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Abstract

Recently, Deterministic Annedling (DA) has become very popular for awide
variety of optimization problems. However, its computationd complexity is very
high. We investigated ways of reducing the complexity of DA by designing low
complexity distributions to mimic the optima Gibbs digtribution. We dso derived
the theoretical performance loss for using the smple digtributionsinstead of the
optima Gibbs didtribution, and used the derived result to obtain optima annegling
schedules for the non-optima ditributions.

We applied the reduced complexity DA agorithms to the vector quantizer (VQ)
design problem and to the channd /frequency dlocation problem (FAP). InVQ
design, compared to the generdized Lloyd agorithm (GLA) and a high performance
stochastic rdaxation dgorithm (SR-D), the proposed dgorithms sgnificantly
improved the quality of the finad codebooks both with and without codebook
initidization. Compared to the standard DA they reduced the computational
complexity over afactor of 100 with negligible performance difference. In FAPthe
proposed dgorithms are highly competitive with the presently available best
assignment techniques on red-life GSM frequency planning scenarios.

In the last part of the dissertation we introduced a novel constrained vector

quantizer (VQ), whichwe caled Seg-VQ. Asan extension of the transform coding



framework, in our approach the codevectors are constrained to be located on a series
of line ssgmentsin the multidimensond space. The advantages of Seg-VQ are
twofold: firgt, the encoding complexity is proportiona to the number of segments
rather than to the number of codevectors, and second, it can efficiently exploit the
corrdations in sources such asimages. At high dimensions (8x8 blocks) we use
multi-stage Seg-V Q where the input block is projected into a series of segmentsin
order to be quantized. We proposed two different systems using multiple stages. in
the first one we designed fixed codevectors constrained to be on the segments, and in
the second one the segments are uniformly quantized depending on the required rate
making it more robust for rate adaptation. The latter system isoptima for high rate

quantization.



Chapter 1

| ntroduction

1.1 Optimization Problems

A wide variety of gpplication problemsin engineering, decision sciences and
operations research can be posed as optimization problems. Such applications
include digita sgnd processing, process control, database design, neura networks,
resource alocation, VLS design and Srategic planning to name afew. Optima
solutions in these applications mean better implementation, faster execution, lower
costs, and robust operation under changing conditions. Hence, there is a perpetua
impetus for research for efficient optimization techniques [ 76, 55, 93, 107, 43, 9, 74,
82, 42, 88, 108, 61, 77].

In agenerd minimization variant of an optimization problem we are given a set

S andafunction f:S® R, andaskedtofindan si S forwhich f (s) £ f (s ) fordl
s1 S. Thesat S isthedomain of feasble solutionsand f isthe objective (or cost)

function. Suchan sl S iscaled theglobal minimizer of f over S, and the



f A, B, Cand D areloca optimums,
B isalso the global optimum.

C
) o >

Figure 1.1: A 1-dimensional Euclidean optimization (minimization) problem.

corresponding function value, f (s), isthe global minimum. The mathemetical

formulation of this problem isasfollows:

min f (s)
s . (1.2
subjectto sl S.

A solution s S iscaledalocal minimizer if f(s§ £ f (s 9 fordl s ¢inthe

neighborhood of st, N (s, where the corresponding function vaueisalocal

minimum. InFigure 1.1 points A, B, C and D aredl locdly optimd, but only B is
globaly optimal. Note that a minimization problem can be transformed into a
meximization problem since max f (s) = - min(- f (s)). Inthefollowing, unless
otherwise sated, optimizing a problem will refer to minimizing its objective
function.

Optimization problems are classfied into two as continuous and discrete
problems. A problem is continuous if the variables (unknowns) take on continuous
red values, eg., Sin(1.1) would take on red vaues. Conversdy, in adiscrete

optimization problem the variables take on discrete values, eg., S would have



integer values. Both continuous and discrete problems are further classfied into
constrained optimization and unconstrained optimization problems based on the
presence or absence of condraints. Depending on the form of the congtraint
functionsused on S in (1.1), the constrained continuous problems are further
classfied into linear and nonlinear, where most red world continuous domain
application problemsfal into the class of nonlinear optimization problems [108, 85].
In this thesis we will be considering applications that employ discrete optimization

methods.

1.1.1  Discrete Optimization Problems

When thefeasblesat S in(1.1) congsts of discrete values the problemis cdled
adiscrete optimization problem. Discrete optimization isafield of study in
combinatorics and discrete optimization is synonymoudy caled combinatorial
optimization [97]. Discrete optimization problems can be expressed in an integer
programming (I1P) formulation,

min f (s)
subjectto  h(s) =0 (1.2)

g(s)£0
sl Z"

where Z" isthe set of n-dimensond integer vectors. Asin the continuous
optimization problems, we classfy the discrete problems according to the existence

of congraints and their computationa complexity. When there are equdity and/or



inequality constraints, h(s)=0 and g(s) £0, the problem is called constrained
optimization problem, and with those absent it is called an unconstrained
optimization problem. Note again that problemswith Smple boundson s are also
classfied as unconstrained.

Discrete condirained optimization problems are well studied in computer science
and operations research areas. Based on their computationa complexity, these
problems are classfiedintoclass P or NP . Theclass P problems are those that
can be solved by a polynomid-time dgorithm [97, 27]. This meansthat the
complexity of the problem grows as a polynomid in the number of varigbles of the
problem. For the class NP (non-determinigtic polynomid time) problems; it is not
required that every ingtance of a problem can be solved in polynomid time, but
smply that a given candidate solution (caled a certificate) can be checked in
polynomid timefor itsvaidity. Since every solvable problem isadso certifiable,
then P isasubsstof NP , P | NP . Tofind out if thisinclusion is proper or not
is an important open problem in mathematics. A problem L to which dl problems
in NP polynomidly reduceiscaled NP -hard, andif L itsdf isdsoin NP
thenthe problem L issaid to be NP -complete[27, 45]. Such problems do not
have polynomid time agorithms and their complexity grows exponentidly in the
Sze of the problem. In other words, the only way we know to solve these problems
optimally is by making use of dgorithms that run in exponentid time. Many redl-
world gpplication problemsfal inthe dassof NP -hard problems drilling of

printed circuit boards (PCBs) [101], VLSI-chip fabrication [71], VLS circuit desgn



and amulation [98], computer wiring and clustering of data arrays[79], X—ay
crystalography [12], control of robots [101], genetic engineering [48], production
planning, project resource management [28], CAD problems [73], machine
scheduling [107], generdized Lloyd quantization [46], frequency dlocation problem
(FAP) [56], etc.

Indeed, application problems of practica interest fal in the category of hard

optimization problems, both in the continuous domain and discrete domain dike.

1.2 Solving Discrete (Combinatorial) Optimization
Problems

Given that many problems of practica relevance are computationdly intractable
(NP -hard), in generd, it isinfeasible to try to compute the optimum solution for
these problems, smply because approaches for solving such problems exactly are dl
based on implicit enumeration of dl feasible solutions and this takes an enormous
amount of machine time even with very powerful computers. For example, consider
the Traveling Salesman Problem (TSP) [88, 101, 79], awdl known combinatoria
optimization problem, whichis NIP -hard to solve but which can be easly stated:
givenasat of n citiesand the geographica distances among them, the traveling
sdesman hasto find the shortest tour in which he vigits dl the cities exactly once and
returnsto his starting city. In Figure 1.2, three tours are shown for asmple instance

of a9-city TSP. Thetours A and B are feasible solutions whereas tour C isnot a



feasble solution. Of the two feasible solutions tour B is shorter than tour A. For a

61 city — Traveling Sdesman Problem (TSP) there are more possible solutions than

the approximate number of particlesin the universe, 10 (thereare (n- 1)!/2

possible solutionsfor an n-city TSP, with n=61, (60§2) @40" 10%).

Figure 1.2: Three tours are shown for a TSP of 9 cities. Tours A and B are feasible,
whereas, tour C isinfeasible.

Even with acomputer that can perform one billion additions per second, an
exhaudtive search would require about 7.7 10%° yearsto find the best tour (using 61
additions per tour). And since we do not have efficient dgorithms to solve such
computationdly intractable problems, we have to look for sub-optimal solutions that
can be obtained within redigtic running times. The two main classesfor treating
these problems are integer programming (IP) methods and (stochastic) local search

methods.



1.2.1  Integer Programming

An integer programming agorithm makes use of efficient upper and lower
bounds on a problem’ s feasible search space (domain) to continually narrow down
the possible solutions. The dgorithm is stopped ether when an incumbent solution
is considered to be satisfactory, or when the running time has exceeded a
predetermined limit. On large domains one cannot tell if an additiond small amount
of running time would improve on the incumbent solution Sgnificantly, or if an
additiond large amount of time would not improve the solution a dl. The dassc
integer programming tool is the branch-and-bound (BB) method [97]. Thisisa
divide-and- conquer method which tries to solve the problem by splitting it into
smaler and smdler problems. The problem is split into subproblems such that the
union of the feasible solutions of the subproblems give the solution of the actud
problem. Subproblems are further divided into smdler subproblems until optima
solutions can be computed. Application of branch-and-bound dgorithmsis highly
problem dependent [88], and they have been applied to various combinatoria
optimization problems [40, 84, 5] with various success. The traveling sdesman
problem appears to be well suited for this gpproach where much progress has been
made in solving large problems to optimality [5]. 1t isstated in [88] that till much

work is needed to apply BB efficiently to other problems of practicd interest.



1.2.2 L ocal Search

Loca search methods find near-optima solutions to hard optimization problems
quickly and efficiently. They do not guarantee to find the optimum solutions nor do
they guarantee solutions within a certain range of the optimum. Nevertheless, they
are of great importance since they have become the standard way of obtaining high
quality solutions for large combinatoria problems of practicd interest. Hence, avast
amount of research is directed in this area to improve on existing search methods, to
devise new ones, and to provide better understanding of them [82, 42, 88, 108, 61,
77]. Inloca search methods a move is made from an incumbent solution to another
one within its neighborhood if the move results in areduction of the cost. The
neighborhood of a solution is generated by gpplying some suitably defined locdl
change on the solution. The Sze of the neighborhood is a tradeoff between theaim
of obtaining agood improvement each time anew solution is sdlected and theaim of
limiting the computationa cost. These methods gart the agorithm with an initial
solution that is selected either randomly or by aheuridtic. It is gpparent that a
monotone improvement from one solution to the next resultsin alocaly optimal
solution dictated by the initid solution. To circumvent this drawback of getting
stuck inaloca minima, local search methods of interest alow random (stochastic)
moves that may result in temporary decreases in performance, but eventually result
in abetter solution at the end of the entire search process. The most prominent
stochastic search methods are Smulated Annealing [ 70, 16, 36, 62], Tabu Search

[51, 52] and Genetic Algorithms [60, 53].



1.2.2.1 Simulated Annealing

The origin of smulaied anneding (SA) [70, 16, 36, 62] restsin the physica
process of annedling. Annedling isathermal process for obtaining stable, low-
energy date of ametd in aheat bath. Firdt, the temperature of the heet bath is
increased until the metal melts, where the particles of the metal arrange themselves
randomly. And then, the temperature is carefully decreased dlowing the molten
meta to attain itslowest possible energy corresponding to the temperature. This
processis continued until the metal completely cools, at which state the particles are
arranged in alatice with minimum energy.

By andogy to the physical anneding process, an optimization problem is* cooled
insamulations’ to find alow cost solution. The search isimplemented by a Markov
process which stochadtically samples the solution space S of the problem. The
optimization problem is characterized by an objective (cost or energy) function

E:S® R,wheres T S denotes the admissible solutions (or states) to the problem.
The acceptance of anew state is determined by the Metropolis [89] dgorithm, in
which new states of decreased costs (increasing performance) are always accepted,
and states with increased costs are accepted with a probability depending on the cost

difference and the anneding temperature, T ,

‘.1 f DE=E new \ _ E current £O,
ps = @ s ™) :J: ! (s™)- E(s ™) 13
t

-DE, .
e i otherwise.



A Markov process with atrangtion probability (1.3) convergesto an equilibrium

probability distribution [44],

p(s)=——— (1.4)

which is known as the Gibbs distribution.
The simulated annedling dgorithm starts with an initia random state, s @ =g ©

and an initid high temperature T =T () > E (s (0)) a iteration zero. Atan

iteration t , acceptance of anew state in the neighborhood of the current state, s ' is
determined by (1.3). Notethat a the beginning of the agorithm when the
temperature ishigh, T > DE , the probability of accepting a cost-increasing Sateis
closeto one. The temperature schedule is a monotonically decreasing sequence
where lim,, , TW =0, and in the limiting case of zero temperature the agorithm only
accepts cost decreasing state moves. The choice of the temperature scheduleisan
important factor affecting the SA performance. Geman and Geman [47] have shown
that the globa minimum can be achieved if the schedule obeys

Tu— (L5)

logt
In practice, this scheduleis very dow and Kirkpatrick [70] suggests using
TW =¢ 572 where r isapostive constant less than one. Theinitia temperature,
T and the constant temperature reduction factor, r are application dependent and

are determined experimentally [117].
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1.2.2.2 Tabu Search

The tabu search (TS) [51, 52] method aims at avoiding suboptimal local minima
as did the smulated annedling method. Hence, TS dlows movesfromadate s to
neighbor sate s ¢ of higher cost (lower performance) with the hope that thiswill
eventually lead to a better solution at the end of the search process. Unlike SA, the
acceptance criterion in TS isto aways choose the state in the neighborhood of the

incumbent state, N (s CU"H“) with the lowest cost:

s"™= argmin{ E(s®:sd N(s current )} (1.6)

s¢

where E(s ) isthe cost of state s . The essentia feature of the tabu search isthe use

of memory. To prevent the search from getting into infinite loops, a Sate that has
recently been visted isincluded in atabu list, j . The datesin thetabu list are not
alowed to be considered as candidate states in the neighborhood of the future States.
The sze of the tabu ligt, which is essentidly the memory of the system, isan

important parameter Since alarge memory increases the performance of the

agorithm at the expense of higher complexity. Note that an infinite memory tabu
search, with the whole solution domain as the neighborhood for any s , performsan
exhaustive search of the solution space and returns the optima solution. When the
tabu list isfull, to open up space for new tabu states the oldest members of the list
arereleased. A released state becomes available as a candidate state. There are two

stopping criterions for the tabu search agorithm; the dgorithm is sopped either

11



when al neighborhood states of an incumbent state (current state) arein the tabu ligt,

N(s )i i, or if apredetermined number of moves are made without

improvement. There are various extensgons to the basic TS dgorithm: for example,
using multiple tabu lists of variable 9zes[110], or concentrating the search on
another location of the search space if the solution cannot be improved for a

predefined number of iterations[7].

1.2.2.3 Genetic Algorithms

Genetic dgorithms (GA) [60, 53] are randomized local search methods inspired
by natural sdlection in biology [88, 41]. A genetic dgorithm is characterized by

maintaining a population of states (solutions) that evolves through a series of
genertions. Theinitia population, P? israndomly selected from the domain of
possible states, P9 1 S, where the size of the population from one generation to the
next is kept constant, |P|=K . Ineachiteration, t anew generation is derived by a
three phase process: evaluation of fitness, selection and generation of new
individuals.

In thefirgst phase, evaluation of fitness, the qudity (or fitness) of each sate in the
current population, s T P isevaluated by a suitably defined function. This

function, f (s ) called thefitness function of state s , is usudly functiondly related

to the cost function of the optimization problem considered, (s ) =g(E(s )). For

12
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example, it can be the inverse of the cost function, f (s ) =gE(s )§ . Thesdlection

phase corresponds to probabilistically selecting the states in the population, P!
according to their relativefitness. The sdlected states survive and pass into the new
population while the unselected ones are discarded. The probability of selecting a

date s isobtained by,

o (s )=o) L.7)

The probabilities provide the rdative fitness for each state compared to the other
gates in the population; the better (low cost) states have a higher probability of
aurviving. Findly, in the third phase, new individual s are generated to replace the
discarded ones during the selection phase. These are created elther by recombining a
pair of states (caled crossover) or by modifying a single Sate (cdled mutation). To
enable crossover and mutation, the states are encoded by fixed length binary strings.

Hence, the crossover operation takes two states, s, and s ,, selects arandom integer
i uniformly fromtheset {1,2,---,}s,} (where|s,|=ls ,| because of fixed length
encoding), and concatenates thefirst i bitsof s, andlast |s,|- 1 bitsof s, to obtain
anew date, s , for the new population (obvioudy, s ,1 S). Symmetricaly, the first

i bitsof s, andlast |s,|- 1 hitsof s, can be concatenated to obtain another new
state, s ,. Mutation is usudly performed by randomly flipping abit of astate s to

obtain the new state s ¢. At the end of this phase, the generation is derived and a

new population isready. The new generations are derived from the old ones in eech
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iteration until thereis no improvement of the best solution (dtate) for a predetermined
number of consecutive generations.

We see that in the development of the above agorithms natura phenomena
(from physics and biology) have been an ingpiration, and andogies drawn from these
natural events are used to derive search methods that have become standard methods
in solving computationaly hard optimization problems. Out of these three methods,
smulated annedling is the one with ardaively better defined theoretica framework
and practically the most applied one[50, 69, 1, 2, 33, 64, 36, 57, 111, 38]. Tabu

search and genetic dgorithms have possibilities of further development [25].

1.3 Deterministic Annealing

Although smulated annedling is a generd optimization framework applicable to
various problems, its mgjor drawback isits downess (1.5). A deterministic variant
of the amulated anneding, deterministic annealing (DA) wasfirst suggested by
Rose et d. [104]. Unlike stochastic moves made on the given energy surface
(function), the deterministic annegling method can be viewed as incorporating the
randomness into the energy (objective) function of the problem [104, 106, 103].

The main idea behind determinigtic anneding (DA) isto use an effective energy
function parameterized by atemperatureterm T, where a high temperatures the
effective energy function is a smoothed (convexed) approximation of the actua

energy function (i.e,, the origind energy function of the optimization problem), and
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Figure 1.3: Three snap-shots showing the convergence of the DA. Theinitial
convex function is obtained at the initial infinite temperature. Thisfunction
has one minimum which is the global minimum. By gradually lowering the
temperature the global minimum at the corresponding temperature is traced.
When temperature reaches zero the original function is recovered and the
final global solution is obtained.
as T® 0 theorigina optimization problem is recovered. Hence, Sarting at the
globd optimum of the effective function, which is convex a theinitid high
temperature (theoreticdly T ® ¥ ), the DA method minimizes the effective energy
function at each temperature to find the globa minimum, and tracks the globa
optimum as the temperature is reduced gradually. Three snap-shotsillugtrating the
convergence of the DA are shown in Figure 1.3. In the following subsections we

will explain the main agpects of the deterministic annealing framework for solving

combinatoria optimization problems.
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1.3.1  Problem Setup

Assume that we have n entities (eg,, citiesin TSP), A={a,,a,,--,a,} eachof
which can have K different assignments (labels), B={b,,h, ,--,b.} . Theproblemis
to find the minimum cost assgnment set (or state). Note that for this combinatoria
problem there are K" possible states. We define a state of the system by a vector,
a=(a,a,a,), whereeach a, correspondsto the assignment of the i entity a;:
a,=b, P by isasignedto a, a - b,. Let E(a)=E(a,,a,,a,) betheenergy
(cost) of the sysemwhen itisin date a = (a,,a,,--a,) . If wedefine g(a,b;) to be
the cost of assigning b; to g, wherefor agivenstate a, g(a.b;)° g(aa (a)), then

the energy function is,

E(a)=a g(a.a(a)) (1.8)
i=1
and the god isto find,
a =argminE(a)
Ty (1.9)
=argming g(a,a(a))
a i=1

Instead of tackling the problem as hard assgnmentsin terms of dates, in DA to

each a, al possiblelabels, {b,,b, ,---,b,} get assigned with acertain probability,

{p(ala) p(bla). - p(kla)} (1.10)
where
g p(bla)=1 "i. (1.11)

=

j=
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Assuming, the closer bj toa
the morereiableitis:

p(fa) > p(ba) > p(bla)

such that:

®  o(a)+p(nla)+p(bla)=1

Figure 1.4: An example of soft assignment where each b, gets assigned to
each a, in probability. In this example, the closer bj to a the more reliable
it is, hence the higher its association probability (soft assignment value).

We call these probabilities soft assignmentsor soft information. In communicaions
engineering the definition of soft information is “areiability measure over the

sample space of the investigated random variable” (see section 1.3.2). In the above
case the investigated random varigbleis bl B={b,,b,,--,h.} . A smpleexample of
soft assgnment is depicted in Figure 1.4, where the soft assgnment valueis

inversely proportiond to the distance between a and each b, .

1.3.2  Soft Information Communications Example

Soft information is used in various communications engineering gpplications to
provide a reliability measure on the possble signa choices[20, 22, 10]. For
example, consgder acommunication system using binary sgnding (e.g., two signd

classes g =-1 and s =1) and transmisson over an additive white Gaussan noise
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(AWGN) channel. Let the observed channd output be y. Then, usng Bayes
theorem, we can express the a posteriori probability (APP) of an event s,

conditioned on the observetion y asfollows,

_ P(Msn)p(sn) __plyls,) p(sn)
o5 )y)=" y?(y;) Y(Sm ;o )

where, p(s,) istheapriori probability of the m" signd dass and p(y s, ) isthe

probability dengity function (pdf) of the received Sgnd y conditionedon s, .

Assuming equd apriori probabilities the APP can be expressed as,

p(ylsn)
SalY)= o7
Plsi]y) a r(yls.)
Conddering the additive white Gaussian noise with variances 2, the pdf of y

conditionedon s, is,

1 2
1 2yl
e

p(ylsm)=sm

The channd decoder computes the APPs as follows,

(1.12)

where & p(s,|y)=1. The APPs provided by the channel decoder are called the soft

information, and such channe decoder isreferred to as the soft channel decoder.

The reliability of adecison depends on the relative magnitudes of the APPs. A hard
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Figure 1.5: Comparing hard channel and soft channel decoding.

channel decoder would threshold the channel output, declaring s, = -1 was sent if

y<0, otherwisedeclaring s, =1 was sent. Therefore, for a hard channel decoder,

11 y<O
|

[0 Vo (1.13)
1Y

Pra (S =-1y) =

Figure 1.5 illustrates the distinction between the outputs of a soft channel decoder

and a hard channel decoder [22]. The soft output probability plot is obtained with

(1.12) for m=0, and the other with (1.13). In both soft and hard decoding cases,
p(s =1]y)=1- p(s =-1]y). Notethat hard channel decoding provides a hard
decision based on which sde of the threshold ( ,, ., = 0) the channd output vy is,
and it does not give any further information. For example, for y=0.4, ahard

decoder would declare s, =1 was sent. However, soft channel decoding provides
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each hard decision, as wdll asthe reliability of each decison. The highest soft vaue

(APP) denotes the hard decision; that is, 5 ischosen sichthat, | =argmax p(s|y).

And the relative magnitude of p(s|y) with other soft values (for the given channe
output y) denotesthe reliability of that decison. Thus, for y=0.4 , a soft decoder

would aso declare s =1 was sent, but it would aso Sate that the religbility of
dedlaring “ s, =1 was sent” is 68% , Since max( p(sly). p(s] y))

= max (0.32,0.68) = 0.68.

Similar to the definition of the soft channel decoder’ s soft output, the soft
information in (1.10) givesthe degree of rdiability of all possble assgnmentsto
each entity, a . Notethat an iterative algorithm utilizing soft information can be

stopped at any time and the best computed hard assignments so far for each a, can be

obtained by thresholding the soft assignments, a, - b’ = argmax p(b |3 ) -
b

1.3.3  TheEffective Energy Function

Recdl that the main principle behind the DA method isto sart at the globa
minimum of an effective energy function parameterized by atemperature term (this
function is convex a theinitid high temperature), minimize the effective energy
function at each temperature to find the globa minimum, and track the globa
optimum as the temperature is gradually reduced. In section 1.3.1 we have

mentioned that in DA each entity a, isassociated in probability with al the labels,
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{b.,b, --,b.} . Hence, the state of the system is given by the probability distribution
for associating entities with labels. In this section we will define whét the effective
energy function is and derive the optima probability digtribution for associating the
entities with labe s that minimizes the effective energy function. The derivation
follows asmilar approach to that of [103].

The expected cost (energy) function of the system defined over the probability
a&ignments{p(bj|a)} is,
E{E}=8 & 9(ab)p(ba), (1.14)
i

where the summétion is over dl entitiesand dl labels. Note that a the limit, when
the soft assignments are hard and each a, gets assgned aunique bl B with
probability one,

11 if &= b
p(Q|a)—%0’ otherwise,

(1.15)
the equation (1.14) becomes identical to (1.8) for the given hard assgnments which
form the state a. The assgnment probabilities incorporate aleve of randomness

into the system, and the leve of this randomness can be measured by the Shannon

entropy,

H(ab)=-a & p(a.b )loge(a;b) w16
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where H (a)=-& p(a)logp(a) isindependent of the assignments; it can be

thought as the problem input entropy. Hence, the system randomness is expressed

by the conditiona entropy,
Hbla)=-4& & p(b fa)iogp(]a)
i

where p(a )= %. Since p(a) isaconstant term common to dl, it isirrelevant to the
optimization, and we will use the following as the expression for the randomness of
the system,

He{bla)=-3 & p(bla)logp(h|a) (1.17)

Therefore, the optimization problem is recast as the minimization of the expected cost
subject to a given level of randomness measured by the Shannon entropy:
minimizeE{E} subjectto H =H,. Thiscan be conveniently formulated asthe
minimization of the Lagrangian [106, 103],

F =E{E}- T>H (1.18)
where T isthe Lagrange multiplier, H isthe conditiond entropy given by (1.17)
and E{E} isgivenby (1.14). TheLagrangian F in(1.18) isthe principd
component in the DA methodology and it is the effective energy function thet is
optimized (minimized) through annedling. 1t is called the free energy of the system.
The name comes from gtatistical mechanics where asimilar term that characterizes
the thermodynamic potentia of a system is cdled the Helmholtz free energy [103].

The Lagrange multiplier T isin andogy the temperature of the system, whichin
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(1.18) governsthe leve of randomness. The DA method seeks the minimum of the
free energy at each temperaure, and tracks the minimum while gradualy lowering

the temperature. To obtain the optimal didtribution that minimizesthe free energy F

a agiven temperaiure T , we differentiate (1.18) w.r.t. p(h|a ), equateto zero and
solvefor p(b|a). Writing (1.18) explicitly, we have,
F=889(ab)p(nla)+T& & p(ba)log p(h]a)- (119)
i j L J

Then,

=g(a.b)+Tgogp(bla)+1§=0

P g(a,bj)+T(1+Iogp(lal|q))=o

b,
> agp(oja)=- 222

(ay)

> plbla)=e""

Since p(1y|a) isaprobability massfunction, § p(k|a)=1 then,
k

p(bla)=——— (1.20)

Hence, the optimad digribution that minimizes F a agiven T isthe Gibbs
digtribution (1.20).

Note that at infinite temperature the association probabilities (1.20) are uniform
distributions, p(bJ |a) =1/K " j where K =|B|, which meansthat each assignment

choiceis equally associated with an entity a . This corresponds to maximum
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softness and to maximum system entropy, p(b;Ja) =YK U H (b|a) =logK . Asthe
temperature is lowered the associations become more discriminating, andat T =0
they become hard a which point the system entropy is zero, p( b, |a) ={0,3
U H(bJa)=0.

The cogt function g(a;,b;) is application dependent and its form is defined

explicitly for each gpplication problem. Itsvaue in each iteration depends on the

value assumed by thelabel b, and the assignment probabilities.

Therefore, the practical DA agorithm is asfollows:

dating a ahigh temperature, minimize F at each temperature iteratively by,

1) fixing costs, and updating the association probabilities{ p(b |q)} ;
2) fixing association probabilities, and updating costs, {g (a.b, )} ,

and lowering the temperature gradudly.
The deterministic annedling method has been applied to dustering, classfication
and vector quantization problems [104, 106, 102, 105, 102, 92, 91, 59] where it

outperformed the standard methods by a sgnificant margin.

14 Contributions of the Resear ch

The main principle of the DA method isthat each entity is associated in
probability with each assgnment choice and these assgnments are updated in each

iteration. Hence, the computational complexity of the DA adgorithm grows with the
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Sze of the possible choices. On the other hand, in some applications the structure of
the problem is such that a subset of the choices are less likely to be chosen compared
to the others. This gets reflected in the soft information vaues; lesslikely choices
have low rdiability vaues compared to the high likely choices. And the smdler the
soft vaue of achoice, the lesser its contribution towards an optima fina solution

will be. However, the computationa cost for al soft associations, having a high soft
vaue or alow soft vaue, isthe same. In thisthes's, we study reducing the number
of choices for each entity by identifying the subset of choices thet are less likely for
each entity, and show that setting their soft assgnments to zero without computing
resultsin large savingsin the overal computation with negligible performance
difference. Depending on the application, entities for which a subset of the choices
can be suppressed can be identified elther before the optimization Starts, or asthe
Iterations progress, and in some cases both before the optimization starts and asthe
optimization progresses.

In the sandard determinigtic annedling (DA) agorithm, the soft associations are
computed using the Gibbs digtribution which is the optimd distribution. However,
the Gibbs digtribution is afunction of exponentids and therefore its computationa
complexity ishigh. If werecall that these are computed for each soft association
update, for each entity, in each iteration, then it becomes clear that usage of asmpler
digtribution function can result in large computationa savings. We have designed
amplified soft information measures such that, while they are smple enough to

facilitate fast computation of the soft associations, they can dso closdy mimic the
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Gibbs digtribution’ s functiondity to keep the sacrifice in performance to a minimum.
Nevertheess, usng smplified soft measures ingtead of the optimal one is expected
to result in someloss of performance. Hence, we have aso derived the theoretical
performance loss a a given system entropy due to using the smplified soft measures
ingtead of the optimal Gibbs measure. Further, we have used this result to derive the
optimal temperature reduction schedules for the smple soft measures, given the
temperature schedule for the optimal Gibbs measure.

In Chapter 2, we gpply our reduced complexity DA agorithmsto the well
studied vector quartizer (VQ) desgn. Compared to standard DA under the same
temperature reduction schedule, we show that in exchange of anegligible
performance difference our agorithms reduce the computational complexity by over
afactor of 100. We aso compare our algorithmsto the traditiondly used GLA and a
high performing stochadtic relaxation (SR) dgorithm caled SR-D, which is regarded
by some researchers as a benchmark for near optima performing quantizer design.
We provide experimenta evidence showing the superiority of our agorithms over
these two algorithms. In this chapter, we also propose a stochastic extension to the
reduced complexity DA adgorithm. This extended agorithm contains a stochastic
gep smilar totheonein SR-D. We show that the stochagtic step improvesthe
performance of the reduced complexity DA agorithms with diminishing benefits as
the performance approaches the optima. We aso investigate the effect of codebook
initidization on GLA, SR-D and the reduced complexity DA dgorithms and show

that, while GLA and SR-D receive mgor benefit from thisinitidization (PNN) at the
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expense of increased computational complexity, the reduced complexity DA
dgorithms are able to attain the same performance without the need of initiaization.
Hence, the proposed agorithms are not sensitive to the choice of the initial codebook
and outperform codebook initidized GLA and SR-D dgorithms.

In Chapter 3, the channd /frequency assignment problem (FAP), which isa NP-
hard combinatorid optimization problem applied to fixed channd dlocation in
mobile communication networks, is consdered. The FAP isan important problem
for today’ s wirdess service providers, which has traditionally been tackled by graph
theoretic gpproaches and more recently with aso search methods like smulated
annedling, tabu search, and genetic dgorithms. However, deterministic anneding
has not been applied to FAP before. Depending on the particular network the
understanding of frequency assignment varies, but there are two main optimization
flavors, one of them is minimizing the spectrum used to meet prescribed interference
condraints, and the other is minimizing the tota interference that results from a
prescribed spectrum dlocation. In thisthesis we consider the latter (referred to as
minimum interference- FAP (MI-FAP)) as our optimization problem, and apply the
determinigtic annealing together with our proposed complexity reductions. For Ml-
FAP avariant of smulated annealing has been reported to provide the best known
results on some redl-world scenarios (the reported work has not yet been released to
the public domain at the time of this writing, the results are announced in aPh.D.
thesis published in 2001 [37]). We compare our agorithms with the standard

amulated annedling, and provide experimenta evidence that our dgorithms result in



50% - 80% reduction in total interference in 20% - 50% less running time.
Sometimes, together with minimizing the total interference in the network one may
aso wish to satisfy a certain separation for co-channd nodes (nodes using the same
channel, which cause high interference on each other). For these cases we propose a
channe blocking dgorithm, which is an extension of the DA dgorithm. We show
that the proposed dgorithm effectively reduces the number of co-channel separation
violations with atrade-off of smal increase in total network interference compared

to without using the channe blocking. For example, for atest problem where there
were 533 co-channel congraints (number of pairs of nodes with separation less than
the required separation for co-channel assgnment) to be satisfied, the blocking
agorithm reduced the number of violations from an average of 6.6 to 0.9 after
blocking with 0.12% increase in average tota interference compared to without
using channel blocking. We aso test the proposed reduced complexity DA
dgorithm for MI-FAP on aredistic GSM frequency planning scenario obtained from
the COST 259 project [37], and show that its performance is highly competitive with
the presently best assgnment techniques.

In Chapter 4 we introduce a novel constrained vector quantizer (V Q), which we
cal SegVQ. Thevast mgority of practical image coding systems used today are
based on the transform coding paradigm, where image blocks are projected into a
series of bass functions, and the expangon coefficients are subsequently quantized.
As an extension of the transform coding framework, in our gpproach codevectors are

condrained to be located on a series of line segmentsin the multidimensiond space.
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These segments are designed sequentialy based on atraining set. The advantages of
Seg-VQ aretwofold: firgt, the encoding complexity is proportiona to the number of
segments rather than to the number of codevectors, and second, it can efficiently
exploit the directional preferences (corrdations) in sources such asimages. For
image sources, a low dimensions (e.g., 4 by 4 blocks), with the same encoding
complexity of TSVQ, Seg-VQ outperforms TSVQ by 0.5 dB at 0.4375 bpp
achieving a performance close to the optimal fixed rate uncongtrained VQ. At higher
dimensions (e.g., 8 by 8 blocks) we use multi-stage Seg-VQ where the input block
(asintransform coding) is projected into a series of segmentsin order to be
quantized. We propose two different sysems usng multiple stages: In the first one
the codevectors are desgned with LIoyd-Max quantization and are constrained to be
on the segments. And in the second one there are no fixed codevectors on the
segments, the segments are uniformly quantized depending on the required rate
making it more robust for rate adaptation. The latter systemis optimd for high rate

quantization.
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Chapter 2

Reduced Complexity Deter ministic Annealing for

Vector Quantizer Design

2.1 Introduction

Vector quantization is a source coding technique that approximates blocks (or
vectors) of input data by one of afinite number of pre-stored vectors in a codebook.
The chalengeisto find the set of vectors (or quantization levels) such that agiven
criterion for the totd distortion between the actua source and the quantized source is
as small as possible under acondraint on the overdl rate [49]. Since distortion
depends on the codebook design, vector quantizer design is akey optimization
problem to determine the performance of aVQ-based system [66, 109, 24, 67].

Thetraditiondly used VQ design approach is the generdized Lloyd dgorithm
(GLA) dso referred to asthe LBG agorithm [80]. The GLA is an extenson of
Lloyd' sdgorithm to VQ design, where the origind Lloyd agorithm was proposed

for scalar quantizer design [81]. There are two necessary conditions for a quantizer
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to be localy optimd: the quantizer partition must be optima for agiven st of
codevectors, and the set of codevectors must be optimal for the partition. For the
mean squared error digtortion criterion the first condition implies nearest neighbor
(NN) quantization rule and the second condition implies that the codevectors are
located at the centroid of their corresponding partition. For a given source the
agorithm gtarts with an initid codebook (a set of codevectors), optimizes the
partition by assigning the source vectors to the nearest codevector (this minimizes
the digtortion for the fixed codebook), then optimizes the codevectors for the
partition by replacing each codevector by the centroid of its corresponding partition
region. The dternation is repeated until convergence to aloca minimum. Hence,

the GLA isan iterative descent agorithm, where in each iteration an improvement in

performance is achieved compared to the previous one. The GLA has the advantage

that it convergesto afina codebook relatively quickly, however, the resulting
codebook islocally optimal snce the dgorithm getstrapped in aloca minimum of
the distortion (energy) surface to which theinitia codebook is closest.
Consequently, the performance of GLA can be poor compared to that of aglobally
optima quantizer.

Asdiscussed in Chapter 1 (Section 1.2.2), a powerful approach to reduce the
sengtivity of the dgorithm to the initia codebook is the introduction of randomness.
Severa randomized optimization techniques have been investigated in the past. In
[100] such “random search” techniques are discussed, where the ideais to randomly

perturb the system at each iteration and determine the resulting changein
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performance. In some of its variations a perturbation is only accepted if the

performance increases, otherwiseiit is rgjected; and in other variations perturbations

that decrease performance are also accepted under certain conditions. In generd, if a

random search technique alows temporary decreases in an objective function with
nonzero probability, then the dgorithmisin the dlass of stochastic relaxation (SR)
[47, 117], or stochastic local search techniques.

An important SR technique is the smulated anneding (SA) [117]. As described
in Chapter 1 theidea behind the SA method hasits origin in the physica process of
gradudly cooling a molten metd to obtain sable crystd structures. For VQ design
the garting sateis an initid codebook. 1n each iteration a new codebook is
generated in the neighborhood of the old one, and the new codebook is accepted or
rejected according to the Metropolis dgorithm [89]. Recadl that if sufficient
computationa resources are devoted, the SA agorithm is guaranteed to yield
globdly optima solutions[75]. However, recal dso that to achieve the globd
minimum the temperature schedule should be T p 1/logt with t being theiteration
number [47]. Such schedules are not redigtic in practica applications.

In order to avoid the computationa difficulties associated with SA, areduced
complexity quantizer design based on SR isproposed in [117]. Thisisasmplified
verson of the SA agorithm achieving Smilar or dightly better results in much less
time under smilar temperature reduction schedules. Basicdly, the reduced
complexity SR dgorithm is the generdized Lloyd agorithm gppended with a

stochastic perturbation step, where the perturbations can either be on the encoder
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(SR-C) or the decoder (SR-D). Recently, another method that uses asmilar
randomized search technique is suggested in [94].  Although this technique has an
average performance comparable to SR-D, it has a higher complexity. Wewill give
adescription of the SR-D technique in the following sections.

In the above approaches random search moves were alowed on the energy
surface in order to give the system the &bility to avoid loca minima. Unlike these
SR techniques, a determinigtic annedling (DA) gpproach for optimal vector quantizer
design puts the problem in a probabilistic framework, and deterministically
optimizes the probabilistic objective function in each iteration [106]. Asexplained
in Chepter 1, in DA there are no random moves on the energy (cost) surface. At high
temperatures the energy surface is smoothed, so that the agorithm starts at the globa
minimum on the smoothed energy surface. And through a careful annedling
scheduleit traces the globa minimum as the energy surface assumes its non-convex
“rugged” form with the decreasing temperature. The Gibbs ditribution is used to
associate sample vectors with codevectors since it maximizes the entropy under the
condraint of agiven average distortion. Note that the sample vector - codevector
associations are not one-to-one, but rather they are one-to-many. In other words,
each sample vector is assgned to all codevectorsin probability: the closer a
codevector to a sample vector, the higher its probabilistic assgnment to that sample
vector. The DA method can congtruct high performance vector quantizers by
avoiding locd minima. However, caculation of the association probabilities for

each sample vector with all the codevectorsin each iteration, coupled with the high
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computational cost of evauating the Gibbs distribution, and the downess of the
annedling process, result in alarge computational complexity thet limits DA’ s utility
for some practice gpplications.

In this chapter we propose a reduced complexity deterministic anneding
goproach for VQ design by using soft information processing with smplified
assgnment messures. We refer to this formulation as the soft vector quantizer
(SVQ) design. The reduced complexity DA techniques are devel oped through the
desgn of smple soft-measures that can mimic the effect of the Gibbs didtribution
used in the gandard DA. Hence, while the designed soft-measures are smple
enough to facilitate fast computation, they aso keep the sacrifice in performanceto a
minimum by mimicking the Gibbs digtribution’s functiondity. We have aso derived
the theoretical performance loss due to using a smplified measure ingtead of the
optima one, and further used the result to derive optima anneding schedules for the
proposed smple soft-measures. 1n contrast to the standard DA which starts with
essentialy a single codevector and increases the size of the codebook through
iterations, in SV Q the design starts with the required number of codevectors and
optimizestheir locations through iterations. 1t is aso observed and empiricaly
shown that, when all codevectors are considered the importance of a codevector at a
large distance from a given sample vector relative to the other codevectors (in terms
of the amount of probability mass associated) decreases exponentiadly fast even at
relatively high temperatures. Hence, mgor computationa gains can be obtained

with negligible performance degradation by considering for each sample only afew



codevectors, namely those nearest to the given sample vector. We present
experimenta evidence indicating that through these techniques significant
performance gains are achieved by the SVQ agorithms over the traditionaly used
GLA and over SR-D, where the latter iswiddy thought to provide near-optima
performance. We dso investigate the effect of PNN [39] codebook initidization on
GLA, SR-D and SVQ dgorithms and show that, while GLA and SR-D benefit
sgnificantly from thisinitidization, & the expense of increased computational
complexity, the SVQ agorithms are able to attain the same performance without the
need of initidization. Hence, the SVQ dgorithms are not sendtive to the choice of
theinitial codebook and outperform codebook initidized GLA and SR-D dgorithms.
Compared to the standard DA, the results show drastic reductions in computational
complexity with very smdl sacrifice in performance. It is aso shown that appending
the SR technique [117] to the SVQ adgorithms result in further improvement in
performance with decreasing benefits as the performance gpproaches the optimd,
i.e., the better the performance of SVQ the smaler the benefit obtained from SR.
The rest of the chapter is organized asfollows: in section 2.2 we summarize
vector quantizer design by stochastic relaxation and determinigtic anneding
techniques. In section 2.3 we explain and formulate the proposed reduced
complexity deterministic annedling agorithms. We present experimentd resultsin

section 2.4. Findly, section 2.5 concludes the chapter.
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2.2 Two Frameworksfor Vector Quantizer Design

2.2.1 Vector Quantizer Design by Stochastic Relaxation

Zeger et d. [117] state that the major disadvantages of using SA approach for
VQ design are the complexity of computing distortion and the downess in reaching
the thermd equilibrium. Thus, they propose a smplified version of the complicated
SA dgorithm. Therulesto follow at each iteration in their reduced complexity SR
dgorithm are asfollows.

1) Every proposed perturbation is accepted.

2) Simultaneoudly either perturb al encoder parameters or al decoder

parameters (but not both).

3) Perform a repartitioning and centroid computation.
Thefirst rule diminates the need to caculate distortion in each iteration, which
resultsin great complexity reduction. The second rule speeds up the agorithm by
making many changes at once, and the third necessitates a generdized Lloyd
iteration at the end of every perturbation (iteration). Therefore, the advantages
provided by these 3 rules over the SA gpproach are dragtically reduced complexity
and increased convergence. Moreover, the authors state that this agorithm achieves
comparable (usualy dightly better) results than the SA. Two versons of the
agorithm, the encoder perturbation (caled SR-C) and the decoder perturbation
(caled SR-D), are described in [56], where the experimenta results demonstrate that

SR-D performs better than SR-C. Below, we give abrief description of SR-D.



The SR-D dgorithm is redlized by perturbing every codevector ¢ inthe
codebook C at each iteration masfollows,

¢ =¢M+z (T7) glc (21)

where z isauniformly distributed, zero-mean noise process, and T™ isthe

temperature schedule that controls the noise added at the m" iteration. Although
other types of schedules were investigated in [56] the following was found to give

the best performance:

..P

T =52 gi Tm 2.2)

Q- O

In(2.2) s 2 isthe variance of the sample vector components, | definesthe total
number of iterations, and p =3 was found to give the best performance. The tota
number of iterations, | , determines the run-time and the performance of the SR-D
dgorithm. The higher thevdueof | , the more graduad the annedling process and

the closer the result to the globa optimum will be, a the expense of longer run-time.
A good trade off vaue was found to be | =200. Experimentd results for image
coder design, speech coder design, and Gauss-Markov sources at different rates are

reported by the authors, and significant improvements over GLA are obtained.

2.2.2 Vector Quantizer Design by Deter ministic Annealing

In the deterministic annedling agorithm proposed by Rose et d. [106] the main

principle is the agpplication of a probahilistic hierarchica clustering process, where

37



each sample vector in the training set is associated to a cluster with a certain degree
of membership. Each cluster is represented by a codevector. Thus, the distortion

(energy) function to be minimized is an expected distortion function,

E{ D} =é;1 éj‘ P(xI R)d(x.c), (2.3)
where d (x,c,-) isthe distortion measure incurred in representing sample vector x by
codevector c; , and P(xT Rj) isthe probability that x belongs to the cluster
represented by ¢, . Asadistortion measure the squared distance distortion is used,
d(x.¢;) =[x- ;[ . The probaility distribution used to define the associations s the

Gibbs digtribution, which is the distribution that maximizes the entropy under the

congraint (2.3) [106]:

P(XI R )= (2.4)

where |A| isthe cardindity of the cluster set. Noticethat the distribution in (2.4) isa

form of soft information. In other words, it gives ardiability vaue to assigning the

sample vector x to cluster R, over the sample space of the cluster set. The
parameter b isaterm that isinversdy proportiona to the temperature in the
annedling process. Hence, a infinite temperature, which correspondsto b =0, the
probability associations are uniform: P(xT R ):]/}& |." % j. Thismeansthat, each
sample vector x isequaly assgned to dl theclusers. As b getslarge, i.e, the

temperature is lowered, the probability assgnments for a sample vector x start to
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favor clusters closer to x; the closer acluster representative c; to x, the higher its

probability assgnment. Inthelimit b ® ¥ , each sample vector gets assgned
exactly to one cluster, namely the cluster whose representative codevector is closest
to the sample vector. We refer to this as a hard assgnment, as opposed to a soft
gnment where a sample vector gets assigned to more than one representetive.
The codevector locations are defined as the welghted average of the sample
vectors, where the weights are the probability associations of the sample vectorsto

the specific codevector being considered:

(2.5)

a xP(xT Rj)
C; :m.

Thus, atb =0 (at infinite temperature) al cluster representatives are at the center

of mass of the training s,

$|H
xg.)o
X

ax, "j (2.6)

1
K

|~
=< Qo

1

>

where K isthe number of sample vectorsin thetraining set. Essentidly, & b =0
thereisonly one cluster (or Voronoi region), which isthe whole set, and asingle
representative codevector at its center of mass. The hierarchical design agorithmin
[106] dtarts the annedling process with the whole training set asone cluster at b =0,
gradudly increases b , and re-optimizesby solving (2.5) ateach b . As b is

increased the probability associations start to get harder, and the system goes through
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asequence of gplitting of the clusters a phase transitions until the required number

of clusters (or codevectors) isreached. The main focusin [106] is the derivation of
the critical valuesof b , denoted b_, a which these phase transtions occur. These
are the optimum splitting temperatures of the clusters and the authors show that in
order to be able to atain the globd minimum, the splitting of the clusters should be

at these critical moments. Notethat b does not control the size of the codebook; the
system goes through a sequence of phase trangtions until the required number of
representatives is reached. During the annealing process whenever b reaches b, for
an exising cluger, that cluster litsinto smdler dugers Inthelimit b ® ¥ , the
associations become hard and each sample vector is associated with one
representative as in the GLA agorithm.

Thework by Rose et d. [106] provides the theoretica framework explaining how
the DA approach avoids loca minima, and that through a careful annedling process it
can achieve the globd minimum. However, for practica gpplications the dgorithm
proposed has some drawbacks: besides the added computationa complexity that is
required for keeping track of the critical temperatures, b for each cludter, the
annedling of the temperature has to be very dow especidly in the vicinity of b_; and
the association probabilities for each sample vector have to be caculated for all
codevectors. Such complexity is not redigtic in many gpplications. 1n the next
section, we present and analyze reduced complexity techniques for VQ design that

result in very sgnificant computationd gains with negligible performance
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difference. In the sequel we will refer to the method explained in this section asthe

standard DA.

2.3 Reduced Complexity Deter ministic Annealing

2.3.1 Introduction

In the proposed algorithms, caled soft vector quantizer (SVQ) agorithms[32],
we formulate the vector quantizer design problem in a probabilistic framework asin
the standard DA. However, unlike standard DA each training vector is alowed to be
associated in probability in some cases with a subset of the codevectors. These
probability associations provide areiability measure on the set of codevectors that
the training vector can be mapped to. The soft associations are functions of the
relative distances of the codevectors from the training vector and aso on the
anneding temperatureif it is present in the soft assgnment measure.

The cost of the computation of the Gibbs soft assgnment in (2.4), which involves
exponentids, is high; if we count each of the basic operations (addition, subtraction,
multiplication and divison) to take one floating point operation, flop, then an
exponentia computation takes 8 flops. And since soft assgnments for all
codevectors have to be updated for dl sample vectorsin every iteration in the
gandard DA, thisresultsin a system of very high computationa complexity. Recdl

that in (2.4) theterm b determinesthe leve of softness of the assgnments, so it acts

as a softness control factor (as b increases assgnments get harder). In order to
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reduce the computationa complexity of the system, we would like to define and use
asmpler digtribution, preferably one that does not involve exponentia terms and

convergesfaster. Let usdefine agenerd smple didribution as:

__mlx ) -

where m(x,,c,) isasimple function of its variables which is non-increasing as the
distance between x, and ¢, increases. It can beinterpreted as the goodness of match

of codevector ¢ to sample vector x . Thedenominator isthe sum of the goodness
of matches with respect to codevectors that we take to be therelevant N codevectors
to x, (when N =|C | dl of the codevectors are regarded as relevant). Therefore, the
softness control of (2.7) isafunction of N . Using asmple function, m(x,,c )
coupled with N < |C | can result in major computational gains & the expense of some
reduction in performance.

For agiven set of soft assignments, p, (c:|x ), " i, " k , the codevector locations

can be computed as the welghted average of the sample vectorsasin (2.5),

& % (%) po(c %)
(

*:0 = k
C %&MMQ %pMm@M)
é kaO(CI|)§<)

2.9)

where sample vector probabilities are assumed to be uniform, p(x, ) = %, and where

K istheszeof thetraining set. The generd iterative framework for updating the
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Given {Q(m)}
Update { p(q(m) |xk)}

Iteration: m =0 *
Initial Codebook: m=m+1
S ={f0, ) !
Given {p(q(’“'l) |xk)}
Update { ,(m)}

Figure 2.1: The iterative procedure showing the updating
of the soft assignments and the codevectors.

soft assgnments and codevector locationsis shown in Figure 2.1. Note that this
framework is independent of the type of soft assgnment used; any type of soft
assgnment measure that can give soft assgnment vaues for the set of codevectors
for agiven sample vector can be used in this framework.

Idedly, in any annealing agorithm the annedling temperature should dart a a
very high temperature (theoreticdly at infinite temperature) and gradudly cool down
to zero. However, as we have seen in the sandard DA thisresultsin avery dow
convergence. In the proposed SV Qs the temperature is not chosen to be infinite at
the start, and we demondtrate that starting with alow temperature and with fixed
(required) number of codevectors, it is possible to achieve near optima performance.
Starting with alow temperature means sarting the agorithm with a non-convex
energy surface. We show that introduction of controlled randomnessinto the

iterations has the potentia to improve the results due to the nonconvexity of the
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energy surface. The stochastic relaxation technique described in section 2.2.1 isan
excellent candidate for this purpose because of its easy integration into an iterative

agorithm and its low complexity.

2.3.2 Reduced Complexity Gibbs Distribution for VQ Design

In order to facilitate a practicaly usable dgorithm and circumvent the downess
of the standard DA, we gart the annealing process at temperatures low enough to
reduce convergence time, bu at the same time high enough for the principles of soft
association to take effect. We know that as aresult of soft association every sample
vector x, hasacertain degree of belonging to all of the codevectors in the codebook.
However, while it is computationaly complex to teke al the soft associationsinto
account no matter how smdl they are, the effect of very small soft associaions on
(2.8) and on the converged codebook is negligible. Therefore, in practice, those
association probabilities that are very close to zero can be set to zero. At thispoint, a
logical gpproach would have been to define a threshold and set dl the associations
below this threshold to zero. But thiswould only save us computationa cost in (2.8)
, wewould il need to calculate dl the soft associations and compare them with the
threshold. In order to further reduce the cost, we decided to select the N nearest
codevectors from a given sample vector, compute the soft associations only for the

closest N codevectors and set the other |C| N associationsto zero. Note that we

are not reducing the size of the codebook, that is fixed; what we do is, for each
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Figure 2.2: Probability mass contained in the nearest N codevectors from a randomly
selected sample vector, at different temperature values. Codebook size = 128, vector
dimension = 16, zero-mean, unit variance Gaussian source.

sample vector we only compute the soft information for the nearest N codevectors
instead of the whole codebook. In thisway, only the distances from a given sample
vector to the codevectors need to be computed and the N nearest codevectors are
determined. Denoting N(x,N) to bethe nearest N codevectorsfrom agiven x,
the soft information is computed by,

e P d(xq)

p(q|xk)= é e—bd(&,q) ' (2.9)

;T N(%.N)

where d (x.,¢) =[x, - ¢ |- We can assessfrom Figure 2.2 that teking dl of the
codevectors into consideration does not justify the required computationa

complexity. Thefigure showsthe total probability mass contained in the nearest N
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codevectors from arandomly chosen sample vector for increasing b (i.e,
decreasing temperature) during the design of asize |C| =128 codebook using the
gandard DA agorithm. Each point on the graph is found by summing the

probability mass within the nearest N codevectors from each x, , and averaging over

dl x,

K-1
a a o»(slx). (2.10)
K=

0 T N(x%.N)

PM(N)=%

where K againisthe Sze of thetraining set. We can observe from the figure that
evenatlow b (hightemperature) 0< b <1.0, aconsiderable amount of the
probability massis confined within a small number of codevectors compared to the
gzeof the codebook. For example, in Figure2.2, a b @0.25 the nearest 3
codevectors account for more than 40% of the probability mass on average, and the
rest 125 codevectors account for less than 60%. Experimentaly we have found

N =4 to be agood trade-off vaue between performance and complexity. In other
words, results obtained by setting N =4 andwith N =|C | (i.e, usng dl the
codevectors in the codebook) resulted in negligible performance difference,
however, the computationd savings are significant, especidly for large codebooks
(eg. |C|=128, 256, etc.). A comparisonof N =4 and N =|C|=128 usingthesame
anneding scheduleisgiven in Table 2.1. Thelossin performance incurred by
consdering only the nearest 4 codevectors for each sample vector instead of the

whole codebook is clearly negligible. 1n exchange for this negligible loss, afactor of
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N Ave. S\NR Ave. CPU Time
4 3.595dB 136 sec.
128 3.598 dB 16483 sec.

Table2.1: Average performance and running time comparison for N = |C| =
128 and N = 4. The source is uncorrdated Gaussian, the vector dimensions are
16, and soft information measure is reduced complexity Gibbs digtribution. The

results are averages over 20 experiments (details on experimentd set-up arein
Experimental Results section).

about 120 speed-up in running time is achieved which is a highly significant
complexity reduction.
The proposed dgorithm is shown in Figure 2.3, where the iterations starts with

N =4, b =0.3 and aninitid codebook C,. Note thet in the agorithm flowchart

t = ¥, isshown and the reduction factor r =0.995 isused, t ™ =t(™ xr . Notethat
r =0.995 for t correspondsto an increment factor of k =1.005 for b,

b(™ =p (™5 . Ateachiteration, we gradualy increase b (i.e., decrease
temperature), update the soft information according to (2.9) and re-optimize the
codevector locationsusing (2.8). We can then apply the codevector perturbation as
explained in section 2.2.1 (also see[117]). Asthe temperature decreases the softness
of the codevector associations aso decreases; in other words, the closer codevectors
to sample vector considered become increasingly important, while those thet are

away become less and lessimportant. In the limit, when temperature gpproaches

zero the dgorithm becomes like the GLA and at each iteration dl the probability

meass for a given sample vector is assigned to the nearest codevector, or put

differently, we reach the nearest neighbor condition.
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Figure 2.3: The flowchart for the reduced complexity Gibbs distribution algorithm.

In the above schemewe kept N fixed. When we need to design quantizersfor
very large codebook sizes (e.g., |C| =512, 1024, ...) we may find it useful to usea
larger N (eg., 10, 12, 15, ...). However, we know that whilethe N™ furthest away

codevector from a given sample vector plays an important role (has large probability

mass) in the early iterations, itsimportance decreasesin each iteration. Asthe

temperature decreases (b increases) the probability massis gradudly transferred

from the distant to the closer codevectors. Hence, after awhilethe N™ codevector

will contain negligible mass and it can be discarded without any significant effect on

the find performance. Gradually, the above will be the case for the (N - 1)”,

(N- 2)‘“, ... codevectors. In order to reduce the complexity with respect to the fixed

N scheme, without affecting system performance, we can append the smple
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agorithm shown in Figure 2.4 to the agorithm in Figure 2.3 (in the dashed block).
As shown in Figure 2.4, whenever the average probability mass of the nearest N - 1
codevectors, PM (N - 1) (2.10) exceed acertain mass p (typicaly p =0.99), N is

reduced by one:

it PM(N-1)==84 & op(g/x)>p. then N=N-1. (211)
k

61 N(x,N-1)

1
K
When N islarge the cumulative effect of gradudly decreasing the number of nearest

neighbors to be taken into account resultsin

consderable complexity reduction which was

not possbleinthefixed N scheme. However,

it isimportant to note that in the case of amdl

N (e.g., N =4)wemay not have any

computationa gain or we may even increase the
Compute
computational cost by using the gradual PmN-1)
¢

reduction scheme. Thisisareault of the fact Figure 2.4: The scheme for

gradual reduction of the
number of nearest codevectors
to be taken into account, N

that the smdl gain (from N being amal)
obtained by gradually decreasng N will be
consumed by the computation of PM (N - 1).
Instead, when N islarge enough, the reduction in computationa cost obtained by

reducing N surpasses the added cost of the computation of PM (N - 1).
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2.3.3 Low Complexity Soft I nformation Measuresfor VQ Design

23.3.1 SingleTriangular Membership Function

As previoudy dtated, in order to reduce the computational complexity of the
system we need to usein (2.7) aless complex distributions than the optima Gibbs
digtribution. One of the smplest distributions that readily comesto mind isthe
“inverse Euclidean distance’ digtribution, in which, for agiven sample vector x, , the
“importance’ of the codevectors decrease with increasing distance from x, .

“Inverse Eudlidean distance’ can be usad as a soft information measure as follows,

d;
= (2.12)
a PR

cd

I J

p(c Ix)=

Thedigancesin (2.12) are the Euclidean norms between x, and the codevectors (n

isthe vector dimension),

d, =d(x.c) =\/(ka0- CI,0)2+(Xk;L - C.,1)2+“'+(Xk,n-1' C|,n—1)2 .
The number of codevectorsto be taken into consideration for each x, can be
determined by acircle centered on x, with aradius R, where all codevectors closer
than R to x conditutethe N nearest codevectors. Theradius R decreasesfrom
oneiteration to the next, R™ = R™?r , where 0<r <1.0.

Ancther soft information measure can be defined using atriangle function as
shown in Figure 2.5 (we use absol ute distances between a sample vector and each of

the codevectors, for clarity of presentation both sdes of the triangleis used in Figure
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X, = sample vector

{c.} = codevectors

!‘ R g

] . J

Figure 2.5: Triangular membership function used as a soft information
measure. Codevectors within the spread of the function comprise the nearest N
codevectors for the considered sample vector.

2.5). Thefunction with height h=1 and aspread R, will use dl the codevectors
within an Eudidean disance R, of x _, i.e, the N nearest codevectors. Using the
fuzzy systems terminology, we can define this triangle function as the member ship
function of x_ and denoteit by m, . The soft associations are computed by using the
heights of the membership function corresponding to the Euclidean distances of the

codevectorsfrom x, ,

p(c 1%) =i (2.13)

N
ah,

j=0

The spread R decreases gradudly in each iteration giving more and more

importance to the nearer codevectors asthe iterationsincrease. At the limit, when
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only one codevector stays within the nearest neighbor s&t, i.e, N =1, the soft
information measure becomes hard and al the probability mass gets assigned to the
nearest codevector. Note that as the spread is decreased, for some sample vectors

N =1 will be reached earlier than the others since the nearest codevector distance

cannot be the same for each sample vector. Asthe spread continues to decrease, at

some point for some sample vectors, R <d(x,,c) "i. Inthesecases, theagorithm

assgns al the probability mass to the nearest codevector. The spread at the m"

iteration is controlled by a geometric schedule asin the Gibbs case:

R™ = R™r (2.14)
where r isthereduction factor, 0< r <1.0. The soft information measurein (2.13)
can be defined in terms of the spreed, R, and the distances, d, =d( x,¢) usng

triangular amilarities, where the height of the triangleis h=1:

h__h
R R -q
h
b h=—(R-d
h RX(FQ )
_R.-d
b = 2.15
h R (2.15)
Therefore, (2.13) becomes,
p(6 %) =g s
a:O(R<- dl)
R.- d - %
= %.'1 = Tim 45 (2.16)
NR - A dJ a g[_ el g
i=0 ~é Rog
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Wecdl 1- % asthe “normdized digtance” The soft information measure in (2.16)

is abetter one than the inverse Euclidean distance measure in (2.12), because this

can mimic the effect of the temperature reduction in the Gibbs distribution much

better. Consider the distances of the 6 codevectors, {c,.c,,¢,.c;,c,,¢;} fromasample
vector x, shownin Figure2.5. Usng (2.12) with aradius R=R, the codevectors
{c,.c..c,c} aretaken asthe set of nearest codevectorsfrom x, . When theradiusis
decreased to R¢= R¢ the set of nearest codevectors become {c,,c,,c,} . But note that
the distances {d,,d,,d,} arenot affected at al by the decreasein the radius. With
(2.12) the only time the soft assgnments will change asthe radiusis decreased is

when a codevector isleft out of the circle of radius R. However, using (2.13) with

the normalized distances, where h =1- g— , the heights (normalized distances) get

affected by the reduction in the spread R, as seen in the equivaent expressionin
(2.16). Asthe spread decreases the normalized distances approach zero assigning
more weight to the closer codevectors. Thisisdesired in order to gpproximate the
effect of the temperature reduction in the Gibbs ditribution; in other words, asthe
spread decreases the codevectors closer to x, should incresse their share of the soft
assgnment in conformity with their disancesfrom x . Hence, the normalized
distance defined soft information measure (2.16) is better than the Euclidean
distance- defined measure (2.12) in terms of mimicking the Gibbs soft measure. This
will be demonstrated by our experimenta results. Note aso that the computationa

cogt of computing one soft assgnment usng (2.12) requires 5N + 4 flops, whereas



udng (2.16) it requires N +7 flops, counting addition, subtraction and multiplication
asone flop and divison asfour flops (N isthe number of codevectors taken into
computation). Hence, for N2 1: N +7<5N +4, implying thet (2.16) isaso less
codly than (2.12). Recdling that an exponential computation takes 8 times more
than a basic operation (8 flops compared to one flop of operation time for abasic

operation), then (2.9) takes N (8+1+1)+ 4 =10N +4 flops, which ismuch larger than

N +7. Therefore, the height-defined triangular soft information measureisa

computationdly less complex didtribution than the Gibbs distribution.

2.3.3.2  Multi-Triangular Membership Function

The superiority of the Gibbs distribution comes from its congtituent exponentia
functions, which take the Gaussian form for the squared-distance ditortion. This
alows the system to gracefully transfer the probability mass to the nearer
codevectors provided that the temperature is lowered very gradudly; hence, the
system efficiently traces the globa minimum until the temperature reaches zero.

This being the case, we direct our attention to better approximate the effect of the
exponentia functionsin our smplified soft information measure. To thisend, we
congder multiple membership functions, thet is, amembership function not only for
X, , but for dl the N nearest codevectors as shown in Figure 2.6. Compared to the
case with a 9ngle membership function, multiple membership functionsincrease the

effective region beyond the spread of m, and transfer the probability mass to the



h=1.00

|‘Co‘zo’|

Figure 2.6: Multi-triangular membership function as a soft information
measure. Codevectors within the cumulative spread of the multi-function
comprise the nearest N codevectors for the considered sample vector.

nearer codevectors more gracefully as the spreads are decreased. The spread of m,
is R , and the spreads of the codevector membership functions m are R . Note that
inthis casethe “heights’ h are defined at the crossing pointsof m with m_; ther
projections are denoted as z on the horizontd axisin thefigure. Using the

symmetry of the functions we can write the following two equations, (2.17) and

(2.18):

h__ b __Rh
R R-[ -z R-[c-z] (2.17)
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h__ h p o RRH (2.18)
R. R-|z-x R.-|z- x|

Todefine h first we need to derive z . By equating (2.17) and (2.18) we get,

R(R-z-x])=R(R-[s - z|)
P Rz-Rx=Rc¢-Rz

_Rx+RG 219
A= R+R (2.19)

Since our reference point for the Euclidean normsis x , wecan set x, =0 and

¢ =d:

__Rd 2.20
z R+R (2.20)

Findly, subdtituting (2.20) into (2.17) or (2.18), with h=1 weget h,

p h=R*R-d _, _d (2.21)
R+R R+R

The s0ft assignments are obtained by subgtituting (2.21) into (2.13),

PG %)= NOT
ah
1. Y
-— FVR - (2.22)
éog RA"' ;

Note that the spreads of the codevector membership functions, R are not equal. We

have observed that the soft information measurein (2.22) better gpproximates the

Gibbs measure if the spreads of the codevector membership functions, R decrease as
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the distance of the codevectors from x, increase, as opposed to having dl R the
same. We have usad the following spread adjustment as a function of distance: Let

the codevectors ¢,,¢,,¢,,--- be ordered in non-decreasing distances from x, ,

d,.d,.d,, . Normalize these distances with the distance of the nearest codevector to

o -

X, .e,with d ; =

O f L E-2fF.. (2.23)

R R R
R) = d_ = R’ R1 = d RZ = a
0 1 2
A‘nm dmm A’mn
p R=Nm (2.24)

Note that in this case the annedling process is controlled by two spreads, namely by
R, and R. We can use geometric reduction schedules as before,

RY=R™r ad R"=R™r (2.25)
where 0<r <1.0.

The dgorithm for the low complexity soft information measures, both for sngle
membership function case and multiple membership function case is shown in Figure
2.7. Theinitid spreads used were R” =g 2 and R” =g 2, where s 2 isthe
variance of the training set components, and g =3.3 was found to give the best

performance. Larger values give smilar results and are more complex. Asthe

Spread(s) decrease(s) the softness of the codevector associations decrease; in the
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Iteration: m=0 (0)
Initial Codebook: C
Set initial spread(s)

v

Update

3

"il N, "k
m=m+1
I:{(Km) :R)((m—l)xr
(R(m) — R(m—l) XT )

Update
C(m)

Without
stochastic
relaxation

With
stochastic
relaxation

Perturb
C(m)

becomes like the GLA agorithm.

Figure 2.7: The flowchart for the low complexity soft information measure agorithm.

limit, when N =1 for dl sample vectorsi.e.,, when dl the probability mass for each

sample vector x, isassigned to the nearest codevector from x, , the agorithm

2.3.4 Optimal Temperature Schedule

In the previous section we have proposed two low complexity soft assignment
measures, namely, the triangular soft information measure and the multi-triangular
soft information measure as amplified ways of computing the soft assgnments.
Although these measures will significantly reduce the computationa cost of the soft
assignments compared to the Gibbs soft measure, thisimprovement in computationd

cogt will come in exchange for some loss in performance since Gibbs is the optimal
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soft measure. However, the loss in performance can be minimized if we can find

temperature reduction schedules for the low complexity measures that can follow the
Gibbs b schedule such that the “distance” between the two digributionsis

minimized. In other words, for a given codevector the probability mass assgned by

the low complexity (nor+optima) measure and the optima Gibbs measureis as
gmdl aspossble. By definition thisis the minimization of the L, distance between
the two digtributions [29],
|| Po(c[X)- po (c|x)||l: éi|po(q X)- ps (ci|x)|. (2.26)
Let the low complexity measure be the triangle soft assignment measure, then we
would like to find the spread reduction schedule R, for agiven Gibbs b schedule
thet minimizes (2.26). But note that minimizing (2.26) is equivaent to minimizing
the relative entropy between p, (c|x) and pq (c|x), D( m (c|x) || Ps (c|x)) , sincewe

know from [29] that,

1
2In2

( (el (o)) * 5] (el)- e (el @27

with equality when p, = pg . Although it ishighly intuitive thet in order to minimize
the performance difference between a smplified soft-measure and the optima soft-
measure the relative entropy between them is minimized, in the Appendix it is shown
that thisisindeed the case. The error analysisin the appendix showsthat a a given

system entropy (softness) the performance loss in terms of distortion between two

digtributions (soft- measures) is a function of the relative entropy between them.
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Hence, minimizing the relative entropy minimizes the distortion pendty paid for
usng asmplified soft-measure.
We will demondrate that the relative entropy is gpproximately minimized when

the variances of the two distributions, p, (c[x) and pq (c|x) areequal. The

variancesof pg (c|x) and p, (c|x), respectively, are (the lower limits of the

integrals start from zero because we use absol ute distances between sample vector

and each of the codevectors):

¥ , %¥ , o
N\ 52 bz \ -bz N
i Zgz e’ dz gzgze dz: 1 =[T8
~ Ty T A ¥ N Y P
Oe " dz ¢ Oe 7 dz - 20 §\p
z=0 g z=0 ﬂ
:LZ (2.28)
2p X
var, :]EO{ zz} - (]EO{ z})2
R o 4
07 (R- 2)dz ¢ 9z(R.- Z)dz+ 2
g e + 2R g‘&E (2.29)
< iy - 6 3g
O(R.- 2)dz g O(R.- 2)dz =
z= z=0 9
2
18
Equating (2.28) and (2.29), and solving for R, we get,
r= 22 (2.30)
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1

Figure 2.8: Aninstance of the Gibbs membership function with
parameter b and an instance of the triangular membership function
with parameter R isshown. There are L codevectors at increasing

distances from sample vector x.

Hence, using (2.30) we can obtain aschedulefor R, given aschedulefor b . We
need to verify that the rlationship in (2.30) minimizes the reive entropy.

We have used the set up in Figure 2.8 to show that for agiven b for the Gibbs
distribution, the spread R, obtained by (2.30) for the triangle distribution minimizes
the reative entropy. Inthefigurethereareaset of L codevectorsat increasing
distances from asample vector x. Foreach b inaset{b,,b,---,b,} , where
0<b, <1 and with amdl increments b, = b, , + Db, the soft Gibbs assgnments of
the codevectors are computed using the Gibbs soft information measure,

o bdlke)
1

p(g[x)=7——

é e—bd(x,cj) .

j=0
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Then, garting with asmall vauefor thesoread R, R, <1, the soft triangular

assignments are computed for the codevectors using the triangular soft information

measure,

p(g IX)=L.S&- R =

R, - d| )
a(R-d)R a(R-d)

Using the Gibbs and the triangular soft assgnments obtained on the set of
codevectors the relative entropy D( m (c|x) || Ps (c|x)) is computed. Without
changing b , the spread R, isincremented by asmdl vdue DR, R, + DR, the soft
triangular assgnments are computed for R, + DR, and the relative entropy between
the Gibbs assgnments and the new triangular assgnments is computed. The process
of incrementing R, , computing the soft triangular assgnments and computing the
relaive entropy is repested until thevalue of R, that minimizesthe reletive entropy

D( py] b ) isfound (therelative entropy D p, | ps ) isaconvex function of

(P, Ps))- Atthispoint, for thefixed b we have the spread R, that minimizesthe
relative entropy. Theb isincremented by asmdl vdueto b +Db and the Gibbs
soft assignments are computed. Again, for theupdated b thevaueof R, that
minimizes D( p, | s ) is found through an exhaustive search, and the processiis

repeated. The resulting minimum relative entropy curve is shown in Figure 2.9 by
the solid line. On the other hand, the dashed curve is obtained using the model

(2.30) toget R, for each b . We can seethat the derived relation in (2.30) can
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— minimum Relative Entropy (RE)
= = Approx. min. RE -- function

Ry (Triangle function)
w
T

0 0.5 1 1.5 2 2.5 3 3.5
b (Gibbs function)

Figure 2.9: Pot showing the minimum relative entropy between the triangular
soft measure and the Gibbs soft measure at various goread R, and b pairs. The
solid curve is obtained by sequentidly searching increasing values of the soread
R, that gives the minimum relative entropy for agiven valueof b . Whilethe
dashed curve is obtained using the derived relationship between R and b to

give the minimum relaive entropy.

highly approximeate the minimum reletive entropy curve, and hencethebest R,

schedulefor agiven b schedule.

The reduced complexity Gibbs agorithm and the low complexity soft measure
dgorithm for the triangular membership function using two different spread
reduction schedules are used to design codebooks of size 128 and 256 (for details on
experiments see the Experimental Results section). The results are shown in Table

2.2. Of the two schedulesfor the triangular soft information measure, the first oneis
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Low Complexity Soft | Low Complexity Soft
Reduced Complexity | Information Measure | Information Measure
Gibbs Soft — Triangular. — Triangular.
Information Measure | Geometric spread Gibbs guided spread
reduction reduction
Cod(_abook Ave. SNR Avg. CPU Ave. SNR Avg. CPU Ave. SNR Avg. CPU
Sze time time time
128 3.595 dB 136 sec. 3.392dB 91 sec. 3411dB 91 sec.
256 5.210dB 329 sec. 4.919dB 232 sec. 4,952 dB 232 sec.

Table 2.2: Comparing the geometric and Gibbs guided spread (temperature)
reduction for the triangular membership function for the design of 128 and
256 sized codebooks for uncorrelated Gaussian source with vector
dimensions 16.

the geometric spread reduction given in (2.14) with r =0.995, and the second oneis
obtained using (2.30) and the Gibbs schedule (referred to as Gibbs guided spread
reduction in the Table). Observe from the resultsin the Table 2.2 that the
performance of the triangular soft information measure using the Gibbs guided

spread reduction schedule outperformed the geometric spread reduction in same
number of iterations (running time). Therefore, for agiven b — schedule the relation

in(2.30) provides a better R, — schedule than a geometric reduction thet is suggested
in most annedling dgorithms. Notethat b — schedule isitsdf geometric,

b™ =p (™5 wherek >1.0 (k =1.005 issuggested in section 2.3.2) asused in
most annedling dgorithms. But since the Gibbs soft information measure isthe
optima measure, following the b — schedule in a smple soft information measure
that approximates the Gibbs measure, increases the smple soft information

messure’ s performance as demonstrated above. Note aso that to obtain the b —



schedule the Gibbs agorithm need not be run, it can be obtained using

bM=p™Is Kk >10.

2.4 Experimental Results

We now present the results obtained when our agorithms were used to design
codebooks of various sizes, with various sources. The results are compared with
other agorithms of interest, namely, GLA, SR-D and standard DA. Wefirst
compared them without codebook initialization on Gauss-Markov sources. Then,
since both GLA and SR-D are senstive to the choice of theinitial codebooks, we
aso compared the effect of initidization on these dgorithms. We used the pairwise
nearest neighbor (PNN) agorithm [39] to initialize the codebooks. In order to givea
more comprehensive andyss using the PNN initidization we also compared these
agorithms on human speech sampled at 8 kHz and on image sources from the USC
image database. Our quoted execution times (CPU times) are based on those

obtained with an Intel PI11 - 550 MHz machine.

2.4.1 Without Codebook Initialization

Thetraining sources we considered were two cases of first order Gauss-Markov
sources, one with correlation coefficient a, =0.0 (uncorrelated source) and the other

with a, =0.9 (correlated source). We blocked 16384 samples and 24576 samples,

65



into 1024 16-dimensiond training vectors and 1024 24-dimensond training vectors,
respectively; and designed codebooks of sizes 32, 64, 128 and 256 for both training
Sets.

We designed codebooks for the following dgorithms where in the plots the
appended “a means without stochastic perturbation (e.g., in (1.) below, SVQ-Ga
would mean without perturbation):

1. SVQ-G: Soft vector quantizer design using the reduced complexity Gibbs

distribution as the soft messure.

2. SVQ-E: Soft vector quantizer design using the inverse Eudlidean distance

distribution as the soft messure.

3. SVQ-T: Soft vector quantizer design using the height- defined distribution

with single triangular membership function as the soft measure.

4. SVQ-N: Soft vector quantizer design usng the height-defined distribution

with multiple triangular membership functions as the soft measure,

5. VQ-DA: Vector quantizer design using the sandard deterministic annedling

[106].
6. SR-D: Vector quantizer design using the reduced complexity decoder
perturbation agorithm [117].

7. GLA: Vector quantizer design using the generdized Lloyd dgorithm [80].
Algorithms 1 — 4 incorporate stochastic perturbation. When no perturbation is
present the algorithm is abbreviation with an extenson “d’, eg., in dgorithm (1.)

SV Q-Gawould mean without perturbation. For each case, except VQ-DA, the



average performances are computed for 20 different initia codebooks, where for
each codebook design the same set of initial codebooks are used, alowing usto
compare the average performances of the different agorithms. Recdl that VQ-DA
uses the center of mass of the training set asthe initid codebook, so its performance
with thisinitia condition is recorded. The performance measure used is signd-to-
noiseraio (SNR), defined as. SNR=1040g,,(P,/D), where P,isthe signd power
and Disthe digtortion per sample. The SR-D agorithm was run for 200 iterations as
in[117], and the GLA was run until convergence.

The basedline performance for each source and rate (rate = log, |C|/ dim,in bits/sample)
were computed by averaging the GLA results obtained from the 20 different initid
conditions. The performances of the first 6 algorithms (listed above, both with and
without perturbation) compared with the GLA performances are shown in Figures
2.10—-2.13. Inadl cases, the reduced complexity DA agorithms (SVQ) achieved
sgnificant improvements over the traditionaly used GLA and over SR-D, which is
sad to give near optimal results [117]. From the figures we observe that, the SVQ-G
agorithm (reduced complexity Gibbs distribution) performed better than the other
SVQ dgorithms; however, the performance of SVQ-N isvery competitive. Notethe
progression of performances of the low complexity soft information measures: the
performance improves from the inverse Euclidean distance soft-measure (SVQ-E
and SV Q- Ea) to the single-triangle function soft measure (SVQ-T and SVQ-Ta), and
from the latter to the multi-triangle function soft measure (SVQ-N and SVQ-Na).

For clarity of observation, these results are shown separately in Figure 2.14 for the
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Figure 2.10: Improvements over GLA. Gaussian source. Vector dimension = 16
samples/vector.
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Figure 2.11: Improvements over GLA. Gauss-Markov source (a0=0.9). Vector
dimenson = 16 samplesivector.



Gauss-Markov source. Thiswas an expected result since these agorithms were
progressively designed to better approximate the optima Gibbs digtribution, hence
the performance progressively approaches to the Gibbs performance. Note adso the
gain achieved by the stochagtic relaxation (SR) in the SVQ agorithms (abbreviated
with an extenson “a’, SVQ-Xa) compared to non-stochastic cases (without extension
“d', SVQ-X). The gainrangesfrom ahigh 0.2dB for SVQ-E (Figure 2.11) to alow
0.02 dB for SVQ-G dgorithms. It should be noted that the better an dgorithm

performs without the SR, the lesser the additiond gain achieved by the SR inthe

—e—SVQ-G
0.8 —&— SVQ-Ga
o 077 SVQ-Ea
= 06
*qc-; —*%— SVQ-E
£ 051 —%— SVQ-Ta
3 0.4 1 ——SVQ-T
£ 9% ; —5— SVQ-Na
NN — —o—SVQ-N
»n 011 SR-D
0 : : : VO-DA
0.208 0.25 0.292 0.333
Rate (bits/sample)

Figure 2.12: Improvements over GLA. Gaussian source. Vector dimension = 24
samples/vector.
SVQ dgorithms. In other words, as an dgorithm comes closer to the global
optimum using the principles of soft information processing, it requires lesser and

lesser help from the SR to attain an improved performance. In the limit, granting
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Figure 2.13: Improvements over GLA. Gauss-Markov source (a0=0.9). Vector
dimensor = 24 samples/vector.
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Figure 2.14: Improvements over GLA for low complexity information measures.
Sourceis Gauss-Markov (a0=0.9). Vector dimension = 16 samples/vector.



enough computationa resources for the full power of the soft information processing
to be utilized, the globd optimum can be reached without requiring any help from
SR. But asthe results demongtrate, for the reduced complexity DA approaches SR
results in a performance improvement with negligible computationa complexity.
Theresultsfor VQ-DA (dandard DA) were obtained starting with al the sample
vectors being equally associated with al the codevectors, which dictates an initia
codebook where dl the codevectors are at the center of mass of the training set. The
smulations were conducted with a conservative anneding schedule which took over
120000 CPU seconds (about 24 hours) for the codebook of size |C |= 256 to
converge. Recal that in VQ-DA the sarting temperature is very high for theinitia
probability associations to be uniform, and the probability associations are computed
to dl codevectors for each sample vector, thus the agorithm executes very dowly
especidly for large codebooks. The figures show that, the performance of VQ-DA
compared to reduced complexity DA agorithmsisinferior in dmogt dl cases
considered (except for rate 0.333 in Figure 2.13). Moreover, the SVQ agorithmsrun

much faster than VQ-DA, requiring 450 CPU seconds for |C |= 256 and 24

dimensond vectors. We are aware that, if enough computationa resources are
dlocated, VQ-DA is expected to perform superbly as shown in [106]. However, the
performance of the reduced complexity DA agorithms proved that for most practica
gpplications the expected performance of VQ-DA do not judtify its computationa

burden.
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2.4.2 With Codebook Initialization

In addition to the Gauss-Markov sources used in the previous section we aso
congdered sampled human speech and image sources to compare the GLA, SR-D
and SV Q performances with PNN initialized codebooks. A segment of human
speech was sampled a 8 kHz and partitioned into 2048 16-dimensond vectors, and
we have designed five codebooks of sizes 16, 32, 64, 128 and 256. Theimage
source was obtained by extracting 8192 16-dimensiond vectors (corresponding to
4" 4 blocks) from 512" 512 monochrome training images from the USC image
database with each pixel amplitude quantized to 8 bits. Four codebooks of szes 32,
64, 128 and 256 were designed using thistraining set, and the performances of these
codebooks were tested on “Lend’ which was outsde of the training st.

In Figure 2.15 we show the performances of the 4 codebooks on (uncorrel ated)
Gaussian source asimprovement over the PNN initidlized GLA. For clarity of
presentation we have only included the SV Q- Ga performance from our proposed
agorithms; the other SVQ dgorithms behave comparatively the same with SVQ-Ga
asin Figure 2.10. Note from the figure that the PNN initidization improves the
GLA and SR-D dgorithms, however the SVQ-Gadgorithm is not affected. Thisisa
positive result for the SVQ dgorithmsfor it shows that they can evade the local
minimum dictated by the initial codebook, and hence are insengitive to the choice of
theinitiad codebook. The PNN and its fast but sub-optima version, fast-PNN require

O(K?) and O(K logK) time, respectively, where K isthesize of thetraining set

[39]. The results presented in Figure 2.15 are obtained using the full seerch PNN

72



algorithm (with complexity O(K?)) in order to get the best possible results with the

GLA and the SR-D dgorithms. The fast-PNN initidization would result in reduced
performance; it is shown in [114] that the fagt-PNN agorithm decreases the coding

performance by 0.4 — 0.6dB for image sources compared to full search PNN. The
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Figure 2.15: Shows the effect of PNIN initidization asimprovement over GLA.
Sourceis Gaussian, vector dimension = 16 samples/vector.

SVQ agorithms outperformed both GLA and SR-D dgorithms without the
complexity of the initidization process, which gets computationaly more

impractical asthe Sze of the training set increases. The running time for the

generation of the PNN codebooks from atraining set of 4096 16-dimendond vectors
was 2374 CPU seconds, and the design of the size 256 codebooks for GLA, SR-D
and SV Q-Ga dgorithms on average were 44 CPU seconds, 366 CPU seconds and

1552 CPU seconds on the same machine, respectively. Therefore, with the PNN
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Figure 2.16: Improvements over GLA for speech source sampled at 8kH, vector
dimensions = 16 samples/vector.
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initidization the tota running times for the GLA and the SR-D agorithms are higher
than those for the SVQ-Gadgorithm. And since SV Q-Ga performs the same with
and without the initidization, the SV Q-Ga dgorithm outperforms GLA and SR-D
with alower running time.

The performance on the speech source using the three agorithms, GLA, SR-D
and SV Q-Ga, with and without the codebook initiglizetion is shown in Figures 2.16
and 2.17. In Figure 2.16 the performance improvement over GLA and in Figure 2.17
improvement over PN initiglized GLA are shown. Note that while the performance
improvement of SVQ-Gaover GLA islarge (0.95 dB at 0.5 bits/'sample), compared
with the PNIN initidized GLA the improvement is rather modest. It is stated in [49]
that for speech sources the higher the sampling rate, the less variable are the vector
shapes for the same dimension and so the smpler the needed codebooks. The
comparison made in [49] consders 8kHz (the sampling rate we used) as ahigh
sampling rate. Hence, this meanstha, a high sampling rates, the expected
performance increase over agood codebook with a better codebook is small for
speech sources, explaining the small performance difference between PNN+GLA
and SVQ-Ga. However, note dso that the effect of theinitidization is very smdl on
the SV Q-Ga performance, whereas improvements of 0.85 dB and 0.2 dB are
obtained a 0.5 bitssample for GLA and SR-D, respectivdy, after initidization.

Therefore, asin the Gaussian source, the SV Q-Garenderstheinitidization

unnecessay.
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Findly, the results for the image source are shown in Figure 2.18 for the coding
of the image source “Lena” Asin the previous two source cases the SVQ-Ga

performance is practicaly not sengitive to the initia codebook initidization. And it
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Figure 2.18: Improvement over GLA on image source “Lena” Vector dimensons
= 16 pixelsivector (corresponding to 4x4 blocks).

outperformed the GLA and the SR-D dgorithmsby 0.3—-0.4 dB and 0.2 - 0.3 dB,
respectively, with both being initidized with PNN. Therefore, asin the Gaussan
and the speech sources the SV Q-Ga outperformed the PNN+GLA and PNN+SR-D

without the need of initidization.

2.5 Conclusion

In this Chapter we have designed reduced/low complexity methods for

deterministic annedling (DA) for the vector quantizer design problem, which we
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named soft vector quantizer (SV Q) design dgorithms. The proposed low complexity

soft measures are used as the soft association probabilities in the probabilistic
framework of the DA to reduce the computational cost, as compared to the optimal
Gibbs soft measure used in the sandard DA.  Although the Smple soft measures
sgnificantly reduce the computationa complexity of the system, thisimprovement
comes & a price snce these soft measures are not the optimal distributions. Hence,
we have aso derived the theoretica performance loss for usng asmplified measure
instead of the optima measure, and used the result to derive optimal annedling
schedules for the proposed smple soft-measures. We have demonstrated that using
the derived optima schedule for the low complexity soft measures increases the
quality of the final codebook, as compared to using a geometric reduction schedule
which is usudly suggested in the annedling dgorithms. We have dso shown that the
low complexity DA methods benefit from the stochastic relaxation techniqueswith
decreasing benefits as the performance approaches the optimal.

We have demondirated the effectiveness of our low/reduced complexity DA
(SVQ) dgorithms by designing codebooks for a variety of sources, namely Gauss-
Markov, speech and image, at different rates. 1n each case, the proposed SVQ
agorithms sgnificantly improved the qudity of the fina codebooks, as compared to
the traditiondly used GLA and compared to the SR-D dgorithm, where the latter is
accepted as a benchmark reference by some researchers as a' VvV Q design technique
that performs near-optimaly. We have dso investigated the effect of codebook

initidization on GLA, SR-D and SVQ dgorithms and showed that, while GLA and
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SR-D benefit from thisinitidization (PNN) at the expense of increased
computationd complexity, the SVQ agorithms are able to attain the same
performance without the need for aspecid initidization. Hence, the SVQ
agorithms are not sengtive to the choice of theinitid codebook and outperform
codebook initiaized GLA and SR-D dgorithms. Compared to the standard DA, the
computationa complexity of the SVQ agorithmsis shown to be dragticaly reduced.
Using the same anneding temperature the SV Q adgorithms run by over afactor of
100 faster than the standard DA agorithm with negligible performance difference.
We believe that the proposed dgorithms, with their sgnificantly higher performance
over the widdly used GLA and SR-D, and with their low computationa complexity
with negligible performance difference compared to the standard DA, have proved

themsdlves to be important VQ design techniques.
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Chapter 3

Deter ministic Annealing for

Frequency Assignment Problem

3.1 Introduction

The introduction of mobile communication systems has had a tremendous impact
on our everyday lives, but at the same time the ever growing number of
wireless/mobile users has made the optima usage of the limited radio spectrum a
highly important problem. The scarcity of commercidly available spectrum requires
that the frequencies be reused within a network, where the main limiting factor is
then the levd of interference. When two tranamitters use the same frequency or
frequencies close to each other their sgnds may interfere. Theleve of interference
depends on many factors such as the power of the sgnals, distance between the
tranamitters, the direction in which signals are transmitted, environment, etc. On the
one hand frequency reuse in awireless network is a necessity due to spectrum

scarcity, but on the other hand reuse may lead to qudity lossin communication links.
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Therefore, a high performance network can only be achieved by efficient alocation
of the limited frequency spectrum to the transmitters. The assgnment of frequencies
in such away thet the interference isavoided, or if thisis not possble, minimized, is
cdled the Frequency Assignment Problem (FAP).

The radio spectrum (bandwidth) [ f.., f,..] availableto awireless service

provider is partitioned into aset of digoint channds, dl with the same bandwidth w .

The channels are usually numbered by a sequence of integers, {0.1,++, K - 1, where

K =(fn- fua)/W . Oneachavailable channel atransmitter and areceiver can
communicate. For bi-directiond traffic two channels are needed, one for each
direction. In fact, when awireless service provider purchases the spectrum

[ |, it OFten gets a paired spectrum, [g,,., 9., | Of €qual bandwidith that is well
separated from thefirst one, g,,, > f.,, . The second spectrum is also partitioned
into K digoint channls, {s,s+1---,s+K - 1 , and while the forward connection

usesachannel fromthe set {0,1,---, K - 3} , the backward connection uses a channel

that isshifted s channelsup. Notethat since g,,, > f.. ,then s> K which

prevents any interference between the forward and the backward channels.

Consequently, the channd assgnment problem congders only one directiond
channel &, eg., the forward channels, {01,-++, K - 3} . Technologies such as

Freguency Divison Multiple Access (FDMA), Time Divison Multiple Access

(TDMA) and Code Division Multiple Access (CDMA) make it possble to use each
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channel for alimited number of cdlers Smultaneoudy. Inthe FAP literature the
dlocation of channdsis divided into three categories [72]: Fixed Channd
Assgnment (FCA), Dynamic Channed Assgnment (DCA), and Hybrid Channel
Assgnment (HCA) schemes. In FCA, achannd is permanently alocated to each
transcaiver for itsexclusve use. In thisschemeit is not alowed to change the
assignment ontline to satisfy mobile cal demands for wireless connections. Instead,
in DCA thereis no fixed assgnment between channels and transceivers, dl channels
are placed in apool and they are assigned to calls as the need arises provided that
certain interference condraints are satisfied.  Findly, in HCA schemesa
combination of FCA and DCA isimplemented to obtain a better overal performance
in the network. In these schemes a number of channds are assigned beforehand and
the rest can be used for on-line assignment upon request. 1t can be proved that DCA
schemes perform better than FCA schemes under light and nontuniform call traffic,
and that under uniform and heavy traffic FCA schemes outperform the DCA
schemes [65]. Note also that FCA performance provides abound on the DCA
performance, because FCA is designed to provide the optimd service when dl the
network resources are being used. A survey of FCA, DCA, and HCA schemes can
be found in [68].

In this thess we will be focusng on FCA becauseit isawiddy used channd
alocation scheme, which aso provides bounds for the DCA schemes. Thus, our
god will be to find the optimal fixed assgnment of channdsto transceivers. The

FCA scheme can be designed based on four different criteria, leading to four
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problems[72]: the minimum order frequency assgnment problem (MO-FAP), the
minimum span frequency assgnment problem (MS-FAP), the minimum blocking
frequency assgnment problem (MB-FAP), and the minimum interference frequency
assignment problem (MI-FAP).

In MO-FAP we have to assgn channds in such away that no unacceptable
interference occurs, and the total number of distinct channels that are used is
minimized. The MO-FAP was thefirg channel assgnment problem discussed in the
literature. Metzger [90] was the first to recognize that it is a direct equivalent of the
graph-coloring problem (a problem that belongs to the classof NP -complete
problems), and Hae [56] was the first to formalize the frequency assgnment
problem as a graph-coloring problem. In MS-FAP, the task isto assgn channdsin
such away that no unacceptable interference occurs, and the difference between the
maximum and minimum used frequency, the span, isminimized. In MB-FAP the
god isto assign channds such that no unacceptable interference occurs asin the
previous cases, and the overal blocking probability of the network is minimized,
which requires the traffic demand of the nodes to be taken into account. And finaly,
MI-FAP isthe minimization of the total sum of interference levelsin the network.
That is, we have to assgn the channels from alimited number of available channels
in such away that the tota sum of the interference in the network is minimized.

Note that MO-FAP is not the only model that is related to the graph-coloring
problem. All FAP modds, in one way or another are generdizations of the coloring

of nodesin an undirected graph [72]. Hence, al FAP models belong to the class of
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NP -complete problems, which means that there does not exist an agorithm that
solves the problem in time polynomid in the length of theinput, unlessP = NP
[45].

In MO-FAP and MS-FAP the objectives are, respectively, to minimize the
number of used channds and to minimize the span of used channels. However, in
practice the wird ess communication service providers license afixed frequency
bandwidth for long-term periods without the possibility of extending or reducing the
bandwidth. Therefore, minimizing the number of used frequencies or minimizing
the span of the used frequencies do not satisfy the implementation of today’s
frequency plans (minimization of the order and the span were popular objectivesin
1970s and 1980s when frequencies were bought per unit at high prices[72]).
Nowadays, the more redistic problem facing the operators (wireless communication
sarvice providers) is finding an assgnment of the available frequency bandsto
various stations such that the incurred interference does not exceed a certain
threshold, in order to guarantee high quaity communication links to the mohbile
users. Therefore, the problem that we chose to addressis the minimization of the
totd interference in a given network with fixed resources, i.e., the MI-FAP.

In this chapter we will modd and gpply the deterministic annealing (DA) method
asanove gpproach to solve the minimum interference frequency assgnment
problem (MI-FAP). The DA approach has been used to obtain near optimal
solutions for various difficult combinatoria optimization problems by using soft

information processing with exact and smplified reiability measures as introduced
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in Chapter 2 [104, 106, 103, 32]. We will present experimenta evidence indicating
that significant performance gains are achieved by the DA method over the

smulated annedling (SA) method. Note that an agorithm based on SA is reported to
provide the best known performances for redigtic frequency planning scenarios [37].
Besides performing better than the SA, experimental results will dso show that the
DA method converges faster than SA.

The rest of the chapter is organized asfollows: in section 3.2 the relation between
FAP and graph coloring is briefly explained, we then describe the shortcomings of
the graph theoretic gpproaches that formulate FAP as abinary congraint satisfaction
problem. The deterministic annedling adgorithm for FAP isformulated and the
agorithms are described in section 3.3. In the experimenta results section we will
be comparing the performance of our DA agorithms againg the sSmulated annedling
(SA) dgorithm for FAP[36, 99, 58], using the test problems generated by the vertex
saturation (VS) method (atest problem generator) [118]. In section 3.4 the
experimenta set-up and the experimenta results comparing the performances of SA
and DA to the optimal solutions obtained by the VS are presented. We have dso
tested our proposed DA agorithm on aredigtic frequency planning scenario
obtained from the COST 259 project [37], and compared its performance with other
methods that are reported to provide the best performance on a collection of red life

scenarios. Findly, section 3.5 concludes the chapter.
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3.2 Graph Theoretic Approach

3.2.1 Graph Coloring and FAP

The coloring of agraph G=(V,E), where V isthe set of nodes in the graph and
E isthe set of edges (connected pairs of nodes) in the graph, is defined asthe
assgnment of colorsto thenodes v 1 v such that no two nodes connected by an
edge will have the same color. Colors are defined to be a set of non-negative
integers. A coloring that assgns ¢ colorsto graph G istermed c-coloring. The
chromatic number of agraph G isthe minimum number ¢ (G) for which ¢ (G)-
coloring existsfor G . Hence, agraphis c-colorable, if ¢ (G)£c. Also, if we
denote w(G) asthelargest diquesizein G, whereaclique is acomplete subgraph

of thegraph G which meansthat al the nodesin the subgraph are connected with all

the other nodesin the subgraph, then from the definition of the chromatic number we
can deducethat ¢ (G)2 w(G). Using the above description, the equivalence of co-

channd frequency assgnment problem and the grapht coloring problem is apparent.
For the co-channd FAP, define:

- thenodes v 1 V of graph G to bethe st of dl transmittersin the network.
- an edge (vi,vj) exigsin G if the transmitters v, and v; cannot use the same

channdl (i.e,, v, and v, are co-channe constrained) " v,v, T V.
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Let y(v) to denote the channel assigned to v by the assgnment rule y,

C={01,-,K - 1} to bethe channdl s&t, y(v)T C, then the co-channel FAP (the
minimum span modd) is equivaent to Smple graph coloring:

instance G = (V, E)
findy: V® Z,
suchthat, (v,v))T E O y(v)* y(v)

and |C| is minimized.

(3.1)

We can see that in the above formulation the congtraints place a restriction on the
assgnment of the channelsto pairs of transmitters/nodes, hencetheedge set E in G
define binary congtraints between the pairs of nodes. Smilarly, co-channd and first
adjacent-channe FAP would be (wherethe edge set E issplitintotwo, E, and E;;
nodes connected by the edgesin E, are co-channel condirained, and the edgesin E,
are adjacent-channel congtrained):

instance G=(V, E,,E)
findy: V® Z,
such that, (vi,vj)T E, U y(v)? y(vj), (3.2
(vw)TE O Jy(v)- yly)>1
and, |C| isminimized.
In the same manner, higher order adjacent channd FAPs that pertain to minimizing

the number of channelsused (MS-FAP) can be defined:

instance G =(V,E,, E,,---,E,)
findy: V® Z,
- - R (3.3
such that, (Viij)l E. U |Y(Vi)' Y(Vj )|> Kk "kl {0,1,---,|}

and, |C| isminimized.
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Note that the above problems are MS-FAP, hence the god is to minimize the number
of channdsused. In the above formulations, (3.1), (3.2) and (3.3), asingle channd
Isassgned to each transmitter and solutions that do not satisfy the condraints are
infeasible solutions. Using the graph theoretic gpproach the interference

minimization modd of FAP, MI-FAP can be formulated as follows,

instance G =(V, B, E,,--, F )
findy: V® Z,

such that, (3.4

g 88 &)y vlu)ed

is minimized.
In(3.4) d(x) isthe Kronecker deltafunction which is oneif the condition x istrue
and zero otherwise, and g, (. (v, w) is defined as the pendlty incurred for assigning
channels y(v) and y(w) tonodes v and w, respectively. Notethat ¢, (v.w)
can either be a salf assgned pendty or it can be the actud interference caused on the
network when node v isassigned channd y(v) and node w isassigned channel

y(w) . Throughout this chapter we assume them to be actud interference vaues. In

(3.4) asingle channd is assgned to each tranamitter and afeasble solution isthe
onethat satisfies adl channd separation requirements between the pairs of nodes of
thegraph, asin (3.1) - (3.3), which gives zero totd interference. However, if no zero
totd interference solution can be found, then the god is to minimize the tota

interference.
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We have dready mentioned that all FAP models belong to the classof NP -
complete problems. We briefly give the computational complexity proof for the M-
FAP variant of the FAP modds asfollows [13, 37]:
Givenaset of channds C ={1,2,--- K} andagraph G=(V,E,E, -,E, ,),
the decision problem for MI-FAP decides whether there is a node-channd
assignment st of total cost no morethan qi Q, . If wearegiven K , the
graph G=(V, E,E,---,E,_,), cost q and acertificate assignment set, we can
verify in polynomid timeif the totd cost of the assgnmentsis g or not;
henceMI-FAP1 NP . Itisdsoshownin [37] that the NP -hard problem
graph c-colorability can be reduced to MI-FAP in polynomid time making
MI-FAPadso NP -hard. Hence, for every qi Q,, MI-FAPI NP -
complete.

Moreover, not only that solving MI-FAPis NP -hard, but finding solutions thet are

guaranteed to be close to optimal (i.e., with a guaranteed upper bound on the total

cost) isaso NP -hard [37].

3.2.2 Binary Constraints

The need to keep interference below an acceptable level or minimize it requires
that nearby transceivers use channels which are widely separated in the available
spectrum. This meansthat the closer the transceivers are to each other, the more

separated their assigned channels should be. The most widdly used way of moddling
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the physicd- distance — channe- separation requirements is by using binary
condraints on the pairs of transceivers (asin the formulations (3.1) to (3.4)) by
attaching aminimum spatia separation for each possible channd separation between
them. So, for K possible channels, C ={01,---,K - 1},

d(v.v,)<r, b |y(v) - y(vj)| >k, "k=01,--,K-1 (3.5
where d (vi ,vj) is the Euclidean separation between any two nodes v, and v, , and
{r}._, arethe minimum separation distances depending on the channel separation
k,with r, >r, >-- >r,_,. Through thismodd, the FAP is cast usng an undirected
graph, caled an interference graph or a constraint graph, in which the edges of the
graph represent the binary congtraints. With thisformulation it is closdly associated
with the well-studied graph coloring problem as mentioned earlier, and hence,
traditionally, graph theoretic approaches have been used to solve FAP problems [56,
47,90, 8, 116, 14, 15, 87, 115, 13, 86]. However, a number of recent sudies have
raised concerns about the adequacy of the binary congrains, stating that in any
network the sgnd-to-interference ratio (SIR) at any point depends on the cumulative
effect of Sgnasreceived from all the transceivers, therefore, the use of binary
congtraints to mode FAP istoo restrictive [35, 96, 6, 34, 63]. In[35] it isargued
that FAP should be formulated as a cost function optimization, and in [96, 6, 34, 63]
the argument is that better assgnments can be obtained with higher order congtraints.
By higher order congtraints what is meant is that, instead of considering two

transcaivers at atime in assigning channels to them (binary condraint) asin (3.5),
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|y(v) - y(u)| =0, vand u are co-channel nodes

|y(v) - y(w)| =1, v and w are adjacent-channel nodes

Figure 3.1: Two nodes, u and w at the same distance from node v. Node
u is co-channel with v, and node w is adj-channel with node v.

more than two (the higher the better) transceivers are considered smultaneoudly.
Although the merit of this argument is not extensvely tested (only very smdl
structured problems are considered in [96, 6, 34, 63]), there are some other
drawbacks in using graph theoretic gpproaches. Next we illustrate these with a
smple example.

By intuition we know that between two transceivers /nodes, the co-channd
interference is larger than the adjacent channdl interference. Thenodes u and w in
Figure3.1 are & same distance from v, where y(v) =1, y(u) =f, y(w)=f,.
Using the penalty functionin (3.4), with ¢, | (v.v;) being the penalty for
interference between the two nodes v, and v; with channel assignments y(v;) and
y(v; ), respectively. The co-channel (y(vi )=y(v, )) and adjacent channel
(|y(vi )- y(v, )| = 1) interferences are ¢, (v, v, ) and ¢,(v,,v, ), respectively. Then,in

the situation depicted in Figure 3.1 the interference pendties would be
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G (v,u)>¢ (v,w). Higher order channel interferences can aso be defined,

G (vi,vj) >cl(vi AY ) >cz(vi,vj ) >0 c;K(vi ,vj) >.... Notethat these are till binary
relationships between pairs of nodes, where ak'™ order channdl interference ¢, (vi,v, )
means, the interference between nodes v, and v; that are k channels apart,

|y(Vi)' y(v, )| = k. In accordance with the mode in (3.5) aminimum channd

separation between potentidly interfering nodesisimposed. Inthismodd, itis
perfectly legd to assgnachannd f, 1 C toanode wat adistance r, +e from
another node v, where y(v) = f,, and where e isavery small positive number,
0<e <1, because they are separated more than the minimum distance r, for co-

channel assgnment. However, by the same token, it would beillegd to assign f, to

Figure 3.2: Node w satisfies co-channel binary
separation with node v, but node u does not.
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anode u at distance r, - e from v Since they are not separated by more than the
minimum co-channe! distance, r, asshown in Figure 3.2. No matter how smdl e is

this would condtitute an infeasible solution. But, we know that for very smdl e the
interferences caused by the two assgnments will be practicaly the same.

Neverthe ess, the modd described above would make a dtrict decision and consider

the assignment, y(w)= f,, admissible, but would never choose the assignment,

Y(u)= fi.

d(v,u) # 1, |y(v)- y(u)|
d(v,w)#r, |y(v) - y(w)| =0
2 assignment violations 1 assignment violation

(a) (b)

Figure 3.3: In (a) both nodesw and u do not satisfy co-channel binary
separation with node v. In (b) node w satisfies the co-channel binary
separation with node v, but node u does not.

92



Therefore, a method that treats the problem based on hard (binary) decisions for
each pair of nodes, i.e,, such that the set of admissible assignmentsis pre-set given
the distance between nodes, may not be well suited to address MI-FAP. We require
methods that dlow gradua differences in interferences caused by dl the nodesto be
taken into account. In other words, the received signd quality depends on the
cumulative effect of the signals received from dl the nodes. Furthermore, if ina
given problem a channd assignment fulfilling dl the condraints does not exist or
cannot be found, the described mode cannot judicioudy distinguish between two
infeasible solutions. The best it can do is to count the number of congtraint
violations and choose the solution with the least number of violations. But this does
not guarantee the best possible solution in terms of minimizing the totd interference,
as can be seen in the Situation depicted in Figure 3.3 and explained in the following
example.

Example 1.

To be able to better asses the Situation, consider the interference power between
two nodes v and u, operating at channels y(v) and y(u), respectively. Wewill use
asmple modd from [78] (later in the Experimental Results section we will usea

more comprehensive modd from [114]):

poh(ly (v)- y(u))
d(v,u)’

P(v, y(v);u,y(u)) = , (3.6)
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where  p, = transmission power at the nodes.
h(¥= channel difference response, positive and decreasing,
h(0)=1 h(0)>h(1)>--->h(k) >
h(a)=e* "a?30, isavalid function.
d (v,u) = Euclidean distance between nodesv and u.
g = exponent describing signal attenuation, usualy between 2 and 6.

Note that except the terms containing v, u and the channel separation |y (v)- y(u)|,
the rest of the termsin equation (3.6) are congtants. Therefore, we will usethe
previous notation we had introduced for interference, i.e,, Gy () (v,u), in equation
(3.6). Turning back to Figure 3.3(8) (2 violation case), the interference powers at

node v from nodes u and w:

G (v,u) = Zt(j,qlﬁ())g) _ (rOF-)te)g (3.7)
CO(V,W)Zthh(O) — P, (3.8)

div,.w) (r,-ef
From Figure 3.3(b) (1 violation case),

)= Zc(x:ﬁ())) G ite)g (39

_ph(0) _ p,
(v, w) = R A P (3.10)
Defining z =¢,(v,u) +¢,(v,w) and z ¢&=cg(v,u)+c$(v,w), after smplifications we

have,
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Z_¢ (ro - e)g + (ro - e)g
z 2(n+e)’ 2(r,+ef
AR r R A A A

lim— = + = 311
e®0 7 2r9 2r09 2rlg ( )

. z¢
andsince, r,<r, b —>1
z

end Example 1.

Hence, the one-violation case (Figure 3.3(b)) resultsin higher interference than
the two-violation case (Figure 3.3a), which shows that the solution with the least
number of violations does not guarantee the least possible totd interference.
Therefore, formulating MI-FAP in graph theoretic terms as a condtraint satisfaction
problem (CSP) presents two drawbacks:

- the use of hard (binary) decisons, whether to alow or not to dlow two nodes
to use the same channd (zero channel separation) or higher order separated
channels, does not take gradud interference differences into account, and

- when afeasble solution does not exi, it is difficult within a CSP
formulation to pick the best infeasible solution.

In order to address these drawbacks, MI-FAP should be formulated as a cost function

optimization problem rather than aCSP: givenalisof nodesv iV, i=12,--,n,a
set of channels C ={ f,,, f, -+, f,,} asanintervd of non-negative integers, the node-

channel assgnment interference cost function F is

F :é é é. % qf-ff(v’w)ﬁvm)ﬁf (3.12)

viviicwvdc
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i1, if channel f isused at nodev,
where St =i ,
10, otherwise.

G- fy(v, w) = interferenceincurred by assigningf to v andf ¢tow.

Theamisto find the optima node-channdl assignments, s, , such that the totd

interference cost isminimized. Note the difference in the formulations of MI-FAPIn
(3.4) and (3.12). Theformuldionin (3.4) amsto minimize the totd interference by
satisfying the binary condraints. So, if the assgned channels to a pair of nodes do
not violate the required channel separation between those two nodes, then the cost
incurred from this assgnment is zero. This neglectsindividud interferences below a
certain levd, dthough the cumulative effect of many sub-threshold interferences
from multiple nodes may result in a non-negligible overdl interference on acertain
node. Note that the optimal solution cost in (3.4) is zero, which is achieved when dll
the condraints are satisfied. This showsthat, if there are more than one optimal
assgnment sets (zero cost solutions), they cannot be distinguished even though the
tota interferences in these optima solutions may vary greatly. Instead, in (3.12),
each node-channd assgnment is evaluated by taking into account the cumuldive
effect of the interferences from dl the surrounding nodes. This formulation is more

suitable for the objective of MI-FAP.
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3.3 Deterministic Annealing Solution for FAP

3.3.1 Problem Formulation and Algorithm

The deterministic annealing (DA) approach puts the channe assgnment problem

in a probabiligtic framework, and optimizes the probabiligtic objective function in
each iteration. The node-channd assgnmentsin DA are not one-to-one, they are

one-to-many; each node is assigned to all the available channeswith agiven
probability p(f;|v), where & . p(f; ) =1, " vi v . Assdtated inthe previous
chaptersthisis caled a soft association, and the probabilities are caled soft

information (or soft assignments) since they give the reliability measures of

assigning the channelsto anode. Using the node-channd soft associations rather

than the hard (one-to-one) assgnments asin (3.12), the cost function to be

minimized becomes an expected (probabilistic) cost function:

Defining,

j (v, f)isthetota expected interferenceincurred on node v from all soft

assignments of the nodes wi V \v and thechannds fd C,whenchannd f is

(3.13)

(3.14)

(3.15)
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assigned to node v, Figure 3.4. Hence, the total expected interference on the (v, f)
par averagedover dl f1 C and vi V givesthetota expected interference cost in

(3.15).

Node-channel

soft as jations
===

_ p(f4|u) i Possible Channel Interferences
Possible Channel Interferences p(fou) | + between Nodes u and w
between Nodesv and u AN ! Co(u,w) -- co-channel interference

Cy(v,u)  -- co-channel interference
¢,(vu) --adj-channel interference
c,(v,u) -- order-2 channel interf.

f lu ™ ¢, (uw) --adj-channel interference
PW | 4, 7 ic(uw) --order-2channel interf.

i G_;(u,w)-- order-(K-1)-channel intf.

G4 (V,U) -- order-(K-1)-channel intf..

Given the soft channel
assignments, and
interferences when

) p(f2|W) Node-channel
- soft associations

channel £ is assigned to

node v in all other nodes, [ ——

[} q

cost of assigning channel |l Possible Channel Interferences between
\ ! Nodesv and w

/; tonodev is \i (VW) -- co-channel interference

clomputed: \i c,(v,w) -- adj-channel interference

1 C)(v,W) - order-2 channel interference
f(vf’) i=12 ..., K. R

i C¢.,(V,w) -- order-(K-1)-channel interf.

Figure 3.4: Computation of the cost of assigning channel f, to node v.

The most powerful aspect of the DA method is that the optimization starts with
al possible node-channd assignments being equaly likely, i.e, p(f|v)=% "1,
where K isthe number of channdls, K =|C|. Hence, &t the beginning the entropy of
the sygem ismaximum, H =logK , and the sysem has the highest uncertainty in its

soft assgnments. This shows that the DA procedure is completely unbiased and

does not favor any of the channdsfor any node. The above dso impliesthat it does
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not require an initid starting configuration (a hard node-channd assgnment s&t).

The latter point is dways abig concern in any iterative optimization agorithm that
requires aarting configuration Snce the qudity of the find solution is highly

sengtive to this choice; there is no such concernin the DA optimization. The
iterations start with this unbiased, soft state, p(f[v)=% " f,7 C,” vi v, and through

iterations the softness (and thus the entropy) is gradudly reduced until the hard
channd assignment for each node isreached. Our god isfor that fina hard Sate the

assgnments to be optimd, in the sense of minimizing the cost function. If we define

the optimal node-channd assignmentsas y (v)," vi V ,where y (v)i C, then,

i1, if f =y (v)

P (f |V):},O, otherwise (316
and,
minF =%§C§V§_qu_ff(v,w) p(f4w) p(fv). (3.17)

We see that in this probabilistic framework we need a distribution (soft
information measure) that is defined over the set of dl channd assgnments,
&, p(fil)=1"v, and dso that assigns higher probability to assignments of lower
cos. Thisdigtribution should aso be parameterized by a softness control factor,
such that, as the softness is decreased the distribution should become more
discriminating by concentrating most of the probability in asmaller subset of low
cost assgnments, and in the limit should reach hard node- channdl assgnments as

shownin (3.16). The expected interferencej (v, f) definedin (3.14) isthe cost of
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asggning f to v. We use two mechanisms to obtain the distribution modd,
p(f |v), asexplained in Chapter 2 (see dso [32)):
1. Gibbs membership function,
2. Triangular membership function.
1. Gibbs membership function:
For FAP, of dl possble probability distributions that yield a given expected tota
interference cogt, (3.15) and satisfy § . p(f; ) =1, the Gibbs distribution is optimal

in the sense that it maximizes the entropy,

p(f )= . (318)

Recdl that b in (3.18) isthe softness control factor, it determines the amount of

discrimination among the possible channel assgnments.
2. Triangular membership functior
The soft assgnment vaues, (3.19) are obtained using the heights corresponding
to the costs, where the heights are obtained from the membership triangle as
explained in Chapter 2,
p(filv) = R'Kj_l(v’ f) (3.19)
KR- aj (v f,)

=0

Recdll that the spread, R of the triangle is the softness control factor of the soft

assgnments.
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It should be noted that the DA formulation addresses the previoudy stated graph
theoretic drawbacks for MI-FAP, namely,

- DA does not formulate the problem as a binary condraint satisfaction
problem; it amsto find the globad minimum which is more suitable to the
objective of MI-FAP.

- In determining the cost of the node-channd assgnments, DA takesinto
account interferences from al nodeswith al possible assgnments, weighted with
assignment probabilities. Therefore, smdl differencesin interferences which can
have consderable effect when summed up, are not ignored.

- When there does not exist afeasible solution, DA is able to judicioudy pick

the best infeasible solution by aiming to find the globa minimum.

The DA dgorithm is shown in Figure 3.5 for the triangular digtribution case. At

iteration t =0, the initid soft information values are uniformly distributed,
p?(f|v)=% " i, andforeachnode vi Vv (the superscript in parenthesisisthe
iteration number), the initia spread R in the triangular distribution, which ideslly
should idedlly beinfinite is chosen to be large enough o that the deviation from 1/K

islessthan 10°°, i.e, |p(°)(f|v)- %|<10° " f and " v. We usethe same starting

criterion in the Gibbs distribution in order to choose a non-zero, but smal enough,
b (recall that in the triangular distribution softness decreases with decressing R,

and in the Gibbs digtribution it decreaseswithincreasing b ). Theiteraions are
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Given: { p(m)( f |V)}
Update:{f (m) (v, f )}

Ilteration: m=0

. =m+1
Initial Spread: R© R(Q:m(m-n

Yes

Initial soft l
assignments:

UKy | [ )

"f1C and "VviV Update:{ p™ (1, |v)}

Figure 3.5: The iterative procedure showing updating of the soft assignments
and the costs. The iterations are repeated until convergence. Convergenceis
reached when all the soft associations become hard.

repeated until convergence, wherein each iteration t, the spread is decreased by a
factor of r . inthe case of the triangular distribution, RV =r_ xR"Y, 0<r_ <1, and
in the case of the Gibbs digtribution b isincreased by afactor of r,

bW =r %Y r_ >1. Thedgorithm convergeswhen al the soft associations
become hard asin (3.16). Thevauesof r, and r, control the corvergence ratein

the triangular and the Gibbs cases, respectively. Clearly, the further avay they are

from1(r, fromlower and r, from upper), the faster the convergenceis, but with

accompanying decrease in the qudity of the find solution. On the other hand, if they

aretoo close to 1, convergence takes too long without noticesable improvement.
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3.3.2 Channel Blocking Algorithm

Since the co-channd interference is the highest cause of interference on any
node, we may aso wish to satisfy a certain separation for co-channel nodes together

with minimizing the totd interference in the network. Inthe DA dgorithm when a

node v startsto converge towardsachannd f (by ‘starting to converge’ we mean
p(f"lv) >0.5 because most of the probability massis on this assignment), y(v) = f,

thenit is sefe to say that with high probability the assgnment of node v will fully

node 1.@ ol probability of
\/ o assigning
channel f
.I.IJ.n.. Ly 3
@
soft assignment
values .
L
Ll . .|.|.IJ. fO fl f2 f3
L

Figure 3.6: Node Vv has converged to channel f,. For all the nodes within the
neighborhood of node v, nodes u and w, channel f; is blocked by setting the
assignment probabilities of nodes u and w to channel f; to zero.

convergeto channd f . Therefore, we propose as approximation that, when anode
startsto convergeto achanne f wewill assumethat it has converged by setting
p(fv)=10ad p(f|v)=00 "fi C\T,andblockthechand T for al the

nodes w within the neighborhood of node v by setting their assgnment probabilities
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for channd f to zero, p(f_|w) = 0.0 asshown in Figure 3.6 (note that when w isin
the neighborhood of v, then v isin the neighborhood of w).
However, thereis the possibility that when p(f_|v) =0.5+e, for omesmdl e,

0<e <« 1.0, there may be another channd T with assgnment probability very dose

005, p(fv) =05- et for smal et, 0 <et< 1.0, and or all other chanel

assignments f inthechannd st C, f 1 C\{ f, f:} the assgnment probabilities are

ether zero or very closeto zero. In such cases we cannot predict with high certainty
that channd T will be assigned to node v & the end of the agorithm. To reduce the
possible errors in these cases we s&t the threshold of convergence higher than
0.5+e. But we cannot increase it too high aso, because we want to do these

changes while the system has high entropy (high softness in associations) o that it

can adopt to the changes. We have found out 0.55 to give good performance.

When we set the assignment probability for channe f to zeroin node w,

p ( f |W) = 0.0, we need to update the assignments for the other channels becauise we
have reduced the probability mass by an amount of p(f_ |w) and we need to satisfy
& . p(f|w)=10. Let f = f, bethechannd being blocked and, let the new
assgnmentsbe pgfo|w), pqf,|w) -, p{f.|w)=0, - p{f,|w). Let

p( fm|w)=gm; then we need to distribute g, among ptl(fi|w) "f1C\f,. Themost

104



obvious way of obtaining the new assgnmentsis by normdizing each old

assignment (exduding p( f,|w)) by 1-g,,

pﬁ(fi|w)=l_1g p(fw) "f1C\i,. (3.20)

Note that the assgnment in (3.20) is the maximum entropy assgnment given the
previous set of probabilities
Therefore, the channe blocking dgorithm isthe same as the DA agorithm for

FAP with the addition of the following step: whenever anode v ‘ starts to converge
toachannd f weset p(f_|v):1.0 and p(f~|v) =0.0 "fl C\Tf;blockthe
channd f for the node(s) w within the neighborhood of node v by setting their
assignment probabilities for channel T to zero, p(f_ |w) = 0.0; update the

probability assgnments for node(s) w asin (3.20); and continue the iterations.  In
the Experimental Results section we will demondirate that the above agorithm
effectively reduces the number of co-channd violations with a trade-off of smdl
increase in total network interference compared to without using the channe

blocking.

3.4 Experimental Results

We compared the proposed agorithms on two sets of channd assgnment

problems. In the firgt case, we generated test problems using a problem generator,
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Vertex Saturation, and in the second case we use aredigtic frequency plaming

scenario from the COST 259 project [37].

3.4.1 Generated Test Problems

3.4.1.1 Experimental Setup

The modd we have used consists of randomly placed nodes/transcelverson a
squarefidd of 25” 25 units. The propagation model used is asfollows:
I. All transceivers/nodes are assumed to have identical transmission powers
and the radiation to be omni-directiond.
ii. Free-space propagation loss is assumed to be the only source of sgna
power attenuation. The decay of sgnad power P, with distance d ismodeled by

the inverse power law [114],
p=_1L (3.21)

where P, isthe power of the transmitter, d is the distance between the
tranamitter and the receiver, and g isthe fading factor (or propagation exponent)
with vaues between 2 and 6 depending on the environment. Weused g =4 asin
[6, 114, 54].

iii. Theinterfering Sgnd power P from atransmitter using the same channe as

therecaiver, i.e., co-channd intaferenceis,

B
1
2|0

(3.22)
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and from atranamitter using the m" adjacent channd (m=1.2,--) is

Fi):

2|o

where a isthe attenuation factor for adjacent channd interference measured in
dB/octave. Notethat asa isincreased the adjacent channd interference
decreases (with no effect on co-chamnd interference). It is shown in [114)] that
when a iscloseto 30 dB/octave al adjacent channel interferences can be
neglected. We used a =15 dB/octave asin [54] and as suggested in [72]. We
aso assumed that the totd interference power a areceiver location from
multiple interfering trangmittersis the sum of the individud interferences from
each transmitter.

iv. Two different models are used to define the cells (the receiver regions
corresponding to each node),

- inthe Voronoi region model the nearest node to a receiver location
provides service to that location, hence the desired signd at each receiver
location is from the nearest node,

- inthe best server model the node achieving the highest Sgnd-to-

interference ratio (SIR) at areceiver location provides the service.

>g_o-a(lﬂogz m) /10 (323)
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3.4.1.2 Vertex Saturation — Problem Generator

The test problems are generated by the Vertex Saturation (V'S) adgorithm with
different sets of thresholds, (r,,r,). Vertex Saturation is a problem generator method
developed by ZodIner and Bedll [118]. It generates test problems with known
optima solutions because the test problems are constructed so that there are no
condrant violations for the given co-channe and adjacent channel condraints, r,
and r,, and the given number of colors/channels, K . The procedure starts by
generating alarge number of random points on a 2-dimensond grid. These points
are the candidate nodes. Each candidate point is considered in sequence and an
attempt is made to color it with the smallest number of color from a set
C ={0,1,+,K - 1} such that both of the following hold:

1 The Euclidean distance between the current point and al previous
points that are colored the same color is grester than some threshold r,.

2. The Euclidean distance between the current point and al previous
points thet are colored with a color differing by oneis greater than threshold r,
wherer, <r,.

If thereis no feasible color for a candidate, then the candidate is rejected and the next
point is consdered. If the point can be colored, then the candidate becomes anode
and it is added to the constructed graph with the feasible color assigned to that node.
The procedure continues until al candidates have been consdered. A graphis

considered to be saturated when candidates no longer can be added as nodes. The
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congructed graph has aminimum span assgnment that is exactly the colors selected
in C , satisfying both co-channel and adjacent channd congtraints. Note that our DA
agorithms do not provide a solution that minimizes the span (MS-FAP), but we
wanted to run our agorithms on these test problems to see how close they come to
satisfying the condraints set by these problems, in addition to minimizing the totdl
interference. Note a0 that a saturated graph satisfying the co-channd and adj-
channe separations between al node pairswill result in avery competitive tota

interference vaue, which will be very close, if not equd to the optimum vaue.

In order to obtain reasonable thresholds, (r,,r,) we made use of the resuiltsin
[114], where channel sizesand (r,,r,) thresholds are investigated for various SIRs.
Although the work in [114] only considered regular hexagond networks where the
locations of interfering nodes are highly structured, here, we consider networks
where the locations of the interfering nodes are random. We have used the following
intuition: & anode v, adjacent channd interfering signal power from adistance r,
from v hasto be equal to co-channd interfering Sgna power from adistance r,
away from v. Theresultsin[114] show that equa contribution of co-channd
interference and adj- channd interference is areasonable choice. Using the power
equation (3.22) for co-channd interference, and (3.23) for adjacent channel

interference (m=1) with g =4 and a =15, theratio r,/r, becomes2.37:

R =1 p . 1 p h :(103/10 )}6
Fi,co 1(T’\/10 rlg rl
b =237

n
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Twelve test problems are generated with various number of channels, K and
thresholds, (r,,r,) using theVSmethod. Insix of thesetest problems, P1s, P2s, ... ,
P6s, the VS method is dlowed to saturate the field with the maximum number of
nodes possiblegiven K and (r,,r,), and in the other six test problems, P1, P2, ... ,
P6, the number of nodesiseft below saturation. The details of these test problems
aregivenin Table 3.1, where |V| isthe number of nodes and |E| isthe number of
edges. The edges represent those pairs of nodes that have Euclidean distances less

then r, between them. In other words, they are the ones that can cause r, or r,

Problem | K | o | . | [V] | [E | |E|/V| dig‘/f;ty
P1 6 711 | 300 45 170 378 17.18
Pls 6 711 | 300 53 219 413 15.89
P2 6 948 | 400 28 104 371 2751
P2s 6 948 | 400 35 149 4.26 2504
P3 7 711 | 300 50 218 4.36 17.80
P3s 7 711 | 300 61 303 497 16.56
P4 7 948 | 400 32 140 438 28.23
P4s 7 948 | 400 | 40 199 498 2538
P5 8 711 | 300 55 272 495 18.32
P5s 8 711 | 300 63 333 5.63 16.81
P6 8 948 | 400 | 36 181 5.03 28.73
P6s 8 948 | 400 | 46 261 567 2522

Table3.1: Specifications of the test problems.

congraint violations. Also included in the tableistheratio of the number of edgesto
the number of nodes, where for agiven (K, 1, r, ) -triple (recall that these triples

generate the problem instances) the higher this ratio the more saturated the fidd is
and the more difficult it isto satisfy the binary condraints set by the thresholds.
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Findly, we dso include the edge dengties (i.e., number of edges rdative to the
maximum possible number of [V|{|V|- 1)/2) in percentage. Most of the reslistic
frequency planning scenarios reported in [89] have graph dengties in the range of
8% - 14%, hence the test problems we are using are at least as dense as, and

sometimes more dense than, the redlistic scenariosin [37].

3.4.1.3 Resaults

The DA, SA [36, 62] dgorithms and the VS method are implemented using C.
The computations are performed on an Intel Pentium 111 processor machine,
operating at 550 MHz clock speed and equipped with 256 MB RAM. The
convergence timesfor SA and DA are givenin CPU seconds.

For each problem instance 10 experiments are performed and the average results
displayed in Table 3.2. Recdl that totd interference resultsfor VS are very closeto
optimd results, epecidly in the saturated problems. From the resultsin Table 3.2,
comparing SA and DA we clearly notice the superiority of the DA over the SA
approach, both in performance and in convergence time. In the saturated problem
cases, (P1s— P6s) the totd interference results obtained with DA (Gibbs case) are
within 26% to 36% of the optimal, whereas, SA performance ranges between 175%
and 380%. In the non-saturated cases, (P1 — P6) the totd interference performances
are 7% to 23% for the DA-Gibbs case and 180% to 428% for the SA. Although, the

problem formulations for both DA and SA amed a minimizing the total
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interference, we also computed the number of binary constraint violations in the
solutions. We again see that the DA results show up to 4 times fewer violations than
the SA results. Besides the number of violations, it is also important to look at the
range of distances between the violating node pairs, i.e., how large the violating
distances are. This is important because, as we have mentioned before, when

considering binary constraints it does not matter how large the violation distance

Number of Nodes: 55 | K=8 Number of Nodes = 55 Number of Channels = 8
5/

" AA
(a) Contour Plot (SA) (b) Contour Plot, Threshold = 9dB (SA)
Number of Nodes =55 Number of Channels = 8 Number of Nodes =55  Number of Channels =8

(c) Contour Plot, Threshold = 12dB (SA)

Figure 3.7 (a-d) : Contour plots of the field obtained by Simulated Annealing.
In (a) full contour plot is shown, and in (b), (c) and (d) thresholded contour
plots with thresholds 9dB, 12 dB and 15 dB, respectively, are shown.
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between any two nodes v and u is: ifitis £, r—d(v,u)=¢ for very small
£,0<e <1, or almost the whole constraint distance, »—d (v,u)~=r (where r=r, for

co-channel nodes, and =7, for adj-channel nodes), the violating node pair is

counted as a violation without distinction. However, for all practical purposes, the

quality (the smaller the violation distance the higher the quality) of the violations

Number of Nodes: 55 | K=8 Number of Nodes =55  Number of Channels = 8

S0 (f) Histogram
Best Server Model (SA)

0F 4
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(e) Best Server Model (SA) SR(@®)

Number of Receiver Locations
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3

Number of Nodes: 55 | K=8 Number of Nodes =55  Number of Channels = 8

|
0 10

Figure 3.7 continued, (e-h) : Simulated Annealing; cells obtained by the Best
Server Model and the Voronoi Region Model are shown in (¢) and (g),
respectively. And the signal-to-interference (SIR) histograms for each location
on the field corresponding to the Best Server Model and the Voronoi
Region Model are shown in (f) and (h), respectively.
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Voronoi Region Model (SA)
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(g) Voronoi Region Model (SA)
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makes big difference in terms of the accumulated interference, and hence, on the
signal-to-interference ratio (SIR); the smaller the violation distances are, the smaller
the incurred interferences and the larger the SIR will be. Thus, we computed the

distances between the nodes that fall short of satisfying 7, and  in the DA and SA

results. We found out that, on average, the DA violations were at 0.86-r, i.e., 14%

Number of Nodes = 55  Number of Channels = 8 Number of Nodes = 55 Number of Channels = 8

(a) Contour Plot (DA-T) (b) Contour Plot, Threshold = 9dB (DA-T)

Number of Nodes = 55 Number of Channels = 8 Number of Nodes = 55 Number of Channels = 8

A

(c) Contour Plot, Threshold = 12dB (DA-T)

Figure 3.8 (a-d) : Contour plots of the field obtained by Deterministic
Annealing Triangular case. In (a) full contour plot is shown, and in (b), (c)
and (d) thresholded contour plots with thresholds 9dB, 12 dB
and 15 dB, respectively, are shown.
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less than the constraint distances (» =7, for co-channel nodes and =, for adj-
channel nodes), whereas, this value for the SA violations was 0.73-r, i.e., 27% less
than the constraint distances. Therefore, not only do the DA solutions have fewer
constraint violations than the SA solutions, but the “quality” of the violations is also

higher. This also explains why the DA method outperforms the SA method by a
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Figure 3.8 continued, (e-h) : Deterministic Annealing Triangular membership
function; cells obtained by the Best Server Model and the Voronoi Region Model
are shown in (e) and (g), respectively. And the signal-to-interference (SIR)
histograms for each location on the field corresponding to the Best Server Model
and the Voronoi Region Model are shown in (f) and (h), respectively.
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large margin in terms of total interference. When we compare the DA results
obtained with the 2 different soft information measures, namely, the Gibbs
distribution (DA-G) and the triangular distribution (DA-T), we see that DA-G
performs better than DA-T both in total interference and number of violations, but at
the expense of longer convergence time; DA-T converges about 40% faster than DA-

G with 2% - 10% higher total interference. This was an expected result since Gibbs

Number of Nodes= 55 Channels =8 Number of Nodes =55  Number of Channels = 8

| .

(a) Contour Plot (DA-G) (b) Contour Plot, Threshold = 9dB (DA-G)

Number of Nodes: 55 Number of Channels = 8 Number of Nodes =55  Number of Channels = 8

(d) Contour Plot, Threshold = 15dB (DA-G)

| |

(c) Contour Plot, Threshold = 12dB (DA-G)

Figure 3.9 (a-d) : Contour plots of the field obtained by Deterministic
Annealing Gibbs case. In (a) full contour plot is shown, and in (b), (¢)
and (d) thresholded contour plots with thresholds 9dB, 12 dB and 15 dB,
respectively, are shown.
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is the optimal distribution, but at the same time it has higher computational
complexity.

In practice, interference plots are commonly used in network planning for
visualization of the spatial distribution of interference/SIR. Figures 3.7 — 3.9 depict
plots for one of the experimental configurations considered for problem P35 for DA-

Gibbs (Figure 3.9a-h), DA-Triangular (Figure 3.8a-h), and SA (Figure 3.7a-h),
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Figure 3.9 continued, (e-h) : Deterministic Annealing Gibbs membership
function; cells obtained by the Best Server Model and the Voronoi Region
Model are shown in (e) and (g), respectively. And the signal-to-interference
(SIR) histograms for each location on the field corresponding to the Best Server
Model and the Voronoi Region Model are shown in (f) and (h), respectively.
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solutions. The full range SR-contour plot (Figures 3.7a, 3.8a, 3.9a) corresponding
to the best server model show the SIR in dB at each location on the field. The 9dB
(Figures 3.7b, 3.8b, 3.9b), 12dB (Figures 3.7c, 3.8c, 3.9c) and 15dB (Figures 3.7d,
3.8d, 3.9d) thresholded contour plots depict the areas covered above the
corresponding thresholds, also corresponding to the best server model. The cdll
maps show the field partitioned into service areas corresponding to both the best
server modd (Figures 3.7e, 3.8e, 3.9¢) and the Voronoi region modd (Figures 3.7g,
3.89, 3.99). The cells are color coded according to the assigned channdl number,
such that, cdlls with zero being the assigned channd are black, whereas the cells with
K - 1 being the assigned channd are white, and the cdls with channds 1,2,--- K - 2
are colored with shades of gray from black to white. Finaly, the higogramsfor the
best server model (Figures 3.7f, 3.8f, 3.9f) and the Voronoi region mode (Figures
3.7h, 3.8h, 3.9n) show the number of locations a each SIR vaue when the fidld is
sampled at 100” 100 location (receiver) points.

We dso computed the SIR coverage on the domain of the nodes (the field) for
9dB, 12dB and 15dB, and the results are shown in Table 3.3 (in [37] it is Sated that
for GSM networks a9dB SIR threshold is acceptable, whereasin [72] athreshold
range of 12dB to 15dB is suggested). Aswe can see from the Table and from the
plots, the coverage is highest in the solutions produced by the DA-Gibbs case. The
SA performance lags behind both of the DA-Gibbs and the DA- Triangular
performances. Note from the histograms that the average SIR in the SA caseis more

than 3dB below that of DA averages. The service areas depicted in the cell maps,
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DETERMINISTIC DETERMINISTIC
VERTEX SIMULATED ANNEALING ANNEALING
SATURATION ANNEALING (TRIANGULAR (GIBBS
DISTRIBUTION) DISTRIBUTION)
P % coverage area % coverage area % coverage area % coverage area
(R; above above above above
? 9 12 15 9 12 15 9 12 15 9 12 15
E dB dB dB dB dB dB dB dB dB dB dB dB
M
P1 ] 96.87 | 90.64 | 80.02 | 92.83 | 87.87 | 73.39 | 95.98 | 90.59 | 79.48 | 97.85 | 92.46 | 81.75
P3 ] 98.46 | 94.85 | 85.11 | 95.96 | 87.92 | 77.27 | 98.64 | 9456 | 85.66 | 98.73 | 95.20 | 86.15
P5 19942 [ 96.03 | 88.28 | 97.71 | 92.21 | 81.72 | 99.60 | 96.69 | 88.65 | 99.88 | 96.91 | 89.47

Table 3.3: Results comparing Determinigtic Annealing Gibbs and Triangular
cases, Smulated Annedling and Vertex Saturation in terms of percentage sgna-
to-interference coverage are above 9dB, 12dB and 15dB.

Voronoi and best server models, indicate further that SA did not produce good

channd assgnments. Looking a the assgnments in the best server modd we see

that the solution generated cdlls within cells which definitdly imply not good

assgnments and not good partitioning of the field. Looking at the VVoronoi region

model, this time we see that the assignments produce co-channel nodes having

common borders (recal that the cells are color coded according to the assigned

channd to them). Consequently, from both models point of view, SA did not

produce good solutions as the numerica results showed too. The partitionings

resulted from the DA solutions, with the Gibhbs and the triangular cases, show much

better structure compared to the SA partitioning under both models, which were

again in accordance with the numerical results.
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When we compare DA and VSresultsin Table 3.3, we see that DA-Gibbs results
in a better coverage than the VS approach in dl the cases, and DA- Triangular results
are comparable with the VS results. In other words, the DA agorithms produced as
good as or better assgnment solutions in terms of coverage areathan the VS on the
problems generated by the VSitsdlf. Thismay be surprising sncein terms of tota
interference V'S results were better than the DA resultsin Table 3.2. But recall thet
the total sum of the interference results presented in Table 3.2 was between pairs of
nodes, i.e., interference from one node position to another node position. And since
VS assgnments are such that r, and r, separations are satisfied between pairs of co-
channd and adj-channd nodes, respectively, then the cumulative interference on a
node from the other nodes was low, resulting in low tota interference in the network.
Hence, at the location of the nodes and in the very close vicinity of the nodesthe SIR
ishighin VS solutions. However, as the receiver distance from the service
providing node increases, the desired signal power decreases and the interference
power, not only from the co-channdl and adj- channd nodes, but from dl of the nodes
increase @ the receiver’ slocation. Hence, the gradud interference accumulation
becomes significant, and agorithms such as DA, that take it into account have an
advantage, and thus produce solutions that enjoy higher SIR coverage area.

Finaly, in Table 3.4 the results of gpplying the proposed channel blocking
dgorithm to the DA — Gibbs caseis presented. Recdl that the aim of the channdl

blocking agorithm isto satisfy a given separation congraint while minimizing the
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DETERMINISTIC ANNEALING
(GIBBSDISTRIBUTION)

without blocking algorithm with blocking algorithm

ave.

(%) edges edges

interfer. | \igl. IE| IE|

interfer. | ol

ave ave. # | %viol. ave # | %viol.
K lo |V| IEl density total of ry of total total of 1, of total

8 | 711 | 55 | 272 | 1832 0.0512 6.3 2.30 0.0543 11 0.40

10 ( 711 | 65 | 389 | 18.70 | 0.0550 7.0 1.80 0.0567 15 0.39

12 | 711 | 75 | 533 | 19.21 0.0599 6.6 124 0.0600 0.9 0.17

Table 3.4: Results of the blocking agorithm gpplied to Deterministic
Anneding Gibbs case for channd sets of szes 8, 10 and 12.

totd interference. The agorithm is applied for channels K =8,10,12 and compared
with the results where the blocking is not applied. Note that dl three problems are
amog a the same leve of graph density for the given co-channd binary condraint,

I, , hence, the complexity of the problemsis kept roughly fixed. Although the
blocking did not result in 100% satisfaction of the binary congtraints the violations
werewd| below 0.5% after the blocking agorithm is gpplied, with only asmal
degradation in average totd interference, as compared with the results obtained
without blocking. For example, for K =12, where there were 533 constraints
(number of pairs of nodes with separation lessthan ;) to be satisfied, the number of
violations decreased from an average of 6.6 to 0.9 after blocking was used, with a
very small increasein average tota interference (only 0.12%.) We see atendency
that as the number of channds increases, the blocking algorithm performs better,

athough the density of congtraints is about the same (18% - 19%). Thiscan
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be explained by the fact that blocking is done only on one channd, hence when the
Sze of the channd st islarge the degree of freedom in the assgnment set after
blocking stays relatively high compared to the cases when the number of channdlsis
smaler. We can conclude from the resultsin Table 3.4 that the proposed blocking
agorithm can effectively reduce the number of violations with asmdl trade-off in
totd interference, and the results get better with increasing number of channels and

fixed graph dengty.

3.4.2 Realistic Freguency Planning Scenario

We have a0 tested our proposed agorithm on aredigtic frequency planning
scenario obtained from the COST 259 project [37]. Under this project various
redistic GSM freguency planning scenarios are compiled to alow the comparison of
different planning methods. Using the scenario named “K” from this s&t we have
tested and compared the performance of our agorithm with the best known
techniques that have been tested on the COST 259 project scenarios.

Scenario K isa GSM 1800 network with 92 sites, 264 cells and 267
trangmitter/recaiver (TRX) units. Fifty contiguous channds form the dlowed
gpectrum. Each steisacollection of cells and each cell can have multiple TRX
units as shown in Figure 3.10. The objective isto assgn one channd to each TRX
from the available 50 channels such that the totd interference is minimized. There
are aso hard congtraints that are not alowed to be violated. These are co-cdll
Separation congtraints and co-Site separation congraints. The co-cell separation
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sector 1

A cell in sector 1
with 2 TRXs/nodes

sector 2

TRXs in a common cell
should satisfy co-cell
channel separation.

TRXs in the same sector/
site should satisfy co-site
channel separation.

‘\\_\:I'_RX (node)

sector 3

Figure 3.10: Co-site and co-cell channel separations. These are hard constraints and
cannot be violated.

congraint requires that any two TRXs within one cell should be assgned channds
that are separated by at least 4 channels. The co-Site separation congtraint requires
that any two TRXswithin one Stein different cdls should be assgned channels that
are separated by at least 2 channels. From our design perspectiveeech TRX isa
node. The characteristics of the scenario isgiven in Table 3.5.

Theresultsare given in Table 3.6. The methods T-Coloring+VDS, TS+T-
Coloring+VDS and TS+DC5+VDS are channel assignment techniques developed in
[37], and Threshold Accepting [58] is the agorithm that produces the best
assgnments on COST 259 scenarios. Among the frequency assgnment techniques
developed in [37], T-Coloring+V DS, TS+T-Coloring+VDS and TS+DC5+VDS, the
performance increases in the given order while the running time increases in that

order too. The running times are machine dependent and it is stated in [37] that dl
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Density Ave. Max. Max. Nun?]ber ?j al\(ljymrg)er%lf Nun]lber
M (%) degree | degree | digue co-chann J-chann 0
edges edges Channels
267 56.57 151 238 69 19111 996 50

Table 3.5: Characterigtics of scenario “K” from COST 259 project [37].

three dgorithms run within less than 30 seconds on an IBM ThinkPad with Intel P11

processor, 650 MHz clock speed and with 575 MB of RAM. Itisaso stated in [37]

that Threshold Accepting requires an order of magnitude more running time than the

other algorithms. On the other hand our proposed agorithm using Deterministic

Assignment Violations Total Number of Edges with Interference above
Technique interf.
Co-site | Co-cdll 001 002 003 004 005 01
T-Coloring+VDS 0 0 138 41 14 6 5 1 1
TS+T-Coloring+VDS 0 0 125 40 2
TS+DC5+VDS 0 0 0.82 21 5
Threshold Accepting 0 0 0.45 6 1
DA —FAP 0 0 0.95 19 2 2

Table 3.6: Performance comparison of various frequency assignment techniques
on scenario “K” from COST 259 project.

Annedling, denoted as DA — FAP in Table 3.6 has arunning time of just over 60

seconds on a Dédll, Intel P11 processor, 550 MHz clock speed and with 384 MB of

RAM. While aproper comparison of running timesis not possible, the results seem

to indicate that the complexity of DA-FAP is significantly lower than that of

Threshold Accepting technique. In terms of performance Threshold Accepting
produces the best result. Our proposed agorithm, DA — FAP, dthough cannot

outperform Threshold Accepting, nevertheless, it is competitive. Notethat T-
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Coloring+V DS, TS+T-Coloring+VDS, TS+tDC5+VDS and Threshold Accepting are

al specificaly designed for channd assignment scenarios like the scenario “K.”
Hence, the competitive performance of our agorithm provesit to be agood
candidate for further investigation to adapt it for red life channd assgnment

scenarios.

3.5 Conclusion

Determinigtic annedling (DA) has been proposed as anove approach for the
interference minimization variant of the frequency/channd assgnment problem (M-
FAP). The DA's concept of starting the process by equal importance to dl possible
assgnments eliminates the requirement of achoice of initid configuration. Through
aprobabilidtic iterative process the DA adgorithm is cgpable of gathering the globa
informetion iteration by iteration (via the soft assgnment vaues) resulting in high
performance node-channe assgnments. The experimenta results show that the DA
performance outperforms the smulated annedling (SA) performance by alarge
margin, and moreover, DA converges faster than the SA dgorithm. The importance
of this concluson isincreased by the announcement in [37] that avariant of the SA
method, called Threshold Accepting, presently provided the best performance on a
collection of redigtic frequency planning scenarios. This method has not been made
publicly available yet. However, comparison with the results of the Threshold

Accepting dgorithm (given in [37]) and with the agorithms developed in [37] show
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that the DA agorithm is a competitive channd assgnment method. Hence, the
competitive performance of our agorithm provesit to be a good candidate for further
Investigation to adapt it for red life channd assgnment scenarios. Recdll that
Threshold Accepting agorithm and the ones proposed in [37] are specificaly
designed for such red life scenarios. We believe that the performance of the DA
agorithm gpplied to channel assgnment problems presented in this chapter provide
subgtantia evidence that the DA dgorithm is an excellent candidate for the channdl
assgnment problem.

The channd blocking agorithm, proposed as an extension to the proposed DA
dgorithm for FAP, which amsto satisfy a given co-channd separation while
minimizing the total interference satisfied the separations in over 99.50% of the
edges in exchange of less than 6% increase in tota interference compared to the
results without blocking. The dgorithm performed better with large channd sets

satisfying 99.83% of the edges with asmdl increase in interference (0.12%).
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Chapter 4

A Novel Constrained Vector Quantizer Design

Based on Multiple Projections and Multiple Stages

4.1 Introduction

Thevast mgority of practical image coding systems used today are based on the
transform coding paradigm, where image blocks are projected onto a series of basis
functions, and the expansion coefficients are subsequently quantized. Vector
quantization (V Q) techniques have been found to be of somewhat limited practica
use for high qudity image coding. Uncongrained VQ islimited to rather modest
vector dimensions and codebook sizes for practical problems because of the
encoding complexity [49]. Congtrained VQ techniques (say, for example, tree-
sructured VQ, TSVQ) can be used for these high dimension sources but often do not
make explicit use of specid characterigtics of the source data, such as the correlation
present in typical images. Our motivation in thiswork comes from considering

transform coding as a very efficient constrained VQ agorithm for correlated sources,
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where the reconstructed signal is obtained as alinear combination of scaled vectors
in the multidimensiona space. Our god in this chapter is aso to use projections of
the input onto multiple segments, but to tightly couple the selection of these
segments with the quantizer design. In contragt, in trandform coding the same
transform is used for dl inputs and the transform is designed without taking
quantization into account. Moreover, the segments we salect are not constrained to
form orthogonal bases.

We propose anove condtrained VQ design dgorithm, caled SegVQ. The
congtraint requires that the codevectors be located on line segmerts, where the line
segments are free to be anywhere in the source space. These line segments are
obtained based on an iterative procedure, where initial segment values are obtained

using principa component anaysis. Then each input vector inthetraining setis

assigned to the best candidate segment, and the segments are further refined based on

al the training vectors that were assigned to each segment. These segments exploit
the linear correaions in the source. An input vector is encoded by projecting it on to
al the segments and choosing the closest one, as shown in Figure 4.1. The closest
codevector on that segment is obtained from alook-up table, and therefore the
encoding complexity depends primarily on the number of segments.

We have dso designed an entropy constrained version of Seg-VQ, which we cdl
Seg-ECVQ. Inthiscase, once the segments are designed asin SegVQ the ECVQ

agorithm [19] congtrained to the segmentsis used to get Seg-ECV Q.
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Y
[

Figure 4.1: Encoding is done by finding the closest segment to x and quantizing
it with the codevector of the bin it fallsinto. In this example closest segment is

|, and projection of x fallsinto bin 2, soxisquantizedtoc, ,.

Although Seg-VQ has alow encoding complexity its storage complexity isthe
same asthat of VQ with unstructured codebooks. This prohibits usng codes with
large dimensions; for example, usng n =64 dimensiona vectors (8" 8 blocks) at
r =0.5 bits/pixel require acodebook size of 2™ =2% which isdearly not practical.
To circumvent this barrier we can use Seg-VQ in multiple Sages in atransform
coding flavor. Wecdl thisdesign Seg MSVQ. In SegMSVQ, Seg-VQ is applied to
thetraining set in the first stage and to the residua vectors in subsequent stages, o
that specific codebooks are designed for each stage. The reproduction vector for a
given input vector is the sum of the quantized representations in each stage.
Lagrangian optimization is used to determine the number of stagesto be used for
each input vector. We keep encoding the input in each subsequent stage until the
Lagrangian cost isno longer decreasing. Note that in the first stage we encode the
input vector and from second stage onwards we encode the residue vector from the

previous stage. Since variable number of stages are used for each input vector there
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is an overhead required to indicate the number of stages used to the decoder (this
overhead is entropy coded). The segment codevectors in each stage are also entropy
coded. While the approach is smilar to transform coding, in our system the segments
are not congrained to form abass. Asin transdform coding a variable number of
projections is used for each input. Seg-MSV Q has both low encoding and storage
complexity and shows promising performance at low rates.

The rest of the chapter is organized as follows: in section 4.2 we explain the
segment based VQ design and present its dgorithm (Seg-VQ). We dso explain the
entropy constrained design of Seg-VQ. In section 4.3 we present experimenta
results comparing Seg-VQ and its entropy constrained version with PNN [39]
initidized GLA on Gauss-Markov and image sources. We extend the Seg-VQ
design to multiple stages in section 4.4 (Seg-MSVQ), and in section 4.5 we modify
Seg-MSVQ to be more robust to rate adaptation. We present possible extensions and

future work in section 4.6. Findly, section 4.7 concludes the chapter.

4.2 Segment-Based VQ Design

4.2.1 Line Segment Based Voronoi Regions

A line segment in R" isdefined as | (u) = m+u>r, where m and r areany two
vectorsin R", and u isabounded scdar u,;, Eu£ u,,, . Lettheprojection of a

vector X R", X=Xy, X,-.., X,_y) , Onto aline segment between ¢, and c; be b, ll
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l(u)=m+ux

Figure 4.2: Perpendicular projection of avector on to aline segment. The
projection of vector x on the segment isb.

in R" asshownin Figure4.2. Then b ison theline segment defined by u,
b=¢ +u(c,—c). Using theinformation that b isthe perpendicular projection of
X on the segment, we can find the scalar u asfollows,

(x—b)-(c,—¢c)=0
- (-g-ule e} (o ¢)=0

(% —6)(c, —¢,)

n-1

> (euc)

1=0

= U=

Insteed of using the whole segment as avector, (c; —¢ ), we can useaunit 1 length

vector r , |r| =1, dong the segment and a vector m on the segment where vector

r starts (see Figure 4.2). Then the perpendicular projection b of avector x onthe

segment can be defined intermsof m and r

[y

n—

u=) (x—m)r. (4.)

Il
o

The minimum distance between avector xI R" and aline ssgment |,



d(x,,l
| (u)=m+ux

Figure 4.3. Line segment and minimum distances of vectorsto it.

d(x1)=mind(x1), isthe perpendicular distance from x to | if thereisa
perpendicular projection, otherwiseit isthe distance of x tothecloserend of | as
shown in Figure 4.3. Then, for an arbitrary set of L line ssgments{l,,1,,..., 1.} , we

define the line ssgment based VVoronoi regions V,, V...,V of atraningsst T

(T = U;;VS) corresponding to the L line segments as,

Vs:}x: s:argmind(x,lj)g, st {0,..,L-1. (4.2
| j

4.2.2 Optimal Subspace Decomposition

We know that the optima subspace decomposition can be achieved by the

Karhunen-Loeve Transformation (KL T) via the eigenva ue decomposition of the
covariance matrix of thetrainingset T, R=% § o (x= m){x- m)" , where
m= Y% é 2 X and K isthetraining set size. Hence, the optimdl transformationto a

k -dimensiond subspace, k <n, with respect to minimizing the mean squared error
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Figure 4.4. First principal component minimizing the mean squared error in
V, and asegment of it.

istheKLT. The k™ n subspace transformation matrix W consistsof k rows of the
elgenvectors corresponding to the largest k elgenvaues of the covariance matrix R.

Assuming that eigenvectors are orthonorma, the transformed vector is K =WW x ,
and |x- &|[* is minimum with respect to any other k -dimensiona subspacein R" .
Therefore, for agivenregion V, I T theoptimal line (k =1) 1, =m_+ur,
minimizing the meen souared error ||x- X|*, where x1 V, and X1 1, can be
obtained by setting m, = | a v, X and r, asthe unit direction vector in the
direction of the eéigenvector corresponding to the maximum eigenvaue of the
covariance matrix R, of theregion V,, ngﬁ,slést(x- m)Xx- m)" asshown

in Figure 4.4.

4.2.3 Optimal Location of Codevectorswith Line Constraint

Using the subspace decomposition we get the optima line 1, in V, which

minimizes the mean squared error between avector x1 V. and its perpendicular
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projection location X on |,. Thisminimum error is achieved if each X1 | isused as
acodevector. However, we are interested in minimizing the error with a smaller set

of codevectorsto be placed on |,. For agiven numberp . of codevectors,
C, ={Cos1Corrrns Gy, 15} » Wewant to find their optimal locations on |, such that the

squared digtortion in V,

D, = a d(x,q,s), i:argmind(x,cjys) 4.3
J

X Vg

isminimized. Note that the two outermost codevectors will determine the segment

S

of I, =1(u ) =m +uy,. Inother words, the scalar u, will be bounded,

Upins £ Ug £ U, ., and the two outermost codevectorswill beat 1(u,,,.) and

| (Unees) - Thelocations of the codevectors { G, ., ¢, -, G, ;.. aregivenby

Uy = {Ug g0 Uy g U1}
Tofind C, :{coys,clys,...,cps_ 1,5} in V, weuse GLA, iterating between the nearest-

neighbor condition and line-constrained (in this case ) codevector locations.
Starting with arbitrary locationsfor p . codevectorson |, we obtain the VVoronoi

regions 'V, ., V, Y/ using the nearest-neighbor condition. Then, in each region

1s1 1 Vpe-1s

V, wewant tofind ¢

(B

i=0,1,..,p, -1, tha minimizesthetotd digortionin V,

D.=a,, d(xg.,) i=01,..p,- 1.

Since ¢, iscongtrainedtobeon I, givenby ¢, =m +u finding u,

i,s r.s’
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correspondsto finding ¢, and we can expressthe totd distortionin V, ; asa

functionof u, ,

D(y.)=a d(x, m+y r.).

X\

Using the squared error distortion, d (,¢; ;) =||x- ¢ * wesolvefor P =0 to

S

ga ui,s’
D(u ° dlx, + r o
Du,)_ g Talxm+y.r)_, o (o4 m- 17x)
fu ¢ XV fu; ¢ Qv
: u
=28 J(u.+'m)- & g = 0
e dvie B
&, o]
p Ui o =i a rSTxi- rSTmS. 4.9
|\/iv5 XTVIS ﬂ
Ineach V., i=0,1,..,p - 1, we compute u, , usng (4.4) and we get the

corresponding codevector ¢ = m, +u, I, on |;. Wethen update the VVoronoi

regions 'V, ,V, \Y/ using the codevectors ¢, ¢, C .-, G, ;¢ and iterate until

0,s? "1,s7*"*? Vps-1s

/ﬂ\ V4 S

nearest ’neighbor
region for Cy ¢
(shaded area)

Figure 4.5: The codevectors designed on the first principal component of the
region V. Thetwo outermost codevectors define the segment.
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convergence. After convergence the two outermost codevectorson |, determine the
segment as shown in Figure 4.5, and using (4.2) we get the segment based Voronoi

region V;.

4.2.4 Incremental Addition of Line Segments

In the previous sections we assumed that initidly L regions or line segments are
given. However, snce we do not know the best placement locations for these L
segments we gart with one line segment and gradudly increase the number of
segments until some required number, L =L, , or arequired distortion threshold is

reeched. Initidly, we gart with L =1 and the whole training set asthe only region,

V, =T, Figure 4.6 (8). Theline |,(u) isthefirst principal component of T and we

obtain the segment |, using |, (u)- constrained GLA as explained in Section 4.2.3,
Then, we search for alocation to add the next segment. To avoid obtaining segments
representing too few vectors, we search for atraining vector z (z1 T) such that
when we obtain VVoronoi regions V, and V, corresponding to the segment |,and the
vector z, repectively, the cardindity of region V, isthe maximum compared to all

other z1 T, Figure4.6 (b). This reguires an exhaustive search of the training set and

it is computationaly complex. To reduce this complexity we can set athreshold,
such that when the cardindity of V, is above that threshold we stop the search.

However, exhaustive search of the training set gives better results, and the results
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principal component
of the training set

pointsin V,
are closer to
point zthan to segment |,

@ (b)

Voronoi region, V,

the points in V,
of segment |

(open points)

region
boundary

principal
component of the
points in V, (filled points)

Voronoi region, V,

of segment |
segment |, 9 1

© (d)

principal component of

final region

principal
boundary

component
of the points in V,

segment |, segment |,

(€ ()

Fgure4.6. To sequentidly add the segments, dart with thefirst principa
component of the whole input set T asoneregion Vo in (). The best location z for
the second segment is such that when we obtain VVoronoi regions Vo and 'V,
corresponding to the segment |y and the vector z, respectively, the cardinality of
region V, is maximum compared to dl other zin T, (b). Set V1=V, asthe new
region and find the principa components of Vg and V1 in (c), and the segmentsin (d).
Update regions V and V3 and obtain the principa componentsin (€), and then the
segments of the updated regionsin (f). Iterate between updating the regions and the
segments until convergence.
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presented in this chapter are based on exhaustive search. Oncewefind z and thus
V,,weset V, =V,. Asshown in Figure 4.6 (c) — (f), we repeat finding the optimal
lines, then the optimal segments, and updating VVoronoi regions v, and V, urtil
convergence. We continue adding line segmentsin thisfashion until L =1L, .

We dtated that the two outermost of the p . codevectors determine the line

segment |, but we have not explained how p ¢ for each region V; is determined.

We found that good performance is obtained if weuse p, =p =§|C|/L, j " s. Note

that this heurigtic assgnment of equa number of codevectorsto each segment is
used only during the design of the line segments, where the two outermost
codevectors determine the segment. Obvioudly, it is not necessarily optima to use
equa (or dmost equal) number of codevectors on each segment in the find
codebook. Therefore, once L, segments are designed we resort to the popular
resource alocation technique, the Lagrangian optimization for the dlocation of the
number of codevectors to each segment. Lagrangian optimization gives usthe
optima number of codevectors to be assgned to each segment such that the total

digtortion is minimized subject to the codebook size[95]. Thisis explained next.

4.2.5 Optimal Allocation of Codevectorsto Line Segments

Once L segments have been designed, we have to allocate the codevectors to the

segments such that the total number of alocated codevectorsis equd to the required
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codebook size, M =|C|. Hence, the problem isto find the optimal number of

codevectors, p to be alocated to each segment, |, s=0,1,..., L - 1, such that the
S _ o L1

total distortion, D=g _ D,(p

) isminimized:

S

=

L- L-1
mind D,(p,) suchthat Qp,=M (4.5)

P} oo =0
In(4.5) D,(p,) isthedistortioninregion s with p, codevectors allocated to

segment 1. We can put the constrained problem (4.5) in aLagrangian framework

and solve it as an unconstrained problem
3=a (D.(ps)+1 0. (4.6)

The nontnegative Lagrangian multiplier, | 3 0, dlows usto sdlect specific trade- off
points between codebook size and digtortion. The unconstrained optimization

problem can be written as,

L-1 L-1

minJ=ming (Ds(ps)+l ms):é min(DS(pS)+I >ps) 4.7)

s=0 s=0
which means that the minimum can be computed independently for each region [95].

Thisisadso cdled “congtant dope optimization” because the minimum of

Lagrangian cost J isobtained with the same | in each region (for details see [99]).
In order to solve (4.7) we need to compute the distortion D, (p,) in each region,

s=0,1,.., L- 1, with al possble codevector dlocation sizes p,=1,2,...,M . For

eachp . vauewefind the optima locationsof p . codevectors constrained to the line
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segment |, as explained in Section 4.2.3, and then compuite the resulting distortion,
D, (p.). Thebest alocation size p,, foragiven | can be obtained by computing
D, (p,) +! >, for p,=1,2,..,M, and choosing the dlocation that gives the
minimum, p; =argmin, (D, (p,)+! p,). Thisisdoneindependently for each

region. We use the bisection method to find the correct |  that achieves the optimal

solution for the required codebook size. In other words, we search for the | that
gives the minimum Lagrangian cost with the total allocated codevectors g ;ép .

equal to the desired codebook size, M . The resulting codevector dlocation

minimizes the totd distortion with the given quota of codevectors.

4.2.6 Seg-VQ Algorithm

Putting al the steps together we have the Seg-VQ dgorithm:
0) Intidization: L =1 and V, =T .
1) For L segment regions, iterate until convergence:
a foreachV,, s=0,1,...,L-1,find the first principal component,
l,(u)=m,+ur, ul R,
b. foreachlinel, (u), s=0,1,..., L - 1, useline-congrained GLA to find

the segment |,
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Cc. obtain the segment-based VVoronoi regions V,,V,,...,.V,_;
corresponding to the segments 1, ,1,,...,1, ;.
2) If L=L gotodep3), dse, find the next segment region, V, , set L =L +1,
and go to step 1).
3) Determine the number of codevectors, p . to be alocated to each segment |,
s=0,1,...,,L- 1, usng Lagrangian optimization.
4) For each line segment |, useline-constrained GLA to find the optima

locetions of the p , codevectors, and stop.

4.2.7 Entropy Constrained Seg-VQ Design

In the previous section we described a segment constrained codebook design for

agiven fixed codebook size. Theindex of each codevector can be represented in
binary with (Iogz|C|)/n bits per sample, where n isthe vector dimension. Inan
entropy congtrained design each codevector length isidedly equd to its sdlf-entropy,
—log, p(c), where p(c) isthe probability of codevector ¢. The digtortion criterion

ismodified to account for the codevector lengths, so that a given training vector X is

mapped to the codevector c,, such tht,

d(xc,)- I log, p(c,)Ed(xc)- I log, p(c,) "k (4.8)
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The average binary codevector length isthen equd to the index entropy, H =

—%ZC p(c)log p(c), up to the penalty introduced by the chosen entropy coder (say

Huffman coding). The parameter | 3 0 isthe Lagrange multiplier whose vaue will
determine the output entropy or therate, H .

For the entropy and line-segment congtrained design, we modify the SegVQ
dgorithm asfollows: In step 0) we dso require aratetarget R to be defined. Steps
1) and 2) do not change, i.e., we obtain the L line segments as before. In step 3) we
st avaduefor | , and instead of alocating afixed number of codevectorsto each
segment, we alocate many codevectors on each line segment. In step 4), we replace
the Euclidean distance criterion in the nearest neighbor rule with the onein (4.8),
which takes the sdf-entropy into account. \We obtain the line-constrained locations
of the codevectorsusing (4.4). In step 3), we iterate between the nearest neighbor
rule (4.8) and updating of the segment-constrained codevectors until convergence for
the particular vaue of | setin step 3). This procedure achieves a codebook with
codevectors constrained to the L segments and an encoder partition which is optima
for the rate associated with the value of | . For another rate, we go to step 3), set a
different vdue of | , and step 4) produces a different encoder partition and a
different codebook, but constrained to be onthe same L segments. Toreach a
desired rate we use the bisection method on | which gradudly approachesto the

correct | that givesthe target rate. Oncethisisreached, H = R, or approached for
acceptably smdl d >0, |R- H|£d, we stop. Hence, the entropy and segment

congrained algorithm, Seg ECVQ is:
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0) Intidization: L =1 and V, =T , and rate condraint R.
1) For L segment regions, iterate until convergence:
a foreachV,, s=0,1,...,L-1,findthefirg principa component,
l,(u)=m,+ur, ul R,
b. foreachlinel, (u), s=0,1,..., L - 1, useline-congtrained GLA to find
the segment |,
Cc. obtain the segment-based VVoronai regions V,, V...,V _;
corresponding to the segments 1,1, ,..., 1, ;.
2) If L=L gotosep3), dse find the next segment region, V, , set L =L +1,
and go to step 1).
3) Setavduefor | , and dlocate many codevectors to each segment,
s=01,..,L-1.
4) For each segment, s=0,1,..., L - 1, use entropy and segment constrained
GLA to find the optimal codebook. If |R- H|£d stop, otherwise go to step

3).

4.3 Experimental Results

We have compared the Seg-VQ dgorithm with PNN [39] initialized GLA [80]

using two firgt order Gauss-Markov sources, one with correlation coefficient
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a, =0.0 (uncorrelated Gaussian source) and the other with a, =0.9 (correlated
source). We aso experiment with an image source, where the 16-dimensond
training vectors (corresponding to 4” 4 blocks) were obtained from two 512 512
monochrome training images from the USC image database (each with pixe
amplitude quantized to 8 hits) and the performance istested on theimage “Lend’
which was outside of thetraining set. For the image source we have dso compared
the performance of Seg-VQ with the performance of TSVQ [49] at about the same
encoding complexity. Recdl that Seg-VQ's encoding complexity depends on the
number of segments, hence it can be adjusted to match approximeately that of
TSVQ's. Theentropy constrained version of Seg-VQ, Seg-ECVQ, dgorithm is
compared with the ECVQ agorithm [19] on the Gauss-Markov sources and the
image source.

We observe from Table 4.1 that in the case of the uncorrelated Gaussan source
the performance of Seg-VQ iswdl below PNN+GLA especialy when the Seg-VQ
codebook is constrained to a smal number of segments. For exampleusing L =4
segments Seg-VQ is 1.49 dB below PNN+GLA at 0.375 hits/'sample (bps) and 3.63
dB at 1.5 bps. However, the encoding complexity of Seg-VQwith L =4 ssgments
is 16 times less than PNN+GLA’ s full search complexity. With increasing segment
size SegVQ's performance increases providing atrade-off between complexity and
performance. But note that the performance does not increase linearly with the
number of segments. The increase in performance gradually decreases with the

increase in the number of segments because the resource, in this case the number of
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Rae | PNN 1 1svq SegVQ (dB) Seg VQ+GLA (dB)

(bps) +((3'E‘3)A @B) | L=4 | L=8 |L=12|L=32]| L=4 | L=8 | L=12] L=32

0375 | 247 215 | 098 | 149 | 195 | 231 | 232 | 231 | 238 | 238
15 8.24 753 | 461 | 638 | 737 | 799 | 798 | 803 | 802 | 813

Table 4.1: Gaussian source. Codebook sizeis64. In Seg-VQ, L isthe number of

segments.
Rae | PNN | 1ovq SegVQ (dB) Seg-VQ+GLA (dB)
bps) | TCLA| (@B) | =4 | L=8 |L=12|1=32]| L=4 | L=8 | L=12]|L=32

(dB)
0375 | 7.92 741 | 666 | 720 | 748 | 780 | 7.7/8 | 780 | 7.83 | 7.90
15 | 1361 | 1293 | 1193 | 1240 | 1301 | 13.31 | 13.37 | 1351 | 1349 | 1358

Table 4.2: Gauss-Markov source, correlation coefficient 0.9. Codebook sizeis
64. In Seg-VQ, L isthe number of segments.

codewords, that the segments can shareisfixed. Usng L =32 segments SegVQ
achieves a performance that isonly 0.2 dB — 0.25 dB below PNN+GLA with an
encoding complexity that is haf of PNN+GLA (full search of 64 codevectors). Note
aso that usng Seg-VQ asaninitidization for GLA, Seg-VQ+GLA, we obtain
unstructured codebooks that can perform within 0.1 dB of PNN+GLA performance.
Hence, Seg-VQ codebook can aso be used as an initidization technique for GLA as
an dterndive to PNN initidization, avoiding the long PNN adgorithm in exchange
for avery smadl performance pendty. To encode an input vector TSV Q requires
2logM distance computations, where M = |C| is the codebook size, and Seg-VQ
requires L distance computations. Therefore, Seg-VQ has the same encoding

complexity as TSVQwhen L =12, sncewith M = 64, 2log(64) =12, and we
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observe from Table 1 that at the same complexity performance of Seg-VQ is about
0.15 dB below TSVQ for the uncorrel ated source.

In correlated sources, Seg-VQ can perform better compared to uncorrelated
sources because it can exploit the corrdations in the source. In Table 4.2, using a
smdl number of segments, L =4 (L < M) it can perform 1.26 dB and 1.68 dB
below PNN+GLA at 0.375 bps and 1.5 bps, respectively, compared to 1.49 dB and
3.63 dB at the same rates in uncorrelated source in Table 1. Therefore, this shows
that in correlated sources, Seg-V Q can utilize its Sructure to exploit the directiona
preferences in the source to close the performance gap between itsaf and

uncorrelated near optimal PNN+GLA. Comparing Seg-VQ with TSVQ at the same
encoding complexity (L =12) in Table 4.2 we notice that Seg-VQ outperforms

TSVQ by asmadl margin. Improvement of Seg-VQ over TSVQ going from an
uncorrelated to a correlated source again shows Seg-VQ's ahility of exploiting the
directiond preferencesin the source to achieve higher performance codebooks than
TSVQ. Therefore, at the same encoding complexity Seg-VQ can perform better than
and has lower storage complexity than TSVQ in the case of correlated sources. The

storage complexity of TSVQ is nearly double that of unstructured VQ; using binary
tree for acodebook sizeof M thetotal storage requirement for TSVQis 2(M —1)

vectors comparedto M for Seg-VQ. Similar to the performancein Table 4.1, the
resultsin Table 4.2 for SegVQ+GLA indicate that Seg-VQ isagood dternative to

PNN as a codebook initidization.
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We have compared the Seg-V Q agorithm with PNN+GLA for performance and

with TSVQ for encoding complexity for the image source too. The results shown in

Table 4.3 indicate that Seg-VQ can perform very close to the unstructured

PNN-+GLA with very low encoding complexity. Note that the performance achieved

using the Seg-V Q codebook as an initidization for GLA, Segr VQ+GLA, isvery

Rate PNN+GLA TSVQ SegVQ SeqVO+GLA
(bpp) (dB) (dB) (dB) (dB)
0.4375 29.39 28.75 2927 (L=19) 29.36

05 30.15 29.44 29.85 (L=16) 30.11

Table4.3: Test imageis“Lemg,” outddetraining set. Theresults are PSNR.
Vector dimensons are 16 (4x4 blocks) in both cases. In Seg-VQ, L isthe

number of segments.

closeto PNN+GLA and, Seg-VQ'svery smdl performance difference from Seg-

VQ+GLA meansthat Seg-VQ is able to achieve very high performance codebooks

with low encoding complexity. At the same encoding complexity, Seg-VQ

outperforms TSVQ 0.4 — 0.5 dB at the rates considered. Thisresult, together with

theresultsin Tables 4.1 and 4.2, show that the higher the correlation in the source,

the higher the performance gain of Seg-VQ over TSVQ. Theresults also clearly

demonstrate that Seg-VQ is able to exploit the directiona preferences in the source

to achieve high performance codebooks.

Theresultsin Tables 4.4, 4.5 and 4.6 compare ECVQ and Segs ECVQ

performances for (uncorrelated) Gaussian, Gauss-Markov (correlation coefficient

0.9) and image source, respectively. We observe that, although Seg- ECVQ closes
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Rate ECVQ (aB) SerECVQ (dB)

(bps) L=4 L=8 L=16 L=32
0.375 3.82 0.99 1.50 2.05 2.41
15 952 463 6.47 7.94 8.33

Table 4.4: Gaussan source. Vector dimensonsare4 and 16. In Seg
VQ, L isthe number of segments.

Rate Seg-ECVQ (dB)

(bps) ECVQ (dB) L=4 L=8 L=16 L=32

0.375 8.67 6.75 7.27 7.67 7.95
15 14.10 12.68 12.92 13.40 13.80

Table 4.5: Gauss-Markov source, correlation coefficient 0.9. Vector
dimensonsare4 and 16. In Seg-VQ, L isthe number of segments.

(Fégtp‘i ECVQ (dB) SerECVQ (dB)
0.4375 30.20 (retained |C| = 639) 2956 (L=14) (retained |C|=282)
0.5 30.76 (retained |C| = 1280) 2995 (L=16) (retained C|=622)

Table 4.6: Test imageis“Lena,” outsdetraining set. The results are
PSNR. Vector dimensions are 16 (4x4 blocks) in both cases. In Seg-
VQ, L isthe number of segments.

the performance gap compared to ECVQ as the source correlation increases, it
cannot outperform ECVQ. Thisis because, while ECVQ optimizesaVQ's
performance minimizing the average digortion for a given rate on the entropy of the
codewords, Seg-ECVQ optimizes Seg-V Q' s performance for a given rate on the
entropy of the codewords. However, the segment condraintsin Seg-VQ limit the
improvement that it can gain from the ECVQ design principle compared to the

improvement that VQ gains. For example, in al the sources congdered in Tables

4.4, 4.5 and 4.6 the effective Seg-ECV Q codebook sizes were dways less than half
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of the effective ECVQ codebook sizes. Hence, while the segment-based structure
provides an advantage in correlated sources, the same structure reducesthe gainin
entropy congtraint design. But, we should aso bear in mind that we are comparing a
constrained VQ to an unconstrained VQ; Seg- ECV Q' s encoding complexity depends
on the number of segments and ECVQ'sis much higher depending on the codebook
size. Furthermore, if we consder that ECVQ retains more than twice the number of
codevectors than Seg- ECVQ, then we see that ECV Q' s storage complexity isaso
higher than Segr ECV Q' s storage complexity. Hence, in the case of correlated
sources Seg- ECV Q becomes an alternative to ECV Q where the choice between them

provides a trade- off between performance and encoding — sorage complexity.

4.4 Segment Constrained Multistage VQ

4.4.1 Motivation for Multiple Stages

Although Seg-VQ has alow encoding complexity its Sorage complexity isthe
same as that for an unstructured VQ codebook. This prohibits usng codes with large
dimengons, for example, usng n= 64 dimensond vectors (8x8 image blocks) at
rate r = 0.5 bitsg/pixel require acodebook sizeof 2™ = 2* whichisnot practical.

An dterndtive technique that has low storage complexity compared to
unstructured VQ storage requirement is multistage VQ (MSVQ) [49]. Thebasicidea
of MSVQ isto divide encoding into successive stages, where the first stage quantizes

the input vector and after this each successve stage quantizes the error vector from
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the previous stage. The quantized error vectorsin successive stages provide
successive refinement of the input vector, hence the reproduction vector is obtained

by sequentialy quantizing the resdue vector in each sage. Thismultiple-stage
processing resulltsin a product codebook, C* xC'? x---xC'® that isthe Cartesian

product of each stage codebook, c"i=12..5S sages. If thesizeof i™ codebook
isM! = ‘C“‘ — 2% where >, B = n-r, then the product codebook sizeiis
[]7,2% = 2™, and we see that the storage complexity of MSVQ is reduced from

[[,2"=2"t0> " 2% =" Mm",

In order to be able to use large dimensions and thus aso have low storage
complexity besides low encoding complexity, Seg-VQ is desgned with multiple
stages (SegMSVQ). In Seg-MSVQ with S stages, Seg-VQ designisused in each
stage to obtain the stage codebook using the residue vectors from the previous stage.
In other words the residue vector set generated in stage k —1 isthe input set to stage
k. Thissetistrained asin Seg-VQ to obtain the codebook in stage k. Then, the
residue vector set in stage K is generated with the stage k codebook using the
nearest segment encoding of the input set. Hence, note that the residue vector set
generated in each dageisunique. The encoding complexity of SegMSVQ is
Z;Li where L, isthe number of segmentsin stage i, and its storage complexity is
the same asin MSVQ. The reproduction vector X for an input vector x isthe sum

of the stage codevectors obtained in each stage,
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S

R=c 4@ o gc¥ =320 4.9)

where ¢ isthe codevector used in sage i to quantize the input vector from the
previous sage. The overall quantization error between x and its reproduction X

after S stagesisequa to the quantization error introduced in the last tage. To see
this, let R" be the residue vector in stage i, where the input vector to stage i isthe

residue vector instage i —1, R'™, and let X be the reproduction vector at stage k :

Stage Residue Reproduction
stagel: RY—=yx—c" Y _ W — y_RY
stage2: R? = RY_? {2 —ct L c®

—x_R? (4.10)

gageS: RY= RSY_¢® g=%9=c¥+c?® 4. +c9

Since theresidue (error) vectorsin stage k form the input vector set to stage k +1,
the error variance in stage k isthe source variance of gage k +1. So, the SNRin

dB of the system becomes sum of the SNRs ineach stage i, SNR [49],

S

NR=S"NR. (4.11)

i=1
Each stage generates an index corresponding to the codevector selected and these

indexes are sent to the decoder. Decoding is done by atable look-up for each stage.
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4.4.2 Multistage Seg-VQ Training

In the Seg MSVQ system we assume that all stages are fixed rate vector
quantizers, eech stage istrained as a separate Seg-V Q using the resdue set from the
previous stage, and encoding is done by nearest segment encoding.

The codevectors are entropy coded in each stage separately using Huffman
coding. Sinceit isunlikely that each codevector in a stage will be used with the

same frequency, entropy coding reduces the average rate for the codevector indexes
from log, M " to their entropiesin dl stages i =1,2,...,S. The entropy codes are

obtained using the training st and they can be computed sequentidly for each stage

right after sage training is finished as shown in Figure 4.7. We will denote the

length of an arbitrary entropy codeword in sage i as bé” . Note that the subscript ‘¢’
in b’ is used to distinguish between bit lengths for codevectors and bit lengths for

stage codewords; later we will use subscript ‘s for stage codeword lengths, bﬁ” .

{i}> stage 1 | {R"}| stage 2 {R(z)i__f_R(S_l)} stage S

Seg-VQ | Seg-vQ Seg-VQ _l
\ 4 Y
Entropy Code Entropy Code Entropy Code
stage 1 stage 2 stage S
codewords codewords codewords

Figure 4.7: Multistage Seg-V Q. In each stage Seg-VQ algorithm is used to
generate the stage codebook. After each stage the codevectors are entropy
coded using Huffman copding.
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Notethat usngdl S (maximum stage number) stages to encode may not dways

give the best result. Itispossbletha inagage k, k < S, the residue vector isthe

zerovector, R = R** —c¥ =0, i.e, R“? =c". From (4.10) we seethat in this

Situation we can perfectly recongtruct x with k stages, K = x, and there is no need

to proceed to the next stage. A more important Situation to consider iswhen we have

arate budget. It is obvious that with each additional stage used the rate increases.

So, at astage k the decrease in digtortion to be obtained by encoding with one more

stage (k +1) may not worth the increase in rate. In such Stuations we encode the
input vector using stages 1 to k. Therefore, optimal encoding does not necessarily
require al stagesto be used for each input vector, both with and without arate
budget.

This means that we will use a variable number of stages to encode each vector,

and s0 we need an index to specify the number of stages used for each vector. We

Start codeword End codeword
for X, for X,
m(n) = 6 stage 1 stage 2 stage 3 stage 4 stage 5 stage 6
B codeword codeword | codeword | codeword | codeword |codeword
L l Y l Y l Y i ' v J

A
\'d : \ \ \ \ YG/
log,S K o2 o’ o U o ¥

Figure 4.8: Codeword for X N in the encoded bit stream. The index m(n)
indicates how many stages are used to encode X In this example the index
mis not entropy coded. bc(f;, is the length of the stage i codeword for X .
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can do thisin a draightforward manner encoding the indexes into fixed length
codewordsrequiring log, S bits (S isthe number of Stages). Let thisindex be m;
m takesonvalues 1,2,..., S. Thisalows the decoder to know the boundaries of
each vector in the bit sequence it receives. The Situation is depicted in Figure 4.8.

To find the optimal number of stages m(n) to encode each input vector X, from

an input st such that the total distortion D isminimized for agiven rate condraint

P , we haveto solve

{r&in)r;ZHRﬁm(”)) such that S°r™ <p. (4.12)

(mi(n)||?
Notethat | R,

isthe sguared error incurred by encoding x, up to stage m(n),

and r'™" s the number of bits required to encode X, up to stage m(n). We usethe
Lagrangian optimization to convert the congtrained problemin (4.12) to an
uncongraint problem parameterized by the Lagrange multiplier | ,

J=D+I R
(m(n)||*

—aﬁf&

To encode an input vector X, let the codevector selected at stage k be c,ﬂ” . Thenthe

(m(n)

+I><ar

C ol )0 (4.13)
ﬂ

Lagrangian cost of encoding x, up to stage K is,
=[ROJ +1 . (4.14)

In(4.14) R¥ = R Y —c¥ and r™ isthe number of bits used up to stage k ,
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k i
r' =log, S+ > b (4.15)
i=1

where bf}1 is the length of the codeword in bits corresponding to the codevector cf]i) .

o, the cost functionin (4.14) is,

k . s
3 =H RY "4 gogzs+ a0 (4.16)
iz @

Note thet currently we use fixed length codewords, log, S, to define the stage; later
we will explain how to obtain entropy codes for them. The Lagrangian cost in (4.13)

that we woulld like to minimize over m(n) Vn becomes,

2 @ W) ) 00
+1 Elogzs+a b n s

30 )= in& Jr
mng() {rnqlngan_ R, A bz

{m(n

2 ®e mé”) i 60
+1 >§Iogzs+ a b(%ii (4.17)
i=1 gb

-2 mi (m(n))
= in
a o) EWR“
which means that the minimum can be computed independently for each input vector

foragiven | . Theagorithm isshownin Figure 4.9. For each input vector X, we

compute the residue vector R” in theffirst stage and if H RY|=0 thenthe

reproduction vector is X, = ¢, which in thiscase X, = x_, and go to encode the next
input vector, x,.,. Otherwise, we compute the cost Jﬁ” udng (4.16) with k =1 and

go to stage 2. If the stage 2 cost is less than stage 1 cost, J" > J?, we go to stage 3,
and continue until the codt is no longer decreasing. If the minimum cogt is achieved

for example at stage k, that is, J™¥ < J*?, then the reproduction vector is
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Figure 4.9: Multistage Seg-VQ encoding algorithm for a given rate. The
Lagrangian cost function is used to determine the optimal number of stagesto be
used to encode each input vector for the given rate. 8 isthe Lagrange multiplier.
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X, = Zikzlcfj) . Recdl that in each stage i we use the nearest segment encoding to

generate the codevector cf]” Vn; it isthe codevector that the input vector to stage |

is quantized with.

We have used fixed length codewords, 10g, S, to define the stages. But, entropy

coding reduces the average rate from log, S for stage indexes to their entropies. To

obtain the entropy codes for each stageindex i and thustheir bit lengths bﬁi)

(subscript ‘s isto denote that the bit length is for a stage index), we sart with

b =log, S Vi and iterate using the algorithm in Figure 4.10, where the block F is

the dgorithm in Figure 4.9. Define the stage probabilities with p, (l) 1=12,...,S.

So, b =log, S Vi meansthat p, (i) =1/S Vi inthefirgt iteration. Let t(i) bethe

number input vectors that were encoded using stages1to i . At the end of each

iteration we compute p, (i) =t(i)/N Vi, where N isthetraining set size, and use

Initialization
pu(i)=4"
set |

J(1)=¥

\ 4

\ 4

Compute

total cost
Iy

Update
Entropy
Codes

Yes
converged?

No

Figure 4.10: The algorithm to obtain the entropy codes for the stage indexes.

The block F isthe agoritm in Figure 4.9.
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b’ =—log, p, (i) inthe next iteration in the cost function. The cost function a

stage k becomes,

2 =R +1 o 10g, p (k) +4 b2 (419
2 @

Weiterate until probabilitiesbe p, (i) i =1,2,...,S converge. After convergence
weuse P, (i ) to get the entropy codes for the stages using Huffman coding, where

bs“) are the length of the codesin bits. The obtained codes are optima for the

Lagrange multiplier |  used which correspondsto arate. If thisrate is not our target
rate we haveto change | and repeat this process until the desired rate is reached.
We have used the bisection method to search for theright | for the target rate.

To encode a source for a given rate budget we use the dgorithm in Figure 4.9

with the Huffman tables generated. Let bi‘) be the length of the binary codeword
representing stage i, and let b be the length of the binary codeword representing
the codevector CS) which is used to quantize the " input vector to stage i . Then, a
each stage the Lagrangian cost of encoding vector n is,

il

. »‘é%gk) +3 609, (4.19)
)

i=1

=IR)
“Ir

To encode each input vector X, we compute the residue vector Rf) inthe firs stage

and if H R"||= 0 then the reproduction vector is X = ¢ = x_, and we go on to
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encode the next input vector, x,.,. Otherwise, we compute the cost Jﬁ” usng (4.19)
and go to stage 2. We continue sequentidly through the stages until the cost isno

longer decreasing. If this happens for example at stage k, 3% < J¥ | then the
reproduction vector is X = Zikzl ! and the number of bits used is

r =b® + 3" b' . Wesearchthrough | to reach the desired rate budget. In our

experiments we used the bisection method to locate the correct | for the desired rate

budget.

4.4.3 M —Algorithm for Encoding

In the sequentia encoding with Segr M SV Q explained above, in each stage the
nearest-segment encoding is performed greedily without considering the upcoming
stages. Hence, it overlooks at the possibility that a sub-optima codevector choicein
stage k (sub-optimdity iswith repect to nearest-segment encoding) may result in a
smdler resdueerror inastage h >k +1. For example, let R% be the residue vector
in stage k corresponding to the nearest codevector on the nearest- segment, ¢, and
let R™ be the residue vector corresponding to codevector T such that

H RY . Seg-VQ sdects ¢, However, the residue vectors R*** and R***

<H§<k)

generated in stage k +1 corresponding to RY and R", respectively, may be such

that H R« . And so, considering both stages k and k +1, T isabetter

> Hﬁ(kﬂ)
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choicethan ¢ instage k. Thismeansthat the optimal codevector sequence for the
stages requires an exhaustive search to be performed among H; M Y choices,
which is the encoding complexity of an unstructured codebook of thet Sze. Since
thisisnot practica for large codebooks, the M — agorithm is used to improve the
performance at the expense of controlled increase in complexity.

The basic idea of the M — dgorithm [49] isto grow atree of choices where each
level of the tree corresponds to a stage and at each level no morethan M paths are
preserved as shown in Figure 4.11. Thetreeis congtructed out to level p , where p
isthe largest integer for which 2° <M, kesping dl 2° pahs. Atlevel (stage) p+1
the totd number of paths reaches 2°** > M, however, only the “best” paths are
saved as candidate codeword sequences. Then, at level p+ 2 dl of the M retained
paths are extended producing 2M paths, and again only the “best” M of the 2M
paths are saved the others are pruned. Thisis repeated until thelast level (Stage) S.
At this point we have M sequences of codewords from stage 1to S and the best one
IS chosen.

Recdl that Seg-VQ sdects the nearest codevector on the closest segment in each
sage. Therefore, a each node of the tree we select: the nearest codevector on the
closest segment asthe firgt choice and closer of {the second nearest codevector on
the closest segment, the nearest codevector on the second closest segment} asthe

second choice. At each level/stage we keep the paths corresponding to the M
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Figure 4.11: An example of encoding using the M-algorithm with M=4.
At any stage no more then M paths are allowed; the larger cost paths are
pruned. Also, apathisnot grown if the cost function is no longer
decreasing. In this example the cost at each node is shown in paranthesis.
The best path has a cost of 49 at stage 4. Hence, the input vector is encoded
using the codeword choices made along that path up to stage 4.

smallest cost, where the cost functionis (4.19). A path isgrown aslong asitisone
of the M best paths and the cost is decreasing. We sdlect the minimum cost path at
the last stage or if the costs Sart to increase before reaching the last stage, as shown

in the example in Figure 4.11, we select the path up to the stage/level where the cost

iS minimum.
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4.4.4 Experimental Results

We have trained the SegrMSVQ codebooks using three 512x 512 monochrome
images from the USC image database (each with pixd amplitude quantized to 8
bits. We used 8x8 blocks corresponding to 64 dimensond vectors and the
performance is tested on “Lenad’ which was outsde of the training set. In each stage
we trained the stage codebook using 64 codevectors and L =15 segments. The
results for various stages and rates are shown in Table 4.7. Note that a very low
rates (below 0.3 bpp) the results are better than standard JPEG. We observe from the

Table that the resultsimprove with increasing number of stages especidly at high

TR E— SegMSVO
(bpp) 8 stages 12 stages 16 stages 32 stages
0.20 28.47 29.14 29.48 29.50 29.49
0.25 30.12 30.01 30.39 3041 30.42
0.30 31.82 30.63 3111 3114 3116
0.40 33.45 3143 32.14 32.27 32.33
0.50 34.60 31.84 32.84 33.10 33.25
0.75 36.45 -- 33.70 34.40 34.92

Table4.7. Testimageis“Lena” Theresultsarein PSNR. In al cases, each
stage is designed with 64 codevectors and L=15 segments.
rates. With more stages the digtortion is naturaly expected to decrease, and since
rate-distortion optimization is used to determine the optima number of stages to be
used, this results in reducing the digtortion the mogt for the given rate. In other
words, depending on the avalable rate, the Lagrangian optimization determines the
number of stages to be used for each input vector. If there are many stages available,

the higher order stages can only be used if the rate is high enough. A low rate will
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not be enough for higher order stages to be used to encode the input vectors. This
can be seen a rate 0.20 bpp in Table 4.7. We see an improvement going from 8
stage to 12 stage case. However, having more gages (16 and 32) does not further
improve the performance, because 0.20 bpp does not provide the enough bit
resources to go over 12 stages.

The Tables 4.8 and 4.9 show the results obtained using the M — agorithm with
M =4 and M =8 for the 16-stage and 32-stage Seg-M SV Q, respectively. The
column “1 path” contains the results from Table 4.7 for comparison. We observe

from Table 4.8 that starting from 0.25 bpp we see an improvement in usng multiple

Rate M =1 (angle path)
(bpp) In each stage nearest codevector M =4 (paths) | M = 8 (paths)
on the closest segment is chosen

0.20 29.50 2951 29.53
0.25 3041 30.64 30.65
0.30 3114 31.48 3151
0.40 32.27 32.79 32.85
0.50 33.10 33.70 33.82
0.75 34.40 35.24 35.30

Table4.8: Testimageis“Lena” Seg-MSVQ with 16 stages.

Rate M =1 (angle path)
(bpp) In each stage nearest codevector | M =4 (paths) | M = 8 (paths)
on the closest segment is chosen

0.20 29.49 29.53 2054
0.25 30.42 30.62 30.60
0.30 31.16 31.45 31.45
0.40 32.33 32.83 32.86
0.50 33.25 3381 3391
0.75 34.92 35.71 35.82

Table4.9: Testimageis“Lena” Seg-MSVQ with 32 stages.
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paths over the single path. And as the rate increases the improvement increases; for
example, at 0.75 bpp the difference between M =1 and M = 4 is0.84 dB. Note

that thisis alarge increase consdering that the search is narrowed down to only 4 of

the possible 2*° paths (codeword sequences). The result with M = 8 at the same
rateisonly 0.06 dB better than the onewith M = 4. Thisshowsthat a rates below
1 bpp we can obtain large performance increase in exchange of asmdl increasein
the search space, and thus, the encoding complexity. Observethat at low rates, for
example 0.20 bpp, the improvement going from M =1to M =4(and M =8)is
negligible. Thisis because when the rate budget is low, the Lagrangian-based
encoding dlocates asmal number of encoding bits to each input vector, which leads
to asmal number of stages being used. Therefore, for dl of the input vectorsin al

of the M >1 paths, the Lagrangian cost function reaches the minimum &t early
stages. In Table 4.9, where the results are compared with M =1 and M >1 for 32
sages, the improvements obtained with the M — dgorithm are smilar to those in the
case of 16 stagesin Table 4.8. The only differenceisthat at high rates we get better

results with 32 stages than with 16 stages for both M =1 and M >1.
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4.5 Segment Constraint Multistage VQ with Uniform

Quantization of the Segments

4.5.1 Motivation

In the previous sections we have designed systems using Lloyd-Max quantization
on the segments. In this section we will consder a system that uses uniform
quantization of the segments where the step szes A, and thus the codevectors, will
be adapted to the desired rate. The codevectors are at the center of the bins of size
A and we use mid-rise quantizers on the segments. The reason for the latter is
explained below. A system that has adjustable quantization bins rather than fixed

binsis more flexible to rate changes.

3

Ievels\ ,

Z \, kf,ﬂ;step size
1 A

segment 1
®

segment 2

Figure 4.12: The vector x is closer to segment 1 than to segment 2. Its
perpendicular projection fallsin the bin of level 2. The bin (step) sizesare
uniform. xis quantized to the center point of level 2. To be ableto
reproduce the quantized value of x the decoder needs to know the step
size, the segment and the level number.
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The system consists of stages with segments and step sizesfor each stage. The
segments in each stage are designed asin Seg-MSVQ. The encoding of an input
vector X instage k isdone by projecting it onto the nearest segment, and quantizing
it with the center of the bin it fallsinto as shown in Figure 4.12. This meansthat the
codeword will need to specify the segment and the level used for quantization.
Therefore we need to design codewords for the segment indexes and codewords for

leved indexes.

4.5.2 System Design

Since we are using the nearest segment there is a unique segment selection for
each input vector in each stage. The popularity of the segmentsis not expected to be
uniform and therefore we entropy code the segment indexes. Using the training set
we count the number of times each segment is selected and we rank the segments
according to their popularity in each stage. The most popular segment in each stage
isgiven index 0, the second most popular sesgment isgivenindex 1, etc. The
frequencies of these indexes are used to entropy code them using Huffman coding.
Hence, we have one segment Huffman table for dl the stages. We could have
obtained separate Huffman tables for each stage, however, we observed that the
vaiation in the popularity of the ssgments in eech dageisnot large. To explain this
condder asystem with 3 stages having 2 ssgments in each stage, and let the training

st Szebe 100. Then, we say that the variation in the popularity of the ssgmentsis
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amdl if the cardindities of the popular segment in the 3 stages are close to each
other, for example, they are 71, 69 and 73. And the cardinalities of the second
popular segment are a so close to each other; 29, 31 and 27.

Obtaining the level codewordsis not straightforward because the number of
levels depends on the step sizes and step Sizes depend on therate. For large rates the
step szes are smal compared to low rates. Therefore, first of al, we need to find the
optima step sizes for each stage for a given rate such that the totd digtortion is
minimized. To Smplify the problem we can think of limiting the number of possble
step sizechoicesto p . Theinitid problem with this gpproach is how to choose the

p step sze choicesfor each Sage. However, note that even if we find away of
choosng p dep sizesfor each stage there is another problem. Each input vector
will generate aresidue vector for each step size choice, so in sage 1 we will have p
different resdue vectors for each input vector. This meansthat there will be p input
setsfor stage 2 corresponding to each choice in stage 1. At the end of stage 2 there

will be p® residue sets, and the number of residue sets at the end of stage S will be
p°. Therefore, this approach requires that we find the best step size sequence from

theset of p°® sequences, which would be avery complex task. It is gpparent that the
problem of this approach is the step size (or the quantization) dependency among the
stages.

We can decouple the step size dependency among the stages by using the

perpendicular projection vectors on the nearest ssgment in a stage as the input vector
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&t to the next stage. For example, in stage 1 |et the perpendicular projection of x on

the nearest segment be y™, then the residue vector is RY = x— y®. Hence, for each

X thereis a unique residue vector, and so there is a unigue residue vector set { R }
which will be the input sat for sage 2 as shown in Figure 4.13 where

19 =mW +ux isthe dosest sgment to x intage 1. Inthisway thereis aunique
input vector set for each stage. The sub-optimality introduced by this gpproach is
amdl for samdl sep szes (high rate), and it increases with increasing step Sizes.

In order to solve for the optimal step sizes (and so for the optima number of
levels) for each stage for a given rate such that the tota ditortion is minimized, we
need an expression for the total distortion. We will use the decoupling of the stages
explained above to derive an upper bound on the distortion in terms of the number of

levels. Note that the segments can be anywhere in the space with respect to the

2
e y( )
l_
: N
closest closest
segment segm(int
to X to RY
R(l)
origin
origin Stage 1 Stage 2

Figure 4.13: In each stage perpendicular projection of the input vectors on the
nearest segments are used to generate the residue vectors.
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origin, asin the 2D examplesin Figure 4.13. In the derivation of the digtortion
bound we assume that in each stage the coordinate system is shifted by the mean
vector, m, of the nearest ssgment to the input vector in consderation. This brings
the vector r of the nearest segment to the origin. We can represent the shifted
vectors as follows,

x¢= x- m? (stagel)

y¢) =y - m (stagek)

REY = REY - mk) (stage k, R*¥ isthe input vector to stage k).
Note that shifting the coordinate system by the mean vector of the nearest ssgment
has no effect on the derivation of the distortion bound, because the magnitudes of the
residue vectors and the quantization errors do not change. For the sake of notationa
amplicity, in the following we will omit the dashed representation and assume that

the coordinate system is shifted by the mean vector in each stage.
We can represent y as,

=) e (.20

where (a,b) istheinner product of vectors a and b. Since R isorthogona to

(e
2

e

(4.21)

b= ffr)

R™ will be theinput vector to stage 2. Let y*> be the perpendicular projection of

R" on the closest segment in stage 2, then,
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RY —y? +R?

Y2 :<R<1> r<z>>_r<z>

o> _I/r® 1@\ LI
[R] =[(re e+

(4.22)

Hence,

T

I =[(xr)

Note that this does not require that the segments be perpendicular. After k stages,

2+‘<R(1),r(2>>

(4.23)

letting R? = x,

2

k . |2
I = S|(R )[R

(4.24)

So far thereis no quantization. Define a ¥ asthe inner product <R<k’l>,r(k)> at stage

k.i.e, a® isacoefficen,

by =RV )l =, (4.25)

Wecancdl ™ asthe chosen basis function, recall that r ' lies on the segment. Let

X" be the recongtruction of X up to stage k using perpendicular projections on the

closest segments, then,
& i
X = §
i=1
Kk : k
=3 <R(' 1)’r(n)>>¢(l) = A a0 (4.26)
i=1 i=1
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Stage 1 Stage 2

Figure 4.14: Both non-quantized and quantized coefficients are shown. In each
stage the quantized coeffiecients will be used to reconstruct the input vectors.

But, we will be reconstructing the input vectors usng quantized coefficients. Let the

quantized coefficients be {a‘ (k)} , and let the reproduction vector corresponding to the

quantized coefficient be ¢ =a™r® as shownin Figure 4.14. Then, the

reconstructed vector at stage k using the quantized coefficients, %" is,

koo
7(k) et C(l) +C(2) + ...+ C(k) et é C(')
i=1

K N
=4 a'ft, (4.27)

2

(4.28)

[

Recdll that = 1 Vi. Usdng triangular inequality we can upper bound the

digtortion,
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Therefore, the upper bound on the tota distortion for al input vectorsusing dl S

dagesis,
N-1 S . . 2
peld 3 (ap - a—n@)) (4.30)
N n=0 iz

where N isthetraining set szeand, a"” and &' are the non-quantized and

quantized coefficients of the n™ vector in stage i .

Recdl that we were going to uniformly quantize the ssgments. Using astep Sze
of A the quantization eror liesin theinterval [—4,4]. For small A we assume
that theinput is uniform in thisinterva, and thus the mean squared quantization error
intheintervd [—% ,%] is A?/12. Recdll dso that we were going to quantize the
segmentsin each sage. Since the segmentsin a sage are not necessarily of same
lengthwe will use the average segment length in each stage. L et the average
segment length in stage k be L, and let m, be the number of equd intervason L, .
Thenthesepsize A, indage K is,

Lk

D, = (4.31)
m

and the uniform quantization error in stage K is,
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(4.32)

Using (4.32) we can represent the upper bound on the total distortion in (4.30) as

=

O
h
I QJO(/)

2 po
I

>

g

I Qoo
[N

g

Qo?

TS

Qoo Z| - Z|k

I
=
N

3

(4.33)

N

Hence, we have an expression of the total distortion in terms of the number of levels
mfor each stage, i =1,...,S. Since we know average segment lengths L, we can
compute A, udng (4.31) if weknow m . Therefore, to obtain the optimal number of
levelsfor eech stage, i =1...., S, we need to solve for m such that the tota distortion
iIsminimized for agiven bit rate. Let thetotd ratebe H , which isthe sum of the
ratesin each stage, wheretheratein astage k, H, isafunction of the number of
levels m, H,(m). Wecan solve this problem using the Lagrangian optimization

using the digtortion expressonin (4.33),

J(| ):D+| H
&G S
_i=112>¢rf+| x§1Hi(m). (4.34)

The leve probabilities are assumed to be uniform which assumesfixed length

codewords for ease of computation, and so (4.34) becomes,

S S

A ( ):éllzbmz +1 44 log, (m). (4.35)
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Tofind optima m, " k , a thegiven | , solvefor (13 (I )/m ) =0:

MG)L ﬁﬂ_l —o
m 6xm mIn2

Findly, the optima number of step sizesfor agiven rate budget dictated by | are,

In2
64

’6>4
D =,— "Kk. 4.37

Therefore, the optimal step sizes are the same for dl stages.

m =L "k, (4.36)

and s0 the optima step Szesare,

Wetrain our system using the result in (4.37) for agiven rate budget. In other
words, we search for the correct |  udng (4.37) that gives us the desired rate.
Although thereult in (4.37) assumesthat the level indexes will be of fixed length
(this assumption means that in each stage the level probabilities are equd), in
practice the frequency of occurrence of each level inastage k usng A, will not be

the same. More specificaly, in each stage there are more vectors that are projected
to the center of the segments than to the edges.  Hence, entropy coding of the level
indexes improves the result. To take advantage of the fact that projections are

concentrated at the center we combined the negative and positive indexes of the

same integer into one category. Hence, level indexes {—1,1} form category 1,
{—2,2} form category 2, etc. A sgn bit is used to differentiate between the two
sdectionsin acategory. Therefore, to represent a codeword in astage k we specify,
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segment codeword + categorycodeword + signbit .
For the n™ input vector to stage k let the length of the chosen segment codeword be

defined as tq(Ykn) . Then the length of the codeword required to encode the n™ input

vector in sage k using fixed length codewords for the categoriesis,
b =g + Iogz§lo+1 (4.38)

Note that if there are m, levels, using 2 levelsin each category gives m, /2
categories. And since we are using mid-rise quantizers there is an even number of
levelsresulting in an integer number for the category Sze. Using (4.38) the total

codeword length required to encode x, up to stage K is,

4l a? +|og2§’ﬂ°+1° (4.39)

4 !
We want to compute the entropy codes for each category in each stage. Hence,
we need the category probabilities. To obtain the category probabilitiesin each stage
foragiven | we gart with uniform assgnments and iterate until they converge. In
other words, given | wefind the number of levels using (4.36) and assgn uniform

probabilities to the corresponding categories: for example, if m, =10 then thereare 5
categories, {—1,1}, {-2,2}, {-3,3}, {~4,4} and {-5,5}, each with probability
0.2. Ineachiteration we keep track of the number of occurrences of the categoriesin

each stage, compute their probabilities and generate their Huffman codes. We use

these codesin the next iteration. We repest this until convergence. After
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convergence we have the entropy codes for the category indexes in each stage for the

given | . Let thelength of the category codeword that encoded the N input vector

to stage K be b(;) , Where the subscript ‘'t ’ isto indicate category, then, (4.39)

becomes,
(B +1"),+1). (4.40)
Thisisthetotal rate required to encode X up to stage K.

Therefore, after the system istrained for each stage we have a category Huffman

table and one Huffman table for the segments. Note that the decoder also needs the

index for stage K to be able to decode correctly. We can either use fixed length

codewords for the stageindexes, b’ = log, S for S stages, or we can obtain their
entropy codes while obtaining the entropy codes for the category indexes. We can
do the latter by dternating between updating the category index codewords with
fixed stage index codewords, and updating the stage index codewor ds with fixed
category index codewords. Thisis repeated until convergence. In thisway we
obtain a Huffman table for the stage indexes too.

The encoding of an input set is done using the dgorithm in Figure 4.9 wherein
each stage we project the input vector on the nearest segment, compute the leve it

fdlsinto usng the sep size, compute the resdue error, and compute the Lagrangian

cost. The cost of encoding the n™ input vector up to stage Kk is,
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~|RO +1 >§5 +4 (b0 -+ +1)2. (4.4)
"

To encode the input s&t for a given rate budget we search for the correct | using the
bisection method. We have named this system Seg-U-MSVQ, where ‘U’ is used to

indicate the uniform quantization nature of this system.

4.5.3 Experimental Results

Thetrained SegrU-MSVQusng S=16 stagesfor ahigh rate, 1.2 bpp, and for a
lower rate, 0.6 bpp. The training set used was the same one that was used to train the
Seg-MSVQ in the previous section. We have tested Seg U-MSVQ on the Lena
image, which was outsde the training set. The results are shown in Figure 4.15.

The SegMSVQ plot is dso shown as areference. Note that when the system is
trained for ahigh rate, 1.2 bpp (small step size) it performs better than SegMSVQ at
the design rate 1.2 bpp and at mis-match rates down to about 0.45 bpp.  On the other
hand, when Seg- U-MSVQ istrained for ardatively lower rate, 0.6 bpp, then we see
that its performance is below Seg-U-MSVQ optimized for 1.2 bpp at al rates. At

low rates, we would have expected to see Seg-U-MSVQ optimized for 0.6 bpp to

outperform Seg-U-MSVQ optimized for 1.2 bpp. However, thisis not the case. The
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and for alower rate, 0.6 bpp. The performance is shown on image Lena.

reason for thisis that the upper bound for the distortion is tight for smal step sizes,

0.8

1

Rate (bits/pixel)

1.2

1.4

and the step sizesthat are derived are for fixed length codewords. At high ratesthe

Sep szes are smdl and the level probabilities are more uniform requiring codewords

close to uniform length. Hence, the equation for the step Sizesis optimd for high

rate quantization, and the results confirm this.
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4.6 Possble Extensions- FutureWork

4.6.1 Hybrid Models

Asthe number of stagsincrease the residue vectors become more random and so
the residue vector set become less corrdlated. We have seen that segment constraint
VQ's performance decreases as the correlation in the source decreases. Therefore,
we can use hybrid models where the lower order stages use Seg-VQ and higher order
stages use, for example, either unstructured VQ or TSVQ. Using unstructured VQ
keeps the storage complexity same as Seg-VQ while increasing the encoding
complexity. And using TSV Q keeps the encoding complexity comparable to Seg-
VQ increasing Sorage complexity. Therefore, there is a storage — encoding

complexity tradeoff between these two hybrid models.

4.6.2 Joint Stage Quantizer Design in Seg-MSVQ

In multigtage SegV Q, Seg-MSVQ, each stage isdesigned asiif it isthe last Sage.
In other words, each stage codebook is generated considering only the error due to
the previous stages, i.e., the causal error. The anticausal error, the error due to the
subsequent stagesisignored. A joint design gpproach that takes both the causal and
anticausd errors into account will reduce the overdl error. Thejoint design will

increase the performance of Segr MSVQ at a given rate compared to causal (or

greedy) Seg-MSVQ performance.
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4.6.3 Using Level Entropiesin the Design of Optimal Step Sizes

We have designed the optima step sizes for the uniform quantization of the
Segments assuming that the level probabilities will be uniform, and so the leve

indexes will have fixed codeword lengths. Specificaly, we solved for the optimd
number of levdls m i =1,2,...,S, usng the cog function in (4.35) which is shown

here again for convenience,

3(1)=8 1 4 H ()
_e w 3
_|:112mf+| )%ng(m)' (4.42)

The solution to (4.42) assumes that each leve of the optima number of levels, m in
astage i , will be represented with log, m bits. Which means that the probability of
each of the m levels are assumed to be uniform: p, (1) = ¥, for al
le{-m/2,..,-2,-1 12,..,m/2} . However, thefrequency of occurrence of each
level is not necessarily the same. Therefore, the optimal number of levels, m

i=1,2,...,S, should be solved usng,

s 2 s
31)=4 G ()
A4 4 p()log () (4.43)
i=1 12>ﬂf = 1= 2

which does not assume uniform digribution of the levels.
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4.7 Conclusion

The vast mgjority of practica image coding systems used today are based on the
transform coding paradigm, where image blocks are projected into a series of basis
functions, and the expansion coefficients are subsequently quantized. In this chapter
we introduced a novel constrained vector quantizer (VQ), which we cdled Seg-VQ.
As an extengon of the transform coding framework, in our approach codevectors are
congtrained to be located on a series of line segmentsin the multidimensiona space.
These segments are designed sequentiadly based on atraining set. The advantages of
Seg-VQ are twofold: firgt, the encoding complexity is proportiona to the number of
segments rather than to the number of codevectors, and second, it can efficiently
exploit the directiond preferences (corrdations) in sources such as images. For
Image sources, a low dimensons (eg., 4 by 4 blocks), with the same encoding
complexity of TSVQ, Seg-VQ outperformed TSVQ by 0.5 dB at 0.4375 bpp
achieving a performance close to the optima fixed rate uncongrained VQ. At higher
dimensions (e.g., 8 by 8 blocks) we use multi-stage Seg-V Q where the input block
(asin trandform coding) is projected into a series of segmentsin order to be
quantized. We have proposed two different systlems using multiple stages: In the
first one we designed fixed codevectors constrained to be on the segments usng
Lloyd-Max quantization. And in the second one there are no fixed codevectors on

the segments; the segments are uniformly quantized depending on the required rate
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making it more robust for rate adaptation. The latter proposed system is optima for

high rate quantization.
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Appendix

In Chapter 2 we proposed two low complexity soft assgnment measures, the
triangular soft information measure and the multi-triangular soft information
measure, as Smplified ways of computing the soft assgnments for the VQ design
problem using deterministic annedling.  Although these measures sgnificantly
reduce the computationd cost of the soft assignments compared to the optimal Gibbs
soft measure, thisimprovement in computationa cost comes in exchange for some
loss in performance since Gibbs is the optimal soft measure. In this section we
derive the pendty paid in digtortion for using the smplified soft measuresingtead of

the optima one at a given system entropy (softness).
For a given soft assignment measure (conditional probability), p(c|x) we have

the expected digtortion,

D(p(clx)) =& p(x)é} p(c|x)d(x.c), )

X

and the average mutua information,

1(x:0)=& p(94 p(cl)tog pé?lx)) @
Let P betheset of dl I-admissible soft assignment measures,
R={p(c|x) : 1(X;C)£1}, (3)
and hence, for fixed 1,
D(R)= min D(p(c}x)). 4

(e B
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where R(D)=min ... 1(X;C). Now, let ps (c|x) and py(clx) betwo different soft
assignment measures, and assume that pg (c| x) istheoptima I-admissible soft
assignment meesure for somerate |, ps (c|x)T P, and the expected distortion
corresponding to pe (c|x) is D( PG(C|X))- Let the other soft assgnment measure,
Po(clx) to be defined as,
Py (c|x) = pG(c|x) +Dp(c|x) "X (5)
We require two conditions to be satisfied by (5):

a tplc]x)=0 " x, (6)

DI =1,(X;C) - 14(X;C) =0. @)
The condition in (6) is required so that p, (c|x) in (5) isavalid pmf, & _ p(c|x) =1,
and the condition in (7), the difference in the mutud information to be zero, is
required so that po(c|x)i R . Wewould like to obtain the difference in the expected
distortion, DD = D( po(c|x)) - D( Pe (c|x)) subject to the conditions (6) and (7). The

Stuation isdepicted in Figure A.1, and ared smulation result is shown in Figure

A.2

Wewill start by expanding, DI =1, (X;C)- I;(X;C),

Ps (cfx) |
ps (c)

Po(c]x)
Po(c)

DI =8 p(x)& m(c[x)log

X

- & p(x)& ps(c/x)log (8)
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I, mutual information
A non-optimal
soft assignment

log, |C|
- measure

n

po(c[x)

optimal
s (c| x| soft assignment
measure

initial soft
assignments

Po efx) = po (el

\

—

I

AD D, distortion

Figure A.1: Convergence of the optima and a non-optimal soft assignment
measures (distributions).  Starting with equal, uniform soft assgnments, the
optimal soft assignment measure achieves a lower distortion than the non-
optimal soft measure. At a given system entropy level, |I' thedifferencein
distortion is shown as DD. Theterm n isthe vector dimension and |C| isthe

size of the codebook.

Substitute pg (c|x) = po(c|x) - Dp(c|x) from (5) into (8):

-8 08 st
- & (38 (. (ch)- 0w oo™ )
=8 p(x)8 Pr(cix)iog pp(fg)
4038 el o

Simplifying the above expression, we get,
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Figure A.2: Plot showing the convergence of two experiments, one
with Gibbs soft assgnment measure and the other with Triangular
soft assgnment measure, for the design of a codebook of sze 64,
vector dimension 16, and the source type zero-mean, unit variance

Gaussan.
D =8 p(x)4 Dp(c|x)|og p;(<(3(|:>)<) +D( g)(c|x)||pe(c|x))— D( R( ()" Q(C))
X c G
bfxc)
The optimal distribution is the Gibbs distribution, p; (c|x) = % , where
ae

c¢

P (c) isuniform. Let p,(c) =z , aconstant " ¢, and substitute the Gibbs

digribution in the firg termin (9),

o o pG(C|X)
X cix|!
apl )%Dp( K)tog P (c)
& 0
- c 1 . e'bdb‘p) =
_aX. p(X)aC. DP(C|X)|09§pG C) é_ e—bd(xcd)i
c¢ %]

©)
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? e bd(x c) 9
=4 p(x c(x]lo N
& p(x)& Dp(c|x) géz"% ek
=3 2 it bd(X,C) Q bd(x,ctl)t_.)
_6} p(X)ac (C| ) 2 Iog%z xe ;
Therefore,
8 p(x)a Dp(ch)iog =)
x e (c)
-b o o o o des Bo
= a8 P& Dp(eYd(x.c)- & p(x)ogdz e "B pp(e]x) (10
DD oy
_-b
In2

Subdtituting (10) into(9), and using the conditionin (7) that DI =0, we get,

Dl = I_TbZDD+D(pO(c|x)"pG(c|x))— D( B(9| Q(c)) = 0. (11

Findly, the difference in the expected digtortion is,

0D = 1280y (c])] s cx))- D B (4] R(I)}: (12

Note thet for large vector dimensions [106], - D ( p, (c)] s (c)) @D ps (¢)[Po(c)) -
Hence, for large dimensions the pendty paid in terms of distortion a a given sysem
entropy for using the non-optima soft assgnment measure, p, (c|x) instead of the
optima one, pg (c|x) 1S,

DD =|E—2 gD( ps (¢)| s (c)) +D ( po(c|x)|| Pe (C|X))H (13)
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Note also that p, (c) isuniformand p, (c) dependson p,(c|x). Hence minimizing

the conditional relative entropy, D( B (cx)| pG(c|x)) in (13) minimizes DD .
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