called a codebook. (a) illustrates an example design
of a codebook for 2D vector space. (b) illustrates how each input vector is encoded
with and decoded from the index of its nearest code vector.
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VQ consists of two processes: (i) designing a codebook, i.e., generating the data

set of NNS as a simple 2D codebook example illustrated in Fig. 1.5(a), and (ii)

performing nearest neighbor/code vector search to a given input vector (a query of

NNS) for encoding as illustrated in Fig. 1.5(b). There are several VQ algorithms

which have different codebook design method but all of them perform exact nearest

neighbor search. VQ performs NNS for each input vector (a query) to all code

vectors (data set) and encodes it with the nearest code vector. A set of all code

vectors can be seen as data set of NNS problem.

1.3 Contributions and Overview of the Thesis

In this thesis, with a primary focus on NNS problem, we propose to exploit er-

ror tolerance concept for proximity problems from algorithm level to hardware

architecture design and testing level. The main theme throughout this thesis is

to model and analyze the behavior of performance degradation with the range of

faults/errors allowed or with the level of simplification made. Proposed modeling

and algorithms throughout this thesis are numerically evaluated and verified by

simulating using example applications: motion estimation process for video coding

and vector quantization for data compression.

Quantization based nearest-neighbor-preserving metric approxima-

tion algorithm (QNNM ) (Chapter 2) [11] [13]

First part of the thesis studies similarity search problem and presents a novel

methodology, called quantization based nearest-neighbor-preserving metric approx-

imation (QNNM) algorithm, which leads to significant complexity reduction in

search metric computation. Proposed algorithm exploits four observations: (i)
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homogeneity of viewpoint property, (ii) concentration of extreme value distribu-

tion, (iii) NN-preserving not distance-preserving criterion, and (iv) fixed query

information during search process. Based on these, QNNM approximates origi-

nal/benchmark metric by applying query-dependent non-uniform quantization di-

rectly on the dataset, which is designed to minimize the average NNS error, while

achieving significantly lower complexity, e.g., typically 1-bit quantizer. It entails

nonlinear sensitivity to distance such that finer precision is maintained only where

it is needed/important (the region of expected nearest neighbors) while unlikely

regions to be nearest neighbors are very coarsely represented. We show how the

optimal query adaptive quantizers minimizing NNS error can be designed “off-line”

without prior knowledge of the query information to avoid the on-line overhead

complexity and present an efficient and specifically tailored off-line optimization

algorithm to find such optimal quantizer. Three distinguishing characteristics of

QNNM are statistical modeling of dataset, employing quantization within a met-

ric, and query-adaptive metric, all of which allow QNNM to improve performance

complexity trade-off significantly and provide robust result even when the problem

involves non-predefined or largely varying data set or metric function. With motion

estimation application, QNNM with coarsest 1-bit quantizer per pixel (note that a

quantizer for each pixel is different to exploit the correlation of input distribution)

results in on average 0.01dB performance loss while reducing more than 70% to

98% metric computation cost.

Manufacturing fault effect modeling and error tolerant designs for

NNS problem (Chapter 3) [16] [9] [12]

Second part of the thesis, we present a complete analysis of the effect of intercon-

nect faults in NNS metric computation circuit. We provided a model to capture
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the effect of any fault (or combination of multiple faults) on the matching met-

ric. We then describe how these errors in metric computation lead to errors in

the matching process. Our motivation was twofold. First, we used this analysis to

predict the behavior of NNS algorithms and MMC architectures in the presence of

faults. Second, this analysis is a required step towards developing efficient ET based

acceptability decision strategies and can be used to simplify fault space, separate

acceptable/unacceptable faults, and consequently simplify testing. Based on this

model, we investigated the error tolerance behavior of NNS process in the presence

of multiple hardware faults from both algorithmic and hardware architecture point

of views by defining the characteristics of the search algorithm and hardware archi-

tecture that lead to increased error tolerance. With ME application, our simulation

showed that search algorithms satisfying error tolerant characteristics we defined

perform up to 2.5dB higher than other search methods in the presence of fault, and

they also exhibit significant complexity reduction (more than 99%) without having

to compromise with the performance. Our simulation also showed that if error

tolerant hardware architecture is used, the expected error due to a fault can be

reduced by more than 95% and more than 99.2% of fault locations within matching

metric computation circuits result in less than 0.01dB performance degradation.
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Chapter 2

Approximation Algorithm for Nearest Neighbor

Search Problem

In this chapter, we present a novel NNS metric approximation technique which

maps the original metric space to a simple one in such a way that (approximate)

nearest-neighbor (NN) is preserved, while reducing potential wasting of resources

in computing high precision metric for unlikely solutions/points. This algorithm

significantly reduces computational complexity while the penalty to be paid in

performance is very small. This metric approximation is not fixed for all potential

queries but adaptively adjusted at each query process, exploiting the information

of query point and statistical modeling of data set to provide better performance

complexity trade-off. Thus proposed method is intrinsically flexible from query to

query and efficient with largely varying database/metric functions.

This NNS problem has a long history and we first summarize existing works and

their approaches. We then provide certain intuitive interpretation of the notion of

approximation and provide a different perspective which can be taken into account

to further reduce computational complexity. Then we formulate the problem and

present our proposed solution as well as experimental results.
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2.1 Related Work

The NNS problem has been investigated in computer science for a long time and a

multitude of algorithms have been presented, all of which focus on how to “prepro-

cess” a given set of points R so as to efficiently answer queries assuming (i) that a

data set R is fixed (or slightly varying) over queries and (ii) that a metric d is also

fixed.

Approaches to NNS problem in general, can be broadly grouped into two classes

: (i) reducing the subset of data to be examined (ability to discard large portion of

data points during the search process), (ii) transforming the metric space.

The first class includes a variety of approaches that create efficient data struc-

tures by partitioning metric space and query execution algorithm (e.g., variants

of k-d tree [47], R-trees, metric trees [52], ball-trees [41], similarity hashing [28]).

The latter class includes metric/feature dimension reduction techniques, such as

principal component analysis [26], latent semantic indexing [21], independent com-

ponent analysis, multidimensional scaling and singular value decomposition using

linear transforms (e.g., KLT, DFT, DCT, DWT). The latter class includes metric

embedding techniques which provide ability to lower dimensions, transform general

metric space to normed space, or map complex metric space to simpler one.

All these existing approaches focus on altering/preprocessing data set R so

as to minimize volume (number of metric computation iteration) and size (e.g.,

dimensions) of examined data, using for example, data-restructuring [46] [48], fil-

tering [40], sorting, sampling [36] [15], transforming [37], bit-truncating [25] [8],

quantizing [35] etc, to ultimately reduce CPU and I/O costs for querying.
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Although many among these algorithms provide good reduction in search com-

plexity in low dimensionality, NNS problem with high dimensional and large collec-

tions of data set as is the case with many real-world problems, still remains a long

standing challenge. Furthermore, since they are preprocessing-based techniques

based on a fixed dataset and a metric function, they face serious challenges if NNS

problem involves largely varying data set R changing significantly from query to

query and/or variable/user-controllable search metric d. For applications requiring

to solve such problem, most of existing methods simply use random or empirical

sampling or application specific tailoring of data set according to the nature of data,

which therefore is not generally applicable.

Along with any improvement achieved from these existing approaches, further

significant complexity reduction is attainable by increasing the efficiency of metric

computation. While most of works have been primarily focusing on designing al-

gorithms which scale well with the database size as well as with the dimension, our

proposed work focuses on error tolerant hardware implementation of metric com-

putation for NNS search process. Our work can be seen as a technique that maps

the original complex metric space to a significantly simpler metric space query-

dependently, which is designed to minimize the average NNS error, while achieving

significantly lower metric computation complexity. Furthermore, proposed method

assumes neither a fixed dataset nor fixed metric function over queries, which en-

ables efficient operation even with varying, user adaptive metric functions based on

user preference and largely varying dataset.

Next section describes several conventional NNS performance evaluation mea-

sures and their pros and cons. We also introduce a different NNS performance

measure and using this, we provide insight and intuition for why there might be

more room for improvement in metric computation complexity.
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Figure 2.1: Illustration of approximate NNS problem (ǫ −NNS), where q and p∗
represent a query and its exact NN, respectively.

2.2 NNS Performance Evaluation Measure

Primary concerns of this problem are both qualitative and quantitative aspects

of the solution: accuracy (how close the returned object is to the optimal ob-

ject/solution) and complexity (the amount of resources required for the algorithm

execution). Complexity of NNS algorithm typically refers to space complexity

(memory requirement and preprocessing cost) and query time complexity (the num-

ber of metric evaluations to answer a query and computational complexity of metric

evaluation). Complexity is in general compared as a function of the input size (size

of a data set N and dimensionality D), typically represented by the worst case be-

havior. As to the accuracy, NNS problem can be either exact NNS or approximate

NNS problem. Exact algorithms obviously reach an exact/optimum solution, while

approximation algorithms find an approximate solution that is close enough to the

true solution.

2.2.1 ǫ−NNS Problem and Performance Measure

ǫ−NNS problem

Most common approximate NNS problem is the ǫ−NNS problem (also called c −
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NNS, where c = 1 + ǫ > 1 is approximation factor) defined as follow: Given an

error bound ǫ > 0, we say that a point r ∈ R is an ǫ−approximate NN of a query

q if

d(r,q) ≤ (1 + ǫ) · d(r∗,q),

where r∗ is the exact NN of q (Fig. 2.1). In other words, an ǫ−NNS algorithm

returns points whose distance from the query is no more than (1 + ǫ) times the

distance of the true nearest neighbor, but, without any information on the actual

rank of the distance of the returned points and also without any guarantee of

returning any such point. In general as one decreases ǫ for better accuracy, the

probability of returning an empty set increases.

Typical approach of evaluating/comparing ǫ−NNS algorithms is simply com-

paring complexity as a function of the input size and ǫ > 0 as a notion of approxi-

mation measure providing guaranteed performance bound in a worst case point of

view. However, in order to more accurately assess the quality of a returned set of

an ǫ−NNS algorithm, beyond the performance bound measure ǫ, one could con-

sider two complementary measures: recall [38] or relative distance error (DE) [53]

defined as:

Recall =
|R∗ ∩RA|

|R∗| (2.1)

DE =
d(rA,q) − d(r∗,q)

d(r∗,q)
=
d(rA,q)

d(r∗,q)
− 1 (2.2)

where R∗ and RA denote, respectively, a set of all relevant/qualifying points (all

near neighbors within the range of distance (1 + ǫ) · d(r∗,q)) and a returned set of

points retrieved by the approximation algorithm of interest, while | · | represents

the cardinality of a set. Similarly, r∗ and rA are the exact and retrieved (by the

approximation algorithm) nearest neighbor of q, respectively.
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Recall measure represents the probability of approximate algorithm returning

a qualifying point. This measure considers all points returned as being of equal

importance. Relative distance error DE, on the other hand, quantifies the quality

of a returned set but provides no indication on the probability of failing in returning

any qualifying point. Note that DE measure is input data dependent.

In order to more accurately assess an improvement in complexity reduction due

to a given algorithm, improvement in efficiency (IE) [53] measure can be used which

relates the costs of the exact and approximated searches.

IE =
cost(r∗)

cost(rA)
(2.3)

where cost(r) corresponds to the execution cost to retrieve r.

2.2.2 Proposed ǭ−NNS Problem Setting

ǫ−NNS problem constrains the quality of solution r to be within the worst perfor-

mance bound (1+ǫ) ·d(r∗,q) such that it only allows either to have a solution (that

is close enough to the nearest neighbor based on ǫ) or to have nothing. Thus typi-

cally the performance of approximation algorithms has been analyzed using a worst

case point of view. This worst case conditioning or worst case analysis provides a

guaranteed performance safety and is useful in characterizing or proving whether

the approximate solution is provably close to the optimal one independently from

the input data distribution. However, it provides several drawbacks as well.

Worst case performance analysis generally does not serve as a practical predic-

tive tool and is seldom met in practice: the empirical verification of approximation

algorithm performance often shows large gap between actual expected performance
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and the worst case analytical bound. Moreover, for many useful practical algo-

rithms involving probabilistic/randomized method or input data dependent pro-

cessing, theoretical worst case analysis often becomes less meaningful since worst

case can be very unlikely to happen in probability. Also for typical ǫ−NNS algo-

rithms, reducing the worst case bound of solution quality (increasing the probability

of having higher quality solution) leads to decreased recall rate (higher probability

of returning an empty set) which is often input dependent.

Therefore in this thesis we consider approximate NNS problems without con-

straint on specific performance safety boundary. In other words, an approximate

algorithm is expected to always return its own best result and its performance

will be evaluated in probabilistic terms as the expected/average solution quality

(closeness to the optimal one). We refer to it as ǭ−NNS problem.

This is more appropriate problem setting for our purpose, considering that our

proposed work focuses on increasing the metric computation efficiency and not on

creating a data structure and query process. To evaluate algorithms of interest in

this setting, we only need to consider one NNS accuracy measure ǭ measuring the

average distance degradation introduced by approximate NNS algorithm relative to

that of the benchmark algorithm (exact NN). ǭ, the solution quality as an expected

value, is defined as:

ǭ =
E(d(rA,q) − d(r∗,q))

E(d(r∗,q))
=
E(d(rA,q))

E(d(r∗,q))
− 1 (2.4)

where E(·) is the expectation operator over the input distribution. And similarly,

complexity efficiency is measured as an expected value, IE:

IE =
E(cost(r∗))

E(cost(rA))
(2.5)

25



Although these measures provide more close numerical estimate to actual prac-

tical setting performance, reflecting average typical behavior in performance and

complexity efficiency of given algorithm, they are intrinsically input data depen-

dent. Therefore, to yield accurate results from a practical point of view, the input

distribution needs to be as close as possible to the realistic distribution of the prac-

tical applications. Therefore, analysis on the performance behavior for different

input characteristics may be needed as well for better evaluation.

Conventional ǫ−NNS and ǭ−NNS problem setting we propose to use can be

briefly summarized as follow: Given the input distribution, ǫ−NNS algorithm per-

formance can be evaluated using Recall, relative distance error (DE), and data

independent worst case bound ǫ,

d(rA,q) ≤ (1 + ǫ) · d(r∗,q), (2.6)

while the performance of proposed ǭ−NNS algorithm can be evaluated only with ǭ

( 2.4).

E(d(rA,q)) = (1 + ǭ) · E(d(r∗,q)) (2.7)

2.2.3 Error Rate, Accumulation, Significance, and Variation

Particularly for the error tolerance approach, it is critical to select a good measure

that quantifies the notion of error. Often error rate, error accumulation, error

significance (these three are also known as RAS), and error variation measures

are used. They are all input distribution dependent measure and quantify certain

quality/behavior of errors under typical application specific environment. They
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Figure 2.2: Illustration of error probability distribution over error-significance.
Error-rate is defined as the sum of all non-zero error-significance probabilities. ǭ
measure is equal to the mean value of a given distribution. ET based acceptance
curve would appear as a vertical line, determining a certain distribution to be clas-
sified acceptable or unacceptable depending on their mean value (ǭ).

describe more accurately the expected performance in practical setting unlike mea-

sures that are input distribution independent. Thus, such measures are consistent

with our purpose of error tolerance approach.

As defined in [5], error rate is the fraction of results that are erroneous in a long

sequence of output patterns under normal operating conditions. Error significance

deals with the degree to which a piece of data is in error. Error accumulation

(retention) deals with the change in error rate or error significance over time, which

can be seen as the ‘error propagation’ measure. For example, in a feed-forward

pipeline architecture, a defect probably produces a fixed error rate. Many finite

state machines, such as a linear feedback shift register, lead to errors propagated

or accumulated.

In the NNS problem setting, error rate refers to how often inexact solution

is returned (Pr(r∗ 6= rA)) while error significance refers to how much additional

quality degradation is introduced (d(rA,q)− d(r∗,q)). In our ǭ−NNS performance

analysis, error rate is not very meaningful just as the worst case analysis is not a very
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good measure in practice. In fact, performance can be fully described by the error

probability distribution over error significance as in Fig. 2.2. These distributions

in this figure represent the NNS performance with different faulty NNS metric

computation circuits. However, each distribution can be seen as the performance of

an NNS approximation algorithm. Perfect system (e.g., fault-free chip, exact NNS

algorithm) must have 100% error probability on zero error-significance. Error-rate

is defined as the sum of all non-zero error-significance probabilities. Expected error

significance, which is in fact non-normalized ǭ, is a good measure to describe such

distribution with a single number, thus a good practical performance measure.

Note that if a system is sensitive to the temporal performance variation, variance

of error distribution can be also taken into account for the acceptance decision. For

example, when motion estimation for video coding is considered, if ME performance

varies significantly from block to block, it could lead to unpleasant blocky artifact.

However, in this thesis, we do not consider variance since the acceptable range of ǭ is

usually quite small (typically acceptable ǭ should be constrained to “imperceptible

/indistinguishable” degree of error to application users) and small ǭ also assures

small variance as well in practice.

2.3 Interpretation of NNS Approximation Using

ǭ Measure

The goal of this section is not to model all dependencies between different execution

steps of all NNS algorithms but to provide a general form for algorithms so that

we can obtain intuitive interpretation of approximation error.
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2.3.1 NNS Problem Modeling

For this purpose, we model NNS problem in probabilistic terms using a distance

distribution, instead of assuming specific fixed data set R. More specifically, given

a metric space (U, d) where d defines distance between any pair of points in U and

returns a nonnegative real number, d : U ×U → [0,∞), we model a set of N points

R ⊂ U , R = {r1, r2, · · · , rN} as a set of N random samples from the distribution

FU over U . The relative distance distribution (RDD) of d(r,q) from a query q ∈ U

with respect to any r ∈ U can be seen as a viewpoint taken from q towards a metric

space U in terms of distance d, which is defined as:

Fq(x) = Pr(d(r,q) ≤ x) (2.8)

Similarly, a viewpoint taken from q towards its nearest neighbors in terms of

d in U can be represented as the relative nearest-neighbors distance distribution

(RNNDD) as:

Fmin
q (x) = Pr(d(r∗,q) ≤ x) = 1 − (1 − Fq(x))N (2.9)

Fig. 2.3 illustrates examples of Fq(x) and Fmin
q (x) for both simulated and actual

data based cases.

2.3.2 NNS Algorithm Modeling

A linear search computes distances between q and all points r ∈ R and selects

points in R which corresponds to the minimum distance. We denote by NN(q) a

set of minimum distance points with respect to q obtained using a linear search.
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Figure 2.3: (a) Example illustration of simulated distance distribution, F (x) and
its corresponding NN-distance distribution, Fmin(x) for |R| = 100. Shaded area
represents expected NN-distance E(d(q, NN(q))). (b) Illustration of both distance
distribution, F (x) and its corresponding NN-distance distribution, Fmin(x) based
on the actual data collected from motion estimation process for video coding ap-
plication using a linear search with |R| approximately 4000. Fq(x) and Fmin

q (x)
are both averaged distributions. Five representatively different video sequences in
terms of their distance distribution were chosen.
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NN(q) = {r∗ ∈ R|∀r ∈ R ⊂ U,q ∈ U : d(r∗,q) ≤ d(r,q)} (2.10)

We could also roughly characterize and model most NNS algorithms similarly.

Any arbitrary NNS algorithm, which we refer to it as A from here on, can be

modeled, in terms of its average behavior, as a linear search with different metric

space (UA, dA) with a distribution FUA
, thus consequently different RA with size

NA and different dA such that,

NNA(q) = {r∗ ∈ RA|∀r ∈ RA ⊂ UA,qA ∈ UA : dA(r∗,qA) ≤ dA(r,qA)} (2.11)

Similarly, we denote RDD and RNNDD of algorithm A with respect to q by Fq,A(x)

and Fmin
q,A (x).

For example, efficient NNS algorithms are likely to have distribution FUA
con-

centrated near given q and NA < N , which means algorithm A efficiently discarded

most of points in R that are less likely to be q’s nearest neighbors and selected RA,

a subset of R for actual comparison process.

2.3.3 NNS Algorithm Performance

The performance of NNS algorithm A can be measured by ǭ as in 2.4:

ǭ =
E(d(rA,q) − d(r∗,q))

E(d(r∗,q))

For convenience in description, we use non-normalized ǭ denoting it by simply DE.

DE = E(d(rA,q)) − E(d(r∗,q)) (2.12)
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DE can be further written as:

DE =

∫

R+

µ(x)fA(x)dx−
∫

R+

xf(x)dx, (2.13)

where f(x) is a point probability or pdf (probability density function) form of

Fmin
q (x), and analogously fA(x) is a pdf of Fmin

q,A (x). µ(x) represents the expected

distance (in terms of the original distance measure d) of q’s neighbors that have a

given distance x according to the algorithm A’s distance measure dA.

µ(x) = E(d(r,q)|dA(r,q) = x,∀r ∈ RA)

Given the input distributions, since E(d(r∗,q)) is fixed (it is equal to the shaded

area in Fig. 2.3 (a)), the E(d(rA,q)) term will determine the performance of al-

gorithm A in terms of the solution quality. In other words, our goal is to find

an algorithm which minimizes E(d(rA,q)) while maximizing complexity reduction.

Note that ǭ or DE provide no information on the complexity efficiency which has

to be considered separately.

2.3.4 Simple Case Study & Motivation

Fig. 2.4 is a graphical illustration of DE (where it can be seen to be the difference

between the solid shaded area and the shaded area with hatching) for several sim-

ple NNS algorithms: (a) when algorithm A returns a randomly chosen point from

R, (b) when A randomly subsamples R and performs a linear search and returns

the minimum distance point, and (c) when A discards some information for dis-

tance metric computation (e.g., subsampling dimensionality) and performs a linear

search. Solid shaded area and shaded area with hatching represent E(d(rA,q)) and
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Figure 2.4: Graphical illustration ofDE (= E(d(rA,q))−E(d(r∗,q)) = solid shaded
area - shaded area with hatching) for several simple NNS algorithms. Three graphs
illustrate the performance of three different algorithms which respectively (a) simply
returns a randomly chosen point from R as its approximate NN point, (b) randomly
subsamples R and performs a linear search to find the minimum distance point, and
(c) discards some information for distance metric computation (e.g., subsampling
dimensionality) and performs a linear search and return resulting NN point. Both
(b) and (c) cases reduce the complexity by half (reducing the number of searching
points N (b) and dimensionality D (c)).
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E(d(r∗,q)), respectively. Case (a) can be seen as a worst case bound. While both

(b) and (c) cases reduce the complexity by half (reducing the number of searching

points N (b) and dimensionality D (c) by randomly subsampling), reduction in

searching point impacts performance less than reduction in dimensionality of the

metric function/data. However, due to the curse of dimensionality, efficient reduc-

tion in dimensionality usually helps reducing the size of searching points exponen-

tially. Most existing NNS algorithms approach the problem by efficiently reducing

either searching points N (e.g., using certain data structures) or dimensionality D

(e.g., by performing certain transform process), or by a combination thereof. Well

designed algorithms based on this approach can lead to minimal performance loss.

However, further significant reduction in complexity is attainable by reducing

the metric computation resolution/precision instead of blindly computing each dis-

tance metric to full precision.

2.3.4.1 Nonlinear scaling on metric computation resolution

Fig. 2.5 provides intuitive idea of why significant resolution reduction may lead

to insignificant performance loss. This can be seen as a problem of achieving the

targeted NNS performance while minimizing the amount of resources (bits, num-

ber of quantization bins) required, by maintaining fine precision only where it is

needed/important. Typical quantization is designed to compress the data while

maintaining the necessary fidelity of the source data. However if we employ certain

quantization process within the metric, the goal is not particularly in compressing

the data but reducing the computational complexity while maintaining the fidelity

of minimum distance ranking and not the fidelity of distance itself. Thus, our target

metric needs to have a nonlinear sensitivity to distance, such that finer precision

is assigned to the region of expected nearest neighbors and coarser resolution is
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Figure 2.5: (a) Linear approximation of NN-distance distribution Fmin(x). (b)
Linear approximation of distance distribution F (x). (c) Nonlinear approxima-
tion of Fmin(x). (d) Nonlinear approximation of F (x). Above four figures il-
lustrate the impact on NNS performance when reducing the metric computation
resolution/precision (staircase functions: 16 representation levels for these example
graphs) instead of blindly computing each distance metric to full precision (solid
blue line: e.g., 65536 representation levels if 16 bit-depth used).
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Figure 2.6: illustrates that most of critical regions we need to measure the distance
accurately is the region belonging to less than 1% of a given RDD distribution (red
box).

assigned to the rest of the regions. Fig. 2.5 (a) and (b) represent a technique which

preserves the distance F (x) well as in Fig. 2.5 (b) but results in higher error in

NNS performance as in Fig. 2.5 (a). Fig. 2.5 (c) and (d) on the other hand is poor

in preserving distances F (x) as in Fig. 2.5 (d), while entailing less error in terms

of the quality of approximate nearest neighbors (i.e., preserving Fmin(x) better) as

in Fig. 2.5 (c).

2.3.4.2 Homogeneity of viewpoints

Discussion so far may raises an obvious question concerning to the statistical infor-

mation that we are assumed to know for a fixed q. The relative distance distribution

Fq(x) may vary for different viewpoint q, which is called viewpoint discrepancies.

This problem of viewpoint discrepancies has been studied [19] and it has been

shown that the viewpoint discrepancies is quite insignificant for bounded random

metric space, which is referred to as homogeneity of viewpoints property. Experi-

ments performed with large text files also showed similar results. In other words,

distance distributions measured with respect to different viewpoint q, are very sim-

ilar. However, note that for our purpose, even this assumption of high homogeneity

of viewpoints is not necessary. Fig. 2.6 illustrates that the most critical region
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where we need to measure the distance accurately is the region belonging to less

than 1% of whole RDD distribution (region in the red box). Considering that ho-

mogeneity of viewpoints “towards nearest-neighbors” is even higher, a technique

developed based on the average statistics would behave quite well in general for

different viewpoints q.

Fig. 2.3 (b) also provides real application information on the homogeneity of

viewpoints towards nearest-neighbors for motion estimation application. Five repre-

sentatively different video sequences in terms of RDD still produce high homogene-

ity of viewpoints towards nearest-neighbors. Fig. 2.3 (b) also shows that in general

there is very limited region where high precision distance measure is needed for

high NNS performance.

Following sections describe how this nonlinear scaling on metric computation

precision can be exploited and how it can be designed to result in significant com-

plexity reduction.

2.4 Query Adaptive Nearest Neighbor Preserving

Metric Approximation Algorithm (QNNM)

2.4.1 Problem Formulation

Our goal is to find a new metric function dobj that approximates the original or

benchmark metric d in terms of preserving the fidelity of NNS while having signif-

icantly lower computational complexity than that of d. Any metric approximation

approach can be formulated as ψ : U → Uψ mapping the original metric space (U, d)

into a simpler metric space (Uψ, dψ) where NN search is performed with dψ metric.
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If ψ is the same for all queries, this metric space mapping can be seen as a prepro-

cessing (e.g., space transformation to reduce dimensionality) aiming at simplifying

the metric space while preserving relative distance between objects. However, here

our goal is to design a simple query-adaptive mapping ψq : U → Uψ

(U, d)
ψq→ (Uψ, dψ) (2.14)

that satisfies following three conditions:

1. Use the information of a given query location q which is constant over the

searching process such that our objective metric dobj can be designed as a

function of only ψq(r).

dobj(q, r) = dψ(ψq(r)) (2.15)

2. Reduce dobj complexity by exploiting the statistical characteristics of NN

(extreme value distribution of sample minimum Fmin as in Fig. 2.3 where

most of statistical information of NN is concentrated in a very narrow range)

such that its resulting (Uψ, dψ) is significantly simplified to preserve only NN

and not the relative distances between objects.

3. Finding such query-dependent mapping ψq prior to each querying operation

should impose insignificant overhead complexity, if any.

2.4.2 Observations & Characteristics of Proposed QNNM

Our proposed solution QNNM to this problem is based on the following four ob-

servations:
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1. The homogeneity of viewpoint (HOV) property [19]: the distribution of data

set R with respect to distance between two objects or nearest two objects

tends to be homogeneous. In other words, if we statistically model a metric

data setR in terms of its distances d(q, r) with respect to a given query q using

the distance distribution F (x) = Pr(d(q, r) ≤ x) or NN-distance distribution

Fmin(x) = Pr(d(q, r∗) ≤ x), [19] shows that such distributions tend to be

probabilistically very similar regardless of a query /viewpoint position.

2. As illustrated in Fig. 2.3, when performing NNS for different queries the

distances d(q, r∗) between a query vector and its best match (NN) tend to be

concentrated in a very narrow range (extreme value distribution of the sample

minimum Fmin(x)).

3. The only goal of NNS metric is to identify NN or preserve the fidelity of the

minimum distance ranking and not the distance itself.

4. The query vector is fixed during the entire search process.

Our proposed approach, motivated from these observations, has three distin-

guishing characteristics: (i) statistical modeling of data set R in terms of distance

d, (ii) employing scalar quantization within a metric, and (iii) making a metric

query-dependent.

Typically most of NNS related studies are based on the assumption of fixed

data sets and a fixed distance metric d which are known in advance. However,

many practical applications/situations, e.g., data streaming environments, involve

largely varying data sets. For some applications such as motion estimation, more

than half of data set changes from the current query to the following one. In

such situations, preprocessing based algorithms lose their meaning because such
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assumptions consequently require to preprocess R partially or entirely all over again

whenever there is a change in R or d.

The proposed algorithm, on the other hand, is based on the statistical charac-

teristics of data set R (which is typically modeled using Gaussian distribution) in

metric space (U, d) such that even if the search involves a largely varying data set

R, no extra processing/updating is required due to the HOV property.

Furthermore, because of these characteristics of statistical modeling, the pro-

posed method can support not only predefined but also ad-hoc or online metric

queries. For example, user could control and select features of interest and their

weights and assign each feature/dimension a different role for evaluating the simi-

larity. Unfortunately most existing approaches construct whole preprocessed data

structures based on a fixed dimensions and metric function. Our proposed method,

on the other hand, is based on query adaptive metric which can maximize the use

of query location information to simplify the metric as well as make the metric

flexible and adaptable from query to query changes even when there exist variation

of metric functions and/or dimensionality change, without having to rebuild the

whole data structure or to perform transforms from scratch. Therefore, even when

the metric d changes (e.g., change of r or weights wj of weighted Minkowski metric
∑

j wj(qj − rj)
p especially when user-controllable), the proposed method does not

require computing metric approximation from scratch again but only simple scaling

of quantization thresholds.

Scalar quantization is chosen since it is computationally efficient, flexible to

adapt to changed context (e.g., R, q, d), but also convenient to introduce different

sensitivity to different regions and dimensions to exploit the observation 2 and

to reduce potential wasting of resources in computing high precision metric for

unlikely solutions/points. Observation 2 allows these quantizers to be very coarse
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(e.g., 1 bit per dimension) leading to very low computational complexity without

affecting overall NNS performance much. Our experimental results in Section 2.7.1,

for instance, show negligible NNS performance degradation (average 0.01dB loss)

when proposed method with optimized 1-bit/pixel quantizer is used as compared

to ℓ1 metric for motion estimation (ME) application for video coding.

The third characteristic of proposed metric approximation algorithm is that

the metric measure itself is not fixed but changes with query data which is fixed

during the entire search process. But more importantly, we show that the problem

of finding the optimal query-dependent quantization parameters for the proposed

metric can be formulated as an off-line optimization process based on observation

1, such that it only requires trivial overhead complexity of changing a metric for a

new query data prior to the search operation.

In addition, note that our proposed QNNM algorithm can be used indepen-

dently but also in parallel with most existing preprocessing based NNS algorithms.

Because most preprocessing based algorithms try to prune and eliminate irrelevant

data to a given query to narrow down the pool of data, which results in even-

tually different data set from query to query and therefore, it can be seen as a

varying data set itself to further perform NNS within that archived data set. Also

note that our approach (if optimally designed) automatically eliminate certain di-

mensions whose contribution to finding nearest-neighbor is insignificant. However

our method cannot, for instance, transforms the basis/coordinate of the data to

achieve dimensionality reduction. Therefore, if the user prefers, the data could

be first preprocessed into a more suitable/compact domain to achieve better per-

formance using, for example, principal component analysis [26], latent semantic

indexing [21], independent component analysis, multidimensional scaling and sin-

gular value decomposition using linear transforms (e.g., KLT, DFT, DCT, DWT).
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Finally, our proposed approach can be also used for k-nearest neighbor search

or orthogonal range search where quantization itself is user specified input. If one

insists on finding the exact nearest-neighbor, this approach can be also used as

a preliminary filtering step to filter out unlikely candidates and then refinement

process can be performed within the remaining set.

The details of proposed QNNM algorithm is described in following sections.

2.4.3 Basic Structure of Proposed QNNM

There are three assumptions under which proposed QNNM is developed:

1. D-dimensional vector space U = RD,

2. There is no cross-interference between dimensions in original metric d. In

other words, each dimensional dissimilarity is measured in an isolated fashion

and then averaged/combined together (refer to Table. 2.1). General metric

function structure d can be written as:

d(q, r) =
D∑

j=1

dj(qj, rj), r ∈ U (2.16)

This metric computation structure comprises two basic processes: i) the

distance computation in each dimension (we will refer to it as dimension-

distance dj(qj, rj)), and ii) the summation/combination of all such dimension-

distances.

3. The performance of NNS algorithm in terms of its accuracy is evaluated us-

ing the expected solution quality, ǭ (the degree of average solution quality
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Camberra
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Table 2.1: Generalized metric function structure of our interest (average/sum of
each dimensional distance measurements) and corresponding metric function ex-
amples.

degradation introduced by the algorithm relative to that of benchmark (full

search) algorithm).

ǭ = Eq

(
d(q, r∗ψ(q)) − d(q, r∗(q))

d(q, r∗(q))

)
(2.17)

where

r∗ = {r′ ∈ R|∀r ∈ R ⊂ U,q ∈ U : d(q, r′) ≤ d(q, r)}

r∗ψ = {r′ ∈ R|∀r ∈ R ⊂ U,q ∈ U : dobj(q, r
′) ≤ dobj(q, r)}
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Our proposed approach simplifies the metric computation by approximating a

given metric using quantization process. We will first provide a brief description of

quantization and then proceed to describe our solution.

2.4.3.1 Quantization

Quantization maps a sequence of continuous or discrete vectors into a digital se-

quence such that less bit-rate can be used to represent the information while

maintaining whatever necessary fidelity of the data. Scalar quantizer simply di-

vides 1-dimensional space into a set of non-overlapping intervals or cells S =

{si; si = [θi, θi+1)} that cover all possible values. {θi} is a set of thresholds.

A quantizer in general consists of two mappings: a forward quantizer partitions

input data space into disjoint and exhaustive cells and assigns to each cell si a

mapping symbol bi in some mapping symbol set B. Inverse quantizer assigns to

each mapping symbol bi a reproduction value ri. Thus, any input that falls into one

cell si is quantized to si’s corresponding mapping symbol bi, which is in turn inverse

quantized to its reproduction value ri. converting input data sequence into a set of

mapping symbol is to compress input data into fewer bits while reproduction value

is to reproduce the expected original vector from the mapping symbols.

The goal of a typical quantizer is to produce the best reproduction of input data

given a bit-rate budget. In other words, a quantizer is designed (i.e., determining a

set of thresholds, mapping symbols, and reproduction values) typically to minimize

reproduction error/distortion (e.g., mean square error between data points and

their representatives).
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A forward quantizer function q which compresses the input data x and returns

corresponding mapping symbol, can be expressed as:

Q(x) =
∑

i

bi1si
(x) (2.18)

while an inverse quantizer function Q−1 which returns the reproduction value ri

from a mapping symbol bi, can be similarly expressed as:

Q−1(x) =
∑

i

ri1bi(Q(x)) = x̂ (2.19)

where x̂ represents a reproduction value of x.

2.4.3.2 Non-uniform scalar quantization within the QNNM metric

The proposed technique is illustrated in Fig. 2.7. Our proposed metric space map-

ping function ψq : U → Û is a vector of scalar quantization functions

ψq = (ψq1, ψq2, · · · , ψqD) (2.20)

where each ψqj is applied independently on j-th dimension rj of r = (r1, r2, · · · , rD)

∈ R, such that

ψq(r) = (ψq1(r1), ψq2(r2), · · · , ψqD(rD))

where r ∈ U and ψq(r) ∈ Û . Each ψqj is a non-uniform scalar quantizer chosen

based on the query data and dataset R. Each quantizer ψqj may have different

number of quantization levels and threshold values for different j.

This mapping function ψq divides the metric space U into a set of disjoint and

exhaustive hyper-rectangular cells as shown in Fig. 2.7 (b) and assigns each cell
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Figure 2.7: Two dimensional example illustration of proposed QNNM algorithm
and the relation between ψq and q and their related spaces. FR, FV , and FQ
indicate the distributions of data set R represented in original (U, d), viewpoint
(UV , dV ), and quantized viewpoint space (UQ, dQ), respectively. This shows how ψq
can be obtained from q such that overhead computation of finding ψq prior to each
querying can be avoided.
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Proposed quantization based metric function design

Quantizer is designed to preserve NN quality (minimize DE)

minqψ d̂{ }ir U∈
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    Input vectors nearest neighbormapping

symbols
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Conventional quantization scheme and its design

Quantizer is designed to compress {bi} while minimize reconstruction error (e.g., MSE)
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{ }ir ˆ{ }ir

{ }ib

    Input vectors reconstructed inputmapping

symbols

Figure 2.8: Comparison of conventional quantization scheme and our proposed
quantization based metric function design.

with a cell index vector ψq(r) (a vector of quantization integer mapping values).

All data points r ∈ R need to be mapped to one of these cells. Based on their

corresponding cell index ψq(r), new distance to a query dobj = dψ(ψq(r)) (e.g.,

Fig. 2.9 (b)) is computed and a nearest distance point r∗ψ in terms of a new metric

is returned.

Note that our proposed quantization based mapping function has certain differ-

ences from typical quantization as illustrated in Fig. 2.8. The goal of our quanti-

zation based mapping function is not in minimizing input data reproduction error

given a fixed bit-rate budget, but in minimizing ǭ, the average NNS performance

loss given a fixed complexity budget.

Conventionally rate is defined as the average number of bits per source vector

required to describe its corresponding mapping symbol. However we define rate

as the cardinality of a set of mapping symbols B since the complexity of mapping

function ψq increases proportionally with the size of B. Note that it is possible for

multiple different cells to have the same mapping symbol.
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2.4.3.3 Quantization-based metric design conditions

The design of (Uψ, dψ) consists of determining dψ metric and a quantization based

mapping function ψq (2.20). ψq is a set of scalar quantizers {ψqj}j, each ψqj of

which includes three sets of parameters; the number of quantization levels, a set

of quantization thresholds, and a set of mapping symbols. The number of quan-

tization levels and quantization thresholds determines how to partition a original

metric space (U, d) into a set of hyper-rectangulars while quantization mapping

symbols and dψ determines the ranking of each hyper-rectangular in terms of the

probability of having NN. The whole design of these parameters should be chosen

so as to maximize NNS performance in both search accuracy (ǭ) and computational

complexity.

During similarity searching process, a query q is fixed and all metric computa-

tions are done to measure distances between q and other data points. By exploiting

this fact, dψ(q, r) can be simply a function of only r. Due to the second constraint

of no cross-interference among dimensions in metric functions d, ψq can be designed

in such a way that d can be reduced to dψ which can be a simply sum of vector

elements:

dψ(q,x) =
D∑

j=1

xj (2.21)

or dψ can be even simpler bitwise OR operator of vector elements especially when

ψq is 1-bit quantizer:

dψ(q,x) = ∨xj (2.22)

Note that mapping symbols of ψq can be designed more intelligently than simple

consecutive numbers to simplify dψ complexity to bitwise operators.
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If summation is used as dψ as in (2.21), dψ can be implemented with a simple

D-leaf binary adder tree. dobj which is our ultimate goal to find, can be represented

as:

d(q,x) ∼= dobj(q,x) = dψ(ψq(q), ψq(r)) =
D∑

j=1

ψq(r)j =
D∑

j=1

ψqj(rj) (2.23)

In other words, any original/benchmark metric d satisfying d(q, r) =
∑D

j=1 dj(qj, rj)

structure can be reduced to dobj(q, r) =
∑D

j=1 ψqj(rj) metric if scalar quantizer set

ψq is optimally designed in such a way that nearest-neighbor found based on dobj

metric is very close to that found based on original d metric (i.e., small ǭ).

Note that this metric dψ obviously violates the classical notion of metric (sym-

metry and triangle inequality conditions) since it only defines distance from a point

to a fixed q. Thus, this is only meaningful for similarity searching purpose.

Since our goal is not to reproduce or approximate the input point r but to

simplify a new metric space Uψ and dψ, mapping symbol set can be simply a

set of consecutive integers beginning with 0 instead of, for example, centroid of

corresponding quantization bin.

The benefit of compressing r into fewer bits for each dimension is to reduce the

input bit size to dψ computation such that the binary adder tree of dψ (assuming

dψ is summation operator) can be simplified significantly.

As mentioned earlier, however, mapping symbols can be also designed to simplify

dψ into bitwise operator. Furthermore, it can be also designed to improve NNS

performance (reduce ǭ) in a way to control the slope of dobj metric surface depending

on the input distribution of data set R.
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2.4.3.4 Avoiding the overhead complexity

Given R and q, ψq and dψ need to be designed to minimize both complexity and

average NNS error ǭ (2.17). However, finding the optimal query-dependent ψq

satisfying such conditions prior to each querying operation would impose significant

overhead costs. This can be avoided based on the homogeneity of viewpoint property

studied in [19].

This allows to consider a viewpoint space (UV , dV ) (e.g., Fig. 2.7(c)), where we

denote v the vector of dimensional distances dj(qj, rj) (2.16) between a query point

and a search point:

v := ~d(q, r) ∈ UV . (2.24)

where we define ~d(·) operator as:

~d(x,y) := (d1(x1, y1), d2(x2, y2), · · · , dD(xD, yD)) (2.25)

Then, under the assumption of viewpoint homogeneity (which makes distance

distribution on viewpoint space query-independent), we can generate off-line statis-

tics over multiple queries and model a dataset by the overall distance distribution

FV of v in UV . Or if the distribution fR of data set R can be fitted with stan-

dard distribution such as multivariate normal, the distribution fV can be easily

computed from cross-correlation of fR and fq (the distribution of queries) which is

discussed in detail in Section 2.5. FV of v in viewpoint space is the distribution of

~d(r1, r2) where r1 and r2 are i.i.d. with data set distribution fR.

FV (x) = Pr(v ≤ x) = Pr(~d(r1, r2) ≤ x), r1, r2 ∼ fR (2.26)
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If the distribution of queries fq is different from that of data set fR, then

FV (x) = Pr(v ≤ x) = Pr(~d(q, r) ≤ x), q ∼ fq, r ∼ fR (2.27)

where FV represents the probability that there exist objects whose distance v to a

given arbitrary query is smaller than x.

Given this query-independent FV model obtained, instead of directly finding

ψq : U → Uψ minimizing ǭ (2.17) for every given query q, we could alternatively

look for a query-independent mapping function Q : UV → UQ (e.g., Fig. 2.7 (c)(d))

which minimizes ǭ and satisfies a following condition,

dobj(q, r) = dψ(ψq(r)) = dQ(Q(v)). (2.28)

In other words, the problem of designing low complexity dψ and finding the optimal

ψq given q and R can be replaced by the problem of designing low complexity dQ

and finding the optimal Q that minimize ǭ given FV . This is because Q is query-

independent which allows off-line process to find the optimal Q and also because ǭ

of ψq : U → Uψ is identical to ǭ of Q : UV → UQ.

To minimize overhead cost of converting optimal Q to determine optimal ψq

prior to each querying process, we use the same metric for dQ and dψ (dQ = dψ)

and design Q to be analogous to ψq (e.g., Fig. 2.9 (c)) as follow:

Q(v) = (Q1(v1), Q2(v2), · · · , QD(vD)), v ∈ UV (2.29)

where each Qj is similarly a non-uniform scalar quantization function which is

applied independently on j-th dimension vj of UV space. Thus, similarly to ψq,

Q partitions the viewpoint space UV into a set of hyper-rectangular cells UQ (e.g.,
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Fig. 2.7 (d)), where each cell is represented with a vector of mapping symbols Q(v)

and we denote it by z := Q(v) ∈ UQ. Once the optimal Q that minimizes ǭ and

satisfies above design conditions is obtained ‘off-line’, given a query q prior to each

querying process, optimal ψq can be obtained by the following simple equation:

ψqj(rj) = Qj(vj) = Qj(dj(qj, rj)), ∀j (2.30)

For example, let a scalar quantizer Qj divides a j-th dimension into a set of intervals

S = {si; si = [θi, θi+1)} covering all possible values with a set of thresholds {θi}i
and assigns a mapping symbol mi to each interval si.

Qj(vj) =
∑

i

mi1si
(vj) (2.31)

If d is ℓp norm for instance, a scalar quantizer ψqj is determined according to (2.30)

such that

ψqj(rj) =
∑

i

mi1σi
(rj) (2.32)

with a set of ψqj quantization thresholds {qj ± p
√
θi}i and a set of its corresponding

intervals

Σ = {σi;σi = [qj + p
√
θi, qj + p

√
θi+1) ∪ [qj − p

√
θi+1, qj − p

√
θi)}

In other words, first find a set of thresholds {θi}i for the optimal Qj and store

{ p
√
θi}i off-line, and then for every new given query q, a new set of thresholds

{qj ± p
√
θi}i for ψqj needs to be updated on the fly. Note that this computation for

updating ψqj is done only once given a query q before computing any dobj for all

data points to identify q’s NN, which only costs negligible overhead.
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2.4.3.5 Q-space vs. target space

Even though query adaptive quantization based NNS metric is our target metric

dobj which maps original metric space to target space (Uψ, dψ),

dobj(q, r) = dψ(ψq(r))

similarly, one can also use query independent quantization based NNS metric which

maps original metric space to Q-space.

dobj2(q, r) = dQ(Q(|q − r|))

Both have their pros and cons. Since the former metric dobj uses threshold

values that change depending on query data, there is more restriction in optimiz-

ing hardware circuit complexity. However, the latter metric dobj2 use always fixed

thresholds, therefore, hardware circuit complexity can be even further simplified

thus it is more appropriate with dedicated chip. However absolute difference be-

tween query and objects need to be computed a prior.

Fig. 2.9 illustrates the metric computation hardware architecture of Minkowski

metric. Fig. 2.9 (a) represents the original Minkowski metric d, Fig. 2.9 (b) repre-

sents our target metric dA where query adaptive quantizer ψq is used. Fig. 2.9 (c)

shows equivalent metric of Fig. 2.9 (b) but using global quantizer Qj. Fig. 2.9 (b)

and (c) shows that 8 or 16 bit-depth databus interconnect is quantized into 1 bit.

Although this is just an example, almost all of our simulations are based on 1 bit

quantizer (per dimension) which we find it sufficient.
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Figure 2.9: Example illustration of hardware architectures of three metric compu-
tations. (a) Minkowski metric d(q, r) = (

∑
j |qj − rj|p)1/p is shown as an example

original metric d. (b) shows proposed QNNM metric dobj(q, r) = dψ(ψq(r)) which
approximates d. ψqj is a query-dependent non-uniform scalar quantizer which com-
presses input to a fewer bits (typically 8 or 16 bits into 1-bit), replacing |qj − rj|p
computation in (a). Blank circle represents an operator determined by dψ, e.g.,
it can be an adder if dψ(x) =

∑
xj, comparator if dψ(x) = max(xj), or logical

operator OR if dψ(x) = ∨xj. (c) is the equivalent metric of dobj of (b), represented
with query-independent quantizer Qj. Qj minimizing ǭ (2.17) is found via off-line
optimization and used to determine ψqj which equivalently minimizes average NNS
error ǭ.
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Figure 2.10: Trade-off between the complexity (cost) and NNS accuracy degrada-
tion (ǭ), e.g., the coarser quantization causes higher NNS distortion ǭ with lower
complexity cost while the finer quantization leads to lower ǭ at the expense of higher
cost. Different applications (i.e., different FV ) result in different trade-off curves.
The right-hand side of the curve represents the region of inefficient choices of Q and
dQ while the left side represents infeasible choices of Q and dQ design. Our goal is
to design Q and dQ given FV and ǭtol such that its resulting complexity and ǭ pair
correspond to the red points on the curves, achieving the lowest complexity with
ǭ ≤ ǭtol. (Left) QNNM performance: the trade-off curve between error in accuracy
(∆PSNR in dB) and complexity. QNNM is applied to the vector quantization
process for image coding & motion estimation process for video coding applica-
tions. (Right) With the data set R ∼ ND(0,Σ) with ρij = 0.5, σ2 = 100 for all i, j,
this compares the performance of three approximate NNS methods: bit truncation
(BT), dimension subsample (DS), and QNNM.

In Section 2.5, we develop and describe the optimal quantizer design which

minimizes ǭ given a fixed complexity budget based on all design conditions described

above.

2.5 Finding the Optimal Q

The complexity reduction comes at the expense of some performance loss due to

the quantization process. As expected, there is a trade-off between complexity

and performance such that coarser quantization will lead to further complexity
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reductions, while increasing degradation in search performance. To maximize the

performance for a fixed number of quantization levels or steps, it is critical to find

the optimal quantizer.

As shown in Section 2.4, the problem of finding the optimal target metric space

(Uψ, dψ) for the proposed dobj can be replaced by the problem of finding a quantized

viewpoint space (UQ, dQ) which minimizes ǭ and complexity of its mapping function

Q and dQ metric. The design of (UQ, dQ) consists of determining dQ metric and a

quantization based mapping functionQ (2.29). Q is a set of scalar quantizers {Qj}j,

for each Qj of which includes three sets of parameters; the number of quantization

levels bj, a set of quantization thresholds {θji}i, and a set of mapping symbols

{mji}i. {bj} and {θji} determines how to partition a viewpoint space (UV , dV ) into

a set of hyper-rectangulars while {mji}i and dQ determines the ranking of each

hyper-rectangular in terms of the probability of having NN.

The whole design of dQ, {bj}, {θji}, and {mji} should be chosen so as to max-

imize NNS performance in both search accuracy and computational complexity.

Finding such optimal Q-space design depends highly on the input data distribu-

tion FV (2.27) and the degree of NNS error tolerance ǭtol of a given application.

For example, in some applications (e.g., motion estimation for video coding in Sec-

tion 2.7.1), coarsest 1-bit quantizer Qj and a simple dQ metric with logic operators

OR (dQ(z) = ∨zj) still results in negligible performance degradation while some

other applications (e.g., vector quantization for image coding in Section 2.7.2) could

require 2-bit quantizer Qj with dQ(z) =
∑
zj to achieve similar performance.

Note that since NNS error tolerance level ǭtol is application-specific, those ap-

plications with very small ǭtol may not benefit much from our proposed QNNM

technique. A user can estimate the performance of QNNM when used within a
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given application of interest to decide whether to use QNNM , without necessar-

ily having to find the optimal Q and dQ functions first (refer to Section 2.6.2 on

how). Once a user decide to use QNNM , one could proceed to find the optimal Q

function.

In this section, we present an optimization algorithm that finds the optimal

mapping function Q∗ and metric d∗Q which minimize both average NNS accuracy

degradation ǭ and computational complexity cost of dobj = dQ(Q(v))(2.28).

(
Q∗, d∗Q

)
= argmin

(Q,dQ)
[ǭ, cost]T (2.33)

Simultaneously optimizing two conflicting objective functions, fobj1 = ǭ and fobj2 =

cost produces a set of Pareto optimal solutions as shown in Fig. 2.10 trade-off

curves between ǭ and cost. Our design goal is to find a Pareto optimal solution

whose resulting ǭ is within an acceptable range (ǭ ≤ ǭtol) while cost is minimized.

Optimization process in general consists of two phases: the search process (i.e.,

generating candidate solutions) and the evaluation process (evaluating solutions,

i.e., fobj computation). Note that in the context of this optimization, we refer to

the ‘search’ for the optimal set of quantizer design parameters, which should not

be confused with the search performed in NNS itself.

This problem (2.33) is a stochastic optimization (SO) problem 1 [49] since both

input and output of a system/objective function (fobj1 = ǭ in particular) involve

stochastic behavior and it aims to achieve optimality on average. In other words,

evaluating fobj1 can be only estimated, typically through Monte-Carlo simulation

approach (e.g., training data samples are simulated to evaluate the average NNS

1This contrasts with the conventional deterministic optimization where the values of the objec-
tive function are assumed to be exact. While SO algorithm is also often referred to as randomized
search methods which incorporate randomness in search algorithm, SO algorithm in this thesis
refers to optimization methods for stochastic objective functions.
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performance fobj1 = ǭ). Thus, unlike conventional deterministic optimization prob-

lems, reliable evaluation of stochastic fobj alone imposes serious computational bur-

den. Moreover, most of useful assumptions/properties (smoothness, continuity, dif-

ferentiability, linearity, convexity, unimodality etc.) for designing efficient search

process tend to be unavailable, which consequently leads to extra complication in

designing the search process of finding a global minimum. Furthermore, this opti-

mization problem often involves searching high dimensional solution space/search

space 2. These three characteristics (expensive evaluation process, difficult search-

ing process, and large search space) make this stochastic optimization problem

extremely computationally expensive.

Therefore our goal is to design a highly specialized optimization algorithm for

our problem to minimize such computational cost as much as possible.

2.5.1 Proposed Stochastic Optimization Algorithm to Find

the Optimal Q

Proposed algorithm reduces complexity by formulating fobj1 such that a large por-

tion of fobj1 computations can be shared and computed only once as a preprocessing

step for a certain set of (quantizer) solution points, instead of computing fobj1 for

each solution point independently. This leads to the total optimization complexity

to change from O(TNs) to O(T + c1 + c2Ns), where T is the size of training data

which needs to be sufficiently large, NS is the total number of candidate solutions

evaluated during the search process. c1 and c2 are preprocessing cost and fobj1 eval-

uation cost, respectively. This requires a joint design of the search and evaluation

processes.

2Note that search space of (2.33) should not be confused with metric space U or Uψ(2.14) of
NNS problem. Each dimension of the search space of (2.33) represents θji, mji, or dQ.
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2.5.1.1 Modeling input data set distribution

We first need to model input data set of interest R and its corresponding view-

point space distribution fV . If we denote the distribution of data set R by fR, fV

can be derived from autocorrelation of fR or cross-correlation of fR and fq if the

distribution of queries fq is different from data set distribution fR.

For example, if dimensional distance dj(qj, rj) of original metric d(q, r) as in

(2.16) is the form of wj |qj − rj|p, the probability density function (pdf) of |q − r|

is (denoted by f|q−r|) as:

f|q−r|(a) =
∑

|x|=a

(fR ⋆ fR)(x) q, r ∼ fR, a ≥ 0 (2.34)

F|q−r|(a) =

∫ |a|

−|a|

(fR ⋆ fR)dx q, r ∼ fR, a ≥ 0 (2.35)

f|q−r|(a) =
∑

|x|=a

(fq ⋆ fR)(x) q ∼ fq, r ∼ fR, a ≥ 0 (2.36)

F|q−r|(a) =

∫ |a|

−|a|

(fq ⋆ fR)dx q ∼ fq, r ∼ fR, a ≥ 0 (2.37)

where ⋆ is cross-correlation operator defined as

(f ⋆ g)(a) =

∫ ∞

−∞

f ∗(x)g(a + x)dx (2.38)

Then fV can be represented as

fV (a) = f|q−r|(g
−1(a)) (2.39)

FV (a) = F|q−r|(g
−1(a)) (2.40)
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where

g(x) = (w1x
p
1, w2x

p
2, · · · , wDxpD)

For example, if we model data set R with D-variate normal distribution: r,q ∼

ND (µ, Σ) with mean vector µ and covariance matrix Σ, then (q−r) ∼ ND (0, 2Σ).

If d = ℓ1 norm,

fV (a) =
2

(2π)D/2 |Σ|1/2
exp

(
−a′Σ−1a

2

)
a ≥ 0 (2.41)

If d = ℓ2 norm,

fV (a) =
2

(2π)D/2 |Σ|1/2
exp

(
−a′Σ−11

2

)
a ≥ 0 (2.42)

2.5.1.2 Objective function formulation

Given FV input distribution, our objective function fobj1 = ǭ can be formulated

using FV . fobj1 = ǭ is an NSS error measure as defined in (2.17), consists of two

terms, d(q, r∗(q)) and d(q, r∗ψ(q)). Finding a NNS algorithm which minimizes ǭ

is the same as finding one that minimizes d(q, r∗ψ(q)) since E[d(q, r∗(q))] term is

constant given FV or dataset R while E[d(q, r∗ψ(q))] changes with Q parameters.

Therefore, fobj1 can be reduced to:

fobj1 = E[d(q, r∗ψ(q))] =
∑

a

µQ(a) fminQ (a) (2.43)

where fminQ is the pdf of Fmin
Q (a), and

Fmin
Q (a) = Pr(dobj(q, r

∗
ψ) ≤ a), (2.44)
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µQ(a) = E(d(q, r)|dobj(q, r) = a,∀q, r ∈ U). (2.45)

To compute µQ and Fmin
Q , we first assign three parameters to each cell cz of the set

of hyper-rectangular cells defined by Q (Fig. 2.7 lower right): (i) probability mass

pz, (ii) non-normalized centroid uz, and (iii) distance dz =
∑
zj.

pz =

∫

cz

fV (v)dv (2.46)

uz =

∫

cz

< v,1 > fV (v)dv (2.47)

Then Fmin
Q and µQ(a) are computed as:

FQ(a) =
∑

dz≤a

pz (2.48)

Fmin
Q (a) = 1 − (1 − FQ(a))N (2.49)

µQ(a) =

∑
dz=a

uz∑
dz=a

pz
(2.50)

2.5.1.3 Preprocessing based objective function evaluation

Computing fobj1 is simple once pz, uz are known for all cells cz, but obtaining pz,

uz in the first place can be complex. However, if the following two data sets FV

and HV are available or computed in a pre-processing stage:

FV (x) = Pr(v ≤ x) (2.51)

HV (x) =
∑

v≤x

< v,1 > (2.52)

then Pz =
∑

z′≤z
pz′ and Uz =

∑
z′≤z

uz′ can be easily computed for each cell cz, so
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Figure 2.11: (a) A simple example of 2D viewpoint space partitioned by Q=
{θ1, θ2, θ3}. Pz, Uz values at all six gray points need to be retrieved from FV , HV

to compute fobj. (b) 3D search space of Q. x1, x2, x3 are 3 arbitrarily chosen
candidate solutions for Q. (c) shows the preprocessed structures (FV , HV having
Pz, Uz values at all points in (c)) to compute fobj for x1, x2, x3. However, fobj1 for
all gray points in (b) can be computed with the same FV , HV in (c).

that all necessary pz, uz values can be obtained with only c2 = O(DNC) cost, where

D is dimension and NC is total number of cells generated by Q. NC =
∏

j(bj + 1),

where bj denotes the number of thresholds assigned by Q on j-dimension of UV .

However, the computational (c1) and storage complexity of FV and HV increase

exponentially (e.g., O(DWD) assuming all dimensions are represented with the

same resolution W ). To reduce such complexity, while it is very important to

minimize the dimensionality D if possible 3, it is also important to note that only a

small fraction of FV and HV data relating to the candidate solutions on the search

path is used during the optimization process.

We next propose a search algorithm that maximally reuses FV and HV data

and show how FV and HV can be updated in conjunction with the search process

in order to reduce overall storage and computation.

3D is reducible depending on the input distribution FV if certain dimensions are independent or
interchangeable/commutative. In fact this is usually the case for real-world applications (e.g., for
video coding, all pixels tend to be heavily correlated yet interchangeable statistical characteristics
thus common 16 × 16 processing unit image block (D=256) can be reduced to D=1).
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2.5.1.4 Preprocessing and search process co-design

Given k arbitrary solution points on the search space, preprocessing cost Sk to build

FV and HV containing only necessary data to compute fobj1 of those k points is

the same as that for computing fobj1 of K different solution points G which form a

grid, where:

K =
∏

j




(k + 1)bj

bj



 Sk =
∏

j

(kbj + 1) (2.53)

In other words, if every adjacent pair of solution points in G can be connected

by line of equal size ∆, all such regularly spaced lines form a DS-dimensional

grid in DS-dimensional search space. If so, evaluation of solution points in G can

maximally reuse data from FV and HV and thus lead to minimal preprocessing cost

in both space and time complexity.

Fig. 2.11 provides a simple example which illustrates that the minimum required

preprocessing cost to compute fobj1 for a set of three arbitrary solution points (e.g.,

x1, x2, x3 in Fig. 2.11 (b), k=3) is the same as that for a set of 112 solution points

(e.g., all gray points in Fig. 2.11 (b), K = 112) which forms a grid structure.

Based on the above observation and the unimodality of fobj1 function over the

search space 4, we describe a grid based iterative search algorithm framework with

guaranteed convergence to the optimal solution 5.

The basic iteration of this algorithm consists of (i) generating a grid Gi which

equivalently indicates a set of solution points which correspond to all grid points,

(ii) building minimum required preprocessed structures FV i and HV i for computing

4We represent each quantization parameter not with the actual threshold value θ but with the
marginal cumulative probability FV (θ), such that the search space becomes [0, 1]D.This is not
only for ease of fobj computation but also helps increasing slope, reducing neutrality, ruggedness,
or discontinuity of fobj function, leading to higher search speed-up and making fobj unimodal.
This also provides further indication regarding to the sensitivity to performance.

5its convergence result is similar to those in [51], [31]
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Figure 2.12: An example illustration of grid-based optimization algorithm with
ω=2, γ=3 in 2D search space. It searches for the optimal Q∗ (quantization param-
eters) for QNNM (2.15). It shows the iterations of either moving or 1/γ-scaling a
grid G of size ω × ω. Note that this should not be confused with ME search or
NNS search algorithms.

fobj of all grid points on Gi, (iii) computing a set of fobj1 and finding its minimizer

Q∗
i of Gi, and (iv) generating a next grid Gi+1 by either moving or scaling Gi based

on Q∗
i information.

We model a grid G on the search space with its center/location C, grid spacing

∆, and size parameter ω, assuming it has equal spacing and size for all dimensions,

such that the total number of solution points in G is to be ωDS .

With initialization of grid-size parameter ω, grid scaling rate γ, tolerance for

convergence ∆tol > 0, grid-spacing parameter ∆0, and initial grid G0, for each

iteration i = 0, 1, ..

1. Preprocess: construct FV i and HV i to evaluate Gi

2. Search: seek a minimizer Q∗
i among the points in Gi

3. Update: generate a new grid Gi+1 based on Q∗
i

◦ Move the center of grid : Ci+1 = Q∗
i

◦ Grid space update

• Moving grid : if Q∗
i is on the boundary of grid Gi:
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∆i+1 = ∆i

• Scaling grid : if Q∗
i is not on the boundary of grid Gi:

∆i+1 = ∆i/γ

◦ Terminate: if ∆i+1 < ∆tol

◦ Generate Gi+1: with parameters ω, ∆i+1, and Ci+1

Given this algorithm modeling, our goal is to find two integer parameter values, w

and γ, minimizing overall computational complexity.

Overall optimization complexity can be quantified as 6:

O(T + Lc1 + Lc2Ns), (2.54)

c1 = O(DωB), (2.55)

c2 = O(DS1), (2.56)

where c1 is both time and space complexity of phase-1 search. L denotes the total

number of iterations. Note that c2 is fixed regardless of ω and γ. Ns depends on

phase-2 grid search algorithm which is described below, but roughly varies from

O(ωD) to O(ωcD).

If we assume to continue iteration until it gets as fine as resolution W , total

iteration number is L ≈ γ
ω

logγ
W
w

. Therefore, γ ≥ 1 minimizing γ logγW and min-

imum possible integer ω ≥ 2 minimizes overall complexity in both time and space:

That is, γ = 3 and ω = 2. (Fig. 2.12)

6Overall complexity can be further reduced from O(L(T + c1 + c2Ns)) to O(T + Lc1 + Lc2Ns)
by splitting and deleting portions of training data set at each iteration such that only relevant
data is examined for each update.
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Phase-2 Grid Search Algorithm

Given grid points with general k > 1 and ∆, the general grid search algorithm can

be represented in this form,

Qn+1 = ΠΘ(Qn − an∇̂n(Qn))

where step size an, ΠΘ a projection of points outside Θ back into Θ, search direction

∇̂n, and iteration n. Note that in determining an and ∇̂n for this problem, typical

stochastic or gradient approximation methods are not useful in general. Due to

relatively large ∆, it is unreliable to approximate gradient and often k is small

enough to perform line search. Thus an = ∆. In determining ∇̂n, especially as

dimensionality increase, stochastic choice of ∇̂n tend to be close to orthogonal to

true gradient direction which leads to being slow in convergence. Furthermore,

randomized choice does not use given information most efficiently (e.g., cycling,

visiting similar wrong solutions ). Therefore efficient direct search is more suitable.

2.6 Complexity-Performance Analysis

2.6.1 Complexity Analysis

Comparing two metric computations: the original/benchmark Fig. 2.9 (a) and the

proposed Fig. 2.9 (c), the proposed approach leads to complexity reductions in i)

the summation process after quantization (upper part of the dashed quantization

line in Fig. 2.13) and ii) a set of dimension-distance computation processes prior to

quantization (lower part of the line in Fig. 2.13).

Fig. 2.14 and Table. 2.2 provide useful insight to understand the computational

complexity of the search at the circuit level [7]. Fig. 2.14 illustrates the structure
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(a)

(b)

avg. # of logic 
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avg. # of logic 
transitions/add

# of gates
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adder size (bits)

1323543218Conditional Sum

711344161Carry Select

437220108Carry Skip

405202100Carry Lookahead

366 18290Ripple Carry

643216

adder size (bits)Adder Type

avg. # of logic 
transitions pipelined# of gates

10051
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9792
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multiplier size (bits)Multiplier Type

avg. # of logic 
transitions pipelined# of gates

10051

10417

9918

9792
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multiplier size (bits)
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195483874573Wallace
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990627191548Array

32168

multiplier size (bits)Multiplier Type

Table 2.2: The average number of transitions (a measure of dynamic power con-
sumption) and the number of gates (a measure of circuit size, static power con-
sumption) for various types of adders (a) and multipliers (b) for different input bit
sizes. [7]

of arithmetic circuits for a representative N bit-depth adder Fig. 2.14 (a) and 4

bit-depth multiplier Fig. 2.14 (b), the size of which increases significantly with the

input bit size. A block FA (full adder) is a single bit adder and a typical N bit

adder consists of N full adders linked together by the carry inputs and outputs.

Typical N bit multiplier consists of N by N array of cells, each of which consists

of full adder and AND gate. Table. 2.2 (b) and (d) essentially demonstrate that

the computational complexity, circuit size, static and dynamic power consumption,

computation delays of most basic arithmetic elements including adder or multiplier

are all directly influenced by, and increase polynomially with, the input bit size.

Therefore quantization applied to dimension-distance terms in each dimension,

as shown in Fig. 2.13, leads to significant simplification of the summation process

(binary adder tree). Typically 8, 16, or 32 bit-depth input is quantized into either
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0,1, or 2 bits depending on the input distribution on each dimension (non-uniform

bit allocation over dimensions). For example, for motion estimation in video coding,

very coarse quantization (e.g., 1 bit per pixel) has been shown to be sufficient

to achieve video coding performance nearly unchanged (average 0.01dB loss. See

Section 2.7.1).

Fig. 2.9 (b) and Fig. 2.9 (c) are equivalent metric. As our target metric imple-

mentation structure Fig. 2.9 (b) shows, entire set of dimension-distance computa-

tions {dj(qj, rj)}Dj=1 and its corresponding circuits can be eliminated.

Comparing the original/benchmark metric computation

d(q, r) =
D∑

j=1

dj(qj, rj)

and our proposed metric computation architecture

d(q, r) =
D∑

j=1

ψqj(rj),

complexity savings depend on how complex the original metric is and how much

complexity budget the user constrains to design the optimal ψqj (e.g., total number

of quantization bins).

Fig. 2.15 illustrates the complexity increase as a function of the input bit size,

dimensionality, and order p of metric (if p-norm metric is considered) for both

conventional and proposed metric computations. We measure complexity in units

of number of full-adder operations (basic building blocks of arithmetic logic cir-

cuits), under the assumption that n-bit addition, subtraction, and absolute value

operations have the same complexity and that a square operation has equivalent
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Figure 2.15: Complexity behavior comparison of conventional l1 and l2 norm metric
computation vs. proposed distance quantization based lp norm metric computation
with respect to the input bit size and dimensionality.

complexity to that of an n2-bit addition. For motion estimation example, the di-

mensionality represents the number of pixels per matching block while input bit

size represents pixel bit-depth. Note that the complexity of the proposed method

remains constant over different input bit sizes and over different original metrics,

while it slowly increases with dimensionality as compared to the conventional metric

computation.

This approach obviously imposes extra complexity for quantization process.

However, this quantization implementation can be integrated with the following

adder block such that its overhead cost is kept negligible as compared to the com-

plexity reduction achieved elsewhere.

2.6.2 Performance Analysis

QNNM performance is optimized and evaluated not based on worst-case error mea-

sure but on average-case error measure. Therefore, its performance is input data

dependent and application specific. In this section, we provide an analysis and
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identify the statistical characteristics of promising application, as well as simple

technique to estimate QNNM performance for any specific application of interest

without having to perform any optimization process.

Note that even if NN approximation error ǭ is the same, its system level perfor-

mance as well as application specific error tolerance level ǭtol may vary from applica-

tion to application. Therefore, it is important to estimate how much ‘system-level’

performance degradation QNNM could introduce as well as complexity saving.

To do this, one could first analyze their data set R in terms of its dimensionality,

average correlation, original search metric, and average distance to exact NN. Once

obtained, refer to Fig. 2.16 and Fig. 2.17 to roughly estimate QNNM error ǭ. Then

by introducing ǭ error to their NNS system and observing its impact on the system

level result, one could use such data to decide whether to adopt QNNM method to

one’s application of interest or not.

In Fig. 2.16 and Fig. 2.17, data set is modeled by multivariate normal distribu-

tion ND(µ,±). There are three significant statistical characteristics that influence

QNNM performance. These can be shown both analytically and numerically as in

Fig. 2.16 and Fig. 2.17.

• Any linear transform of data set would not change QNNM performance in

terms of ǭ. More specifically any scaling of Σ or any change of µ would not

affect ǭ of QNNM.

• QNNM ǭ decays exponentially as dimensionality increases. 7

7Note that dimensionality D here refers to the dimensionality of viewpoint space and it should
not be confused with dimensionality of optimization search space DS . viewpoint space dimension-
ality is the same as dimensionality of metric space where NN is searched. dimensionality of opti-
mization search space, as we discussed earlier, represents total number of parameters/thresholds
used to quantize viewpoint space.
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• The more correlated (positive or negative or in any direction) the data set

distribution is, the less QNNM ǭ becomes. 8

Fig. 2.16 and Fig. 2.17 show simulated QNNM performance for four specific

data set model settings (multivariate normal distribution with identical marginal

distribution and covariance for all dimensions with four different correlation coef-

ficient 0, 0.5, 0.8, 0.95) with various dimensionality with respect to two different

original metrics ℓ1 and ℓ2. Straight line (no metric) represents average distance per

dimension from a query to any randomly chosen object, which can be considered

as the worst bound of NNS performance. Blue curves (average distance/D to exact

NN) represents the lower bound of NNS performance. Note that average distance to

exact NN per dimension is not constant but increases as dimensionality increases.

This is due to the weak law of large numbers, where the variance of the distance

converges to 0 in probability as dimensionality is sufficiently large. Thus, NNS loses

its meaning since all objects converge to the same distance from the query point.

While this simulation shows the case with identical correlation for all dimensions

and it may not be the case for the actual data set of interest, user can refer to zero

correlation (uncorrelation) performance as the worst performance bound of QNNM

performance. One can compute average correlation coefficient for all dimensions

and can make a rough estimate between curves provided in Fig. 2.16 and Fig. 2.17

and apply estimated ǭ error to the system of interest 9 and determine if the end

result is acceptable or not.

8Two subspace divided by a hyper-surface of original metric are different from two subspaces
divided by a hyperplane of quantization threshold. Common regions of two pairs of split subspaces
do not cause error but the remaining regions introduce error. if data distribution is correlated,
the ratio of data falling into these error introducing regions is reduced. Therefore, the stronger
correlation is in any direction, the smaller ǭ becomes.

9instead of searching exact NN, let the system choose the object having distance =(1 + ǭ) ∗
d(NN,q)
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Figure 2.16: QNNM performance when NNS data set R is modeled with multivari-
ate normal distribution R ∼ ND(0,Σ) with different dimensions D and covariance
matrices Σ which have identical marginal variances σ2

j ∀j and covariance ρij ∀i, j
for all dimensions. Straight blue line (no metric) represents average distance per
dimension from a query to any randomly chosen object, which can be considered
as the worst bound of NNS performance. Blue curves (average distance/D to exact
NN) represents the lower bound of NNS performance (original metric). (a) ℓ1 as
original metric. R ∼ ND(0,Σ) with σ2=100 ∀j and ρij = 0, 0.5, 0.8, 0.95, ∀i, j.
(b) The same setting as (a) except σ2=400 ∀j. (c) The same setting as (a) except
original metric to be ℓ2 (Euclidean distance). (a) and (b) show the degree of dis-
persion of data set of interest does not affect QNNM performance in terms of NN
approximation error ǭ. However, the stronger the correlation ρ and the higher the
dimension, it is more advantageous for QNNM.
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Figure 2.17: Different representation of Fig. 2.16 representing QNNM performance
with respect to NNS approximation error ǭ over different dimensionality and covari-
ance. All results are under the same data set model settings as those of Fig. 2.16
with different original/benchmark metric (Left) ℓ1 and (Right) ℓ2.

2.7 Example Applications

2.7.1 Motion Estimation for Video Compression

In this section, our proposed approach and its analytical study are applied to motion

estimation (ME) process used in video coding system as an example application.

Experimental results are provided to validate our study and to empirically evaluate

the performance of our proposed approach.

The ME process is one of good example applications for the following rea-

sons: i) its computational burden is very heavy, ii) it is inherently tolerant with

search approximation error, iii) dimensions/pixels of data set is highly correlated

(Fig. 2.19 (a) image blocks with highly correlated adjacent pixels, and Fig. 2.19

(b) consequently highly correlated viewpoint distance distribution FV ), iv) it holds

homogeneity of viewpoint property, which consequently means NN distribution is

concentrated in a very narrow range (Fig. 2.19 (c)), v) ME is typically performed

on high dimensional data set (from 4×4 to 16×16 block as a vector of dimension
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Figure 2.18: Performance comparison of bit truncation methods (BT), dimensional
subsampling (DS), and proposed QNNM methods for three different metrics: (a) ℓ1
norm, (b) ℓ2 norm, and (c) weighted ℓ2 norm distance metric. X-axis represents how
much metric complexity is reduced in percentage while y-axis represents average
performance degradation ǭ in finding NN. The input distribution of data set R ∼
ND(0,Σ) with σ2

j = 100, ρij = 0.5 ∀i, j
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Figure 2.19: 2D statistical distribution of motion estimation data. (a) shows dis-
tribution of candidate blocks (in this example, two adjacent pixels) for motion
searching, i.e., F in metric space. (b) represents distribution of difference/distance
between a query block and candidate blocks, i.e., FV in viewpoint space. (c) shows
distribution of difference/distance between a query block and its best matching
block (NN), i.e., FNN in viewpoint space.

16 to 256), and vi) Because F and FV are identically distributed for each dimen-

sion/pixel (Fig. 2.19 (a) (b)), the optimization process of finding the optimal Q

(discussed previously in Section 2.5) can be significantly simplified.

In Fig. 2.20, 9 CIF (352×288) sequences were tested for simulation using a

H.264 /MPEG-4 AVC (JM17.1) encoder. Three different ME settings from simple

to complex were tested: (i) 16×16 block (D=256) with full-pel accuracy forward

prediction only (IPPP), (ii) same as i) but allows bi-directional prediction (IBBP),

and (iii) variable block sizes, quarter-pel accuracy, bi-directional prediction setting.

Two search metrics: ℓ1 norm (sum of absolute difference) and proposed 1-bit and

2-bit QNNM were tested. With ℓ1 norm, full search (with the search window of

±16) is used for motion estimation while with QNNM metric, both full search and

a representative fast search algorithm, EPZS were tested. 1-bit QNNM with full

search on average results in 0.02dB, 0.06dB, 0.09dB performance loss for ME set-

tings (i),(ii), and (iii), respectively. Similarly 1-bit QNNM with EPZS search results

in on average -0.01dB, 0.02dB, 0.02dB performance loss for ME settings (i),(ii), and

(iii), respectively. Fig. 2.21 shows for three different ME settings described above
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Figure 2.20: Rate-distortion curves for 9 different CIF test sequences. They com-
pare ME performance with original metric (SAD) and with proposed 1-bit QNNM
under three different ME settings and two different search algorithms. ∆dB shown
represents average performance (PSNR) difference between original metric and 1-bit
QNNM.
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and for two different search algorithms, how QNNM performance in ME changes

with the average number of quantization level per pixel used. The reason QNNM

with EPZS in Fig. 2.21 (Right) may perform better than original metric (i.e., neg-

ative performance loss when the curve goes below zero) is because original metric

SAD itself is an approximation of optimal metric (transform + quantization +

entropy coding) for optimal motion vector search.

Both Fig. 2.20 and Fig. 2.21 show QNNM performance with fast search algo-

rithm is as good as or better than QNNM with full search method. Two different

search algorithm can be seen as different data set in terms of both distribution and

the number of objects, which consequently means different viewpoint distribution

as well. However, the reason QNNM works well with very different search algo-

rithms is that distance distributions of NN for both search algorithms are relatively

similar. Both Fig. 2.20 and Fig. 2.21 also numerically support our QNNM per-

formance analysis of dimensionality that smaller dimensionality (ME with variable

block size use partitioned image block as small as up to ×4 block size) introduces

higher performance loss.

Fig. 2.25 illustrates the trade-offs between complexity and performance for pro-

posed and three different representative scenarios. Other sequences tested showed

similar results. The proposed approach provides a better trade-off and can also

be used together with most of other existing algorithms to further improve the

complexity reduction.

Fig. 2.22 (Left) compares our cost function ǭ with the expected performance

error collected from numerically simulated experiments for different input distribu-

tion settings fy. As the number of experiments increases, expected error converges

to our cost function, confirming the accuracy of our ǭ formulation. Fig. 2.22 (Right)
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Figure 2.21: Average QNNM performance of 9 different test sequences. QNNM
is performed with full search (left) and with a representative fast search method,
EPZS (right). Numbers in parentheses shown in graph legend represent the number
of metric computation performed per a query macroblock. Three different ME set-
tings from simple to complex were tested: (i) 16×16 block (D = 256) with forward
prediction only and full-pel, (ii) same as i) but allows bi-directional prediction,
and (iii) variable block sizes, quarter-pel accuracy, bi-directional prediction setting.
With 1-bit quantizer per dimension/pixel used with full search, on average 0.02dB,
0.06dB, 0.09dB performance loss incurred for ME settings (i), (ii), and (iii), re-
spectively. Similarly 1-bit quantizer used with EPZS results in average -0.01dB,
0.02dB, 0.02dB performance loss for ME settings (i), (ii), and (iii), respectively.
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Figure 2.22: (Left) comparison of our objective function fobj1 simulated numerically
with different input distribution settings. (Right) compares the objective function
fobj1 based on the collected ME data (dashed lines) with simulated experiments
excluding intra and skip modes (solid lines). Both used 1-bit quantization thus a
single threshold (x-axis).
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Figure 2.23: Illustration of performance degradation in coding efficiency with rela-
tion to the 1-bit quantizer threshold value for various input sequences. Represen-
tatively different test sequences (low/high motion, texture) were selected to cover
a wide range of variations in input sequences. Result shows very low sensitivity
to input sequence variation in terms of the optimal threshold value. This confirms
high homogeneity of viewpoints towards nearest-neighbors assumption which our
proposed algorithm is based on. The range of threshold is from 0 to 255 while only
0 to 120 range is shown.

compares our cost function based on the collected ME data with simulated experi-

ments.

Fig. 2.23 provides some insight about the sensitivity of optimal threshold to in-

put variation. Despite large variation of the input source characteristics, dimension-

distances where quantization is applied exhibit more consistent statistical behavior,

leading to overall robustness in our quantization method.

2.7.2 Vector Quantization for Data Compression

A vector quantizer encodes a multidimensional vector space into a finite set of

values from a discrete subspace of lower dimension. A lower-space vector requires

less storage space, so vector quantization (VQ) is often used for lossy compression

of data such as image, video, audio or for speech recognition (statistical pattern

recognition).
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Figure 2.24: Comparisons of video compression performance in rate distortion sense
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plexity reduction.
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Figure 2.25: Comparisons of Complexity-Performance trade-offs of four different
scenarios: each scenario reduces i) size of a data set R, ii) dimensionality of each
data r ∈ R, iii) bit depth of each data dimension by truncating least significant bits
(equally seen as uniform quantization on each data dimension), and iv) resolution
of each dimension-distance (proposed distance quantization based metric computa-
tion. X axis represents complexity percentage to that of original full computation.
Y axis represents the RD performance loss measured in dB, thus zero represents no
performance degradation.
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VQ maps D-dimensional vectors in the vector space RD into a finite set of

vectors Y = {yi : i = 1, 2, , N}. Each vector yi is called a code vector and the set

of all the code vectors, Y , is called a codebook. A vector space RD is partitioned

into N code cells (clusters) C = {Ci : i = 1, 2, , N} of non-overlapping regions

where each region Ci called Voronoi region is associated with each codeword, yi.

Each Voronoi region Ci is defined by:

Ci = {x ∈ RD : ‖x − yi‖ ≤
∥∥x − yj

∥∥ ,∀j 6= i}

where VQ maps each input vector x ∈ Ci in code cell Ci to the code vector yi.

Fig. 2.26(a) and (b) illustrate this in the case of a simple representation of a gray-

scale image in a 2D vector space by taking in pairs the values of adjacent pixels (a)

and their corresponding set of 512 code cells/Voronoi regions (b).

VQ consists of two process: designing a codebook and performing nearest code

vector search. There are several VQ algorithms which have different codebook

design method but all perform exact nearest neighbor search. In this section, we

use well-known generalized Lloyd algorithm (GLA) to design a codebook and use

QNNM metric to search that codebook.

VQ performs NNS for each input vector (a query) to all code vectors and encodes

it with the nearest code vector. A set of all code vectors can be seen as data set

of NNS problem (Fig. 2.26(b)). Fig. 2.26(c) and (d) each illustrate 2D example of

distance distribution to all code vectors FV and distance distribution to the nearest

code vector FNN , respectively.

Fig. 2.27 and Fig. 2.28 show 1-bit and 2-bit QNNM performance when it is

applied to codebook search process of VQ based image coding. Fig. 2.27 compares

four different VQ settings: (i) using VQ codebook obtained by generalized Lloyd
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Figure 2.26: 2D statistical distribution of vector quantization data. (a) shows
distribution of the input training image data to generate a codebook. (b) shows
distribution of a set of code vectors (codebook with a size of 512) where NNS is
performed with every query vector to find its closest code vector (F in metric space).
(c) represents distribution of difference/distance from a query vector to every code
vector (FV in viewpoint space). (d) shows distribution of distance from a query
vector to its NN/best matching codeword (FNN in viewpoint space).
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Figure 2.27: Rate-distortion curves of VQ based image coding performance for
4 gray-scale 512x512 test images. Four different VQ scenarios are compared: (i)
generalized Lloyd algorithm (GLA) based VQ codebook with ℓ2 distance (stan-
dard VQ), (ii) tree-structured vector quantization (TSVQ), (iii)(iv) GLA based
VQ codebook with 1-bit QNNM and 2-bit QNNM. Performance was compared for
dimensionality 8, 16, and 32 and for different codebook sizes, 32, 64, 128, 256, 512,
1024. 2-bit QNNM outperforms TSVQ method.
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lowed for QNNM. 3 different vector sizes/dimensionality, 8, 16, and 32, were shown.
This result as well as the one of ME application both support our previously drawn
performance analysis that QNNM performance improves with dimensionality.

algorithm (GLA) and ℓ2 distance search metric (standard VQ) (ii) tree-structured

vector quantization (TSVQ), (iii) using GLA based VQ codebook with 1-bit QNNM,

and (iv) using GLA based VQ codebook with 2-bit QNNM. Performance was com-

pared for dimensionality 8, 16, and 32 and for different codebook sizes, 32, 64,

128, 256, 512, 1024. Fig. 2.28 shows how average performance of QNNM used for

codebook search changes with dimensionality and average number of quantization

levels per pixel. Both Fig. 2.27 and Fig. 2.28 numerically supports our analysis in

Section 2.6.2 showing QNNM performance improves with dimensionality.

Similarly to ME application, input distribution to VQ and distribution of code-

book F as well as distance distribution to code vectors FV , all of these share similar

statistical characteristics of high correlation and identical marginal distributions as

shown in Fig. 2.26. This allows QNNM to exploit their correlation information to
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Figure 2.29: While VQ input data is identically distributed on each dimension or
pixel, their optimal Q thresholds are not identical in all dimensions. (a) and (b)
show 2D examples of having (a) identical and (b) different q threshold for each
dimension. Difference of optimal Q thresholds of different dimensions increases
and performance improves as correlation between dimensions becomes stronger.
(c) shows how much performance of VQ based image coding (goldhill with D=16)
improves as q threshold is optimized in terms of exploiting correlation information
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improve QNNM performance further. Fig. 2.29(a) and (b) illustrate q quantizer

example using identical quantizer for all pixels (a) and different quantizer for differ-

ent pixels (b) and show why (b) partitions viewpoint space better to approximate

NN. 10 Fig. 2.29(c) show how much performance can be improved by exploiting cor-

relation information. Thin curve line of QNNM represents QNNM with identical

quantizer for all pixels while thick curve line represents optimized quantizers which

take statistical correlation information into account.

In general, QNNM performance on VQ image coding results in more significant

performance degradation than that of ME application. Therefore QNNM is not

highly recommended for VQ application. This is not because of statistical charac-

teristics of input data to VQ system but because NN search error in VQ introduce

direct impact on compression efficiency. Also VQ for image coding in general use

smaller blocks to code (e.g., 2×2 to 4×4). Unlike ME, ℓ2 metric is also not an

approximated metric of optimal complex metric (e.g., transform, quantization, en-

tropy coding combined) but it is optimal itself in generating codebook and achieving

the best compression given codebook. In other words, even if NN approximation

error ǭ is similar for both ME and VQ application, its impact on system perfor-

mance is more tolerant with ME and more severe with VQ application. However, if

QNNM is used in VQ for audio/voice data compression which often requires high

dimensionality (e.g., D > 500), NN approximation error ǭ could result in much

more tolerant result.

10threshold values shown in Fig. 2.29(a)(b) do not represent the actual optimal threshold values
which is much smaller than those of illustrated. Actual optimal threshold values are too small to
be visible on graphs.
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2.8 Conclusions and Future Work

This chapter introduced a novel methodology, called quantization based nearest-

neighbor-preserving metric approximation algorithm(QNNM ), which leads to sig-

nificant complexity reduction in search metric computation. Proposed algorithm

exploits four observations: (i) homogeneity of viewpoint property, (ii) concentration

of extreme value distribution, (iii) NN-preserving not distance-preserving criterion,

and (iv) fixed query information during search process. Based on these, QNNM ap-

proximates original/benchmark metric by applying query-dependent non-uniform

quantization directly on the dataset, which is designed to minimize the average NNS

error, while achieving significantly lower complexity, e.g., typically 1-bit quantizer.

It entails nonlinear sensitivity to distance such that finer precision is maintained

only where it is needed/important while unlikely regions to be nearest neighbors

are very coarsely represented. We show how the optimal query adaptive quantizers

minimizing NNS error can be designed off-line without prior knowledge of the query

information to avoid the on-line overhead complexity and present an efficient and

specifically tailored off-line optimization algorithm to find such optimal quantizer.

Three distinguishing characteristics of QNNM are statistical modeling of dataset,

employing quantization within a metric, and query-adaptive metric, all of which al-

low QNNM to improve performance complexity trade-off significantly and provide

robust result even when the problem involves non-predefined or largely varying data

set or metric function. With motion estimation application, QNNM with coarsest

1-bit quantizer per pixel (note that a quantizer for each pixel is different to exploit

the correlation of input distribution) results in on average 0.01dB performance loss

while reducing more than 70% to 98% metric computation cost.
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Our proposed approach can be also used for k-nearest neighbor search or or-

thogonal range search. To find the exact nearest-neighbor, this approach can be

also used as a preliminary filtering step to filter out unlikely candidates and then

refinement process can be performed within the remaining set. This method can

be performed independently but also in parallel with most of existing preprocessing

based algorithms.

More work needs to be done in terms of specific logic/circuit level design for

efficient hardware implementation of quantizer. Also it would be interesting to see

how this method can be incorporated with parallel and distributed index structures.

Furthermore, if possible, generalization of our proposed work can be developed to

deal with more general metric function such as quadratic metric and relax the

constraint we posed in this thesis on metric structure (no cross-interference among

dimensions in metric function).

The concept of our proposed approach can be extended to numerous problems

involving search process such as combinations of queries, batch queries, classifica-

tion problems, other proximity problems etc. But not limited to similarity search

problem, the potential benefit of error tolerance concept can be reaped from variety

of application areas.
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Chapter 3

Fault Effect Modeling for Nearest Neighbor

Search Problem

In this chapter, we investigate the impact of hardware faults on NNS problem with

a focus on NNS metric computation process. More specifically, we provide an ana-

lytical formulation of the impact of single and multiple stuck-at-faults within NNS

metric computation. We further present a model for estimating the system-level

performance degradation due to such faults, which can be used for the error toler-

ance based decision strategy of accepting a given faulty chip. We also show how

different faults and NN search algorithms compare in terms of error tolerance and

define the characteristics of search algorithm that lead to increased error tolerance.

Finally, we show that different hardware architectures performing the same metric

computation have different error tolerance characteristics and we present the opti-

mal hardware architecture for NNS metric computation in terms of error tolerance.

Our work could also applied to systems (e.g., classifiers, matching pursuits, vec-

tor quantization) where a selection is made among several alternatives (e.g., class

label, basis function, quantization codeword) based on which choice minimizes an

additive metric of interest.
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3.1 Introduction

Error tolerance approach raises the threshold of conventional perfect/imperfect to

acceptable/unacceptable by analyzing the system-level impacts of faults and ac-

cepting minor defects which result in slightly degraded performance within some

application specific ranges of acceptability. However, a critical factor for this ap-

proach to be successful is to be able to cost-efficiently test and accurately predict

if a defective chip will provide acceptable system-level performance without having

to perform application level testing.

In previous work, the impact of hardware defects that lead to faults at circuit

interconnects and soft errors produced by voltage scaling have been studied. Hard-

ware faults such as those arising in a typical fabrication process can potentially

lead to “hard” errors, since some of the functionality in the design is permanently

impaired, whereas “soft” errors may arise when a circuit operates at a voltage lower

than specified for the system. Previous work [17, 18] showed that certain range of

hardware defects within the motion estimation (ME) and discrete cosine transform

(DCT) with quantization subsystems lead to acceptable quality degradation. It

also proposed a novel ET based testing strategy for such systems. Other recent

work [9] showed that the ME process exhibits significant error tolerance in both

hard and soft errors and further proposed simple error models to provide insights

into what features in NNS algorithms lead to increased error tolerance.

In this chapter, based on the same ET concept, we provide an analytical for-

mulation of the impact of multiple hardware faults on NNS metric computation

process. This provides estimates of system-level performance degradation due to

such faults, which can be used in deciding whether to accept a given faulty chip.

Furthermore, based on this model, we investigate the error tolerance behavior of the
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NNS process in the presence of multiple hardware faults from both an algorithmic

and a hardware architecture point of view. In comparing different NNS algorithms

we observe that high performance, low complexity search algorithms can in fact

more error tolerant than other methods. As an example, in our experiments, en-

hanced predictive zonal search (EPZS) [14] algorithm for motion estimation process

exhibits minimum degradation with respect to full search (FS) in the fault-free case

(e.g., 0.01dB loss) but can perform significantly better in the presence of faults (e.g.,

up to 2.5dB gain compared to a faulty FS in some cases). When comparing different

hardware architectures to perform the same metric computation, we also observe

significant variations in error tolerance. We show that the optimal hardware ar-

chitecture for NNS metric computation in terms of error tolerance is a perfectly

balanced binary tree structure, which is also effective in terms of enabling parallel

computation. Our simulations with motion estimation (ME) for video coding ap-

plication show that, if the optimal structure is used, the expected error due to a

fault can be reduced by up to 95%, as compared to other architectures, and that

more than 99.2% of fault locations within metric computation circuits result in less

than 0.01dB performance degradation.

Most previous research has relied on the single stuck-at (SA) fault assumption,

which has been well-studied due to its simplicity and high fault coverage and has

worked fairly well in practice. However, with decreasing feature sizes and increas-

ingly aggressive design styles, single SA fault has become a rather restrictive model

since it allows the defect to influence only one net, while defects in modern devices

tend to cluster and affect multiple lines in the failing chip. Moreover, recent ex-

periments [27] confirm that more than 40% of defects found in failing chips cannot

be diagnosed using the single SA fault model. Multiple SA fault model on the

other hand covers a greater percentage of physical defects, and can also be used
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Figure 3.1: Simple illustration of single stuck at fault model.

to model defects of certain different fault types such as multiple bridging faults or

multiple transition faults. However, the multiple SA fault case has not been studied

extensively due to the issues of complexity and functional error inter-dependency

characteristics. In this chapter, we present an analytical model of the system-level

fault effect for any arbitrary multiple SA faults in a metric computation circuit

and study error tolerance properties of the NNS process at both algorithmic and

hardware architecture level based on multiple SA fault assumption.

The rest of this chapter is organized as follows. In Section 3.2, we begin with

a brief description of several hardware architecture for metric computation pro-

cess and SA fault model. In Section 3.3, we discuss appropriate measures for the

impact of faulty hardware and provide simulation results using ME application.

In Section 3.4, we formulate multiple SA fault effect on both metric computation

level and matching process or search level. In Section 3.5, we analyze and define

the characteristics of NNS algorithms that lead to increased error tolerance. In

Section 3.6, we provide analysis on NNS metric hardware architecture pertaining

to the error tolerance and show the optimal structure is perfectly balanced tree

94



structure. Furthermore, we present experimental results and discussion on actual

ET based decision example for motion estimation process application in the context

of H.264/AVC, comparing different hardware architectures and search algorithms.

Section 3.7 summarizes our conclusions and main results.

3.2 NNS Metric Computation Architecture & SA

Fault Model

There are several types of hardware implementation architectures [42] for comput-

ing a NNS metric, with different levels of parallelism. We will refer to them as

matching metric computation (MMC) architectures. Figure 3.2 illustrates a few

examples of MMC architectures [42] which can be viewed as arrays of cascaded

adders and represented as binary tree graphs, where each inner node represents

an adder, an edge connecting two inner nodes represents a data bus, and a leaf

node corresponds to the processing element (PE) that computes distance for each

dimension (e.g., the pixel-level prediction error for ME application). Figure 3.2

and tree structured model of MMC architectures will be revisited in more detail

when we discuss the optimal structure of MMC architecture in Section 3.6. Note

that our fault effect model in Section 3.4 and analysis on the search algorithms in

Section 3.5 are independent of the MMC architecture and valid for any hardware

implementation structure used.

Throughout this chapter we consider only faults in the interconnect data bus

that affect the data transfer between PEs within a metric computation hardware

architecture. These interconnect faults are modeled with the stuck-at (SA) fault

model, a well-known structural fault model that assumes that the design contains
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Figure 3.2: (Upper) Four examples of MMC architectures for NNS metric compu-
tation, represented as a dependence graph, where only processing elements (PEs)
are shown for simplicity. AD denotes a processing element which is, for ℓ1 metric
for instance, an absolute difference and addition. M denotes a minimum value com-
putation. (Lower) Tree structured flow graph corresponding to the type-2 MMC
architecture on the left. In this graph, the processing element (leaf nodes, shown
here as AD) and addition (inner nodes) computations are separated, thus AD de-
notes only the distance computation for each dimension (e.g., absolute difference for
ℓ1 metric). If ℓ2 metric is used as a cost metric, leaf nodes become PEs computing
a square difference.
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Figure 3.3: Example Error Rate and Significance due to SSA fault within MMCA
for motion estimation application.

a fault that will cause a line in the circuit to behave as if it is permanently stuck

at a logic value 0 (stuck-at-0 fault, abbreviated as SSA0) or 1 (stuck-at-1 fault,

abbreviated as SSA1).

The SA fault model covers 80-90% of the possible manufacturing defects in

CMOS circuits [50], such as missing features, source-drain shorts, diffusion con-

taminants, and metallization shorts, oxide pinholes, etc.

3.3 Quality Measure for Nearest Neighbor Search

with Faulty Hardware

Faults in a MMC architecture would imply that it is likely that the selected point

rf may not be equal to the nearest neighbor point r∗ which can be obtained with

fault-free MMCA. We define NNS Error if rf 6= r∗ due to a fault. An error does not

occur for all queries but only occurs if certain conditions are met. An error occurs
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iff, a) if a fault is in the p-th data line, then the input to p must be 0 for r∗ and

1 for rf , and b) 0 < d(rf ,q) − d(r∗,q) ≤ 2p. Therefore, our focus is on how often

these errors occur (error rate Pe = prob(rf 6= r∗)) and how much additional quality

degradation is introduced (error significance Se = d(rf ,q) − d(r∗,q), representing

the level of inaccuracy of MCP). Error rate and significance depend highly on the

fault position with a certain variation due to the input sequence characteristics.

Figure 3.3 demonstrates clearly how error rate and significance values change with

faults at different positions. Points connected with the same line are faults in the

same interconnect data bus with a different data bit line. Points shown in outer

lines indicate faults in the data bus which has 32 more leaf nodes connecting towards

that data bus than the adjacent inner line. Also note that SSA0 and SSA1 faults

at the same positions produce identical results in both error rate and significance.

Proof of this and further analysis on this concept of error rate and significance of

hardware fault are provided in [10].

We further discuss fault error measures using more specific example application,

comparing DCT process and ME process for video coding. While faults introduced

within the DCT block within video coding tend to have a direct impact on visual

quality degradation and the type of artifacts introduced, faults on ME metric have

a more indirect impact on overall quality by impairing the accuracy of the ME

engine. Thus, degradation of motion compensated (MC) prediction signal and

its increased residual energy will be compensated with the rate penalty with no

significant visual quality loss if Rate Control (RC) is not employed. However, for

most cases, there are constraints imposed on the bit rate of the system where a

certain local average bit rate needs to be maintained over time. Considering that

most modern video encoders use RC schemes, additional bits required by increased

residual of a block/frame, given certain bit-rate constraint, will be compensated by
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Figure 3.4: (Left) Rate-Distortion impact of faults. (Right) Temporal Quality
Variations due to Faults.

using fewer bits for other blocks/frames. For example, assuming that a block level

RC model is used, the increase in bit-rate due to faulty ME could imply increase in

the quantization scale chosen to encode the subsequent blocks. In this case, artifacts

would appear in the form of standard quantization artifacts, rather than, as was

the case for DCT, error-specific artifacts. Therefore, the problem of measuring the

visual quality degradation due to fault introduction within the ME can be also seen

as the problem of measuring the impact on picture quality of a compression process.

Thus, any visual quality metric which captures the video compression impairment

reliably can be also applied to this case.

For example, most commonly accepted and widely used visual quality metric

is MSE, or equivalently PSNR which simply computes distortion energy thus it

lacks of correlating well with other important characteristics of human visual sys-

tem. However, several experiments with human interference evaluated PSNR as a

competitive metric for compression distortion assessment [2].
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Figure 3.5: Rate control scheme distributes the fault impact over time. a SSA fault
within the ME metric computation circuit is simulated.

Another problem of the average PSNR or MSE of all frames in a video sequence

to represent quality degradation is that it can easily underestimate distortion vari-

ation throughout the sequence. In reality [2], an end-user will evaluate an entire

video sequence based upon the quality variations and minimum quality.

Therefore, distortion variation can be separately considered into the spatial

variation, a block level quality variation within a frame, and temporal variation,

a frame level one throughout the sequence. This distortion variation measure can

be particularly meaningful for the study of ME faults since we observed that intro-

ducing a SSA fault in ME always increases both the temporal and spatial quality

variation on the video output. Note that the level of variation increase depends on

the RC scheme. Typically RC performs bit allocation by selecting the encoder’s

quantization step size (QP) for the residual block/image. Note that most modern

implementations of RC, a constraint is employed on the increment/decrement of the

quantizer, which results in distributing distortion throughout the picture. Therefore

errors occurring with certain rate are subdued and smoothly spread out over the
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picture after the rate controlled quantization process. Consequently, distinguishing

errors into two measures of error rate and significance becomes no longer necessary.

We have observed that spatial distortion variations tend to be imperceptible, on the

other hand temporal variations can be significant. Spatial variation was measured

by computing the variance of Qp values for each frame and by averaging them. To

evaluate temporal variations within a video sequence we defined the measure TQV

as:

TQV =

∑N−2
i=0

∣∣∣MSEfault
i −MSEfault

i+1

∣∣∣
∑N−2

i=0

∣∣∣MSEno fault
i −MSEno fault

i+1

∣∣∣
(3.1)

where MSEfault
i and MSEno fault

i are the frame MSE values of the decoded images

with and without ME faults respectively, and N is the total number of frames

considered.

In Figure 3.4 (left) we present the Rate Distortion performance for the Foreman

sequence, at CIF resolution, in the presence of ME faults within an MPEG-2 en-

coder. Similarly,the Temporal Quality Variation for the same faults are presented

in Figure 3.4 (Right). Since error rate and significance measurements are no longer

useful after RC Quantization for ME fault case, PSNR with additional measure of

temporal quality variation would be able to represent well the quality degradation

introduced by ME fault. However, we observed that temporal variation increase is

relatively small compared to PSNR change and roughly proportional to the PSNR

degradation. Thus it is well captured by PSNR measure. Figures 3.4 (Left) and 3.4

(Right) illustrate well this point. Large quality variations in Figure 3.4 (Right) are

also related to a rather significant drop in PSNR in Figure 3.4 (Left). Therefore,

for the evaluation of ME faults, PSNR can still capture most of quality impairment

sufficiently although temporal variation metric could potentially improve the accu-

racy of visual quality assessment. In Figure 3.3, a PSNR based quality threshold
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T (e.g. T = 0.1dB) was considered to classify faults. This threshold essentially de-

fines an acceptance curve, according to which faults below this curve are considered

as acceptable, while faults above are considered as unacceptable.

3.4 Multiple Fault Effect Modeling

In this section we present a complete analysis of the effect of interconnect faults

in NNS process. We start by providing a model to capture the effect of any fault

(or combination of multiple faults) on NNS metric. We then describe how these

errors in metric computation lead to errors in the matching/searching process. Our

motivation is twofold. First, we will use this analysis to predict the behavior of

NNS algorithms and MMC architectures in the presence of faults (see Sections 3.5

and 3.6, respectively). Second, this analysis is a required step towards developing

comprehensive testing techniques to identify acceptable error behavior. In particu-

lar, it will provide tools to tackle multiple fault scenarios, by discarding specific sets

of faults (e.g., when one of the multiple faults is by itself unacceptable), establish-

ing equivalence classes across faults (e.g., cases when dependent and independent

faults may have the same impact), or determining how the parameters of the faults

involved affect overall behavior (e.g., multiple faults with similar parameters may

lead to relatively worse errors than sets of faults with differing characteristics).

Faults in a MMC architecture can lead to errors in the cost metric computation.

We will refer to this as a metric computation (MC) error and denote its magnitude

as ∆ (D, {fi}) = D̂ − D where D̂ and D denote the computed costs with and

without MC error and fi denotes a fault. In general ∆ (D, {fi}) is a function of

the input sequence and the characteristics of the faults (e.g., their types, locations,

and their dependencies). However, to simplify the notation, from here on we omit

102



{fi}, a set of parameter vectors representing each fault’s characteristics. We will

refer to this function ∆ (D) as the MC error function. Note that MC errors do

not necessarily lead to matching process (MP ) errors. We say a block suffers

a MP error if rf 6= r∗ where rf and r∗ represent the selected object/point and

minimum object/point from given data set R, respectively . Since MP errors do

not occur for all queries, we also define the MP error rate (PE = prob(rf 6= r∗))

which represents how often these MP errors occur, and the MP error significance

(SE = d(rf ,q) − d(r∗,q), where d(rf ,q) and d(r∗,q) are the computed distance

from a query point to rf and r∗, respectively).

3.4.1 Binary Adder Tree and Fault Characterization

Each SA fault in any MMC architecture can be fully characterized by three at-

tributes, a) the fault type t ∈ {0, 1} (Stuck-At-0/SA0 or Stuck-At-1/SA1), b) the

bit position of the faulty data line p ∈ {0, · · · , P} where 0 and P correspond to the

LSB and MSB of faulty data bus respectively, depending on the MMC architecture,

and c) the position of that data bus. The last attribute can be parameterized as

a ratio α ∈ (0, 1 ] of the number of leaves in the subtree rooted at a faulty edge

(data bus) to that of the entire tree. For example in Figure 3.2 (Lower), if a fault

is positioned at (x), its corresponding α, say α(x) is 1. Similarly, α(y) = 1/2 and

α(z) = 1/8 and so forth. Therefore each fault i can be represented as fi = (ti, pi, αi),

where ti ∈ {0, 1}, pi ∈ {0, · · · , P} and αi ∈ (0, 1 ]. Note that these fault parameters

completely capture the fault effect, so that two faults with the same parameters in

two different architectures have, on average, the same effect.
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3.4.2 Multiple Fault Effect Modeling for Nearest Neighbor

Search Metric Computation

Consider an interconnect fault i affecting a data bus. If the input to the data bus

is x then we can represent the effect of the fault as a function hi (x) , x̂−x, where

x̂ is the output of the faulty data bus. For fault parameters pi and ti the shift

induced by SA fault i can then be described as

hi (x) = x̂− x = (−1)ti+1 · 2pi · Iwi
ti

(x) , where

wi0 =
⋃

k∈2N0+1

[ k · 2pi , (k + 1) · 2pi ) and wi1 =
⋃

k∈2N0

[ k · 2pi , (k + 1) · 2pi ),

where N0 denotes the set of non-negative integers. Note that hi (x) is a function of

x, i.e., an intermediate term in the computation of the final matching metric cost

D. Thus, modeling the final observed metric computation error would in principle

require modeling the distribution of intermediate values x for a given D. Instead,

as a simplification, we assume that, on average and for a given αi and D, we will

tend to have x ∼= αD, i.e., the intermediate metric value x at the fault position is

proportional to the number of pixel-errors accumulated up to that position1. With

this approximation we define the error at the output corresponding to fault i as

Hi (D) ∼= hi (αD) , which can be written as:

Hi (D) , (−1)ti+1 · 2pi · IW i
ti

(D) , (3.2)

1This would hold if pixel-errors were iid with mean dependent on D. However, based on the
generalized central limit theorem even if there exist some weak dependencies between pixel-errors,
this still holds true if none of pixel-error variables exert a much larger influence than the others.
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where

W i
0 =

⋃

k∈2N0+1

[
k · 2pi

αi
,
(k + 1) · 2pi

αi

)
and W i

1 =
⋃

k∈2N0

[
k · 2pi

αi
,
(k + 1) · 2pi

αi

)

Hi (D) is a periodic piecewise constant square wave function of D taking values

in the set Ri = {0, 2pi · (−1)ti+1} with period Ti = 2pi+1/αi. If there is a single

SA fault fi = (ti, pi, αi) in a MMC architecture, then with the above approximation

the error at the output is ∆ (D) ∼= Hi (D), which leads to D being shifted by ±2p

or remaining unchanged depending on D and fi.

However, when we consider multiple SA faults, ∆ (D) cannot be accurately mod-

eled unless extra information regarding the dependency relation between faults is

also provided. In other words, two sets of faults with identical fault configurations,

{fi}Mi=1 with fi = (ti, pi, αi) could produce different MC error function ∆ (D) de-

pending on the dependency relation between faults. Figure 3.7 illustrates simple

examples of multiple faults with different dependencies. If faults are placed serially

in the same computation path, the output of previous faults along the path could

affect the input to the following fault position. We refer to such faults as dependent

faults (Figure 3.7 (a)). Note that the relative position of the faults in the architec-

ture matters, i.e., the computations closer to the root of the tree are affected by

the errors introduced closer to the leaves, but not the other way around. On the

other hand, if faults are placed in separate paths such that the output of each fault

position is independent from one another, we refer to them as independent faults

(Figure 3.7 (b)). Figure 3.7 (c) shows the case of a simple combination of both

independent and dependent faults. For each of these three scenarios, Figure 3.7

provides an example of multiple faults locations in the MMC hardware architec-

ture represented as a binary tree and a fault dependency graph illustrating their
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Figure 3.7: Examples of multiple SA fault cases with different dependency relations
between faults. (a) two serially placed faults in the same path of circuit, (b) two
parallel faults placed in separate paths, and (c) simple combination of (a) and (b)
cases. These relations are illustrated more clearly in the fault dependency graphs
shown below the binary trees. Metric computation (MC) error function ∆ (D) can
be formulated via functions of {Hi (D)}Mi=1 defined in (3.2) using two basic operators
{⊙,+ } (function addition and a variant of function composition operator defined
in (3.3)), according to the dependency relation of a given set of faults as shown
above, where D denotes the final cost value (e.g., SAD).
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dependency relation. Similarly, any dependency relation of an arbitrary set of faults

S = {fi}Mi=1 in a MMC architecture, where fi = (ti, pi, αi), can be represented as a

combination of parallel and serial cascade of faults.

In order to formulate ∆ (D) for any given set of faults with arbitrary fault

dependency relations, we first introduce (F , +, ⊙ ), an algebraic structure where

the elements of F are periodic piecewise constant functions which are closed under

two operations {+, ⊙}. The operator + denotes linear function addition and ⊙

denotes a function composition operator defined as

f (x) ⊙ g (x) , g (f (x) + x) + f (x) (3.3)

This operator ⊙ combines f (x) and g (x), where the input to g (x) depends on the

output of f (x). These two operators {+, ⊙} essentially combine two MC error

functions for two different sets of faults into one function providing the total cost

shift incurred by both sets of faults. If two sets of faults are independent, the

overall error function is the sum of the two error functions corresponding to each

set of faults, thus the + operator is used. Similarly, the ⊙ operator is applied

when two sets of faults are dependent. Figure 3.7 provides simple examples of

multiple faults and their corresponding ∆ (D) representation using two operators

{+, ⊙}. Figure 3.8 illustrates more graphically for each of the three cases discussed

in Figure 3.7 how ∆ (D) function is linked to the dependency relation of multiple

faults. When two sets of faults are independent as in Figure 3.8 (b), ∆ (D) function

becomes linearly additive. On the other hand, when they are dependent, as in

Figure 3.8 (a)(c), the error function will have to be computed by using the ⊙

operator.
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Figure 3.8: ∆ (D) computation for each of the three cases described in Figure 3.7.
Faults f1 and f2 are SA1 faults with parameters { 1, p1, α1}, { 1, p2, α2} respectively
and f3 is SA0 fault with { 0, p3, α3}. (a) a fault f1 affects the input to the next
fault position f2. Thus, the total cost shift at D (MC error function ∆ (D)) is the
summation of the cost shift due to f1 at D, (H1 (D)) and that of f2 at shifted D
by H1 (D), which is (H2 (H1 (D) +D)). (b)∆ (D) is the simple linear summation
of H1 (D) and H2 (D). (c) only dependent relation between faults {f1, f2} and f3

is depicted which is essentially the same process as (a).
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More formally, the MC error function ∆ (D) of an arbitrary set of faults S =

{fi}Mi=1 in any MMC architecture, where fi = (ti, pi, αi), with any dependency rela-

tion can be estimated using operators {+, ⊙} on the set of functions {Hi (D)}Mi=1

resulting also in a periodic piecewise constant function of costD, taking 2M different

possible values in a finite set RS with period TS, where2

RS =

{
∑

i∈A

2pi · (−1)ti+1

}

A∈P ({1,··· ,M})

TS = lcm

{
Ti =

2pi+1

αi

}M

i=1

(3.4)

Since the ⊙ operator is non-commutative and non-distributive over addition,

order is important in computing ∆ (D). Based on its fault dependency graph

(examples are shown in Figure 3.7 which can be also represented as a tree in which

each node i correspond to a fault i), ∆ (D) need to be updated iteratively at each

node i of the tree from the leaves towards the root by combining each Hi (D).

The combination process at each node i is performed using + and ⊙ operators to

combine siblings ({∆j (D)}j∈Ji
) and children (

∑
j∈Ji

∆j (D)) with parent (Hi (D)),

respectively, where ∆i (D) represents the updated ∆ (D) for a subtree rooted at

node i and Ji is a set of all child nodes of node i.

∆i (D) = (
∑

j∈Ji

∆j (D)) ⊙Hi (D)

Therefore for a given arbitrary set of multiple SA faults, we can obtain MC

error function ∆ (D) which indicates whether there is a MC error (∆ 6= 0) and how

much shift occurred due to faults (∆ = D̂ − D) for any given final cost value D.

Note that once we obtain MC error function (∆ (D)), the dependency relation does

not have to be reconsidered afterwards.

2P (·) and lcm (·) denote the power set and the least common multiple, respectively.
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3.4.3 Multiple Faults Effect Modeling for Matching Process

SA faults alter the computed cost values D̂ = D+∆ (D) according to the MC error

function which we have analytically formulated in the previous section. However,

this does not necessarily lead to matching process (MP ) errors, which is the case

where the selected candidate rf based on the altered cost value D̂ is not equal to

the best r∗. A MP error occurs if and only if, D(rf ) > D(r∗) and D̂ (rf ) < D̂ (r∗).

In this section, based on the MC error function ∆ (D) we model the MP error

with two assumptions: i) minimum distance follows a distribution PminSAD which

has different characteristics for different classes of video sequences (e.g., low motion

vs. high motion video), and ii) the set of candidates N to be tested for the matching

process can be modeled as N iid samples drawn from a distribution PSAD. Based

on these two assumptions, for a given ∆ (D), MP error rate PE and the expected

MP error significance Ē are formulated as follows.

SA faults shift all computed costs by ∆ (D) which in turn alter PSAD into P̂SAD

where

P̂SAD(D̂) =
∑

∀D:D+∆(D)=D̂

PSAD (D) (3.5)

Figure 3.10 (left) illustrates an example of how a given PSAD is mapped into P̂SAD

using ∆ (D) function. MP error occurs if the shifted minimum SAD (minŜAD) is

not the minimum of P̂SAD in D̂ domain and if there exists at least one candidate

that falls within the shaded region shown in Figure 3.10. We refer to this shaded

area as error region which essentially indicates the range of SAD values satisfying

SAD > minSAD and ŜAD < minŜAD conditions and therefore determined by
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∆ (D). This error region is bounded by error region bounding interval τ which is

a function of minSAD value and defined as

τ (D) , ∆ (D) −minRS (3.6)

where minRS denotes the minimum of a set RS defined in (3.4). We denote F̂SAD

as a cumulative distribution function of P̂SAD and define a new function ξN (D) ,

(1−F̂SAD(D̂))N that gives the probability that shifted cost values of all N candidates

fall higher than D̂. Then we can represent MP error rate for a given minimum

distance value (denoted as Dmin) as PE|Dmin
= 1 − ξN (Dmin). Therefore,

PE =
∑

D

PminSAD (D) · PE|D =
∑

D

PminSAD (D) · (1 − ξN (D)) (3.7)

Similarly, expected value of MP error significance for a given Dmin can be repre-

sented as

EDmin
(SE) =

∑

d∈XDmin

(d−Dmin) · ξN−1 (d) · PSAD (d)

where XDmin
=

{
d | Dmin < d < Dmin + τ (d) , d̂ < D̂min

}
is a set of d correspond-

ing to the blue shaded area of PSAD (d) in Figure 3.10 (Left).

Similarly, the expected MP error can be expressed as

Ē = E (SE) =
∑

D

PminSAD (D) · ED (SE)

Ē = E (SE) =
∑

D

PminSAD (D)
∑

d∈XD

(d−D) · ξN−1 (d) · PSAD (d) (3.8)
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algorithm can reduce the impact of a given fault. Error tolerant MMC architecture
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3.5 Error Tolerant Algorithm Design Analysis for

Nearest Neighbor Search

In Section 3.4, we introduced a function, ∆ (D), to model the distortion in metric

computation caused by a given set of multiple SA faults. Based on this model,

we modeled the impact of faults on matching process by additionally considering

the interaction between ∆ (D) and the characteristics of a candidate set in terms

of the number N and quality (distribution PSAD). These attributes can be largely

controlled by NNS search algorithm design while ∆ (D) is determined solely by

fault parameters i.e., locations, types, and dependencies. Therefore, in this section,

based on our previous studies of MP error we define the characteristics of the search

algorithm that lead to increased error tolerance and show how fault parameters and
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design choices made for the search process are related in terms of error tolerance.

Note that our interest is not in accurate modeling of NNS search algorithms but

in characterizing their average behavior with respect to our parameters of interest

that are related to the error tolerance property.

The multiple faults effect model for the matching process in terms of PE and

Ē in (3.6), (3.7) shows that error robustness depends on both the number N and

quality PSAD of the candidates tested by NNS algorithm. Note that both PE and

Ē are a function of ξN (d) = (1 − F̂SAD(d̂))N , which is the only term associated

with N . Since ξN (d) decays exponentially as a function of N , for large enough

N the difference in performance between different N values is negligible. Thus, in

practice, for values of N encountered in most practical algorithms (e.g., N > 10)

differences in overall error behavior are mostly determined by differences in quality

of the candidates, rather than their number.

As to the quality of the candidates, PSAD in our model, we approximate it by

the range of PSAD distribution (a coverage of SAD values) defined as ∆SAD =

maxSAD − minSAD based on two reasons: i) Although it varies from block to

block, our experiments show that average distribution given the same ∆SAD ex-

hibits close to uniform distribution, and ii) error region bounding interval τ defined

in (3.8) over which both PE and Ē expectation computations are performed is

bounded by ∆SAD. In other words, both PE and Ē can be directly controlled by

∆SAD. Therefore, we approximate the quality of the candidates with one param-

eter ∆SAD in this section for the purpose of studying error tolerance property of

NNS algorithms since it generally captures the main feature of PSAD that is most

related to the PE and Ē.
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For given M multiple faults, there can be 2M different τ values:

τi ∈ T = {τ |τ = r −minRS, r ∈ RS}

If ∆SAD > τi ∀ i, both PE and Ē are determined dominantly by ∆ (D) function

but not by ∆SAD. In other words, if a set of faults has all small pi which decides

RS and consequently T , the choice of NNS algorithm will not change the impact

of faults and the impact itself of such faults is generally already insignificant due

to their small pi. Figure 3.14 (left) shows that three NNS algorithms for motion

estimation application with different ∆SADs result in similar Ē for small p. On the

other hand, if ∆SAD < τi ∃ i, then τi = ∆SAD ∀ i ∈ { i | τi > ∆SAD}, resulting

the error region bounding interval τi for PE and Ē computation to be bounded by

∆SAD for some region of D. Therefore, the choice of NNS algorithm can influence

the impact of faults considerably. If ∆SAD < τi,∀ i, all τi are completely bounded

by ∆SAD and the error depends primarily on ∆SAD.

Figure 3.10 (right) provides a simple comparison of two candidate sets with

different ∆SADs in the presence of a single SA fault and show how ∆SAD is

linked with the expected error. Figure 3.12 illustrates our conclusions drawn from

our model for a single SA fault case. It shows that PE and Ē increase almost

exponentially with ∆SAD and saturate when ∆SAD reaches τ = 2p while the

impact of N is minimal especially for large N .

Therefore, if our goal is to choose an NNS algorithm that reduces the impact of

faults, we should choose one such that typical sets of MV candidates are as close

as possible to optimal value (i.e., small ∆SAD). In practice, search algorithms

satisfying this characteristic also show significant complexity reduction (small N)

without having to compromise with the performance.
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To evaluate the impact of NNS algorithm on error tolerance, three representative

NNS search algorithms, full search (FS), three step search (TSS) [30], and enhanced

predictive zonal search (EPZS) [14] are tested as they provide different combinations

of N and ∆SAD parameters. FS exhaustively searches all candidates within the

search window, and thus has the largest number of candidates NFS and SAD range

∆SADFS. TSS successively evaluates sparsely distributed candidates and tries to

follow the direction of minimum distortion to locate the smallest SAD. Although the

number of candidates NTSS is small, its SAD range ∆SADTSS remains relatively

large. On the other hand, EPZS, a state of the art ME algorithm, considers a

combination of optimized predictors and refinement process to locate the minimum

distortion location. Unlike TSS, both the number of candidates NEPZS and SAD

range ∆SADEPZS tend to be quite small. As an example, when a search window

of ±32 is used, NFS = 4225, NTSS = 41, and NEPZS = 8.8 on average for Foreman

CIF sequence. For the same sequence, we have ∆SADFS = 1.5 × ∆SADTSS =

9.75 × ∆SADEPZS on average. These properties are illustrated in Figure 3.14

(top), which shows the distribution of the SADs for all candidates of a given block,

sorted by magnitude.

With these three algorithms, various sequences were tested with a series of fault

parameters using a H.264 /MPEG-4 AVC baseline encoder. Only 16 × 16 block

partitions, a single reference, and only integer-pel search were used for ME. Note

that all experimental results presented from this point forward were performed

under these same constraints. Figure 3.14 (left) provides the comparison of three

algorithms in terms of PSNR degradation3 due to a single SA fault with different

parameters α and p while Figure 3.14 (right) depicts their RD performance. The

3BDPSNR (Bjontegaard Delta PSNR) [4] was used to calculate average PSNR difference be-
tween RD curves.
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CIF resolution Foreman sequence was used for both graphs and other sequences

tested showed similar results. Our experimental results are consistent with our

earlier conclusions that the fault location parameters p and α mainly determines the

fault impact on NNS performance while for a given fault location, NNS algorithm

operating on smaller ∆SAD reduces the fault impact.

3.6 Error Tolerant Architecture Design Analysis

In addition to any error tolerance provided by a NNS algorithm, the different MMC

architectures can also significantly influence the degree of error tolerance. For

example, Ē can be reduced by more than 95% if a type-3 MMC architecture is

used instead of type-1 (shown in Figure 3.2), when 16 × 16 block size is used for

ME. In this section we show that MMC architecture with a perfectly balanced

binary tree4 structure (type-3) provides the highest error tolerance to SA faults.

As shown previously in Figure 3.2, there are several types of MMC architectures

with different levels of parallelism, which can be grouped into either whole-block

based (type-1,2,3) and sub-block based (type-4) structures. While whole-block

based architectures allow more parallelized form, sub-block based ones reuse the

architecture multiples times to perform whole block error computation. These two

types of structures provide different error tolerance behavior and will be discussed

separately. From here on, we omit the term “whole-block based” unless required

for clarity.

Each MMC architecture can be uniquely represented as a binary tree with a

given number of leaves N , inner nodes N − 1, and edges 2N − 2, where N cor-

responds to the number of pixels of the motion compensation block. Each edge

4a full binary tree in which all leaves are at depth n or n-1 for some n.
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Figure 3.16: Average fault effect Ē on ME performance (top) and overall coding
efficiency (bottom) are shown for different α parameters (left) and for different
average binary tree depths (D = N · E (α)) which describe different MMC archi-
tectures (right). Perfectly balanced trees (type-3 in Figure 3.2) show the minimum
expected error introduced by a single SA fault.

corresponds to each data bus connecting adders in the MMC architecture and it

consists of multiple bit lines. Each edge can be parameterized with α and we as-

sume that every MMC architecture of our consideration uses the same number of

bit lines for data buses which have the same α parameter. Then, every MMC ar-

chitecture can be uniquely described by only the distribution of α parameter. (e.g.,

type-1 structure will give uniform distribution of α over all possible α value whereas

type-3 will give high concentration for lower α and exponentially decreasing as α

increases to 1).
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acceptance decision for different MMCA and ME algorithms
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Figure 3.17: Experimental results on actual ET based decision example with sin-
gle SA fault assumption in the context of H.264/AVC comparing different metric
hardware architectures and search algorithms with respect to the percentage of un-
acceptable fault positions given different the decision thresholds. With a perfectly
balanced tree MMC architecture (type-3), less than 1% of fault positions result in
more than 0.01dB quality degradation.

Based on the fact that all MMC architectures have the same number of data

buses and bit lines and the general assumption that random defects are distributed

with equal probability across the metric computation circuit, the probability of

fault occurrence is equal for all architectures. Therefore the expected value of

additional error energy introduced by a single SA fault, E
(
Ē|SSAF

)
indicates the

error tolerance level of a given MMC architecture in the presence of a single SA

fault. It can be represented as,

E
(
Ē|SSAF

)
=

∑

αi∈Ak

∑

pj∈Pαi

Ē (αi, pj) · q =
∑

αi∈Ak

Ēαi
· q =

∑

α

p (α) · Ēα

where Ēαi
=

∑
pj∈Pαi

Ē (αi, pj) which is the same for all MMC architecture given

αi. Ak and Pαi
are the set of all data bus in MMC circuit k and of all bit lines belong

to data bus αi respectively. q is a probability of having a fault at certain position

and it is equal probability over all fault locations. p (α) denotes the distribution of
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α and it is determined by the MMC architecture. Based on our fault effect model

studied in Section 3.4, Ē increases linearly with the fault parameter α with an

assumption that both PSAD (D) and PminSAD (D) are uniform distributions over

the entire range of D. Then,

arg min
pk(α)

E
(
Ē|SSAF

)
= arg min

pk(α)

∑

α

pk (α) · Ēα = arg min
pk(α)

Dk

where Dk = N ·∑α pk (α) · α = N ·E (α) which is equivalent to the average depth

of the binary tree that corresponds to the MMC architecture k. If pk (α) determined

by the MMC architecture k minimizes E
(
Ē|SSAF

)
, it also minimizes the average

depth of the binary tree corresponding to that MMC architecture k. Therefore the

MMC architecture corresponding to the binary tree with minimum average depth5

(perfectly balanced binary tree) leads to the highest error tolerance and furthermore

also maximize parallel computation. This conclusion holds more strongly when Ē

increases with α superlinearly which is the case in practice as the above assumption

is not generally true (Figure 3.16 (left)) mainly due to the PminSAD (D) distribution

being more concentrated at the lower D such that minimum SAD becomes more

likely to fall in the error region of ∆ (D) function with higher α. More specifically,

the relative reduction rate of Ē of the type-3 MMC structure compared to the

others increases if the increasing rate of Ē vs. α is higher (e.g., exponential vs.

linear increase) or if N increases6. Figure 3.16 illustrate how Ē increases with α

(left) and with average binary tree depth describing different MMC architecture

(right) for different ME algorithms in actual simulation.

5sketch of proof: a binary tree with N leaves in which the difference between maximum and
minimum depths Dmax−Dmin is greater than 1, can be reformed into the perfectly balanced tree
by iteratively moving two leaves at Di

max to Di
min leaf. Each iteration i reduces average depth

by
(
Di
max − Di

min − 1
)
/N . Therefore perfectly balanced trees have the minimum average depth.

6for example, Ē of type-1, 2, and 3 increases in the order of O
(
N 2

)
, O (N ), and O (log2N )

respectively.
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The same conclusion holds true for the multiple SA faults case although a for-

mal argument establishing this property is somewhat involved, but its validity is

essentially a consequence of the fact that Ē is an increasing function with each αi

of {fi}Mi=1.

Figure 3.17 shows how the percentage of unacceptable SSA fault locations given

a MMC structure and search algorithm varies with the acceptance decision thresh-

olds. It also provides comparison for three representative MMC architectures and

search algorithms for the same process. This simulation result shows that even if

acceptance decision threshold is as small as 0.01dB7, still more than 99% of fault

locations produce imperceptible degradation. In other words, more than 99% of

defective metric computation circuits with SSA fault having type-3 architecture

only produce less than 0.01dB degradation. This result confirms that the MMC

architecture can affect the system level error tolerance property quite significantly.

Similarly for sub-block based MMC architectures which reuses its structure L

times to perform one whole block error computation, the expected error for a SA

fault fi can be represented as

Ēsub = Psub (fi) · Esub (SE|fi) =
1

L
Pwh (fi) · (Ewh (SE|fi))L

Since a single SA fault in sub-block based structure has the same effect as that of

L multiple independent SA faults with the same fault parameters in whole block

based one, its impact increases by a factor of L. Therefore the fault impact for the

sub-block based architectures increases exponentially with L, resulting in reduced

error tolerance compared to the whole block based ones.

7In general, 0.1-0.2dB is considered to be an imperceptible quality difference in typical im-
age/video coding applications.
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3.7 Conclusions and Future Work

Based on the system-level error tolerance concept, we present a complete analysis

of the effect of interconnect faults in NNS metric computation circuit. We provided

a model to capture the effect of any fault (or combination of multiple faults) on the

matching metric. We then describe how these errors in metric computation lead to

errors in the matching process. Our motivation was twofold. First, we used this

analysis to predict the behavior of NNS algorithms and MMC architectures in the

presence of faults. Second, this analysis is a required step towards developing com-

prehensive testing techniques to identify acceptable error behavior. In particular,

it will provide tools to tackle multiple fault scenarios, by discarding specific sets

of faults (e.g., when one of the multiple faults is by itself unacceptable), establish-

ing equivalence classes across faults (e.g., cases when dependent and independent

faults may have the same impact), or determining how the parameters of the faults

involved affect overall behavior (e.g., multiple faults with similar parameters may

lead to relatively worse errors than sets of faults with differing characteristics).

Based on this model, we investigated the error tolerance behavior of nearest

neighbor search (NNS) process in the presence of multiple hardware faults from

both an algorithmic and a hardware architecture point of view by defining the

characteristics of the search algorithm and hardware architecture that lead to in-

creased error tolerance. More specifically, we investigate the relationship between

fault locations and design choices made for the search process in terms of error tol-

erance and define the characteristics of the search algorithm that lead to increased

error tolerance. We showed that error robustness depends on the number and qual-

ity of the candidates tested by NNS algorithm but the quality primarily influences

ET level. We also showed that different hardware architectures performing the
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same metric computation can also significantly influence the degree of error toler-

ance and further showed that the optimal MMC hardware architecture in terms

of error tolerance is perfectly balanced binary tree structures, which also allow the

maximized parallel computing.

Motion estimation process for video coding is tested as an example application

for our study to verify our models and results in actual practical application setting.

Our simulation showed that search algorithms satisfying such characteristics (hav-

ing a candidate set with smaller set size and having a distribution closer to nearest

neighbors) also exhibit significant complexity reduction, apart from increased ET,

without having to compromise with the performance. For example, in our exper-

iments, enhanced predictive zonal search (EPZS) [14] algorithm which has these

characteristics showed 0.01dB lower and up to 2.5dB higher performance than that

of full search (FS) in fault-free and faulty cases, respectively, while reducing more

than 99% complexity. Our simulation also showed that if optimal structure is used,

the expected error due to a fault can be reduced by more than 95% and more than

99.2% of fault locations within matching metric computation circuits result in less

than 0.01dB performance degradation.
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Chapter 4

Conclusions and Research Directions

The subject of this thesis was studying similarity search problem within the scope

of error tolerance concept. This thesis presented several methodologies to deal with

the problems of system complexity and high vulnerability to hardware defects and

fabrication process variability and consequently a lower yield rate.

Error Tolerance and Similarity Search

Error tolerance (ET) approach [6] is an exercise of designing and testing systems

cost-effectively by exploiting the advantages of a controlled relaxation of system

level output quality precision requirement. The basic theme of ET approach is to

allow erroneous output but by inappreciable/imperceptible degree of system level

quality degradation in order to simplify and optimize the circuit size and complexity,

power consumption, costs as well as chip manufacturing yield rate. Motivation of

ET approach is two-fold: By exploiting certain range of distortions/errors which

lead to negligible impact on system level performance, i) a significant portion of

manufactured dies with such minor imperfection of physical origin can be saved,

thus increasing overall effective yield, and ii) considerable circuit simplification and

high power efficiency is attainable by systematically and purposefully introducing

such distortions/errors.
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Considering the growing needs for dealing with a large often distributed volume

of data and increasing mobile computing/telecommunication, complexity criterion

(response time, circuit/power complexity) has become an important criterion for a

successful design. Thus, the potential benefit of error tolerance concept in practical

point of view can be enormous. Similarity search problem is one of the examples

which could benefit from error tolerance approach due to its data and computation

intensive characteristics. Also this is one of the best examples where approximate

solution (relaxation from the exact solution requirement) is desirable and advan-

tageous. In fact, almost all current research focus on proximity problems is to

efficiently find the good approximate solutions.

Quantization Based Nearest-Neighbor-Preserving Metric Approxima-

tion Algorithm

Along with the improvement achieved from existing approaches for NNS problem

in terms of the number of examined data during query process through database

preprocessing techniques, our proposed approach introduces further significant com-

plexity reduction by increasing the efficiency of metric computation. From the per-

spective of error tolerance (ET) concept specifically for the applications requiring

similarity search process, we developed an efficient algorithm, called query adaptive

nearest-neighbor-preserving metric approximation algorithm, which reduces compu-

tational burden of searching process by primarily focusing on the metric compu-

tation simplification. Proposed metric aims not at preserving measured distances

but at preserving the fidelity of minimum distance ranking, while reducing po-

tential wasting of resources in computing high precision metric for unlikely solu-

tions/points. This metric approximation is not fixed for all potential queries but

adaptively adjusted at each query process exploiting the information of query point

129



to provide better performance complexity trade-off. Thus proposed method is in-

trinsically flexible from query to query and efficient with largely varying database

/metric functions.

Our proposed approach employs quantization process within the metric, which

is applied directly to data set points without having to compute actual distance to

the query point. It entails nonlinear sensitivity to distance such that finer precision

is maintained only where it is needed/important (the region of expected nearest

neighbors) while unlikely regions to be nearest neighbors are very coarsely repre-

sented. Typically in our simulation with motion estimation, 1 bit quantizer per

dimension/pixel is used and its resulting performance loss was negligible (on aver-

age 0.01dB loss). We provide an analytical formulation of the search performance

measure, based on which the optimal quantizer is designed to maximize the fidelity

of the minimum distance ranking.

Our proposed method is intrinsically more flexible and adaptable from query to

query changes even with largely varying database or more dynamic environment

(e.g., data streaming) or when there exist variation of metric functions and/or

dimensionality change (e.g., user defined, controllable metric such as arbitrary se-

lection of features/weightings), without having to rebuild the whole data structure

or to perform transforms from scratch.

Our proposed approach can be also used for k-nearest neighbor search or or-

thogonal range search. To find the exact nearest-neighbor, this approach can be

also used as a preliminary filtering step to filter out unlikely candidates and then

refinement process can be performed within the remaining set. This method can

be performed independently but also in parallel with most of existing preprocessing

based algorithms.
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More work needs to be done in terms of specific logic/circuit level design for

efficient hardware implementation of quantizer. Additional future work is needed

on more thorough analysis of performance factors such that given statistical infor-

mation of certain application, one could accurately estimate how much complexity-

performance trade-off can be expected. There is also a need to develop more con-

crete methodology in collecting statistical information from data when it is applied

to certain index structure method. Also it would be interesting to see how this

method can be incorporated with parallel and distributed index structures.

Furthermore, if possible, generalization of our proposed work can be developed

to deal with more general metric function such as quadratic metric and to relax the

constraint we posed in this thesis on metric structure (no cross-interference among

dimensions in metric function).

The concept of our proposed approach can be extended to numerous problems

involving search process such as combinations of queries, batch queries, classifica-

tion problems, other proximity problems etc. But not limited to similarity search

problem, the potential benefit of error tolerance concept can be reaped from variety

of application areas.

Hardware Fault Effect Modeling for Nearest Neighbor Search Prob-

lem

Based on the system-level error tolerance concept, we present a complete analysis

of the effect of interconnect faults in NNS metric computation circuit. We provided

a model to capture the effect of any fault (or combination of multiple faults) on

the matching metric. We then describe how these errors in metric computation

lead to errors in the matching process. Our motivation was twofold. First, we used

this analysis to predict the behavior of NNS algorithms and MMC architectures in

131



the presence of faults. Second, this analysis is a required step towards developing

comprehensive testing techniques to identify acceptable error behavior.

Based on this model, we investigated the error tolerance behavior of nearest

neighbor search (NNS) process in the presence of multiple hardware faults from

both an algorithmic and a hardware architecture point of view by defining the

characteristics of the search algorithm and hardware architecture that lead to in-

creased error tolerance. More specifically, we investigate the relationship between

fault locations and design choices made for the search process in terms of error tol-

erance and define the characteristics of the search algorithm that lead to increased

error tolerance. We showed that error robustness depends on the number and qual-

ity of the candidates tested by NNS algorithm but the quality primarily influences

ET level. We also showed that different hardware architectures performing the

same metric computation can also significantly influence the degree of error toler-

ance and further showed that the optimal MMC hardware architecture in terms

of error tolerance is perfectly balanced binary tree structures, which also allow the

maximized parallel computing.

Motion estimation process for video coding is tested as an example application

for our study to verify our models and results in actual practical application setting.

Our simulation showed that search algorithms satisfying such characteristics (hav-

ing a candidate set with smaller set size and having a distribution closer to nearest

neighbors) also exhibit significant complexity reduction, apart from increased ET,

without having to compromise with the performance. For example, in our exper-

iments, enhanced predictive zonal search (EPZS) [14] algorithm which has these

characteristics showed 0.01dB lower and up to 2.5dB higher performance than that

of full search (FS) in fault-free and faulty cases, respectively, while reducing more

than 99% complexity. Our simulation also showed that if optimal structure is used,
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the expected error due to a fault can be reduced by more than 95% and more than

99.2% of fault locations within matching metric computation circuits result in less

than 0.01dB performance degradation.

Based on the fault effect model we presented, we need to develop comprehen-

sive testing techniques to identify acceptable error behavior. In particular, based

on this model, we need to tackle multiple fault scenarios, by discarding specific sets

of faults (e.g., when one of the multiple faults is by itself unacceptable), establish-

ing equivalence classes across faults (e.g., cases when dependent and independent

faults may have the same impact), or determining how the parameters of the faults

involved affect overall behavior (e.g., multiple faults with similar parameters may

lead to relatively worse errors than sets of faults with differing characteristics).
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