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Abstract

Multi-view video sequences consist of a set of monoscopic video sequences captured

at the same time by cameras at different locations and angles. These sequences

contain 3-D information that can be used to deliver new 3-D multimedia services.

Due to the amount of data, it is important to efficiently compress these multi-view

sequences to deliver more accurate 3-D information.

Since the captured frames by adjacent cameras have similar contents, cross-view

redundancy can be exploited for disparity compensation. Typically both temporal

and cross-view correlations are exploited in multi-view video coding (MVC), so

that a frame can use as a reference the previous frame in time in the same view

and/or a frame at the same time from an adjacent view, thus leading to a 2-D

dependency problem. The disparity of an object depends primarily on its depth

in the scene, which can lead to lack of smoothness in the disparity field. These

complex disparity fields are further corrupted by the brightness variations between

views captured by different cameras. We propose several solutions to solve these

problems in block based predictive coding in MVC.

Firstly, the 2-D dependency problem is addressed in Chapter 2. We use the

monotonicity property and the correlation between anchor and non-anchor quan-

tizers to reduce the complexity in data collection of an optimization based on the

Viterbi algorithm. The proposed bit allocation achieves 0.5 dB coding gains as

compared to MVC with fixed QP.

xi



In Chapter 3, we propose an illumination compensation (IC) model to com-

pensate local illumination mismatches. With about 64% additional complexity

for IC, 0.3-0.8 dB gains are achieved in cross-view prediction. IC techniques are

extended to compensate illumination mismatches both in temporal and cross-view

prediction.

In Chapter 4, we seek to enable compensation based on arbitrarily-shaped

regions, while preserving an essentially block-based compensation architecture. To

do so, we propose tools for implicit block-segmentation and predictor selection.

Given two candidate block predictors, segmentation is applied to the difference

of predictors. Then a weighted sum of predictors in each segment is selected for

prediction. Simulation results show 0.1-0.4 dB gains as compared to the standard

quad tree approach in H.264/AVC.
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Chapter 1

Introduction

1.1 Multi-view Video

Since early 20th century when the first generation of television came into being,

many novel technologies have been introduced (e.g., color, new types of displays,

etc.). However, the main framework of video service has not been changed signif-

icantly in that the frames captured by the camera are edited to generate a single

sequence that is delivered and displayed on a 2-dimensional (2-D) screen. With

this monoscopic video system, 2-D scenes are regenerated and shown to users for

the fixed viewpoint provided by the camera at each time instant.

The visual information of an object can be defined by the intensity and the

location. The object intensities are represented by three color channels - R, G and

B. The locations of the objects are defined by 3-D information - horizontal and

vertical location and depth. In the captured 2-D frame where 3-D location of an

object is projected, only horizontal and vertical information is delivered to users

with three color channels, while depth information is not delivered explicitly.

In the real world, the depth of an object can be estimated by various depth cues.

For example when moving head, objects that are closer will move farther across the

1



Scene/
Objects

Camera 0 : View 0

Camera 1 : View 1

Camera N : View N

Processor/
Storage

Transmitter

Processor/
Buffer

Receiver Display

Fig. 1.1: End to end multi-view system

field of view and different scenes will be observed according to the displacement of

head. This is called motion parallax, a monocular depth cue. Also the occlusions

or the exposed areas can give information about which objects are closer. When

both eyes are open and the head is not moving, each eye will see different images

of the same scene. Stereo images from this binocular parallax are used to measure

depth. Binocular parallax is the most important cue and depth information can

be obtained even if all other depth cues are removed.

In the conventional monoscopic video system, only limited cues are available

for depth estimation (e.g., from the occluded or disclosed regions of scenes). How-

ever, in order to deliver complete information to users and enable 3-D multimedia

services, depth information needs to be transmitted or estimated accurately. Multi-

view video systems are used for simultaneously capturing the scenes or objects with

multiple cameras from different view points. In multi-view video, different perspec-

tives by cameras for the same scenes or objects provide binocular parallax, from

which depth information can be extracted, thus enabling 3-D multimedia services.

An end to end multi-view video system is depicted in Fig. 1.1. Multi-view

sequences captured by an array of cameras are stored, processed and transmitted.

2



Received sequences are processed and displayed on 2-D or 3-D display devices.

After sequences are reconstructed at the receiver, intermediate views can be inter-

polated to provide smooth transition and improved quality of display. Sequences

can be displayed on conventional 2-D displays with view switching capability [16],

or specially designed 3-D display devices can be used [28] for better 3-D perception.

In the sequence acquisition step, the number of views decides the range of

3-D scene and the quality of service e.g., the more cameras are used, the more

accurate depth information will be, thus enabling improvements in the quality

of interpolated views. However, the amount of data for the captured sequences

also increases proportionally to the number of views. For example, transmitting

uncompressed multi-view sequences with 8 views, 1280×720 resolution and 24 bits

per pixel at 30 frames/sec requires 5.3 Gbps. Because of the increased amount of

data in multi-view system, efficient coding of multi-view sequences is essential for

the widespread use of services.

1.2 Applications of Multi-view Video System

There have been active research efforts on applications of multi-view video, espe-

cially for 3-D TV and free-viewpoint video. In [28], a 3-D TV prototype system

is proposed which uses an array of 16 cameras, clusters of network-connected PCs

and a multi-projector 3-D display. Two types of display, rear-projection screen and

front-projection screen are implemented according to the location of projectors. Al-

though blur is prominent on both types of display due to the crosstalk between

subpixels of different projectors and light diffusion, the display reflects user’s view-

point and shows different images. In [10], a video-plus-depth data representation is

proposed as a flexible solution to diverse 3-D display technologies. A depth map is

3



created from frames captured using stereo cameras or multiple monocular cameras

and streams including N video sequences and a depth sequence are used to render

M views. Depth image based rendering (DIBR) is proposed as a solution to 3-D

reproduction.

For free-view point video, in [20] view generation methods are explained using

ray-space approach [11]. For coding of multi-view video sequences, a group of GOP

(GoGOP) structure is proposed in order to enable low delay random access, which

is an extension of the group of picture (GOP) structure in standard video cod-

ing. In [16], a color segmentation-based stereo algorithm is used to generate high

quality photo-consistent correspondences across views captured by high-resolution

cameras. Scene depth is recovered by disparities and matting information is used

at object boundaries to compensate depth discontinuities. A real time rendering

system is described, which interactively synthesizes intermediate views.

In [31], panoramic video capturing, stitching and display is proposed to provide

users individual control of viewing direction. A camera array is used to capture

sequences and captured scenes are stitched, then displayed on head-mounted dis-

play with orientation tracker so that different scene can be displayed according

to user’s orientation. This system assumes that the user has fixed location but

his/her viewing direction can rotate so that scenes around user can be viewed in

360 degree. This approach is different to multi-view system in that the viewing

direction of user rotates at fixed location.

With the recognition that a multi-view video coding is a key technology for a

wide variety of applications including 3-D TV, free viewpoint TV and surveillance,

various topics related to multi-view video are covered in [12]. In [39], an overview

of 3-D TV and free viewpoint video is given with related standardization activities

in MPEG.
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1.3 Contributions of the Research

Design of multi-view video system involves multiple disciplines such as video cod-

ing, optics, computer vision, computer graphics, stereoscopic displays, multi-projector

displays, virtual reality and psychology, in order to enable services that can bridge

the gap between 2-D and full 3-D experience e.g., holographic display. In this

work, we focus on providing efficient compression methods for multi-view video

coding.

A straightforward approach for compression of multi-view video sequences

would be to apply standard video coding techniques to each view independently.

This simulcast (SC) approach allows temporal redundancy to be exploited using

block-based motion compensation techniques as shown in Fig. 1.2(a). Since the

captured frames by adjacent cameras have objects in common, cross-view redun-

dancy could also be exploited in the form of disparity compensation as shown in

Fig. 1.2(b). To achieve high coding gains, multi-view video coding exploits both

temporal and cross-view redundancies. In Fig. 1.2(c), a multi-view video coding

structure using both temporal and cross-view correlation is depicted. To facilitate

random access, anchor frames are inserted at predefined time intervals. These

anchor frames are encoded using only cross-view prediction.

In block based predictive coding, the block most correlated to the current block

is searched for in the previously encoded frame. Therefore the gains in coding

efficiency mainly come from finding highly correlated blocks leading to residuals

with high degrees of energy compaction. Applying a block based predictive coding

to both temporal and cross-view prediction in MVC, the following problems are

observed.

5
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Fig. 1.2: Multi-view video coding structure
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To avoid drift between encoder and decoder, the same frame should be used

for prediction at encoder and reconstruction at decoder. Therefore reconstructed

frames are used for the prediction of current frames, so that encoding of current

frame depends on the quality of reconstructed frames. This dependency problem

was addressed in [34] in monoscopic video coding. This one dimensional (time)

dependency problem is expanded into two dimensional (time and view) problem

in multi-view systems.

In cross-view prediction of multi-view video, imperfectly calibrated cameras

give different brightness and focus to sequences at different views. Even if cam-

eras are perfectly calibrated, differences in camera positions and orientations lead

to differences in how certain objects appear in different views. The accuracy of

disparity search is corrupted by these mismatches between views, which can lead

to irregular disparity fields and degrade cross-view coding efficiency.

In block based motion/disparity compensation, block sizes used for compen-

sation can be chosen to achieve a good trade-off between signaling overhead and

prediction accuracy. However current quad-tree based motion compensation leads

to motion boundaries that are not necessarily aligned with arbitrary object bound-

aries, which limits the accuracy of block-based compensation, even when small

block sizes are chosen. Therefore, moving objects in motion compensation and ob-

jects at different depths in disparity compensation result in significant distortion

in places where the object boundary is not aligned with the rectangular grid that

can be represented by quad-tree.

The main contribution of this research is to provide new predictive coding

tools to solve the problems described above and improve overall coding efficiency

in multi-view video coding. In the proposed bit allocation scheme, we use the

7



monotonicity property and the correlation between anchor and non-anchor quan-

tizers to reduce the complexity in data collection of the Viterbi algorithm, which

was proposed in [34] for solving a dependency problem in standard video coding.

To improve the accuracy of disparity search under brightness variation between

views captured by different cameras, a local illumination compensation technique

is proposed. Implicit block segmentation algorithm is proposed to find a match

corresponding to arbitrary object boundaries while preserving a block based com-

pensation architecture.

1.4 Organization of Dissertation

The rest of the dissertation is organized as follows. In Chapter 2, we consider

the bit allocation problem in MVC. A dependent coding technique using trellis

expansion and the Viterbi algorithm (VA) is proposed, which takes into account

dependencies across time and views. We note that, typically, optimal quantizer

choices have the following properties: i) quantization choices tend to be similar

for frames that are consecutive (in time or in view), ii) better quantization tends

to be used for frames closer to the root of the dependency tree. We propose a

search algorithm to speed up the optimization of quantization choices. Our results

indicate 0.5 dB coding gains can be achieved by an appropriate selection of bit

allocation across frames.

In Chapter 3, we propose a block-based illumination compensation (IC) tech-

nique for cross-view prediction in MVC. Models for illumination (brightness) mis-

matches across views are proposed and new coding tools are developed from the

models. In IC, disparity field and illumination changes are jointly computed as

part of the disparity estimation search. IC can be adaptively applied by taking

8



into account the rate-distortion characteristics of each block. By compensating the

effect of mismatches, we improve the quality of references obtained via disparity

search, which leads to coding gains of up to 0.8 dB.

In Chapter 4, we propose an implicit block based segmentation method to im-

prove quality by using multiple predictors for each block. Given two candidate

block predictors, segmentation is applied to the difference of predictors and the

optimal predictor is selected in each segment. Implicit block segmentation is im-

plemented in H.264/AVC as an additional inter block mode and achieves 0.1-0.4

dB gains as compared to the results obtained with only a hierarchical quad-tree.

In Chapter 5, conclusions and future work are discussed.
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Chapter 2

Dependent Bit Allocation in Multi-view Video

Coding

2.1 Preliminaries

To achieve coding gains in multi-view video coding (MVC), both temporal and

cross-view correlation can be exploited using block-based predictive coding. Any

such block-based predictive coding technique leads to dependencies, as quantiza-

tion choices for one frame affect the achievable rate-distortion points for those

frames that depend on it [34]. In Fig. 2.1, an MVC coding structure is shown

with temporal and view indeces. Note that different types of coding dependen-

cies arise depending on the coding scheme being used. In the simulcast case of

Fig. 2.2(a), each view is coded independently, so only temporal dependency (1-D)

within each view can be observed, similar to the monoscopic video case. Instead,

Figs. 2.2(b) and 2.2(c) represent cases where the set of anchor frames are encoded

in IPPP or IBBP modes. This introduces additional dependencies across views (2-

D). For example, when encoding frame V 2T2, reconstructed frame V 2T1 is used

as a reference, and in turn V 2T1 uses frame V 1T1 as a reference (see Fig. 2.1).
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While the problem of dependent bit allocation has been considered in several

contexts, including standard video [24, 34, 36, 41] and stereo image coding [45],

its potential impact in multiview video coding has not been considered yet. In

this chapter, we extend previously proposed frame-wise dependent bit allocation

techniques [34] (using a trellis representation and the Viterbi algorithm) to a multi-

view video coding scenario where cross-view prediction is used. This leads to a

complex 2-D dependency problem, where the total number of video frames and

candidate quantization choices involved can be very large. Moreover, a suboptimal

choice of quantizer for a given frame may affect many other frames (if the frame

in question is close to the root of the dependency tree). This suggests that a

proper quantizer allocation may be more important in an MVC environment than

for standard video. Indeed this was initially motivated by the observation that

in an H.264/AVC encoder, which we modified for MVC, coding results were very

sensitive to bit allocation [8].

In order to reduce the complexity of searching for the optimal solution in our

MVC environment, we make use of the monotonicity property observed in [34]. To

further reduce complexity, we show that the number of solutions to be searched

can be reduced by considering only candidate solutions such that anchor and non-

anchor frames are allocated similar quantizers.

2.2 2-D Dependent Bit Allocation

In what follows, distortion (D) is measured as frame-wise mean square error (MSE).

The quantization parameter, q, rate, R, distortion, D, and Lagrangian cost J of

the anchor frame in View i, are represented as qi, Ri, Di, and Ji, respectively. We

denote q̄i the quantization choice for the non-anchor frames in View i. R̄i, D̄i,
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and J̄i will denote the total rate, distortion and Lagrangian cost for all non-anchor

frames in View i.1 In our notation q < q′ means that quantizer q is finer, i.e.,

better quality, than q′.

A solution to the dependent bit allocation problem was proposed based on a

trellis expansion and the VA in prior work [34]. Our problem, which includes

dependency across views, can be seen as an extension of this 1-D problem. A

constrained 2-D dependent coding problem can then be formulated as follows (for

the 2-view case):

min
q1,q2,q̄1,q̄2

[D1(q1) + D̄1(q1, q̄1) + D2(q1, q2) + D̄2(q1, q2, q̄2)]

such that

R1(q1) + R̄1(q1, q̄1) + R2(q1, q2) + R̄2(q1, q2, q̄2) ≤ Rbudget.

(2.1)

Note that because of the dependency on the previously coded frames, some of the

R and D values include multiple q’s. For example, because non-anchor frames refer

to the anchor frames as a reference, the values of R̄1 and D̄1 depend on q1 and q̄1.

Also the anchor frame in View 2 refers to the anchor frame in View 1, the values

of R2 and D2 depend on q1 and q2. This problem can be solved by considering an

unconstrained problem with Lagrange multiplier λ ≥ 0 and cost J = D + λR [37]:

min
q1,q2,q̄1,q̄2

[J1(q1) + J̄1(q1, q̄1) + J2(q1, q2) + J̄2(q1, q2, q̄2)], (2.2)

1 First, we begin assuming the same quantizer is used for all non-anchor frames in a view.
Thus, the quantizer selection for anchor and non-anchor is a sub-optimal solution for frame level
bit allocation. In Section 2.2.3, a search algorithm for non-anchor frames is proposed.
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where

J1(q1) = D1(q1) + λR1(q1) (2.3a)

J̄1(q1, q̄1) = D̄1(q1, q̄1) + λR̄1(q1, q̄1) (2.3b)

J2(q1, q2) = D2(q1, q2) + λR2(q1, q2) (2.3c)

J̄2(q1, q2, q̄2) = D̄2(q1, q2, q̄2) + λR̄2(q1, q2, q̄2) (2.3d)

In a system with N views, assume that our bit allocation requires evaluating,

on average, na coding choices for each anchor frame, and nb for each set of non-

anchor frames in a view. The main complexity in the bit allocation comes from

encoding/decoding step to determine R-D values. Because non-anchor frames in a

view are not further referred by frames in other views, the maximum dependency

would be nbn
N
a to encode non-anchor frames in View N . Thus, the bit allocation

complexity will be O(nbn
N
a ). We achieve a reduction in complexity based on two

methods. First, as in [34], we exploit the monotonicity property of dependent

coding to helps us reduce na. Second, we choose the non-anchor frame quantizers

to be coarser than the quantizers chosen for the corresponding anchor frame, i.e.,

q̄i ≥ qi for View i, so that fewer quantization choices for the non-anchor frames

need to be evaluated (smaller nb).

2.2.1 Monotonicity

The monotonicity property observed in [34] for a temporal dependency scenario

states that, for two dependent frames (the second frame is motion/disparity pre-

dicted from the first one), we usually have:

J2(q1, q2) ≤ J2(q
′
1, q2) for q1 ≤ q′1, (2.4)
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i.e., for a given quantizer, q2, applied to the predicted frame, finer quantization of

the predictor tends to lead to better R-D characteristics for the predicted frame.

This property usually holds when the frames in (2.4) are anchor frames. Similar

properties can also be observed for the dependency within a view

J̄1(q1, q̄1) ≤ J̄1(q
′
1, q̄1) for q1 ≤ q′1, (2.5)

as well as when various levels of dependencies, across both views and time, are

present, so that, for example:

J̄2(q1, q2, q̄2) ≤ J̄2(q
′
1, q2, q̄2) for q1 ≤ q′1 (2.6a)

J̄2(q1, q2, q̄2) ≤ J̄2(q1, q
′
2, q̄2) for q2 ≤ q′2 (2.6b)

From these monotonicity properties, the following lemma can be derived.

Lemma 1 : If

J1(q1) + J̄1(q1, q̄1) + J2(q1, q2) < J1(q
′
1) + J̄1(q

′
1, q̄1) + J2(q

′
1, q2) for q1 < q′1 (2.7)

then q′1 is not in the optimal path set and can be pruned out.

Proof: Similar to the proof in [34], we prove the lemma by contradiction.

Assume that q′1 for any q1 < q′1 is part of the optimal path. Let the optimal anchor
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frame quantizer sequence be (q′1, q̄1, q2, q̄2, ..., qN , q̄N). However, for q1 < q′1, by the

monotonocicy from (2.4),

J3(q1, q2, q3) < J3(q
′
1, q2, q3) (2.8)

· · ·

JN(q1, q2, ..., qN) < JN(q′1, q2, ..., qN) (2.9)

and by the monotonicity from (2.5) and (2.6),

J̄2(q1, q2, q̄2) < J̄2(q
′
1, q2, q̄2) (2.10)

J̄3(q1, q2, q3, q̄3) < J̄3(q
′
1, q2, q3, q̄3) (2.11)

· · ·

J̄N(q1, q2, ..., qN , q̄N) < J̄N(q′1, q2, ..., qN , q̄N) (2.12)

Summing up (2.7), (2.8), ..., (2.12), we get the contradiction that the Lagrangian

cost with (q1, q̄1, q2, q̄2, ..., qN , q̄N) is smaller than the one with (q′1, q̄1, q2, q̄2, ..., qN , q̄N)

thus, q′1 is not in the optimal path. ¤

Lemma 1 above and the Lemma 2 in [34] are used in the pruning steps in

our proposed algorithm. This algorithm is based on an IPPP anchor frame coding

scheme as shown in Fig. 2.2(b). For the trellis expansion in anchor and non-anchor

frames, refer to Figs. 2.3 and 2.4. In the following algorithm, qi
1 = {q1, q2, ..., qi} is

an anchor frame quantizer allocation for views 1 through i. Ji(q
i−1
1 , qi) is the La-

grangian cost of the anchor frame in View i for a surviving anchor frame quantizer

allocation qi−1
1 and anchor frame quantizer qi in View i. J̄i(q

i
1, q̄i) is the Lagrangian

cost of the non-anchor frame in View i for anchor frame quantizer allocation qi
1 and

non-anchor frame quantizer q̄i in View i. J(qi
1, q̄

i
1) is the total cost with quantizer
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allocations qi
1 and q̄i

1 for views 1 through i.

Algorithm 1 :

1. For View i > 1, generate the Lagrangian cost of the anchor frame: Ji(q
i−1
1 , qi),

for all surviving quantizer allocations qi−1
1 , and for all choices of qi. The

anchor frame of View 1 is coded independently for all possible quantizer

allocations q1 with the Lagrangian cost J1(q1).

2. Compute J(qi−1
1 , q̄i−1

1 ) + Ji(q
i−1
1 , qi) and use pruning condition of Lemma 1

and Lemma 2 in [34] to eliminate suboptimal paths up to View i.

3. For View i, generate the non-anchor frame cost: J̄i(q
i
1, q̄i) for q̄i for all sur-

viving allocations qi−1
1 , and all surviving anchor frame quantizers qi.

4. Find minimum non-anchor frame cost J̄i(q
i
1, q̄i) for each qi

1.

5. For View i > 1, compute total cost J(qi
1, q̄

i
1) = J(qi−1

1 , q̄i−1
1 ) + Ji(q

i−1
1 , qi) +

J̄i(q
i
1, q̄i) for each anchor frame quantizer qi. For View 1, total cost is

J(q1, q̄1) = J1(q1) + J̄1(q1, q̄1) for each anchor frame quantizer q1.

6. With every surviving path, q1, q2, ..., qi, proceed to View i+1 and go to Step 1.

Note that for each anchor frame quantizer in each surviving allocation qi
1, there

is a corresponding non-anchor frame quantizer with minimum cost, which is shown

as a thick line in Fig. 2.4.

The above algorithm can be easily modified for either IBBP or IBP coding of

anchor frames. An additional step required to search for a solution under IBP

coding of anchor frames would be to populate branches between I and P1 with

costs JB1(qI , qP1, qB1) and J̄B1(qI , qP1, qB1, q̄B1).
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2.2.2 Reduced Search Range

Even though complexity is reduced by taking advantage of the monotonicity prop-

erty, further reductions are achievable by considering the relationship between the

anchor and non-anchor quantizer chosen in an optimal solution. According to our

experiments, optimal bit allocations are such that there exists a strong correlation

between q and q̄. This is shown in Fig. 2.5, where we plot, for different values of

λ, the pair of quantization values for anchor and non-anchor frames that minimize

the Lagrangian cost for the given λ. The exact slope in Fig. 2.5 depends in general

on the number of non-anchor frames and how the anchor frame is encoded.

In what follows we provide an analysis that supports the type of relationship

between quantizers that we observe in optimal solutions. Let Q1 and Q2 be the

quantization choices made for the anchor frame in a view and the non-anchor
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frames in the same view, respectively, where smaller Q means finer quantization.

The Lagrangian cost J for that view is then

J = D1(Q1) + D2(Q1, Q2) + λ(R1(Q1) + R2(Q1, Q2)). (2.13)

In order to better understand the properties of the optimal solution we take deriva-

tives of J with respect to Q1 and Q2, and set them to zero:

∂J

∂Q1

=
∂D1

∂Q1

+
∂D2

∂Q1

+ λ(
∂R1

∂Q1

+
∂R2

∂Q1

) = 0 (2.14)

∂J

∂Q2

= 0 ⇔ λ = −∂D2

∂Q2

/
∂R2

∂Q2

= −d2

r2

, (2.15)

where we define di = ∂Di/∂Qi and ri = ∂Ri/∂Qi. Then, from (2.14) and (2.15),

d1r2 − d2r1 = d2
∂R2

∂Q1

− ∂D2

∂Q1

r2 (2.16)

d1

r1

− d2

r2

= − 1

r1

(
∂D2

∂Q1

+ λ
∂R2

∂Q1

) (2.17)

Note that, by the monotonicity property, if Q1 increases while Q2 remains constant

then both D2 and R2 will tend to increase. Thus, ∂D2

∂Q1
≥ 0 and ∂R2

∂Q1
≥ 0. Because

di ≥ 0 and ri ≤ 0, from (2.17)

d1

r1

≥ d2

r2

(2.18)

so that we can say that

|∆D1

∆R1

| ≤ |∆D2

∆R2

|. (2.19)

In words, at optimality, the slope of operating point in the R1-D1 characteristic is

smaller than the slope of the operating in the R2-D2 characteristics. Note that to
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derive (2.18) we only had to make one assumption, namely that the monotonicity

property holds.

Given that the slope |∆D
∆R
| of a convex R-D decreases as Q decreases (i.e., as the

coding quality improves), we can conclude that if R1-D1 and R2-D2 have similar

shape, then from (2.18), at optimality Q2 > Q1. In our case of interest, Q2 is the

quantizer used to encode several non-anchor frames. In this case |∆D2

∆R2
| would be

the slope of the aggregate R-D characteristic. While the absolute values of R2

and D2 are likely to be larger than those for R1 and D1 at a given Q, the shapes

of the curves and corresponding slopes can still be assumed to be similar. This

approximation agrees well with our observed experimental behavior and provides

a tool for complexity reductions.

For example, in Fig. 2.6, it is assumed that the R1-D1 and R2-D2 curves are

similar. To have |∆D1

∆R1
| ≤ |∆D2

∆R2
| as shown in (2.19), the operating point should

be in the left of r1 (i.e., r2) in Fig. 2.6(b). Because rate decreases and distortion

increases as Q increases, Q for r2 (Q2) should be larger than Q for r1 (Q1), i.e.,

Q1 ≤ Q2.

Based on this observation, Step 3 in Algorithm 1 can be modified as

21



3. For View i, generate the non-anchor frame cost: J̄i(q
i
1, q̄i) for q̄i for all sur-

viving allocations qi−1
1 , and all surviving anchor frame quantizers qi, such

that q̄i ≥ qi.

2.2.3 Search Algorithm for Non-anchor Frames

Up to now, for simplicity, we have assumed that the same quantizer is used for all

non-anchor frames.

We now propose a non-anchor frame quantizer search algorithm, which operates

for a given anchor frame quantizer and, to reduce complexity, uses the following

property (based on the discussion of the previous section): a frame close to root of

the dependency tree has more influence on cost and therefore a better quantizer

should be applied to it. Thus we begin the search with the frame which is close

to the root. In the following algorithm, q̄ = {Q2, Q3, ..., QM}, is the vector of

quantizers allocated to the non-anchor frames in a given view.

Algorithm 2: Dependent coding in each view

1. Given λ and the QP of anchor frame q0, initialize q̄ = {Q2, Q3, ..., QM} =

{q0, q0, ..., q0}.

2. For frames i = 2, 3, ..., M ,

find αi = ∂J
∂Qi

= (
∑M

j=i
∂Dj

∂Qi
) + λ(

∑M
j=i

∂Rj

∂Qi
).

3. - If αi < 0, Qi = Qi + 1. Increase Qj which is less than Qi for j = {i +

1, ..., M}.
- If J̄ decreases, update q̄. Proceed to the next frame.

4. Repeat step 2 - 3 until there is no update in Qi
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In this algorithm αi is calculated for the current q̄. Then in order to make αi

closer to 0, we increase Qi by 1 if αi < 0. Then, using the property motivated in

the previous section, we also increase Qj such that Qj < Qi for j > i.

2.3 Simulation Results

Using the H.264/AVC reference codec, we encoded the Aquarium multiview se-

quences from Tanimoto Lab shown in Fig. 2.7 using three different coding schemes,

i.e., SC in 2.2(a), MVC in 2.2(b) with fixed QP and optimized QP using proposed

Algorithm 1. In the experiment all non-anchor frames in a view were assigned the

same quantizer. Two different coding conditions are used: First, all possible block

sizes can be used and intra coding is enabled (C1). Second, only 8x8 block size

is used and intra coding is disabled except for I frame (C2). The first 7 frames

of Views 1, 2, and 3 are used in the experiment. As can be seen in Fig. 2.8, the

proposed algorithm provides a gain of 0.5 dB as compared to MVC with fixed

QP. In trellis expansion, six quantizers are selected as candidates for anchor and

only three quantizers are selected for non-anchor frames using correlation between

anchor and non-anchor quantizer.

Note that in C2, intra coding is disabled except I frame thus, dependencies

between frames are higher than C1. In C2, the proposed algorithm achieves higher

coding gains (e.g., up to 1 dB compared to MVC) than in C1.

2.4 Conclusions

In this chapter, 2-D bit allocation scheme was proposed. Complexity of data

generation in trellis expansion is significant due to the increased dimensionality in
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Fig. 2.7: Aqua sequence
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24



MVC. We extend the monotonicity property from [34] and use it to prune sub-

optimal quantizers. Complexity can be reduced further using the fact that optimal

solutions tend to show correlation between quantizers of anchor and non-anchor

frames. Proposed algorithm with reduced complexity achieves 0.5 dB gains as

compared to MVC.
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Chapter 3

Illumination Compensation In Multi-View Video

Coding

3.1 Preliminaries

In Chapter 2, we addressed the dependency problem in multi-view video coding

(MVC) and proposed a quantizer search method. This optimization is performed at

the frame level according to the multi-view sequence structure and coding scheme.

In this chapter and Chapter 4, we move down to block level in a frame and propose

methods to improve the quality of estimation for the original block in order to

improve coding efficiency in MVC.

In block based predictive coding, a frame is divided into blocks first, then for

each block, the most correlated match (predictor 1) is searched in reference frames,

and residual error between the original and the best match is encoded and trans-

mitted with signaling information (i.e., the motion vector). These block based

1 Here by predictor, we mean the selected estimate of current block after motion/disparity
search in the references. Note that a prediction is also used to select the center of motion/disparity
search. This is obtained from motion/disparity vectors of neighboring blocks using spatial cor-
relation. We will refer to this as motion/disparity vector predictor in this work.
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Fig. 3.1: Camera arrangement that causes local mismatches

approaches exploiting the correlation between frames are applied for disparity es-

timation and compensation in cross-view prediction, e.g., [3]. While the motion

in temporal prediction is caused by the displacement of the objects, the disparity

in cross-view prediction and the depths of objects in the scene comes from the

displacement and orientation of the cameras. Generally, disparity in cross-view

prediction is known to be more difficult to compensate than motion because of

the irregularity of the disparity field [5] and the severe occlusion effects that are

caused by different object depths. In contrast, in temporal prediction, most of

the background is static and only moving objects need to be motion compensated.

Furthermore, frames from different views are prone to suffer from mismatches other

than disparity. We now consider other mismatch cases.

Firstly, in a generic multi-view video capturing system, we can not assume

that a perfect calibration is achieved among different cameras because there are

too many variables to be adjusted including intrinsic camera parameters. These

heterogenous cameras can cause global (frame-wise) mismatches among different

views, which can manifest themselves in both luminance and chrominance channels.
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(a) ST sequence first frame of view 3 (b) ST sequence first frame of view 4
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(c) Histogram of frame in (a); the mean
grayscale value is 131.
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(d) Histogram of frame in (b); the mean
grayscale value is 122.

Fig. 3.2: Illumination mismatches in ST sequence

For example, frames in one view may appear brighter and/or out of focus as

compared to frames from the other view, due to mis-calibration.

Secondly, even if camera calibration is perfect, objects may appear differently

in each view due to camera locations and orientations. Consider the camera ar-

rangement in Fig. 3.1, object A is projected to camera 1 and camera 3 at different

angle, and therefore it causes different reflection effects with respect to the cam-

eras. For this example, different portions of a video frame can undergo different

illumination changes with respect to the corresponding areas in frames from the

other views. Fig. 3.2 demonstrates illumination mismatches between two views
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from the ST sequence. In Fig. 3.2(a) and 3.2(b), severe illumination mismatches

can be observed in the background, which correspond to the different maximum

pixel intensities in Fig. 3.2(c) and 3.2(d). However, the minimum pixel intensities

of different views are similar (e.g., the person’s clothes). From Fig. 3.2(c) and

3.2(d), two histograms show similar shape with local variations, which are caused

by global and local illumination mismatches. Average pixel intensities of View 3

and View 4 are 131 and 122 respectively.

In addition to illumination mismatches in cross-view frames, focus may change

from one view to another view [21]. In Fig. 3.1, Object A is at a greater scene-depth

(z1) in View 1 than in View 3 (z3). Even if all cameras are perfectly calibrated

with the same focus at scene depth z1, Object A appears focused in View 1 while

it is de-focused (blurred) in View 3. On the other hand, Object B will become

sharpened in View 3 as compared to in View 1.

All these factors lead to discrepancies among video sequences in different views.

The efficiency of cross-view disparity compensation could deteriorate in the pres-

ence of these mismatches. In this work, we focus on techniques for illumination

compensation in order to improve coding efficiency in the presence of illumination

mismatches between views.

3.2 Related Work

Various approaches have been proposed for monoscopic video coding to address

illumination changes in temporal prediction. In [19], illumination is compensated

in two steps. First, illumination mismatch is compensated globally using a dec-

imated image (that contains the DC coefficients of all blocks). Then block-wise

compensation is applied. In both steps, multiplicative and additive terms are
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used. This two step compensation is applied only to frames classified as having

large illumination mismatches, which does not occur as frequently in monoscopic

temporal prediction, as compared to cross-view prediction in MVC. Note also that

local compensation is not fully integrated into the search step and that an effi-

cient coding for mismatch parameters is not provided. In [32], an illumination

component and a reflectance component are both compensated using scale factors

that are quantized and Huffman coded. This illumination model is useful for con-

trast adjustment but cannot model severe mismatches in MVC properly. In [15],

a brightness variation is modeled by two parameters for the multiplier field and

offset term, respectively. These parameters are used globally for whole frames. To

reduce the impact of local brightness variation, a set of parameters is collected and

a pair is chosen based on the relative frequency of all parameter pairs. Illumination

compensation is disactivated for those blocks for which the selected parameters are

not efficient. This global approach cannot adapt to some large luminance varia-

tions in MVC, which are dependent on relative positions of camera and objects.

Recently, in [23], illumination mismatches are compensated using scale and offset

parameters, which is similar to the approach proposed in this work. Mismatch

parameters are computed as part of the motion search and are differentially coded

and selectively activated. However, this approach mainly targets the illumination

compensation in video sequences where luminance changes progressively or due to

abrupt changes in lighting, e.g., a flash, which can be compensated by a global

model (e.g., weighted prediction). In cross-view frames, illumination mismatches

are caused by heterogeneous cameras and different depths and perspectives, which

leads to both local and global mismatches.

Weighted prediction (WP) methods have been proposed and adopted in H.264/

AVC [6]. Multiplicative weighting factors and additive offsets are applied to the
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motion compensated prediction. According to whether two parameters are coded

for each reference picture index or are derived based on the relative picture order

count, these techniques are categorized as explicit and implicit, respectively. This

global approach provides significant bitrate reduction in coding fades in monoscopic

video. However, for multi-view video where severe local variations are present, WP

does not provide efficient compensation.

Next, block-based illumination compensation (IC) techniques [17, 25, 26] are

presented. These were originally addressed in [25]. In [26], vector quantization of

two parameters was proposed. In [17], we proposed to use only an additive term

considering the trade-off between the computational complexity and the coding

efficiency. We start by defining an illumination model, and derive a coding scheme

that efficiently compensates for illumination changes across views.

3.3 Illumination Compensation Model

Block-wise disparity search aims to find the block in the reference frame that best

matches a block in the current frame, leading to minimum residual error after

prediction. Under severe illumination mismatch conditions, coding efficiency will

suffer because i) residual energy for the best match candidate will generally be

higher, and ii) true disparity is less likely to be found, leading to a more irregular

disparity field and likely increases to the rate needed for disparity field encoding.

As described previously, illumination mismatches can be local in nature. Thus,

we adopt a local IC model to compensate both global and local luminance variation

in a frame. The IC parameters are estimated as part of the disparity vector search

and these parameters are differentially encoded for transmission to the decoder,

in order to exploit the spatial correlation in illumination mismatch. Finally, a
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decision is made to activate IC on a block per block basis using a rate distortion

criterion.

When considering pixels corresponding to a given object but captured by differ-

ent cameras, observed illumination mismatches need not be the same for all pixels,

and will depend in general on the continuous plenoptic and radiance functions [4].

However, since the goal is to transmit explicit illumination mismatch information

to the decoder, block-wise IC models are adopted, with the optimal block size de-

cided based on R-D cost. As an initial step we evaluate a simple block-wise affine

model, with an additive offset term C and a multiplicative scale factor, S, leading

to a mismatch model Ψ = {S, C} as proposed in [15].

For the original block signal to be encoded (x̄), the ith predictor candidate (p̄i)

in the reference frames can be decomposed into the sum of its mean µpi and a zero

mean signal, p̄i
0: p̄i(x, y) = µpi + p̄i

0(x, y), where (x, y) is the pixel location within

the block. Then the illumination compensated predictor p̂i(x, y) with IC model

Ψi is:

p̂i(x, y) = [µpi + Ci] + Si · p̄i
0(x, y). (3.1)

This formulation allows us to separate the effect of each parameter, so that DC

and AC mismatches are compensated separately. Furthermore, by applying a

multiplicative compensation to the mean removed prediction in (3.1) we avoid the

propagation of quantization error from scale to offset [26].

As shown in Fig. 3.3, for the original block signal, we look for the best matching

predictor within the search range in the reference frame using a modified matching

metric that incorporates an IC model between the original block and a predic-

tor candidate. This new metric, sum of absolute differences after compensation
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Fig. 3.3: Modified Search Loop for the current block

(SADAC), essentially computes the SAD between the original block and the pre-

dictor to which IC has been applied. Thus, for each predictor candidate, optimal

IC parameters have to be computed. While SADAC is used for the search with

IC, similarly to how SAD is used in H.264/AVC, a quadratic metric, namely, sum

of squared differences after compensation (SSDAC) is used to find IC parameters.2

For the original signal x̄ and illumination compensated ith predictor candidate p̂i,

the SSDAC is defined as

SSDAC i ≡
∑

∀(x,y)

|x̄(x, y)− p̂i(x, y)|2. (3.2)

Replacing p̂i using (3.1) and separating the mean from x̄, we have

SSDAC i =
∑

∀(x,y)

|[µx − µpi − Ci] + [x̄0(x, y)− Si · p̄i
0(x, y)]|2 (3.3)

2 To reduce the computational complexity in searching step, SADAC is used instead of SSDAC,
which is only used to find the optimal IC parameters. However for normal and Laplace distri-
bution models of residual error, the same search results will be obtained with the two metrics
under the conditions as discussed in Appendix A
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Then the optimal IC parameter Ψi = arg min{Si,Ci}{SSDAC i} can be obtained by

setting to zero the gradient of (3.3):

Si =
σ2

x̄p̄i

σ2
p̄ip̄i

, (3.4)

Ci = µx − µpi , (3.5)

where

σAB
2 =

1

N

∑

∀(x,y)

[A(x, y)− µA][B(x, y)− µB], (3.6)

with A, B ∈ {x̄, p̄i} and N is the number of pixels in the block.

This solution shows that the additive parameter directly removes the offset

mismatch and the multiplicative parameter compensates zero-mean variations ac-

cording to block statistics. If the mean removed current and reference blocks are

not highly correlated to each other, this scale factor will be small and thus only

additive offset compensation will affect the reference block.

Among all candidates within the search range, the predictor p̄ minimizing

SADAC with IC parameters is selected as the best match and the minimum SSDAC

is given as follows,

̂SSDAC = N · (σ2
x̄x̄ −

σ4
x̄p̄

σ2
p̄p̄

) = N · σ2
x̄x̄ · (1− ρ2), (3.7)

where ρ is the correlation coefficient between the original block signal x̄ and the

predictor p̄.
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3.4 Illumination Mismatch Parameter Coding

Using both scale and offset parameters leads to more flexibility in compensating

for illumination mismatches but may not be efficient for coding, given the overhead

required to represent both IC parameters. In our observation the scale parameter

is also sensitive to quantization noise because of its multiplicative nature given

that:

˜SSDAC = ̂SSDAC + N∆C2 + N∆S2σ2
p̄p̄ (3.8)

where ˜SSDAC is the SSDAC after quantization of IC parameters, ̂SSDAC is

the minimum SSDAC in (3.7), N is the number of pixels in the block and ∆C

and ∆S is the quantization noise of offset and scale parameter, respectively. The

quantization noise of scale parameter is multiplied by the variance of the predictor,

σ2
p̄p̄, thus, even small quantization errors in the scale parameter can lead to fairly

large differences in the compensated reference block. Taking this into account, as

well as the complexity involved in calculating this parameter within the disparity

search step, in the rest of the work we use only the offset parameter for IC.

To encode the offset parameter we exploit the correlations between illumination

compensation parameters in neighboring blocks. As a predictor of the IC parame-

ter of a block, we use the IC parameter of the block to its left; this allows prediction

to be performed in a causal manner. If the left block was not encoded using IC,

the block above is used instead as a predictor. If IC is disabled for both of these

blocks then no prediction is used to encode the IC parameter for the current block

(equivalently, the predictor is set to zero).

The prediction residue is quantized and then encoded. We use a simple uni-

form quantizer, which offers good performance and low complexity. This quantized

differential offset is encoded using the context adaptive binary arithmetic coder
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Tab. 3.1: Unary binarization and assigned probability for index of quantized differential
offset

Absolute value (val) Bin 1 Bin 2 Bin 3 Bin 4 ...

0 0
1 1 0
2 1 1 0
3 1 1 1 0
... ... ... ... ...

Assigned probability. P1 P2 P3 P4

(CABAC) [27], which consists of (i) binarization, (ii) context modeling and (iii)

binary arithmetic coding. We first separate the absolute value (val) and the sign of

these quantized differential offsets. Then, the absolute values of quantized offsets

are binarized by selecting a unary representation as in Tab. 3.1. These represen-

tations of symbols (IC parameters) reduce the alphabet size of symbol and enable

context modeling on a sub-symbol level [27].

The differential offset parameters are prediction residues which tend to be small

and exhibit a symmetric distribution around zero, with very limited spatial cor-

relation. Therefore, different probability models are used for the different binary

symbol positions of val as shown in Tab. 3.1. The number of different probability

models for binary symbols in val is chosen to be four experimentally. Bits corre-

sponding to val greater than 3 use the same probability model. All probability

models are initialized with equal symbol probability and updated according to the

binary symbols to be coded. Arithmetic coding is also used for the sign, with a

probability model initialized with equal symbol probability.

Clearly, different blocks suffer from different levels of illumination mismatch, so

that potential R-D benefits of using IC differ from block to block. Thus we allow

the encoder to decide whether or not the IC parameters are used on a block by
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Fig. 3.4: Context of current block c = a + b, where a, b ∈ {0, 1}.

block basis. This is achieved by computing the R-D values associated to coding

each block with and without IC, and then letting the Lagrangian optimization

tools in the H.264/AVC codec make an R-D optimal decision. There is an added

overhead needed to indicate for each block whether IC is used but this is more

efficient overall than sending IC parameters for all blocks. This IC activation

bit is also entropy-encoded using CABAC. The context is defined based on the

activation choices made for the left and upper blocks. If IC is enabled or disabled

in both these blocks, it is highly probable that the same choice will be made for

the current block. However if only one of these two neighboring blocks uses IC,

the probability of the current block using IC should be close 1/2. Based on this

observation, three contexts are assigned and initialized for activation switch, which

is similar to the context setup for the Skip flag or the transform size in H.264/AVC.

Fig. 3.4 demonstrates how the context of current block is defined by IC activation

bits from left and upper block. Tab. 3.2 shows the initialization of the context for

IC activation bit.
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Tab. 3.2: Initialization of the context for IC activation bit with different most probable
symbol (MPS)

Context c MPS Probability

0 0 1
1 0 1

2

2 1 1

Tab. 3.3: Number of addition/subtraction for SAD and SADAC. N is the number of
pixels in a macroblock and S is the number of search points.

SAD (Original) SADAC (IC enabled)∑
∀(x,y) |x̄(x, y)− p̄i(x, y)| µx̄ → N µp̄i → N (or 0 in Fast IC mode)

→ 2N Ci = µx̄ − µp̄i → 1∑
N |x̄(x, y)− p̄i(x, y)− Ci| → 3N

For S search points → 2NS N For S search points → 4NS + S
2NS N + S + 4NS ≈ 4NS

3.5 Complexity of IC

The impact of IC on encoding complexity is mostly due to changes in the disparity

estimation metric computation (other changes to the encoder such as encoding

of IC parameter and R-D based IC activation, have a negligible effect on overall

complexity). Thus, in what follows, additional complexity for IC is analyzed in

terms of the number of addition/subtraction operations in the SAD calculation.

As can be seen in Tab. 3.3, for N pixels in a macroblock and S search points, in

each block mode, IC requires 4NS calculations for SADAC, while 2NS are required

in SAD. For SAD, the differences of current and reference pixels (N) are calculated

first. After the absolute value operation, N absolute differences are added to

compute SAD, which require a total of 2N operations. Similarly, for SADAC a total

of 4N operations are required, including µx̄, µp̄i and Ci calculations. For the mean
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Tab. 3.4: Complexity for SAD Calculation in Different Block Modes. N is the number
of pixels in a macroblock and S is the number of search points. Note that in
Fast IC mode, µp̄i in 8× 8 block is saved to be used in the larger block mode
so that 4NS complexity is required in 8 × 8 block mode and 3NS in 8 × 16,
16× 8, 16× 16 block modes.

Block Modes Original IC Fast IC

4× 4 2NS - -
4× 8 2NS - -
8× 4 2NS - -
8× 8 2NS 4NS 4NS
8× 16 2NS 4NS 3NS
16× 8 2NS 4NS 3NS
16× 16 2NS 4NS 3NS

TOTAL 14NS 16NS 13NS

calculation, we need to sum N pixels, which requires N additions. Throughout the

analysis, shift operation for mean calculation and absolute value operation are not

counted. Assuming the center of search for different block modes does not deviate

significantly, µp̄i in small blocks can be reused in larger blocks avoiding redundant

calculations. For example, by storing µp̄i in 8 × 8 blocks, the calculation of µp̄i

in the larger block (e.g., 16× 16, 16× 8 and 8× 16) can be simplified as the sum

of µp̄i in 8 × 8 blocks (e.g., 4, 2 and 2, respectively) when a predictor candidate

comes from the same location. Thus, the SADAC complexity can be lowered from

4NS to 3NS (Fast IC mode).

Considering different block modes supported in H.264/AVC, complexity for

SAD calculation is summarized in Tab. 3.4. For IC, both SAD and SADAC need

to be calculated for IC activation thus, the total complexity for IC would be the

sum of 14NS+16NS (or 13NS for fast IC mode). Therefore total complexity with

IC is about 2.1 (or 1.9 for fast IC mode) times to H.264/AVC without IC. However,

this complexity can be reduced further noting that the same search range is used
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Tab. 3.5: Complexity when SAD and SADAC are calculated at the same time. N is the
number of pixels in a macroblock and S is the number of search points.

Block Modes ‘SAD+SADAC’ ‘SAD+SADAC’ in Fast IC mode

4× 4 2NS 2NS
4× 8 2NS 2NS
8× 4 2NS 2NS
8× 8 5NS 5NS
8× 16 5NS 4NS
16× 8 5NS 4NS
16× 16 5NS 4NS

TOTAL 26NS 23NS

for SAD and SADAC with IC. In the calculation of SADAC in Tab. 3.3, BC −Bi
R

can be used to calculate SAD, so that SAD and SADAC are calculated at the same

time for the same search point, which requires only N operations for SAD instead

of 2N . This leads to a total complexity with IC in fast mode that would be about

1.64 times that of H.264/AVC without IC, as can be seen in Tab. 3.5.

When the fast mode decision algorithm is used, all block sizes are not tested.

For example, in [46], 16 × 16, 8 × 8 and 4 × 4 block modes are examined first

and their R-D costs are used to decide which block modes are tested further. The

complexity of IC in this case can be evaluated by adding the complexities of those

block modes that are tested (obtained from Tab. 3.5).

3.6 Simulation Results

The three sequences used in our experiments, Ballroom, Race1 and Rena, have dif-

ferent characteristics [1]. All test sequences are 640(w)x480(h) with 8 views that

are captured by an array of 8 cameras located horizontally (1-D) with viewing
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(a) Ballroom: 8 cameras with 20cm spacing

(b) Race1: 8 cameras with 20cm spacing

(c) Rena: 8 cameras with 5cm spacing

Fig. 3.5: MVC sequences: 1D/parallel. Sequences are captured by an array of cameras
located horizontally with viewing directions in parallel.
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directions in parallel. In Fig. 3.5, sample frames of test sequences are shown. Ball-

room has the most complicated background and fast moving objects. Objects are

located at multiple depths and the distance from the camera to the front objects is

small so the disparity of front objects is large. In Race1, a mounted and fixed cam-

era array is used to follow racing carts so that there is global motion. Significant

luminance and focus changes between views are observed due to imperfect camera

calibration and illumination changes are also observed in time because of global

motion by camera. In Rena, a gymnast moves fast in front of curtains. Distance

between cameras is smaller than in the other sequences and luminance and focus

changes between views are observed clearly.

Our proposed IC technique is combined with standard H.264/AVC [14] coding

tools. IC is enabled only for 16 × 16, 16 × 8, 8 × 16 and 8 × 8 blocks. While the

encoder could be given the option to select whether to use IC on smaller blocks,

we observed that this choice was rarely made and thus, for complexity reasons, we

choose 8× 8 to be the smallest block size. Also IC can be applied in Skip/Direct

mode so that model parameters are predicted from neighboring blocks using spatial

correlation [22].

Using the reference codec JM-10.2 [14] as a starting point, we encode frames

in cross-view direction only, i.e., we take a sequence of frames captured at the

same time from different cameras and feed this to the encoder as if it were a

temporal sequence. 8 frames at time stamp 0 are concatenated with 8 frames at

time stamp 10. These 16 frames are concatenated again with 8 frames at time

stamp 20. By repeating this procedure, we generate a sample sequence with 40

frames from time stamps 0, 10, 20, 30 and 40. By setting the intra period to

the number of views, sample sequences are encoded with cross-view prediction.
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(c) Rena

Fig. 3.6: Cross-view coding with IC, at time stamps 0, 10, 20, 30, 40
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Tab. 3.6: Percentage of non intra selection in cross-view prediction (% in H.264 → %
in H.264+IC). Note that more significant PSNR increases can be observed for
those sequences where the increase in number of inter code blocks is greater.

Sequence QP24 QP28 QP32 QP36

Ballroom 68.8 → 75.2 72.3 → 79.9 73.3 → 81.8 77.2 → 85.6
Race1 53.1 → 71.1 53.4 → 71.2 53.6 → 72.6 54.6 → 73.9
Rena 53.0 → 66.9 54.0 → 70.3 56.0 → 72.3 62.5 → 72.8

We performed simulations with full search, range equal to ±64 pixels, quarter-

pixel precision, 1 reference frame, and tested four different QP values (24, 28,

32, 36) to obtain different rate points in Fig. 3.6. It can be seen that for Race1

and Rena there is significant improvement by using IC (0.8 dB) as compared to

the results by H.264/AVC because of severe illumination mismatch across views.

Instead, Ballroom showed small improvement (0.2 dB). Ballroom is the most

difficult sequence to encode because of its complicated background and irregular

disparity field, due to large variances in object depths. Also illumination mismatch

is not significant compared to the other sequences. It can be seen that WP does

not provide significant coding gains because it cannot compensate severe local

mismatches in cross-view prediction. From Tab. 3.6, we can see that the number

of blocks in Inter and Skip mode increases once IC is used, which means that

disparity search finds more correct matches after compensation. Note that IC

gains can be observed even at low bit rates because the selection of IC in each

block is optimized based on R-D criteria.

In MVC, multiple references from different time and views are available. For

example, if the current frame is at View 2 and time stamp 1 (V2T1) as shown in

Fig. 3.7, 4 references are available for current B slice - (V2T0),(V2T2),(V1T1) and

(V3T1). In [40], in addition to the two reference lists (L0 and L1) in H.264/AVC,
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Fig. 3.7: Example of multiple references from different time stamps and views

two view reference lists (VL0 and VL1) are proposed to enable both temporal and

cross-view prediction. In [42], a prediction structure using hierarchical B pictures

proposed in [30] is adopted as a reference encoder for multi-view video coding.

The size of decoded picture buffer (DPB) is increased to store additional reference

frames from the other views. The coding structure can be specified using the

configuration file of H.264/AVC. An example of this prediction structure is shown

in Fig. 3.8 with 8 views and GOP length 8. IBPBPBPP is used for cross-view

prediction in anchor frames and hierarchical B is used in temporal prediction. In

the even numbered views of non-anchor frames, only temporal prediction is used

and in the odd numbered views of non-anchor frames, both temporal and cross-

view predictions are used. Note that all B frames in Fig. 3.8 are encoded as B-store

frames, i.e., they can be used as references.

Although IC techniques primarily aimed at compensating illumination mis-

matches in cross-view prediction, they can easily be used to compensate illumi-

nation mismatches in temporal prediction, which happens in moving objects and

abrupt scene changes. With the prediction structure described in Fig. 3.8, IC

is implemented to be applied in both temporal and cross-view prediction [18].
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Fig. 3.8: Prediction structure for multi-view video coding with 8 views and GOP length
8
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Tab. 3.7: Temporal partitioning of test data sets
Data set Temporal Partitioning

Ballroom 250 frames = 20 × GOP 12 + GOP 9
Race1 532 frames = 35 × GOP 15 + GOP 6
Rena 300 frames = 19 × GOP 15 + GOP 14

Fig. 3.9 provides coding results for the parameters (GOP length and total number

of frames) of Tab. 3.7. For Ballroom, Race1 and Rena, IC achieves 0.1-0.5 dB

gains. Overall gains from using IC (as compared to using the same temporal/cross

view prediction but no IC) are lower relative to the case where only cross-view

prediction is used (Fig. 3.6) because illumination mismatches between frames in

time are not as severe as across views and most static background can be efficiently

encoded by Skip/Direct mode in temporal prediction. Complete simulation results

of proposed IC in MVC for various multi-view test sequences can be found in [18].

Fig. 3.10 demonstrates coding results of IC and WP in MVC. In this compari-

son, 73, 76 and 31 frames/view (rather than the complete sequences as in Tab. 3.7

to lower encoding complexity) are encoded for Ballroom, Race1 and Rena, respec-

tively. IC achieves higher coding efficiency as compared to WP. In particular for

Race1, IC achieves a 0.5 dB gain over WP. More detailed comparisons of IC with

WP in MVC for various multi-view test sequences can be found in [22].

3.6.1 Combined Solution with ARF

In [21], adaptive reference filtering (ARF) is proposed to compensate focus mis-

match in cross-view prediction. To compensate both illumination and focus mis-

matches in cross-view prediction, IC and ARF techniques are combined [17]. Mean-

removed-search (MRS) is adopted to remove redundancies in combined system so
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Fig. 3.9: Multi-view coding with IBPBPBPP cross-view, hierarchical B temporal [2]
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Fig. 3.10: Comparison of IC with WP in MVC with IBPBPBPP cross-view, hierarchical
B temporal [2]
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that DC and AC compensation is performed by IC and ARF respectively. From

the matches by MRS (first search), ARF filter coefficients are calculated and ad-

ditional reference frames are generated by filtering the original reference frame.

Finally, IC is applied for the disparity search (second search) with the original ref-

erence frame and reference frames generated by ARF. Since the different filtered

references created by ARF come from the same original reference frame, the dis-

parity fields obtained from the first (MRS) and second (IC) search should not be

very different. Complexity reduction can be achieved by taking the disparity field

obtained from MRS search as predictor for the second search with a much reduced

search range.

Under the same coding conditions used for Fig. 3.6, we encode frames in cross-

view prediction using the combined system. The simulation results are shown in

Fig. 3.11. For Ballroom, block-wise IC alone provides very limited gain so that the

combined system also barely outperforms the ARF coding. On the other hand,

ARF and IC each achieve 0.5∼0.8 dB gain for Race1 and Rena. The combined

system produces an additional 0.5 dB gain over either IC only or ARF only. The

overall coding gain, as compared to using H.264/AVC with 1 reference for cross-

view coding, is about 0.5 dB for Ballroom, about 1.3 dB for Race1 and about 1

dB for Rena.

3.7 Conclusions

To compensate localized illumination mismatches across different views in multi-

view systems, block-wise illumination compensation techniques are proposed. IC

coding tools are developed from the corresponding mismatch models and show

significant gains over standard H.264/AVC in cross-view prediction. The proposed
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techniques are applied to a general multi-view video coding system where both

temporal and cross-view prediction are used and to more general prediction struc-

tures. Simulation results show that, when performing predictive coding across

different views in multi-view systems and in general multi-view video coding, our

proposed methods provide higher coding efficiency than other advanced coding

tools. Joint coding benefit and complexity of the combined system are discussed

and an improved coding algorithm is presented.
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Chapter 4

Implicit Block Segmentation

4.1 Preliminaries

In Chapter 3, a predictor from each reference is compensated using the IC model

in order to minimize the residual error with respect to the original block signal.

This additional IC model was introduced because the true match is corrupted by

brightness variations in the multi-view system. In this chapter, assuming that

references are not corrupted, we propose a technique to improve predictor quality

for the original macroblock.

Exploiting inter-frame correlation via motion estimation is key in achieving high

video compression efficiency. Block-based motion estimation and compensation

provides a good balance between prediction accuracy and rate overhead. Clearly,

blocks of pixels are not guaranteed to have uniform displacement across frames.

For video sequences this is the case if an object boundary exists in a block and

pixels which belong to different objects move in different ways. In stereo or multi-

view sequences this is the case if an object boundary formed by objects in different

depths exists in a block and pixels which belong to different objects are occluded

or uncovered due to disparity.
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Fig. 4.1: Inter block modes in H.264/AVC. Each 8 × 8 sub-block in 4.1(a) can be split
into different sub-block sizes as in 4.1(b).

Numerous approaches have been proposed to provide more accurate motion

compensation by providing different prediction for different regions in a mac-

roblock. Examples include techniques used in the H.264/AVC video coding stan-

dards [43] or the hierarchical quad-tree (QT) approach [38]. In these methods

a macroblock is split into smaller blocks and the best match for each block is

searched. As the number of blocks in a macroblock increases, overhead increases

while distortion between the original and the match decreases. Therefore, there is

an optimal point in terms of rate-distortion behavior so that the best block mode

can be decided based on Lagrangian techniques. Fig. 4.1 depicts different block

modes available in H.264/AVC. The R-D costs from all candidate block modes are

computed in inter frame prediction and the block mode with minimum R-D cost

is chosen. For 8× 8 block mode in Fig. 4.1(a), a block can be further split into 4

sub-blocks as shown in Fig. 4.1(b). To increase the quality of matching achievable

by square or rectangular block shapes available in QT, a geometry based approach

(GEO) is proposed in [9, 13]. A block is split into two smaller regions called
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d
s

Fig. 4.2: A straight line in GEO is defined by slope s and distance d from center in
16× 16 macroblock.

wedges by a line described by a slope (s) and a translation parameter (d) as shown

in Fig. 4.2. These parameters and matching wedges are jointly estimated for each

candidate within the motion search. Although GEO captures object boundaries

better than QT, it is still limited in that the boundary has to be a straight line.

Furthermore, the search for the best slope and translation parameters combined

with motion search increases the complexity significantly.

In [33], an object based motion segmentation method is proposed to solve the

occlusion problem. To estimate different motions in a block, motion vectors from

neighboring blocks are copied after block segmentation. To avoid transmitting

segmentation information, previously encoded frames at (t − 1) and (t − 2) are

used to estimate segmentation for the current frame at (t). However, since only

motion vectors in neighboring blocks are used to estimate motion, the accuracy of

this estimation may suffer.

In this chapter, we present a framework for implicit block segmentation to

improve prediction quality. Implicit block segmentation is obtained based on the

predictors from previously encoded frames as in [33]. However, segmentation is

applied to the difference of two predictors, rather than directly to the predictor
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itself. Also, unlike in [33], motion vectors are explicitly transmitted to signal the

location of chosen predictors and the encoder searches for the best combination of

predictors. We use 16×16 macroblocks, which are assumed to be small relative to

typical objects in the scene, so that in many cases at most two objects1 move with

different displacements at the boundaries [33]. Although distortion can be reduced

as the number of predictors increases, the overhead required for motion/disparity

vectors and for identifying the selected predictor for each segment also increases

with the number of predictors. While the number of predictors can be optimally

chosen based on R-D cost (as is done in the hierarchical quad-tree case), in this

work for simplicity we choose the maximum number of predictors to be two.

4.2 Implicit Block Segmentation

4.2.1 Motivation from Block Motion Compensation

Fig. 4.3 shows an example of block motion estimation between current and ref-

erence frame. In the current block, we have two objects which are separated by

a smooth boundary. Let us assume that the correct matches of each object can

be found as a base predictor (p̄0) and an enhancement predictor (p̄1) as shown in

the reference frame. For the current macroblock signal x̄,2 QT and GEO find best

predictors by selecting the best match for regions as defined in those algorithms

(i.e., constrained to be rectangular regions or to have a straight line boundary).

Therefore, although the correct matches for each object are given as p̄0 and p̄1,

neither QT nor GEO finds a correct match without significant prediction error in

1 Thus, the initial number of segments, Nc in K-means clustering algorithm in 4.2.2 is set to
2.

2 The vector notations x̄, p̄0 and p̄1 are used to represent block signals. For pixel data or
random variables, the terms x, p0 and p1 are used.
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Fig. 4.4: Definition of predictor difference p̄d. Pattern of predictors are from Fig. 4.3.

some regions (e.g., those labeled b in Fig. 4.3) because object boundaries are not

necessarily well described by a straight line.

Following the same example, in Fig. 4.4 we depict the difference between the

two predictors, p̄d = p̄0 − p̄1. In region 1 of p̄d, the absolute difference of pixel

values is small because p̄0 and p̄1 come from the same object and both p̄0 and

p̄1 will estimate the original block with small error. Therefore, the difference in

residual error when using the two predictors (i.e., |x̄− p̄0| − |x̄− p̄1|) will tend to

be small, which means either predictor would be a good estimate of the original

signal. In regions 2 and 3 of p̄d, p̄1 and p̄0 provide the best match, respectively.

Thus, the absolute difference between the two predictors will tend to be large, and
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we similarly would expect that the differences in residual error after prediction will

be large.

For each region several scenarios are possible. In the area where |p̄d| is small,

because the two predictors are similar we have that either i) both predictors pro-

vide a good match or ii) the residual error is large with respect to both predictor

and choosing one of the predictors over the other will not lead to significant im-

provements. Instead, in areas where |p̄d| is large, either i) only one of the two

predictors provides a good match, or ii) a combination of both predictors may lead

to a better matching performance. Clearly, choosing the “right” predictor among

the two available choices is more important for regions where |p̄d| is large; it is in

these regions where signaling a predictor choice can lead to a more significant gain

in prediction performance.

We propose implicit block segmentation (IBS), where each macroblock is seg-

mented first, based on these observations. For each segment, weights are chosen so

that the prediction generated by the weighted sum of predictors minimizes residual

error. An estimate of the original macroblock is obtained by combining predictions

for each segment. Next, a block based segmentation method is proposed.

4.2.2 Block Based Segmentation

Assume two predictors are available for a given macroblock (i.e., two 16×16 blocks

from neighboring frames). These two predictors have been chosen by the encoder

and their positions will be signaled to the decoder. The optimal segmentation for

the purpose of prediction would be such that each pixel in the original macroblock

is assigned to whichever predictor, p̄0 or p̄1, provides the best approximation.
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However this cannot be done implicitly (without sending side information) since

the decision depends on the original block itself.

In [33], MAP estimation of block segmentation is proposed based on a Markov

random field (MRF) model. This Bayesian image segmentation method provides

optimized segmentation results for given probability models. If the original block

signal to be encoded (x), base predictor (p̄0) and enhancement predictor (p̄1) are

given, MAP segmentation (̂s) can be found as

ŝ = arg min
s̄

P (̄s|x, p̄0, p̄1) (4.1)

However, it is difficult to find the segmentation minimizing (4.1) with reasonable

computational complexity considering that p̄0 and p̄1 have to be jointly searched.

Thus, this approach is not applied in this work. When the depth information of

a frame is available, object boundaries can be extracted by segmenting the depth

map. Because occlusions and uncovered regions are caused by moving objects in

different depths, better matches can be found for the segments using the depth

map. However in our work, we assume that auxiliary information, such as depth

maps, is not available.

Based on our previous observations about the expected gains depending on

the differences between predictors, we apply segmentation to the block of predic-

tor differences, p̄d. Due to the noisy characteristics of predictor differences, edge

based segmentation methods do not detect simple boundaries efficiently in 16× 16

macroblocks. In this work, K-means clustering [29] is used as a basic segmentation

algorithm. To take the spatial information of pixels into account with the pixel

value of predictor difference, 3-D K-means clustering algorithm can be used taking

horizontal (x), vertical (y) location and predictor difference (pd) as three inputs.
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Because of different ranges for (x, y) and pd, pd needs to be scaled before K-means

clustering. However, the segmentation results are quite sensitive to this scaling fac-

tor and an accurate scaling factor is hard to find because the range of pd changes

depending on the disparities between base and enhancement predictors. There-

fore, instead of 3-D K-means clustering, 1-D K-means clustering followed by two

step post-processing is adopted. The input to the K-means clustering is the pixel

value of predictor difference p̄d in 16× 16 macroblock. Nc centroids are initialized

uniformly spaced between maximum and minimum value of p̄d. The maximum

number of iterations Nit is set to 20. According to the minimum distance to Nc

centroids, pixels are classified into the Nc segments. After 1-D K-means cluster-

ing, disconnected pixels exist within each segment because spatial connectivity

is not considered in 1-D K-means clustering. A two step post-processing is ap-

plied to take spatial information into account. First, using connected component

labeling [7], disconnected pixels assigned to the same segment are classified into

different segments. Second, to prevent the occurrence of segments due to noise, if

the number of pixels in a segment is smaller than a threshold, Nth, it is merged

into the neighboring segment that has the minimum segment-mean difference with

current segment. Fig. 4.5 depicts this post-processing. Note that the number of

segments depends on the disparities between base and enhancement predictors. In

this work, Nc and Nth are set to be 2 and 10, experimentally.

4.2.3 Weighted Sum of Predictors

For each segment k in p̄d, the optimal predictor x̂k can be calculated as a weighted

sum of base and enhancement predictors when the original x̄ is known. If scalar
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Fig. 4.5: Example of two step post-processing after 1-D K-means clustering. First, dis-
connected segment 2 is classified as different segment increasing the number of
segment N from 3 to 4. Second, segment 4 is merged into segment 1 decreasing
N to 3 again.

weights αk
0 and αk

1 are applied to all pixels in segment k of p̄0 and p̄1, the sum of

squared difference (SSD) for the segment k is

SSDk = ||x̄k − x̂k||2 = ||x̄k − (αk
0p̄

k
0 + αk

1p̄
k
1)||2, (4.2)

where p̄k
0 and p̄k

1 specifies the pixels of p̄0 and p̄1 belonging to segment k. By

setting to zero the gradient of (4.2) with αk
0 + αk

1 = 1, optimal weights can be

found as

αk
0 =

−(p̄k
1 − x̄k) · p̄k

d

||p̄k
d||2

αk
1 =

(p̄k
0 − x̄k) · p̄k

d

||p̄k
d||2

.

(4.3)

Because the optimal αk
0 is calculated using information from the block to be

encoded, the chosen value has to be signaled. For 16 × 16 blocks, this signaling

overhead may not be justified given the overall reductions in residual error. Also

the complexity to find the optimal weight is significant due to the multiplications

and the divisions in calculation, which increases as the predictors p̄0 and p̄1 are

jointly searched during the motion searching step. Therefore instead of finding
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optimal weight for each block and signaling them, we define W , a set of weights

most frequently chosen and find the one with minimum distortion in each seg-

ment. In this work, W is chosen to be {(1, 0), (0, 1), (1
2
, 1

2
)}, which corresponds to

predictors {p̄0, p̄1,
1
2
(p̄0 + p̄1)} respectively. The additional weight (1

2
, 1

2
) has been

selected as the one that is most frequently chosen, as shown in Appendix B. Thus

a weight index with only three values {0, 1, 2} has to be signaled. Note that it is

easy to extend this framework by including additional weights in W . With binary

arithmetic coding or variable length coding of weight indices, a given weight will

be chosen only if it leads to gains in an R-D sense.

In summary, prediction for the block to be encoded is achieved by signaling the

two predictors, p̄0 and p̄1, and the weights to be used for each segment, wk. The

segmentation itself is generated by encoder and decoder in the same manner from

the decoded predictors, so that there is no need for side information to be sent.

4.2.4 Joint Search of Base and Enhancement Predictors

Since prediction is performed by combining two predictors using proposed IBS

technique, there is no guarantee that one can obtain the best matching pair of pre-

dictors by searching for each predictor individually using standard residual energy

metrics based on the whole 16× 16 block. In theory one would have to search for

pairs of predictors, i.e., for each base predictor candidate, it would be necessary to

search all candidate enhancement predictors and choose the best one by computing

the prediction residue after segmentation and combined base/enhancement predic-

tion. If the number of locations in search window is denoted NS, this pair-wise

search would have N2
S pairs of candidates when all candidates in search range are

tested for base predictor. For example, for 32× 32 full search window, NS is 1024
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Fig. 4.6: After segmentation of the original macroblock from MERL ballroom sequence,
the best matches for the segments are added to the set of base predictor can-
didates.

thus, N2
S = 1048576. As an alternative solution to individual search or pair-wise

search, we start by obtaining a set of base predictor candidates. First, the original

macroblock is segmented as shown in Fig. 4.6 and the best matches for the seg-

ments are collected as good base predictor candidates by SAD distortion measure.

Then, for each base predictor candidate in the set, we perform the joint search for

enhancement predictor. For the example of Fig. 4.6, a total of 6 pairs of base and

enhancement predictors will be found.

Fig. 4.7 illustrates the IBS search loop of the enhancement predictor p̄1 for

given base predictor p̄0. To decide the best pair of base and enhancement pre-

dictors, three decisions should be made. First, for each segment, the best weight

index should be decided. Second, for each base predictor, the best complementary

enhancement predictor should be chosen. Third, for the given macroblock, the best

pair of base and enhancement predictor should be decided for IBS. These decisions

are made based on three different error metrics explained next.
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Fig. 4.7: Search loop of enhancement predictor for given base predictor

4.2.5 Three Error Metrics in Joint Search

In our proposed approach a predictor for the original block is generated by com-

bining the best prediction in each segment from p̄0, p̄1 and p̄a, where p̄a is defined

as an average of p̄0 and p̄1. Therefore, the first error metric is used to decide

which weight index or predictor is used in each segment. In the comparison of

three predictors, SSD can be used as a distortion measure, but due to the mul-

tiplication complexity in SSD, SAD is adopted instead. In Appendix C, it is

shown that there is no penalty for SAD if the residuals are normally distributed.

If the residuals follow a Laplace distribution, the residual distortion by SAD can

increase up to 11% when
σ2
0

σ2
1
∈ (1

3
, 0.382) or (2.618, 3). However, the probability,

P
(

σ2
0

σ2
1
∈ (1

3
, 0.382) or (2.618, 3)

)
is relatively low (for example, less than 7% from

coding results of Foreman with QP 24) thus, on average this penalty is negligible.

SAD for kth segment is defined as

SADk = min
p̄j

∑
i∈SEGk

|x̄(i)− p̄j(i)| (4.4)
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and the associated weight index is

wk = arg min
j

∑
i∈SEGk

|x̄(i)− p̄j(i)| (4.5)

where x̄(i) denotes the original signal at the pixel location i and SEGk denotes the

kth segment. The total distortion for the macroblock would be the sum of SADk

over all the segments,
∑Nseg

k=1 SADk.

Now, the total SAD for a given enhancement predictor candidate,
∑Nseg

k=1 SADk,

is calculated for every enhancement predictor candidate within search range. These

values should be compared to decide what is the best complementary pair for the

given base predictor candidate. Because the location of base and enhancement

predictor is signaled, the motion vector cost of enhancement predictor candidate

needs to be added to Jenh, the total cost by the enhancement predictor candidate.

Because the enhancement predictor candidates are compared for the given base

predictor candidate, the motion vector cost of the base predictor is not added to

Jenh. Also different enhancement predictors would lead to a different segmenta-

tion and as the number of segments increases, total distortion decreases and the

signaling cost of weight indices increases. Thus, in order to consider enhancement

predictor selection based on a rate and distortion trade-off, we define a new cost

metric as:

Jenh =

Nseg∑

k=1

SADk +
√

λNsegdlog2 Nwe+
√

λCmv(p̄1) (4.6)

where Nseg is the number of segments, Nw is the number of weight indices and

Cmv(·) is the signaling cost of motion vector. In (4.6), Nsegdlog2 Nwe + Cmv(p̄1)

corresponds to the signaling bits for weight index and motion vector. Considering
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∑Nseg

k=1 SADk is the SAD distortion measure, not SSD,
√

λ is used as a scaling factor

instead of λ [44]. In the implementation of IBS, Cmv and λ follow the definition in

H.264/AVC reference codec.

If we pick the best enhancement predictor for the given base predictor using

Jenh, for M base predictor candidates, equal numbers of matching enhancement

predictors will be found. Finally, R-D cost of M base and enhancement predictor

pairs are calculated to decide the best pair for IBS.

4.2.6 IBS algorithm in H.264/AVC

We summarize the IBS algorithm when it is implemented as an additional block

mode (INTER16× 16 IBS) in the H.264/AVC.

IBS Algorithm:

1. Collect base predictor candidates

(a) Apply 1-D K-means clustering to the original macroblock followed by

two step post-processing and find segments

(b) During motion/disparity search for INTER16 × 16, find a match for

each segment of the original macroblock from Step-(1a) and form W , a

set of base predictor candidates

2. (INTER16 × 16 IBS block mode) For each base predictor candidate (p̄0)

from W , the complementary enhancement predictor is searched within search

window. Each enhancement predictor candidate in search window is denoted

as p̄1.

(a) Calculate predictor difference, p̄d = p̄0 − p̄1
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(b) Apply 1-D K-means clustering to p̄d followed by two step post-processing

and find segments

(c) For each segment of p̄d from Step-(2b), find the weight index minimizing

SADk as shown in (4.4) and (4.5) and generate new prediction for the

original macroblock

(d) Calculate Jenh in (4.6). If Jenh is the minimum, save p̄1 as the best

enhancement predictor to p̄0.

(e) Repeat Step-(2a) - Step-(2d) until there is no more enhancement pre-

dictor candidate in search window

3. Calculate R-D costs of the pairs found in Step-(2) and find the pair with

minimum R-D cost

4. Compare R-D cost with other QT block modes and choose the one with

minimum R-D cost as the best block mode (R-D mode decision)

4.3 Complexity of IBS

The impact of IBS on encoding complexity is mostly due to joint search of base

and enhancement predictor, where for each pair of base and enhancement predic-

tor candidates, segmentation based on the predictor difference is applied and in

each segment, the weight with minimum distortion is selected (other changes to

encoder such as encoding of weight index and R-D based IBS mode decision have

a negligible effect on overall complexity). Therefore, in what follows, the com-

plexity of motion/disparity estimation in IBS is analyzed in terms of arithmetic

operations, e.g., addition and multiplication. Tab. 4.1 explains the symbols used

in this analysis. Assuming that n-bit integers are used to represent pixel values,
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Tab. 4.1: Definition of symbols in complexity analysis. The integers in parenthesis be-
sides Nx are the values used in the simulation.

Variable Meaning Complexity Meaning

Np(256) # of pixels in a macroblock C+ : O(n) addition or substraction
Nit(20) # of iteration (K-means) C× : O(m) integer multiplication

or division
Nc(2) # of centroids (K-means) C|| : O(1) absolute operation
Nw(3) # of weights Cs : O(1) shift operation

addition/substraction can be done in O(n) and multiplication/division can be done

in O(n2) for the worst case. Depending on the algorithm used for multiplication,

the complexity of multiplication/division can be different, and thus the complex-

ity of multiplication is denoted as O(m) as in Tab. 4.1. Because absolute or shift

operations are applied to the whole number, C|| and Cs is equal to O(1).

We start by analyzing the complexity of segmentation by 1-D K-means cluster-

ing algorithm. Tab. 4.2 summarizes the complexity for each step in the K-means

clustering algorithm. To find predictor difference p̄d = p̄0 − p̄1, Np subtractions

are required. Then, 1-D K-means clustering is applied to p̄d with the maximum

number of iterations, Nit. At each iteration, pixels are classified into the bins ac-

cording to the distance to the centroids. Let ck and dk(i) denote the kth centroid

and the distance of pixel i to ck then, dk(i) = |p̄d(i)− ck|. This distance should be

calculated for all the pixels in the macroblock with respect to all centroids, thus

the complexity would be NcNp(C+ + C||). After pixel classification, the centroids

(ck) are updated based on the pixels in the same bins (BINk) as ck =
∑

i∈BINk
p̄d(i)∑

i∈BINk
1

with NpC+ + NcC× complexity.

Secondly, in each segment the best weight is chosen by comparing the dis-

tortions for all weight configurations. With SAD distortion measure, Tab. 4.3
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Tab. 4.2: Complexity analysis of K-means clustering
Predictor difference 1-D K-means clustering

Pixel classification Centroid update

p̄d(i) = p̄0(i)− p̄1(i) Dk(i) = |p̄d(i)− ck| ck =
∑

i∈BINk
p̄d(i)∑

i∈BINk
1

⇒ NpC+ ⇒ NcNp(C+ + C||) ⇒ NpC+ + NcC×
NpC+ Nit(NcNp(C+ + C||) + NpC+ + NcC×)

TOTAL: Np(1 + NitNc + Nit)C+ + NitNcC× + NpNitNcC||

Tab. 4.3: Complexity analysis of weight index decision for each p̄0 and p̄1 pair
New predictor generation Weight index selection (SAD)

p̄j(i) = (αjp̄0(i) + (1− αj)p̄1(i)) >> r wk =
for Np pixels ⇒ Np(2C× + C+ + Cs) arg minj

∑
i∈SEGk

|x̄(i)− p̄j(i)|
for j ≥ 2 ⇒ (Nw − 2)Np(2C× + C+ + Cs) ⇒ NwNp(2C+ + C||)
TOTAL: Np(3Nw − 2)C+ + 2Np(Nw − 2)C× + Np(Nw − 2)Cs + NpNwC||
for Nw = 3 with the weight (1

2
, 1

2
) ⇒ 7NpC+ + NpCs + 3NpC|| ∼ 7NpC+

summarizes the complexity of the weight index decision for each p̄0 and p̄1 pair.

Because p̄0 and p̄1 are given, the number of additional predictor is Nw − 2, which

are generated as a weighted sum of p̄0 and p̄1. It is assumed that multiplication by

a weight with floating point precision can be replaced with the multiplication by

the integer weight αj and shift operation by r. To find the weight index, SAD’s for

Nw weights are calculated in each segment, which corresponds NwNp(2C++C||). If

the only p̄a is the average of p̄0 and p̄1 computed with the weights (1
2
, 1

2
), Nw = 3

and multiplication can be skipped in the calculation of p̄a so that the complexity

for predictor generation would be Np(C+ + Cs).

Using the definitions in Tab. 4.1, the complexity for K-means clustering algo-

rithm is approximated as O(n)Np(1 + NitNc + Nit) + O(m)(NitNc) = O(61nNp) +

O(40m) and the complexity for the weight index decision is approximated as

O(7nNp).
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Tab. 4.4: Comparison of IBS and GEO complexity. M is the number of base predictor
candidates.

IBS GEO

Complexity M (O(68nNp) + O(40n2)) O(4024nNp)
∼ O(68nNpM) or O(154nNp)

for n = 8, M = 10 O(5440Np) + O(25600) O(32192Np)
and Np = 256 ∼ O(5440Np) or O(1232Np)

In GEO [13], 2012 or 77 (fast mode) wedge partitions are compared to find

the slope and the displacement for 16 × 16 macroblock. If SAD is used as a

distortion measure, this corresponds to 2012Np(2C+ + C||) (∼ O(4024nNp)) or

77Np(2C+ +C||) (∼ O(154nNp)) in fast mode. In Tab. 4.4, the complexities of IBS

and GEO are compared when the number of base predictor candidates is M = 10.

The complexity of IBS is in between that of the original and that of fast mode of

GEO.

4.4 Simulation Results

4.4.1 Implementation within an H.264/AVC Architecture

Implicit block segmentation is implemented in the H.264/AVC reference codec -

JSVM 8.4. Current inter block modes are extended inserting INTER16×16 IBS

between INTER16 × 16 and INTER16 × 8. The R-D optimization tool in

H.264/AVC is applied to choose the best mode for each macroblock.

To find base predictor candidates, the original macroblock is segmented first.

If Norg segments are obtained after post-processing, Norg best matches for the

segment are found during INTER16× 16 motion search as reliable base predictor

candidates. Because the matches from INTER16×16, INTER16×8, INTER8×
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Tab. 4.5: Percentage of times that different motion vector predictors (mvp) are selected
for enhancement predictor in the current macroblock. Data is collected by
encoding 15 frames of Foreman sequence with QP 24 (IPPP).

mvp selected Percentage (%)

mvp of INTER16× 16 51.4
mv of baseP in the same MB 20.4
mv of baseP from left MB 5.7
mv of enhP from left MB 10.1
mv of baseP from upper MB 3.2
mv of enhP from upper MB 9.1

16 and INTER8× 8 motion search can be good candidates, those are added and

M = Norg +9 would be the maximum number of base predictor candidates because

duplicate candidates are removed.

In INTER16 × 16 IBS block mode, base and enhancement predictors are

jointly searched within search range as described in Section 4.2.4. Thus, for M

base predictor candidates, equal numbers of matching enhancement predictors are

found. Finally, the R-D costs of M base and enhancement predictor pairs are

calculated and compared with R-D costs of other block modes in H.264/AVC (R-D

mode decision). Encoded information in INTER16 × 16 IBS includes reference

indices and motion vectors for base and enhancement predictors as well as the

weight indices for each segment. Encodings of reference indices and motion vectors

for base and enhancement predictor follow H.264/AVC standards.

To exploit the correlation in motion vectors from neighboring blocks, different

motion vector predictors (mvp) are used for QT block modes in H.264/AVC. Be-

cause INTER16× 16 IBS is inserted as an additional block mode, we follow the

mvp definition in H.264/AVC and it is modified only when INTER16 × 16 IBS

has been chosen in the neighboring blocks or it is tested in the current macroblock.
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Tab. 4.6: Comparison of signaling bits for motion vector of enhancement predictor. Data
is collected by encoding 15 frames of Foreman sequence (IPPP). In (A → B),
A is the average number of signaling bits for motion vector (mv) when the
mvp of the enhancement predictor is set to the mvp of INTER16× 16. B is
the average number of signaling bits for mv when the mvp of the enhancement
predictor is chosen from 6 mvp schemes.

QP Average bits for Average bits for Average bits for
mv of QT block mode mv of IBS BaseP mv of IBS EnhP

20 20.8 → 20.5 7.0 → 6.7 7.6 → 6.5
24 14.9 → 14.8 6.8 → 6.6 7.1 → 6.1
29 9.4 → 9.5 6.4 → 6.3 6.2 → 5.3

Firstly, assume that the QT block mode is tested in the current macroblock. If

neighboring blocks do not use INTER16 × 16 IBS, the original mvp definition

from H.264/AVC is used to find the mvp of current macroblock. If INTER16 ×
16 IBS is used in the neighboring blocks, it is regarded as INTER16× 16 with a

motion vector from base predictor and the mvp of the current macroblock follows

H.264/AVC. Secondly, assume that INTER16 × 16 IBS is tested in the current

macroblock. Base predictor uses the same mvp as INTER16× 16. For enhance-

ment predictor, to investigate which mvp improves the coding efficiency most, 6

different mvp’s are defined and tested. Tab. 4.5 shows the relative frequencies of

occurrence of these 6 mvp schemes. When searching for the best enhancement pre-

dictor for a given base predictor, all mvp candidates are tested and the one with

minimum distortion Jenh is chosen as the best mvp for enhancement predictor. In

this experiment, bits signaling mvp selection are not counted so the simulation

results can be regarded as an upper bound. As a comparison to this upper bound,

the mvp for the enhancement predictor is fixed as the mvp of INTER16 × 16,

which is selected most as shown in Tab. 4.5. Tab. 4.6 shows that on average about
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Tab. 4.7: Comparison of IBS results when the mvp of the enhancement predictor is set
to (a) the mvp of INTER16× 16 QT block mode and chosen from (b) 6 mvp
schemes (upper bound).

QP PSNR: (a) → (b) Bit rate: (a) → (b)

20 42.9123 → 42.9234 63367 → 62979
24 40.0678 → 40.0587 33053 → 32763
29 36.8543 → 36.8702 14534 → 14338

1 bit is reduced in signaling the mv of enhancement predictor. However, this re-

duction is not enough to be reflected into the overall coding gains. As can be seen

in Tab. 4.7, less than 0.05 dB gains are achieved by the proposed upper bound,

where the same data in Tab. 4.6 is used. Therefore, we conclude that there is no

significant improvement in rate-distortion sense and the mvp of enhancement pre-

dictor is fixed as the mvp of INTER16×16. In summary, if INTER16×16 IBS

is used in neighboring blocks, it is treated the same as if it were INTER16 × 16

with the motion vector used as base predictor. If INTER16 × 16 IBS is tested

in the current macroblock, the mvp of INTER16 × 16 is used for both base and

enhancement predictor.

Weight indices {0, 1, 2} which correspond to base, enhancement and average

predictor respectively, are binarized and encoded by variable length code in R-D

mode decision and binary arithmetic code in bit stream coding. The weight indices

are signalled following the order of the segment indices that is defined by raster

scanning from the top left corner to the bottom right corner of macroblock. When

a pixel is found during the raster scanning, which does not belong to the segment

already found, the segment of that pixel is assigned the next index. This segment

numbering is repeated until all segments are covered in a macroblock.

73



2 4 6 8 10 12 14 16

246810121416
(a) Predictor difference of base and en-
hancement predictor

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

11111110

11111110

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

11111110

111111112 4 6 8 10 12 14 16

246810121416

Seg - 1
Seg - 0

Seg - 2

Seg - 3

(b) Segmentation from predictor differ-
ence and chosen weight indices

Fig. 4.8: Example of predictor difference and segmentation from Foreman sequence. The
segment indices are shown, which are decided by raster scanning from the top
left corner to bottom right corner of the macroblock.

In Fig. 4.8, an example of predictor difference between base and enhancement

predictor is shown, with its corresponding segment information. Predictor dif-

ference shown in Fig. 4.8 (a) is scaled to show the difference clearly. Note that

the segmentation shown in Fig. 4.8 (b) captures large predictor differences effi-

ciently. Segment 0, 2 and 3 choose the weight index 0, base predictor and segment

1 chooses weight index 1, enhancement predictor. For the macroblock of this ex-

ample, we signal INTER16× 16 IBS block mode first. Then, the reference index

and motion vector for base and enhancement predictor is sent. Finally, four weight

indices for each segment are sent. Note that the number of segments and the seg-

ments themselves are not transmitted but extracted at the decoder using base and

enhancement predictor information. Prediction by IBS achieves 30% SSD reduc-

tion as compared with the best predictor based on a quad-tree for the example of

Fig. 4.8.
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Fig. 4.9: MERL Ballroom with 1 and 3 reference

4.4.2 Simulation Results

Both multi-view video (MERL Ballroom, 320(w)x240(h)) and standard video se-

quences (Foreman, 352(w)x288(h)) are tested. In MERL Ballroom, each anchor

has 8 views coded IPPP PPPP and 2 anchors at different time stamps (0, 10)

are tested. In Foreman, 15 frames are coded as IPPP. Encoding conditions of

H.264/AVC and H.264/AVC+IBS are the same except that in H.264/AVC+IBS,

INTER16 × 16 IBS is tested as an additional inter block mode. QP 20, 24, 29

are used with ±32 search range with quarter-pel and CABAC enabled. As can be

seen in Figs. 4.9 and 4.10, 0.1-0.2 dB gains are achieved in MERL Ballroom and

0.2-0.4 dB gains from Foreman. Note that gains by IBS increase with the number

of references.

To see how the prediction gains achieved by IBS are reflected into R-D gains,

in Tab. 4.8, average distortions and bits are shown for blocks best predicted by

IBS in R-D mode decision. Improvements in prediction quality by IBS shown in

the reduction of SSDp are translated into reduction in residual coding bits and
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Fig. 4.10: Foreman with 1 and 3 references

SSD in reconstructed frame, SSDr. Note that typically the bits needed to signal

motion vectors are reduced because only two predictors are used in IBS (while a

QT approach could use more than two vectors). Extra bits are needed to signal

weights when using IBS.

Gains are not encouraging in MERL Ballroom. Firstly, due to the noisy back-

ground of MERL Ballroom, predictor difference results in noisy segments, which

increases signaling bits for weight indices as shown in Tab. 4.8. Secondly, for im-

plicit block segmentation, it is assumed that references are not corrupted or mis-

matches including illumination and focus do not exist between frames. As shown

in [17], there exist illumination mismatches between frames in different views.

When two different segments with non-zero DC level exist in a 4x4 or 8x8 DCT

block as shown in Fig. 4.11, this leads to increases in high frequency components

so that residual coding bits increase. Also this may create artificial boundaries

within a block. Note that in Tab. 4.8, 20% reduction in SSDp is translated into

only 9% reduction in residual bits in MERL Ballroom while 12% reduction in SSDp
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Tab. 4.8: Comparison of data by QT and IBS from MERL Ballroom and Foreman with
QP 20. Data is averaged for the macroblocks where IBS is the best mode from
14 P-frames in each sequence. A → B means ‘data by QT’ → ‘data by IBS’.
SSDp and SSDr are SSD between the original and predictor and between the
original and reconstruction, respectively. Bitres, Bitmv and Bitw are bits for
residual, motion/disparity vectors and weight indices respectively.

Sequence SSDp SSDr Bitres Bitmv Bitw

MERL 12403 → 9885 1463 → 1464 364 → 333 19 → 17 0 → 11.5
Ballroom (20%) (0%) (9%) (10%)
Foreman 3209 → 2817 1077 → 1052 149 → 135 23 → 16 0 → 7.6

(12%) (2%) (9%) (32%)

segment 
boundary

segment 0

segment 1

Fig. 4.11: AC increases by 4x4 or 8x8 block DCT due to the unequal DC residual between
different segments in IBS.

is translated into 9% reduction in residual bits and 2% reduction in SSDr in Fore-

man. Combined with illumination compensation [17], the performance of IBS for

cross-view prediction could be improved.

4.5 Conclusions

In this chapter, implicit block segmentation based on the predictors available at the

decoder is proposed. Given two candidate block predictors, segmentation is applied

to the predictor difference. Different weighted sums of predictors are selected for
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each segment and signaled to the decoder. Implementation in H.264/AVC shows

encouraging results in Foreman, where illumination mismatches are not present.

Combining IBS with mismatch compensation tools would increase the coding effi-

ciency in cross-view prediction. Areas of future work include improvements to the

segmentation strategy where most of computational complexity of IBS comes and

efficient search techniques to allow searching for pairs of predictors.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Firstly, the 2-D dependency problem that arises in MVC was addressed in Chap-

ter 2. Because both cross-view and temporal correlations are exploited to improve

coding efficiency in MVC, 2-D dependencies are present in MVC. Optimal bit al-

location is possible based on 3-D trellis expansion but with significant complexity

during data generation process. To reduce the complexity, monotonicity property

is extended to 3-D trellis expansion and from the correlation between quantizers

of anchor and non-anchor frames, the number of quantizer candidates for non-

anchor frames is limited. With proposed bit allocation scheme, 0.5 - 1 dB gains

are achieved.

Next, the illumination mismatch problem in multi-view video was covered in

Chapter 3. Even with sophisticated calibration, it is not possible to ensure all

cameras in an array are calibrated perfectly, which causes global brightness mis-

matches among different views. Even with perfect camera calibration, an object

may appear differently due to the different depths and perspectives of the objects
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with respect to each camera causing local mismatches. The accuracy of dispar-

ity search is degraded by these brightness variation between frames, leading to the

degradation of coding efficiency. To compensate both global and local mismatches,

a block level illumination compensation (IC) model is proposed. Because differ-

ent portions of a video frame can undergo different illumination changes, block by

block activation of IC model is proposed. For efficient transmission, IC parame-

ters are quantized and binary arithmetic coded. It is shown that IC requires about

64% additional calculation within motion/disparity search. Simulation results of

cross-view prediction show 0.2 - 0.8 dB gains. IC techniques are applied to both

temporal and cross-view prediction in MVC and achieve higher coding efficiency

as compared to WP. It is also shown how IC and ARF can be combined to com-

pensate both illumination and focus mismatches in MVC. The combined system

achieves 0.5 - 1.3 dB gains in cross-view prediction of three test sequences.

In Chapter 4, an implicit block segmentation (IBS) method was proposed in

order to improve the quality of prediction. Block based motion/disparity estima-

tion and compensation provides a good balance between prediction accuracy and

rate overhead. However most of the object boundaries are not perfectly aligned

with block boundaries, which makes motion/disparity search difficult and reduces

coding efficiency. Given two candidate block predictors, from the observation that

distortion can be reduced further where two predictors differ most, segmentation

is applied to the block of predictor difference. For each segment, weighted sum

of predictors with minimum distortion is decided. Additional overheads for each

block include the locations of two predictors and weight indices for each segment.

Segment information can be retrieved implicitly by repeating the segmentation for

the predictor difference at the decoder. IBS is implemented as an additional block

mode in H.264/AVC reference codec and achieves 0.1 - 0.4 dB gains in cross-view
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prediction of Ballroom and Foreman. The more references are available, the more

the coding efficiency of IBS improves.

5.2 Future Work

Although each chapter addresses different problems of predictive coding in MVC,

these techniques can be combined to provide a unified solution. For example,

IBS is proposed assuming there are no mismatches between frames. However in

cross-view prediction, there are illumination mismatches. Therefore, applying IC

in each segment by IBS helps to find the correct match and improve overall coding

gains. On top of the block level compensations by IC and IBS, 2-D dependent bit

allocation can be applied in order to optimize available resources in frame level.

In this work, it is assumed that only multi-view sequences are available without

any other information. However, when auxiliary information, e.g., camera param-

eters or depth information, is available, efficiency of multi-view video coding can

be further improved. For example, instead of sending all the views, only video

sequences corresponding to a subset of views are transmitted along with depth

information, from which intermediate views can be interpolated. Because dispari-

ties in cross-view prediction are caused by the different depths of the objects and

camera perspectives, if camera parameters and object depths are known, it can be

used to help disparity estimation/compensation faster and more accurate.
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Appendix A

Comparison between MSD and MAD in

Motion/Disparity Search

Let P̄ = [P0, P1, ..., PN−1]
T be a candidate predictor for the original signal X̄ =

[X0, X1, ..., XN−1]
T , for residual error (Xi−Pi), the sum of squared difference (SSD)

and the sum of absolute difference (SAD) metrics are defined as

SSD =
1

N

N−1∑
i=0

(Xi − Pi)
2 (A.1)

SAD =
1

N

N−1∑
i=0

|Xi − Pi| (A.2)

It is known that SSD and SAD are justified as an error metric from maximum
likelihood perspectives when the error follows normal and Laplace distribution,
respectively [35]. In block motion search, due to the complexity of multiplication
in SSD, SAD is commonly used as a search metric. For example, in illumination
compensation (IC) in Chapter 3, scale and offset parameters are calculated using
SSD but for the motion/disparity search, SAD after compensation is adopted. Also
in implicit block segmentation (IBS) in Chapter 4, SAD is adopted instead of SSD
during motion/disparity search. In this appendix, from the statistical modeling of
residual error (Xi − Pi), we evaluate conditions for the motion search results by
SAD to be equal to those obtained with SSD.1

Let p be the prediction of original signal x, then mean squared difference (MSD)
and mean absolute difference(MAD) are defined as

MSD = E{(x− p)2} (A.3)

MAD = E{|x− p|}, (A.4)

1 We believe there would be the similar evaluations to Appendix A but the concepts and terms
used in this analysis help understanding Appendix B and C thus, we start from scratch.
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which are statistically equal to SSD and SAD, respectively. Let p0 and p1 be two
candidate predictors for the original signal x. Then their respective residual errors
are denoted n0 and n1:

n0 = x− p0

n1 = x− p1.
(A.5)

Let MSDi and MADi denote MSD and MAD by pi, respectively. If the mean and
the variance of ni are denoted as µi and σ2

i , from (A.3)

MSDi = E{(x− pi)
2} = E{n2

i } = µ2
i + σ2

i . (A.6)

If µi ∼ 0 or µi

σi
∼ 0, from (A.6)

MSDi = E{(x− pi)
2} = E{n2

i } = µ2
i + σ2

i ∼ σ2
i . (A.7)

Thus if σ2
0 < σ2

1, p0 will be chosen based on the MSD distortion measure. Note
that the result is derived from the second order statistics of n0 and n1 without any
assumption about a specific probability model.

Due to the absolute operation, MAD can not be found directly from the second
order statistics. In this appendix, MAD is derived for the statistical models of (i)
‘normal’ and (ii) ‘Laplace’ distributions. In Fig. A.1, the distribution of residual
errors (n = x − p) from coding results of Foreman sequence is compared with
normal and Laplace distributions using mean and variance from coding results,
which verifies that both distributions are good approximations of real data. Note
that during the motion search, the quality of predictor improves by the error metric
and converge to the best predictor, thus the predictors used in Fig. A.1 are the
best matches to the original signal in each block.

(i) For normal distribution model n ∼ N(µ, σ2),

E{|n|} =

∫ ∞

−∞

|n|√
2πσ2

e−
(n−µ)2

2σ2 dn

=

√
2σ2

π
e−

µ2

2σ2 − µ
(
1− 2Q(−µ

σ
)
) (A.8)

where

Q(c) =

∫ ∞

c

1√
2π

e−
t2

2 dt.

Therefore,

MADi = E{|ni|} =

√
2σ2

i

π
e
− µ2

i
2σ2

i − µi

(
1− 2Q(−µi

σi

)

)
(A.9)
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(a) Normal distribution
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Fig. A.1: Comparison of normal and Laplace distribution with real data obtained by
encoding Foreman sequences (CIF). Data is collected from 7 P frames coding
using QP 20, ±32 search range and quarter-pixel precision by JSVM 8.4. The
differences between original and predictor data are obtained only for luminance.
Mean and variance are -0.25 and 10.66 respectively.
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If µi ∼ 0 or µi

σi
∼ 0,

MADi ∼
√

2σ2
i

π
(A.10)

For signals with σ2
0 < σ2

1, from (A.10), p0 is selected as a better estimate of x than
p1. Therefore, when the residual errors n0 and n1 follow the normal distribution
with µi ∼ 0 and/or µi

σi
∼ 0, MSD and MAD give the same result.

(ii) If n follows a Laplace distribution, probability distribution function (pdf)
is defined as

fn(n) =
1

2a
e−

|n−µ|
a (A.11)

where µ = E{n} and σ2 = 2a2 = E{(n− µ)2} and

E{|n|} =

∫ ∞

−∞

|n|
2a

e−
|n−µ|

a dn

= ae−
|µ|
a + |µ|

(A.12)

Therefore, using a =
√

σ2

2

MADi =

√
σ2

i

2
e
− |µi|

σi

√
2
+ |µi| (A.13)

If µi ∼ 0 or µi

σi
∼ 0,

MADi ∼ σi√
2

(A.14)

For signals with σ2
0 < σ2

1, from (A.14) p0 is selected as a better estimate of x than
p1. Therefore, when the residual error n0 and n1 follows Laplace distribution with
µi ∼ 0 and/or µi

σi
∼ 0, MSD and MAD give the same result.

In conclusion, for ‘normal’ and ‘Laplace’ distributions, if µi ∼ 0 and/or µi

σi
∼ 0

are satisfied, SSD and SAD would provide the same searching capability. As can
be seen in Fig. A.1, the conditions ‘µi ∼ 0’ and/or ‘µi

σi
∼ 0’ would be satisfied in

most video sequences.2

2 Note that above analysis is derived ‘statistically’ but in block motion/disparity search, there
might be blocks such that the accurate predictor to the original signal is hard to find (e.g.,
occluded or uncovered regions) thus, the conditions ‘µi ∼ 0’ and ‘µi

σi
∼ 0’ are not satisfied. In

these cases, if |µi| À 0 or |µi

σi
| À 0, MSD (= µ2

i + σ2
i ) tends to be large thus, instead of INTER

block mode where motion/disparity search is performed, INTRA block mode would be used
where the comparison between SSD and SAD in motion search has no meanings.
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Appendix B

Additional Weight Selection in IBS

In this appendix, it is shown statistically why (1
2
, 1

2
) has been included in W in

addition to (1, 0) and (0, 1) which correspond to p0 and p1 respectively.
Let x be the original pixel predicted by two pixel predictor p0 and p1 respectively

and corresponding residual errors are represented by noise signal n0 and n1.

n0 = x− p0

n1 = x− p1

Let the mean and variance of ni be denoted µi = E{ni} and σ2
i = E{(ni − µi)

2},
respectively. An additional predictor pa is defined as a weighted sum of p0 and p1;
pa = α0p0 + α1p1. Let na denote the residual error by pa thus, na = x− pa. With
the constraint α0 + α1 = 1 to make pa = p0 with α0 = 1 and pa = p1 with α1 = 1,

na = x− pa = (α0 + α1)x− (α0p0 + α1p1)

= α0(x− p0) + α1(x− p1)

= α0n0 + α1n1.

Therefore, the mean and the variance of na are

µa = E{na} = α0µ0 + α1µ1

σ2
a = E{(na − µa)

2} = α2
0σ

2
0 + 2α0α1σ

2
c + α2

1σ
2
1

(B.1)
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where σ2
c = E{(n0 − µ0)(n1 − µ1)}. The residual energy corresponding to pa is

quantified as

MSEa = E{n2
a} = µ2

a + σ2
a

= (α0µ0 + α1µ1)
2 + α2

0σ
2
0 + α2

1σ
2
1 + 2α0α1σ

2
c

= (α0(µ0 − µ1) + µ1)
2 + α2

0σ
2
0 + (1− α0)

2σ2
1 + 2α0(1− α0)σ

2
c

= α2
0((µ0 − µ1)

2 + σ2
0 + σ2

1 − 2σ2
c )− 2α0(σ

2
1 + µ2

1 − σ2
c − µ0µ1) + σ2

1 + µ2
1

= α2
0(σ̃

2
0 + σ̃2

1)− 2α0σ̃
2
1 + σ2

1 + µ2
1

= (σ̃2
0 + σ̃2

1)

(
α0 − σ̃2

1

σ̃2
0 + σ̃2

1

)2

+ σ2
1 + µ2

1 −
σ̃4

1

σ̃2
0 + σ̃2

1

(B.2)

where σ̃2
i = σ2

i + µ2
i − σ2

c − µ0µ1 for i ∈ {0, 1}. By setting to zero the gradient of
MSEa with respect to α0 in eq. (B.2), the optimal α0 and α1 can be found as

α0 =
σ̃2

1

σ̃2
0 + σ̃2

1

=
E{n1(n1 − n0)}
E{(n0 − n1)2}

α1 =
σ̃2

0

σ̃2
0 + σ̃2

1

,

(B.3)

and the minimum MSEa is

MMSEa = σ2
1 + µ2

1 −
σ̃4

1

σ̃2
0 + σ̃2

1

= σ2
c + µ0µ1 +

σ̃2
0σ̃

2
1

σ̃2
0 + σ̃2

1

.

(B.4)

Due to the computational complexity of multiplication and division in (B.3) and
signaling overhead of α0, a weight can be pre-selected and only the weight index
minimizing the distortion can be signaled. From the constraints that weights are
non-negative and α0+α1 = 1, α0 should be in (0, 1) and a straightforward selection
would be 1

2
which corresponds to the average of p0 and p1. With respect to the

computational complexity, 1
2

is the most efficient weight between (0, 1) because in
the calculation of new predictor pa, only the sum of p0 and pa followed by shift
operation is needed as can be seen in chapter 4.3.

If α is defined as the weight most frequently chosen, it can be found as

α = arg max
0<α0<1

P {MSEa < MSE0 & MSEa < MSE1} . (B.5)
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From (B.2),

MSEa < MSE0

⇔ α2
0(σ̃

2
0 + σ̃2

1)− 2α0σ̃
2
1 + σ2

1 + µ2
1 < σ2

0 + µ2
0

⇔ 1− α0

1 + α0

<
σ̃2

0

σ̃2
1

(B.6)

MSEa < MSE1

⇔ α2
0(σ̃

2
0 + σ̃2

1)− 2α0σ̃
2
1 + σ2

1 + µ2
1 < σ2

1 + µ2
1

⇔ σ̃2
0

σ̃2
1

<
2− α0

α0

.

(B.7)

From (B.6) and (B.7), (B.5) is equal to

α = arg max
0<α0<1

P

{
1− α0

1 + α0

<
σ̃2

0

σ̃2
1

<
2− α0

α0

}
. (B.8)

If m pixel residuals in the segment are regarded as m sample observations from
independent normal random variable ni ∼ N(0, κ2

i ) with i ∈ {0, 1}, the sum of
residual energy by pi in the segment would be (m − 1)s2

i where s2
i is the sample

variance from ni. Replacing σ̃2
i with s2

i in (B.8) and noting that χ2
i =

(m−1)s2
i

κ2
i

has

a chi-square density function with νi = m− 1 degrees of freedom,

α = arg max
0<α0<1

P

{
1− α0

1 + α0

<
κ2

0χ
2
0

κ2
1χ

2
1

<
2− α0

α0

}
. (B.9)

Because n0 and n1 are assumed to be independent, χ2
0 and χ2

1 are independent
chi-square random variables with ν0 and ν1 degrees of freedom, respectively, and

then F =
χ2

0/ν0

χ2
1/ν1

has an F-distribution with ν0 numerator degrees of freedom and

ν1 denominator degrees of freedom. With ν0 = ν1 = m− 1,

α = arg max
0<α0<1

P

{
1− α0

1 + α0

<
κ2

0

κ2
1

F <
2− α0

α0

}
. (B.10)

The probability in (B.10) is calculated for various values of three parameters.
First, for six different values of m ∈ {10, 50, 100, 150, 200, 250}, the probabilities

are calculated fixing
κ2
0

κ2
1

and α0. Then their average is shown in the Tab. B.1 with

respect to each
κ2
0

κ2
1

and α0. The range of
κ2
0

κ2
1

is limited to
[

1
3
, 3

]
because most of

κ2
0

κ2
1

lies between
[

1
3
, 3

]
as can be seen in the example of Fig. C.1. As shown in

the last row of Tab. B.1, the average probability over m and
κ2
0

κ2
1

is the highest for
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Tab. B.1: The probability in (B.10) is calculated changing three parameters, (i)
m, (ii) κ2

0

κ2
1
, and (iii) α0. The average of probabilities for m =

{10, 50, 100, 150, 200, 250} is shown with respect to different κ2
0

κ2
1

and α0. The

last row shows the average over κ2
0

κ2
1
.

α0 = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
κ2
0

κ2
1

= 3 0.994 0.987 0.966 0.892 0.500 0.130 0.050 0.028 0.017

2 0.983 0.987 0.983 0.970 0.934 0.774 0.353 0.108 0.048
3
2

0.965 0.978 0.983 0.980 0.969 0.942 0.840 0.500 0.168
1 0.828 0.935 0.965 0.977 0.980 0.977 0.965 0.935 0.828
2
3

0.168 0.500 0.840 0.942 0.969 0.980 0.983 0.978 0.965
1
2

0.048 0.108 0.353 0.774 0.934 0.970 0.983 0.987 0.983
1
3

0.017 0.028 0.050 0.130 0.500 0.892 0.966 0.987 0.994

0.572 0.646 0.734 0.809 0.827 0.809 0.734 0.646 0.572

α0 = 1
2
. If we take the probability of

κ2
0

κ2
1

in Fig. C.1 into account, the probabilities

corresponding to
κ2
0

κ2
1

= 1 are weighted most, which favors the weight 1
2

more.

Although the weight 1
2

is found with the assumption that n0 and n1 are inde-
pendent and follow the normal distributions with zero mean, it is the most efficient
weight which has the least computational complexity for pa. Therefore in IBS, the
additional weight is defined to be 1

2
.
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Appendix C

Comparison between MSD and MAD for Weight

Selection

In order to avoid the complexity by multiplication in SSD distortion measure, SAD
is adopted in weight selection for each segment in IBS. In this appendix, from the
statistical modeling of residual error, we study the penalty incurred for using SAD
instead of SSD in IBS weight selection.

Let pa be the weighted sum of p0 and p1 as

pa = α0p0 + α1p1

with α0 +α1 = 1 and 0 < α0 < 1. Then, associated residual error na is represented
as

na = α0n0 + α1n1.

Let µi and σ2
i be the mean and the variances of ni. Then from (B.1),

µa = E{na} = α0µ0 + α1µ1

σ2
a = E{(na − µa)

2} = α2
0σ

2
0 + 2α0α1σ

2
c + α2

1σ
2
1

(C.1)

where σ2
c = E{(n0 − µ0)(n1 − µ1)}.

With three predictors (p0, p1 and pa) available in each segment of the mac-
roblock, pa will be selected when it gives the minimum distortion. For MSD dis-
tortion measure, from (B.6) and (B.7)

MSDa < MSD0 & MSDa < MSD1

⇔ E{n2
a} < E{n2

0} & E{n2
a} < E{n2

1}

⇔ α2
1

1− α2
0

<
σ̃2

0

σ̃2
1

<
1− α2

1

α2
0

(C.2)
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where σ̃2
i = σ2

i + µ2
i − σ2

c − µ0µ1 for i ∈ {0, 1}. If (i) n0 and n1 are uncorrelated
and (ii) µi ∼ 0 and/or µi

σi
∼ 0, then σ̃2

i = σ2
i + µ2

i − σ2
c − µ0µ1 ∼ σ2

i thus (C.2) is
equal to

α2
1

1− α2
0

<
σ2

0

σ2
1

<
1− α2

1

α2
0

. (C.3)

For MAD distortion measure,

MADa < MAD0 & MADa < MAD1

⇔ E{|na|} < E{|n0|} & E{|na|} < E{|n1|}
⇔ E{|α0n0 + α0n1|} < E{|n0|} & E{|α0n0 + α0n1|} < E{|n1|}.

(C.4)

Due to the absolute operation, it is not straightforward to find a generic closed
form of solution for (C.4). Therefore, we solve (C.4) assuming (i) normal and (ii)
Laplace distribution models for n0 and n1.

(i) For normal distribution model ni ∼ N(µi, σ
2
i ), from (A.8) with µi ∼ 0

and/or µi

σi
∼ 0

E{|ni|} =

√
2σ2

i

π
e
− µ2

i
2σ2

i − µi

(
1− 2Q(−µi

σi

)

)
∼

√
2σ2

i

π
(C.5)

If n0 and n1 are uncorrelated, from (C.1), σ2
a = α2

0σ
2
0 +α2

1σ
2
1. Therefore, E{|na|} ∼√

2σ2
a

π
=

√
2(α2

0σ2
0+α2

1σ2
1)

π
. Thus (C.4) is equal to

MADa < MAD0 & MADa < MAD1

⇔
√

2σ2
a

π
<

√
2σ2

0

π
&

√
2σ2

a

π
<

√
2σ2

1

π

⇔ α2
1

1− α2
0

<
σ2

0

σ2
1

<
1− α2

1

α2
0

.

(C.6)

From (C.3) and (C.6), it is shown that if the residual errors by p0 and p1 are
uncorrelated and follow the normal distributions respectively with µi ∼ 0 and/or
µi

σi
∼ 0, the same weight index is selected by both MSD and MAD.
(ii) If n0 and n1 follow Laplace distributions, from (A.11) and (A.12), MAD0

and MAD1 are found as

MAD0 = E{|n0|} =

∫ ∞

−∞

|n0|
2a

e−
|n0−µ0|

a dn0

= ae−
|µ0|

a + |µ0| =
√

σ2
0

2
e
− |µ0|

σ0

√
2
+ |µ0|

(C.7)
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MAD1 = E{|n1|} =

∫ ∞

−∞

|n1|
2b

e−
|n1−µ1|

b dn1

= be−
|µ1|

b + |µ1| =
√

σ2
1

2
e
− |µ1|

σ1

√
2
+ |µ1|.

(C.8)

Probability density function (pdf) of na are calculated for n0⊥n1 as

fna(na) =

∫ ∞

−∞

1

α0

fn0(
na − α1n1

α0

)fn1(n1)dn1

=
1

2((aα0)2 − (bα1)2)

(
aα0e

− |na−µa|
aα0 − bα1e

− |na−µa|
bα1

) (C.9)

thus, MADa is given as

MADa = E{|na|} =

∫ ∞

−∞

|na|
2((aα0)2 − (bα1)2)

(
aα0e

− |na−µa|
aα0 − bα1e

− |na−µa|
bα1

)
dna

=
(aα0)

3e
− |µa|

aα0 − (bα1)
3e
− |µa|

bα1

(aα0)2 − (bα1)2
+ |µa|

(C.10)

With the assumption that ‘µi ∼ 0’ or ‘µi

σi
∼ 0 and µ0 ∼ µa ∼ µ1’, from (C.7) and

(C.10),

MADa < MAD0

⇔ (aα0)
2 + (bα1)

2 + aα0bα1

aα0 + bα1

< a

⇔ a

b
<
−α1 −

√
α2

1 + 4α0α1

2α0

or
a

b
>
−α1 +

√
α2

1 + 4α0α1

2α0

(C.11)

and from (C.8) and (C.10),

MADa < MAD1

⇔ (aα0)
2 + (bα1)

2 + aα0bα1

aα0 + bα1

< b

⇔ α0 −
√

α2
0 + 4α0α1

2α0

<
a

b
<

α0 +
√

α2
0 + 4α0α1

2α0

(C.12)
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Tab. C.1: Sub-optimality of MAD with respect to MSD
Range of

σ2
0

σ2
1

Predictor Predictor

by MSD by MAD
(a)

(
1
3
, 0.382

)
pa p0

(b) (2.618, 3) pa p1

Thus, from (C.11) and (C.12)

MADa < MAD0 & MADa < MAD1

⇔ −α1 +
√

α2
1 + 4α0α1

2α0

<
a

b
<

α0 +
√

α2
0 + 4α0α1

2α0

⇔
(
−α1 +

√
α2

1 + 4α0α1

2α0

)2

<
σ2

0

σ2
1

<

(
α0 +

√
α2

0 + 4α0α1

2α0

)2
(C.13)

For the additional weight used in Chapter 4, α0 = α1 = 1
2
,

MSDa < MSD0 & MSDa < MSD1

⇔ α2
1

1− α2
0

<
σ2

0

σ2
1

<
1− α2

1

α2
0

.

⇔ 1

3
<

σ2
0

σ2
1

< 3

(C.14)

and

MADa < MAD0 & MADa < MAD1

⇔
(
−1

2
+

√
5

4

)2

<
σ2

0

σ2
1

<

(
1

2
+

√
5

4

)2

⇔ 0.382 <
σ2

0

σ2
1

< 2.618

(C.15)

Therefore, MSD and MAD select a different predictor in two separate intervals as
in Tab. C.1. For (a), pa is the predictor with minimum distortion by MSD but p0

is chosen by MAD. Similarly, for (b) pa is the predictor with minimum distortion
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by MSD but p1 is chosen by MAD. The sub-optimal choice by MAD increases the
distortion as

(a) ∆D0 = MSD0 −MSDa = (1− α2
0)σ

2
0 − α2

1σ
2
1 =

3

4
σ2

0 −
1

4
σ2

1

(b) ∆D1 = MSD1 −MSDa = (1− α2
1)σ

2
1 − α2

0σ
2
0 =

3

4
σ2

1 −
1

4
σ2

0.
(C.16)

From two intervals in Tab. C.1, it can be derived that

(a) 2.618σ2
0 < σ2

1 < 3σ2
0

(b) 2.618σ2
1 < σ2

0 < 3σ2
1

(C.17)

thus,

(a) 0 < ∆D0 < 0.10σ2
0 ∼ 0.11MSDa

(b) 0 < ∆D1 < 0.10σ2
1 ∼ 0.11MSDa.

(C.18)

Therefore, when the residuals follow Laplace distribution, MAD will choose p0

or p1 which is not the predictor with minimum distortion (pa). The distortion
by this sub-optimal choice can be higher than the optimal distortion MSDa by

up to 11%. Fig. C.1 demonstrates the distribution of
σ2
0

σ2
1

based on the coding

results of Foreman with QP 24. In this example,
σ2
0

σ2
1

is clustered around 1 and

about 68% and 82% lies between
(

1
2
, 2

)
and between

(
1
3
, 3

)
, respectively. The

probability that
σ2
0

σ2
1

belongs to the interval (a) and (b) in Tab. C.1 is equal to

P (1
3

<
σ2
0

σ2
1

< 0.382 & 2.618 <
σ2
0

σ2
1

< 3) = 6.7%. Thus, the penalty using MAD

instead of MSD is negligible practically.
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Fig. C.1: Distribution of σ2
0

σ2
1

from IBS coding results of Foreman with QP 24
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