
COMPLEXITY SCALABLE AND ROBUST MOTION
ESTIMATION FOR VIDEO COMPRESSION.

by

Hyukjune Chung

A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the
Requirements for the Degree

DOCTOR OF PHILOSOPHY
(Electrical Engineering)

March, 2007

Copyright 2007 Hyukjune Chung

ii

Dedication

To my beloved family

iii

Acknowledgments

First of all, I am beyond grateful to my advisor, Prof. Antonio Ortega for his guid-

ance, inspiration, patience and advice during my doctoral research at the University

of Southern California and I am thankful for the privilege of working with him.

I would like to thank Prof. C.-C. Jay Kuo, Prof. Sandeep K. Gupta, and Prof.

Roger Zimmermann for serving on my dissertation committee, and Prof. Alexander

A. Sawchuk for his guidance and advice during my first year of doctoral research

and for serving on my Ph.D. qualification exam committee. I would like to thank

Prof. Melvin A. Breuer for his advice and support during my research on the error

tolerant computing. I also would like to thank Prof. Bart Kosko for the valuable

teaching assistance experiences and for advice and discussions on various fields.

Thanks to all my friends and colleagues in the Compression Research Group,

specially, Sang-Yong Lee, Krisda Lengwehasatit, Phoom Sagetong, Naveen Srini-

vasamurthy, Zhourong Miao, Kemal Demirciler, Hua Xie, Alexandre Ciancio, David

Romacho, Baltasar Beferull-Lozano, Lavanya Vasudevan, Ivy Tseng, Huisheng

Wang, Ngai-Man Cheung, Jae Hoon Kim, and In Suk Chong for sharing valuable

time and ideas with me. I also would like to thank my friends at USC including

iv

Jingyeong Kim, Hyungsuk Kim, Younggook Kim, Chulmin Lee, Janghoon Yang,

Junsung Park, Wonseok Baek, Sunghoon Park, Sunkwang Hong, Nopparit Intha-

rasombat, and Sanghyun Chang.

Special thanks to my grandparents, parents, parents-in-law, and my sister for

their their love and continuing supports. And to my wife, Jungshim, for her love,

support, and sacrifice. I am so lucky to have her in my life. Last but not least, I

would like to express my deepest gratitude to God.

v

Contents

Dedication iii

Acknowledgments iv

List of Tables ix

List of Figures xii

Abstract xvi

1 INTRODUCTION 1
1.1 Overview of Video Compression . 1
1.2 Motion Estimation . 4

1.2.1 Block matching . 5
1.2.2 Long-term memory motion compensation 8

1.3 Low Complexity Motion Estimation
Algorithm . 9
1.3.1 Low complexity motion estimation for

conventional block matching 10
1.3.2 Low complexity motion estimation for LTMC 11

1.4 Fault Resilient Compression . 13

2 DIRECTED SEARCH 16
2.1 Introduction . 16
2.2 Directed Search . 20

2.2.1 Description of directed search 21
2.2.2 Comparison of directed and non-directed search 26

2.3 Low Complexity Motion Estimation
Algorithm for LTMC . 31

2.4 Experimental Results . 34
2.5 Conclusion . 38

vi

3 MULTIRESOLUTIONAL MOTION ESTIMATION 39
3.1 Introduction . 39
3.2 Proposed Low Complexity Algorithm 42

3.2.1 Multiresolution based MSW location 43
3.2.2 Spatial reduction of motion search range 45
3.2.3 Temporal reduction of motion search range 55
3.2.4 Complexity reduction by employing

HTFM as a metric . 56
3.2.5 Experiments . 58
3.2.6 Multiresolution Search for H.264 / MPEG-4 AVC 62

3.3 Conclusion . 65

4 EFFICIENT MEMORY MANAGEMENT CONTROL FOR H.264 67
4.1 Introduction . 67
4.2 Efficient Memory Management

Control For LTMC . 70
4.2.1 Data generation stage . 72
4.2.2 Frame-selection stage . 74
4.2.3 Encoding stage . 75
4.2.4 Example . 76

4.3 Experiments . 77
4.4 Conclusion . 80

5 FAULT RESILIENT COMPRESSION 1 81
5.1 Introduction . 81
5.2 System Level Error Tolerance

for Video Compression Systems . 84
5.3 System Level Error Tolerance

for Motion Estimation: Analysis . 86
5.3.1 Motion estimation . 87
5.3.2 Matching process architecture and model 90
5.3.3 Fault effect modeling for MMC process 94

5.4 Test Vector Generation & Testing Algorithm 102
5.4.1 Testing metric . 102
5.4.2 Testing algorithm design . 103
5.4.3 Admissibility testing . 107
5.4.4 Pseudo code for high-in-range bit testing 110
5.4.5 Test vector generation . 112

1This chapter is based upon work supported in part by the National Science Foundation under
Grant No. 0428940. Any opinions, findings, and conclusions or recommendations expressed in
this paper are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation.

vii

5.5 Performance of Proposed System Level Error Tolerance Scheme . . 115
5.5.1 Yield-rate and probability of fault 116
5.5.2 Yield-rate increase achievable with error tolerance 117

5.6 Conclusion . 120

Bibliography 122

viii

List of Tables

1.1 Fault effect analysis of a MPEG-2 video encoder depicted in Figure
1.1 (a). 15

2.1 Simulation results of directed search using MS I (DS I) and using
MS II (DS II). T is the time spent on LTMC per frame and PSNR
represents the prediction error variance in dB. For each sequence,
frames from 1 to 300 are used with frame skip parameter 2. The
length of the frame buffer used is set to 10, and spiral ordered full
search is used. For the computational time, the median of 5 exper-
imental results is used. Based on the results we adopt MS I as the
macro-block selection algorithm for our directed search. 24

2.2 Motion tracking performance of the directed and non-directed searches.
Each entry shows the percentage of blocks for which the best match
found with the extreme search (search over all frame) is also found
using directed search and non-directed search, both based on the
normal small search window. In this table, 1st, 2nd, and 3rd rep-
resent the best, the second best, and the third best match found
from extreme search. “Other” represents the matching block which
is worse than the third best match. 26

2.3 MV overhead for LTMC using the directed search (DS), non-directed
search (F10), and the conventional motion estimation which uses just
one reference frame (F1), and the total number of bits to represent
difference frames. For this simulation, all frames except the first
frame are set as P frames. H.263+ ([10]) and the MV prediction
algorithm proposed in [79] is used to generate the results. 28

ix

2.4 Computational complexity and prediction error variance in dB scale
for F1, F10. F1: Outward spiral ordered conventional full search
which uses just one reference frame, and employs DTFM. F10: Out-
ward spiral ordered full search which employs non-directed search
and DTFM, and the frame buffer length is 10. T means the time
required for LTMC per frame and PSNR represents the prediction
error variance in dB scale. For each sequence, frames from 1 to 300
are used with frame skip parameter 2. The length of the frame buffer
used is set to 10, and spiral ordered full search is used. For the com-
putational time, median is selected among 5 experimental results for
fair comparisons. 34

3.1 Performance of the proposed algorithm. For FWL, 32× 32 MSW is
used. For MRS algorithms, level 2-MSW is 16 × 16. All ME algo-
rithms employ DTFM except MRSS2,H and MRSS2,T,H and spiral
ordered FS in the given MSW. The length of the frame buffer is
10. For each sequence, the first 300 frames are used with frame skip
parameter 2. PSNR represents the residual frame energy in dB scale. 57

5.1 Fault effect analysis of a MPEG-2 video encoder depicted in Figure
1.1 (a). 85

5.2 Effect of in-range SF1 faults in the cumulative adders in terms of
PSNR degradation (dB). Negative entry represents PSNR degrada-
tion, and positive entry represents PSNR enhancement. These re-
sults are achieved by using MPEG-2 TM5 and the matching process
architecture in Figure 5.1 with test sequences. 97

5.3 Effect of single fault in AD-PE in terms of PSNR degradation (dB).
Negative entry represents PSNR degradation, and positive entry rep-
resents PSNR enhancement. These results are achieved by using
MPEG-2 TM5 and the matching process architecture in Figure 5.1
with test sequences. 100

5.4 α(p): number of maximum inputs required to excite n = p bit position.106

5.5 The number of tests required for the testing of Type-2 structure in
Figure 5.2. 113

5.6 The number of tests required for each high-in-range bit testing for
Table 5.5. 113

x

5.7 The number of tests for the proposed and exhaustive testing for
Type-1, Type-2, and Type-3 architectures in Figure 5.2. 114

5.8 Yield-rate Yr and the probability of k fault case PX(k) 115

5.9 The percentage of acceptable faults by the proposed error tolerance
scheme for Type-1, Type-2, and Type-3 architecture in Figure 5.2.
SSF: single stuck-at fault, DSF: double stuck-at fault. 115

xi

List of Figures

1.1 Schematic diagram of MPEG (a) encoder and (b) decoder. 3

1.2 Schematic diagram of conventional block matching. 6

1.3 Block matching for the long-term memory motion compensation. . . 8

2.1 Schematic diagram of (a) fixed search window location and (b) di-
rected search. 18

2.2 Schematic diagram of directed search. The directed search strategy
locates motion search windows in a frame buffer for a given macro-
block MB. B∗

t0−1 is the best matched block in the reference frame
ft0−1 for the given macro-block. The directed search locates the mo-
tion search window in the reference frame ft0−2 by using the motion
vector information of the macro-block that has the largest overlap
with B∗

t0−1. 21

2.3 Probability density of spatial displacements mvx, mvy, DMVx =
mvx − m̂vx, and DMVy = mvy − m̂vy for Stefan QCIF sequence
by using the directed search. m̂vx is the predicted horizontal motion
vector component, and m̂vy is the predicted horizontal motion vector
component. 29

2.4 Probability density of spatial displacements mvx, mvy, DMVx =
mvx − m̂vx, and DMVy = mvy − m̂vy for Stefan QCIF sequence
by using the non-directed search strategy. m̂vx is the predicted hori-
zontal motion vector component, and m̂vy is the predicted horizontal
motion vector component. 30

xii

2.5 The effects of reducing the motion search window in a frame buffer for
directed (DS) and non-directed search (NDS) strategy, when the area
of motion search window is reduced to 2Ws×2Ws. Ws = {6, . . . , 15}
is used for the simulation. (a) QCIF Foreman, (b) QCIF Mother &
Daughter, (c) QCIF Stefan. 31

2.6 Comparison of the proposed algorithm with the hierarchical norm
ordered search (NH) algorithm for Foreman QCIF sequence. 35

2.7 Comparison of the proposed algorithm with the hierarchical norm
ordered search (NH) algorithm for Mother & Daughter QCIF sequence. 36

2.8 Comparison of the proposed algorithm with the hierarchical norm
ordered search (NH) algorithm for Stefan QCIF sequence. 37

3.1 Proposed motion estimation using multiresolution search. 40

3.2 Schematic diagram of proposed multiresolution search. 42

3.3 Schematic diagram of motion search window location by multireso-
lution search. 44

3.4 Prob{D ≤ d} which represents the cumulative distribution function
of the absolute distance D between the best match and the center
of the MSW in a reference frame. (a) vertical component and (b)
horizontal component of the absolute displacement D.Seven QCIF
test sequences are used, all the test sequences contain 100 frames. . 46

3.5 Examples of smooth error surface and non-smooth error surface. . . 47

3.6 β(x, y) − α(x, y) for good candidates. The experiment is done for
several typical QCIF sequences. 49

3.7 Prob{SADk
L2,best is best|Z = z}. For this simulation, seven QCIF

test sequences are used, all the test sequences contain 100 frames. . 56

3.8 Comparison of the performance for various ME algorithms for LTMC
using Foreman sequence. Each computational time is normalized by
TNDS, where TNDS is the computational complexity of the algorithm
which employs FWL and DTFM. PSNR is average energy of residual
frame in dB scale. 58

xiii

3.9 Comparison of the performance for various ME algorithms for LTMC
using Mother & Daughter sequence. Each computational time is
normalized by TNDS, where TNDS is the computational complexity
of the algorithm which employs FWL and DTFM. PSNR is average
energy of residual frame in dB scale. 59

3.10 Comparison of the performance for various ME algorithms for LTMC
using Stefan sequence. Each computational time is normalized by
TNDS, where TNDS is the computational complexity of the algorithm
which employs FWL and DTFM. PSNR is average energy of residual
frame in dB scale. 60

3.11 RD and complexity performance for it Mother & Daughter QCIF
sequence. Each graph from the top shows RD performance, relative
PSNR (PSNRFS+DTFM−PSNRMRS+HTFM), and the speed-up fac-
tor of our proposed algorithm (MRS with HTFM) compared to FS
with DTFM, respectively. 62

3.12 RD and complexity performance for it Foreman QCIF sequence.
Each graph from the top shows RD performance, relative PSNR
(PSNRFS+DTFM − PSNRMRS+HTFM), and the speed-up factor of
our proposed algorithm (MRS with HTFM) compared to FS with
DTFM, respectively. 63

3.13 RD and complexity performance for it Stefan QCIF sequence. Each
graph from the top shows RD performance, relative PSNR (PSNRFS+DTFM−
PSNRMRS+HTFM), and the speed-up factor of our proposed algo-
rithm (MRS with HTFM) compared to FS with DTFM, respectively. 64

4.1 Discarding a reference frame from the virtual frame buffer to form a set

of references for the real frame buffer. 76

4.2 Relative rate-distortion performance of the proposed technique with re-

spect to the sliding-window technique, Top: SW4, middle: SW3, and

bottom: SW2. Full 5 uses virtual and real buffers of size 5 frames. The

result is for 100 frames of CIF Stefan sequence. 78

4.3 Relative rate-distortion performance of the proposed technique with re-

spect to the sliding-window technique, Top: SW4, middle: SW3, and

bottom: SW2. Full 5 uses virtual and real buffers of size 5 frames. The

result is for 100 frames of CIF Foreman sequence. 79

xiv

5.1 Example of ME implementation architecture with a parallel match-
ing process architecture. AD block represents an absolute-difference
and an add processing element (AD-PE), M block represents min-
imum processing element (M-PE), and R block represents memory
register [59]. 88

5.2 Examples of motion estimation matching process architecture. In
this figure, only processing elements are shown without showing in-
puts for simplicity. Details of these processing elements are shown in
Figure 5.1. Type-1: upper left, Type-2: upper right, Type-3: lower
left, and Type-4: lower right [59]. 91

5.3 Dependence graph (left) of the Type-2 architecture and a correspond-
ing tree graph model (right). Next to each PE we show the number
of bits needed to represent partial SADs at the output of each node. 93

5.4 Input x vs. output x̂ of a data bus (a) when there is SF1 fault in a
data line n = p, and (b) when there is SF0 fault in a data line n = p. 94

5.5 Dynamic range transform (a) no fault, (b) uniform shift, (c) and (d)
non-uniform shift. The faults in this example are single SF1. 96

5.6 Interpretation of each node as the cascaded operations on input dy-
namic ranges. 101

5.7 Schematic flow chart for the proposed testing algorithm 105

5.8 Overflow effect at a node when data bus width is m. 107

5.9 Given yield-rate (YR) and the improved yield rate by the proposed
fault tolerance scheme for Type-1 architecture in Figure 5.2. 117

5.10 Given yield-rate (YR) and the improved yield rate by the proposed
fault tolerance scheme for Type-2 architecture in Figure 5.2. 118

5.11 Given yield-rate (YR) and the improved yield rate by the proposed
fault tolerance scheme for Type-3 architecture in Figure 5.2. 119

5.12 Typical progressions in yield learning [30]. 120

xv

Abstract

Thanks to the fast development of network technology, transmission of high qual-

ity multimedia data becomes essential. However, the growth of data transferring

capability is not always matched with the growth of bandwidth, specifically for wire-

less mobile environment. This is why the multimedia compression is so important

for information technology development. Due to this importance, multimedia com-

pression standards such as JPEG [6] and JPEG2000 [11] for still image compression

and ISO/IEC MPEG-1 [4],MPEG-2 [7],MPEG-4 [9], ITU-T H.261 [5], H.263 [8],

H.263+ [10], and JVT H.264/MPEG-4 AVC [29] for video compression have been

developed since the early 90’s.

Video compression is achieved through computationally complex encoding oper-

ations. Among these, the motion estimation / compensation is most complex. The

complexity and the memory requirement is further increased in the long-term mem-

ory motion compensation (LTMC,[79]) that significantly improves coding efficiency

by utilizing multiple reference frames. Therefore, in this dissertation, we propose

low complexity motion estimation algorithms which use information of previously

encoded and multiresolution frames to speed up the search. The main novelty of

xvi

our proposed work comes from defining search and complexity reduction techniques

that are optimized for LTMC. Also, we propose an efficient memory management

control technique to reduce the decoder memory requirement for LTMC. For this

we design a novel greedy search algorithm which searches for a subset of reference

frames that results in minimal performance degradation rather than checking all

the combination of reference frames as the optimal solution does.

Also, we propose a novel system-level error tolerance scheme specifically tar-

geted for multimedia compression algorithms. While current manufacturing pro-

cess classifies fabricated systems into two classes, namely, perfect and imperfect,

our proposed scheme employs categories which are based on acceptable / unaccept-

able performance degradation. By enabling the use of systems that would otherwise

have been discarded we seek to increase the overall yield rate in the system fabrica-

tion process. To achieve this, we propose hardware testing algorithms that aim at

determining if faults in a given chip produce acceptable performance degradation,

and a technique that can cancel the effect of those among the acceptable faults that

can be compensated.

xvii

Chapter 1

INTRODUCTION

1.1 Overview of Video Compression

Video compression plays an important role in transmission and storage of video

sequences. Lots of video applications have emerged thanks to development of video

compression algorithms. These applications include High-Definition TV (HDTV)

systems, Digital Versatile Disk (DVD), video conferencing, and streaming video over

the Internet. Video compression standards such as ISO/IEC MPEG-1 [4],MPEG-2

[7],MPEG-4 [9], ITU-T H.261 [5], H.263 [8], H.263+ [10], and the most recent video

compression standard JVT H.264/MPEG-4 AVC [29] have played a key role in the

development of video compression algorithms.

For still image compression, transform based compression standards such as

JPEG [6] and JPEG2000 [11] have been widely used. These still image compres-

sion algorithms can be used to encode each video frame independently. However,

video sequences contain high temporal redundancy which can not be removed by

1

only applying a still image compression algorithm to each frame of video sequence.

For video signals, the correlation between two consecutive frames is usually high.

Thus, to take advantage of this correlation, motion-compensated DPCM (MC-

DPCM) was proposed in [37]. This technique encodes displaced frame difference

values for those pixels in the changed area with respect to the previous frame.

Due to its high efficiency in reducing temporal correlation, most video compres-

sion standards employ motion-compensated predictive coding which uses previous

or future information to predict the current frame. The resulting video coding

scheme which employs motion-compensated predictive coding and transform cod-

ing of frame residual is usually called hybrid video coding [74]. Hybrid video coding

schemes achieve its high compression ratio by exploiting spatial and temporal re-

dundancy present in video signals.

Motion-compensated predictive coding is achieved by motion estimation and

motion compensation (ME/MC) for most video compression standards. Motion

compensation is the process of reducing temporal redundancy and generating resid-

ual frame, and motion estimation is the process of searching a best match for a group

of pixels in the current frame. Residual frames resulting from ME/MC are spatially

transformed usually by discrete cosine transform (DCT, [60]) or a DCT like trans-

form such as the integer transform employed in JVT H.264/MPEG-4 AVC [29].

The transform coefficients are, then, quantized and entropy coded for compression.

Most video compression standards employ these schemes, and an example is shown

2

Frame
Memory

(1)

Pre-
process

Input

+ DCT Q

Regulator

VLC
Encoder

Buffer

Output

Inv Q

IDCT

+

Frame
Memory

(2)

Motion
Compensation

Motion
Estimation

Pr
ed

ic
ti

ve
 F

ra
me

Mo
ti

on
 V

ec
to

rs

+

-

(a)

Input data

Buffer
VLC

Decoder
Inv Q

IDCT

+

Previous
picture store

Future
picture store

M
u
x

+1/2 Buffer

Decoded data

Step size

(b)

Figure 1.1: Schematic diagram of MPEG (a) encoder and (b) decoder.

in Figure 1.1 where a schematic diagram of an MPEG-2 encoder and decoder is

shown [55]. The motion estimation and compensation process is located in the

feedback loop of the encoding algorithm. As one can see, a frame that is available

at the decoder side is fed through the feedback loop, therefore the motion compen-

sation uses this decoded frame as a reference frame rather than the original frame.

The purpose of this feedback loop is to maintain the synchronization between the

3

encoder side and the decoder side so that the encoder and the decoder use same

frame for motion compensation and frame reconstruction.

Video compression algorithms have traditionally employed computationally com-

plex encoders and computationally light decoders. Most of the gains in compression

performance have been achieved through computationally complex encoder opera-

tions. Moreover recent video compression standards which provide better compres-

sion performance have more functionalities and require more complex operations.

Therefore, for video compression systems, video encoders are much more compli-

cated, and expensive than video decoders. In the past, there were few applications

where customers would have to make use of a video encoder. However, recently,

many applications which require both video encoding and decoding, such as real

time video-conferencing, mobile video telephony, and digital video recording (e.g.,

TiVo) have emerged. Therefore, it is very important to reduce the computational

complexity of a video encoder retaining the compression performance. Because the

motion estimation process is one of the most computationally complex operations

in an encoder, reducing the computational complexity of motion estimation is very

important for achieving a low complexity video encoder.

1.2 Motion Estimation

Motion estimation is an efficient tool for video compression to exploit temporal

correlation between adjacent frames in a video sequence. Below, we provide a

4

brief overview of block matching, which is the most widely used motion estimation

scheme. Also, we will provide an overview of long-term memory motion compensa-

tion which is an extension of the block matching scheme.

1.2.1 Block matching

There have been a lot of research on ME/MC. Motion estimation techniques can

be classified into four main groups [28]: i) gradient techniques, ii) pel-recursive

techniques, iii) block matching techniques, and iv) frequency-domain techniques.

Among these motion estimation techniques, block matching techniques are most

widely used for video compression standards due to their simplicity and compression

performance.

Block matching is based on the assumption that all pixels in a block move by

the same amount [51]. Based on this assumption, block matching divides the scene

(each frame) into macroblock regions (16×16 pixel blocks), and then assigns one

or several motion vectors to a macroblock or sub-macroblocks. More specifically,

to reduce the temporal redundancy between frames, current frame is divided into

non-overlapping N × N (usually N = 16) blocks (macro-blocks), then the best

matches for these blocks are searched in the previous frame. A schematic diagram

of conventional block matching is shown in Figure 1.2.

5

Reference
Frame

Current
Frame

Search
Window

Motion Vector

Motion Vector

Figure 1.2: Schematic diagram of conventional block matching.

A motion vector indicates the best matching block for the given macro-block.

Then this motion vector information and block differences are encoded and trans-

mitted to the decoder. The efficiency of the motion compensation depends on the

accuracy (integer pel, half pel), the motion vector, and levels of search (16×16, 8×8)

[31]. The motion compensation and the motion estimation process are located in

the feedback loop of the encoding algorithm. As one can see in Figure 1.1, a frame

that is available at the decoder side is fed through the feedback loop, therefore the

motion compensation uses this decoded frame as reference frame rather than the

original frame. The purpose of this feedback loop is to maintain the synchroniza-

tion between the encoder side and the decoder side that is required to reduce the

temporal redundancy [67].

A motion estimation algorithm is composed of a searching process and a match-

ing process. The matching process is the process which computes the distortion

6

between the current block and a candidate block. The searching process selects

candidate blocks from given possible set of candidates. The simplest but computa-

tionally heavy search algorithm is the full search (or exhaustive search) algorithm.

For block matching motion estimation using full search, a block of size N×N (refer-

ence macro block X) of the current image is matched with all the blocks (candidate

blocks Y) in the search window of size (2w + 1)× (2w + 1). The motion estimation

can be described as,

D(m,n) =
∑

(i,j)∈A

F (x(i, j)− y(i + m, j + n)) (1.1)

v = arg min
(m,n)∈S

D(m,n), (1.2)

where

A = [0, N − 1]× [0, N − 1],

S = [−w,w]× [−w,w].

x(i, j) and y(i, j) are the (i, j)th pixel values of blocks X and Y , respectively.

The output from a motion estimation is a motion vector v which indicates the

translational motion between a current block and the best candidate block from a

search. In the matching process, if F (·) is the absolute value function, then the

matching metric is called the sum of absolute differences (SAD), and if F (·) is the

7

Reference frames in a
frame buffer

Frame Buffer

Current
Frame

Search
Windows

Motion Vector

Motion Vector

Figure 1.3: Block matching for the long-term memory motion compensation.

square function, then the matching metric is called the sum of squared differences

(SSD).

1.2.2 Long-term memory motion compensation

The long-term memory motion compensation is an extended version of conventional

block matching which can provide significant compression performance enhance-

ment.

Long term memory motion compensation (LTMC) has been recently introduced

in the literature [79] as an approach to extend the motion search range by using

multiple decoded frames as reference frames, instead of using just one decoded frame

as in conventional motion compensation. A schematic diagram of LTMC is shown

8

in Figure 1.3. By extending the motion search range, motion compensation gain

can be significantly increased (1-2dB increase by incorporating with h.263+ [79]).

Due to these compression performance gains, LTMC was accepted as the ME/MC

scheme for the most recent video compression standard JVT H.264/MPEG-4 AVC

[29, 1]. However, the computational complexity of motion estimation for LTMC is

significantly increased, as well, as compared to a single-frame approach. Therefore,

reducing the computational complexity is even more important in the context of

LTMC.

1.3 Low Complexity Motion Estimation

Algorithm

In this section, we provide a brief overview of low complexity motion estimation

algorithms for conventional block matching and LTMC. The computational com-

plexity of motion estimation process is determined by the total number of candidate

vectors searched, the order of search, and the computational cost of metric computa-

tion for each candidate vector. Fast motion estimation algorithms can be classified

into fast search algorithms or fast matching algorithms. Fast search algorithms

search a subset of candidate vectors instead of the whole set of candidate vectors

in a search window to speed up the motion estimation process, and fast matching

9

algorithms enhance the speed of motion estimation by reducing the computational

cost of matching metric.

1.3.1 Low complexity motion estimation for

conventional block matching

For a fast search, the search for the best motion vector takes place within a subset

of candidate vectors. A fast search can use a fixed subset of candidate vectors

as in [51], or it may use a variable subset that depends on scene characteristics.

This variable subset can be determined based on the uni-modal error surface model

where the farther we move from the best position, the worse the match becomes

[40]. Fast search examples based on the uni-modal error surface model are three

step search [42, 45], new three step search [48], two dimensional logarithmic search

[40], conjugate direction search [66], parallel hierarchical one dimensional search

[21], block-based gradient descent search [52], center-biased diamond search [68],

and enhanced predictive zonal search (EPZS) [69, 70]. Other fast search techniques

not using the uni-modal error surface model assumption are successive elimination

algorithm [49] and candidate selection algorithm based on spatial, temporal, and

hierarchical motion vector correlations proposed in [20].

Fast matching algorithms reduce the computational complexity of motion esti-

mation by devising matching criteria which require less computational complexity.

10

Examples of fast matching are the alternating 4:1 pixel decimation technique pro-

posed in [51], fast matching by three fast measures based on the triangular inequal-

ities [50], fast matching using bit-map transformed pixel data [56], deterministic

testing fast matching (DTFM), which has been used in many encoder reference

software implementations such as [3, 35, 1], and hypothesis testing fast matching

(HTFM) proposed in [46].

There are motion estimation algorithms which combine a fast search technique

and a fast matching technique. An example is multiresolution motion estimation

(or hierarchical motion estimation) proposed in [33, 19, 15, 14, 80, 72, 81, 47, 57, 13].

The multiresolution motion estimation (MRME) is a fast motion estimation algo-

rithm based on using image pyramids which are composed of several low resolution

versions of a frame. The MRME computes a coarse motion vector using the lowest

resolution version of a frame, and then refines the coarse motion vector using the

higher resolution versions of the frame.

1.3.2 Low complexity motion estimation for LTMC

LTMC is an extension of conventional block matching. Thus, fast search and fast

matching algorithms introduced in the previous section can be directly applied to

LTMC. However LTMC has its own characteristics, which can be used to design a

fast algorithm different from those used in conventional block matching. The main

characteristic of LTMC is that a very large number of motion candidates should

11

be searched, and due to the multi reference frame nature of LTMC, many among

these motion candidates are similar to each other.

In [79], a fast search algorithm for LTMC is proposed to overcome the high

computational complexity. This fast search algorithm employs a hierarchical search

strategy that uses a norm ordered search method based on the triangle inequality.

In [77, 76], a lossy version of the norm ordered search was proposed to speed up the

hierarchical search strategy for LTMC. In [71], the enhanced predictive zonal search

(EPZS, [69, 70]) was modified for LTMC. In this algorithm, the authors proposed

to use sophisticated predictor and EPZS for search.

In this dissertation we propose two low complexity motion estimation algorithms

for LTMC. The first algorithm we propose locates a motion search window at a good

position in a frame buffer by using the encoding information of previous frames. We

call this proposed algorithm directed search. By locating motion search windows at

good positions, the performance gains are achieved as compared to the conventional

schemes which locate search windows at fixed spatial positions. Also, because an

initial search point selected by our algorithm is close to best matches, we can use

smaller motion search windows, thus, reduce the computational complexity. To

reduce the computational complexity more, we employ HTFM proposed in [46] as

a matching metric.

The second algorithm we propose locates the motion search windows at good

positions by using multi-resolution search. In our proposed algorithm, we locate a

12

motion search window by using multi-resolution search, and then decide the search

range based on the characteristic of the frame gathered from a coarse resolution

version of the frame. While multi-resolution motion estimation algorithms are well

known, the main novelty of our proposed work comes from defining search and

complexity reduction techniques that are optimized for LTMC. In this algorithm,

we can also detect cases such as occlusion and scene changes early, which allows

to discard early candidates that will not provide a good match. For the proposed

algorithm, to reduce the computational complexity more, we employ HTFM as a

matching metric.

1.4 Fault Resilient Compression

To achieve real time video encoding, complex encoding operations such as motion

estimation, DCT, and entropy coding have been implemented as hard wired circuits

using VLSI technologies [59]. Video compression in itself is a “lossy” process,

i.e., only approximate versions of the acquired data are stored, transmitted and

displayed. For this reason, often circuit imperfections result in perfectly usable

compressed data which can be decompressed with a possibly degraded quality.

Therefore, by enabling the use of systems that would otherwise have been discarded,

we can increase the overall yield rate in the system fabrication process, and decrease

the cost of video encoders.

13

For video compression systems, not all the faults in the implementation of a

video encoder are intolerable from the system level point of view. Consider as

an example a standard MPEG-2 encoder which contains building blocks, such as

motion estimation/compensation, discrete cosine transform (DCT), quantization,

entropy coding, and various memory buffers [55]. Faults in each of these components

have completely different effects on the operation of the complete system. This is

illustrated by Table 1.1 [25], which considers the effects of faults such as memory

defects and numerical errors in the DCT computation [54, 36, 75], as well as errors

in motion estimation. We consider the resulting errors to be catastrophic if they

prevent the creation (or decoding) of a valid bitstream. Special consideration is

given to faults that produce an error propagation. It is important to note that

many faults affecting different parts of a video compression system are in fact

non catastrophic, although obviously they result in degradation in coding efficiency

and/or visual quality.

In this dissertation, we propose a novel system-level error tolerance scheme

specifically targeted for ME/MC process of video compression. Instead of the per-

fect / imperfect categories which are employed by current manufacturing process,

our proposed scheme employs categories which are based on acceptable / unac-

ceptable performance degradation. For this, we analyze the effect of faults in the

motion compensation stage of video encoding process, and propose a fault conceal-

ment technique which can compensate for the effect of some faults. Also, in this

14

Catastrophic Error Visual Coding
Error Propagation Quality Efficiency

Degradation Degradation

Frame Memory(1) No No Yes Yes

DCT No No Yes Yes

Q No No Yes Yes

Inv Q No Yes Yes Yes

IDCT No Yes Yes Yes

Frame Memory(2) No Yes Yes Yes

ME No No Possible Yes

MC No Yes Yes Yes

VLC Encoder Yes Yes Yes Yes

Table 1.1: Fault effect analysis of a MPEG-2 video encoder depicted in Figure 1.1
(a).

work, we propose a testing algorithm which requires a small number of test vectors,

thus leading to low cost testing.

This dissertation is organized as follows. In Chapter 2, we propose the directed

search as a fast motion estimation for LTMC. In Chapter 3, we propose a novel

multi-resolution motion estimation for LTMC. In Chapter 4, we propose an effi-

cient memory management control algorithm. In Chapter 5, we propose an error

tolerance scheme for ME/MC process.

15

Chapter 2

DIRECTED SEARCH

2.1 Introduction

Fast development of semiconductor technologies has made high capacity, fast access

memories available at increasingly lower cost. Long-term memory motion compen-

sation (LTMC) extends the motion search range to multiple decoded frames to

significantly increase prediction gain performance [79]. Due to the potential perfor-

mance gains [78], it is used in the most recent H.264/MPEG-4 AVC video compres-

sion standard [29]. However, the computational complexity of motion estimation

(ME) for LTMC is also significantly increased as compared to a single-frame ap-

proach [38]. A schematic diagram of LTMC is shown in Figure 1.3. As one can see

from this figure, search range for LTMC is extended to multiple decoded frames

as compared with a conventional block matching in Figure 1.2. By extending the

motion search range, motion compensation (MC) gain is significantly increased.

16

Due to these performance gains, LTMC is used as the ME/MC scheme for JVT

H.264/MPEG-4 AVC compression standard.

However, the computational complexity of motion estimation (ME) for LTMC is

significantly increased, as well, as compared to a single-frame approach. Therefore,

reduction of the required computational complexity is one of the most challenging

issues for LTMC. In [79], a fast search algorithm for LTMC is proposed to over-

come this high computational complexity. This fast search algorithm employs a

hierarchical search strategy that uses a norm ordered search method based on the

triangle inequality. In this algorithm, candidate blocks in the search space having

a similar norm to the norm of the block being compensated are tested first. In

[77, 76], a lossy fast estimation algorithm, which we will call the WLG algorithm,

is proposed to speed up the hierarchical search strategy for LTMC. The WLG al-

gorithm employs sub-sampling of both the search range and the block for which

distortion is measured, in order to speed up the ME for LTMC. The sub-sampling

of the search space was achieved through loosening the lower bound for triangle

inequality testing, and the sub-sampling of the block was achieved by measuring

the block activity in WLG algorithm.

The WLG algorithm locates the motion search window (MSW) at a fixed po-

sition in each of the frames. However, if we locate MSWs at fixed locations in a

frame buffer for a given macro-block (MB, a block of 16 × 16 pixels), it is highly

possible that the “oldest” frames in a frame buffer do not contain matching blocks

17

FRAME
BUFFER

CURRENT
FRAME

MSW

FRAME
BUFFER

CURRENT
FRAME

MSW

(a) (b)

Figure 2.1: Schematic diagram of (a) fixed search window location and (b) directed
search.

due to the reduced correlation between the current frame and the reference frames

located further in the frame buffer. Therefore, if we can locate MSWs at a good

position adaptively in a frame buffer, we can improve the performance of LTMC,

specifically for sequences with high motions. This scenario is shown in Figure 2.1.

As one can see from this figure, for high motion scenes, a fixed window location can

not follow the real matching, however, directed search can follow the real matching.

In this chapter, we propose a novel low complexity ME algorithm for LTMC

which employs a directed search. The directed search locates motion search win-

dows in a frame buffer by using ME results of previous frames. This lets the

location of the motion search windows change adaptively as the search proceeds to

older frames in the frame buffer.

The main benefit of the directed search comes from the fact that it can detect

a large motion in a frame buffer. LTMC algorithms like the WLG algorithm use a

18

fixed set of motion vectors, for example, a search region Γ = [−16, 15]× [−16, 15].

Therefore, if a better match is located outside of the fixed search region Γ, it will

be missed during the search. Instead, our proposed ME algorithm uses a flexible

set of motion vectors in a frame buffer, for example, Γ′ = [−16 + ucx, 15 + ucx] ×

[−16 + ucy, 15 + ucy], where ucx and ucy are adaptively determined by the directed

search, and therefore, makes it more likely that large motions can be detected and

compensated.

In addition, because the directed search keeps track of best matched blocks

in a frame buffer, we can reduce the computational complexity significantly by

reducing the motion search window area. To further reduce the computational

complexity, we use hypothesis testing fast matching (HTFM, [46]) as a fast match-

ing criterion. HTFM can reduce the computational complexity greatly compared

to a conventional deterministic testing fast matching (DTFM, [46]) by allowing an

early termination of matching metric computation based on the likelihood that a

motion candidate will not be the best one.

Simulation results show that by employing both HTFM and the directed search

with reduced motion search window, we can reduce the computational complexity

approximately 75%-90% and 10%-67%, as compared to full search and the WLG

algorithm, respectively. It is also observed that by locating MSWs at better posi-

tions, our proposed algorithm can achieve simultaneous complexity reduction and

19

PSNR gain for high motion video sequences as compared to full search and the

WLG algorithm.

2.2 Directed Search

A MSW (or a motion search area) is a set of overlapped blocks in a reference frame

that will be searched for a best matching block. Due to the temporal correlation

between adjacent video frames, conventional motion estimation algorithms, which

employ only one reference frame, center the MSW at the same spatial location of

the block being compensated. However it is clear that as the temporal displacement

between a current frame and a reference frame increases, as in the case in LTMC,

the correlation between these two frames is reduced as well. Therefore, if we locate

a MSW at a fixed location for the given macro-block, the correlation between a

macro-block in a current frame and blocks in a MSW also decreases as the temporal

displacement between a current frame and a reference frame increases. This can be

easily seen for example in cases where there is camera panning. Additionally, if the

translational motion of an object in a macro-block (MB) of a current frame is very

large, then it is highly possible that the object will not be included in the motion

search window if the temporal displacement between a current frame and a reference

frame is large enough. LTMC uses multiple reference frames for ME, therefore it is

very likely that for high motion scenes the “oldest” frames in the frame buffer will

not provide good matches if MSWs are restricted to be same in all frames. In this

20

Reference frame in a
frame buffer

Most current
reference frame

in a frame buffer

Frame Buffer

New search window

Current
Frame

MB0

*
1tB

01

*
tmv

 'mv

Figure 2.2: Schematic diagram of directed search. The directed search strategy
locates motion search windows in a frame buffer for a given macro-block MB.
B∗

t0−1 is the best matched block in the reference frame ft0−1 for the given macro-
block. The directed search locates the motion search window in the reference frame
ft0−2 by using the motion vector information of the macro-block that has the largest
overlap with B∗

t0−1.

section, we propose a directed search as a MSW location algorithm that can solve

the problem caused by the fixed location of MSWs in reference frames.

2.2.1 Description of directed search

Before we provide a detailed discussion of directed search strategy, let us introduce

the following notation:

• ft0 : frame whose time index is t0,

• MB(i, t0): The ith macro-block in ft0 ,

21

• B∗(i, t0): The block that best matches MB(i, t0) using LTMC,

• B∗
t1(i, t0): The block that best matches MB(i, t0) in a reference frame ft1 ,

• −→mv∗

t1
(i, t0): Spatial displacements between B∗

t1(i, t0) and MB(i, t0).

In the above definitions, a block is a set of 16× 16 pixels which can be located

anywhere in a frame, while a MB is a block which is aligned at 16× 16 pixels grid.

This is an important distinction because motion information is known for MBs

but not for all blocks. Using the above definitions, for a given MB, MB(i, t0), in

the current frame, the best motion vector −→mv∗

t0−1(i, t0) is found using conventional

single-frame motion search algorithm (e.g., full search (FS), three-step search [42],

or two-dimensional logarithmic search [40]) in the most recent reference frame lo-

cated in a frame buffer, and the results are stored. The directed search uses the

best match in frame ft0−1 as well as the results of matching MBs in frame ft0−1

to blocks in frame ft0−2. B∗
t0−1(i, t0) overlaps with up to 4 MBs for which motion

was computed before. Each of these MBs points to a best match in frame ft0−2.

Our algorithm then chooses one among these 4 MBs, and makes the corresponding

position in frame ft0−2 the center of the search to find a match for MB(i, t0). In

the following, we describe the macro-block selection algorithm used to choose the

path of the directed search.

22

2.2.1.1 Macro-block selection for directed search

The best matching block B∗
t0−1(i, t0) overlaps with up to 4 MBs in frame ft0−1. The

motion vectors for these overlapped MBs for reference frame ft0−2 and SAD values

corresponding to these motion vectors (MV) which were stored at the previous

motion estimation stage are available as information for our directed search. The

other information we can use in deciding which MB to use is the area of the overlap

with each macro-blocks overlapping with B∗
t0−1(i, t0). We compare two simple

approaches of MB selection.

The first MB selection algorithm (MS I) selects directions based on the ove-

lapping areas. Since block matching ME algorithms are based on the assumption

that all pixels in a block move by the same amount, a good MV candidate can be

obtained by using only a fraction of pixels in a block [51]. Therefore, among MBs

that overlap with B∗
t0−1(i, t0), MS I chooses the macro-block MB(i′, t0 − 1) that

contains the largest fraction of B∗
t0−1(i, t0). If there is a tie for the areas, then we

choose the overlapped MB which has a MV with the smallest SAD value calculated

at the previous motion estimation stage.

The second approach (MS II) uses previously stored SAD values of the over-

lapped MBs as well as the areas of overlapping. More specifically, among at most

4 overlapped MBs, MS II calculates the area of the overlapped region for each MB.

If the area of an overlapped region is greater than 75%, then MS II chooses this

MB MB(i′, t0 − 1), otherwise among these MBs, MS II selects the MBs whose

23

Table 2.1: Simulation results of directed search using MS I (DS I) and using MS
II (DS II). T is the time spent on LTMC per frame and PSNR represents the
prediction error variance in dB. For each sequence, frames from 1 to 300 are used
with frame skip parameter 2. The length of the frame buffer used is set to 10,
and spiral ordered full search is used. For the computational time, the median of 5
experimental results is used. Based on the results we adopt MS I as the macro-block
selection algorithm for our directed search.

Directed Search I Directed Search II

T [sec] PSNR [dB] T [sec] PSNR [dB]

Foreman(QCIF) 6.49 29.81 6.47 29.81

Stefan(QCIF) 9.47 22.07 9.42 22.06

Mother & daughter(QCIF) 6.24 34.70 6.24 34.70

overlapped area is greater than 20%, then compares the SAD values which are

computed at the previous ME stage for these selected MBs, and then chooses the

MB MB(i′, t0 − 1) whose SAD value is smallest.

If a MB MB(i′, t0− 1) is chosen among overlapped MBs, then by using the MV

−→mv∗

t0−2(i
′, t0 − 1) of MB(i′, t0 − 1), the center of the MSW for MB(i, t0) in frame

ft0−2 is located at −→mv∗

t0−2(i
′, t0 − 1) + −→mv∗

t0−1(i, t0). In this way, MSWs can be

adaptively located in a frame buffer. The schematic diagram of the directed search

is shown in Figure 2.2.

Because for most of the cases, the overlapped MBs correspond to similar MVs,

the performances of directed search using MS I (DS I) and directed search using

MS II (DS II) are similar, as can be seen in Table 2.1. Since MS I is a much simpler

approach, we choose it for our system.

24

2.2.1.2 Detailed description of the directed search strategy

The directed search using deterministic testing fast matching (DTFM, [46]), MS I,

and outward spiral ordered full search method is described as follows:

Algorithm 1: Directed Search

Step 0: Set k = 1. For MB(i, t0), find B∗
t0−1(i, t0), then store the location of

B∗
t0−1(i, t0) and the corresponding SAD value. Set B∗(i, t0) = B∗

t0−1(i, t0).

Step 1: If k is greater than the number of frames in the frame buffer, then return

the MV corresponding to B∗(i, t0), and stop. Otherwise go to Step 2.

Step 2: According MS I, choose the MB providing best overlap with B∗
t0−k(i, t0).

Step 3: Locate the MSW in frame ft0−k−1 for MB(i, t0) by using the MV infor-

mation of the chosen macro-block at Step 2.

Step 4: Perform the ME in this MSW. During the motion search in this MSW,

find B∗
t0−k−1(i, t0). If this block provides smaller SAD value than the best

SAD found so far, then set B∗(i, t0) = B∗
t0−k−1(i, t0). Increase k by 1, then

go to Step 1.

In Step 4 of the above algorithm, if we use a fast matching criterion like DTFM

or HTFM, we decide B∗
t0−k−1(i, t0) based on the partial metric computation.

25

Table 2.2: Motion tracking performance of the directed and non-directed searches.
Each entry shows the percentage of blocks for which the best match found with
the extreme search (search over all frame) is also found using directed search and
non-directed search, both based on the normal small search window. In this table,
1st, 2nd, and 3rd represent the best, the second best, and the third best match
found from extreme search. “Other” represents the matching block which is worse
than the third best match.

Directed Search

1st 2nd 3rd other

Foreman(QCIF) 93.78% 1.06% 0.39% 4.77%

Stefan(QCIF) 88.55% 1.83% 0.84% 8.78%

Glasgow(QCIF) 90.20% 1.29% 0.53% 7.98%

Coast guard(QCIF) 99.47% 0.07% 0.03% 0.43%

Stefan(CIF) 65.75% 5.73% 2.46% 26.06%

Foreman(CIF) 83.38% 2.46% 1.37% 12.79%

Non-Directed Search

1st 2nd 3rd other

Foreman(QCIF) 91.13% 2.37% 0.76% 5.74%

Stefan(QCIF) 74.00% 6.35% 3.98% 15.67%

Glasgow(QCIF) 89.70% 1.11% 0.56% 8.63%

Coast guard(QCIF) 98.76% 0.49% 0.11% 0.64%

Stefan(CIF) 50.34% 5.50% 3.24% 40.92%

Foreman(CIF) 75.61% 4.75% 2.27% 17.37%

2.2.2 Comparison of directed and non-directed search

To demonstrate the benefits of our approach, we simulate the directed and the non-

directed search algorithms. All video sequences used for these simulations are made

by extracting the last 100 frames from the original sequence. For this simulation the

outward spiral ordered full search approach is used. DTFM is used as a matching

criterion for LTMC, and all frames are coded as P frames to analyze the efficiency

of the search strategies. The number of reference frames in the frame buffer is 10.

26

For comparison, we find the top three matching blocks for each block using the

whole frame as motion search window. This allows us to locate the absolute best

MVs even when high motion scenes are considered. The results from this simulation

are shown at Table 2.2. Each entry in Table 2.2 shows the percentage of blocks

for which the best match found with the extreme search (search over the whole

frame) is also found using directed search and non-directed search, which both use

the normal small search window. From these results, one can see that the directed

search can locate MSWs better than a non-directed search. Also one can see that

for video sequences such as Stefan, which contains large motion, the performance of

directed search strategy is much better than that of non-directed search as we had

suggested earlier. As the frame size increases, it is highly probable that the motion

becomes larger and larger, and therefore the relative performance of directed search

will be better.

However, the directed search has an overhead, because it adaptively locates the

motion search window in the frame buffer, and therefore it requires a large range

of motion vectors. That is, if the non-directed search uses a fixed set of motion

vectors, for example, Γ = [−16, 15] × [−16, 15], the directed search uses a flexible

set of motion vectors Γ′ = [−16 + ucx, 15 + ucx]× [−16 + ucy, 15 + ucy], where ucx

and ucy are adaptively determined. As a result of this loosened restriction on the

motion vector range, one possible drawback is the increased bit rate to transmit

the motion vector information to a decoder.

27

Table 2.3: MV overhead for LTMC using the directed search (DS), non-directed
search (F10), and the conventional motion estimation which uses just one reference
frame (F1), and the total number of bits to represent difference frames. For this
simulation, all frames except the first frame are set as P frames. H.263+ ([10]) and
the MV prediction algorithm proposed in [79] is used to generate the results.

Motion Vector Total Bits

Overhead Per Macro-block

DS F10 F1 DS F10 F1

bits/MB bits/MB bits/MB bits/MB bits/MB bits/MB

Foreman(QCIF) 13.68 13.20 7.60 339.20 339.52 374.96

Stefan(QCIF) 12.16 10.88 6.80 874.88 917.52 964.56

Glasgow(QCIF) 10.08 9.92 6.08 493.28 494.64 511.36

Coast guard 8.32 8.32 3.44 526.80 528.24 589.76

(QCIF)

Stefan(CIF) 14.8 13.2 8.48 632.00 702.72 729.68

Foreman(CIF) 15.68 13.68 8.56 229.76 231.28 256.40

In [79], a MV prediction algorithm is proposed by modifying the H.263-based

median prediction of the spatial displacement vectors [8]. This MV prediction

algorithm is based on extending the region of support for prediction, and uses

temporal displacements to increase the correlation between the predicted motion

vector and a motion vector to be predicted. Even if the directed search loosens

the restriction on the size of MVs, the MV prediction algorithm in [79] is found to

be very efficient in our simulations. The bit overheads for transmitting MVs are

shown in Table 2.3. The histograms of spatial displacements mvx and mvy, and the

residual components after prediction DMVx = mvx−m̂vx and DMVy = mvy−m̂vy

are shown for Stefan QCIF sequence in Figure 2.3 for the directed search, and in

Figure 2.4 for the non-directed search. Therefore we employ this prediction method

28

−50 0 50
0

0.2

0.4

0.6

0.8

1

PDF of mv
x

−20 −10 0 10 20
0

0.2

0.4

0.6

0.8

1

PDF of mv
y

−50 0 50
0

0.2

0.4

0.6

0.8

1

PDF of MVD
x

−20 −10 0 10 20
0

0.2

0.4

0.6

0.8

1

PDF of MVD
y

Figure 2.3: Probability density of spatial displacements mvx, mvy, DMVx = mvx−
m̂vx, and DMVy = mvy − m̂vy for Stefan QCIF sequence by using the directed
search. m̂vx is the predicted horizontal motion vector component, and m̂vy is the
predicted horizontal motion vector component.

to reduce the bit overhead for transmitting the MVs. To calculate the bit overhead

we use the VLC table for motion vector difference (MVD) that is proposed in [10].

As one can see from Table 2.3, the required bit overhead for transmitting MVs is

slightly higher for the directed search than for the non-directed search. It can be

seen that for video sequences like Stefan, which contains large motion, the required

bit overhead is larger than for other sequences which contain small motions. As

the frame size increases, it is highly probable that larger motion will be present,

so that the bit overhead will also increase. However, because the bit rate saving

29

−50 0 50
0

0.2

0.4

0.6

0.8

1

PDF of mv
x

−20 −10 0 10 20
0

0.2

0.4

0.6

0.8

1

PDF of mv
y

−50 0 50
0

0.2

0.4

0.6

0.8

1

PDF of MVD
x

−20 −10 0 10 20
0

0.2

0.4

0.6

0.8

1

PDF of MVD
y

Figure 2.4: Probability density of spatial displacements mvx, mvy, DMVx = mvx−
m̂vx, and DMVy = mvy− m̂vy for Stefan QCIF sequence by using the non-directed
search strategy. m̂vx is the predicted horizontal motion vector component, and m̂vy

is the predicted horizontal motion vector component.

effect is much greater for reducing the residual frame energy, the overhead is well

compensated by the reduction in bit rate needed for coding the residual frame

energy.

30

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Normalized time for motion estimation per frame

Re
la

tiv
e

PS
NR

[d
B]

Foreman(qcif)

ds
non−ds

W
s
=15

W
s
=6

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Normalized time for motion estimation per frame

Re
la

tiv
e

PS
NR

[d
B]

Mother & Daughter(qcif)

ds
non−ds

W
s
=15

W
s
=6

(a) (b)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Normalized time for motion estimation per frame

Re
la

tiv
e

PS
NR

[d
B]

Stefan(qcif)

ds
non−ds

W
s
=15

W
s
=6

(c)

Figure 2.5: The effects of reducing the motion search window in a frame buffer
for directed (DS) and non-directed search (NDS) strategy, when the area of motion
search window is reduced to 2Ws×2Ws. Ws = {6, . . . , 15} is used for the simulation.
(a) QCIF Foreman, (b) QCIF Mother & Daughter, (c) QCIF Stefan.

2.3 Low Complexity Motion Estimation

Algorithm for LTMC

To reduce the computational complexity, a reduced motion search range (sub-

sampling of search range) can be used, along with fast matching. Sub-sampling

of the search range for WLG algorithm is implemented by excluding blocks that

are too different from the search space [77]. Fast matching for WLG algorithm is

31

realized by stopping the distortion computation at a certain level in the hierarchy

of triangle inequalities [79]. In the proposed algorithm, we employ HTFM ([46])

as our technique to implement fast matching, and reduced size of motion search

window with DS to reduce the motion search range.

For the proposed algorithm, we use HTFM as the fast matching criterion of

the motion estimation for LTMC. HTFM can reduce the computational complexity

greatly as compared to DTFM, by allowing an early termination of SAD calculation

based on the likelihood (probability of false alarm, Pf) that current SAD will be

greater than the best-SAD-found-so-far, given the partial SAD [46]. For the block

sub-sampling method for HTFM, the HTFM in the proposed algorithm employs

the UNI sub-sampling partitioning by which the correlation between partial SAD

and SAD is maximized [46]. The UNI sub-sampling shows better performance than

the ROW sub-sampling which is the row-by-row partitioning. However, the irreg-

ular memory access pattern is a disadvantage of UNI sub-sampling. In addition,

the histogram parameter estimation is performed at every 10 frames for HTFM.

Simulation results show that by employing HTFM only, we can reduce the compu-

tational complexity approximately 40%-50% for LTMC at the cost of very minor

degradation in PSNR gain (0.005-0.05dB).

Since the directed search tends to locate the MSWs around potentially good

candidates, it should be possible to reduce MSW size. Therefore, if we use the

directed search for ME for LTMC, we can reduce the area of MSWs in a frame buffer,

32

and can save the computational complexity greatly at the cost of slight increase in

the residual frame energy. In Figure 2.5, we show the effects of reducing the area of

motion search window in a frame buffer for the directed and the non-directed search

strategies. In this figure, each computational time is normalized by TF10 which is

the computation time of a full search with non-directed search. Relative PSNR is

PSNR − PSNRF10, where PSNR is average error variance in dB scale. For each

sequence, frames from 1 to 300 are used with frame skip parameter 2. The length of

the frame buffer used is set to 10, and spiral ordered full search is used with DTFM.

The median of 5 experimental results is chosen to estimate computation complexity.

For this simulation, we use [−16, . . . , 15] as a motion search window for adjacent

frames, and we use motion search window whose area is 2Ws×2Ws in a frame buffer

for LTMC. From Figure 2.5, if we use Ws = 12, then we can achieve computational

complexity savings of around 35%, 37%, and 42% for Foreman (QCIF), Mother

& Daughter (QCIF), and Stefan (QCIF), respectively. The cost of the reduced

computational complexity is 0.051dB, 0.005dB, and 0.052dB PSNR decrease for

each sequences. One can see that in spite of the PSNR decreases due to the reduced

computational complexity, the directed search still can achieve smaller residual

frame energy than the non-directed search. The PSNR gain (residual frame energy

reduction) of directed search is greater for Stefan than for Foreman or Mother &

Daughter. This is because directed search has advantages for video sequences which

have large motions, and the gains tend to be greater for larger sequences, as shown

33

Table 2.4: Computational complexity and prediction error variance in dB scale
for F1, F10. F1: Outward spiral ordered conventional full search which uses just
one reference frame, and employs DTFM. F10: Outward spiral ordered full search
which employs non-directed search and DTFM, and the frame buffer length is 10. T
means the time required for LTMC per frame and PSNR represents the prediction
error variance in dB scale. For each sequence, frames from 1 to 300 are used with
frame skip parameter 2. The length of the frame buffer used is set to 10, and spiral
ordered full search is used. For the computational time, median is selected among
5 experimental results for fair comparisons.

Foreman(QCIF) Mother & Daughter(QCIF) Stefan(QCIF)

T [sec] PSNR [dB] T [sec] PSNR [dB] T [sec] PSNR [dB]

F1 0.88 27.88 0.70 33.54 1.13 21.13

F10 6.73 29.75 6.84 34.68 10.77 21.87

before. Because setting Ws = 12 is a reasonable choice for QCIF video sequences

from the simulation, we use Ws = 12 for the proposed fast motion estimation

algorithm for LTMC for QCIF video sequences.

2.4 Experimental Results

In this section, simulation results of the proposed ME algorithm for LTMC are

presented. The simulation is done using an Intel PentiumIII 750 MHz PC with

384MB RAM. For the directed search of the proposed algorithm, the motion search

range is set to [−16, . . . , 15] × [−16, . . . , 15] in most current reference frame, and

[−Ws +ucx, . . . ,Ws−1+ucx]× [−Ws +ucy, . . . ,Ws−1+ucy] for motion estimation

in other reference frames, where Ws = 12. For WLG algorithm, the motion search

range is set to [−16, . . . , 15]× [−16, . . . , 15] for all reference frames. The simulation

34

0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
Foreman(qcif)

Normalized time for motion estimation per frame

PS
NR

 E
nh

an
ce

m
en

t[d
B]

Proposed
NH, T

a
=100

NH, T
a
=400

NH, T
a
=900

T
F1

/T
F10

PSNR
F10

 − PSNR
F1

P
f
=0.005

P
f
=0.3 K=1.5

K=3.0

Figure 2.6: Comparison of the proposed algorithm with the hierarchical norm or-
dered search (NH) algorithm for Foreman QCIF sequence.

results are normalized by and compared to the results of F1 and F10 algorithm.

F1 is the algorithm which uses the outward spiral ordered conventional full search

which uses just one reference frame, and employs DTFM. F10 is the algorithm

which uses the outward spiral ordered full search which employs non-directed search

and DTFM, with frame buffer length 10.

In Figures 2.6 - 2.8, we compare the performance of the proposed algorithm with

the performance of the WLG algorithm. For the proposed algorithm the set of Pf

is {0.005, 0.01, 0.02, 0.03, 0.05, 0.07, 0.1, 0.15, 0.2, 0.3}. For the WLG algorithm, the

set of values for the activity threshold Ta is {100, 400, 900}, and the set of values

for K, which is the control parameter to terminate the norm-ordered search early,

is {1.5, 2.0, 2.5, 3.0}. The matching criterion used for the WLG algorithm is SAD

35

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28
0.6

0.7

0.8

0.9

1

1.1

1.2
Mother & Daughter(qcif)

Normalized time for motion estimation per frame

PS
NR

 E
nh

an
ce

m
en

t[d
B]

Proposed
NH, T

a
=100

NH, T
a
=400

NH, T
a
=900

T
F1

/T
F10

PSNR
F10

 − PSNR
F1

 P
f
=0.005

P
f
=0.3

K=1.5

K=3.0

Figure 2.7: Comparison of the proposed algorithm with the hierarchical norm or-
dered search (NH) algorithm for Mother & Daughter QCIF sequence.

with DTFM, because SAD is most popular matching criterion for most of real

applications due to the simple implementation structure. In these figures, NH

algorithm represents a WLG algorithm which employs SAD as a matching metric,

DTFM as a fast matching criterion, 4 hierarchical levels of triangle inequalities,

and two fast lossy search methods [77]. Each computational time is normalized by

TF10 which is the computational complexity of F10 algorithm in Table 2.4. PSNR

enhancement is PSNR−PSNRF1, where PSNR is average energy of residual frame

in dB scale, and PSNRF1 is the average energy of residual frame in dB scale for

F1 algorithm in Table 2.4. For comparison, TF1/TF10 and PSNRF10 − PSNRF1

are shown in these figures. For both algorithms only integer pel search is used.

36

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.6

0.65

0.7

0.75

0.8

0.85
Stefan(qcif)

Normalized time for motion estimation per frame

PS
NR

 E
nh

an
ce

m
en

t[d
B]

Proposed
NH, T

a
=100

NH, T
a
=400

NH, T
a
=900

T
F1

/T
F10

PSNR
F10

 − PSNR
F1

P
f
=0.005

P
f
=0.3

K=1.5

K=3.0

Figure 2.8: Comparison of the proposed algorithm with the hierarchical norm or-
dered search (NH) algorithm for Stefan QCIF sequence.

As one can see from Figures 2.6 and 2.8, for sequences like Stefan and Foreman

which contain large motions, the proposed algorithm shows better performance

than WLG algorithm. However, as shown in Figure 2.7, because the Mother &

Daughter sequence contains small motions, the proposed algorithm shows similar

performance to WLG algorithm in terms of complexity or even slightly worse for the

high PSNR gain region. Therefore as expected, the proposed algorithm enhances

significantly ME performance when there are large motions. Interesting results for

Stefan sequence and Foreman sequence are that we can achieve with the PSNR

gain with less computational complexity than F1 algorithm. For WLG algorithm,

pre-computation of norm values is required, but for the proposed algorithm no

pre-processing is required. Also, the proposed algorithm requires less memory as

37

compared to WLG algorithm, because for WLG algorithm the hierarchical structure

of norm calculation requires significant memory. The disadvantage of the proposed

algorithm is the irregular pattern of memory access due to UNI sub-sampling for

HTFM.

2.5 Conclusion

In this chapter, we propose a low complexity ME algorithm with directed search

for LTMC. By employing the directed search strategy, the proposed algorithm can

enhance ME performance significantly for video sequences which contain large mo-

tions. The proposed algorithm reduces the computational complexity greatly by

employing HTFM as a fast matching criterion, and by using reduced search area

with directed search. Simulation results show that the proposed algorithm can re-

duce the computational complexity approximately 75%-90% as compared to a full

search with fixed MSW location algorithm. The proposed algorithm shows signif-

icant performance enhancements for high motion sequences. The main advantage

of the proposed algorithm is great reduction of the computational complexity with

still good PSNR gain performance. A disadvantage of the proposed algorithm is

the irregular memory access pattern due to UNI sub-sampling for HTFM.

38

Chapter 3

MULTIRESOLUTIONAL MOTION

ESTIMATION

3.1 Introduction

In chapter 2, we proposed a directed search strategy with reduced size MSW. The

directed search locates MSWs adaptively by using previous SAD results and motion

vectors that are computed from previous ME stages, leading to improvements in

ME performance. Therefore, the directed search strategy highly depends on the

ME results of the previous ME stages. This dependency can degrade the ME

performance for LTMC, for example, when an object occludes the area used for

matching.

In this chapter, we propose a novel low complexity ME algorithm for LTMC

based on a multiresolution search. The main idea of our approach is to use a lower

resolution version of a given video sequence to obtain information about the ME

39

Motion Estimation
in Original Resolution

Motion Estimation
in Low Resolution

Decide :
1. Search region
2. Set of candidates
3. Stop criterion
4. Search order

Figure 3.1: Proposed motion estimation using multiresolution search.

on the original resolution sequence. Multiresolution motion estimation (MRME)

is well known and has been used for standard single-frame motion compensation

[33, 19, 15, 14, 80, 72, 81, 47, 57, 13]. These MRME algorithms employ hierarchies

of lower resolution versions of a frame to locate search positions only. However, our

proposed MRME algorithm is used to estimate not only search positions but also

to select the search range, order of search, and stop criterion, as shown in Figure

3.1. Here we extend our previous work [24, 27] and [61], and introduce several novel

techniques to exploit MRME efficiently in the context of LTMC.

Our proposed algorithm also uses adaptive MSW location in a frame buffer as

proposed in the previous chapter, and obtains low complexity through a reduced

40

motion search range and HTFM [46]. However, instead of directed search, in this

chapter, we use a MRME to locate MSWs in a frame buffer. In addition, in-

stead of using fixed size small MSWs as in directed search, the proposed algorithm

adaptively chooses the MSW size or sets of motion candidates based on the scene

characteristics determined from low resolution frames. These characteristics include

error surface smoothness computed from lower resolution search as well as a ME

equivalent function that we will define later. This adaptive search range selection

leads to significant reduction in complexity without significant loss in quality. Our

approach also incorporates temporal reduction of the motion search range to reduce

the complexity further. With this temporal search range reduction, we can detect

cases such as object occlusions and scene changes and we can discard “bad” can-

didates early to reduce computational complexity. With respect to the full-search

method, our proposed algorithm has two advantages. First, due to the spatial and

temporal search range reduction, our algorithm is faster. Second, due to the mul-

tiresolution search, our proposed algorithm can use larger motion search range with

limited additional complexity. The schematic diagram of the proposed algorithm

is shown in Figure 3.2.

Simulation results show that the proposed algorithm can reduce the compu-

tational complexity significantly with slight increase in the frame residual energy

compared to a full search and the WLG algorithm [77, 76]. Also, to evaluate the

performance of our proposed multiresolution search, the algorithm is implemented

41

Generate
Low Resolution
Representation

Low Resolution
Motion

Estimation

Locate
MSWs
(AWL)

Choose
Set of Candidate
Motion Vectors

(Spatial / Temporal)

Original
Resolution

Motion
Estimation

Decoded
Frames

Predicted
Vector

Motion
Vectors

PROPOSED

Figure 3.2: Schematic diagram of proposed multiresolution search.

in a H.264/MPEG-4 AVC encoder reference software (JM 5.0c, [1]). Experiments

show that the proposed algorithm can speed-up around 70-110 times, with slightly

lower RD performance, as compared to a full-search.

3.2 Proposed Low Complexity Algorithm

The computational complexity of full search (FS) for LTMC is very high primarily

because the number of candidate motion vectors is very large. As with standard

ME, computational complexity reduction can be achieved through the reduction of

the number of motion candidates and by using a lower complexity metric. In this

section, we propose techniques to reduce the complexity of ME for LTMC. For the

42

proposed low complexity algorithm, the number of motion candidates is reduced by

using information from a pre-processing based on a low resolution version of frames.

As before the computational complexity for the metric computation is reduced by

employing HTFM [46].

3.2.1 Multiresolution based MSW location

The main idea of the adaptive MSW location algorithm using multiresolution search

(MRWL) is to use the lower resolution version of a given sequence to acquire coarse

information on the ME for LTMC. MRME algorithms achieve fast motion search

by using image pyramids which are composed of several low resolution versions of

a frame. While MRME algorithms are well known, the main novelty of this work

comes from defining search and complexity reduction techniques that are optimized

for LTMC.

If we assume that the motion field is sufficiently smooth, the lower resolution

frame still contains a coarse version of motion information. Because of this, the

MRWL locates MSWs at the positions corresponding to the coarse MVs computed

from a lower resolution frame. More specifically, the original frame (level 0 frame)

is low-pass-filtered and downsampled to generate a low resolution frame (level 1

frame) and this low resolution frame is low-pass-filtered and downsampled again to

produce the lower resolution frame (level 2 frame). Then, MVs are searched in the

level 2 low resolution video sequence to get coarse MVs, and in the level 0 frame,

43

Motion
Estimation

(16x16)

LPF

Downsample
by 2

LPF

Downsample
by 2

Motion
Estimation

(4x4)

Reference Picture Level 0

Level 2

Motion Vector

MSW location

Frame Buffer

Frame Buffer

Figure 3.3: Schematic diagram of motion search window location by multiresolution
search.

MSWs are located at the positions corresponding to these coarse MVs. A schematic

diagram for this is shown in Figure 3.3 In this figure, the horizontal and vertical

sizes of the level 2 frame are 1/4 of those of the level 0 frame. ME in the level

2 frame is performed on blocks of 4 × 4 pixels instead of blocks of 16 × 16 pixels

as in the level 0 frame. The computational complexity of low-pass-filtering and

downsampling to produce low resolution frames and the ME on the level 2 frame

is small compared with the computational complexity of the ME for LTMC. Both

filtering and subsampling are separable, and the lowpass filter used in the proposed

algorithm is an average filter, h[n] = (δ[n] + δ[n − 1])/2. The main advantage of

44

the MRWL is that we can improve ME performance by locating MSWs adaptively

in a frame buffer for LTMC.

3.2.2 Spatial reduction of motion search range

In this section we propose two algorithm to lower ME complexity by reducing

spatial search range. The first algorithm makes use of estimates of the error surface

smoothness, while the second employs a probability model derived from observed

characteristics of a ME.

3.2.2.1 Search space selection based on error surface smoothness

In Figure 3.4, it is shown that the best motion blocks are located near the center of

MSWs obtained using the MRS-AWL. In this figure, Prob{D ≤ d} represents the

cumulative distribution function of the absolute distance D (vertical or horizontal)

between the best match and the center of the MSW in a reference frame. From

this figure one can see that if MRS-AWL is used, almost 95% of the best matching

blocks have absolute displacements less than 12, which correspond to MSWs whose

size is 24 × 24. Due to this observation, we can reduce the spatial motion search

range for the proposed algorithm as in [26]. This reduction leads to significant

computational complexity savings, at the cost of a slight increase in residual frame

energy.

45

0 2 4 6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Absolute displacement d from C
MSW

Pro
b(D

<d
)

Vertical component

NDS
MRS

(a)

0 2 4 6 8 10 12 14 16
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Absolute displacement d from C
MSW

Pro
b(D

<d
)

Horizontal component

NDS
MRS

(b)

Figure 3.4: Prob{D ≤ d} which represents the cumulative distribution function
of the absolute distance D between the best match and the center of the MSW
in a reference frame. (a) vertical component and (b) horizontal component of the
absolute displacement D.Seven QCIF test sequences are used, all the test sequences
contain 100 frames.

From the lower resolution sequence, we can obtain additional information to

reduce the computational complexity further. For example, consider the error sur-

face computed from level 2 ME. We observed that on this error surface, if the best

level 2 motion vector corresponds to a much smaller error value than neighboring

level 2 motion vectors, then it is highly likely that the best matching block in this

reference frame at level 0 will be located closer to the MSW center at level 0. That

46

1660 1600 1557

1802 1503 1540

1750 1520 1535

Use Larger
Search
Window

Smooth Error Surface

7820 3540 5200

2300 1503 4500

6500 5423 7908

Use Smaller
Search
Window

Non-smooth Error Surface

Figure 3.5: Examples of smooth error surface and non-smooth error surface.

is, because the best vector in level 2 is much better than its neighbors, we can

assume that the same will be true at level 0 thus enabling us to use a smaller MSW

to reduce complexity. An example of this is shown in Figure 3.5.

Let us assume that the best motion vector in a level 2 reference frame for a

given macro-block is (mvr,mvc), and the corresponding minimum error at level

2 is SAD∗
L2,local. Also let us assume that SADL2,local is the average of the error

values corresponding to the neighboring motion vectors, (mvr +kr,mvc +kc) where

kr, kc ∈ {−2,−1, 1, 2}. Then, if SAD∗
L2,local/SADL2,local is smaller than a threshold

TS, it is likely that the coarse motion vector will be a good candidate motion vector

at level 0, and thus we can reduce the MSW size for the given macro-block at level

0.For the proposed algorithm, we experimentally choose TS = 0.5. It is observed

that performance is not sensitive to around 10% variation of TS. We use 16 × 16

MSW if SAD∗
L2,local/SADL2,local < TS, otherwise use 24× 24 MSW. The effect of

this further reduction of the spatial motion search range is significant computational

reduction at the cost of a slight increase in residual frame energy.

47

3.2.2.2 Search space selection based on a probability model

Some parameters in the approach introduced in Section 3.2.2.1 are chosen experi-

mentally (e.g., Ts) and if it is unclear how this selection would be made adaptive

to scene characteristics. While the algorithm provides gains, performance can be

improved by devising a search space reduction algorithm that can be adaptive to

varying scene characteristics. In this section, we propose an adaptive search space

reduction algorithm, based on a probability model.

When the low resolution version of the sequence does not capture enough scene

characteristics, the low resolution search may center MSW at local minimum points,

leading to degraded ME performance. This can happen when blocks contain large

portion of high frequency energy, and when the error surface in the original reso-

lution is not smooth. Therefore, we would like to introduce a decision rule which

takes into account how likely it is for the low resolution search to produce a good

candidate. This decision rule is based on the characteristics of the current block,

as well as the error surface information found from the low resolution search.

To design our decision rule we consider the equivalent transfer function Tequi(Λ)

proposed in [32] to analyze the efficiency of ME. Denote See(Λ) and Sss(Λ) the power

spectral density of the residual signal and the input signal respectively. Then [32]

proposes to following relationship:

See(Λ) = Tequi(Λ) · Sss(Λ) + Θ, (3.1)

48

-2 0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ββββ (x,y)-αααα (x,y)

P
ro

b
ab

ili
ty

Figure 3.6: β(x, y)−α(x, y) for good candidates. The experiment is done for several
typical QCIF sequences.

where Λ represents the spatial frequency and Θ is a noise term. The main obser-

vation we use is that Tequi(Λ) shows high-pass characteristics. While this relation

is derived under ideal conditions such as a Gaussian image model, mean square

error criterion, and operation at rate-distortion bound, we have observed the high

pass characteristic in real situations as well. The following notation is used for the

algorithm design:

• x: current block.

• y(i): candidate block whose index is i

• D0(x, y) and D2(x, y): SAD in the original resolution and the low resolution

(level 2), respectively.

49

• SSS(x): energy of a given block x.

• SL
SS(x): energy contained in the low frequency coefficients (LL in Haar de-

composition) of a given block x.

• SH
SS(x) = SSS(x)− SL

SS(x).

• α(x, y) ,
D2(x,y)√
SL

SS(x)

• β(x, y) ,
(D0(x,y)−D2(x,y))√

SH
SS(x)

From equation (3.1), we approximate

Tequi(Λ) = [Tequi(Λlow); Tequi(Λhigh)]

≈ =
See(Λ)

Sss(Λ)
. (3.2)

By approximating See(Λlow) and See(Λhigh) using D2(x, y)2 and (D0(x, y)−D2(x, y))2

respectively, α(x, y)2 and β(x, y)2 can be seen as approximations of the equivalent

transfer characteristic for low and high frequencies, respectively. We observed that

this approximation is simple but good in capturing the high-pass characteristic of

Tequi(Λ). Experimentally, we observed that β(x, y)−ε·α(x, y), 1 ≤ ε ≤ 2 tends to be

non-negative, which can be interpreted as a high-pass characteristic of Tequi(Λ) for a

ME process. As an example, in Figure 3.6, we show a distribution of β(x, y)−α(x, y)

for relatively good candidates y. For each x, we pick candidates y which satisfy

D2(x, y) ≤ 2 × D0(x, y∗), where y∗ is the best candidate for x, which guarantees

50

that relatively good candidates are chosen. This is needed because our goal is to

devise a decision rule for relatively good candidates. The experiment is performed

using several typical QCIF sequences (100 frames taken from each sequence). As

one can see from this figure, for most of the cases, β(x, y)−α(x, y) ≥ 0. We design

a search algorithm based on this high-pass characteristic.

Now, let us derive a decision rule based on this observation. From the low

resolution search, we know D2(x, yG(i)) for each yG(i), where yG(i) (G represents

4× 4 grid) is the down sampled search points located at 4 pel × 4 pel grid points.

Then, in the refinement search, we need to decide for each yG(i) if we will continue or

stop the refinement search. Using the definition of α(x, y) and β(x, y), D0(x, y∗

G(i))

can be expressed as

D0(x, y∗

G(i)) = α(x, y∗

G(i)) ·
√

SL
SS(x) + β(x, y∗

G(i)) ·
√

SH
SS(x). (3.3)

Let us define y∗

G(i) as the best candidate (in the original resolution) found in the

refinement search for each yG(i). If y∗

G(i) is a better candidate than the best

found so far, then it should satisfy D0(x, y∗

G(i)) ≤ D0,bsf , where D0,bsf is the best

distortion value found so far in the original resolution search. Using equation (3.3),

this condition can be expressed as follows.

α(x, y∗

G(i)) ·
√

SL
SS(x) + β(x, y∗

G(i)) ·
√

SH
SS(x) ≤ D0,bsf . (3.4)

51

By arranging this, the the following should be satisfied for y∗

G(i) to be the best

candidate.

β(x, y∗

G(i)) ≤ D0,bsf − α(x, y∗

G(i)) ·
√

SL
SS(x)√

SH
SS(x)

. (3.5)

Because β(x, y∗

G(i)) is lower bounded by ε ·α(x, y∗

G(i)), we can write the range of

β(x, y) as follows.

ε · α(x, y∗

G(i)) ≤ β(x, y∗

G(i)) ≤ D0,bsf − α(x, y∗

G(i)) ·
√

SL
SS(x)√

SH
SS(x)

. (3.6)

From this, if

ε · α(x, y∗

G(i)) ≥ D0,bsf − α(x, y∗

G(i)) ·
√

SL
SS(x)√

SH
SS(x)

, (3.7)

then, it is unlikely that a better candidate be found. By the definition of α, the

condition (3.7) can be rewritten as follows.

D2(x, y∗

G(i)) ≥
√

SL
SS(x)√

SL
SS(x) + ε ·

√
SH

SS(x)
·D0,bsf . (3.8)

Therefore, if (3.8) is likely to be satisfied, then we can safely remove the corre-

sponding search points from the search space.

Because we only know D2(x, yG(i)) at the down sampled search points, we need

to estimate D2(x, y∗

G(i)) for a given D2(x, yG(i)). Due to the wide variations in

52

the relationship between D2(x, yG(i)) and D2(x, y∗

G(i)) for each block, we assume

a uniform distribution of D2(x, y∗

G(i)) for the given D2(x, yG(i)) as following.

P (D2(x, y∗

G(i)|D2(x, yG(i))) =
1

D2(x, yG(i))
(3.9)

D2(x, y∗

G(i)) ∈ [0, D2(x, yG(i))].

Using this assumption and the condition of equation(3.8), the probability of false

alarm Pf (x, yG(i)), which is the probability of not finding better candidate in the

refinement search for yG(i) can be derived and modeled as follows:

Pf (x, yG(i))

= P (D2(x, y∗

G(i)) ≥
√

SL
SS(x)√

SL
SS(x) + ε ·

√
SH

SS(x)
·D0,bsf | D2(x, yG(i)))

= max(0,
1

D2(x, yG(i))
· (D2(x, yG(i))−

√
SL

SS(x)√
SL

SS(x) + ε ·
√

SH
SS(x)

·D0,bsf))

= max(0, 1−
√

SL
SS(x)√

SL
SS(x) + ε ·

√
SH

SS(x)
· D0,bsf

D2(x, yG(i))
). (3.10)

Our proposed decision mechanism will only use the search points which satisfy

Pf (x, yG(i)) ≤ ThF , where ThF is a probability threshold for false alarm. As ThF

decreases, more candidates are discarded from the search space, and performance

degradation may occur. The trade-off between performance and speed can be

controlled by adjusting ThF .

53

A key parameter in the decision rule is
√

SH
SS(x)

SL
SS(x)

. When this parameter is very

small, then usually the error surface tends to be quite smooth, which means we can

in general trust the decision made based on low resolution search. However, when

this parameter is large, it is likely that the low resolution search does not capture

enough block characteristics. Therefore, we need to search more candidates for

this case. However, as one can see from equation (3.10), the proposed decision

mechanism tends to use more candidates as the key parameter becomes smaller,

and vice versa. Therefore, to address this, we modify the decision rule as follows.

Only refine best candidates from level 2 search if

√
SH

SS(x)

SL
SS(x)

≤ c1

Otherwise,

Search if Pf (x, yG(i)) ≤ γ · ThF , with

γ =

γ1 (> 1), if
√

SH
SS(x)

SL
SS(x)

≥ c2

γ2 (< 1), if
√

SH
SS(x)

SL
SS(x)

≤ c3

1, otherwise.

(3.11)

More specifically, we force the decision algorithm to use less number of candidates

when the key parameter is small enough (smooth error surfaces), and we allow more

candidates to be searched when the key parameter is large enough, otherwise we

use the decision algorithm proposed in equation (3.10).

54

Using this decision algorithm, we show the performance of the proposed algo-

rithm in Table 3.1. For these results, we used γ1 = 1.2, γ2 = 0.1 and c1 = 0.05, c2 =

0.08, c3 = 0.01, which were selected experimentally. It is observed that performance

does not change much by varying the parameter values by around 10%. As one

can see from these results, the probability model based search space reduction pro-

posed in this Section can reduce the computational complexity significantly with

minor degradation in performance, as compared to our earlier proposed algorithm

in Section 3.2.2.1.

3.2.3 Temporal reduction of motion search range

Computational complexity can be further reduced by temporal reduction of the

motion search range. From the level 2 ME for a given macro-block, we know the

best motion vector corresponding to SADk
L2,best for the reference frame whose

index is k. The main idea of the temporal reduction of the motion search range

is that if SADk′

L2,best is much larger than the other SADk
L2,best values obtained

with other reference frames for a given macro-block, we can safely exclude the

frame k′ from the set of reference frames for a given macro-block. Let us define

SADL2 and σL2 as the average and the standard deviation of SADk
L2,best, where

k is in the set of reference frame indices for a given macro-block. Let us normalize

SADk
L2,best for each k in the set of the frame indices for a given macro-block,

Z = (SADk
L2,best − SADL2)/σL2.

55

−2 −1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Z, Normalized SADk
L2,best

P(SADk
L2,best is best | Z=z)

Figure 3.7: Prob{SADk
L2,best is best|Z = z}. For this simulation, seven QCIF test

sequences are used, all the test sequences contain 100 frames.

An experimental conditional probability Prob{SADk
L2,best is best | Z = z} is

shown in Figure 3.7. From this figure, one can see that if Z, is greater than 1, then

the probability for SADk
L2,best to be the best matching block for a given macro-

block is very small. Therefore we can safely exclude the reference frame where Z

is greater than 1 from the set of reference frames for a given macro-block.

3.2.4 Complexity reduction by employing

HTFM as a metric

The computational complexity also can be reduced by employing a metric with

low computational complexity. For the proposed algorithm, we use HTFM as the

fast matching criterion of the ME for LTMC. HTFM can reduce the computational

complexity greatly, by allowing an early termination of SAD calculation based on

56

Table 3.1: Performance of the proposed algorithm. For FWL, 32 × 32 MSW is
used. For MRS algorithms, level 2-MSW is 16 × 16. All ME algorithms employ
DTFM except MRSS2,H and MRSS2,T,H and spiral ordered FS in the given MSW.
The length of the frame buffer is 10. For each sequence, the first 300 frames are
used with frame skip parameter 2. PSNR represents the residual frame energy in
dB scale.

Stefan Foreman Mother
T PSNR T PSNR T PSNR

[s] [dB] [s] [dB] [s] [dB]

FWL 9.56 21.87 5.95 29.75 6.15 34.68

DS 9.47 22.07 6.49 29.81 6.24 34.70

MRS 9.26 22.46 6.52 30.10 6.38 34.69

MRSS1 5.75 22.39 4.17 30.06 4.14 34.68

MRSS2 4.36 22.37 2.97 30.02 2.63 34.66

MRST 8.09 22.43 5.69 30.03 5.52 34.63

MRSS1,T 5.03 22.36 3.65 30.00 3.58 34.62

MRSS2,T 3.77 22.34 2.61 29.96 2.31 34.60

MRSS2,H 1.42 22.30 1.12 30.04 1.19 34.61

MRSS2,T,H 1.27 22.28 1.02 29.99 1.07 34.55

MRSP 0.91 22.46 0.21 30.04 0.35 34.69

the likelihood (probability of false alarm, Pf) [46]. As the block sub-sampling

method for HTFM, UNI sub-sampling is used for the proposed algorithm, and the

histogram parameter estimation is performed at every 10 frames in the proposed

algorithm. Simulation results show that by employing HTFM, we can significantly

reduce the computational complexity at the cost of slight degradation in PSNR

gain.

57

0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3
Foreman(qcif)

Normalized time for motion estimation per frame

P
S

N
R

 E
nh

an
ce

m
en

t[
dB

]

DS
NH, T

a
=100

NH, T
a
=400

NH, T
a
=900

MRS
S2,T,H

PSNR
NDS

−PSNR
FS1

T
FS1

/T
NDS

P
f
=0.005 P

f
=0.3

P
f
=0.005 P

f
=0.3

K=1.5

K=3

Figure 3.8: Comparison of the performance for various ME algorithms for LTMC
using Foreman sequence. Each computational time is normalized by TNDS, where
TNDS is the computational complexity of the algorithm which employs FWL and
DTFM. PSNR is average energy of residual frame in dB scale.

3.2.5 Experiments

In this section, performance of the various ME algorithms proposed are shown in

Figures 3.8 - 3.10 and Table 3.1. The simulations are performed using an Intel

PentiumIII 750 MHz PC. In Table 3.1, each row represents one of the following

algorithms:

• FWL: fixed MSW location with full search

• DS: the directed search in Chapter 2

• MRS: MRS-AWL with full search

58

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28
0.6

0.7

0.8

0.9

1

1.1

1.2
Mother & Daughter(qcif)

Normalized time for motion estimation per frame

P
S

N
R

 E
nh

an
ce

m
en

t[
dB

]

DS
NH, T

a
=100

NH, T
a
=400

NH, T
a
=900

MRS
S2,T,H

PSNR
NDS

−PSNR
FS1

T
FS1

/T
NDS

P
f
=0.3

K=1.5

P
f
=0.005

K=3

P
f
=0.005

P
f
=0.3

Figure 3.9: Comparison of the performance for various ME algorithms for LTMC
using Mother & Daughter sequence. Each computational time is normalized by
TNDS, where TNDS is the computational complexity of the algorithm which employs
FWL and DTFM. PSNR is average energy of residual frame in dB scale.

• MRSS1: MRS-AWL with 24× 24 level 0-MSW with full search

• MRSS2: MRSS1 with additional complexity reduction using smoothness in-

formation

• MRST: MRS-AWL with the temporal search range reduction

• MRSS1,T: MRSS1 with the temporal search range reduction

• MRSS2,T: MRSS2 with the temporal search range reduction

• MRSS2,H: MRSS2 with HTFM (Pf = 0.1)

59

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.6

0.7

0.8

0.9

1

1.1

1.2
Stefan(qcif)

Normalized time for motion estimation per frame

P
S

N
R

 E
nh

an
ce

m
en

t[
dB

]

DS
NH, T

a
=100

NH, T
a
=400

NH, T
a
=900

MRS
S2,T,H

PSNR
NDS

−PSNR
FS1

T
FS1

/T
NDS

P
f
=0.005

P
f
=0.005

P
f
=0.3

P
f
=0.3 K=1.5 K=3

Figure 3.10: Comparison of the performance for various ME algorithms for LTMC
using Stefan sequence. Each computational time is normalized by TNDS, where
TNDS is the computational complexity of the algorithm which employs FWL and
DTFM. PSNR is average energy of residual frame in dB scale.

• MRSS2,T,H: MRSS2,T with HTFM (Pf = 0.1)

• MRSP: Probability based search space reduction proposed in Section 3.2.2.2

with DTFM.

The gain-complexity performance is shown in Figure 3.8 - Figure 3.10. In these

figures, each algorithm is as follows: FS1 represents the outward spiral ordered

conventional full search which uses just one reference frame, and employs DTFM.

NH algorithm is a norm ordered hierarchical search algorithm, which employs SAD

as a matching metric, DTFM as a fast matching criterion, 4 hierarchical levels of

60

triangle inequalities, and two fast lossy search methods proposed in [77]. For the NH

algorithm, the set of activity thresholds Ta is {100, 400, 900}, and the set of values

for K, which is control parameter to terminate the norm-ordered search early, is

{1.5, 2.0, 2.5, 3.0}. DS represents the directed search algorithm proposed in Chapter

2. MRSS2,T,H uses Pf = {0.005, 0.01, 0.02, 0.03, 0.05, 0.07, 0.1, 0.15, 0.2, 0.3}.

As one can see from these results, the MRS-AWL can provide performance

gains with greatly reduced computational complexity. The gain achieved for the

proposed algorithm outperforms the gain achieved with the directed search strategy

proposed in Chapter 2. This is because the multiresolution search can track the

real motion better than the directed search. Also, one can see that various low

complexity techniques proposed significantly reduce the computational complexity.

For most of the cases, the computational complexity of the proposed multiresolution

search is lowest compared to the other fast algorithms such as the directed search,

and the norm ordered hierarchical search. For high motion sequences like Stefan

and Foreman the proposed algorithm achieves significant gain as compared to the

fixed window location schemes. This is because our proposed algorithm can track

motion across frames efficiently even if sequences exhibit high motion. For low

motion sequences the proposed algorithm shows slight decrease in performance, as

compared to the fixed window location schemes. This is because AWL does not

provide much gain in performance for the low motion sequences, and our proposed

algorithm uses less motion candidates for speed up.

61

0 500 1000 1500 2000 2500
35

40

45

50

55

[d
B

]

M&D QCIF

0 500 1000 1500 2000 2500
−0.08

−0.06

−0.04

−0.02

0

R
el

at
iv

e
P

S
N

R
 [

d
B

]

0 500 1000 1500 2000 2500
90

95

100

105

110

[kbps]

S
p

ee
d

u
p

 F
ac

to
r

FS+DTFM
MRS+HTFM

Figure 3.11: RD and complexity performance for it Mother & Daughter QCIF
sequence. Each graph from the top shows RD performance, relative PSNR
(PSNRFS+DTFM − PSNRMRS+HTFM), and the speed-up factor of our proposed
algorithm (MRS with HTFM) compared to FS with DTFM, respectively.

3.2.6 Multiresolution Search for H.264 / MPEG-4 AVC

As one can see from Section 3.2.5, search space selection based on our proposed

probability model provides better performance than the error surface smoothness

technique. Therefore, we employ the probability model along with temporal search

space reduction and HTFM in our H.264 / MPEG-4 AVC simulations. The resulting

RD-performance and complexity is compared to those for the ME which employs

62

0 500 1000 1500 2000 2500
35

40

45

50

55

[d
B

]

Foreman QCIF

0 500 1000 1500 2000 2500
−0.2

−0.15

−0.1

−0.05

0

R
el

at
iv

e
P

S
N

R
 [

d
B

]

0 500 1000 1500 2000 2500

95

100

105

110

[kbps]

S
p

ee
d

u
p

 F
ac

to
r

FS+DTFM
MRS+HTFM

Figure 3.12: RD and complexity performance for it Foreman QCIF sequence. Each
graph from the top shows RD performance, relative PSNR (PSNRFS+DTFM −
PSNRMRS+HTFM), and the speed-up factor of our proposed algorithm (MRS with
HTFM) compared to FS with DTFM, respectively.

FS and DTFM. For our proposed algorithm, the parameters are selected to optimize

H.264 / MPEG-4 AVC ME for LTMC.

To demonstrate the performance of the proposed fast search algorithm, we im-

plemented our fast search algorithm in H.264 encoder reference software version

JM 5.0c [1]. The experiment settings are as follow: a) 300 frames are used for

each sequence, b) all the sequences are in QCIF format, c)16 reference frames

are used (note that this is the maximum number of reference frames which can

63

500 1000 1500 2000 2500 3000 3500 4000 4500
35

40

45

50

55

[d
B

]

Stefan QCIF

500 1000 1500 2000 2500 3000 3500 4000 4500

−0.1

−0.05

0

R
el

at
iv

e
P

S
N

R
 [

d
B

]

500 1000 1500 2000 2500 3000 3500 4000 4500
68

70

72

74

[kbps]

S
p

ee
d

u
p

 F
ac

to
r

FS+DTFM
MRS+HTFM

Figure 3.13: RD and complexity performance for it Stefan QCIF sequence. Each
graph from the top shows RD performance, relative PSNR (PSNRFS+DTFM −
PSNRMRS+HTFM), and the speed-up factor of our proposed algorithm (MRS with
HTFM) compared to FS with DTFM, respectively.

be used), d) only first frame is coded as Intra frame, e) 16x16 motion partitions

are used for ME, f) SearchRange is set as 16. For the proposed algorithm, a)

for the search space selection by a probability model, {ε, Thf , c1, c2, c3, γ1, γ2} =

{2, 0.1, 0.02, 0.05, 0.1, 1.2, 0.1}, b) for temporal search space reduction, Z = 0.25,

and c) for HTFM, Pf = 0.4. The parameters are optimized to reduce complexity

with slight RD performance degradation. In Figures 3.11-3.13, we compare our

64

proposed algorithm with FS with DTFM, and show RD performance and complex-

ity. In these figures, upper graph shows RD performance, and lower graph shows

speed-up factor that is the number of operations for FS with DTFM divided by that

of our proposed algorithm. The number of operations includes, addition, absolute

difference, division/multiplication and comparison.

As one can see from these results, the proposed algorithm can speed up H.264/AVC

LTMC ME process significantly with minor RD performance degradation. The

speed-up factors are approximately in the range of 70-110, and the PSNR degrada-

tion is very marginal for Mother & Daughter, approximately ∼ 0.1dB for Foreman,

and approximately ∼ 0.2dB for Stefan. The speed-up factor can be further in-

creased if we allow slightly higher RD performance degradation. Our proposed

algorithm is scalable in terms of RDC (rate-distortion-complexity) performance.

This scalability can be achieved by adjusting thresholds (Thf and Pf). If we de-

crease Thf and increase Pf , then the complexity will be further reduced with a

slight increase in RD performance degradation. Conversely, if we increase Thf and

decrease Pf , then we can achieve less RD performance degradation with decreased

complexity saving performance.

3.3 Conclusion

In this chapter, we proposed an adaptive fast motion estimation algorithm which

estimates scene characteristics based on lower resolution motion estimation. To

65

reduce spatial search range, we propose two fast algorithms. The first algorithm

reduces search space based on error surface smoothness determined from lower

resolution search. The second algorithm employs a probability model which selects

a search space to adapt to varying scene characteristics. To reduce temporal search

range, we employ a probability model which determines reference frames which are

not likely to provide best matching. To reduce matching complexity, we propose to

employ HTFM which allows an early termination of SAD calculation based on the

likelihood not to find a better match. As a final proposed algorithm, we propose

to employ the probability based spatial/temporal search reduction and HTFM.

The proposed algorithm is implemented in the most recent video standard codec

H.264/AVC, and the RD and complexity performance is compared with that of ME

algorithm which employs FS and DTFM. The simulation shows significant speed

up (70− 110) with slight performance degradation.

66

Chapter 4

EFFICIENT MEMORY MANAGEMENT

CONTROL FOR H.264

4.1 Introduction

LTMC extends the motion search range by using multiple decoded frames as ref-

erence frames to improve video encoding efficiency as shown in Chapter 2 and 3.

However, due to this multi-frame usage for motion compensation, the memory re-

quirement to store reference frames at the decoder side increases significantly. High

capacity, fast access memories are now available at increasingly lower cost. Ref-

erence frames, however, have to be fetched in expensive processor cache memory

due to large number of data accesses to the reference frames. For mobile telephony

application, it is difficult to have enough cache memory for LTMC. Therefore, re-

ducing the memory requirement for the motion compensation is very important

specifically for mobile applications.

67

Memory management control, which aims to reduce the memory requirement

for motion compensation, can be based on block-based or frame-based techniques.

Block-based memory management schemes form new references by storing only rel-

evant blocks for motion compensation. Frame-based memory management schemes

discard reference frames in order to form a smaller reference space.

In [44], a block-based efficient memory management control for LTMC was

proposed. In this paper, the author proposed a scheme that selects relevant blocks

for motion compensation, and forms a memory space by storing these relevant

blocks. Block relevance is decided based on a similarity measure, computed using

the same search algorithm at the encoder and the decoder. Therefore, this technique

does not require signaling to the decoder side to identify the blocks selected for

motion compensation. However, due to the search of relevant blocks at the decoder,

this scheme requires a special decoder to be used.

A block based memory management scheme with signaling is possible with no

search at the decoder side. However, this scheme needs to signal the utilization

of every block for each frame, and therefore, the signaling requires substantial

overhead. Instead, signaling in a frame-based memory management scheme requires

much lower overhead. For example, for the H.264 video compression standard,

utilization of each frame can be signaled efficiently using the memory management

control operation (MMCO) [29].

68

In this chapter, we propose a novel frame-based memory management scheme

which results in minimal performance degradation and requires no search at the

decoder side. A selection of reference frames are signaled using MMCO as defined

in H.264. Therefore, our technique can be used with any standard H.264 decoder.

Our goal is to discard the least important reference frames from the frame buffer,

i.e., those whose removal will result in the smallest reduction in prediction gain. An

optimal solution would require checking all the possible combinations of discarded

reference frames to exactly determine the different losses in coding efficiency. Thus

this would lead to significant search complexity and long encoding delays. The sim-

plest memory management control scheme is the sliding-window technique which

drops the oldest reference frames. Usually this technique works well because tempo-

ral correlation of video signals tends to decrease for older reference frames. However,

there are a significant number of cases in which the oldest reference frames are im-

portant, e.g., sequences with repetitive motions and/or uncovered backgrounds by

object motions. For these cases, dropping the oldest reference frames may degrade

the prediction performance significantly. For our proposed algorithm, we employ a

greedy search which requires low additional complexity and short encoding delay.

69

4.2 Efficient Memory Management

Control For LTMC

The optimal solution of frame-based management control discards the least im-

portant reference frames from the frame buffer to form a smaller set of reference

frames with the smallest prediction gain degradation. However, to find the optimal

solution we would need to check all the combinations of discarded reference frames.

This is because for each combination the encoding result for a given frame may

be different, and to find the optimal solution we need to encode a frame multiple

times; one for each combination of reference frames. Therefore, finding the optimal

solution requires high computational complexity. Each combination of reference

frames may result in different quality for the current frame being encoded, and this

may result in different quality for the future frames until an intra refresh frame

is coded. Thus, for the optimal solution we would need to determine coding per-

formance for the future frames till a refresh frame as well. Therefore, finding the

optimal solution requires very long encoding delay. Due to the high computational

complexity and the long encoding delay of the optimal solution, we propose to use

a greedy search as a suboptimal solution. To describe our proposed algorithm, let

us define some notation first:

• Xn : reconstructed frame with index n.

• Ym : original frame with index m.

70

• Bv
m(M) = {Xm−M , . . . , Xm−1} : virtual frame buffer of length M for the

motion-estimated prediction of Ym. The virtual frame buffer contains all

possible reference frames for a given frame.

• Br
m(L) : real frame buffer of length L for the motion estimated prediction of

Ym. The real frame buffer contains the reduced number of reference frames

which is decided by a memory management control.

• Di(Xn, Ym) : distortion between the ith block of Ym and the best match in

Xn.

The proposed algorithm is composed of three stages, namely, data generation,

frame-selection, and encoding. Let us assume that M is the maximum number

of reference frames that can be used (size of virtual frame buffer), and L is the

number of reference frames to be used by our proposed scheme. For a current

frame Ym, our proposed algorithm first forms a set of available reference frames

Sr(m) = {Xm−1} ∪ (Br
m−1(L)∩Bv

m(M)) which is a set of the previously encoded

frame Xm−1 and the subset of Br
m−1(L) from which Ym can be predicted. Note that

|Sr(m)| ≤ L + 1, where | · | is the number of elements (in this case, the number of

reference frames). Therefore, to form Br
m(L) out of Sr(m), our proposed algorithm

discards discards a reference frame from Sr(m), whenever |Sr(m)| = L+1 and does

not refer to the discarded reference frame for encoding future frames.

Discarding a reference frame from Sr(m) may affect encoding of future frames

including Ym because this decision would provide different reference frames and

71

different motion candidates. The optimal solution should consider all these effects

to form a Br
m(L), which would require a long delay of encoding. As a sub-optimal

solution, we propose to consider future frames which are directly affected by dis-

carding a reference frame. For this, we define Sa(m) = {Ym, Ym+1, . . . , YM+m−1}

as a selection of all the frames which can use at least one frame in Sr(m) as a

reference. In our proposed algorithm, rather than basing our frame selection on all

future frames, we propose to discard the frame from Sr(m) that is least important

in terms of achieving efficient motion compensation of the frames in Sa(m). In this

way, we can achieve smaller encoding delay and complexity by reducing the amount

of look-ahead encoding required.

4.2.1 Data generation stage

The data generation stage collects motion and distortion data by look-ahead encod-

ing of frames Yk ∈ Sa(m). By using these results, in the following frame-selection

stage, we select a set of reference frames. If |Sr(m)| ≤ L, at the data generation

stage, we just perform normal encoding of Ym without look-ahead encoding and

frame-selection. Otherwise, we perform look-ahead encoding of frames in Sa(m).

The optimal solution searches for the reference frame that provides the least distor-

tion increase in encoding frames Sa(m) by discarding it. However, the look-ahead

encoding of frame Yk ∈ Sa(m) needs to use Xj, the encoded and reconstructed

version of the Yj, for m ≤ j < k that are not available because the corresponding

72

Br
j(L) of Yj is not decided yet. Therefore, for the optimal solution, we need to

encode Yk ∈ Sa(m) multiple times for each combination of reference frames, which

requires very high computational complexity and long encoding delay. In our pro-

posed algorithm, instead, we use (Sr(m)∩Bv
k(M))∪{X ′

m, . . . , X ′

k−1} as references

instead of using Br
k(L) for look-ahead encoding of Yk, where X ′

j is defined as the

encoded and reconstructed frame by using all the available references in the virtual

frame buffer of frame Yk. Using X ′

j instead of Xj may results in suboptimal solution

because we do not consider all the combinations of frame-selections. However, in

this way, we can avoid long encoding delay and high computational complexity of

the optimal solution.

Note that for some Yk ∈ Sa(m), the motion estimation has already been per-

formed when making a decision on the previous frames, and the corresponding

motion vectors and distortion values have been stored. However, after a decision

on Br
m(L) is made, Xm becomes available, and this may be different from X ′

m

used for the look-ahead encoding of {Ym+1, . . . , }, and this difference may results in

different motion results from those that are stored. This would require performing

motion estimation again for {Ym+1, . . . , } using Xm rather than X ′

m. Because the

motion estimation process is the most complex processing for video encoding, we

propose to use the motion vectors and distortion values stored from look-ahead

encoding, and perform the motion estimation only for Yk for which the motion es-

timation has not been performed. This may result in some coding inefficiency due

73

to the difference between Xm and X ′

m. However, in this way, we can perform the

motion estimation just once for each frame Yk.

After motion estimation, for each block, i, of frame Yk ∈ Sa(m), we store the

motion vectors mvi(Xj, Yk) and the corresponding distortion values Di(Xj, Yk) for

each reference frame used, Xj, j ∈ {k −M, . . . , k − 1}. As a distortion measure

Di, in this work, we use SATD + λMOTION · COST , where SATD is the sum of

absolute transformed differences, COST is the bit cost to encode a motion vector

and a reference frame index, and λMOTION is the Lagrangian parameter used to in-

corporate rate constraint. We choose this metric as the distortion measure because

it is used to find the best reference frame in the H.264 reference software [2].

4.2.2 Frame-selection stage

In the second stage, using Di obtained from the data generation stage, we compute

C(Xj, Yk) which is defined as the total distortion increase for each frame Yk ∈ Sa(m)

when Xj ∈ Sr(m) is discarded.

C(Xj, Yk) =
∑

i∈A

(Di(Xji
, Yk)−Di(Xj, Yk)), (4.1)

where A is the set of block indices for which Di(Xj, Yk) is the minimum for the

given j. In (4.1), Xji
is the second best reference frame for ith block of Yk. By using

74

C(Xj, Yk), we compute the total distortion increase, Γ(Xj,m), of all Yk ∈ Sa(m)

by discarding Xj from Sr(m). Γ(Xj,m) is computed as follows.

Γ(Xj,m) =
∑

Yk∈Sa(m)

C(Xj, Yk) (4.2)

Then, we remove Xmin from Sr(m) that minimizes Γ(·), and we form Br
m(L) as

follows.

Xmin = arg min
Xj∈Sr(m)

Γ(Xj,m) (4.3)

After discarding Xmin from Sr(m), we delete the stored motion vectors and the

distortions corresponding to Xmin.

4.2.3 Encoding stage

By using Br
m(L) decided from the frame-selection stage, we encode the current

frame Ym. We use the motion vectors collected at the data-gathering stage for the

encoding. Therefore, we do not need to perform the motion estimation again for

this stage. For the encoding, for each ith block of Ym, we choose the best motion

vector mv∗

i as follows.

X∗

j = arg min
Xj∈Br

m(L)
Di(Xj, Ym) (4.4)

mv∗

i = mvi(X
∗

j , Ym)

75

NN-1N-2N-3N-4 N+1 N+2 N+3 N+4 N+5

Virtual Buffer

N-1N-3 N

Real Buffer

N-4

Figure 4.1: Discarding a reference frame from the virtual frame buffer to form a set of
references for the real frame buffer.

Using these chosen motion vectors, we encode Ym, then add the resulting Xm to

the frame buffer to be used for encoding the future frames.

4.2.4 Example

Let us describe our proposed algorithm by a simple example in Figure 4.1. Assume

that the length of the real frame buffer is L = 4, while the length of the virtual frame

buffer is M = 5. We will encode frame YN+1 using the proposed technique. Now we

want to discard a reference frame from Sr(N+1) = {XN−4, XN−3, XN−2, XN−1, XN}

as shown in Figure 4.1. First, at the data gathering stage, we perform the motion

estimation for Sa(N + 1) = {YN+1, . . . , YN+5}, and store all the motion vectors

76

mvj(XN−i, Ym) and the distortions Dj(XN−i, Ym). Then, at the frame-selection

stage, we compute Γ(XN−i, N + 1) as follows.

Γ(XN−i, N + 1) =
N−i+5∑

m=N+1

C(XN−i, Ym), (4.5)

i ∈ {0, 1, 2, 3, 4}.

By comparing all Γ(XN−i, N + 1), ∀i ∈ {0, 1, 2, 3, 4}, we discard the reference

frame which provides the smallest Γ(·). Let us assume that Γ(XN−2, N + 1) is

smallest, then we discard XN−2 from Sr(N+1). The real frame buffer is Br
N+1(4) =

{XN , XN−1, XN−3, XN−4}. Then we delete Dj(XN−2, YN+1) and mvj(XN−2, YN+1)

from stored motion vectors and distortions.

4.3 Experiments

In this section, we show the experimental results of our proposed memory manage-

ment control technique. For the experiments, we implement the proposed algorithm

into a H.264 reference software, JM8.1a [2] with the baseline profile. For the exper-

iments, we use CIF sequences of length 100. Among 100 frames for each sequence,

the first frame is intra-coded, and remaining frames are inter-coded. For motion

estimation, we use the fast motion estimation implemented in the reference soft-

ware and quarter-pel refinement, set the search parameter to 32, and use 16 × 16

macro-block partitioning. For the experiments, we use a virtual frame buffer of size

77

25 30 35 40 45 50
0

1

2

PSNR[dB]

bi
tr

at
e

sa
vi

ng
 [%

]

Stefan CIF

25 30 35 40 45 50
0

2

4

PSNR[dB]

bi
tr

at
e

sa
vi

ng
 [%

]

25 30 35 40 45 50

0

2

4

PSNR[dB]

bi
tr

at
e

sa
vi

ng
 [%

]

P
4

 Full 5

P
3

 Full 5

P
2

 Full 5

Figure 4.2: Relative rate-distortion performance of the proposed technique with respect
to the sliding-window technique, Top: SW4, middle: SW3, and bottom: SW2. Full 5

uses virtual and real buffers of size 5 frames. The result is for 100 frames of CIF Stefan

sequence.

5, and vary the size of the real frame buffer. The proposed memory management

scheme requires signaling the utilization of the frame buffer at the decoder side.

For this, we use the memory management control operation (MMCO) of H.264[29].

The proposed algorithm is compared with the sliding-window memory manage-

ment scheme which discards the oldest frames. In Figure 4.2 and 4.3, we show

the relative rate-distortion (RD) performance of the proposed algorithm with re-

spect to that of the sliding-window technique. In these figures, SW4, SW3, and

SW2 represents the sliding-window technique which discards the oldest 1, 2, and 3

78

30 35 40 45 50
0

1

2

PSNR[dB]

bi
tr

at
e

sa
vi

ng
 [%

] Foreman CIF

30 35 40 45 50
0

2

4

PSNR[dB]

bi
tr

at
e

sa
vi

ng
 [%

]

30 35 40 45 50
0

2

4

6

8

PSNR[dB]

bi
tr

at
e

sa
vi

ng
 [%

]

P
4

 Full 5

P
3

 Full 5

P
2

 Full 5

Figure 4.3: Relative rate-distortion performance of the proposed technique with respect
to the sliding-window technique, Top: SW4, middle: SW3, and bottom: SW2. Full 5

uses virtual and real buffers of size 5 frames. The result is for 100 frames of CIF Foreman

sequence.

reference frames among 5 reference frames, respectively. Also, P4, P3, and P2 rep-

resents the proposed technique which utilizes 4, 3, and 2 frames, respectively. As

one can see from these results, our proposed algorithm usually achieves better RD

performance compared to the sliding-window technique. However, the relative gain

of our proposed technique decreases in the lower bit-rate range. This is because

as bit-rate decreases, more matches tend to be found from more recent reference

frames due to the cost of signaling temporal distance between a current frame and

a reference. Therefore, the sliding-window memory management scheme performs

reasonably well in this low bit-rate region.

79

4.4 Conclusion

In this chapter, we propose an efficient memory management control scheme which

can reduce the memory requirements for LTMC at a decoder. The proposed tech-

nique employs a greedy search to discard the least important reference frames,

and shows better prediction gain performance than the sliding-window memory

management that discards the oldest reference frames. The proposed technique is

implemented with relatively low additional complexity at the encoder, and requires

no search at the decoder. The proposed technique requires look-ahead encoding

which introduces relatively small amount of encoding delay, and requires a signal-

ing to let the decoder know when to discard reference frames. For a video sequence

where many matches come from the older reference frames, our proposed technique

shows substantial improvement in coding gains.

80

Chapter 5

FAULT RESILIENT COMPRESSION 1

5.1 Introduction

Widespread deployment of multimedia applications is continuing to create a need

for highly integrated chips which support various multimedia functionalities. Also,

as technologies advance, the dimension of chips tends to decrease, which leads

to increases in the effects of manufacturing defects and reductions in yield rate.

The manufacturing yield rate (or yield rate) is the percentage of chips which pass

manufacturing tests among tested chips. Low yield rates can increase the cost of

chips and delay the start of their mass production stage [30].

1This chapter is based upon work supported in part by the National Science Foundation under
Grant No. 0428940. Any opinions, findings, and conclusions or recommendations expressed in
this paper are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation.

81

To address these problems, fault tolerance (FT) and defect tolerance (DT) tech-

niques have been proposed. FT techniques provide reliable operations in the pres-

ence of faults or errors by utilizing additional error detection and correction circuits.

DT techniques enhance the yield rate by using redundancy (spares) and/or defect

avoidance techniques in layout [17, 53], routing [73], and circuit design [63, 43], etc.

Examples of FT schemes are [39, 22, 65, 62]. Some approaches [39, 22] are based

on algorithmic level computations using redundant data. In other cases [65, 62],

the algorithm itself is modified to enable fault location and correction. In these

systems the goal is to compensate the effect of the faults, so that a system that

contains a faulty subsystem behaves exactly as a fault-free one.

In [18] a system-level error tolerance (ET) scheme was proposed to increase

effective yield by enabling use of faulty circuits which provide acceptable per-

formance degradation. ET is a new design and test paradigm, which takes into

consideration whether erroneous outputs of defective circuits produce acceptable

results. ET classifies a chip as being acceptable/unacceptable by estimating the

performance degradation due to faults, rather than relying solely on the conven-

tional perfect/imperfect classification. This enables the use of systems that would

otherwise have been discarded and increases the effective yield. ET analyzes the

system-level effects of faults, and accepts chips if the performance degradation they

lead to is within some, application-specific, ranges of acceptability.

82

In this chapter, we propose fault resilient video compression, an ET scheme

specifically designed for digital video compression systems. A common character-

istic of all compression standards for digital video (and indeed for images, speech,

or audio) is that they rely on lossy compression, that is, the decoded video is not

an exact copy of the original. If we view the effect of faults as potential additional

distortion suffered by the decoded video, this added distortion will in some cases

still lead to an acceptable output. Therefore, multimedia compression systems are

good applications for ET techniques. Our ultimate goal is to separate acceptable

from unacceptable faults by estimating the fault’s impact on the decoded video

quality. Therefore, analysis of system behavior under faults is a key to ET. While

our focus in this chapter is system-level analysis of ME techniques for acceptable

degradation, testing can also be applied to lower level components of a system [41]

and to other subsystems within a video encoder [23].

Our proposed schemes are aimed at separating the systems being tested into

four classes, namely, (i) fault-free systems, (ii) faulty systems such that a simple

programmable algorithmic level compensation can make them error-free (i.e., the

output will then be the same as that of a fault-free system), (iii) faulty systems

producing acceptable quality degradation, and (iv) faulty systems producing un-

acceptable quality degradation. Only systems in the last class will be discarded.

Traditional FT schemes identify systems in the second class. Thus the main nov-

elty of our approach is to identify systems in the third class, which do not produce

83

an output identical to that of a fault-free system, but can still be used. Also, we

provide a novel FT scheme for the second class. To achieve the proposed goal, we

first analyze and model system-level effect of faults within the ME process. We

then propose test vector generation and testing algorithms for the proposed ET

scheme.

5.2 System Level Error Tolerance

for Video Compression Systems

Fault effects on various computing components of digital video compression systems

vary greatly depending on which components are affected. For example, some faults

may may result in the codec generating non-compliant bitstreams which can not

be decoded properly. However, it is also possible that some faults may only lead to

small degradation in output quality. In this section, we provide a high level analysis

of fault effects for each essential video compression system component.

Let us first categorize the various types of system-level faults that arise in typical

multimedia compression systems [25]. We consider faults to be catastrophic if they

prevent the creation (or decoding) of a valid bitstream. Non-catastrophic faults are

such that the syntax of the resulting bitstream is valid even though the bitstreams

(and therefore the decoded signals) will be different from those produced by a fault-

free system given the same input. Acceptable faults are those non-catastrophic

84

Catastrophic Error Visual Coding
Error Propagation Quality Efficiency

Degradation Degradation

Frame Memory(1) No No Yes Yes

DCT No No Yes Yes

Q No No Yes Yes

Inv Q No Yes Yes Yes

IDCT No Yes Yes Yes

Frame Memory(2) No Yes Yes Yes

ME No No Possible Yes

MC No Yes Yes Yes

VLC Encoder Yes Yes Yes Yes

Table 5.1: Fault effect analysis of a MPEG-2 video encoder depicted in Figure 1.1
(a).

faults leading to acceptable degradation. Discrimination between acceptable and

unacceptable faults will be achieved by estimating the impact on decoded quality

and may depend on the target application. Thus, acceptability criteria are likely

to be more strict (i.e., only minimal degradation will be acceptable) for high-end

systems where quality is most important. In addition to these categories, it is

important to determine which faults can be compensated so as to have no effect on

the system output.

Consider as an example an MPEG-2 encoder, which includes among its building

blocks motion estimation (ME) / compensation (MC), the discrete cosine transform

(DCT), quantization, entropy coding, and various memory buffers [55]. Faults in

each of these components have completely different effects on the operation of

85

the complete system [25]. Fault effects for these various components are summa-

rized in Table 1.1, and showed again in Table 5.1 for convenience. It is important

to note that many faults affecting different parts of one such system are in fact

non-catastrophic, although obviously they result in a reduction in coding efficiency

and/or visual quality. In fact, only faults that affect the entropy coding block are

likely to be catastrophic.

Note that in some cases a relatively well localized fault can have effects that

propagate over time and may have a significant impact on decoded quality. For

example, a motion compensated video encoder has to include a version of the video

decoder, because encoder and decoder need to use the same decoded video frames

as predictors. Then, if a fault affects the encoder decoding loop (e.g., there is a

fault in the IDCT computation at the encoder) this will lead to errors that can

accumulate over time, as the previous frame memory is not the same at encoder

and decoder.

5.3 System Level Error Tolerance

for Motion Estimation: Analysis

As one can see from Table 5.1, the ME process exhibits significant robustness to

faults. Faults at a ME circuit may cause worse rate-distortion (RD) performance,

86

but do not produce catastrophic errors nor error propagation. ME represents a sig-

nificant percentage of computational complexity and memory bandwidth require-

ments in video encoding as one can see from an example in Figure 5.1. Therefore,

the ME process is a potentially good candidate to which error tolerance scheme can

be applied. In this section, we analyze and model effects of faults on ME circuits

in order to facilitate the design of error tolerant ME.

5.3.1 Motion estimation

For each non-overlapped block of size N × N pixels in the current frame (the ref-

erence macroblock, MB, X), ME seeks to find the best match among all the blocks

(candidate blocks Yi) in a search window located in the previous and/or future

frames. ME algorithms include a search strategy and matching metric computation.

The search strategy (e.g., full search, three-step search [42], and two-dimensional

logarithmic search [40]) decides the set of candidate blocks to be tested and the

order in which their metrics should be computed. The matching metric (e.g., the

sum of absolute differences, SAD, or the sum of square differences, SSD, between

a candidate block and the reference block) is computed for successive candidate

blocks, until a sufficiently good candidate block has been found, i.e., one whose

SAD or SSD with respect to the reference block is sufficiently low. The encoder

then subtracts this chosen candidate from the reference block and transmits the re-

sulting difference data (i.e., the prediction residual) to the decoder (as long as the

87

V(X,Y)

2w

N

x’

x

|x-y|

+

y

AD-PE

MIN

1

M-PE

R R R R R

R R R R R

R R R R R

R AD AD AD AD

R AD AD AD AD

R AD AD AD AD

R AD AD AD AD

+ + + +M
D(m,n)

y x

Figure 5.1: Example of ME implementation architecture with a parallel match-
ing process architecture. AD block represents an absolute-difference and an add
processing element (AD-PE), M block represents minimum processing element (M-
PE), and R block represents memory register [59].

energy in the difference is sufficiently low this leads to better compression efficiency

than sending the reference block directly.)

In Figure 5.1, we show an example of a ME implementation architecture [59].

This ME example finds the best match for N×N block X in 2w×2w motion search

window Y (x and y represents a pixel value of X and Y respectively). In this figure,

V (X,Y) represents the resulting motion vector found and D(m,n) represents a

distortion of a candidate which corresponds to (m,n) position. Also in this figure,

AD represents an absolute-difference (the matching metric used is SAD) and an add

processing element (AD-PE), M represents minimum processing element (M-PE),

88

and R represents memory register. AD-PE computes the absolute pixel difference

for the current pixels and adds it together with one or more partial SAD values. M-

PE compares the SAD value of a current candidate with the best SAD value found

so far, and picks the candidate that provides minimum distortion. Memory register

R stores and feeds pixels of candidate blocks to the matching process. Therefore a

search strategy is performed by a logic which selects a candidate and by R blocks,

while the matching metric computation is mainly performed by AD-PEs.

It is important to note that even if the encoder does not choose the “best”

candidate block (e.g., the one having the lowest possible SAD among all the candi-

dates for a given reference block), encoding and decoding are still possible. There

is a penalty in compression performance (i.e., more bits are needed to represent

the residual signal when a sub-optimal candidate block is chosen) but otherwise

the encoder and decoder operate normally. It is also important to note that the

exact computed SAD metric is itself of little concern; what is important is the rela-

tive ranking of the candidate blocks because the ME process seeks to find the best

matches among candidate blocks. Thus, certain faults in the metric computation

will result in no errors or negligible errors in the resulting video encoding. If the

faulty systems only rarely affect the block ranking during ME, then the coding

penalty is likely to be minimal. This is a key of observation in our analysis of

motion estimation hardware: we will seek to estimate the impact of faults on the

89

accuracy of the metric computation (therefore we will focus on the matching pro-

cess)and hence on the quality of the candidates chosen by the encoder. Acceptable

hardware faults will be such that the optimal candidate may not always be chosen,

but such that, in general, sufficiently good candidates are chosen instead.

While we focus our analysis on the architectures shown in Figure 5.2, and assume

full search block matching with SAD metric, the results can be applied to other

implementation structures as well.

5.3.2 Matching process architecture and model

There are numerous implementation architectures for the matching metric compu-

tation (MMC) process, with different levels of parallelism as shown in Figure 5.2

[59]. Because AD-PE is the major building block for matching process, the archi-

tectures in the figure only show AD-PE (without pixel inputs for simplicity) and

data flows. In this figure, Type-1 is a fully serial architecture, Type-2 is a column-

wise parallel architecture, Type-3 is a fully parallel architecture, and Type-4 uses

the same circuit for metric computation of each column. As one can see from this

figure, data dependency and data flow of a matching process implementation are

different depending on the implementation architecture. To analyze fault effects on

various matching process architectures, and to design generic testing algorithms,

we model a matching process architecture as a tree graph model. For this we make

the following assumptions.

90

AD AD AD AD

AD AD AD AD

AD AD AD AD

AD AD AD ADM

V

N

D

AD AD AD AD

AD AD AD AD

AD AD AD AD

AD AD AD AD

N

++++M

V D

AD

AD

AD

AD

N

+

+++++

++

+M
V D

AD

AD

AD

AD

M
V

N

D

+

Figure 5.2: Examples of motion estimation matching process architecture. In this
figure, only processing elements are shown without showing inputs for simplicity.
Details of these processing elements are shown in Figure 5.1. Type-1: upper left,
Type-2: upper right, Type-3: lower left, and Type-4: lower right [59].

5.3.2.1 Assumptions

We assume in our analysis that full search is used and that the SAD is used as a

metric. We also make the following assumptions. First, all the outputs of AD-PEs

and adders are 16 bit wide. Usually ME is performed on 16× 16 luminance MBs,

where each luminance pixel is represented with 8 bits. Thus the absolute difference

between two luminance values can also be represented by 8 bits. Therefore, the

maximum SAD value when combining the ADs of 16×16 pixels can be represented

91

using 16 bits2. Second, our work is focused on the interconnect faults that affect

the data transfer between PEs. Therefore, we assume that the absolute difference

operation and the carry generation process in an adder are error-free. These error-

free processes can be achieved by well-known self checking design techniques [64,

34, 58]. Third, we assume that the faults in the interconnect between processing

elements are stuck-at-0 (SF0) or stuck-at-1 (SF1) faults, which cause the given

data line to produce a constant value (0/1) independent of other signal values in

the circuit.

5.3.2.2 Tree graph model of metric computation architectures

In a matching metric computation (MMC) architecture, the main component for

each PE is an adder that computes the absolute pixel difference for the current pixel

and adds it together with one or more partial SAD values. MMC architectures

can be viewed as arrays of cascaded adders and represented as tree graphs (see

Figure 5.3), where each node represents an adder, and edges connecting two nodes

represent a data bus (i.e., a set of data lines). Tree graphs similar to that in

Figure 5.3 can be constructed for all non-recursive architectures in Figure 5.2, i.e.,

all except Type-4. In this model, for simplicity, we will omit the arrows if there

is no ambiguity in data flow. Under our assumption that numerical operations are

correct, this tree model will be used to determine the errors caused at the output

by faults in the data transfer between PEs.

2This is obtained as dlog
2
(N2 × (28 − 1))e, N = 16, where d·e is the ceiling operator.

92

�

� �

� �

� � �

� �

� �

�� � �

�

��

�

� �

� �

�� �

�

�

� �

�� �

�

�

�

��

���

���

���

���

���

���

���

���

	 	

���

���

���

���

���

���

���

���

	

� �

�

���

���

��� ��� ���

	

���

� �

Figure 5.3: Dependence graph (left) of the Type-2 architecture and a corresponding
tree graph model (right). Next to each PE we show the number of bits needed to
represent partial SADs at the output of each node.

In the tree graph model, we define the root node as the closest node to the final

output. Each node is cascaded in the tree graph model. Thus, faults in an input

data line can be interpreted as the faults in the output data line of a child-node.

Therefore, in our analysis, we only allow faults in the output data line for each

node. To construct a tree model, we follow a convention which puts the root node

at the top node.

Depending on the architecture used, the set of possible outputs of each PE is

different. Here we define the dynamic range as the set of all possible signal values

in a given data bus. Clearly, since the system computes the total SAD by adding

partial SAD values, the dynamic range of nodes closer to the final output node

93

x

x̂

x

x^

(a) (b)

Figure 5.4: Input x vs. output x̂ of a data bus (a) when there is SF1 fault in a
data line n = p, and (b) when there is SF0 fault in a data line n = p.

(i.e., the root node) will tend to be larger. This can be seen in Figure 5.3 where we

include the bit-width needed to represent the output dynamic range of each node

in the fault-free case. The dependence graphs and the tree graph models can be

constructed in a similar way for other (non-recursive) architectures.

5.3.3 Fault effect modeling for MMC process

5.3.3.1 Uniform offset interval

Let us first analyze a single stuck-at fault in an m-bit data bus, where data line 0

corresponds to the LSB. Let x and x̂ denote the input and output of the data bus,

94

respectively, and let the error in the data bus be e = x̂− x. If there is a single SF1

fault in the p-th data line then we have that:

e =

2p, 2k · 2p ≤ x ≤ (2k + 1) · 2p − 1

0, (2k + 1) · 2p ≤ x ≤ (2k + 2) · 2p − 1

∀ k = 0, 1, . . . , 2m−p−1 − 1.

(5.1)

A similar relationship can be derived for the case of SF0 fault. The relationship

between x̂ and x is illustrated in Figure 5.4. As can be seen from (5.1), a single

stuck-at fault causes some inputs to be shifted by a constant amount, while some

other inputs remain unchanged. Thus all inputs belonging to an interval

I(k, p) = [k · 2p, (k + 1) · 2p − 1], (5.2)

are shifted by the same amount (2p if k is even, 0 if odd). We will call I(k, p) the

uniform offset intervals for a fault at data line p. All the elements in a uniform

offset interval are shifted by the same amount. If there are multiple faults in a data

bus, then the uniform offset interval is determined by the fault which is closest to

LSB (that is, the fault leading to the smallest error).

Note that if all the inputs to a faulty data bus are shifted by the same amount

(i.e., the dynamic rage of the input falls within one of these I(k, p)), then the

ranking of values at the output remains unchanged in spite of the fault. This is

95

x

x^

Output
dynamic

range

Input
dynamic

range

Uniform Offset
Interval

x

x
^

Output
dynamic

range

Input
dynamic

range

x

x^
Output

dynamic
range

Input
dynamic

range

x

x^

Output
dynamic

range

Input
dynamic

range

(a) (b)

(c) (d)

Figure 5.5: Dynamic range transform (a) no fault, (b) uniform shift, (c) and (d)
non-uniform shift. The faults in this example are single SF1.

illustrated by Figure 5.5, where Figure 5.5(a) represents the fault-free case and

Figure 5.5(b) shows the case when all input values are equally shifted. Conversely,

when the input dynamic range is not completely enclosed in one of the I(k, p), a

non-uniform offset of the inputs is introduced (see Figures 5.5(c) and (d)), which

can lead to changes in the ranking at the output. Note that in the fault-free case

the lower bound of all dynamic ranges is zero, but this is no longer the case if faults

occur.

96

Table 5.2: Effect of in-range SF1 faults in the cumulative adders in terms of PSNR
degradation (dB). Negative entry represents PSNR degradation, and positive entry
represents PSNR enhancement. These results are achieved by using MPEG-2 TM5
and the matching process architecture in Figure 5.1 with test sequences.

Bit/Column 0 4 8 12 15

0 0 0.007 0.002 0.011 0.006

2 0.037 0.014 0.001 0.049 -0.006

4 0.034 0.004 -0.010 0.005 -0.001

6 -0.005 -0.045 -0.021 0.009 -0.019

8 -0.007 -0.179 -0.126 -0.124 -0.234

10 0 -0.111 -1.019 -1.127 -0.879

12 0 0.014 -0.364 -2.466 -3.395

14 0 0 0 -0.001 -1.876

More specifically, for the case as in Figure 5.5 (c), the ranking of the input

values are changed, but the one-to-one correspondence between input and output

values of the data line is maintained. However, to recover the real input value,

inverse mapping information is needed, and a compensation circuit is needed for

each node. In this work we will only allow the compensation circuit to be located,

if needed, at the very end of the metric computation. Therefore for this case, it

is difficult to retrieve the real value. For cases such as that of Figure 5.5 (d), the

input dynamic range is shifted and shrunk due to a fault. Therefore the ranking of

the input values and the one-to-one correspondence between input and output are

not maintained.

97

5.3.3.2 MMC Performance degradation by faults

We define in-range bits as the bit positions needed to represent the maximum

dynamic range of a data bus, and out-range bits as the unused bit positions in a

data bus. For example there may be 16 data lines for an operation which is known

to have only 12 bit outputs when a MMC system is designed using a single standard

module for all AD operations. Also, we define in-range and out-range faults as the

faults which affect in-range bits and out-range bits respectively.

If all the faults in a MMC architecture are out-range faults, then all the dynamic

ranges of intermediate metric values will be contained in uniform offset intervals

at each node, which do not affect the ME outcome by preserving relative rankings

(as an example see some of the in-range faults in high bit positions in Table 5.2).

However, an in-range fault may introduce performance degradation due to altered

relative rankings of matching metric. It is important to note that in-range faults

may result in an uniform shift for specific inputs. For example, for a specific

input, if the actual dynamic range of a specific input source is below an in-range

fault, then it will result in uniform shift. However, because video input sources

vary significantly, we analyze and design based on maximum dynamic range (worst

case scenario). Therefore, the actual performance degradation depends on the

distribution of residuals (frame differences) for each block, and fault combinations

/ locations. This is shown in Tables 5.2 and 5.3. In these tables, we show average

peak signal to noise ratio (PSNR) degradations due to a SF1 fault at specified

98

bit positions and PEs. ‘Column’ and ‘Row’ entry represents the horizontal and

vertical position of each PE in the MMC architecture example shown in Figure 5.1

respectively: 0 represents the rightmost and the topmost, and 15 represents the

leftmost and the bottommost for horizontal and vertical positions, respectively.

In these tables, negative PSNR values represent degradation, and positive PSNR

values represent quality improvements. Note that there are cases where average

PSNR is higher in spite of faults. This is because a best candidate found by

optimizing SAD metric may not provide optimal PSNR (which is computed based

on mean squared error) results.

The performance degradation is relatively smaller for AD-PEs than for cumu-

lative adders because AD-PEs affect a smaller number of partial SADs than cu-

mulative adders. Also, the degradation becomes more severe when in-range faults

occur at higher bit positions and near the output. Another interesting observation

is that for cumulative adders, degradations become more severe for those closer

to the output because average pixel differences for the good candidates are quite

small, thus, a significant portion of partial sums are not affected by high bit posi-

tioned in-range faults for the cumulative adders far from the output. However, for

those closer to the output, they are likely to be affected by these faults, leading to

significant increases in distortion.

99

Table 5.3: Effect of single fault in AD-PE in terms of PSNR degradation (dB).
Negative entry represents PSNR degradation, and positive entry represents PSNR
enhancement. These results are achieved by using MPEG-2 TM5 and the matching
process architecture in Figure 5.1 with test sequences.

Row/Column 0 4 8 12 15

0 0.0024 0.0102 0.0086 -0.0082 0.0066

4 -0.0009 -0.0039 0.0046 0.0019 -0.0015

8 -0.0019 -0.0037 -0.0058 -0.0019 -0.0015

12 0.0005 0.0022 0.0003 0.0062 -0.0015

15 0.0006 -0.0042 -0.0003 0.0016 -0.0038

5.3.3.3 Multiple faults

For the multiple fault case, the problem becomes more complex. At each individual

node, the dynamic ranges are transformed by the mechanism shown in Figure 5.5,

but the effect of multiple faults located in different data buses is not necessarily the

sum of the effects of each individual fault. We illustrate examples of these cases

below.

Case1-Multiple faults in a single data bus: For this case, the total error e(x)

is the sum of each error ei(x) due to each fault in a data line i.

e(x) =
∑

i

ei(x)

Case2-Multiple faults in cascaded data buses: Let us assume that two data

buses are cascaded, Also let us assume that for the bus closer to the input x, there

exist a SF1 fault at p data line, and for the data bus closer to the output z, there

100

Dynamic Range
Expansion

Input Dynamic
Range

Dynamic Range
Transform

Input Dynamic
Range

Output Dynamic
Range

NODE

Figure 5.6: Interpretation of each node as the cascaded operations on input dynamic
ranges.

exist a SF1 fault at q data line. Then, the relationship between the input x and

the output z is

z = x + ep(x) + eq(x + ep(x)).

The error term is not necessarily same as ep(x) + eq(x). Thus, for this case the

effect of multiple faults is not the sum of the individual effect.

5.3.3.4 Dynamic range transform

To analyze effect of faults in a MMC architecture, we use the concept of dynamic

range and tree graph model we defined above. In a MMC architecture, as metric

computation progresses from a leaf node (defined as an absolute pixel difference)

to the root node (defined as the closest node to the output), dynamic ranges of

intermediate metric values at each node are expanded (due to addition in a node),

and are uniformly or non-uniformly shifted by faults at each node as shown in

101

Figure 5.5. We define the change of dynamic range due to faults in a data bus as

the dynamic range transform at a node. Therefore in each node, the input dynamic

ranges form an expanded input dynamic range (due to addition in a node), and the

expanded input dynamic range is transformed by the faults in the node output as

shown in Figure 5.6.

5.4 Test Vector Generation & Testing Algorithm

Testing of a system is an experiment in which the system is exercised by certain

input sequences, and the responses are analyzed to determine the existence of faults

in the system. A testing algorithm determines how the stimuli (tests which are input

vectors) are applied and what the response to the stimuli is expected to be. Based

on a chosen testing algorithm, a test generation algorithm generates pairs of tests

and corresponding responses (output vectors) to be used for testing [12].

In this section, we design a testing algorithm and a test generation algorithm

for our proposed error tolerant schemes for MMC architectures.

5.4.1 Testing metric

To design a test-generation/testing algorithm, we need to design a metric which

will be used to analyze the system for (test, response) pairs. Let Dmax(η) and

Dmin(η) be the observed distortion values at the root node of a MMC architecture

when we apply to node η the maximum and minimum inputs, respectively. We

102

propose to use Dmax(η)−Dmin(η) as the metric for the proposed testing algorithm.

If there is no in-range fault, which will ensure that the uniform offset interval is

larger than the dynamic range at a node, and Dmax(η) − Dmin(η) is same as the

expanded dynamic range of a node, then the expanded dynamic range is embedded

in a single uniform offset interval of a node, and this will ensure faults to cause

uniform shift for the node. Note that, in contrast, most existing testing algorithms

compare, for each node, the observed output values D(η) at the root node with the

expected output values, and if those are different, then mark the chip as a faulty

circuit.

5.4.2 Testing algorithm design

We use the following observations from our error tolerance analysis to design a test

vector generation and a testing algorithm for MMC architectures:

• From the leaf nodes to the root node of a tree graph model, the input dynamic

ranges of the leaf nodes are expanded and transformed, and the dynamic

ranges tend to increase.

• At each node, if an expanded input dynamic range (which is determined by

faults in the subtree of the node) can be contained in a single uniform offset

interval (which is determined by the faults in the node) at each node (we

call this lossless error tolerance), then the faults cause uniform offset which

103

preserves relative rankings; otherwise, the faults may cause non-uniform offset

which results in distorted rankings.

• If the distorted rankings introduced by non-uniform shifts at each node are

small enough, then the performance degradation will be minimal (we call this

lossy error tolerance).

• Dmax(η) and Dmin(η) (more generally any output of node η, D(η)) is only

observed at the root node, therefore, we need to test the data path from the

parent node of η to the root node, before we test for a node η.

Thus our testing algorithm operates in a top-down manner, where the top is the root

node, and the bottom contains the leaf-nodes. More specifically, the least significant

k bit data lines of a given node are tested after all the data lines connecting these

k bit lines to the root node need have been tested.

Based on these observations, our proposed testing algorithm is structured as

follows (refer to Figure 5.7 for a flow chart of the proposed testing algorithm).

First, based on the tree graph, we compute the minimum size of the uniform offset

interval for each node that guarantees lossless operation. This step can be done

independently for each MMC architecture. Therefore, we do not show this step in

Figure 5.7.

Second, we check if the dynamic range distortion due to in-range faults passes

admissibility testing. For each node, we test for potential in-range faults which are

defined as faults occurring in data lines within the dynamic range of data being

104

��������� ����� !�#"�$&%�� '
'�$�(�')� �#"

*# !� +

,# �(-(

./� "102��� ����� !�#"�$&%�� '
'�$�(�')� �#"

,# �(-(

354!67� (�(�� %�� + � '�89'�$:()';� ��"/<
=?> '���� @�#"�$9A� > + '

'�$�(�')� �#"

= ABA�(�$�'5C��:6ED2$!�#(- 2';� �@�

35F-F-$!D�'GH� (-F� @� 4

,# �(-(

*# !� +

*# !� +

I-���B� @��"�$9A� > + '
'�$�(;';� �#"

Figure 5.7: Schematic flow chart for the proposed testing algorithm

transferred. “Low-in-range” bits are the 8 least significant bits, which are enough to

represent the dynamic range of leaf nodes. “High- in-range” bits are those bit-lines

above the 8th most significant one that are within the dynamic range of the node.

We first test low-in-range bits (low 8 bit) because low-in-range bits from multiple

nodes are needed to excite high-in-range bits. This test is performed in top-down

manner to ensure that all the low 8 bit data path from the leaf nodes to the root

node are fault-free. During the tests, if faults are detected, then the dynamic

range distortion introduced by the faults is compared with a quality threshold for

admissibility testing. Admissibility testing is defined in the following section.

105

Table 5.4: α(p): number of maximum inputs required to excite n = p bit position.

p 8 9 10 11 12 13 14 15

α(p) 2 3 5 9 17 33 65 129

Testing for high-in-range bits for each node is performed from lower significance

to higher significance bits and also in a top-down manner. Admissibility testing is

also performed for high-in-range bits based on the dynamic range distortion they

introduce. To excite n = p bit (n = 0 is LSB) for a node, α(p) (shown in Table

5.4) consecutive inputs in one subbranch of the node are excited to the maximum

value 255, where α(p) = d 2p

28−1
e, and d·e is the ceiling operation.

Third, we check if the dynamic range distortion due to out-range faults passes

admissibility testing. For this, we check if the difference between Dmax(η)−Dmin(η)

and the size of dynamic range is within a quality threshold. For lossless error

tolerance, when there is no in-range fault, the size of the uniform offset interval is

larger than that of the expanded input dynamic range. Therefore, input dynamic

ranges overlap with at most two uniform offset intervals. Thus, if Dmax(η)−Dmin(η)

is same as the size of dynamic range at a node, then this will ensure that the

expanded dynamic range is contained in a uniform offset interval. Otherwise, non-

uniform offsets will occur, potentially leading to errors at the output. For lossy

error tolerance, Dmax(η)−Dmin(η) may be different from the size of dynamic range

of a node. In this case, we check if the dynamic range distortion is within a quality

threshold defined by admissibility testing. Also, in this step, we need to check

106

x

x^

2m

2m 2m 2m

Figure 5.8: Overflow effect at a node when data bus width is m.

overflow effect due to dynamic range distortion at each node. An overflow should

not occur except for the root node, because it should be compensated in the node

where it occurs, and in the proposed scheme, compensation circuit is used only

after the root node. To allow overflows at each node, we need to implement offset

compensation at each node. The effect of overflow is shown in Figure 5.8 when

data bus width is m.

5.4.3 Admissibility testing

For lossless error tolerance, there should be no in-range fault, and for out-range

fault testing, Dmax(η)−Dmin(η) should be same as the size of dynamic range at a

node. Therefore the admissibility testing for each node η is as follows.

Dmax(η)−Dmin(η) == Mη × 255, (5.3)

107

where Mη is the number of leaf nodes (inputs) contained in the subtree of η.

For lossy error tolerance, we will accept low-in-range faults which result in ac-

ceptable performance degradation. If maximum distortion ∆D of the matching

metric of a MMC architecture for a given fault is less than a threshold ThD, this

fault will be acceptable. For single fault cases, ∆D can be estimated using the

proposed testing algorithm. However, because the testing algorithm is based on

the observed output at the root node, multiple faults in the same bit positions at

different nodes in the subtree may not be discriminated because our low-in-range

testing uses only maximum and minimum inputs for each node rather than exhaus-

tive input combinations. Denote δD(η) the maximum distortion of the matching

metric for a node η. During the low-in-range bit test, if we detect a single fault,

then the upper-bound δ̂D(η) for δD(η) is estimated as:

δ̂D(η, p) = Ns(η)× 2p, (5.4)

where Ns(η) is the number of nodes in the subtree of η and p is the bit position of

the fault. This means that the effect of the single fault is weighted by the number

of sub-tree inputs. Then, the upper-bound ∆̂D of ∆D in (5.1) can be estimated as:

∆̂D =
∑

η∈Θf

∑

p∈Bf (η)

δ̂D(η, p), (5.5)

108

where Θf is the set of faulty nodes which are first detected through top-down

testing, that is, for the same bit fault, Θf only includes the nodes closest to the

root node. Bf (η) is the set of faulty data lines of node η. Therefore, if ∆̂D ≤ ThD,

then we can guarantee that the performance degradation is less than ThD. Thus,

for lossy error tolerance, to limit the distortion in the matching metric of a MMC

architecture, we propose to use the following admissibility testing. For in-range

fault testing, we use

∆̂D ≤ ThD, (5.6)

and for out-range fault testing, we use

| |Dmax(η)−Dmin(η)| −Mη × 255| ≤ ThD, (5.7)

where Mη is the number of leaf nodes (inputs) contained in the subtree of η.

Lossy fault tolerance is based on the idea that the effect of low-in-range fault

is relatively small as compared to that of high-in-range. This could suggest not

using some LSB data lines at all from the design stage. However, this could lead

to quite significant distortion in metric computations because the results would be

same as those when all the low-in-range data lines have faults. More specifically, let

us assume that we do not have data lines whose indices are less than n = p (n = 0

is LSB), then for each node, δ̂D(η) = 2p − 1, and ∆̂D = NT × (2p − 1), where NT

109

is the total number of nodes. Therefore the performance degradation can be quite

significant.

5.4.4 Pseudo code for high-in-range bit testing

In the proposed testing algorithm, we first test low-in-range bits (low 8 bit) in

top-down manner to ensure that all the low 8 bit data path from the leaf nodes to

the root node satisfy an admissibility testing. Then, we perform high-in-range bits

testing by traversing tree graph model from top-down manner and from low bits

to high bits manner. In this section, we describe an example of pseudo code for

a high-in-range bit testing of a generic MMC architecture. For this we define the

following.

• η0: root node, i.e. the closest node to the output of a MMC architecture.

• ηleaf : a leaf node.

• left(η): left child-node of a node η.

• right(η): right child-node of a node η.

• κ(η): minimum number of bits to represent the dynamic range of a node η.

For the pseudo code in this section, we construct a tree graph model for a MMC

architecture as follows: For a node η, the left(η) and right(η) should satisfy

κ(left(η)) ≥ κ(right(η)). An example of resulting tree graph model is shown

in Figure 5.3. Below we show the pseudo code.

110

High-in-range bit testing:

• Step 0: p← κ(ηleaf).

• Step 1: If TreeCheck(η0, p) is TRUE, then go to Step 2, otherwise go to Step

4.

• Step 2: If p < κ(η0), then p← p + 1, otherwise go to Step 3.

• Step 3: Pass the test.

• Step 4: Fail the test.

DynamicRangeCheck(η,p){

IF neither left(η) or right(η) is a leaf-node,

RETURN TRUE

ELSE

Excite α(p) right-most leaf nodes in the subtree of η,

then perform an admissibility testing.

IF Pass the admissibility testing

RETURN TRUE

ELSE

RETURN FALSE

}

TreeCheck(η,p){

111

IF κ(η) ≤ p,

RETURN TRUE

ELSE

IF NOT DynamicRangeCheck(η,p)

RETURN FALSE

ELSE

IF κ(right(η)) > p

IF TreeCheck(right(η),p)

RETURN TreeCheck(left(η),p)

ELSE

RETURN FALSE

ELSE

RETURN TreeCheck(left(η),p)

}

TreeCheck is the function that traverses the tree graph model in top-down and

low-bit to high-bit order. DynamicRangeCheck function checks if the dynamic range

is distorted.

5.4.5 Test vector generation

A test is a pair constituting of an input and an expected output. In our proposed

testing algorithm, an input vector is composed of minimum difference inputs (0) and

maximum difference inputs (255) because the proposed testing metric is Dmax(η)−

112

Table 5.5: The number of tests required for the testing of Type-2 structure in Figure
5.2.

Testing Stage # of tests

All 0x00 input 1

Single 0xFF input 256

High-in-range bit test 833

All 0xFF input 1

Total # of tests 1091

Table 5.6: The number of tests required for each high-in-range bit testing for Table
5.5.

Bit position n = p # of tests

n = 8 240

n = 9 224

n = 10 192

n = 11 128

n = 12 15

n = 13 14

n = 14 12

n = 15 8

Dmin(η). For low-in-range bit testing, from the top node to leaf-nodes, a single

node is excited to the maximum input in top-down manner. Because a single input

is excited, the expected output is 255. For high-in-range bit testing, the test input

sequence depends on how we traverse nodes and data buses for the tree graph

model during testing. Therefore, the test inputs can be generated in a similar way

as TreeCheck function. The expected response is determined by the expected size

of the dynamic range of each node, which is determined by the number of excited

leaf-nodes α(p) for each step.

113

Table 5.7: The number of tests for the proposed and exhaustive testing for Type-1,
Type-2, and Type-3 architectures in Figure 5.2.

Type-1 Type-2 Type-3

Proposed 2051 1091 512

Exhaustive 7682 5738 4606

In Table 5.5, we show the number of tests required in each testing stage for the

proposed testing algorithm. For this table, Type-2 architecture on Figure 5.2 is

used. As one can see from this table, the most test inputs are needed for high-in-

range bit testing, because high-in-range faults are tested for each bit. The number

of tests required for each high-in-range bit testing is shown in Table 5.6.

In Table 5.7, we show the number of tests for the proposed testing and exhaustive

testing for Type-1, Type-2, and Type-3 architectures in Figure 5.2. In this table

the exhaustive testing method is not based on an analysis of the ME system and

therefore it views the given system as a black box and checks for the correctness

of each bit, so that the number of tests is proportional to the number of data lines

that can be excited separately. Clearly, our proposed technique can be implemented

with limited test complexity, as compared to exhaustive testing. Moreover, for the

proposed testing algorithm, all inputs applied during testing are either the minimum

or maximum value, so that we can represent each node test input with a single bit,

and then generate the corresponding test by using a multiplication by maximum

difference (255) in the testing hardware. Therefore, our proposed testing algorithm

requires small storage space for the test vectors.

114

Table 5.8: Yield-rate Yr and the probability of k fault case PX(k)

Yr PX(1) PX(2) PX(3)

0.2 0.3219 0.259 0.139

0.3 0.3612 0.2174 0.0873

0.4 0.3665 0.1679 0.0513

0.5 0.3466 0.1201 0.0278

0.6 0.3065 0.0783 0.0133

0.7 0.2497 0.0445 0.0053

0.8 0.1785 0.0199 0.0015

0.9 0.0948 0.005 0.0002

Table 5.9: The percentage of acceptable faults by the proposed error tolerance
scheme for Type-1, Type-2, and Type-3 architecture in Figure 5.2. SSF: single
stuck-at fault, DSF: double stuck-at fault.

Type-1 Type-2 Type-3
SSFLossless 6.23% 34.58% 43.86%
DSFLossless 0.36% 8.54% 19.13%

SSFLossy 9.16% 56.06% 75.27%
DSFLossy 0.42% 10.84% 36.77%

5.5 Performance of Proposed System Level Error

Tolerance Scheme

In this section, we evaluate the yield-rate increase achievable with our proposed

error tolerance techniques. In our evaluation we assume uniform spatial distribution

of faults, a Poisson distribution model, and stuck-at faults affecting only the data

buses.

115

5.5.1 Yield-rate and probability of fault

First, we describe a probability model which we will use for yield rate analysis.

Based on the assumptions we made and a simple probability model, we can estimate

the composition of a fault space. We employ the poisson statistics to analyze the

composition of a fault space. Let us assume that faults are distributed uniformly

on a wafer which is used to fabricate a chip. Also let us assume that SF0 and SF1

are equi-probable, that is, PSF0 = PSF1where PSF0 and PSF1 are the probability of

SF0 and SF1 respectively. In this case, the probability of having k faults within

the wafer area is given by the Poisson probability density function [16].

PX(k) , Prob{X = k} =
e−λλk

k !
(5.8)

In this model, X is a random variable which specifies the number of faults in a

chip. For k = 0, we get the yield-rate Yr as Yr = e−λ. From this we can compute λ,

and compute PX(k), k > 0. Table 5.8 shows an example of fault space composition

when Yr is given. From this table, one can see that the most dominant fault space

is single fault case.

116

20 30 40 50 60 70 80 90
20

30

40

50

60

70

80

90

100

Given YR (%)

Y
R
 b

y
pr

op
os

ed
 (%

)

Type-1 Architecture

Lossless
Lossy

Figure 5.9: Given yield-rate (YR) and the improved yield rate by the proposed fault
tolerance scheme for Type-1 architecture in Figure 5.2.

5.5.2 Yield-rate increase achievable with error tolerance

In this section, we show the yield-rate increase for various MMC architectures

by employing our proposed error tolerance. For this, we assume uniform spatial

distribution of faults to use Poisson distribution model in (5.8).

In Table 5.9, we show the acceptable faults percentage by employing proposed

lossless and lossy error tolerance scheme. For the lossy scheme, we set the threshold

THD to 64, which is observed to result in less than 0.1 dB degradation as can be

seen from Table 5.2. Note that the proposed testing scheme accepts a significant

portion of chips which would have been discarded otherwise. Also, one can notice

that the percentage of acceptance is much higher for Type-2 & Type-3 architectures

than for Type-1 architecture. This can be explained as follows: First, due to the

lack of parallelism of Type-1 architecture, there are fewer redundant data buses,

117

20 30 40 50 60 70 80 90
30

40

50

60

70

80

90

100

Given YR (%)

Y
R
 b

y
pr

op
os

ed
 (%

)

Type-2 Architecture

Lossless
Lossy

Figure 5.10: Given yield-rate (YR) and the improved yield rate by the proposed
fault tolerance scheme for Type-2 architecture in Figure 5.2.

therefore, the percentage of acceptable faults is lower for Type-1 architecture. By

employing variable width data line, we can completely remove the redundant out-

range data buses. In this case lossless error tolerance cannot be achieved. Second,

for lossy error tolerance, from (5.5), the upper-bound of performance degradation is

proportional to the number of nodes Ns(η) in the subtree. For Type-1 architecture

due to the serial connection of all nodes, Ns(η) is larger, and therefore, fewer in-

range faults are accepted.

In Figure 5.12, an example of typical progressions in yield learning is shown [30].

The dotted lines in this Figure are the upper and lower bound in yield learning

progressions. Around 20− 30% of yield rate is considered as production readiness,

and 50% of yield rate is considered as volume production readiness [30].

118

20 30 40 50 60 70 80 90
30

40

50

60

70

80

90

100

Given YR (%)

Y
R
 b

y
pr

op
os

ed
 (%

)

Type-3 Architecture

Lossless
Lossy

Figure 5.11: Given yield-rate (YR) and the improved yield rate by the proposed
fault tolerance scheme for Type-3 architecture in Figure 5.2.

By using these results and the composition of a fault space in Table 5.8, in Figure

5.9 - 5.11, we show the improved yield-rate by the proposed error tolerance schemes.

If the manufacturing is in the volume production stage where Yr > 90%, then the

yield-rate increase is not that significant. However, for the chip development stage

where the given yield-rate is quite small, the yield-rate increase achievable with our

proposed fault tolerance scheme is quite significant. Therefore, as one can see from

Figure 5.12, the beginning timing of Stage 2 and Stage 3 in manufacturing can be

advanced.

119

J K L M N O J O K

K)J

L�J

M J

N J

O J�J

P2Q�RTS U

P:V Q�W XTY Z\[

])^ R-_;Q O];^ R�_�Q K])^ R�_�Q-`

Figure 5.12: Typical progressions in yield learning [30].

5.6 Conclusion

In this chapter, a novel system-level error tolerance scheme for VLSI system is

proposed. The proposed design and testing algorithm is applied to the match-

ing process computation (MMC) of motion estimation for video compression, and

the corresponding error tolerance characteristics is analyzed in detail. Based on

this analysis, in this work, the proposed testing algorithm uses a tree structured

modeling of a MMC architecture and the dynamic range concept proposed.

The proposed scheme can be divided into lossless and lossy fault tolerance.

Lossless approach investigates the effect of faults in redundant data lines. If the

effect by these faults can be easily compensated by our scheme, then faulty chips are

120

accepted. Lossy scheme provides an upper-bound of performance degradation by

which we can trade-off between the yield rate improvement and slight degradation

of matching performance.

Also, we propose a testing metric which relies on the difference between max-

imum and minimum response of processing elements, which enables us to reduce

the number of test vectors required. Due to this, each input for a node is minimum

or maximum value, therefore, we can represent each input for a node by a single

bit, and can generate the corresponding test by using a multiplication in the testing

hardware. This enables us to use less storage space for the test vectors.

By the proposed scheme, the yield rate for a MMC architecture can be sig-

nificantly improved if the production is in the early stage. This can advance the

beginning timing of volume production of the given architecture.

121

Bibliography

[1] JVT Reference Software, version JM50c. http:// bs.hhi.de/ suehring/ tml/
download/.

[2] JVT Reference Software, version JM8.1a. http:// bs.hhi.de/ suehring/ tml/
download/.

[3] TMN H.263+ encoder version 3.0. University of British Columbia, Canada.

[4] ISO/IEC JTC1 Coding of Moving Pictures and Associated Audio for Digital
Storage Media at Upto About 1.5Mbit/s-Part2: Video. International Standard,
Mar. 1993.

[5] ITU-T Recommendation H.261, Video Codec for Audiovisual Services at
px64kbits/s. Mar. 1993.

[6] Information Technology-JPEG-Digital compression and coding of continuous-
tone still image-Part 1: Requirement and Guidelines. ISO/IEC 10 918-1 and
ITU-T Recommendation T.81, 1994.

[7] ISO/IEC JTC1 13818-2; ITU-T Recommendation H.262, Generic Coding of
Moving Pictures and Associated Audio Information-Part2:Video. International
Standard, Nov. 1994.

[8] ITU-T Recommendation H.263 Version 1, Video coding for low bitrate com-
munication. Nov. 1995.

[9] ISO/IEC JTC1/SC29/WG11 N2202 Committee Draft. Mar. 1998.

[10] ITU-T Recommendation H.263 Version 2 (H.263+), Video coding for low bi-
trate communication. Jan. 1998.

[11] Information Technology-JPEG 2000-Image Coding System-Part 1: Core Cod-
ing System. ISO/IEC 15 444-1, 2000.

[12] M. Abramovici, M. A. Breuer, and A. D. Friedman. Digital Systems Testing
and Testable Design. The Institute of Electrical and Electronics Engineering,
Inc., New York, 1990.

122

[13] V. Bhaskaran and K. Konstantibides. Image and Video Compression Stan-
dards: Algorithm and Architectures. Kluwer Academic Publishers, Boston,
MA, 1995.

[14] M. Bierling. Displacement estimation by hierarchical blockmatching. In Proc.
SPIE conf. Visual Commun. Image Processing, pages 942–951, Boston, Nov.
1988.

[15] M. Bierling and R. Thoma. Motion compensating field interpolation using a
hierarchically structured displacement estimator. Signal Processing, 11:387–
404, Dec. 1986.

[16] P. J. Bonk, M. R. Gupta, R. A. Hamilton, and A. V. S. Satya. Manufac-
turing yield. In Microelectronics Manufacturing Diagnostics Handbook, A. H.
Ladzberg Ed., Van Nostrand Reinhold, pages 9–35, New York, 1993.

[17] D. G. Boyer. Symbolic layout compaction review. In Proc. 25th ACM/IEEE
Design Automation Conf., pages 383–389, Sep. 1988.

[18] M.A. Breuer, S.K. Gupta, and T.M. Mak. Defect and error tolerance in the
presence of massive numbers of defects. IEEE Design & Test of Computers,
21:216–227, May–June 2004.

[19] P. J. Burt. Multiresolution techniques for image reperesentation, analysis, and
‘smart’ transmission. In Proc. SPIE conf. Visual Commun. Image Processing,
pages 2–15, Philadelphia, PA, nov. 1989.

[20] J. Chalidabhongse and C.-C. J. Kuo. Fast motion vector estimation us-
ing multi-resolution-spatio-temporal correlations. IEEE Trans. Circuits Syst.
Video Technol., 7(3):477–488, Jun. 1997.

[21] E. Chan, A. Rodriguez, R. Gandhi, and S. Panchanathan. Experiments on
block matching techniques for video coding. Multimedia Systems, 2:228–241,
1994.

[22] Y.-H. Choi and M. Malek. A fault-tolerant fft processor. IEEE Trans. Com-
puters, 37(5):617–621, May 1988.

[23] I. Chong and A. Ortega. Harware testing for error tolerance in multimedia
compression based on linear transforms. In Proc. IEEE Intl. Symp. on Defect
and Fault Tolerance in VLSI Systems, DFT’05, Monterey, CA, Oct. 2005.

[24] H. Chung and A. Ortega. Low complexity motion estimation algorithm by
multiresolution search for long-term memory motion compensation. In Proc.
IEEE Int. Conf. Image Processing, Rochester, NY, Sep. 2002.

123

[25] H. Chung and A. Ortega. System Level Fault Tolerance for Motion Estimation
: Technical Report USC-SIPI 354. Signal and Image Processing Institute,
University of Southern California, Los Angeles, CA, 2002.

[26] H. Chung, A. Ortega, and A. A. Sawchuk. Low complexity motion estima-
tion for long-term memory motion compensation. In Proc. SPIE conf. Visual
Commun. Image Processing, Jan. 2002.

[27] H. Chung, D. Romacho, and A. Ortega. Fast long-term motion estimation for
h.264 using multiresolution search. In Proc. IEEE Int. Conf. Image Processing,
volume 3, pages 905–908, Barcelona, Spain, Sep. 2003.

[28] F. Dufaux and F. Moscheni. Motion estimation techniques for digital tv: A
review and a new contribution. Proceedings of the IEEE, 83(6):858–876, Jun.
1995.

[29] T. Wiegand (ed.). Joint working draft, version 2 (wd-2). Joint Video
Team(JVT) of ISO/IECMPEG and ITU-T VCEG, JVT-B118r2, Mar. 2002.

[30] B. El-Kareh, A. Ghatalia, and A. V. S. Satya. Yield management in mi-
croelectronic manufacturing. In Proc. Electronic Components and Technology
Conference, pages 21–24, May 1995.

[31] B. Furht, J. Greenberg, and R. Westwater. Motion Estimation Algorithms for
Video Compression. Kluwer Academic Publishers, Boston, MA, 1997.

[32] B. Girod. The efficiency of motion-compensationg prediction for hybrid coding
of video sequences. IEEE J. Selected Areas in Comm., SAC-5(7):1140–1154,
Aug. 1987.

[33] F. Glazer, G. Reynolds, and P. Anandan. Scene matching by hierarchical
correlation. In Proc. IEEE Computer Vision and Pattern Recognition Conf.,
pages 432–441, Washington, DC, Jun. 1983.

[34] M. Gossel and E. S. Sogomonyan. New totally self-checking ripple and carry
look-ahead adders. In Proc. 3rd Int. On-line Testing Workshop, pages 36–40,
1997.

[35] MPEG Software Simulation Group. MPEG2 Video Codec Version 1.2.

[36] K. S. Harish and K. M. M. Prabhu. Fixed-point error analysis of two dct
algorithms. In IEE Proc. Vis. Image Signal Process., volume 147, 2000.

[37] B. G. Haskell. Frame replenishment coding of television. In Image Transmis-
sion Techniques. W. K. Pratt Ed., Academic Press, 1978.

124

[38] M. Horowitz, A. Joch, F. Kossentini, and A. Hallapuro. H.264/avc baseline
profile decoder complexity analysis. IEEE Trans. Circuits Syst. Video Tech-
nol., 13(7):704–716, Jul. 2003.

[39] K.-H. Huang and J. A. Abraham. Algorithm-based fault tolerance for matrix
operations. IEEE Trans. Computers, 33(6):518–528, Jun. 1984.

[40] J. Jain and A. Jain. Displacement measurement and its application in inter-
frame image coding. IEEE Trans. on Comm., 29(12):1799–1808, Dec. 1981.

[41] Z. Jiang and S. Gupta. An atpg for threshold testing: Obtaining acceptable
yield in future processes. In International Test Conference, 2002.

[42] J. Koga, K. Iiunuma, A. Hirani, Y. Iijima, and T. Ishiguro. Motion compen-
sated interframe coding for video conferencing. In Proceedings of the National
Telecommunications Conference, pages G5.3.1–5.3.5, 1981.

[43] I. Koren and Z. Koren. Analysis of a hybrid defect-tolerance scheme for high-
density memory ics. In Proc. 1997 IEEE Int. Symp. Defect and Fault Tolerance
in VLSI Systems, Oct. 1997.

[44] R. Kutka. Content-adaptive long-term prediction with reduced memory. In
Proc. IEEE Int. Conf. Image Processing, volume 3, Barcelona, Spain, Sep.
2003.

[45] W. Lee, Y. Kim, R. J. Grove, and C. J. Read. Media station 5000: Integrating
video and audio. IEEE Multimedia, 1(2):50–61, 1994.

[46] K. Lengwehasatit and A. Ortega. Probabilistic partial-distance fast matching
algorithms for motion estimation. IEEE Trans. Circuits Syst. Video Technol.,
11(2):139–152, Feb. 2001.

[47] J. Li, X. Lin, and Y. Wu. Multiresolution tree architecture with its application
in video sequence coding: A new result. In Proc. SPIE conf. Visual Commun.
Image Processing, pages 730–741, 1993.

[48] R. Li, B. Zeng, and M. L. Liou. A new three-step search algorithm for block
motion estimation. IEEE Trans. Circuits Syst. Video Technol., 4:438–442,
Aug. 1994.

[49] W. Li and E. Salari. Successive elimination algorithm for motion estimation.
IEEE Trans. Image Processing, 4(1):105–107, Jan. 1995.

[50] Y.-C. Lin and S.-C. Tai. Fast full-search block-matching algorithm for motion-
compensated video compression. IEEE Trans. on Comm., 45(5):527–531, May
1997.

125

[51] B. Liu and A. Zaccarin. New fast algorithms for the estimation of block motion
vectors. IEEE Trans. Circuits Syst. Video Technol., 3(2):148–157, Apr. 1993.

[52] L.-K. Liu and E. Feig. A block-based gradient descent search algorithm for
block motion estimation in video coding. IEEE Trans. Circuits Syst. Video
Technol., 4:419–422, Aug. 1994.

[53] M. Lorenzetti. The effect of channel router algorithms on chip yield. In MCNC
International Workshop on Layout Synthesis, May 1990.

[54] Y. MA. An accurate error analysis of fft algorithm. IEEE Trans. Signal
Processing, 45(6):1641–1645, Oct. 1997.

[55] J. Mitchell, W. Pennebaker, C. E. Fogg, and D. J. LeGall. MPEG Video
Compression Standard. Chapman and Hall, New York, 1997.

[56] B. Natarajan, V. Bhaskaran, and K. Konstantinides. Low-complexity block-
based motion estimation via one-bit transforms. IEEE Trans. Circuits Syst.
Video Technol., 7(4):702–706, Aug. 1997.

[57] T. Naveen and J. W. Woods. Motion compensated multiresolution trans-
mission of high definition video. IEEE Trans. Circuits Syst. Video Technol.,
4(1):29–41, Feb. 1994.

[58] M. Nicolaidis. Efficient implementations of self-checking adders and alus. In
Proc. FTCS 23, pages 586–595, 1993.

[59] P. Pirsch, N. Demassieux, and W. Gehrke. Vlsi architectures for video
compression-a survey. Proc. IEEE, 83(2):220–246, Feb. 1995.

[60] K. R. Rao and P. Yip. Discrete Cosine Transform. Academic Press, Inc., San
Diego, CA, 1990.

[61] D. Romacho. Fast Search Algorithms for Long-Term Memory Motion Com-
pensation : Diploma Thesis. Polytechnic University of Catalonia, 2007.

[62] A. Roy-Chowdhury and P. Banerjee. Algorithm-based fault location and re-
covery for matrix computations on multiprocessor systems. IEEE Trans. Com-
puters, 45(11):1239–1247, Nov. 1996.

[63] S. E. Schuster. Multiple word/bit redundancy for semiconductor memories.
IEEE J. Solid-State Circuits, SSC-13:698–703, Oct. 1978.

[64] F.W. Shih. High performance self-checking adder for vlsi processor. In Custom
Integrated Circuits Conference, Proc. IEEE, pages 15.7/1–15.7/3, May 1991.

126

[65] R. Sitaraman and N. K. Jha. Optimal design of checks for error detection and
location in fault-tolerant multiprocessor systems. IEEE Trans. Computers,
42(7):780–793, Jul. 1993.

[66] R. Srinivasan and K. Rao. Predictive coding based on efficient motion estima-
tion. IEEE Trans. on Comm., 33(8):888–896, Aug. 1985.

[67] A. M. Tekalp. Digital Video Processing. Prentice Hall PTR, NJ, 1995.

[68] J. Y. Tham, S. Ranganath, M. Ranganath, and A. A. Kassim. A novel unre-
stricted center-biased diamond search algorithm for block motion estimation.
IEEE Trans. Circuits Syst. Video Technol., 8(4):369–377, Aug. 1998.

[69] A. M. Tourapis. Enhanced predictive zonal search for single and multiple frame
motion estimation. In Proc. SPIE conf. Visual Commun. Image Processing,
pages 1069–1079, Jan. 2002.

[70] A. M. Tourapis, O. C. Au, and M. L. Liou. Highly efficient predictive zonal
algorithms for fast block-matching motion estimation. IEEE Trans. Circuits
Syst. Video Technol., 12(10):934–947, Oct. 2002.

[71] H.-Y. C. Tourapis. Fast motion estimation within the jvt codec: Jvt-e023.
Joint Video Team(JVT) of ISO/IECMPEG and ITU-T VCEG 5th Meeting,
Oct. 2002.

[72] K. M. Uz, M. Vetterli, and D. J. LeGall. Interpolative multiresolution coding
of advanced television with compatible subchannels. IEEE Trans. Circuits
Syst. Video Technol., 1(1):86–99, Mar. 1991.

[73] A. Venkataraman, H. Chen, and I. Koren. Yield enhanced routing for high-
performance vlsi designs. In Proc. Microelectronics Manufacturing Yield, Re-
liability and Failure Analysis, SPIE97, Oct. 1997.

[74] Y. Wang, J. Ostermann, and Y.-Q. Zhang. Video Processing and Communi-
cations. Prentice-Hall, Inc., NJ, 2002.

[75] C. J. Weinstein. Quantization Effects in Digital Filters, volume 468. MIT
Lincoln Laboratory Technical Report, 1969.

[76] T. Wiegand and B. Girod. Multi-frame Motion-compensated Prediction for
Video Transmission. Kluwer Academic Publishers, 2001.

[77] T. Wiegand, B. Lincoln, and B. Girod. Fast search for long-term memory
motion-compensated prediction. In Proc. IEEE Int. Conf. Image Processing,
volume 3, pages 619–622, Chicago, IL, 1998.

127

[78] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra. Overview of the
h.264/avc video coding standard. IEEE Trans. Circuits Syst. Video Technol.,
13(7):560–576, Jul. 2003.

[79] T. Wiegand, X. Zhang, and B. Girod. Long term memory motion compensated
prediction. IEEE Trans. Circuits Syst. Video Technol., 9(1):70–84, Feb. 1999.

[80] J. W. Woods and T. Naveen. Subband encoding of video sequences. In Proc.
SPIE conf. Visual Commun. Image Processing, pages 724–732, Nov. 1989.

[81] Y.-Q. Zhang and S. Zafar. Motion-compensated wavelet transform coding for
color video compression. IEEE Trans. Circuits Syst. Video Technol., 2(3):285–
296, Sep. 1992.

128

