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Abstract 

 
Recently, Deterministic Annealing (DA) has become very popular for a wide 

variety of optimization problems.  However, its computational complexity is very 

high. We investigated ways of reducing the complexity of DA by designing low 

complexity distributions to mimic the optimal Gibbs distribution.  We also derived 

the theoretical performance loss for using the simple distributions instead of the 

optimal Gibbs distribution, and used the derived result to obtain optimal annealing 

schedules for the non-optimal distributions. 

We applied the reduced complexity DA algorithms to the vector quantizer (VQ) 

design problem and to the channel/frequency allocation problem (FAP).  In VQ 

design, compared to the generalized Lloyd algorithm (GLA) and a high performance 

stochastic relaxation algorithm (SR-D), the proposed algorithms significantly 

improved the quality of the final codebooks both with and without codebook 

initialization.  Compared to the standard DA they reduced the computational 

complexity over a factor of 100 with negligible performance difference.  In FAP the 

proposed algorithms are highly competitive with the presently available best 

assignment techniques on real-life GSM frequency planning scenarios. 

In the last part of the dissertation we introduced a novel constrained vector 

quantizer (VQ), which we called Seg-VQ.  As an extension of the transform coding 



 xvii 

framework, in our approach the codevectors are constrained to be located on a series 

of line segments in the multidimensional space.   The advantages of Seg-VQ are 

twofold: first, the encoding complexity is proportional to the number of segments 

rather than to the number of codevectors, and second, it can efficiently exploit the 

correlations in sources such as images. At high dimensions (8x8 blocks) we use 

multi-stage Seg-VQ where the input block is projected into a series of segments in 

order to be quantized.  We proposed two different systems using multiple stages: in 

the first one we designed fixed codevectors constrained to be on the segments, and in 

the second one the segments are uniformly quantized depending on the required rate 

making it more robust for rate adaptation.  The latter system is optimal for high rate 

quantization. 
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Chapter 1  

 

Introduction 

 

1.1 Optimization Problems 

A wide variety of application problems in engineering, decision sciences and 

operations research can be posed as optimization problems. Such applications 

include digital signal processing, process control, database design, neural networks, 

resource allocation, VLSI design and strategic planning to name a few.  Optimal 

solutions in these applications mean better implementation, faster execution, lower 

costs, and robust operation under changing conditions.  Hence, there is a perpetual 

impetus for research for efficient optimization techniques [76, 55, 93, 107, 43, 9, 74, 

82, 42, 88, 108, 61, 77]. 

In a general minimization variant of an optimization problem we are given a set 

S  and a function :f S R→ , and asked to find an s S∈  for which ( ) ( )f s f σ≤  for all 

Sσ ∈ .  The set S  is the domain of feasible solutions and f  is the objective (or cost) 

function.  Such an s S∈  is called the global minimizer of f  over S , and the 
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corresponding function value, ( )f s , is the global minimum.  The mathematical 

formulation of this problem is as follows: 

 
( )min

subject to  .
s

f s

s S∈
 (1.1) 

A solution s S′∈  is called a local minimizer if ( ) ( )f s f σ′ ′≤  for all σ ′  in the 

neighborhood of s′ , ( )N s′ , where the corresponding function value is a local 

minimum.  In Figure 1.1 points A, B, C and D are all locally optimal, but only B is 

globally optimal.  Note that a minimization problem can be transformed into a 

maximization problem since ( ) ( )( )max minf s f s= − − .  In the following, unless 

otherwise stated, optimizing a problem will refer to minimizing its objective 

function. 

Optimization problems are classified into two as continuous and discrete 

problems.  A problem is continuous if the variables (unknowns) take on continuous 

real values, e.g., S  in (1.1) would take on real values.  Conversely, in a discrete 

optimization problem the variables take on discrete values, e.g., S  would have 

Figure 1.1: A 1-dimensional Euclidean optimization (minimization) problem.

S
s s'

N(s')

A

B

C

D

f

s

A, B, C and D are local optimums,
B is also the global optimum.
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integer values.  Both continuous and discrete problems are further classified into 

constrained optimization and unconstrained optimization problems based on the 

presence or absence of constraints.  Depending on the form of the constraint 

functions used on S  in (1.1), the constrained continuous problems are further 

classified into linear and nonlinear, where most real world continuous domain 

application problems fall into the class of nonlinear optimization problems [108, 85].  

In this thesis we will be considering applications that employ discrete optimization 

methods. 

 

1.1.1 Discrete Optimization Problems 

When the feasible set S  in (1.1) consists of discrete values the problem is called 

a discrete optimization problem.  Discrete optimization is a field of study in 

combinatorics and discrete optimization is synonymously called combinatorial 

optimization [97].  Discrete optimization problems can be expressed in an integer 

programming (IP) formulation, 

 

( )
( )
( )

min

subject to 0
0

n

f

h
g

=
≤

∈

s
s

s
s

s ¢

 (1.2) 

where nZ  is the set of n -dimensional integer vectors.  As in the continuous 

optimization problems, we classify the discrete problems according to the existence 

of constraints and their computational complexity.  When there are equality and/or 
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inequality constraints, ( ) 0h =s  and ( ) 0g ≤s , the problem is called constrained 

optimization problem, and with those absent it is called an unconstrained 

optimization problem.  Note again that problems with simple bounds on s  are also 

classified as unconstrained. 

Discrete constrained optimization problems are well studied in computer science 

and operations research areas.  Based on their computational complexity, these 

problems are classified into class P  or NP .  The class P  problems are those that 

can be solved by a polynomial-time algorithm [97, 27].  This means that the 

complexity of the problem grows as a polynomial in the number of variables of the 

problem.  For the class NP  (non-deterministic polynomial time) problems, it is not 

required that every instance of a problem can be solved in polynomial time, but 

simply that a given candidate solution (called a certificate) can be checked in 

polynomial time for its validity.  Since every solvable problem is also certifiable, 

then P  is a subset of NP , ⊆P NP .  To find out if this inclusion is proper or not 

is an important open problem in mathematics.  A problem L  to which all problems 

in NP  polynomially reduce is called NP -hard, and if L  itself is also in NP , 

then the problem L  is said to be NP -complete [27, 45].  Such problems do not 

have polynomial time algorithms and their complexity grows exponentially in the 

size of the problem.  In other words, the only way we know to solve these problems 

optimally is by making use of algorithms that run in exponential time.  Many real-

world application problems fall in the class of NP -hard problems: drilling of 

printed circuit boards (PCBs) [101], VLSI-chip fabrication [71], VLSI circuit design 
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and simulation [98], computer wiring and clustering of data arrays [79], X–ray 

crystallography [12], control of robots [101], genetic engineering [48], production 

planning, project resource management [28], CAD problems [73], machine 

scheduling [107], generalized Lloyd quantization [46], frequency allocation problem 

(FAP) [56], etc. 

Indeed, application problems of practical interest fall in the category of hard 

optimization problems, both in the continuous domain and discrete domain alike. 

 

1.2 Solving Discrete (Combinatorial) Optimization 

Problems 

Given that many problems of practical relevance are computationally intractable 

(NP -hard), in general, it is infeasible to try to compute the optimum solution for 

these problems, simply because approaches for solving such problems exactly are all 

based on implicit enumeration of all feasible solutions and this takes an enormous 

amount of machine time even with very powerful computers.  For example, consider 

the Traveling Salesman Problem (TSP) [88, 101, 79], a well known combinatorial 

optimization problem, which is NP -hard to solve but which can be easily stated: 

given a set of n  cities and the geographical distances among them, the traveling 

salesman has to find the shortest tour in which he visits all the cities exactly once and 

returns to his starting city.  In Figure 1.2, three tours are shown for a simple instance 

of a 9-city TSP.  The tours A and B are feasible solutions whereas tour C is not a 
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feasible solution.  Of the two feasible solutions tour B is shorter than tour A.  For a 

61 city – Traveling Salesman Problem (TSP) there are more possible solutions than 

the approximate number of particles in the universe, 8010  (there are ( )1 ! 2n −  

possible solutions for an n -city TSP; with 61n = , ( ) 8060!2 40 10≅ × ).   

Even with a computer that can perform one billion additions per second, an 

exhaustive search would require about 667.7 10×  years to find the best tour (using 61 

additions per tour).  And since we do not have efficient algorithms to solve such 

computationally intractable problems, we have to look for sub-optimal solutions that 

can be obtained within realistic running times.  The two main classes for treating 

these problems are integer programming (IP) methods and (stochastic) local search 

methods. 

 

Figure 1.2:  Three tours are shown for a TSP of 9 cities.  Tours A and B are feasible,
whereas, tour C is infeasible.

1

2

3

4

5

6

7
8

9
tour
A

1

2

3

4

5

6

7
8

9
tour
B

1

2

3

4

5

6

7
8

9
tour
C



 7

1.2.1 Integer Programming 

An integer programming algorithm makes use of efficient upper and lower 

bounds on a problem’s feasible search space (domain) to continually narrow down 

the possible solutions.  The algorithm is stopped either when an incumbent solution 

is considered to be satisfactory, or when the running time has exceeded a 

predetermined limit.  On large domains one cannot tell if an additional small amount 

of running time would improve on the incumbent solution significantly, or if an 

additional large amount of time would not improve the solution at all.  The classic 

integer programming tool is the branch-and-bound (BB) method [97].  This is a 

divide-and-conquer method which tries to solve the problem by splitting it into 

smaller and smaller problems.  The problem is split into subproblems such that the 

union of the feasible solutions of the subproblems give the solution of the actual 

problem.  Subproblems are further divided into smaller subproblems until optimal 

solutions can be computed.  Application of branch-and-bound algorithms is highly 

problem dependent [88], and they have been applied to various combinatorial 

optimization problems [40, 84, 5] with various success.  The traveling salesman 

problem appears to be well suited for this approach where much progress has been 

made in solving large problems to optimality [5].  It is stated in [88] that still much 

work is needed to apply BB efficiently to other problems of practical interest. 
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1.2.2 Local Search 

Local search methods find near-optimal solutions to hard optimization problems 

quickly and efficiently.  They do not guarantee to find the optimum solutions nor do 

they guarantee solutions within a certain range of the optimum.  Nevertheless, they 

are of great importance since they have become the standard way of obtaining high 

quality solutions for large combinatorial problems of practical interest.  Hence, a vast 

amount of research is directed in this area to improve on existing search methods, to 

devise new ones, and to provide better understanding of them [82, 42, 88, 108, 61, 

77].  In local search methods a move is made from an incumbent solution to another 

one within its neighborhood if the move results in a reduction of the cost.  The 

neighborhood of a solution is generated by applying some suitably defined local 

change on the solution.  The size of the neighborhood is a tradeoff between the aim 

of obtaining a good improvement each time a new solution is selected and the aim of 

limiting the computational cost.  These methods start the algorithm with an initial 

solution that is selected either randomly or by a heuristic.  It is apparent that a 

monotone improvement from one solution to the next results in a locally optimal 

solution dictated by the initial solution.  To circumvent this drawback of getting 

stuck in a local minima, local search methods of interest allow random (stochastic) 

moves that may result in temporary decreases in performance, but eventually result 

in a better solution at the end of the entire search process.  The most prominent 

stochastic search methods are Simulated Annealing [70, 16, 36, 62], Tabu Search 

[51, 52] and Genetic Algorithms [60, 53]. 
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1.2.2.1 Simulated Annealing 

The origin of simulated annealing (SA) [70, 16, 36, 62] rests in the physical 

process of annealing.  Annealing is a thermal process for obtaining stable, low-

energy state of a metal in a heat bath.  First, the temperature of the heat bath is 

increased until the metal melts, where the particles of the metal arrange themselves 

randomly.  And then, the temperature is carefully decreased allowing the molten 

metal to attain its lowest possible energy corresponding to the temperature.  This 

process is continued until the metal completely cools, at which state the particles are 

arranged in a lattice with minimum energy. 

By analogy to the physical annealing process, an optimization problem is “cooled 

in simulations” to find a low cost solution.  The search is implemented by a Markov 

process which stochastically samples the solution space S  of the problem.  The 

optimization problem is characterized by an objective (cost or energy) function 

:E S → R , where Sσ ∈  denotes the admissible solutions (or states) to the problem.  

The acceptance of a new state is determined by the Metropolis [89] algorithm, in 

which new states of decreased costs (increasing performance) are always accepted, 

and states with increased costs are accepted with a probability depending on the cost 

difference and the annealing temperature, T , 

 ( ) ( ) ( )1 if 0,

e otherwise.

new current

current new

E
T

E E E
p

σ σ
σ σ

−∆

 ∆ = − ≤→ = 


 (1.3) 
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A Markov process with a transition probability (1.3) converges to an equilibrium 

probability distribution [44], 

 ( )
( )

( )

1
-

1-

e

e

E
T

E
T

S

p
σ

σ

σ

σ
′

′∈

=

∑
 (1.4) 

which is known as the Gibbs distribution.   

The simulated annealing algorithm starts with an initial random state, ( )0initialσ σ=  

and an initial high temperature ( ) ( )( )0 0initialT T E σ= ?  at iteration zero.  At an 

iteration t , acceptance of a new state in the neighborhood of the current state, ( )tσ  is 

determined by (1.3).  Note that at the beginning of the algorithm when the 

temperature is high, T E∆? , the probability of accepting a cost-increasing state is 

close to one.  The temperature schedule is a monotonically decreasing sequence 

where ( )lim 0t
t T→∞ = , and in the limiting case of zero temperature the algorithm only 

accepts cost decreasing state moves.  The choice of the temperature schedule is an 

important factor affecting the SA performance.  Geman and Geman [47] have shown 

that the global minimum can be achieved if the schedule obeys 

 1
log

T
t

∝ . (1.5) 

In practice, this schedule is very slow and Kirkpatrick [70] suggests using 

( ) ( )1t tT Tρ −= ⋅ , where ρ  is a positive constant less than one.  The initial temperature, 

( )0T  and the constant temperature reduction factor, ρ  are application dependent and 

are determined experimentally [117]. 
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1.2.2.2 Tabu Search 

The tabu search (TS) [51, 52] method aims at avoiding suboptimal local minima 

as did the simulated annealing method.  Hence, TS allows moves from a state σ  to 

neighbor state σ ′  of higher cost (lower performance) with the hope that this will 

eventually lead to a better solution at the end of the search process.  Unlike SA, the 

acceptance criterion in TS is to always choose the state in the neighborhood of the 

incumbent state, ( )currentN σ  with the lowest cost: 

 ( ) ( ){ }argmin :new currentE N
σ

σ σ σ σ
′

′ ′= ∈  (1.6) 

where ( )E σ  is the cost of state σ .  The essential feature of the tabu search is the use 

of memory.  To prevent the search from getting into infinite loops, a state that has 

recently been visited is included in a tabu list, ϒ .  The states in the tabu list are not 

allowed to be considered as candidate states in the neighborhood of the future states.  

The size of the tabu list, which is essentially the memory of the system, is an 

important parameter since a large memory increases the performance of the 

algorithm at the expense of higher complexity.  Note that an infinite memory tabu 

search, with the whole solution domain as the neighborhood for any σ , performs an 

exhaustive search of the solution space and returns the optimal solution.  When the 

tabu list is full, to open up space for new tabu states the oldest members of the list 

are released.  A released state becomes available as a candidate state.  There are two 

stopping criterions for the tabu search algorithm; the algorithm is stopped either 
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when all neighborhood states of an incumbent state (current state) are in the tabu list, 

( )currentN σ ⊆ ϒ , or if a predetermined number of moves are made without 

improvement.  There are various extensions to the basic TS algorithm: for example, 

using multiple tabu lists of variable sizes [110], or concentrating the search on 

another location of the search space if the solution cannot be improved for a 

predefined number of iterations [7]. 

 

1.2.2.3 Genetic Algorithms 

Genetic algorithms (GA) [60, 53] are randomized local search methods inspired 

by natural selection in biology [88, 41].  A genetic algorithm is characterized by 

maintaining a population of states (solutions) that evolves through a series of 

generations.  The initial population, ( )0Π  is randomly selected from the domain of 

possible states, ( )0 SΠ ⊂ , where the size of the population from one generation to the 

next is kept constant, KΠ = .  In each iteration, t  a new generation is derived by a 

three phase process: evaluation of fitness, selection and generation of new 

individuals. 

In the first phase, evaluation of fitness, the quality (or fitness) of each state in the 

current population, ( )tσ ∈ Π  is evaluated by a suitably defined function.  This 

function, ( )φ σ  called the fitness function of state σ , is usually functionally related 

to the cost function of the optimization problem considered, ( ) ( )( )g Eφ σ σ= .  For 
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example, it can be the inverse of the cost function, ( ) ( ) 1
Eφ σ σ

−
=    .  The selection 

phase corresponds to probabilistically selecting the states in the population, ( )tΠ  

according to their relative fitness.  The selected states survive and pass into the new 

population while the unselected ones are discarded.  The probability of selecting a 

state σ  is obtained by, 

 ( ) ( )
( )

p

σ

φ σ
σ

φ σΠ

′∈Π

=
′∑

 (1.7) 

The probabilities provide the relative fitness for each state compared to the other 

states in the population; the better (low cost) states have a higher probability of 

surviving.  Finally, in the third phase, new individuals are generated to replace the 

discarded ones during the selection phase.  These are created either by recombining a 

pair of states (called crossover) or by modifying a single state (called mutation).  To 

enable crossover and mutation, the states are encoded by fixed length binary strings.  

Hence, the crossover operation takes two states, 1σ  and 2σ , selects a random integer 

i  uniformly from the set { }11,2, , σL  (where 1 2σ σ=  because of fixed length 

encoding), and concatenates the first i  bits of 1σ  and last 2 1σ −  bits of 2σ  to obtain 

a new state, 3σ  for the new population (obviously, 3 Sσ ∈ ).  Symmetrically, the first 

i  bits of 2σ  and last 1 1σ −  bits of 1σ  can be concatenated to obtain another new 

state, 4σ .  Mutation is usually performed by randomly flipping a bit of a state σ  to 

obtain the new state σ ′ .  At the end of this phase, the generation is derived and a 

new population is ready.  The new generations are derived from the old ones in each 
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iteration until there is no improvement of the best solution (state) for a predetermined 

number of consecutive generations. 

We see that in the development of the above algorithms natural phenomena 

(from physics and biology) have been an inspiration, and analogies drawn from these 

natural events are used to derive search methods that have become standard methods 

in solving computationally hard optimization problems.  Out of these three methods, 

simulated annealing is the one with a relatively better defined theoretical framework 

and practically the most applied one [50, 69, 1, 2, 33, 64, 36, 57, 111, 38].  Tabu 

search and genetic algorithms have possibilities of further development [25]. 

 

1.3 Deterministic Annealing 

Although simulated annealing is a general optimization framework applicable to 

various problems, its major drawback is its slowness (1.5).  A deterministic variant 

of the simulated annealing, deterministic annealing (DA) was first suggested by 

Rose et al. [104].  Unlike stochastic moves made on the given energy surface 

(function), the deterministic annealing method can be viewed as incorporating the 

randomness into the energy (objective) function of the problem [104, 106, 103]. 

The main idea behind deterministic annealing (DA) is to use an effective energy 

function parameterized by a temperature term T , where at high temperatures the 

effective energy function is a smoothed (convexed) approximation of the actual 

energy function (i.e., the original energy function of the optimization problem), and 
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as 0T →  the original optimization problem is recovered.  Hence, starting at the 

global optimum of the effective function, which is convex at the initial high 

temperature (theoretically T → ∞ ), the DA method minimizes the effective energy 

function at each temperature to find the global minimum, and tracks the global 

optimum as the temperature is reduced gradually.  Three snap-shots illustrating the 

convergence of the DA are shown in Figure 1.3.  In the following subsections we 

will explain the main aspects of the deterministic annealing framework for solving 

combinatorial optimization problems.   

 

Figure 1.3:  Three snap-shots showing the convergence of the DA.  The initial
convex function is obtained at the initial infinite temperature.  This function
has one minimum which is the global minimum.  By gradually lowering the
temperature the global minimum at the corresponding temperature is traced.
When temperature reaches zero the original function is recovered and the
final global solution is obtained.
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1.3.1 Problem Setup 

Assume that we have n  entities (e.g., cities in TSP), { }1 2, , , nA a a a= L  each of 

which can have K  different assignments (labels), { }1 2, , , KB b b b= L .  The problem is 

to find the minimum cost assignment set (or state).  Note that for this combinatorial 

problem there are nK  possible states.  We define a state of the system by a vector, 

( )1 2, , , nα α α=a L , where each iα  corresponds to the assignment of the thi  entity ia :  

i jbα = ⇒  jb  is assigned to ia ,  i ja b← .  Let ( ) ( )1 2, , , nE E α α α=a L  be the energy 

(cost) of the system when it is in state ( )1 2, , , nα α α=a L .  If we define ( ),i jg a b  to be 

the cost of assigning jb  to ia , where for a given state a , ( ) ( )( ), ,i j i ig a b g a aα≡ , then 

the energy function is, 

 ( ) ( )( )
1

,
n

i i
i

E g a aα
=

= ∑a  (1.8) 

and the goal is to find, 

 
( )

( )( )
1

argmin

argmin ,
n

i i
i

E

g a aα

∗

=

=

= ∑
a

a

a a

 (1.9) 

Instead of tackling the problem as hard assignments in terms of states, in DA to 

each ia , all possible labels, { }1 2, , , Kb b bL  get assigned with a certain probability,  

 ( ) ( ) ( ){ }1 2, , ,i i K ip b a p b a p b aL , (1.10) 

where 

 ( )
1

1
K

j i
j

p b a i
=

= ∀∑ . (1.11) 
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We call these probabilities soft assignments or soft information.  In communications 

engineering the definition of soft information is “a reliability measure over the 

sample space of the investigated random variable” (see section 1.3.2).  In the above 

case the investigated random variable is { }1 2, , , Kb B b b b∈ = L .  A simple example of 

soft assignment is depicted in Figure 1.4, where the soft assignment value is 

inversely proportional to the distance between ia  and each jb . 

 

1.3.2 Soft Information Communications Example 

Soft information is used in various communications engineering applications to 

provide a reliability measure on the possible signal choices [20, 22, 10].  For 

example, consider a communication system using binary signaling (e.g., two signal 

classes: 0 1s = −  and 1 1s = ) and transmission over an additive white Gaussian noise 

Figure 1.4:  An example of soft assignment where each bj gets assigned to
each ai in probability.  In this example, the closer bj to ai the more reliable
it is, hence the higher its association probability (soft assignment value).

ai
b1

b2
b3

Assuming, the closer bj to ai
the more reliable it is:

( ) ( ) ( )

( ) ( ) ( )

1 3 2

1 2 3

such that:

1

i i i

i i i

p b a p b a p b a

p b a p b a p b a

> >

+ + =
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(AWGN) channel.  Let the observed channel output be y .  Then, using Bayes’ 

theorem, we can express the a posteriori probability (APP) of an event ms  

conditioned on the observation y  as follows, 

 ( ) ( ) ( )
( )

( ) ( )
( ) ( )

m m m m
m

n n
n

p y s p s p y s p s
p s y

p y p y s p s
= =

∑
 

where, ( )mp s  is the a priori probability of the thm  signal class, and ( )mp y s  is the 

probability density function (pdf) of the received signal y  conditioned on ms .  

Assuming equal a priori probabilities the APP can be expressed as, 

 ( ) ( )
( )

m
m

n
n

p y s
p s y

p y s
=

∑
. 

Considering the additive white Gaussian noise with variance 2σ , the pdf of y  

conditioned on ms  is, 

 ( )
2

2
1

21
e

2
my s

mp y s σ

σ π

−
=  

The channel decoder computes the APPs as follows, 

 ( )

2

2

2

2

1
2

0

e
0,1

m

n

y s

m y s

n

p s y m

e

σ

σ

−
−

−
−

=

= =

∑
 (1.12) 

where ( ) 1m
m

p s y =∑ .  The APPs provided by the channel decoder are called the soft 

information, and such channel decoder is referred to as the soft channel decoder.  

The reliability of a decision depends on the relative magnitudes of the APPs.  A hard 
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channel decoder would threshold the channel output, declaring 0 1s = −  was sent if 

0y < , otherwise declaring 1 1s =  was sent.  Therefore, for a hard channel decoder, 

 ( )0

1, 0
1

0, 0Hard

y
p s y

y
<

= − = 
≥

 (1.13) 

Figure 1.5 illustrates the distinction between the outputs of a soft channel decoder 

and a hard channel decoder [22].  The soft output probability plot is obtained with 

(1.12) for 0m = , and the other with (1.13).  In both soft and hard decoding cases, 

( ) ( )1 01 1 1p s y p s y= = − = − .  Note that hard channel decoding provides a hard 

decision based on which side of the threshold ( 0thresholdy = ) the channel output y  is, 

and it does not give any further information.  For example, for 0.4y = , a hard 

decoder would declare 1 1s =  was sent.  However, soft channel decoding provides 

Figure 1.5:  Comparing hard channel and soft channel decoding.
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each hard decision, as well as the reliability of each decision.  The highest soft value 

(APP) denotes the hard decision; that is, is  is chosen such that, ( )argmax ii
i p s y= .  

And the relative magnitude of ( )ip s y  with other soft values (for the given channel 

output y ) denotes the reliability of that decision.  Thus, for 0.4y = , a soft decoder 

would also declare 1 1s =  was sent, but it would also state that the reliability of 

declaring “ 1 1s =  was sent” is 68% , since ( ) ( )( )0 1max ,p s y p s y  

( )max 0.32,0.68 0.68= = . 

Similar to the definition of the soft channel decoder’s soft output, the soft 

information in (1.10) gives the degree of reliability of all possible assignments to 

each entity, ia .  Note that an iterative algorithm utilizing soft information can be 

stopped at any time and the best computed hard assignments so far for each ia  can be 

obtained by thresholding the soft assignments, ( )argmax
j

i j i
b

a b p b a∗← = . 

 

1.3.3 The Effective Energy Function 

Recall that the main principle behind the DA method is to start at the global 

minimum of an effective energy function parameterized by a temperature term (this 

function is convex at the initial high temperature), minimize the effective energy 

function at each temperature to find the global minimum, and track the global 

optimum as the temperature is gradually reduced.  In section 1.3.1 we have 

mentioned that in DA each entity ia  is associated in probability with all the labels, 
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{ }1 2, , , Kb b bL .  Hence, the state of the system is given by the probability distribution 

for associating entities with labels.  In this section we will define what the effective 

energy function is and derive the optimal probability distribution for associating the 

entities with labels that minimizes the effective energy function.  The derivation 

follows a similar approach to that of [103]. 

The expected cost (energy) function of the system defined over the probability 

assignments ( ){ }j ip b a  is, 

 { } ( ) ( ),i j j i
i j

E g a b p b a= ∑∑E , (1.14) 

where the summation is over all entities and all labels.  Note that at the limit, when 

the soft assignments are hard and each ia  gets assigned a unique b B∈  with 

probability one, 

 ( ) 1, if  
0, otherwise,

i j
j i

a b
p b a

←
= 


 (1.15) 

the equation (1.14) becomes identical to (1.8) for the given hard assignments which 

form the state a .  The assignment probabilities incorporate a level of randomness 

into the system, and the level of this randomness can be measured by the Shannon 

entropy, 

 
( ) ( ) ( )

( ) ( )

, , log ,i j i j
i j

H a b p a b p a b

H a H b a

= −

= +

∑∑
 (1.16) 
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where ( ) ( ) ( )logi i
i

H a p a p a= −∑  is independent of the assignments; it can be 

thought as the problem input entropy.  Hence, the system randomness is expressed 

by the conditional entropy, 

 ( ) ( ) ( )1
logj i j i

i j

H b a p b a p b a
n

= − ∑∑  

where ( ) 1
nip a = .  Since ( )p a  is a constant term common to all, it is irrelevant to the 

optimization, and we will use the following as the expression for the randomness of 

the system, 

 ( ) ( ) ( )logj i j i
i j

H b a p b a p b a′ = −∑∑  (1.17) 

Therefore, the optimization problem is recast as the minimization of the expected cost 

subject to a given level of randomness measured by the Shannon entropy: 

{ } 0minimize  subject to E H H=E .  This can be conveniently formulated as the 

minimization of the Lagrangian [106, 103], 

 { }F E T H= − ⋅E  (1.18) 

where T  is the Lagrange multiplier, H  is the conditional entropy given by (1.17) 

and { }EE  is given by (1.14).  The Lagrangian F  in (1.18) is the principal 

component in the DA methodology and it is the effective energy function that is 

optimized (minimized) through annealing.  It is called the free energy of the system.  

The name comes from statistical mechanics where a similar term that characterizes 

the thermodynamic potential of a system is called the Helmholtz free energy [103].  

The Lagrange multiplier T  is in analogy the temperature of the system, which in 
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(1.18) governs the level of randomness.  The DA method seeks the minimum of the 

free energy at each temperature, and tracks the minimum while gradually lowering 

the temperature.  To obtain the optimal distribution that minimizes the free energy F  

at a given temperature T , we differentiate (1.18) w.r.t. ( )j ip b a , equate to zero and 

solve for ( )j ip b a .  Writing (1.18) explicitly, we have, 

 ( ) ( ) ( ) ( ), logi j j i j i j i
i j i j

F g a b p b a T p b a p b a= +∑∑ ∑∑ . (1.19) 

Then, 

 ( )
( ) ( ) ( ), log 1 0i j j i

j i

F p
g a b T p b a

p b a

∂
 = + + = ∂

 

 

( ) ( )( )

( ) ( )

( ) ( )1
1 ,

, 1 log 0

,
log 1

e
i j

i j j i

i j

j i

g a b
T

j i

g a b T p b a

g a b
p b a

T

p b a
− −

⇒ + + =

⇒ = − −

⇒ =

 

Since ( )j ip b a  is a probability mass function, ( ) 1k i
k

p b a =∑  then, 

 ( )
( )

( )

1
,

1 ,

e

e

i j

i k

g a b
T

j i
g a b

T

k

p b a
−

−
=

∑
. (1.20) 

Hence, the optimal distribution that minimizes F  at a given T  is the Gibbs 

distribution (1.20).  

Note that at infinite temperature the association probabilities (1.20) are uniform 

distributions, ( ) 1j ip b a K j= ∀  where K B= , which means that each assignment 

choice is equally associated with an entity ia .  This corresponds to maximum 
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softness and to maximum system entropy, ( ) 1j ip b a K= ⇔ ( ) logH b a K= .  As the 

temperature is lowered the associations become more discriminating, and at 0T =  

they become hard at which point the system entropy is zero, ( ) { }0,1j ip b a =  

( ) 0H b a⇔ = . 

The cost function ( ),i jg a b  is application dependent and its form is defined 

explicitly for each application problem.  Its value in each iteration depends on the 

value assumed by the label jb  and the assignment probabilities. 

Therefore, the practical DA algorithm is as follows: 

starting at a high temperature, minimize F  at each temperature iteratively by, 

1) fixing costs, and updating the association probabilities ( ){ }j ip b a ; 

2) fixing association probabilities, and updating costs, ( ){ },i jg a b , 

and lowering the temperature gradually. 

The deterministic annealing method has been applied to clustering, classification 

and vector quantization problems [104, 106, 102, 105, 102, 92, 91, 59] where it 

outperformed the standard methods by a significant margin. 

 

1.4 Contributions of the Research 

The main principle of the DA method is that each entity is associated in 

probability with each assignment choice and these assignments are updated in each 

iteration.  Hence, the computational complexity of the DA algorithm grows with the 
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size of the possible choices.  On the other hand, in some applications the structure of 

the problem is such that a subset of the choices are less likely to be chosen compared 

to the others.  This gets reflected in the soft information values; less likely choices 

have low reliability values compared to the high likely choices.  And the smaller the 

soft value of a choice, the lesser its contribution towards an optimal final solution 

will be.  However, the computational cost for all soft associations, having a high soft 

value or a low soft value, is the same.  In this thesis, we study reducing the number 

of choices for each entity by identifying the subset of choices that are less likely for 

each entity, and show that setting their soft assignments to zero without computing 

results in large savings in the overall computation with negligible performance 

difference.  Depending on the application, entities for which a subset of the choices 

can be suppressed can be identified either before the optimization starts, or as the 

iterations progress, and in some cases both before the optimization starts and as the 

optimization progresses. 

In the standard deterministic annealing (DA) algorithm, the soft associations are 

computed using the Gibbs distribution which is the optimal distribution.  However, 

the Gibbs distribution is a function of exponentials and therefore its computational 

complexity is high.  If we recall that these are computed for each soft association 

update, for each entity, in each iteration, then it becomes clear that usage of a simpler 

distribution function can result in large computational savings.  We have designed 

simplified soft information measures such that, while they are simple enough to 

facilitate fast computation of the soft associations, they can also closely mimic the 
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Gibbs distribution’s functionality to keep the sacrifice in performance to a minimum.  

Nevertheless, using simplified soft measures instead of the optimal one is expected 

to result in some loss of performance.  Hence, we have also derived the theoretical 

performance loss at a given system entropy due to using the simplified soft measures 

instead of the optimal Gibbs measure.  Further, we have used this result to derive the 

optimal temperature reduction schedules for the simple soft measures, given the 

temperature schedule for the optimal Gibbs measure. 

In Chapter 2, we apply our reduced complexity DA algorithms to the well 

studied vector quantizer (VQ) design.  Compared to standard DA under the same 

temperature reduction schedule, we show that in exchange of a negligible 

performance difference our algorithms reduce the computational complexity by over 

a factor of 100.  We also compare our algorithms to the traditionally used GLA and a 

high performing stochastic relaxation (SR) algorithm called SR-D, which is regarded 

by some researchers as a benchmark for near optimal performing quantizer design.  

We provide experimental evidence showing the superiority of our algorithms over 

these two algorithms.  In this chapter, we also propose a stochastic extension to the 

reduced complexity DA algorithm.  This extended algorithm contains a stochastic 

step similar to the one in SR-D.  We show that the stochastic step improves the 

performance of the reduced complexity DA algorithms with diminishing benefits as 

the performance approaches the optimal.  We also investigate the effect of codebook 

initialization on GLA, SR-D and the reduced complexity DA algorithms and show 

that, while GLA and SR-D receive major benefit from this initialization (PNN) at the 
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expense of increased computational complexity, the reduced complexity DA 

algorithms are able to attain the same performance without the need of initialization.  

Hence, the proposed algorithms are not sensitive to the choice of the initial codebook 

and outperform codebook initialized GLA and SR-D algorithms. 

In Chapter 3, the channel/frequency assignment problem (FAP), which is a NP-

hard combinatorial optimization problem applied to fixed channel allocation in 

mobile communication networks, is considered.  The FAP is an important problem 

for today’s wireless service providers, which has traditionally been tackled by graph 

theoretic approaches and more recently with also search methods like simulated 

annealing, tabu search, and genetic algorithms.  However, deterministic annealing 

has not been applied to FAP before.  Depending on the particular network the 

understanding of frequency assignment varies, but there are two main optimization 

flavors, one of them is minimizing the spectrum used to meet prescribed interference 

constraints, and the other is minimizing the total interference that results from a 

prescribed spectrum allocation.  In this thesis we consider the latter (referred to as 

minimum interference-FAP (MI-FAP)) as our optimization problem, and apply the 

deterministic annealing together with our proposed complexity reductions.  For MI-

FAP a variant of simulated annealing has been reported to provide the best known 

results on some real-world scenarios (the reported work has not yet been released to 

the public domain at the time of this writing, the results are announced in a Ph.D. 

thesis published in 2001 [37]).  We compare our algorithms with the standard 

simulated annealing, and provide experimental evidence that our algorithms result in 
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50% - 80% reduction in total interference in 20% - 50% less running time.  

Sometimes, together with minimizing the total interference in the network one may 

also wish to satisfy a certain separation for co-channel nodes (nodes using the same 

channel, which cause high interference on each other).  For these cases we propose a 

channel blocking algorithm, which is an extension of the DA algorithm.  We show 

that the proposed algorithm effectively reduces the number of co-channel separation 

violations with a trade-off of small increase in total network interference compared 

to without using the channel blocking.  For example, for a test problem where there 

were 533 co-channel constraints (number of pairs of nodes with separation less than 

the required separation for co-channel assignment) to be satisfied, the blocking 

algorithm reduced the number of violations from an average of 6.6 to 0.9 after 

blocking with 0.12% increase in average total interference compared to without 

using channel blocking.  We also test the proposed reduced complexity DA 

algorithm for MI-FAP on a realistic GSM frequency planning scenario obtained from 

the COST 259 project [37], and show that its performance is highly competitive with 

the presently best assignment techniques. 

In Chapter 4 we introduce a novel constrained vector quantizer (VQ), which we 

call Seg-VQ.  The vast majority of practical image coding systems used today are 

based on the transform coding paradigm, where image blocks are projected into a 

series of basis functions, and the expansion coefficients are subsequently quantized.  

As an extension of the transform coding framework, in our approach codevectors are 

constrained to be located on a series of line segments in the multidimensional space.  
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These segments are designed sequentially based on a training set.  The advantages of 

Seg-VQ are twofold: first, the encoding complexity is proportional to the number of 

segments rather than to the number of codevectors, and second, it can efficiently 

exploit the directional preferences (correlations) in sources such as images. For 

image sources, at low dimensions (e.g., 4 by 4 blocks), with the same encoding 

complexity of TSVQ, Seg-VQ outperforms TSVQ by 0.5 dB at 0.4375 bpp 

achieving a performance close to the optimal fixed rate unconstrained VQ.  At higher 

dimensions (e.g., 8 by 8 blocks) we use multi-stage Seg-VQ where the input block 

(as in transform coding) is projected into a series of segments in order to be 

quantized.  We propose two different systems using multiple stages: In the first one 

the codevectors are designed with Lloyd-Max quantization and are constrained to be 

on the segments.  And in the second one there are no fixed codevectors on the 

segments; the segments are uniformly quantized depending on the required rate 

making it more robust for rate adaptation.  The latter system is optimal for high rate 

quantization. 
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Chapter 2 

 

Reduced Complexity Deterministic Annealing for 

Vector Quantizer Design 

 

2.1 Introduction 

Vector quantization is a source coding technique that approximates blocks (or 

vectors) of input data by one of a finite number of pre-stored vectors in a codebook.  

The challenge is to find the set of vectors (or quantization levels) such that a given 

criterion for the total distortion between the actual source and the quantized source is 

as small as possible under a constraint on the overall rate [49].  Since distortion 

depends on the codebook design, vector quantizer design is a key optimization 

problem to determine the performance of a VQ-based system [66, 109, 24, 67]. 

The traditionally used VQ design approach is the generalized Lloyd algorithm 

(GLA) also referred to as the LBG algorithm [80].  The GLA is an extension of 

Lloyd’s algorithm to VQ design, where the original Lloyd algorithm was proposed 

for scalar quantizer design [81].  There are two necessary conditions for a quantizer 
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to be locally optimal: the quantizer partition must be optimal for a given set of 

codevectors, and the set of codevectors must be optimal for the partition.  For the 

mean squared error distortion criterion the first condition implies nearest neighbor 

(NN) quantization rule and the second condition implies that the codevectors are 

located at the centroid of their corresponding partition.  For a given source the 

algorithm starts with an initial codebook (a set of codevectors), optimizes the 

partition by assigning the source vectors to the nearest codevector (this minimizes 

the distortion for the fixed codebook), then optimizes the codevectors for the 

partition by replacing each codevector by the centroid of its corresponding  partition 

region.  The alternation is repeated until convergence to a local minimum.  Hence, 

the GLA is an iterative descent algorithm, where in each iteration an improvement in 

performance is achieved compared to the previous one.  The GLA has the advantage 

that it converges to a final codebook relatively quickly, however, the resulting 

codebook is locally optimal since the algorithm gets trapped in a local minimum of 

the distortion (energy) surface to which the initial codebook is closest.  

Consequently, the performance of GLA can be poor compared to that of a globally 

optimal quantizer. 

As discussed in Chapter 1 (Section 1.2.2), a powerful approach to reduce the 

sensitivity of the algorithm to the initial codebook is the introduction of randomness.  

Several randomized optimization techniques have been investigated in the past.  In 

[100] such “random search” techniques are discussed, where the idea is to randomly 

perturb the system at each iteration and determine the resulting change in 
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performance.  In some of its variations a perturbation is only accepted if the 

performance increases, otherwise it is rejected; and in other variations perturbations 

that decrease performance are also accepted under certain conditions.  In general, if a 

random search technique allows temporary decreases in an objective function with 

nonzero probability, then the algorithm is in the class of stochastic relaxation (SR) 

[47, 117], or stochastic local search techniques. 

An important SR technique is the simulated annealing (SA) [117].  As described 

in Chapter 1 the idea behind the SA method has its origin in the physical process of 

gradually cooling a molten metal to obtain stable crystal structures.  For VQ design 

the starting state is an initial codebook.  In each iteration a new codebook is 

generated in the neighborhood of the old one, and the new codebook is accepted or 

rejected according to the Metropolis algorithm [89].  Recall that if sufficient 

computational resources are devoted, the SA algorithm is guaranteed to yield 

globally optimal solutions [75].  However, recall also that to achieve the global 

minimum the temperature schedule should be 1 logT t∝  with t  being the iteration 

number [47]. Such schedules are not realistic in practical applications. 

In order to avoid the computational difficulties associated with SA, a reduced 

complexity quantizer design based on SR is proposed in [117].  This is a simplified 

version of the SA algorithm achieving similar or slightly better results in much less 

time under similar temperature reduction schedules.  Basically, the reduced 

complexity SR algorithm is the generalized Lloyd algorithm appended with a 

stochastic perturbation step, where the perturbations can either be on the encoder 
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(SR-C) or the decoder (SR-D).  Recently, another method that uses a similar 

randomized search technique is suggested in [94].  Although this technique has an 

average performance comparable to SR-D, it has a higher complexity.  We will give 

a description of the SR-D technique in the following sections. 

In the above approaches random search moves were allowed on the energy 

surface in order to give the system the ability to avoid local minima.  Unlike these 

SR techniques, a deterministic annealing (DA) approach for optimal vector quantizer 

design puts the problem in a probabilistic framework, and deterministically 

optimizes the probabilistic objective function in each iteration [106].  As explained 

in Chapter 1, in DA there are no random moves on the energy (cost) surface. At high 

temperatures the energy surface is smoothed, so that the algorithm starts at the global 

minimum on the smoothed energy surface.  And through a careful annealing 

schedule it traces the global minimum as the energy surface assumes its non-convex 

“rugged” form with the decreasing temperature. The Gibbs distribution is used to 

associate sample vectors with codevectors since it maximizes the entropy under the 

constraint of a given average distortion.  Note that the sample vector - codevector 

associations are not one-to-one, but rather they are one-to-many.  In other words, 

each sample vector is assigned to all codevectors in probability: the closer a 

codevector to a sample vector, the higher its probabilistic assignment to that sample 

vector.  The DA method can construct high performance vector quantizers by 

avoiding local minima.  However, calculation of the association probabilities for 

each sample vector with all the codevectors in each iteration, coupled with the high 
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computational cost of evaluating the Gibbs distribution, and the slowness of the 

annealing process, result in a large computational complexity that limits DA’s utility 

for some practice applications. 

In this chapter we propose a reduced complexity deterministic annealing 

approach for VQ design by using soft information processing with simplified 

assignment measures.  We refer to this formulation as the soft vector quantizer 

(SVQ) design.  The reduced complexity DA techniques are developed through the 

design of simple soft-measures that can mimic the effect of the Gibbs distribution 

used in the standard DA.  Hence, while the designed soft-measures are simple 

enough to facilitate fast computation, they also keep the sacrifice in performance to a 

minimum by mimicking the Gibbs distribution’s functionality.  We have also derived 

the theoretical performance loss due to using a simplified measure instead of the 

optimal one, and further used the result to derive optimal annealing schedules for the 

proposed simple soft-measures.  In contrast to the standard DA which starts with 

essentially a single codevector and increases the size of the codebook through 

iterations, in SVQ the design starts with the required number of codevectors and 

optimizes their locations through iterations.  It is also observed and empirically 

shown that, when all codevectors are considered the importance of a codevector at a 

large distance from a given sample vector relative to the other codevectors (in terms 

of the amount of probability mass associated) decreases exponentially fast even at 

relatively high temperatures.  Hence, major computational gains can be obtained 

with negligible performance degradation by considering for each sample only a few 
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codevectors, namely those nearest to the given sample vector.  We present 

experimental evidence indicating that through these techniques significant 

performance gains are achieved by the SVQ algorithms over the traditionally used 

GLA and over SR-D, where the latter is widely thought to provide near-optimal 

performance.  We also investigate the effect of PNN [39] codebook initialization on 

GLA, SR-D and SVQ algorithms and show that, while GLA and SR-D benefit 

significantly from this initialization, at the expense of increased computational 

complexity, the SVQ algorithms are able to attain the same performance without the 

need of initialization.  Hence, the SVQ algorithms are not sensitive to the choice of 

the initial codebook and outperform codebook initialized GLA and SR-D algorithms.  

Compared to the standard DA, the results show drastic reductions in computational 

complexity with very small sacrifice in performance.  It is also shown that appending 

the SR technique [117] to the SVQ algorithms result in further improvement in 

performance with decreasing benefits as the performance approaches the optimal, 

i.e., the better the performance of SVQ the smaller the benefit obtained from SR. 

The rest of the chapter is organized as follows: in section 2.2 we summarize 

vector quantizer design by stochastic relaxation and deterministic annealing 

techniques.  In section 2.3 we explain and formulate the proposed reduced 

complexity deterministic annealing algorithms.  We present experimental results in 

section 2.4.  Finally, section 2.5 concludes the chapter. 

 

 



 36

2.2 Two Frameworks for Vector Quantizer Design 

2.2.1 Vector Quantizer Design by Stochastic Relaxation 

Zeger et al. [117] state that the major disadvantages of using SA approach for 

VQ design are the complexity of computing distortion and the slowness in reaching 

the thermal equilibrium. Thus, they propose a simplified version of the complicated 

SA algorithm.  The rules to follow at each iteration in their reduced complexity SR 

algorithm are as follows: 

1) Every proposed perturbation is accepted. 

2) Simultaneously either perturb all encoder parameters or all decoder 

parameters (but not both). 

3) Perform a repartitioning and centroid computation. 

The first rule eliminates the need to calculate distortion in each iteration, which 

results in great complexity reduction.  The second rule speeds up the algorithm by 

making many changes at once, and the third necessitates a generalized Lloyd 

iteration at the end of every perturbation (iteration).  Therefore, the advantages 

provided by these 3 rules over the SA approach are drastically reduced complexity 

and increased convergence. Moreover, the authors state that this algorithm achieves 

comparable (usually slightly better) results than the SA.  Two versions of the 

algorithm, the encoder perturbation (called SR-C) and the decoder perturbation 

(called SR-D), are described in [56], where the experimental results demonstrate that 

SR-D performs better than SR-C.  Below, we give a brief description of SR-D. 
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The SR-D algorithm is realized by perturbing every codevector ic  in the 

codebook C  at each iteration m as follows, 

 ( )( )( ) ( ) mm m
i i i ic c T cζ= + ∀ ∈ C  (2.1) 

where ζ  is a uniformly distributed, zero-mean noise process, and ( )mT  is the 

temperature schedule that controls the noise added at the thm  iteration.  Although 

other types of schedules were investigated in [56] the following was found to give 

the best performance: 

 ( ) 2 1
p

m
c

m
T

I
σ  = − 

 
 (2.2) 

In (2.2) 2
cσ  is the variance of the sample vector components, I  defines the total 

number of iterations, and 3p =  was found to give the best performance.  The total 

number of iterations, I , determines the run-time and the performance of the SR-D 

algorithm.  The higher the value of I , the more gradual the annealing process and 

the closer the result to the global optimum will be, at the expense of longer run-time.  

A good trade off value was found to be 200I = .  Experimental results for image 

coder design, speech coder design, and Gauss-Markov sources at different rates are 

reported by the authors, and significant improvements over GLA are obtained.   

 

2.2.2 Vector Quantizer Design by Deterministic Annealing 

In the deterministic annealing algorithm proposed by Rose et al. [106] the main 

principle is the application of a probabilistic hierarchical clustering process, where 



 38

each sample vector in the training set is associated to a cluster with a certain degree 

of membership.  Each cluster is represented by a codevector.  Thus, the distortion 

(energy) function to be minimized is an expected distortion function, 

 { } ( ) ( ),j j
x j

E D P x R d x c= ∈∑∑ , (2.3) 

where ( ), jd x c  is the distortion measure incurred in representing sample vector x  by 

codevector jc , and ( )jP x R∈  is the probability that x belongs to the cluster 

represented by jc .   As a distortion measure the squared distance distortion is used, 

( ) 2
, j jd x c x c= − .  The probability distribution used to define the associations is the 

Gibbs distribution, which is the distribution that maximizes the entropy under the 

constraint (2.3) [106]: 
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where ℜ  is the cardinality of the cluster set.  Notice that the distribution in (2.4) is a 

form of soft information.  In other words, it gives a reliability value to assigning the 

sample vector x  to cluster jR  over the sample space of the cluster set.  The 

parameter β  is a term that is inversely proportional to the temperature in the 

annealing process.  Hence, at infinite temperature, which corresponds to 0β = , the 

probability associations are uniform: ( ) 1 , ,jP x R x j∈ = ℜ ∀ .   This means that, each 

sample vector x  is equally assigned to all the clusters.  As β  gets large, i.e., the 

temperature is lowered, the probability assignments for a sample vector x  start to 
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favor clusters closer to x ; the closer a cluster representative jc  to x , the higher its 

probability assignment.  In the limit β → ∞ , each sample vector gets assigned 

exactly to one cluster, namely the cluster whose representative codevector is closest 

to the sample vector.  We refer to this as a hard assignment, as opposed to a soft 

assignment where a sample vector gets assigned to more than one representative. 

The codevector locations are defined as the weighted average of the sample 

vectors, where the weights are the probability associations of the sample vectors to 

the specific codevector being considered: 
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Thus, at 0β =  (at infinite temperature) all cluster representatives are at the center 

of mass of the training set, 
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where K is the number of sample vectors in the training set.  Essentially, at 0β =  

there is only one cluster (or Voronoi region), which is the whole set, and a single 

representative codevector at its center of mass.  The hierarchical design algorithm in 

[106] starts the annealing process with the whole training set as one cluster at 0β = , 

gradually increases β , and re-optimizes by solving (2.5) at each β .  As β  is 

increased the probability associations start to get harder, and the system goes through 
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a sequence of splitting of the clusters at phase transitions until the required number 

of clusters (or codevectors) is reached.  The main focus in [106] is the derivation of 

the critical values of β , denoted cβ , at which these phase transitions occur.  These 

are the optimum splitting temperatures of the clusters and the authors show that in 

order to be able to attain the global minimum, the splitting of the clusters should be 

at these critical moments.  Note that β  does not control the size of the codebook; the 

system goes through a sequence of phase transitions until the required number of 

representatives is reached.  During the annealing process whenever β  reaches cβ  for 

an existing cluster, that cluster splits into smaller clusters.  In the limit β → ∞ , the 

associations become hard and each sample vector is associated with one 

representative as in the GLA algorithm. 

The work by Rose et al. [106] provides the theoretical framework explaining how 

the DA approach avoids local minima, and that through a careful annealing process it 

can achieve the global minimum.  However, for practical applications the algorithm 

proposed has some drawbacks: besides the added computational complexity that is 

required for keeping track of the critical temperatures, cβ  for each cluster, the 

annealing of the temperature has to be very slow especially in the vicinity of cβ ; and 

the association probabilities for each sample vector have to be calculated for all 

codevectors.  Such complexity is not realistic in many applications.  In the next 

section, we present and analyze reduced complexity techniques for VQ design that 

result in very significant computational gains with negligible performance 
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difference.  In the sequel we will refer to the method explained in this section as the 

standard DA. 

 

2.3 Reduced Complexity Deterministic Annealing 

2.3.1 Introduction 

In the proposed algorithms, called soft vector quantizer (SVQ) algorithms [32], 

we formulate the vector quantizer design problem in a probabilistic framework as in 

the standard DA.  However, unlike standard DA each training vector is allowed to be 

associated in probability in some cases with a subset of the codevectors.  These 

probability associations provide a reliability measure on the set of codevectors that 

the training vector can be mapped to.  The soft associations are functions of the 

relative distances of the codevectors from the training vector and also on the 

annealing temperature if it is present in the soft assignment measure. 

The cost of the computation of the Gibbs soft assignment in (2.4), which involves 

exponentials, is high; if we count each of the basic operations (addition, subtraction, 

multiplication and division) to take one floating point operation, flop, then an 

exponential computation takes 8 flops.  And since soft assignments for all 

codevectors have to be updated for all sample vectors in every iteration in the 

standard DA, this results in a system of very high computational complexity.  Recall 

that in (2.4) the term β  determines the level of softness of the assignments, so it acts 

as a softness control factor (as β  increases assignments get harder).  In order to 
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reduce the computational complexity of the system, we would like to define and use 

a simpler distribution, preferably one that does not involve exponential terms and 

converges faster.  Let us define a general simple distribution as: 
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where ( ),k ix cµ  is a simple function of its variables which is non-increasing as the 

distance between kx  and ic  increases.  It can be interpreted as the goodness of match 

of codevector ic  to sample vector kx .  The denominator is the sum of the goodness 

of matches with respect to codevectors that we take to be the relevant N  codevectors 

to kx  (when N = C  all of the codevectors are regarded as relevant).  Therefore, the 

softness control of (2.7) is a function of N .  Using a simple function, ( ),k ix cµ  

coupled with N = C  can result in major computational gains at the expense of some 

reduction in performance. 

For a given set of soft assignments, ( )0 , ,i kp c x i k∀ ∀ , the codevector locations 

can be computed as the weighted average of the sample vectors as in (2.5), 
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where sample vector probabilities are assumed to be uniform, ( ) 1
Kkp x = , and where 

K  is the size of the training set.  The general iterative framework for updating the 
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soft assignments and codevector locations is shown in Figure 2.1.  Note that this 

framework is independent of the type of soft assignment used; any type of soft 

assignment measure that can give soft assignment values for the set of codevectors 

for a given sample vector can be used in this framework. 

Ideally, in any annealing algorithm the annealing temperature should start at a 

very high temperature (theoretically at infinite temperature) and gradually cool down 

to zero.  However, as we have seen in the standard DA this results in a very slow 

convergence.  In the proposed SVQs the temperature is not chosen to be infinite at 

the start, and we demonstrate that starting with a low temperature and with fixed 

(required) number of codevectors, it is possible to achieve near optimal performance.  

Starting with a low temperature means starting the algorithm with a non-convex 

energy surface.  We show that introduction of controlled randomness into the 

iterations has the potential to improve the results due to the non-convexity of the 

Figure 2.1:  The iterative procedure showing the updating
of the soft assignments and the codevectors.

m = m+1

Iteration:  m = 0

Initial Codebook:
( ) ( ) ( ) ( ){ }0 0 0 0

0 1 1, , , MC c c c −= L

Given

Update

( )( ){ }1m
i kp c x−

( ){ }m
ic

Given

Update

( ){ }m
ic

( )( ){ }m
i kp c x



 44

energy surface.  The stochastic relaxation technique described in section 2.2.1 is an 

excellent candidate for this purpose because of its easy integration into an iterative 

algorithm and its low complexity. 

 

2.3.2 Reduced Complexity Gibbs Distribution for VQ Design 

In order to facilitate a practically usable algorithm and circumvent the slowness 

of the standard DA, we start the annealing process at temperatures low enough to 

reduce convergence time, but at the same time high enough for the principles of soft 

association to take effect.  We know that as a result of soft association every sample 

vector kx  has a certain degree of belonging to all of the codevectors in the codebook.  

However, while it is computationally complex to take all the soft associations into 

account no matter how small they are, the effect of very small soft associations on 

(2.8) and on the converged codebook is negligible.  Therefore, in practice, those 

association probabilities that are very close to zero can be set to zero.  At this point, a 

logical approach would have been to define a threshold and set all the associations 

below this threshold to zero.  But this would only save us computational cost in (2.8)

, we would still need to calculate all the soft associations and compare them with the 

threshold.  In order to further reduce the cost, we decided to select the N  nearest 

codevectors from a given sample vector, compute the soft associations only for the 

closest N  codevectors and set the other N−C  associations to zero.  Note that we 

are not reducing the size of the codebook, that is fixed; what we do is, for each 
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sample vector we only compute the soft information for the nearest N  codevectors 

instead of the whole codebook.  In this way, only the distances from a given sample 

vector to the codevectors need to be computed and the N  nearest codevectors are 

determined.  Denoting ( ),kx NN  to be the nearest N  codevectors from a given kx , 

the soft information is computed by, 
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where ( ) 2,k i k id x c x c= − .  We can assess from Figure 2.2 that taking all of the 

codevectors into consideration does not justify the required computational 

complexity.  The figure shows the total probability mass contained in the nearest N  
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Figure 2.2:  Probability mass contained in the nearest N codevectors from a randomly
selected sample vector, at different temperature values.  Codebook size = 128, vector

dimension = 16, zero-mean, unit variance Gaussian source.



 46

codevectors from a randomly chosen sample vector for increasing β  (i.e., 

decreasing temperature) during the design of a size 128=C  codebook using the 

standard DA algorithm.  Each point on the graph is found by summing the 

probability mass within the nearest N  codevectors from each kx , and averaging over 

all kx , 
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where K  again is the size of the training set.  We can observe from the figure that 

even at low β  (high temperature) 0 1.0β< < , a considerable amount of the 

probability mass is confined within a small number of codevectors compared to the 

size of the codebook.  For example, in Figure 2.2, at 0.25β ≅  the nearest 3 

codevectors account for more than 40% of the probability mass on average, and the 

rest 125 codevectors account for less than 60%.  Experimentally we have found 

4N =  to be a good trade-off value between performance and complexity.  In other 

words, results obtained by setting 4N =  and with N = C  (i.e., using all the 

codevectors in the codebook) resulted in negligible performance difference, 

however, the computational savings are significant, especially for large codebooks 

(e.g., 128,=C 256, .etc ).  A comparison of 4N =  and 128N = =C  using the same 

annealing schedule is given in Table 2.1.  The loss in performance incurred by 

considering only the nearest 4 codevectors for each sample vector instead of the 

whole codebook is clearly negligible.  In exchange for this negligible loss, a factor of 
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about 120 speed-up in running time is achieved which is a highly significant 

complexity reduction.  

The proposed algorithm is shown in Figure 2.3, where the iterations starts with 

4N = , 0.3β =  and an initial codebook 0C .  Note that in the algorithm flowchart 

1
βτ =  is shown and the reduction factor 0.995ρ =  is used, ( ) ( )1m mτ τ ρ−= ⋅ .  Note that 

0.995ρ =  for τ  corresponds to an increment factor of 1.005κ =  for β , 

( ) ( )1m mβ β κ−= ⋅ .   At each iteration, we gradually increase β  (i.e., decrease 

temperature), update the soft information according to (2.9) and re-optimize the 

codevector locations using (2.8).  We can then apply the codevector perturbation as 

explained in section 2.2.1 (also see [117]).  As the temperature decreases the softness 

of the codevector associations also decreases; in other words, the closer codevectors 

to sample vector considered become increasingly important, while those that are 

away become less and less important.  In the limit, when temperature approaches 

zero the algorithm becomes like the GLA and at each iteration all the probability 

mass for a given sample vector is assigned to the nearest codevector, or put 

differently, we reach the nearest neighbor condition. 

N Ave. SNR Ave. CPU Time 
4 3.595 dB 136 sec. 

128 3.598 dB 16483 sec. 

Table 2.1:  Average performance and running time comparison for N = |C| = 
128 and N = 4.  The source is uncorrelated Gaussian, the vector dimensions are 
16, and soft information measure is reduced complexity Gibbs distribution.  The 
results are averages over 20 experiments (details on experimental set-up are in 

Experimental Results section). 
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In the above scheme we kept N  fixed.  When we need to design quantizers for 

very large codebook sizes (e.g., =C 512, 1024, …) we may find it useful to use a 

larger N  (e.g., 10, 12, 15, …).  However, we know that while the thN  furthest away 

codevector from a given sample vector plays an important role (has large probability 

mass) in the early iterations, its importance decreases in each iteration.  As the 

temperature decreases  ( β  increases) the probability mass is gradually transferred 

from the distant to the closer codevectors.  Hence, after a while the thN  codevector 

will contain negligible mass and it can be discarded without any significant effect on 

the final performance.  Gradually, the above will be the case for the ( )1 thN − , 

( )2 thN − , … codevectors.  In order to reduce the complexity with respect to the fixed 

N  scheme, without affecting system performance, we can append the simple 

Figure 2.3:  The flowchart for the reduced complexity Gibbs distribution algorithm.
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algorithm shown in Figure 2.4 to the algorithm in Figure 2.3 (in the dashed block).  

As shown in Figure 2.4, whenever the average probability mass of the nearest 1N −  

codevectors, ( )1PM N −  (2.10) exceed a certain mass π  (typically 0.99π = ), N  is 

reduced by one: 

 ( ) ( )
( ), 1

1
1 , 1

i k

i k
k c x N

if PM N p c x then N N
K

π
∈ −

− = > = −∑ ∑
N

. (2.11) 

When N  is large the cumulative effect of gradually decreasing the number of nearest 

neighbors to be taken into account results in 

considerable complexity reduction which was 

not possible in the fixed N  scheme.  However, 

it is important to note that in the case of small 

N  (e.g., 4N = ) we may not have any 

computational gain or we may even increase the 

computational cost by using the gradual 

reduction scheme.  This is a result of the fact 

that the small gain (from N  being small) 

obtained by gradually decreasing N  will be 

consumed by the computation of ( )1PM N − .  

Instead, when N  is large enough, the reduction in computational cost obtained by 

reducing N  surpasses the added cost of the computation of ( )1PM N − . 

 

Pm(N-1) > B

Compute
Pm(N-1)

N = N-1

Yes

No

Figure 2.4:  The scheme for
gradual reduction of the

number of nearest codevectors
to be taken into account, N
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2.3.3 Low Complexity Soft Information Measures for VQ Design 

2.3.3.1  Single Triangular Membership Function 

As previously stated, in order to reduce the computational complexity of the 

system we need to use in (2.7) a less complex distributions than the optimal Gibbs 

distribution.  One of the simplest distributions that readily comes to mind is the 

“inverse Euclidean distance” distribution, in which, for a given sample vector kx , the 

“importance” of the codevectors decrease with increasing distance from kx .  

“Inverse Euclidean distance” can be used as a soft information measure as follows, 

 ( ) 1

0

1

|
1

i
i k N

j j

d
p c x

d

−

=

=

∑
 (2.12) 

The distances in (2.12) are the Euclidean norms between kx  and the codevectors (n 

is the vector dimension), 

 ( ) ( ) ( ) ( )2 22
,0 ,0 ,1 ,1 , 1 , 1,i k i k i k i k n i nd d x c x c x c x c− −= = − + − + + −L . 

The number of codevectors to be taken into consideration for each kx  can be 

determined by a circle centered on kx  with a radius R , where all codevectors closer 

than R  to kx  constitute the N  nearest codevectors.  The radius R  decreases from 

one iteration to the next, ( ) ( )1m mR R ρ−= , where 0 1.0ρ< < . 

Another soft information measure can be defined using a triangle function as 

shown in Figure 2.5 (we use absolute distances between a sample vector and each of 

the codevectors, for clarity of presentation both sides of the triangle is used in Figure 
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2.5).  The function with height 1h =  and a spread xR , will use all the codevectors 

within an Euclidean distance xR  of kx , i.e., the N  nearest codevectors.  Using the 

fuzzy systems terminology, we can define this triangle function as the membership 

function of kx  and denote it by xm .  The soft associations are computed by using the 

heights of the membership function corresponding to the Euclidean distances of the 

codevectors from kx , 

 ( ) 1

0

| i
i k N

j
j

h
p c x

h
−

=

=

∑
. (2.13) 

The spread xR  decreases gradually in each iteration giving more and more 

importance to the nearer codevectors as the iterations increase.  At the limit, when 

Figure 2.5:  Triangular membership function used as a soft information
measure.  Codevectors within the spread of the function comprise the nearest  N

codevectors for the considered sample vector.
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only one codevector stays within the nearest neighbor set, i.e., 1N = , the soft 

information measure becomes hard and all the probability mass gets assigned to the 

nearest codevector.  Note that as the spread is decreased, for some sample vectors 

1N =  will be reached earlier than the others since the nearest codevector distance 

cannot be the same for each sample vector.  As the spread continues to decrease, at 

some point for some sample vectors, ( ),x k iR d x c i< ∀ .  In these cases, the algorithm 

assigns all the probability mass to the nearest codevector.  The spread at the thm  

iteration is controlled by a geometric schedule as in the Gibbs case: 

 ( ) ( )1m m
x xR R ρ−=  (2.14) 

where ρ  is the reduction factor, 0 1.0ρ< < .  The soft information measure in (2.13) 

can be defined in terms of the spread, xR  and the distances, ( ),i k id d x c=  using 

triangular similarities, where the height of the triangle is 1h = : 

 
( )

i

x x i

i x i
x

hh
R R d

h
h R d

R

=
−

⇒ = −
 

 x i
i

x

R d
h

R
−⇒ =  (2.15) 

Therefore, (2.13) becomes, 
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We call 1 i

x

d
R−  as the “normalized distance.”  The soft information measure in (2.16) 

is a better one than the inverse Euclidean distance measure in (2.12), because this 

can mimic the effect of the temperature reduction in the Gibbs distribution much 

better.  Consider the distances of the 6 codevectors, { }0 1 2 3 4 5, , , , ,c c c c c c  from a sample 

vector kx  shown in Figure 2.5.  Using (2.12) with a radius xR R=  the codevectors 

{ }0 1 3 5, , ,c c c c  are taken as the set of nearest codevectors from kx .  When the radius is 

decreased to xR R′ ′=  the set of nearest codevectors become { }0 1 3, ,c c c .  But note that 

the distances { }0 1 3, ,d d d  are not affected at all by the decrease in the radius.  With 

(2.12) the only time the soft assignments will change as the radius is decreased is 

when a codevector is left out of the circle of radius R .  However, using (2.13) with 

the normalized distances, where 1 i

x

d
i Rh = − , the heights (normalized distances) get 

affected by the reduction in the spread xR  as seen in the equivalent expression in 

(2.16).  As the spread decreases the normalized distances approach zero assigning 

more weight to the closer codevectors.  This is desired in order to approximate the 

effect of the temperature reduction in the Gibbs distribution; in other words, as the 

spread decreases the codevectors closer to kx  should increase their share of the soft 

assignment in conformity with their distances from kx .  Hence, the normalized 

distance defined soft information measure (2.16) is better than the Euclidean 

distance-defined measure (2.12) in terms of mimicking the Gibbs soft measure.  This 

will be demonstrated by our experimental results.  Note also that the computational 

cost of computing one soft assignment using (2.12) requires 5 4N +  flops, whereas 
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using (2.16) it requires 7N +  flops, counting addition, subtraction and multiplication 

as one flop and division as four flops ( N  is the number of codevectors taken into 

computation).  Hence, for 1N ≥ : 7 5 4N N+ < + , implying that (2.16) is also less 

costly than (2.12).  Recalling that an exponential computation takes 8 times more 

than a basic operation (8 flops compared to one flop of operation time for a basic 

operation), then (2.9) takes ( )8 1 1 4 10 4N N+ + + = +  flops, which is much larger than 

7N + .  Therefore, the height-defined triangular soft information measure is a 

computationally less complex distribution than the Gibbs distribution. 

 

2.3.3.2  Multi-Triangular Membership Function 

The superiority of the Gibbs distribution comes from its constituent exponential 

functions, which take the Gaussian form for the squared-distance distortion.  This 

allows the system to gracefully transfer the probability mass to the nearer 

codevectors provided that the temperature is lowered very gradually; hence, the 

system efficiently traces the global minimum until the temperature reaches zero.  

This being the case, we direct our attention to better approximate the effect of the 

exponential functions in our simplified soft information measure.  To this end, we 

consider multiple membership functions, that is, a membership function not only for 

kx , but for all the N  nearest codevectors as shown in Figure 2.6.  Compared to the 

case with a single membership function, multiple membership functions increase the 

effective region beyond the spread of xm  and transfer the probability mass to the 
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nearer codevectors more gracefully as the spreads are decreased.  The spread of xm  

is xR , and the spreads of the codevector membership functions im  are iR .  Note that 

in this case the “heights” ih  are defined at the crossing points of im  with xm ; their 

projections are denoted as iz  on the horizontal axis in the figure.  Using the 

symmetry of the functions we can write the following two equations, (2.17) and 

(2.18): 

 
and

i i i

i i i i i i i

h R hh
h

R R c z R c z
= ⇒ =

− − − −  (2.17) 

 

Figure 2.6:  Multi-triangular membership function as a soft information
measure.  Codevectors within the cumulative spread of the multi-function

comprise the nearest  N codevectors for the considered sample vector.
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 i x i

x x i k x i k

h R hh
h

R R z x R z x
= ⇒ =

− − − −
 (2.18) 

To define ih  first we need to derive iz .  By equating (2.17) and (2.18) we get, 

 
( ) ( )i x i k x i i i

i i i k x i x i

R R z x R R c z

R z R x R c R z

− − = − −

⇒ − = −
 

 i k x i
i

x i

R x R c
z

R R
+⇒ =
+

. (2.19) 

Since our reference point for the Euclidean norms is kx , we can set 0kx =  and 

i ic d= : 

 x i
i

x i

R d
z

R R
⇒ =

+
. (2.20) 

Finally, substituting (2.20) into (2.17) or (2.18), with 1h =  we get ih , 

 1x i i i
i

x i x i

R R d d
h

R R R R
+ −⇒ = = −

+ +
. (2.21) 

The soft assignments are obtained by substituting (2.21) into (2.13), 
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 (2.22) 

Note that the spreads of the codevector membership functions, iR  are not equal.  We 

have observed that the soft information measure in (2.22) better approximates the 

Gibbs measure if the spreads of the codevector membership functions, iR  decrease as 
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the distance of the codevectors from kx increase, as opposed to having all iR  the 

same.  We have used the following spread adjustment as a function of distance:  Let 

the codevectors 0 1 2, , ,c c c% % % L  be ordered in non-decreasing distances from kx , 

0 1 2, , ,d d d% % % L .  Normalize these distances with the distance of the nearest codevector to 

kx , i.e., with min 0d d= % : 

 0 1 2

min min min

d d d
d d d

≤ ≤ ≤
% % %

L  (2.23) 

Let R  be the initial spread from which all iR  are to be obtained as follows: 

 0 1 2
0 1 2

min minmin

, , ,
R R R

R R R R
d d d

d dd

= = = = L% % %  

 min
i

i

Rd
R

d
⇒ = %  (2.24) 

Note that in this case the annealing process is controlled by two spreads, namely by 

xR  and R .  We can use geometric reduction schedules as before, 

 ( ) ( ) ( ) ( )1 1andm m m m
x xR R R Rρ ρ− −= =  (2.25) 

where 0 1.0ρ< < . 

The algorithm for the low complexity soft information measures, both for single 

membership function case and multiple membership function case is shown in Figure 

2.7.  The initial spreads used were ( )0 2
x XR γ σ= ⋅  and ( )0 2

XR γ σ= ⋅ , where 2
Xσ  is the 

variance of the training set components, and 3.3γ =  was found to give the best 

performance.  Larger values give similar results and are more complex.  As the 

spread(s) decrease(s) the softness of the codevector associations decrease; in the 
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limit, when 1N =  for all sample vectors i.e., when all the probability mass for each 

sample vector kx  is assigned to the nearest codevector from kx , the algorithm 

becomes like the GLA algorithm. 

 

2.3.4 Optimal Temperature Schedule 

In the previous section we have proposed two low complexity soft assignment 

measures, namely, the triangular soft information measure and the multi-triangular 

soft information measure as simplified ways of computing the soft assignments.  

Although these measures will significantly reduce the computational cost of the soft 

assignments compared to the Gibbs soft measure, this improvement in computational 

cost will come in exchange for some loss in performance since Gibbs is the optimal 

Figure 2.7:  The flowchart for the low complexity soft information measure algorithm.
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soft measure.  However, the loss in performance can be minimized if we can find 

temperature reduction schedules for the low complexity measures that can follow the 

Gibbs β  schedule such that the “distance” between the two distributions is 

minimized.  In other words, for a given codevector the probability mass assigned by 

the low complexity (non-optimal) measure and the optimal Gibbs measure is as 

small as possible.  By definition this is the minimization of the 1L  distance between 

the two distributions [29], 

 ( ) ( ) ( ) ( )0 01G i G i
i

p c x p c x p c x p c x− = −∑ . (2.26) 

Let the low complexity measure be the triangle soft assignment measure, then we 

would like to find the spread reduction schedule xR  for a given Gibbs β  schedule 

that minimizes (2.26).  But note that minimizing (2.26) is equivalent to minimizing 

the relative entropy between ( )0p c x  and ( )Gp c x , ( ) ( )( )0 GD p c x p c x , since we 

know from [29] that, 

 ( ) ( )( ) ( ) ( ) 2

0 0 1

1
2 ln2G GD p c x p c x p c x p c x≥ −  (2.27) 

with equality when 0 Gp p= .  Although it is highly intuitive that in order to minimize 

the performance difference between a simplified soft-measure and the optimal soft-

measure the relative entropy between them is minimized, in the Appendix it is shown 

that this is indeed the case.  The error analysis in the appendix shows that at a given 

system entropy (softness) the performance loss in terms of distortion between two 

distributions (soft-measures) is a function of the relative entropy between them.  
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Hence, minimizing the relative entropy minimizes the distortion penalty paid for 

using a simplified soft-measure. 

We will demonstrate that the relative entropy is approximately minimized when 

the variances of the two distributions, ( )0p c x  and ( )Gp c x  are equal.  The 

variances of ( )Gp c x  and ( )0p c x , respectively, are (the lower limits of the 

integrals start from zero because we use absolute distances between sample vector 

and each of the codevectors): 
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Equating (2.28) and (2.29), and solving for xR , we get, 

 
( )9 2

xR
π
π β

−
=

⋅
. (2.30) 
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Hence, using (2.30) we can obtain a schedule for xR  given a schedule for β .  We 

need to verify that the relationship in (2.30) minimizes the relative entropy.   

We have used the set up in Figure 2.8 to show that for a given β  for the Gibbs 

distribution, the spread xR  obtained by (2.30) for the triangle distribution minimizes 

the relative entropy.  In the figure there are a set of L  codevectors at increasing 

distances from a sample vector x .  For each β  in a set { }1 2, , , mβ β βL , where 

10 1β< =  and with small increments 1k kβ β β−= + ∆ , the soft Gibbs assignments of 

the codevectors are computed using the Gibbs soft information measure, 
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Figure 2.8:  An instance of the Gibbs membership function with
parameter β and an instance of the triangular membership function
with parameter Rx is shown.  There are L codevectors at increasing

distances from sample vector x.
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Then, starting with a small value for the spread xR , 1xR = , the soft triangular 

assignments are computed for the codevectors using the triangular soft information 

measure, 

 ( ) ( )

( ) ( )
1 1

0 0

| x i x x i
i L L

x j x x j
j j

R d R R d
p c x

R d R R d
− −

= =

− −
= =

− −∑ ∑
. 

Using the Gibbs and the triangular soft assignments obtained on the set of 

codevectors the relative entropy ( ) ( )( )0 GD p c x p c x  is computed.  Without 

changing β , the spread xR  is incremented by a small value xR∆ , x xR R+ ∆ , the soft 

triangular assignments are computed for x xR R+ ∆ , and the relative entropy between 

the Gibbs assignments and the new triangular assignments is computed.  The process 

of incrementing xR , computing the soft triangular assignments and computing the 

relative entropy is repeated until the value of xR  that minimizes the relative entropy 

( )0 GD p p  is found (the relative entropy ( )0 GD p p  is a convex function of 

( )0 , Gp p ).  At this point, for the fixed β  we have the spread xR  that minimizes the 

relative entropy.  The β  is incremented by a small value to β β+ ∆  and the Gibbs 

soft assignments are computed.  Again, for the updated β  the value of xR  that 

minimizes ( )0 GD p p  is found through an exhaustive search, and the process is 

repeated.  The resulting minimum relative entropy curve is shown in Figure 2.9 by 

the solid line.  On the other hand, the dashed curve is obtained using the model 

(2.30) to get xR  for each β .  We can see that the derived relation in (2.30) can 
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highly approximate the minimum relative entropy curve, and hence the best xR  

schedule for a given β  schedule. 

The reduced complexity Gibbs algorithm and the low complexity soft measure 

algorithm for the triangular membership function using two different spread 

reduction schedules are used to design codebooks of size 128 and 256 (for details on 

experiments see the Experimental Results section).  The results are shown in Table 

2.2.  Of the two schedules for the triangular soft information measure, the first one is 

Figure 2.9:  Plot showing the minimum relative entropy between the triangular 
soft measure and the Gibbs soft measure at various spread xR  and β  pairs.  The 
solid curve is obtained by sequentially searching increasing values of the spread 

xR  that gives the minimum relative entropy for a given value of β .  While the 
dashed curve is obtained using the derived relationship between xR  and β  to 

give the minimum relative entropy. 
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the geometric spread reduction given in (2.14) with 0.995ρ = , and the second one is 

obtained using (2.30) and the Gibbs schedule (referred to as Gibbs guided spread  

reduction in the Table).  Observe from the results in the Table 2.2 that the 

performance of the triangular soft information measure using the Gibbs guided 

spread reduction schedule outperformed the geometric spread reduction in same 

number of iterations (running time).  Therefore, for a given β – schedule the relation 

in (2.30) provides a better xR – schedule than a geometric reduction that is suggested 

in most annealing algorithms.  Note that β – schedule is itself geometric, 

( ) ( )1m mβ β κ−= ⋅  where 1.0κ >  ( 1.005κ =  is suggested in section 2.3.2) as used in 

most annealing algorithms.  But since the Gibbs soft information measure is the 

optimal measure, following the β – schedule in a simple soft information measure 

that approximates the Gibbs measure, increases the simple soft information 

measure’s performance as demonstrated above.  Note also that to obtain the β – 

 
Reduced Complexity 

Gibbs Soft 
Information Measure 

Low Complexity Soft 
Information Measure 

– Triangular. 
Geometric spread 

reduction 

Low Complexity Soft 
Information Measure 

– Triangular. 

Gibbs guided spread 
reduction 

Codebook 
Size 

Ave. SNR Ave. CPU 
time 

Ave. SNR Ave. CPU 
time 

Ave. SNR Ave. CPU 
time 

128 3.595 dB 136 sec. 3.392 dB 91 sec. 3.411 dB 91 sec. 
256 5.210 dB 329 sec. 4.919 dB 232 sec. 4.952 dB 232 sec. 

 
Table 2.2:  Comparing the geometric and Gibbs guided spread (temperature) 

reduction for the triangular membership function for the design of 128 and 
256 sized codebooks for uncorrelated Gaussian source with vector 

dimensions 16. 
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schedule the Gibbs algorithm need not be run, it can be obtained using 

( ) ( )1m mβ β κ−= ⋅ , 1.0κ > . 

 

2.4 Experimental Results 

We now present the results obtained when our algorithms were used to design 

codebooks of various sizes, with various sources.  The results are compared with 

other algorithms of interest, namely, GLA, SR-D and standard DA.  We first 

compared them without codebook initialization on Gauss-Markov sources.  Then, 

since both GLA and SR-D are sensitive to the choice of the initial codebooks, we 

also compared the effect of initialization on these algorithms.  We used the pairwise 

nearest neighbor (PNN) algorithm [39] to initialize the codebooks.  In order to give a 

more comprehensive analysis using the PNN initialization we also compared these 

algorithms on human speech sampled at 8 kHz and on image sources from the USC 

image database. Our quoted execution times (CPU times) are based on those 

obtained with an Intel PIII - 550 MHz machine. 

 

2.4.1 Without Codebook Initialization 

The training sources we considered were two cases of first order Gauss-Markov 

sources, one with correlation coefficient 0 0.0α =  (uncorrelated source) and the other 

with 0 0.9α =  (correlated source).  We blocked 16384 samples and 24576 samples, 
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into 1024 16-dimensional training vectors and 1024 24-dimensional training vectors, 

respectively; and designed codebooks of sizes 32, 64, 128 and 256 for both training 

sets. 

We designed codebooks for the following algorithms where in the plots the 

appended  “a” means without stochastic perturbation (e.g., in (1.) below, SVQ-Ga 

would mean without perturbation): 

1. SVQ-G:  Soft vector quantizer design using the reduced complexity Gibbs 

distribution as the soft measure. 

2. SVQ-E:  Soft vector quantizer design using the inverse Euclidean distance 

distribution as the soft measure. 

3. SVQ-T:  Soft vector quantizer design using the height-defined distribution 

with single triangular membership function as the soft measure. 

4. SVQ-N:  Soft vector quantizer design using the height-defined distribution 

with multiple triangular membership functions as the soft measure. 

5. VQ-DA:  Vector quantizer design using the standard deterministic annealing 

[106]. 

6. SR-D:  Vector quantizer design using the reduced complexity decoder 

perturbation algorithm [117]. 

7. GLA:  Vector quantizer design using the generalized Lloyd algorithm [80]. 

Algorithms 1 – 4 incorporate stochastic perturbation.  When no perturbation is 

present the algorithm is abbreviation with an extension “a”, e.g., in algorithm (1.) 

SVQ-Ga would mean without perturbation.  For each case, except VQ-DA, the 
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average performances are computed for 20 different initial codebooks, where for 

each codebook design the same set of initial codebooks are used, allowing us to 

compare the average performances of the different algorithms.  Recall that VQ-DA 

uses the center of mass of the training set as the initial codebook, so its performance 

with this initial condition is recorded.  The performance measure used is signal-to-

noise ratio (SNR), defined as: ( )1010 log sSNR P D= ⋅ , where sP is the signal power 

and D is the distortion per sample.  The SR-D algorithm was run for 200 iterations as 

in [117], and the GLA was run until convergence. 

The baseline performance for each source and rate ( )2
log ,in bits/samplerate C dim=  

were computed by averaging the GLA results obtained from the 20 different initial 

conditions.  The performances of the first 6 algorithms (listed above, both with and 

without perturbation) compared with the GLA performances are shown in Figures 

2.10 – 2.13.  In all cases, the reduced complexity DA algorithms (SVQ) achieved 

significant improvements over the traditionally used GLA and over SR-D, which is 

said to give near optimal results [117].  From the figures we observe that, the SVQ-G 

algorithm (reduced complexity Gibbs distribution) performed better than the other 

SVQ algorithms; however, the performance of SVQ-N is very competitive.  Note the 

progression of performances of the low complexity soft information measures: the 

performance improves from the inverse Euclidean distance soft-measure (SVQ-E 

and SVQ-Ea) to the single-triangle function soft measure (SVQ-T and SVQ-Ta), and 

from the latter to the multi-triangle function soft measure (SVQ-N and SVQ-Na).  

For clarity of observation, these results are shown separately in Figure 2.14 for the  
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Figure 2.10: Improvements over GLA. Gaussian source. Vector dimension = 16 
samples/vector. 
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Figure 2.11: Improvements over GLA. Gauss-Markov source (a0=0.9). Vector 
dimension = 16 samples/vector. 
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Gauss-Markov source.  This was an expected result since these algorithms were 

progressively designed to better approximate the optimal Gibbs distribution, hence 

the performance progressively approaches to the Gibbs performance.  Note also the  

gain achieved by the stochastic relaxation (SR) in the SVQ algorithms (abbreviated 

with an extension “a”, SVQ-Xa) compared to non-stochastic cases (without extension 

“a”, SVQ-X).  The gain ranges from a high 0.2dB for SVQ-E (Figure 2.11) to a low 

0.02 dB for SVQ-G algorithms.  It should be noted that the better an algorithm 

performs without the SR, the lesser the additional gain achieved by the SR in the  

 

SVQ algorithms.  In other words, as an algorithm comes closer to the global 

optimum using the principles of soft information processing, it requires lesser and 

lesser help from the SR to attain an improved performance.  In the limit, granting  
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Figure 2.12: Improvements over GLA. Gaussian source. Vector dimension = 24 
samples/vector. 
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Figure 2.13: Improvements over GLA. Gauss-Markov source (a0=0.9). Vector 
dimension = 24 samples/vector. 
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Figure 2.14: Improvements over GLA for low complexity information measures.  
Source is Gauss-Markov (a0=0.9). Vector dimension = 16 samples/vector. 
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enough computational resources for the full power of the soft information processing 

to be utilized, the global optimum can be reached without requiring any help from 

SR.  But as the results demonstrate, for the reduced complexity DA approaches SR 

results in a performance improvement with negligible computational complexity. 

The results for VQ-DA (standard DA) were obtained starting with all the sample 

vectors being equally associated with all the codevectors, which dictates an initial 

codebook where all the codevectors are at the center of mass of the training set.  The 

simulations were conducted with a conservative annealing schedule which took over 

120000 CPU seconds (about 24 hours) for the codebook of size 256=C  to 

converge. Recall that in VQ-DA the starting temperature is very high for the initial 

probability associations to be uniform, and the probability associations are computed 

to all codevectors for each sample vector, thus the algorithm executes very slowly 

especially for large codebooks. The figures show that, the performance of VQ-DA 

compared to reduced complexity DA algorithms is inferior in almost all cases 

considered (except for rate 0.333 in Figure 2.13).  Moreover, the SVQ algorithms run 

much faster than VQ-DA, requiring 450 CPU seconds for 256=C  and 24 

dimensional vectors.  We are aware that, if enough computational resources are 

allocated, VQ-DA is expected to perform superbly as shown in [106].  However, the 

performance of the reduced complexity DA algorithms proved that for most practical 

applications the expected performance of VQ-DA do not justify its computational 

burden. 
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2.4.2 With Codebook Initialization 

In addition to the Gauss-Markov sources used in the previous section we also 

considered sampled human speech and image sources to compare the GLA, SR-D 

and SVQ performances with PNN initialized codebooks.  A segment of human 

speech was sampled at 8 kHz and partitioned into 2048 16-dimensional vectors, and 

we have designed five codebooks of sizes 16, 32, 64, 128 and 256.  The image 

source was obtained by extracting 8192 16-dimensional vectors (corresponding to 

4 4×  blocks) from 512 512×  monochrome training images from the USC image 

database with each pixel amplitude quantized to 8 bits.  Four codebooks of sizes 32, 

64, 128 and 256 were designed using this training set, and the performances of these 

codebooks were tested on “Lena” which was outside of the training set. 

In Figure 2.15 we show the performances of the 4 codebooks on (uncorrelated) 

Gaussian source as improvement over the PNN initialized GLA.  For clarity of 

presentation we have only included the SVQ-Ga performance from our proposed 

algorithms; the other SVQ algorithms behave comparatively the same with SVQ-Ga 

as in Figure 2.10.  Note from the figure that the PNN initialization improves the 

GLA and SR-D algorithms, however the SVQ-Ga algorithm is not affected.  This is a 

positive result for the SVQ algorithms for it shows that they can evade the local 

minimum dictated by the initial codebook, and hence are insensitive to the choice of 

the initial codebook.  The PNN and its fast but sub-optimal version, fast-PNN require 

( )3O K  and ( )logO K K  time, respectively, where K  is the size of the training set 

[39].  The results presented in Figure 2.15 are obtained using the full search PNN  
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algorithm (with complexity ( )3O K ) in order to get the best possible results with the 

GLA and the SR-D algorithms.  The fast-PNN initialization would result in reduced 

performance; it is shown in [114] that the fast-PNN algorithm decreases the coding 

performance by 0.4 – 0.6dB for image sources compared to full search PNN.  The  

 

SVQ algorithms outperformed both GLA and SR-D algorithms without the 

complexity of the initialization process, which gets computationally more 

impractical as the size of the training set increases. The running time for the 

generation of the PNN codebooks from a training set of 4096 16-dimensional vectors 

was 2374 CPU seconds, and the design of the size 256 codebooks for GLA, SR-D 

and SVQ-Ga algorithms on average were 44 CPU seconds, 366 CPU seconds and 

1552 CPU seconds on the same machine, respectively.  Therefore, with the PNN  
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Fig. 10. Improvements over GLA for human speech source sampled at 8kHz; vector dimensions 

= 16 samples/vector. 

Figure 2.16: Improvements over GLA for speech source sampled at 8kH, vector 
dimensions = 16 samples/vector. 
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Fig. 11. Improvements over PNN initialized GLA for human speech source sampled at 8kHz; 

vector dimensions = 16 samples/vector. 
Figure 2.17: Improvements over PNN initialized GLA for speech source sampled at 

8kH, vector dimensions = 16 samples/vector. 
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initialization the total running times for the GLA and the SR-D algorithms are higher 

than those for the SVQ-Ga algorithm.  And since SVQ-Ga performs the same with 

and without the initialization, the SVQ-Ga algorithm outperforms GLA and SR-D 

with a lower running time. 

The performance on the speech source using the three algorithms, GLA, SR-D 

and SVQ-Ga, with and without the codebook initialization is shown in Figures 2.16 

and 2.17.  In Figure 2.16 the performance improvement over GLA and in Figure 2.17 

improvement over PNN initialized GLA are shown.  Note that while the performance 

improvement of SVQ-Ga over GLA is large (0.95 dB at 0.5 bits/sample), compared 

with the PNN initialized GLA the improvement is rather modest.  It is stated in [49] 

that for speech sources the higher the sampling rate, the less variable are the vector 

shapes for the same dimension and so the simpler the needed codebooks.  The 

comparison made in [49] considers 8kHz (the sampling rate we used) as a high 

sampling rate.  Hence, this means that, at high sampling rates, the expected 

performance increase over a good codebook with a better codebook is small for 

speech sources, explaining the small performance difference between PNN+GLA 

and SVQ-Ga.  However, note also that the effect of the initialization is very small on 

the SVQ-Ga performance, whereas improvements of 0.85 dB and 0.2 dB are 

obtained at 0.5 bits/sample for GLA and SR-D, respectively, after initialization.  

Therefore, as in the Gaussian source, the SVQ-Ga renders the initialization 

unnecessary. 
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Finally, the results for the image source are shown in Figure 2.18 for the coding 

of the image source “Lena.”  As in the previous two source cases the SVQ-Ga 

performance is practically not sensitive to the initial codebook initialization.  And it  

 

outperformed the GLA and the SR-D algorithms by 0.3 – 0.4 dB and 0.2 – 0.3 dB, 

respectively, with both being initialized with PNN.  Therefore, as in the Gaussian 

and the speech sources the SVQ-Ga outperformed the PNN+GLA and PNN+SR-D 

without the need of initialization. 

 

2.5 Conclusion 

In this Chapter we have designed reduced/low complexity methods for 

deterministic annealing (DA) for the vector quantizer design problem, which we 
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Fig. 12. Improvements over GLA for t he coding of image source “Lena.” Vector dimension = 16 

samples/vector (corresponding to 4x4 blocks). 
Figure 2.18: Improvement over GLA on image source “Lena.” Vector dimensions 

= 16 pixels/vector (corresponding to 4x4 blocks). 
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named soft vector quantizer (SVQ) design algorithms.  The proposed low complexity 

soft measures are used as the soft association probabilities in the probabilistic 

framework of the DA to reduce the computational cost, as compared to the optimal 

Gibbs soft measure used in the standard DA.  Although the simple soft measures 

significantly reduce the computational complexity of the system, this improvement 

comes at a price since these soft measures are not the optimal distributions.  Hence, 

we have also derived the theoretical performance loss for using a simplified measure 

instead of the optimal measure, and used the result to derive optimal annealing 

schedules for the proposed simple soft-measures.  We have demonstrated that using 

the derived optimal schedule for the low complexity soft measures increases the 

quality of the final codebook, as compared to using a geometric reduction schedule 

which is usually suggested in the annealing algorithms.  We have also shown that the 

low complexity DA methods benefit from the stochastic relaxation techniques with 

decreasing benefits as the performance approaches the optimal.   

We have demonstrated the effectiveness of our low/reduced complexity DA 

(SVQ) algorithms by designing codebooks for a variety of sources, namely Gauss-

Markov, speech and image, at different rates.  In each case, the proposed SVQ 

algorithms significantly improved the quality of the final codebooks, as compared to 

the traditionally used GLA and compared to the SR-D algorithm, where the latter is 

accepted as a benchmark reference by some researchers as a VQ design technique 

that performs near-optimally.  We have also investigated the effect of codebook 

initialization on GLA, SR-D and SVQ algorithms and showed that, while GLA and 
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SR-D benefit from this initialization (PNN) at the expense of increased 

computational complexity, the SVQ algorithms are able to attain the same 

performance without the need for a special initialization.  Hence, the SVQ 

algorithms are not sensitive to the choice of the initial codebook and outperform 

codebook initialized GLA and SR-D algorithms.  Compared to the standard DA, the 

computational complexity of the SVQ algorithms is shown to be drastically reduced.  

Using the same annealing temperature the SVQ algorithms run by over a factor of 

100 faster than the standard DA algorithm with negligible performance difference.  

We believe that the proposed algorithms, with their significantly higher performance 

over the widely used GLA and SR-D, and with their low computational complexity 

with negligible performance difference compared to the standard DA, have proved 

themselves to be important VQ design techniques. 
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Chapter 3  

 

Deterministic Annealing for 

Frequency Assignment Problem 

 

3.1 Introduction 

The introduction of mobile communication systems has had a tremendous impact 

on our everyday lives, but at the same time the ever growing number of 

wireless/mobile users has made the optimal usage of the limited radio spectrum a 

highly important problem.  The scarcity of commercially available spectrum requires 

that the frequencies be reused within a network, where the main limiting factor is 

then the level of interference.  When two transmitters use the same frequency or 

frequencies close to each other their signals may interfere.  The level of interference 

depends on many factors such as the power of the signals, distance between the 

transmitters, the direction in which signals are transmitted, environment, etc.  On the 

one hand frequency reuse in a wireless network is a necessity due to spectrum 

scarcity, but on the other hand reuse may lead to quality loss in communication links.  
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Therefore, a high performance network can only be achieved by efficient allocation 

of the limited frequency spectrum to the transmitters.  The assignment of frequencies 

in such a way that the interference is avoided, or if this is not possible, minimized, is 

called the Frequency Assignment Problem (FAP).   

The radio spectrum (bandwidth) [ ]min max,f f  available to a wireless service 

provider is partitioned into a set of disjoint channels, all with the same bandwidth ω .  

The channels are usually numbered by a sequence of integers, { }0,1, , 1K −L , where 

( )min maxK f f ω= − .  On each available channel a transmitter and a receiver can 

communicate.  For bi-directional traffic two channels are needed, one for each 

direction.  In fact, when a wireless service provider purchases the spectrum 

[ ]min max,f f , it often gets a paired spectrum, [ ]min max,g g  of equal bandwidth that is well 

separated from the first one, min maxg f? .  The second spectrum is also partitioned 

into K  disjoint channels, { }, 1, , 1s s s K+ + −L , and while the forward connection 

uses a channel from the set { }0,1, , 1K −L , the backward connection uses a channel 

that is shifted s  channels up.  Note that since min maxg f? , then s K?  which 

prevents any interference between the forward and the backward channels.  

Consequently, the channel assignment problem considers only one directional 

channel set, e.g., the forward channels, { }0,1, , 1K −L .  Technologies such as 

Frequency Division Multiple Access (FDMA), Time Division Multiple Access 

(TDMA) and Code Division Multiple Access (CDMA) make it possible to use each 
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channel for a limited number of callers simultaneously.   In the FAP literature the 

allocation of channels is divided into three categories [72]: Fixed Channel 

Assignment (FCA), Dynamic Channel Assignment (DCA), and Hybrid Channel 

Assignment (HCA) schemes.  In FCA, a channel is permanently allocated to each 

transceiver for its exclusive use.  In this scheme it is not allowed to change the 

assignment on-line to satisfy mobile call demands for wireless connections.  Instead, 

in DCA there is no fixed assignment between channels and transceivers; all channels 

are placed in a pool and they are assigned to calls as the need arises provided that 

certain interference constraints are satisfied.   Finally, in HCA schemes a 

combination of FCA and DCA is implemented to obtain a better overall performance 

in the network.  In these schemes a number of channels are assigned beforehand and 

the rest can be used for on-line assignment upon request.  It can be proved that DCA 

schemes perform better than FCA schemes under light and non-uniform call traffic, 

and that under uniform and heavy traffic FCA schemes outperform the DCA 

schemes [65].  Note also that FCA performance provides a bound on the DCA 

performance, because FCA is designed to provide the optimal service when all the 

network resources are being used.  A survey of FCA, DCA, and HCA schemes can 

be found in [68]. 

In this thesis we will be focusing on FCA because it is a widely used channel 

allocation scheme, which also provides bounds for the DCA schemes.  Thus, our 

goal will be to find the optimal fixed assignment of channels to transceivers.  The 

FCA scheme can be designed based on four different criteria, leading to four 
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problems [72]: the minimum order frequency assignment problem (MO-FAP), the 

minimum span frequency assignment problem (MS-FAP), the minimum blocking 

frequency assignment problem (MB-FAP), and the minimum interference frequency 

assignment problem (MI-FAP). 

In MO-FAP we have to assign channels in such a way that no unacceptable 

interference occurs, and the total number of distinct channels that are used is 

minimized.  The MO-FAP was the first channel assignment problem discussed in the 

literature.  Metzger [90] was the first to recognize that it is a direct equivalent of the 

graph-coloring problem (a problem that belongs to the class of NP -complete 

problems), and Hale [56] was the first to formalize the frequency assignment 

problem as a graph-coloring problem.  In MS-FAP, the task is to assign channels in 

such a way that no unacceptable interference occurs, and the difference between the 

maximum and minimum used frequency, the span, is minimized.  In MB-FAP the 

goal is to assign channels such that no unacceptable interference occurs as in the 

previous cases, and the overall blocking probability of the network is minimized, 

which requires the traffic demand of the nodes to be taken into account.  And finally, 

MI-FAP is the minimization of the total sum of interference levels in the network. 

That is, we have to assign the channels from a limited number of available channels 

in such a way that the total sum of the interference in the network is minimized.  

Note that MO-FAP is not the only model that is related to the graph-coloring 

problem.  All FAP models, in one way or another are generalizations of the coloring 

of nodes in an undirected graph [72].  Hence, all FAP models belong to the class of 
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NP -complete problems, which means that there does not exist an algorithm that 

solves the problem in time polynomial in the length of the input, unless P =NP   

[45]. 

In MO-FAP and MS-FAP the objectives are, respectively, to minimize the 

number of used channels and to minimize the span of used channels.  However, in 

practice the wireless communication service providers license a fixed frequency 

bandwidth for long-term periods without the possibility of extending or reducing the 

bandwidth.  Therefore, minimizing the number of used frequencies or minimizing 

the span of the used frequencies do not satisfy the implementation of today’s 

frequency plans (minimization of the order and the span were popular objectives in 

1970s and 1980s when frequencies were bought per unit at high prices [72]).  

Nowadays, the more realistic problem facing the operators (wireless communication 

service providers) is finding an assignment of the available frequency bands to 

various stations such that the incurred interference does not exceed a certain 

threshold, in order to guarantee high quality communication links to the mobile 

users.  Therefore, the problem that we chose to address is the minimization of the 

total interference in a given network with fixed resources, i.e., the MI-FAP. 

In this chapter we will model and apply the deterministic annealing (DA) method 

as a novel approach to solve the minimum interference frequency assignment 

problem (MI-FAP).  The DA approach has been used to obtain near optimal 

solutions for various difficult combinatorial optimization problems by using soft 

information processing with exact and simplified reliability measures as introduced 
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in Chapter 2 [104, 106, 103, 32].  We will present experimental evidence indicating 

that significant performance gains are achieved by the DA method over the 

simulated annealing (SA) method.  Note that an algorithm based on SA is reported to 

provide the best known performances for realistic frequency planning scenarios [37].  

Besides performing better than the SA, experimental results will also show that the 

DA method converges faster than SA. 

The rest of the chapter is organized as follows: in section 3.2 the relation between 

FAP and graph coloring is briefly explained, we then describe the shortcomings of 

the graph theoretic approaches that formulate FAP as a binary constraint satisfaction 

problem.  The deterministic annealing algorithm for FAP is formulated and the 

algorithms are described in section 3.3.  In the experimental results section we will 

be comparing the performance of our DA algorithms against the simulated annealing 

(SA) algorithm for FAP [36, 99, 58], using the test problems generated by the vertex 

saturation (VS) method (a test problem generator) [118].  In section 3.4 the 

experimental set-up and the experimental results comparing the performances of SA 

and DA to the optimal solutions obtained by the VS are presented.  We have also 

tested our proposed DA algorithm on a realistic frequency planning scenario 

obtained from the COST 259 project [37], and compared its performance with other 

methods that are reported to provide the best performance on a collection of real life 

scenarios.  Finally, section 3.5 concludes the chapter. 
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3.2 Graph Theoretic Approach 

3.2.1 Graph Coloring and FAP 

The coloring of a graph ( ),G V E= , where V  is the set of nodes in the graph and 

E  is the set of edges (connected pairs of nodes) in the graph, is defined as the 

assignment of colors to the nodes iv V∈  such that no two nodes connected by an 

edge will have the same color.  Colors are defined to be a set of non-negative 

integers.  A coloring that assigns c  colors to graph G  is termed -coloringc .  The 

chromatic number of a graph G is the minimum number ( )Gχ for which ( )Gχ -

coloring exists for G .  Hence, a graph is c -colorable, if ( )G cχ ≤ .  Also, if we 

denote ( )Gω  as the largest clique size in G , where a clique is a complete subgraph 

of the graph G  which means that all the nodes in the subgraph are connected with all 

the other nodes in the subgraph, then from the definition of the chromatic number we 

can deduce that ( ) ( )G Gχ ω≥ .  Using the above description, the equivalence of co-

channel frequency assignment problem and the graph-coloring problem is apparent.  

For the co-channel FAP, define: 

• the nodes iv V∈  of graph G  to be the set of all transmitters in the network. 

• an edge ( ),i jv v  exists in G  if the transmitters iv  and jv  cannot use the same 

channel (i.e., iv  and jv  are co-channel constrained) , .i jv v V∀ ∈  
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Let ( )y v to denote the channel assigned to v by the assignment rule y , 

{ }0,1, , 1C K= −L to be the channel set, ( )y v C∈ , then the co-channel FAP (the 

minimum span model) is equivalent to simple graph coloring: 

 

( )

( ) ( ) ( )

instance ,

find :

such that, ,

and   is minimized.

i j i j

G V E

y V

v v E y v y v

C

+

=

→

∈ ⇔ ≠

Z
 (3.1) 

We can see that in the above formulation the constraints place a restriction on the 

assignment of the channels to pairs of transmitters/nodes, hence the edge set E  in G  

define binary constraints between the pairs of nodes. Similarly, co-channel and first 

adjacent-channel FAP would be (where the edge set E  is split into two, 0E  and 1E ; 

nodes connected by the edges in 0E  are co-channel constrained, and the edges in 1E  

are adjacent-channel constrained): 

 

( )

( ) ( ) ( )
( ) ( ) ( )

0 1

0

1

instance , ,

find :

such that, , ,

               , 1

and,   is minimized.

i j i j

i j i j

G V E E

y V

v v E y v y v

v v E y v y v

C

+

=

→

∈ ⇔ ≠

∈ ⇔ − >

Z
 (3.2) 

In the same manner, higher order adjacent channel FAPs that pertain to minimizing 

the number of channels used (MS-FAP) can be defined: 

 

( )

( ) ( ) ( ) { }

0 1instance , , , ,

find :

such that, , 0,1, ,

and,   is minimized.

l

i j k i j

G V E E E

y V

v v E y v y v k k l

C

+

=

→

∈ ⇔ − > ∀ ∈

L

L
Z

 (3.3) 
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Note that the above problems are MS-FAP, hence the goal is to minimize the number 

of channels used.  In the above formulations, (3.1), (3.2) and (3.3), a single channel 

is assigned to each transmitter and solutions that do not satisfy the constraints are 

infeasible solutions.  Using the graph theoretic approach the interference 

minimization model of FAP, MI-FAP can be formulated as follows, 

 

( )

( ) ( ) ( )
( )( )( )

( ) ( )( )

0 1

0 ,

instance , , , ,

find :
such that,

,

is minimized.

i j

ii j k j

y v y v

l

l

i j i j
k y v Cv v E y v C

G V E E E

y V

c v v y v y v kδ
−

+

= ∈∈ ∈

=

→

⋅ − ≤∑ ∑ ∑ ∑

L
Z

 (3.4) 

In (3.4) ( )xδ  is the Kronecker delta function which is one if the condition x  is true 

and zero otherwise, and ( ) ( ) ( ),y v y wc v w−  is defined as the penalty incurred for assigning 

channels ( )y v  and ( )y w  to nodes v  and w , respectively.  Note that ( ) ( ) ( ),y v y wc v w−  

can either be a self assigned penalty or it can be the actual interference caused on the 

network when node v  is assigned channel ( )y v  and node w  is assigned channel 

( )y w .  Throughout this chapter we assume them to be actual interference values.  In 

(3.4) a single channel is assigned to each transmitter and a feasible solution is the 

one that satisfies all channel separation requirements between the pairs of nodes of 

the graph, as in (3.1) - (3.3), which gives zero total interference.  However, if no zero 

total interference solution can be found, then the goal is to minimize the total 

interference. 
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We have already mentioned that all FAP models belong to the class of NP -

complete problems.  We briefly give the computational complexity proof for the MI-

FAP variant of the FAP models as follows [13, 37]: 

Given a set of channels { }1,2, ,C K= L  and a graph ( )0 1 1, , , , KG V E E E −= L , 

the decision problem for MI-FAP decides whether there is a node-channel 

assignment set of total cost no more than q +∈¤ .  If we are given K , the 

graph ( )0 1 1, , , , KG V E E E −= L , cost q  and a certificate assignment set, we can 

verify in polynomial time if the total cost of the assignments is q or not; 

hence MI-FAP ∈ NP .   It is also shown in [37] that the NP -hard problem 

graph c-colorability can be reduced to MI-FAP in polynomial time making 

MI-FAP also NP -hard.  Hence, for every q +∈¤ , MI-FAP∈ NP -

complete. 

Moreover, not only that solving MI-FAP is NP -hard, but finding solutions that are 

guaranteed to be close to optimal (i.e., with a guaranteed upper bound on the total 

cost) is also NP -hard [37]. 

 

3.2.2 Binary Constraints 

The need to keep interference below an acceptable level or minimize it requires 

that nearby transceivers use channels which are widely separated in the available 

spectrum.  This means that the closer the transceivers are to each other, the more 

separated their assigned channels should be.  The most widely used way of modeling 
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the physical-distance – channel-separation requirements is by using binary 

constraints on the pairs of transceivers (as in the formulations (3.1) to (3.4)) by 

attaching a minimum spatial separation for each possible channel separation between 

them.  So, for K  possible channels, { }0,1, , 1C K= −L , 

 ( ) ( ) ( ), , 0,1, , 1i j k i jd v v r y v y v k k K< ⇒ − > ∀ = −L  (3.5) 

where ( ),i jd v v  is the Euclidean separation between any two nodes iv  and jv , and 

{ } 1

0

K
k kr

−

=  are the minimum separation distances depending on the channel separation 

k , with 0 1 1Kr r r −> > >L .  Through this model, the FAP is cast using an undirected 

graph, called an interference graph or a constraint graph, in which the edges of the 

graph represent the binary constraints.  With this formulation it is closely associated 

with the well-studied graph coloring problem as mentioned earlier, and hence, 

traditionally, graph theoretic approaches have been used to solve FAP problems [56, 

47, 90, 8, 116, 14, 15, 87, 115, 13, 86].  However, a number of recent studies have 

raised concerns about the adequacy of the binary constrains, stating that in any 

network the signal-to-interference ratio (SIR) at any point depends on the cumulative 

effect of signals received from all the transceivers, therefore, the use of binary 

constraints to model FAP is too restrictive [35, 96, 6, 34, 63].  In [35] it is argued 

that FAP should be formulated as a cost function optimization, and in [96, 6, 34, 63] 

the argument is that better assignments can be obtained with higher order constraints.  

By higher order constraints what is meant is that, instead of considering two 

transceivers at a time in assigning channels to them (binary constraint) as in (3.5), 
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more than two (the higher the better) transceivers are considered simultaneously.  

Although the merit of this argument is not extensively tested (only very small  

structured problems are considered in [96, 6, 34, 63]), there are some other 

drawbacks in using graph theoretic approaches.  Next we illustrate these with a 

simple example. 

By intuition we know that between two transceivers /nodes, the co-channel 

interference is larger than the adjacent channel interference.  The nodes u  and w  in 

Figure 3.1 are at same distance from v , where ( ) ( ) ( )1 1 2, , .y v f y u f y w f= = =   

Using the penalty function in (3.4), with ( ) ( ) ( ),
i jy v y v i jc v v

−
 being the penalty for 

interference between the two nodes iv  and jv  with channel assignments ( )iy v  and 

( )jy v , respectively.  The co-channel ( ) ( )( )i jy v y v=  and adjacent channel 

( ) ( )( )1i jy v y v− =  interferences are ( )0 ,i jc v v  and ( )1 ,i jc v v , respectively.  Then, in 

the situation depicted in Figure 3.1 the interference penalties would be 

 

Figure 3.1:  Two nodes, u and w at the same distance from node v.  Node
u is co-channel with v, and node w is adj-channel with node v.

v

u

w

y(v)=1

y(u)=1

y(w)=2

( ) ( )
( ) ( )

0,  and  are co-channel nodes

1,  and  are adjacent-channel nodes

y v y u v u

y v y w v w

− =

− =
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( ) ( )0 1, ,c v u c v w> .  Higher order channel interferences can also be defined, 

( ) ( ) ( ) ( )0 1 2, , , ,i j i j i j k i jc v v c v v c v v c v v> > > > >L L .  Note that these are still binary 

relationships between pairs of nodes, where a kth order channel interference ( ),k i jc v v  

means, the interference between nodes iv  and jv  that are k channels apart, 

( ) ( )i jy v y v k− = .  In accordance with the model in (3.5) a minimum channel  

separation between potentially interfering nodes is imposed.  In this model, it is 

perfectly legal to assign a channel if C∈  to a node w at a distance 0r ε+  from 

another node v , where ( ) iy v f= , and where ε  is a very small positive number, 

0 1ε< = , because they are separated more than the minimum distance 0r  for co-

channel assignment.  However, by the same token, it would be illegal to assign if  to 

 

Figure 3.2:  Node w satisfies co-channel binary
separation with node v, but node u does not.

r 0
-ε

  r
0 +ε

v

u

w

y(v)=f1
r1

r
0
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a node u  at distance 0r ε−  from v since they are not separated by more than the 

minimum co-channel distance, 0r  as shown in Figure 3.2.  No matter how small ε  is 

this would constitute an infeasible solution.  But, we know that for very small ε  the 

interferences caused by the two assignments will be practically the same.  

Nevertheless, the model described above would make a strict decision and consider 

the assignment, ( ) iy w f= , admissible, but would never choose the assignment, 

( ) iy u f= . 

 

Figure 3.3:  In (a) both nodes w and u do not satisfy co-channel binary
separation with node v.  In (b) node w satisfies the co-channel binary

separation with node v, but node u does not.

(a)

r 0
-ε

  r
0 -ε

v

u

w

y(v)=fi
r1

r0
r 1

+ε

  r
0 +ε

v

u

w

y(v)=fi
r1

r
0

y(u)=fi

y(w)=fi

y(u)=fi

y(w)=f i

( ) ( ) ( )
( ) ( ) ( )

0

0

, , 0

, , 0

2 assignment violations

d v u r y v y u

d v w r y v y w

> − =/

> − =/

( ) ( ) ( )
( ) ( ) ( )

0

0

, , 0

, , 0

1 assignment violation

d v u r y v y u

d v w r y v y w

> − =/
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Therefore, a method that treats the problem based on hard (binary) decisions for 

each pair of nodes, i.e., such that the set of admissible assignments is pre-set given 

the distance between nodes, may not be well suited to address MI-FAP.  We require 

methods that allow gradual differences in interferences caused by all the nodes to be 

taken into account.  In other words, the received signal quality depends on the 

cumulative effect of the signals received from all the nodes.  Furthermore, if in a 

given problem a channel assignment fulfilling all the constraints does not exist or 

cannot be found, the described model cannot judiciously distinguish between two 

infeasible solutions.  The best it can do is to count the number of constraint 

violations and choose the solution with the least number of violations.  But this does 

not guarantee the best possible solution in terms of minimizing the total interference, 

as can be seen in the situation depicted in Figure 3.3 and explained in the following 

example. 

Example 1: 

To be able to better asses the situation, consider the interference power between 

two nodes v  and u , operating at channels ( )y v  and ( )y u , respectively.  We will use 

a simple model from [78] (later in the Experimental Results section we will use a 

more comprehensive model from [114]): 

 ( ) ( )( ) ( ) ( )( )
( )

, ; ,
,

t h y v y u
P v y v u y u

d v u
γ

π ⋅ −
= , (3.6)  
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( )
( ) ( ) ( ) ( )
( )

( )

where       transmission power at the nodes.

 channel difference response, positive and decreasing,

0 1, 0 1

e 0,  is a valid function.

,  Euclidean distance between nodes  and 

t

h

h h h h k

h

d v u v u

α

π

α α−

=

⋅ =

= > > > >

= ∀ ≥

=

L L

.

 exponent describing signal attenuation, usually between 2 and 6.γ =

 

Note that except the terms containing v , u  and the channel separation ( ) ( )y v y u− , 

the rest of the terms in equation (3.6) are constants.  Therefore, we will use the 

previous notation we had introduced for interference, i.e., ( ) ( ) ( ),y v y uc v u− , in equation 

(3.6).  Turning back to Figure 3.3(a) (2 violation case), the interference powers at 

node v  from nodes u  and w : 

 ( ) ( )
( ) ( )0

0

0
,

,
t th

c v u
d v u r

γ γ

π π

ε

⋅
= =

−
 (3.7) 

 ( ) ( )
( ) ( )0

0

0
,

,
t th

c v w
d v w r

γ γ

π π

ε

⋅
= =

−
 (3.8) 

From Figure 3.3(b) (1 violation case), 

 ( ) ( )
( ) ( )0

1

0
,

,
t th

c v u
d v u r

γ γ

π π

ε

⋅
′ = =

′ +
 (3.9) 

 ( ) ( )
( ) ( )0

0

0
,

,
t th

c v w
d v w r

γ γ

π π

ε

⋅
′ = =

′ +
 (3.10) 

Defining ( ) ( )0 0, ,c v u c v wζ = +  and ( ) ( )0 0, ,c v u c v wζ ′ ′ ′= + , after simplifications we 

have, 
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( )
( )

( )
( )

0 0

1 0

0 0 0 1

0
1 0 1

1 0

2 2

lim
2 2 2
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r r

r r

r r r r
r r r

r r

γ γ

γ γ

γ γ γ γ

γ γ γε

ε εζ
ζ ε ε

ζ
ζ

ζ
ζ

→

− −′
= +

+ +

′ +
= + =

′
< ⇒ >

 (3.11) 

end Example 1. 

Hence, the one-violation case (Figure 3.3(b)) results in higher interference than 

the two-violation case (Figure 3.3a), which shows that the solution with the least 

number of violations does not guarantee the least possible total interference. 

Therefore, formulating MI-FAP in graph theoretic terms as a constraint satisfaction 

problem (CSP) presents two drawbacks: 

• the use of hard (binary) decisions, whether to allow or not to allow two nodes 

to use the same channel (zero channel separation) or higher order separated 

channels, does not take gradual interference differences into account, and 

• when a feasible solution does not exist, it is difficult within a CSP 

formulation to  pick the best infeasible solution. 

In order to address these drawbacks, MI-FAP should be formulated as a cost function 

optimization problem rather than a CSP:  given a list of nodes iv V∈ , 1,2, ,i n= L , a 

set of channels { }0 1 1, , , KC f f f −= L  as an interval of non-negative integers, the node-

channel assignment interference cost function F  is: 

 ( ), wf vff f
v V f C w V f C

F c v w s s′′−
′∈ ∈ ∈ ∈

= ⋅ ⋅∑ ∑ ∑ ∑  (3.12) 
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( )

1, if channel  is used at node ,
where

0, otherwise.

,  interference incurred by assigning  to  and  to .

vf

f f

f v
s

c v w f v f w′−


= 


′=

 

The aim is to find the optimal node-channel assignments, vfs∗ , such that the total 

interference cost is minimized.  Note the difference in the formulations of MI-FAP in 

(3.4) and (3.12).  The formulation in (3.4) aims to minimize the total interference by 

satisfying the binary constraints.  So, if the assigned channels to a pair of nodes do 

not violate the required channel separation between those two nodes, then the cost 

incurred from this assignment is zero.  This neglects individual interferences below a 

certain level, although the cumulative effect of many sub-threshold interferences 

from multiple nodes may result in a non-negligible overall interference on a certain 

node.  Note that the optimal solution cost in (3.4) is zero, which is achieved when all 

the constraints are satisfied.  This shows that, if there are more than one optimal 

assignment sets (zero cost solutions), they cannot be distinguished even though the 

total interferences in these optimal solutions may vary greatly.  Instead, in (3.12), 

each node-channel assignment is evaluated by taking into account the cumulative 

effect of the interferences from all the surrounding nodes.  This formulation is more 

suitable for the objective of MI-FAP.  
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3.3 Deterministic Annealing Solution for FAP 

3.3.1 Problem Formulation and Algorithm 

The deterministic annealing (DA) approach puts the channel assignment problem 

in a probabilistic framework, and optimizes the probabilistic objective function in 

each iteration.  The node-channel assignments in DA are not one-to-one, they are 

one-to-many; each node is assigned to all the available channels with a given 

probability ( )ip f v , where ( ) 1ii
p f v =∑ , v V∀ ∈ .  As stated in the previous 

chapters this is called a soft association, and the probabilities are called soft 

information (or soft assignments) since they give the reliability measures of 

assigning the channels to a node.  Using the node-channel soft associations rather 

than the hard (one-to-one) assignments as in (3.12), the cost function to be 

minimized becomes an expected (probabilistic) cost function: 

 { } ( ) ( ) ( ),f f
v V f C w V f C

E F c v w p f w p f v′−
′∈ ∈ ∈ ∈

′= ∑ ∑ ∑ ∑  (3.13) 

Defining, 

 ( ) ( ) ( ), ,f f
w V f C

v f c v w p f wϕ ′−
′∈ ∈

′= ∑ ∑ , (3.14) 

we can express (3.13) more compactly, 

 { } ( ) ( ),
v V f C

E F v f p f vϕ
∈ ∈

= ∑∑ . (3.15) 

( ),v fϕ is the total expected interference incurred on node v  from all soft 

assignments of the nodes \w V v∈  and the channels f C′∈ , when channel f  is 



 98

assigned to node v , Figure 3.4.  Hence, the total expected interference on the ( ),v f  

pair averaged over all f C∈  and v V∈  gives the total expected interference cost in 

(3.15).   

 

The most powerful aspect of the DA method is that the optimization starts with 

all possible node-channel assignments being equally likely, i.e., ( ) 1 ,Kip f v i= ∀  

where K is the number of channels, K C= .  Hence, at the beginning the entropy of 

the system is maximum, logH K= , and the system has the highest uncertainty in its 

soft assignments.  This shows that the DA procedure is completely unbiased and 

does not favor any of the channels for any node.  The above also implies that it does 

Possible Channel Interferences
between Nodes u and w
c0(u,w) -- co-channel interference
c1(u,w) -- adj-channel interference
c2(u,w) -- order-2 channel interf.
     :
cK-1(u,w)-- order-(K-1)-channel intf.

Possible Channel Interferences
between Nodes v and u
c0(v,u) -- co-channel interference
c1(v,u) -- adj-channel interference
c2(v,u) -- order-2 channel interf.
     :
cK-1(v,u) -- order-(K-1)-channel intf..

Possible Channel Interferences between
Nodes v and w
c0(v,w) -- co-channel interference
c1(v,w) -- adj-channel interference
c2(v,w) -- order-2 channel interference
     :
cK-1(v,w) -- order-(K-1)-channel interf.

Given the soft channel
assignments, and
interferences when

channel  fi  is assigned to

node v in all other nodes,

cost of assigning channel

fi  to node v  is
computed:

φ(v,fi )    i = 1,2, ..., K

p(f1|w)
p(f2|w)
   :
p(fK|w)

p(f 1|u)
p(f 2|u)

   :
p(fK|u)

Node-channel
soft associations

v
w

u

Node-channel
soft associations

Figure 3.4:  Computation of the cost of assigning channel fi to node v.
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not require an initial starting configuration (a hard node-channel assignment set).  

The latter point is always a big concern in any iterative optimization algorithm that 

requires a starting configuration since the quality of the final solution is highly 

sensitive to this choice; there is no such concern in the DA optimization.  The 

iterations start with this unbiased, soft state, ( ) 1
Kip f v =  ,if C v V∀ ∈ ∀ ∈ , and through 

iterations the softness (and thus the entropy) is gradually reduced until the hard 

channel assignment for each node is reached.  Our goal is for that final hard state the 

assignments to be optimal, in the sense of minimizing the cost function.  If we define 

the optimal node-channel assignments as ( ) ,y v v V∗ ∀ ∈ , where ( )y v C∗ ∈ , then, 

 ( ) ( )*
* 1,  if   

0,  otherwise
i

i

f y v
p f v

 =
= 


 (3.16) 

and, 

 ( ) ( ) ( )* *min ,f f
v V f C w V f C

F c v w p f w p f v′−
′∈ ∈ ∈ ∈

′= ∑ ∑ ∑ ∑ . (3.17) 

We see that in this probabilistic framework we need a distribution (soft 

information measure) that is defined over the set of all channel assignments, 

( ) 1ii
p f v =∑  v∀ , and also that assigns higher probability to assignments of lower 

cost.  This distribution should also be parameterized by a softness control factor, 

such that, as the softness is decreased the distribution should become more 

discriminating by concentrating most of the probability in a smaller subset of low 

cost assignments, and in the limit should reach hard node-channel assignments as 

shown in (3.16).  The expected interference ( ),v fϕ  defined in (3.14) is the cost of 
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assigning f  to v .  We use two mechanisms to obtain the distribution model, 

( )p f v , as explained in Chapter 2 (see also [32]): 

1. Gibbs membership function, 

2. Triangular membership function. 

1. Gibbs membership function: 

For FAP, of all possible probability distributions that yield a given expected total 

interference cost, (3.15) and satisfy ( ) 1ii
p f v =∑ , the Gibbs distribution is optimal 

in the sense that it maximizes the entropy, 

 ( )
( )

( )

,

1
,

0

i

j

v f

i K
v f

j

e
p f v

e

β ϕ

β ϕ

− ⋅

−
− ⋅

=

=

∑
. (3.18) 

Recall that β  in (3.18) is the softness control factor, it determines the amount of 

discrimination among the possible channel assignments.  

2. Triangular membership function: 

The soft assignment values, (3.19) are obtained using the heights corresponding 

to the costs, where the heights are obtained from the membership triangle as 

explained in Chapter 2, 

 ( ) ( )

( )
1

0

,
|

,

i
i K

j
j

R v f
p f v

KR v f

ϕ

ϕ
−

=

−
=

− ∑
. (3.19) 

Recall that the spread, R  of the triangle is the softness control factor of the soft 

assignments. 
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It should be noted that the DA formulation addresses the previously stated graph 

theoretic drawbacks for MI-FAP, namely, 

• DA does not formulate the problem as a binary constraint satisfaction 

problem; it aims to find the global minimum which is more suitable to the 

objective of MI-FAP. 

• In determining the cost of the node-channel assignments, DA takes into 

account interferences from all nodes with all possible assignments, weighted with 

assignment probabilities. Therefore, small differences in interferences which can 

have considerable effect when summed up, are not ignored. 

• When there does not exist a feasible solution, DA is able to judiciously pick 

the best infeasible solution by aiming to find the global minimum. 

 

The DA algorithm is shown in Figure 3.5 for the triangular distribution case.  At 

iteration 0t = , the initial soft information values are uniformly distributed, 

( ) ( )0 1 ,Kip f v i= ∀  and for each node v V∈  (the superscript in parenthesis is the 

iteration number), the initial spread ( )0R  in the triangular distribution, which ideally 

should ideally be infinite is chosen to be large enough so that the deviation from 1 K  

is less than 610− , i.e., ( ) ( )0 61 10Kp f v −− <  f∀  and v∀ .  We use the same starting 

criterion in the Gibbs distribution in order to choose a non-zero, but small enough, 

( )0β  (recall that in the triangular distribution softness decreases with decreasing R , 

and in the Gibbs distribution it decreases with increasing β ).  The iterations are  
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repeated until convergence, where in each iteration t , the spread is decreased by a 

factor of Tρ  in the case of the triangular distribution, ( ) ( )1t t
TR Rρ −= ⋅ , 0 1Tρ< < , and 

in the case of the Gibbs distribution β  is increased by a factor of Gρ , 

( ) ( )1t t
Gβ ρ β −= ⋅ , 1Gρ > .  The algorithm converges when all the soft associations 

become hard as in (3.16).  The values of Tρ  and Gρ  control the convergence rate in 

the triangular and the Gibbs cases, respectively.  Clearly, the further away they are 

from 1 ( Tρ  from lower and Gρ  from upper), the faster the convergence is, but with 

accompanying decrease in the quality of the final solution.  On the other hand, if they 

are too close to 1, convergence takes too long without noticeable improvement. 

 

 

Figure 3.5: The iterative procedure showing updating of the soft assignments
and  the costs.  The iterations are repeated until convergence. Convergence is

reached when all the soft associations become hard.
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3.3.2 Channel Blocking Algorithm 

Since the co-channel interference is the highest cause of interference on any 

node, we may also wish to satisfy a certain separation for co-channel nodes together 

with minimizing the total interference in the network.  In the DA algorithm when a 

node v  starts to converge towards a channel f  (by ‘starting to converge’ we mean 

( ) 0.5p f v >  because most of the probability mass is on this assignment), ( )y v f= , 

then it is safe to say that with high probability the assignment of node v  will fully  

converge to channel f .  Therefore, we propose as approximation that, when a node 

starts to converge to a channel f  we will assume that it has converged by setting 

( ) 1.0p f v =  and ( ) 0.0 \p f v f C f= ∀ ∈% % , and block the channel f  for all the 

nodes w  within the neighborhood of node v  by setting their assignment probabilities 

 

Figure 3.6:  Node v has converged to channel f1.  For all the nodes within the
neighborhood of node v, nodes u and w, channel f1 is blocked by setting the

assignment probabilities of nodes u and w to channel f1 to zero.

probability of
assigning

channel  f3

f0 f1 f2 f3

v

u

w

node
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for channel f  to zero, ( ) 0.0p f w =  as shown in Figure 3.6 (note that when w  is in 

the neighborhood of v , then v  is in the neighborhood of w ). 

However, there is the possibility that when ( ) 0.5p f v ε= + , for some small ε , 

0 1.0ε< = , there may be another channel f  with assignment probability very close 

to 0.5, ( ) 0.5p f v ε′= −  for small ε ′ , 0 1.0ε ′< = , and for all other channel 

assignments f%  in the channel set C , { }\ ,f C f f∈%  the assignment probabilities are 

either zero or very close to zero.  In such cases we cannot predict with high certainty 

that channel f  will be assigned to node v  at the end of the algorithm.  To reduce the 

possible errors in these cases we set the threshold of convergence higher than 

0.5 ε+ .  But we cannot increase it too high also, because we want to do these 

changes while the system has high entropy (high softness in associations) so that it 

can adopt to the changes.  We have found out 0.55 to give good performance. 

When we set the assignment probability for channel f  to zero in node w , 

( ) 0.0p f w = , we need to update the assignments for the other channels because we 

have reduced the probability mass by an amount of ( )p f w  and we need to satisfy 

( ) 1.0ii
p f w =∑ .  Let mf f=  be the channel being blocked and, let the new 

assignments be ( ) ( )0 1, , ,p f w p f w′ ′ L  ( ) 0,mp f w′ =  ( )1, Kp f w−′L .  Let 

( )m mp f w γ= ; then we need to distribute mγ  among ( ) \i i mp f w f C f′ ∀ ∈ .  The most 
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obvious way of obtaining the new assignments is by normalizing each old 

assignment (excluding ( )mp f w ) by 1 mγ− ,   

 ( ) ( )1
\ .

1i i i m
m

p f w p f w f C f
γ

′ = ∀ ∈
−

 (3.20) 

Note that the assignment in (3.20) is the maximum entropy assignment given the 

previous set of probabilities. 

Therefore, the channel blocking algorithm is the same as the DA algorithm for 

FAP with the addition of the following step: whenever a node v  ‘starts to converge’ 

to a channel f  we set ( ) 1.0p f v =  and ( ) 0.0 \p f v f C f= ∀ ∈% % ; block the 

channel f  for the node(s) w  within the neighborhood of node v  by setting their 

assignment probabilities for channel f  to zero, ( ) 0.0p f w = ; update the 

probability assignments for node(s) w  as in (3.20); and continue the iterations.   In 

the Experimental Results section we will demonstrate that the above algorithm 

effectively reduces the number of co-channel violations with a trade-off of small 

increase in total network interference compared to without using the channel 

blocking. 

 

3.4 Experimental Results 

We compared the proposed algorithms on two sets of channel assignment 

problems.  In the first case, we generated test problems using a problem generator, 
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Vertex Saturation, and in the second case we use a realistic frequency planning 

scenario from the COST 259 project [37]. 

3.4.1 Generated Test Problems 

3.4.1.1 Experimental Setup 

The model we have used consists of randomly placed nodes/transceivers on a 

square field of 25 25×  units.  The propagation model used is as follows: 

i.  All transceivers/nodes are assumed to have identical transmission powers 

and the radiation to be omni-directional. 

ii.  Free-space propagation loss is assumed to be the only source of signal 

power attenuation.  The decay of signal power sP  with distance d  is modeled by 

the inverse power law [114], 

 t
s

P
P

d γ=  (3.21) 

where tP  is the power of the transmitter, d  is the distance between the 

transmitter and the receiver, and γ is the fading factor (or propagation exponent) 

with values between 2 and 6 depending on the environment.  We used 4γ =  as in 

[6, 114, 54]. 

iii.  The interfering signal power iP  from a transmitter using the same channel as 

the receiver, i.e., co-channel interference is, 

 t
i

P
P

d γ= , (3.22) 
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and from a transmitter using the thm  adjacent channel ( )1,2,m = L  is, 

 ( )21 log 1010 mt
i

P
P

d
α

γ
− += ⋅  (3.23) 

where α  is the attenuation factor for adjacent channel interference measured in 

dB/octave.  Note that as α  is increased the adjacent channel interference 

decreases (with no effect on co-channel interference).  It is shown in [114] that 

when α  is close to 30 dB/octave all adjacent channel interferences can be 

neglected.  We used 15α =  dB/octave as in [54] and as suggested in [72].  We 

also assumed that the total interference power at a receiver location from 

multiple interfering transmitters is the sum of the individual interferences from 

each transmitter. 

iv.  Two different models are used to define the cells (the receiver regions 

corresponding to each node), 

• in the Voronoi region model the nearest node to a receiver location 

provides service to that location, hence the desired signal at each receiver 

location is from the nearest node, 

• in the best server model the node achieving the highest signal-to-

interference ratio (SIR) at a receiver location provides the service. 
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3.4.1.2 Vertex Saturation – Problem Generator 

The test problems are generated by the Vertex Saturation (VS) algorithm with 

different sets of thresholds, ( )0 1,r r .  Vertex Saturation is a problem generator method 

developed by Zoellner and Beall [118].  It generates test problems with known 

optimal solutions because the test problems are constructed so that there are no 

constraint violations for the given co-channel and adjacent channel constraints, 0r  

and 1r , and the given number of colors/channels, K .  The procedure starts by 

generating a large number of random points on a 2-dimensional grid. These points 

are the candidate nodes.  Each candidate point is considered in sequence and an 

attempt is made to color it with the smallest number of color from a set 

{ }0,1, , 1C K= −L such that both of the following hold: 

1. The Euclidean distance between the current point and all previous 

points that are colored the same color is greater than some threshold 0r . 

2. The Euclidean distance between the current point and all previous 

points that are colored with a color differing by one is greater than threshold 1r  

where 1 0r r< . 

If there is no feasible color for a candidate, then the candidate is rejected and the next 

point is considered.  If the point can be colored, then the candidate becomes a node 

and it is added to the constructed graph with the feasible color assigned to that node.  

The procedure continues until all candidates have been considered.  A graph is 

considered to be saturated when candidates no longer can be added as nodes.  The 
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constructed graph has a minimum span assignment that is exactly the colors selected 

in C , satisfying both co-channel and adjacent channel constraints.  Note that our DA 

algorithms do not provide a solution that minimizes the span (MS-FAP), but we 

wanted to run our algorithms on these test problems to see how close they come to 

satisfying the constraints set by these problems, in addition to minimizing the total 

interference.  Note also that a saturated graph satisfying the co-channel and adj-

channel separations between all node pairs will result in a very competitive total 

interference value, which will be very close, if not equal to the optimum value. 

In order to obtain reasonable thresholds, ( )0 1,r r  we made use of the results in 

[114], where channel sizes and ( )0 1,r r  thresholds are investigated for various SIRs.  

Although the work in [114] only considered regular hexagonal networks where the 

locations of interfering nodes are highly structured, here, we consider networks 

where the locations of the interfering nodes are random.  We have used the following 

intuition: at a node v , adjacent channel interfering signal power from a distance 1r  

from v  has to be equal to co-channel interfering signal power from a distance 0r  

away from v .  The results in [114] show that equal contribution of co-channel 

interference and adj-channel interference is a reasonable choice. Using the power 

equation (3.22) for co-channel interference, and (3.23) for adjacent channel 

interference ( 1m = ) with 4γ =  and 15α = , the ratio 0 1r r  becomes 2.37: 

 
( ) 1

100 0
10

1 1

0

1

1 1 10
10

2.37

adj
i
co

i

P r r
P r r

r
r

γ
α γ

α γ= ⇒ = ⇒ =

⇒ =
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Twelve test problems are generated with various number of channels, K  and 

thresholds, ( )0 1,r r  using the VS method.   In six of these test problems, P1s, P2s, … , 

P6s, the VS method is allowed to saturate the field with the maximum number of 

nodes possible given K  and ( )0 1,r r , and in the other six test problems, P1, P2, … , 

P6, the number of nodes is left below saturation.  The details of these test problems 

are given in Table 3.1, where V  is the number of nodes and E  is the number of 

edges.  The edges represent those pairs of nodes that have Euclidean distances less 

than 0r  between them.  In other words, they are the ones that can cause 0r  or 1r   

        

Problem K  0r  1r  V  E  E V  density 
(%) 

P1 6 7.11 3.00 45 170 3.78 17.18 

P1s 6 7.11 3.00 53 219 4.13 15.89 
P2 6 9.48 4.00 28 104 3.71 27.51 

P2s 6 9.48 4.00 35 149 4.26 25.04 

P3 7 7.11 3.00 50 218 4.36 17.80 

P3s 7 7.11 3.00 61 303 4.97 16.56 

P4 7 9.48 4.00 32 140 4.38 28.23 

P4s 7 9.48 4.00 40 199 4.98 25.38 

P5 8 7.11 3.00 55 272 4.95 18.32 

P5s 8 7.11 3.00 68 383 5.63 16.81 

P6 8 9.48 4.00 36 181 5.03 28.73 
P6s 8 9.48 4.00 46 261 5.67 25.22 

 
Table 3.1:  Specifications of the test problems. 

 
 

constraint violations.  Also included in the table is the ratio of the number of edges to 

the number of nodes, where for a given ( )0 1, ,K r r -triple (recall that these triples 

generate the problem instances) the higher this ratio the more saturated the field is 

and the more difficult it is to satisfy the binary constraints set by the thresholds.  
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Finally, we also include the edge densities (i.e., number of edges relative to the 

maximum possible number of ( )1 2V V⋅ − ) in percentage.  Most of the realistic 

frequency planning scenarios reported in [89] have graph densities in the range of 

8% - 14%, hence the test problems we are using are at least as dense as, and 

sometimes more dense than, the realistic scenarios in [37]. 

 

3.4.1.3 Results 

The DA, SA [36, 62] algorithms and the VS method are implemented using C.  

The computations are performed on an Intel Pentium III processor machine, 

operating at 550 MHz clock speed and equipped with 256 MB RAM.  The 

convergence times for SA and DA are given in CPU seconds. 

For each problem instance 10 experiments are performed and the average results 

displayed in Table 3.2.  Recall that total interference results for VS are very close to 

optimal results, especially in the saturated problems.  From the results in Table 3.2, 

comparing SA and DA we clearly notice the superiority of the DA over the SA 

approach, both in performance and in convergence time.  In the saturated problem 

cases, (P1s – P6s) the total interference results obtained with DA (Gibbs case) are 

within 26% to 36% of the optimal, whereas, SA performance ranges between 175% 

and 380%.  In the non-saturated cases, (P1 – P6) the total interference performances 

are 7% to 23% for the DA-Gibbs case and 180% to 428% for the SA.  Although, the 

problem formulations for both DA and SA aimed at minimizing the total  
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interference, we also computed the number of binary constraint violations in the 

solutions.  We again see that the DA results show up to 4 times fewer violations than 

the SA results.  Besides the number of violations, it is also important to look at the  

range of distances between the violating node pairs, i.e., how large the violating 

distances are.  This is important because, as we have mentioned before, when  

considering binary constraints it does not matter how large the violation distance 

  

  

  

  

  
Figure 3.7 (a-d) :  Contour plots of the field obtained by Simulated Annealing.   

In (a) full contour plot is shown, and in (b), (c) and (d) thresholded contour  
plots with thresholds 9dB, 12 dB and 15 dB, respectively, are shown. 

 

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25
0 

5 

10 

15 

20 

25 Number of Nodes: 55   |   K = 8 

20 
30 

40 50 

(a) Contour Plot (SA) 
8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10

0 5 10 15 20 25 0

5

10

15

20

25
   Number of Nodes =  55        Number of Channels = 8 

(b) Contour Plot, Threshold = 9dB  (SA) 

11

11.2

11.4

11.6

11.8

12

12.2

12.4

12.6

12.8

13

0 5 10 15 20 25
0 

5 

10 

15 

20 

25       Number of Nodes = 55      Number of Channels = 8

(c) Contour Plot, Threshold = 12dB  (SA)
14

14.2

14.4

14.6

14.8

15

15.2

15.4

15.6

15.8

16

0 5 10 15 20 25 0

5

10

15

20

25
      Number of Nodes = 55      Number of Channels  = 8 

(d) Contour Plot, Threshold = 15dB  (SA) 



 114

between any two nodes v  and u  is: if it is ε , ( ),r d v u ε− =   for very small 

ε , 0 1ε< � , or almost the whole constraint distance, ( ),r d v u r− ≈  (where 0r r=  for  

co-channel nodes, and 1r r=  for adj-channel nodes), the violating node pair is 

counted as a violation without distinction.  However, for all practical purposes, the 

quality (the smaller the violation distance the higher the quality) of the violations 

  

  

  

  

  
Figure 3.7 continued, (e-h) :  Simulated Annealing; cells obtained by the Best 

 Server Model and the Voronoi Region Model are shown in (e) and (g), 
 respectively.  And the signal-to-interference (SIR) histograms for each location  

on the field corresponding to the Best Server Model and the Voronoi  
Region Model are shown in (f) and (h), respectively. 
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makes big difference in terms of the accumulated interference, and hence, on the 

signal-to-interference ratio (SIR); the smaller the violation distances are, the smaller  

the incurred interferences and the larger the SIR will be.  Thus, we computed the  

distances between the nodes that fall short of satisfying 0r  and 1r  in the DA and SA 

results.  We found out that, on average, the DA violations were at 0.86 r⋅ , i.e., 14%  

  

  

  

  

  
Figure 3.8 (a-d) :  Contour plots of the field obtained by Deterministic 

 Annealing Triangular case.  In (a) full contour plot is shown, and in (b), (c)  
and (d) thresholded contour plots with thresholds 9dB, 12 dB  

and 15 dB, respectively, are shown. 
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less than the constraint distances ( 0r r=  for co-channel nodes and 1r r=  for adj-

channel nodes), whereas, this value for the SA violations was 0.73 r⋅ , i.e., 27% less  

than the constraint distances.  Therefore, not only do the DA solutions have fewer 

constraint violations than the SA solutions, but the “quality” of the violations is also  

higher.  This also explains why the DA method outperforms the SA method by a 

  

  

  

  

  
Figure 3.8 continued, (e-h) : Deterministic Annealing Triangular membership  

function; cells obtained by the Best Server Model and the Voronoi Region Model  
are shown in (e) and (g), respectively.  And the signal-to-interference (SIR)  

histograms for each location on the field corresponding to the Best Server Model  
and the Voronoi Region Model are shown in (f) and (h), respectively. 
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large margin in terms of total interference.  When we compare the DA results 

obtained with the 2 different soft information  measures, namely, the Gibbs 

distribution (DA-G) and the triangular distribution (DA-T), we see that DA-G  

performs better than DA-T both in total interference and  number of violations, but at 

the expense of longer convergence time; DA-T converges about 40% faster than DA-

G with 2% - 10% higher total interference.   This was an expected result since Gibbs 

  

  

  

  

  
Figure 3.9 (a-d) :  Contour plots of the field obtained by Deterministic  
Annealing Gibbs case.  In (a) full contour plot is shown, and in (b), (c)  

and (d) thresholded contour plots with thresholds 9dB, 12 dB and 15 dB,  
respectively, are shown. 
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is the optimal distribution, but at the same  time it has higher computational 

complexity. 

In practice, interference plots are commonly used in network planning for  

visualization of the spatial distribution of interference/SIR.  Figures 3.7 – 3.9 depict 

plots for one of the experimental configurations considered for problem P5 for DA- 

Gibbs (Figure 3.9a-h), DA-Triangular (Figure 3.8a-h),  and SA (Figure 3.7a-h),   

  

  

  

  

  
Figure 3.9 continued, (e-h) :  Deterministic Annealing Gibbs membership  
function; cells obtained by the Best Server Model and the Voronoi Region  

Model are shown in (e) and (g), respectively.  And the signal-to-interference  
(SIR) histograms for each location on the field corresponding to the Best Server  

Model and the Voronoi Region Model are shown in (f) and (h), respectively. 

(e) Best Server Model (DA-G)
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solutions.  The full range SIR-contour plot (Figures 3.7a, 3.8a, 3.9a) corresponding  

to the best server model show the SIR in dB at each location on the field.  The 9dB 

(Figures 3.7b, 3.8b, 3.9b), 12dB (Figures 3.7c, 3.8c, 3.9c) and 15dB (Figures 3.7d, 

3.8d, 3.9d) thresholded contour plots depict the areas covered above the  

corresponding thresholds, also corresponding to the best server model.  The cell 

maps show the field partitioned into service areas corresponding to both the best 

server model (Figures 3.7e, 3.8e, 3.9e) and the Voronoi region model (Figures 3.7g,  

3.8g, 3.9g). The cells are color coded according to the assigned channel number, 

such that, cells with zero being the assigned channel are black, whereas the cells with 

1K −  being the assigned channel are white, and the cells with channels 1,2, , 2K −L  

are colored with shades of gray from black to white.  Finally, the histograms for the 

best server model (Figures 3.7f, 3.8f, 3.9f) and the Voronoi region model (Figures 

3.7h, 3.8h, 3.9h) show the number of locations at each SIR value when the field is 

sampled at 100 100×  location (receiver) points. 

We also computed the SIR coverage on the domain of the nodes (the field) for 

9dB, 12dB and 15dB, and the results are shown in Table 3.3 (in [37] it is stated that 

for GSM networks a 9dB SIR threshold is acceptable, whereas in [72] a threshold 

range of 12dB to 15dB is suggested).  As we can see from the Table and from the  

plots, the coverage is highest in the solutions produced by the DA-Gibbs case.  The 

SA performance lags behind both of the DA-Gibbs and the DA-Triangular 

performances.  Note from the histograms that the average SIR in the SA case is more 

than 3dB below that of DA averages. The service areas depicted in the cell maps, 
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Voronoi and best server models, indicate further that SA did not produce good 

channel assignments.  Looking at the assignments in the best server model we see 

that the solution generated cells within cells which definitely imply not good 

assignments and not good partitioning of the field.  Looking at the Voronoi region  

model, this time we see that the assignments produce co-channel nodes having 

common borders (recall that the cells are color coded according to the assigned 

channel to them).  Consequently, from both models’ point of view, SA did not 

produce good solutions as the numerical results showed too.  The partitionings 

resulted from the DA solutions, with the Gibbs and the triangular cases, show much 

better structure compared to the SA partitioning under both models, which were 

again in accordance with the numerical results. 

     

 VERTEX 
SATURATION 

SIMULATED 
ANNEALING 

DETERMINISTIC 

ANNEALING  

(TRIANGULAR 
DISTRIBUTION) 

DETERMINISTIC 

ANNEALING  

(GIBBS 
DISTRIBUTION) 

% coverage area 
above 

% coverage area 
above 

% coverage area 
above 

% coverage area 
above 

P 
R 
O 

B 
L 
E 
M 

9  
dB 

12 
dB 

15 
dB 

9 
 dB 

12 
dB 

15 
dB 

9  
dB 

12 
dB 

15 
dB 

9  
dB 

12  
dB 

15  
dB 

P1 96.87 90.64 80.02 92.83 87.87 73.39 95.98 90.59 79.48 97.85 92.46 81.75 

P3 98.46 94.85 85.11 95.96 87.92 77.27 98.64 94.56 85.66 98.73 95.20 86.15 

P5 99.42 96.03 88.28 97.71 92.21 81.72 99.60 96.69 88.65 99.88 96.91 89.47 

 
Table 3.3: Results comparing Deterministic Annealing Gibbs and Triangular 

cases, Simulated Annealing and Vertex Saturation in terms of percentage signal-
to-interference coverage are above 9dB, 12dB and 15dB. 
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When we compare DA and VS results in Table 3.3, we see that DA-Gibbs results 

in a better coverage than the VS approach in all the cases, and DA-Triangular results 

are comparable with the VS results.  In other words, the DA algorithms produced as 

good as or better assignment solutions in terms of coverage area than the VS on the 

problems generated by the VS itself.  This may be surprising since in terms of total 

interference VS results were better than the DA results in Table 3.2.  But recall that 

the total sum of the interference results presented in Table 3.2 was between pairs of 

nodes, i.e., interference from one node position to another node position.  And since 

VS assignments are such that 0r  and 1r  separations are satisfied between pairs of co-

channel and adj-channel nodes, respectively, then the cumulative interference on a 

node from the other nodes was low, resulting in low total interference in the network.  

Hence, at the location of the nodes and in the very close vicinity of the nodes the SIR 

is high in VS solutions.  However, as the receiver distance from the service 

providing node increases, the desired signal power decreases and the interference 

power, not only from the co-channel and adj-channel nodes, but from all of the nodes 

increase at the receiver’s location.  Hence, the gradual interference accumulation 

becomes significant, and algorithms such as DA, that take it into account have an 

advantage, and thus produce solutions that enjoy higher SIR coverage area. 

Finally, in Table 3.4 the results of applying the proposed channel blocking 

algorithm to the DA – Gibbs case is presented.  Recall that the aim of the channel 

blocking algorithm is to satisfy a given separation constraint while minimizing the  
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total interference.  The algorithm is applied for channels 8,10,12K =  and compared 

with the results where the blocking is not applied.  Note that all three problems are 

almost at the same level of graph density for the given co-channel binary constraint, 

0r , hence, the complexity of the problems is kept roughly fixed.  Although the  

blocking did not result in 100% satisfaction of the binary constraints the violations 

were well below 0.5% after the blocking algorithm is applied, with only a small 

degradation in average total interference, as compared with the results obtained 

without blocking.  For example, for 12K = , where there were 533 constraints 

(number of pairs of nodes with separation less than 0r ) to be satisfied, the number of 

violations decreased from an average of 6.6 to 0.9 after blocking was used, with a 

very small increase in average total interference (only 0.12%.)  We see a tendency 

that as the number of channels increases, the blocking algorithm performs better, 

although the density of constraints is about the same (18% - 19%).  This can  

DETERMINISTIC ANNEALING  
(GIBBS DISTRIBUTION) 

  
without blocking algorithm 

 
with blocking algorithm 

K r0 |V| |E| density 
(%) 

ave. 
total 

interfer. 

ave. # 
of 0r  
viol. 

% viol. 
of total 
edges 

|E| 

ave. 
total 

interfer. 

ave. # 
of 0r  
viol. 

% viol. 
of total 
edges 

|E| 
8 7.11 55 272 18.32 0.0512 6.3 2.30 0.0543 1.1 0.40 

10 7.11 65 389 18.70 0.0550 7.0 1.80 0.0567 1.5 0.39 

12 7.11 75 533 19.21 0.0599 6.6 1.24 0.0600 0.9 0.17 

 
Table 3.4:  Results of the blocking algorithm applied to Deterministic 

Annealing Gibbs case for channel sets of sizes 8, 10 and 12. 
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be explained by the fact that blocking is done only on one channel, hence when the 

size of the channel set is large the degree of freedom in the assignment set after 

blocking stays relatively high compared to the cases when the number of channels is 

smaller.  We can conclude from the results in Table 3.4 that the proposed blocking 

algorithm can effectively reduce the number of violations with a small trade-off in 

total interference, and the results get better with increasing number of channels and 

fixed graph density. 

 

3.4.2 Realistic Frequency Planning Scenario 

We have also tested our proposed algorithm on a realistic frequency planning 

scenario obtained from the COST 259 project [37].  Under this project various 

realistic GSM frequency planning scenarios are compiled to allow the comparison of  

different planning methods.  Using the scenario named “K” from this set we have 

tested and compared the performance of our algorithm with the best known 

techniques that have been tested on the COST 259 project scenarios. 

Scenario K is a GSM 1800 network with 92 sites, 264 cells and 267 

transmitter/receiver (TRX) units.  Fifty contiguous channels form the allowed 

spectrum.  Each site is a collection of cells and each cell can have multiple TRX 

units as shown in Figure 3.10.  The objective is to assign one channel to each TRX 

from the available 50 channels such that the total interference is minimized.  There  

are also hard constraints that are not allowed to be violated.  These are co-cell 

separation constraints and co-site separation constraints.  The co-cell separation 
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constraint requires that any two TRXs within one cell should be assigned channels 

that are separated by at least 4 channels.  The co-site separation constraint requires  

that any two TRXs within one site in different cells should be assigned channels that  

are separated by at least 2 channels.  From our design perspective each TRX is a 

node.  The characteristics of the scenario is given in Table 3.5. 

The results are given in Table 3.6.  The methods T-Coloring+VDS, TS+T-

Coloring+VDS and TS+DC5+VDS are channel assignment techniques developed in  

[37], and Threshold Accepting [58] is the algorithm that produces the best 

assignments on COST 259 scenarios.  Among the frequency assignment techniques 

developed in [37], T-Coloring+VDS, TS+T-Coloring+VDS and TS+DC5+VDS, the 

performance increases in the given order while the running time increases in that 

order too.  The running times are machine dependent and it is stated in [37] that all 

Figure 3.10:  Co-site and co-cell channel separations.  These are hard constraints and
cannot be violated.
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three algorithms run within less than 30 seconds on an IBM ThinkPad with Intel PIII 

processor, 650 MHz clock speed and with 575 MB of RAM.  It is also stated in [37] 

that Threshold Accepting requires an order of magnitude more running time than the 

other algorithms.  On the other hand our proposed algorithm using Deterministic  

Annealing, denoted as DA – FAP in Table 3.6 has a running time of just over 60 

seconds on a Dell, Intel PIII processor, 550 MHz clock speed and with 384 MB of 

RAM.  While a proper comparison of running times is not possible, the results seem 

to indicate that the complexity of DA-FAP is significantly lower than that of 

Threshold Accepting technique.  In terms of performance Threshold Accepting 

produces the best result.  Our proposed algorithm, DA – FAP, although cannot 

outperform Threshold Accepting, nevertheless, it is competitive.  Note that T-

|V| 
Density 

(%) 
Ave. 

degree 
Max. 

degree 
Max. 
clique 

Number of 
co-channel 

edges 

Number of 
adj-channel 

edges 

Number 
of 

Channels 
 

267 56.57 151 238 69 19111 996 50 
 

Table 3.5: Characteristics of scenario “K” from COST 259 project [37]. 
 

Violations 
 

Number of Edges with Interference above 
 

Assignment 
Technique 

Co-site Co-cell 

Total 
interf. 

0.01 0.02 0.03 0.04 0.05 0.1 
T-Coloring+VDS 0 0 1.38 41 14 6 5 1 1 

TS+T-Coloring+VDS 0 0 1.25 40 2     
TS+DC5+VDS 0 0 0.82 21 5     

Threshold Accepting 0 0 0.45 6 1     
DA – FAP 0 0 0.95 19 2 2    

 
Table 3.6: Performance comparison of various frequency assignment techniques 

on scenario “K” from COST 259 project. 
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Coloring+VDS, TS+T-Coloring+VDS, TS+DC5+VDS and Threshold Accepting are 

all specifically designed for channel assignment scenarios like the scenario “K.”  

Hence, the competitive performance of our algorithm proves it to be a good 

candidate for further investigation to adapt it for real life channel assignment 

scenarios. 

 

3.5 Conclusion 

Deterministic annealing (DA) has been proposed as a novel approach for the 

interference minimization variant of the frequency/channel assignment problem (MI-

FAP).  The DA's concept of starting the process by equal importance to all possible 

assignments eliminates the requirement of a choice of initial configuration.  Through 

a probabilistic iterative process the DA algorithm is capable of gathering the global 

information iteration by iteration (via the soft assignment values) resulting in high 

performance node-channel assignments.  The experimental results show that the DA 

performance outperforms the simulated annealing (SA) performance by a large 

margin, and moreover, DA converges faster than the SA algorithm.  The importance 

of this conclusion is increased by the announcement in [37] that a variant of the SA 

method, called Threshold Accepting, presently provided the best performance on a 

collection of realistic frequency planning scenarios.  This method has not been made 

publicly available yet.  However, comparison with the results of the Threshold 

Accepting algorithm (given in [37]) and with the algorithms developed in [37] show 
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that the DA algorithm is a competitive channel assignment method. Hence, the 

competitive performance of our algorithm proves it to be a good candidate for further 

investigation to adapt it for real life channel assignment scenarios.  Recall that 

Threshold Accepting algorithm and the ones proposed in [37] are specifically 

designed for such real life scenarios.  We believe that the performance of the DA 

algorithm applied to channel assignment problems presented in this chapter provide 

substantial evidence that the DA algorithm is an excellent candidate for the channel 

assignment problem. 

The channel blocking algorithm, proposed as an extension to the proposed DA 

algorithm for FAP, which aims to satisfy a given co-channel separation while 

minimizing the total interference satisfied the separations in over 99.50% of the 

edges in exchange of less than 6% increase in total interference compared to the 

results without blocking.  The algorithm performed better with large channel sets 

satisfying 99.83% of the edges with a small increase in interference (0.12%). 
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Chapter 4  

 

A Novel Constrained Vector Quantizer Design 

Based on Multiple Projections and Multiple Stages 

 

4.1 Introduction 

The vast majority of practical image coding systems used today are based on the 

transform coding paradigm, where image blocks are projected onto a series of basis 

functions, and the expansion coefficients are subsequently quantized.  Vector 

quantization (VQ) techniques have been found to be of somewhat limited practical 

use for high quality image coding.  Unconstrained VQ is limited to rather modest 

vector dimensions and codebook sizes for practical problems because of the 

encoding complexity [49]. Constrained VQ techniques (say, for example, tree-

structured VQ, TSVQ) can be used for these high dimension sources but often do not 

make explicit use of special characteristics of the source data, such as the correlation 

present in typical images.  Our motivation in this work comes from considering 

transform coding as a very efficient constrained VQ algorithm for correlated sources, 
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where the reconstructed signal is obtained as a linear combination of scaled vectors 

in the multidimensional space. Our goal in this chapter is also to use projections of 

the input onto multiple segments, but to tightly couple the selection of these 

segments with the quantizer design. In contrast, in transform coding the same 

transform is used for all inputs and the transform is designed without taking 

quantization into account. Moreover, the segments we select are not constrained to 

form orthogonal bases.  

We propose a novel constrained VQ design algorithm, called Seg-VQ.  The 

constraint requires that the codevectors be located on line segments, where the line 

segments are free to be anywhere in the source space. These line segments are 

obtained based on an iterative procedure, where initial segment values are obtained 

using principal component analysis. Then each input vector in the training set is 

assigned to the best candidate segment, and the segments are further refined based on 

all the training vectors that were assigned to each segment. These segments exploit 

the linear correlations in the source. An input vector is encoded by projecting it on to 

all the segments and choosing the closest one, as shown in Figure 4.1.  The closest 

codevector on that segment is obtained from a look-up table, and therefore the 

encoding complexity depends primarily on the number of segments. 

We have also designed an entropy constrained version of Seg-VQ, which we call 

Seg-ECVQ.  In this case, once the segments are designed as in Seg-VQ the ECVQ 

algorithm [19] constrained to the segments is used to get Seg-ECVQ. 
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Although Seg-VQ has a low encoding complexity its storage complexity is the 

same as that of VQ with unstructured codebooks.  This prohibits using codes with  

large dimensions; for example, using 64n =  dimensional vectors (8 8×  blocks) at 

0.5r =  bits/pixel require a codebook size of 322 2nr =  which is clearly not practical.  

To circumvent this barrier we can use Seg-VQ in multiple stages in a transform 

coding flavor.  We call this design Seg-MSVQ.  In Seg-MSVQ, Seg-VQ is applied to 

the training set in the first stage and to the residual vectors in subsequent stages, so 

that specific codebooks are designed for each stage.  The reproduction vector for a 

given input vector is the sum of the quantized representations in each stage.  

Lagrangian optimization is used to determine the number of stages to be used for 

each input vector.  We keep encoding the input in each subsequent stage until the 

Lagrangian cost is no longer decreasing.  Note that in the first stage we encode the 

input vector and from second stage onwards we encode the residue vector from the 

previous stage.  Since variable number of stages are used for each input vector there 

 

Figure 4.1: Encoding is done by finding the closest segment to x and quantizing
it with the codevector of the bin it falls into.  In this example closest segment is

l1 and projection of x falls into bin 2,  so x is quantized to c2,1.
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is an overhead required to indicate the number of stages used to the decoder (this 

overhead is entropy coded).  The segment codevectors in each stage are also entropy 

coded. While the approach is similar to transform coding, in our system the segments 

are not constrained to form a basis. As in transform coding a variable number of 

projections is used for each input.  Seg-MSVQ has both low encoding and storage 

complexity and shows promising performance at low rates. 

The rest of the chapter is organized as follows: in section 4.2 we explain the 

segment based VQ design and present its algorithm (Seg-VQ).  We also explain the 

entropy constrained design of Seg-VQ.  In section 4.3 we present experimental 

results comparing Seg-VQ and its entropy constrained version with PNN [39] 

initialized GLA on Gauss-Markov and image sources.  We extend the Seg-VQ 

design to multiple stages in section 4.4 (Seg-MSVQ), and in section 4.5 we modify 

Seg-MSVQ to be more robust to rate adaptation.  We present possible extensions and 

future work in section 4.6.  Finally, section 4.7 concludes the chapter. 

 

4.2 Segment-Based VQ Design 

4.2.1 Line Segment Based Voronoi Regions 

A line segment in n¡  is defined as ( )l u m u r= + ⋅ , where m  and r  are any two 

vectors in n¡ , and u  is a bounded scalar min maxu u u≤ ≤ .  Let the projection of a 

vector nx ∈ ¡ , ( )0 1 1, ,..., nx x x x −= , onto a line segment between ic  and jc  be b , all 
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in n¡  as shown in Figure 4.2.  Then b  is on the line segment defined by u , 

( )i j ib c u c c= + − .  Using the information that b  is the perpendicular projection of 

x  on the segment, we can find the scalar u  as follows, 

 

( ) ( )
( )( ) ( )

( )( )
( )

1

, , ,
0

1
2

, ,
0

0

0

j i

i j i j i

n

l i l j l i l
l

n

j l i l
l

x b c c

x c u c c c c

x c c c
u

c c

−

=
−

=

− ⋅ − =
⇒ − − − ⋅ − =

− −
⇒ =

−

∑
∑

 

Instead of using the whole segment as a vector, ( )j ic c− , we can use a unit 1 length  

vector r , 
2

1r = , along the segment and a vector m  on the segment where vector 

r  starts (see Figure 4.2).  Then the perpendicular projection b  of a vector x  on the 

segment can be defined in terms of m  and r ,  

 ( )
1

0

n

l l l
l

u x m r
−

=
= −∑ . (4.1) 

The minimum distance between a vector nx ∈ ¡  and a line segment l , 

 

Figure 4.2:  Perpendicular projection of a vector on to a line segment.  The
projection of vector x on the segment is b.

x( )l u m u r= + ⋅

ic

jc

m
r b
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( ) ( ), min ,d x l d x l=% , is the perpendicular distance from x  to l  if there is a 

perpendicular projection, otherwise it is the distance of x  to the closer end of l  as 

shown in Figure 4.3.  Then, for an arbitrary set of L  line segments { }0 1 1, ,..., Ll l l − , we  

define the line segment based Voronoi regions 0 1 1, ,..., LV V V −  of a training set T  

( )1

0

L

ss
T V

−

=
= ∪  corresponding to the L  line segments as, 

 ( ) { }: argmin , , 0,..., 1s j
j

V x s d x l s L
 

= = ∈ − 
 

% . (4.2) 

 

4.2.2 Optimal Subspace Decomposition  

We know that the optimal subspace decomposition can be achieved by the 

Karhunen-Loeve Transformation (KLT) via the eigenvalue decomposition of the 

covariance matrix of the training set T , ( ) ( )1 T
K x T

R x xµ µ
∈

= − ⋅ −∑ , where 

1
K x T

xµ
∈

= ∑  and K  is the training set size.  Hence, the optimal transformation to a 

k -dimensional subspace, k n< , with respect to minimizing the mean squared error 

 

Figure 4.3.  Line segment and minimum distances of vectors to it.

( )1 ,d x l% ( )2 ,d x l%
1x

2x

( )l u m u r= + ⋅
( )minl u

( )maxl u

m

r
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is the KLT.  The k n×  subspace transformation matrix W  consists of k  rows of the 

eigenvectors corresponding to the largest k  eigenvalues of the covariance matrix R .  

Assuming that eigenvectors are orthonormal, the transformed vector is ˆ Tx W W x= , 

and 
2ˆx x−  is minimum with respect to any other k -dimensional subspace in n¡ .  

Therefore, for a given region sV T⊂  the optimal line ( 1)k =  s s sl m u r= +   

minimizing the mean squared error 
2ˆx x− , where sx V∈  and ˆ sx l∈ , can be 

obtained by setting 1
s s

Vs x V
m x

∈
= ∑  and sr  as the unit direction vector in the 

direction of the eigenvector corresponding to the maximum eigenvalue of the 

covariance matrix sR  of the region sV , ( ) ( )1
s s

T
Vs s sx V

R x m x m
∈

= − ⋅ −∑  as shown 

in Figure 4.4. 

 

4.2.3 Optimal Location of Codevectors with Line Constraint 

Using the subspace decomposition we get the optimal line sl  in sV  which 

minimizes the mean squared error between a vector sx V∈  and its perpendicular 

 

Figure 4.4.  First principal component minimizing the mean squared error in
Vs  and a segment of it.

sm
sr

sV
s s sl m u r= + ⋅

segment
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projection location x̂  on sl .  This minimum error is achieved if each ˆ sx l∈  is used as 

a codevector.  However, we are interested in minimizing the error with a smaller set 

of codevectors to be placed on sl .  For a given number sπ  of codevectors, 

{ }0, 1, 1,, ,...,
ss s s sC c c cπ −= , we want to find their optimal locations on sl  such that the 

squared distortion in sV , 

 ( ) ( ), ,, , argmin ,
s

s i s j s
jx V

D d x c i d x c
∈

= =∑  (4.3) 

is minimized.  Note that the two outermost codevectors will determine the segment 

of ( )s s s s sl l u m u r= = + .  In other words, the scalar su  will be bounded, 

min, max,s s su u u≤ ≤ , and the two outermost codevectors will be at ( )min,sl u  and 

( )max,sl u .  The locations of the codevectors { }0, 1, 1,, ,...,
ss s sc c cπ −  are given by 

{ }0, 1, 1,, ,...,
ss s s su u u uπ −= . 

To find { }0, 1, 1,, ,...,
ss s s sC c c cπ −=  in sV  we use GLA, iterating between the nearest-

neighbor condition and line-constrained (in this case sl ) codevector locations.  

Starting with arbitrary locations for sπ  codevectors on sl , we obtain the Voronoi 

regions 0, 1, 1,, ,...,
ss s sV V Vπ −  using the nearest-neighbor condition.  Then, in each region 

,i sV  we want to find ,i sc , 0,1,..., 1si π= − , that minimizes the total distortion in ,i sV , 

 ( )
,

, ,, 0,1,..., 1
i s

i s i s sx V
D d x c i π

∈
= = −∑ . 

Since ,i sc  is constrained to be on sl  given by , ,i s s i s sc m u r= + , finding ,i su   
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corresponds to finding ,i sc  and we can express the total distortion in ,i sV  as a 

function of ,i su , 

 ( ) ( )
,

, ,,
i s

i s s i s s
x V

D u d x m u r
∈

= +∑ . 

Using the squared error distortion, ( ) 2

, ,, i s i sd x c x c= −  we solve for ( ),

,
0i s

i s

D u
u

∂
∂ =  to 

get ,i su , 

 

( ) ( ) ( )

( )
, ,

,

, ,
,

, ,

, ,

,
2

2 0

i s i s

i s

i s s i s s T T
i s s s s

x V x Vi s i s

T T
i s i s s s s

x V

D u d x m u r
u r m r x

u u

V u r m r x

∈ ∈

∈

∂ ∂ +
= = + −

∂ ∂

 
= + − = 

  

∑ ∑

∑
 

 
,

,
,

1
.

i s

T T
i s s s s

x Vi s

u r x r m
V ∈

 
⇒ = −  

 
∑  (4.4) 

In each ,i sV , 0,1,..., 1si π= − , we compute ,i su  using (4.4) and we get the 

corresponding codevector , ,i s s i s sc m u r= +  on sl .  We then update the Voronoi 

regions 0, 1, 1,, ,...,
ss s sV V Vπ −  using the codevectors 0, 1, 1,, ,...,

ss s sc c cπ −  and iterate until 

 

Figure 4.5:  The codevectors designed on the first principal component of the
region Vs .  The two outermost codevectors define the segment.
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convergence.  After convergence the two outermost codevectors on sl  determine the 

segment as shown in Figure 4.5, and using (4.2) we get the segment based Voronoi 

region sV . 

 

4.2.4 Incremental Addition of Line Segments 

In the previous sections we assumed that initially L  regions or line segments are 

given.  However, since we do not know the best placement locations for these L  

segments we start with one line segment and gradually increase the number of 

segments until some required number, rL L= , or a required distortion threshold is 

reached.  Initially, we start with 1L =  and the whole training set as the only region, 

0V T= , Figure 4.6 (a).  The line ( )0l u  is the first principal component of T  and we 

obtain the segment 0l  using ( )0l u − constrained GLA as explained in Section 4.2.3. 

Then, we search for a location to add the next segment. To avoid obtaining segments 

representing too few vectors, we search for a training vector z  ( z T∈ ) such that 

when we obtain Voronoi regions 0V  and zV  corresponding to the segment 0l and the 

vector z , respectively, the cardinality of region zV  is the maximum compared to all 

other z T∈ , Figure 4.6 (b).  This requires an exhaustive search of the training set and 

it is computationally complex.  To reduce this complexity we can set a threshold, 

such that when the cardinality of zV  is above that threshold we stop the search.  

However, exhaustive search of the training set gives better results, and the results  
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(a) (b) 

(c) (d) 

(e) (f) 
 

Figure 4.6:  To sequentially add the segments, start with the first principal 
component of the whole input set T as one region V0  in (a). The best location z for 

the second segment is such that when we obtain Voronoi regions V0  and Vz , 
corresponding to the segment l0 and the vector z, respectively, the cardinality of 
region Vz  is maximum compared to all other z in T , (b). Set V1= Vz as the new 

region and find the principal components of V0 and V1 in (c), and the segments in (d).  
Update regions V0 and V1 and obtain the principal components in (e), and then the 
segments of the updated regions in (f).  Iterate between updating the regions and the 

segments until convergence. 
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presented in this chapter are based on exhaustive search.  Once we find z  and thus 

zV , we set 1 zV V= .  As shown in Figure 4.6 (c) – (f), we repeat finding the optimal 

lines, then the optimal segments, and updating Voronoi regions 0V  and 1V  until 

convergence.  We continue adding line segments in this fashion until rL L= . 

We stated that the two outermost of the sπ  codevectors determine the line 

segment sl , but we have not explained how sπ  for each region sV  is determined.  

We found that good performance is obtained if we use s rC Lπ π= =     s∀ .  Note 

that this heuristic assignment of equal number of codevectors to each segment is 

used only during the design of the line segments, where the two outermost 

codevectors determine the segment.  Obviously, it is not necessarily optimal to use 

equal (or almost equal) number of codevectors on each segment in the final 

codebook.  Therefore, once rL  segments are designed we resort to the popular 

resource allocation technique, the Lagrangian optimization for the allocation of the 

number of codevectors to each segment.  Lagrangian optimization gives us the 

optimal number of codevectors to be assigned to each segment such that the total 

distortion is minimized subject to the codebook size [95].  This is explained next. 

 

4.2.5 Optimal Allocation of Codevectors to Line Segments 

Once L  segments have been designed, we have to allocate the codevectors to the 

segments such that the total number of allocated codevectors is equal to the required 
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codebook size, M C= .  Hence, the problem is to find the optimal number of 

codevectors, sπ  to be allocated to each segment, sl , 0,1,..., 1s L= − , such that the 

total distortion, ( )1

0

L
s ss

D D π
−

=
= ∑  is minimized: 

 
{ }

( )
1 1

0 0

min      such that     
L L

s s s
s s

D M
π

π π
− −

= =

=∑ ∑  (4.5) 

In (4.5) ( )s sD π  is the distortion in region s  with sπ  codevectors allocated to 

segment sl .  We can put the constrained problem (4.5) in a Lagrangian framework 

and solve it as an unconstrained problem 

 ( )( )
1

0

L

s s s
s

J D π λ π
−

=

= + ⋅∑ . (4.6) 

The non-negative Lagrangian multiplier, 0λ ≥ , allows us to select specific trade-off 

points between codebook size and distortion.  The unconstrained optimization 

problem can be written as, 

 ( )( ) ( )( )
1 1

0 0

min min min
L L

s s s s s s
s s

J D Dπ λ π π λ π
− −

= =

= + ⋅ = + ⋅∑ ∑  (4.7) 

which means that the minimum can be computed independently for each region [95].  

This is also called “constant slope optimization” because the minimum of 

Lagrangian cost J  is obtained with the same λ  in each region (for details see [95]). 

In order to solve (4.7) we need to compute the distortion ( )s sD π  in each region, 

0,1,..., 1s L= − , with all possible codevector allocation sizes, 1,2,...,s Mπ = .  For 

each sπ  value we find the optimal locations of sπ  codevectors constrained to the line 
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segment sl  as explained in Section 4.2.3, and then compute the resulting distortion, 

( )s sD π .  The best allocation size sπ  for a given λ  can be obtained by computing 

( )s s sD π λ π+ ⋅  for 1,2,...,s Mπ = , and choosing the allocation that gives the 

minimum, ( )( )* argmin
ss s s sDππ π λ π= + ⋅ .  This is done independently for each 

region.  We use the bisection method to find the correct λ  that achieves the optimal 

solution for the required codebook size.  In other words, we search for the λ  that 

gives the minimum Lagrangian cost with the total allocated codevectors 
1

0

L
ss

π
−

=∑  

equal to the desired codebook size, M .  The resulting codevector allocation 

minimizes the total distortion with the given quota of codevectors. 

 

4.2.6 Seg-VQ Algorithm 

Putting all the steps together we have the Seg-VQ algorithm: 

0) Initialization: 1L =  and 0V T= . 

1) For L  segment regions, iterate until convergence: 

a. for each sV , 0,1,..., 1s L= − , find the first principal component, 

( ) ,s s sl u m u r u= + ∈ ¡ , 

b. for each line ( )sl u , 0,1,..., 1s L= − , use line-constrained GLA to find 

the  segment sl , 
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c. obtain the segment-based Voronoi regions 0 1 1, ,..., LV V V −  

corresponding to the segments 0 1 1, ,..., Ll l l − . 

2) If rL L=  go to step 3), else, find the next segment region, LV , set 1L L= + , 

and go to step 1). 

3) Determine the number of codevectors, sπ  to be allocated to each segment sl , 

0,1,..., 1s L= − , using Lagrangian optimization. 

4) For each line segment sl , use line-constrained GLA to find the optimal 

locations of the sπ  codevectors, and stop. 

 

4.2.7 Entropy Constrained Seg-VQ Design 

In the previous section we described a segment constrained codebook design for 

a given fixed codebook size.  The index of each codevector can be represented in 

binary with ( )2log C n  bits per sample, where n  is the vector dimension.  In an 

entropy constrained design each codevector length is ideally equal to its self-entropy, 

( )2log p c− , where ( )p c  is the probability of codevector c .  The distortion criterion 

is modified to account for the codevector lengths, so that a given training vector x  is 

mapped to the codevector mc  such that, 

 ( ) ( ) ( ) ( )2 2, log , logm m k kd x c p c d x c p c kλ λ− ≤ − ∀  (4.8) 
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The average binary codevector length is then equal to the index entropy, H =  

( ) ( )1 logn c
p c p c− ∑ , up to the penalty introduced by the chosen entropy coder (say 

Huffman coding).  The parameter 0λ ≥  is the Lagrange multiplier whose value will 

determine the output entropy or the rate, H . 

For the entropy and line-segment constrained design, we modify the Seg-VQ 

algorithm as follows: In step 0) we also require a rate target R  to be defined.  Steps 

1) and 2) do not change, i.e., we obtain the L  line segments as before.  In step 3) we 

set a value for λ , and instead of allocating a fixed number of codevectors to each 

segment, we allocate many codevectors on each line segment.  In step 4), we replace 

the Euclidean distance criterion in the nearest neighbor rule with the one in (4.8), 

which takes the self-entropy into account.  We obtain the line-constrained locations 

of the codevectors using (4.4).  In step 3), we iterate between the nearest neighbor 

rule (4.8) and updating of the segment-constrained codevectors until convergence for 

the particular value of λ  set in step 3).  This procedure achieves a codebook with 

codevectors constrained to the L  segments and an encoder partition which is optimal 

for the rate associated with the value of λ .  For another rate, we go to step 3), set a 

different value of λ , and step 4) produces a different encoder partition and a 

different codebook, but constrained to be on the same L  segments.  To reach a 

desired rate we use the bisection method on λ  which gradually approaches to the 

correct λ  that gives the target rate.  Once this is reached, H R= , or approached for 

acceptably small 0δ > , R H δ− ≤ , we stop.  Hence, the entropy and segment 

constrained algorithm, Seg-ECVQ is: 
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0) Initialization: 1L =  and 0V T= , and rate constraint R . 

1) For L  segment regions, iterate until convergence: 

a. for each sV , 0,1,..., 1s L= − , find the first principal component, 

( ) ,s s sl u m u r u= + ∈ ¡ , 

b. for each line ( )sl u , 0,1,..., 1s L= − , use line-constrained GLA to find 

the  segment sl , 

c. obtain the segment-based Voronoi regions 0 1 1, ,..., LV V V −  

corresponding to the segments 0 1 1, ,..., Ll l l − . 

2) If rL L=  go to step 3), else, find the next segment region, LV , set 1L L= + , 

and go to step 1). 

3) Set a value for λ , and allocate many codevectors to each segment, 

0,1,..., 1s L= − . 

4) For each segment, 0,1,..., 1s L= − , use entropy and segment constrained 

GLA to find the optimal codebook.  If R H δ− ≤  stop, otherwise go to step 

3). 

 

4.3 Experimental Results 

We have compared the Seg-VQ algorithm with PNN [39] initialized GLA [80] 

using two first order Gauss-Markov sources, one with correlation coefficient 
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0 0.0α =  (uncorrelated Gaussian source) and the other with 0 0.9α =  (correlated 

source).  We also experiment with an image source, where the 16-dimensional 

training vectors (corresponding to 4 4×  blocks) were obtained from two 512 512×  

monochrome training images from the USC image database (each with pixel 

amplitude quantized to 8 bits) and the performance is tested on the image “Lena” 

which was outside of the training set.  For the image source we have also compared 

the performance of Seg-VQ with the performance of TSVQ [49] at about the same 

encoding complexity.  Recall that Seg-VQ’s encoding complexity depends on the 

number of segments, hence it can be adjusted to match approximately that of 

TSVQ’s.  The entropy constrained version of Seg-VQ, Seg-ECVQ, algorithm is 

compared with the ECVQ algorithm [19] on the Gauss-Markov sources and the 

image source. 

We observe from Table 4.1 that in the case of the uncorrelated Gaussian source 

the performance of Seg-VQ is well below PNN+GLA especially when the Seg-VQ 

codebook is constrained to a small number of segments.  For example using 4L =  

segments Seg-VQ is 1.49 dB below PNN+GLA at 0.375 bits/sample (bps) and 3.63 

dB at 1.5 bps.  However, the encoding complexity of Seg-VQ with 4L =  segments 

is 16 times less than PNN+GLA’s full search complexity.  With increasing segment 

size Seg-VQ’s performance increases providing a trade-off between complexity and 

performance.  But note that the performance does not increase linearly with the 

number of segments.  The increase in performance gradually decreases with the 

increase in the number of segments because the resource, in this case the number of 
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codewords, that the segments can share is fixed.  Using 32L =  segments Seg-VQ 

achieves a performance that is only 0.2 dB – 0.25 dB below PNN+GLA with an  

encoding complexity that is half of PNN+GLA (full search of 64 codevectors).  Note 

also that using Seg-VQ as an initialization for GLA, Seg-VQ+GLA, we obtain 

unstructured codebooks that can perform within 0.1 dB of PNN+GLA performance.  

Hence, Seg-VQ codebook can also be used as an initialization technique for GLA as 

an alternative to PNN initialization, avoiding the long PNN algorithm in exchange 

for a very small performance penalty.  To encode an input vector TSVQ requires 

2log M  distance computations, where M C=  is the codebook size, and Seg-VQ 

requires L  distance computations.  Therefore, Seg-VQ has the same encoding 

complexity as TSVQ when 12L = , since with 64M = , ( )2log 64 12= , and we 

Seg-VQ (dB) Seg-VQ+GLA (dB) Rate 
(bps) 

PNN 
+GLA 
(dB) 

TSVQ 
(dB) L=4 L=8 L=12 L=32 L=4 L=8 L=12 L=32 

0.375 2.47 2.15 0.98 1.49 1.95 2.31 2.32 2.31 2.38 2.38 
1.5 8.24 7.53 4.61 6.38 7.37 7.99 7.98 8.03 8.02 8.13 

 
Table 4.1: Gaussian source. Codebook size is 64.  In Seg-VQ, L is the number of 

segments. 
 

 
Seg-VQ (dB) Seg-VQ+GLA (dB) Rate 

(bps) 

PNN 
+GLA 
(dB) 

TSVQ 
(dB) L=4 L=8 L=12 L=32 L=4 L=8 L=12 L=32 

0.375 7.92 7.41 6.66 7.20 7.48 7.80 7.78 7.80 7.83 7.90 
1.5 13.61 12.93 11.93 12.40 13.01 13.31 13.37 13.51 13.49 13.58 

 
Table 4.2: Gauss-Markov source, correlation coefficient 0.9.  Codebook size is 

64.  In Seg-VQ, L is the number of segments. 
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observe from Table 1 that at the same complexity performance of Seg-VQ is about 

0.15 dB below TSVQ for the uncorrelated source.   

In correlated sources, Seg-VQ can perform better compared to uncorrelated 

sources because it can exploit the correlations in the source.  In Table 4.2, using a 

small number of segments, 4L =  ( L M= ) it can perform 1.26 dB and 1.68 dB 

below PNN+GLA at 0.375 bps and 1.5 bps, respectively, compared to 1.49 dB and 

3.63 dB at the same rates in uncorrelated source in Table 1.  Therefore, this shows 

that in correlated sources, Seg-VQ can utilize its structure to exploit the directional 

preferences in the source to close the performance gap between itself and 

uncorrelated near optimal PNN+GLA.  Comparing Seg-VQ with TSVQ at the same 

encoding complexity ( )12L =  in Table 4.2 we notice that Seg-VQ outperforms 

TSVQ by a small margin.  Improvement of Seg-VQ over TSVQ going from an 

uncorrelated to a correlated source again shows Seg-VQ’s ability of exploiting the 

directional preferences in the source to achieve higher performance codebooks than 

TSVQ.  Therefore, at the same encoding complexity Seg-VQ can perform better than 

and has lower storage complexity than TSVQ in the case of correlated sources.  The 

storage complexity of TSVQ is nearly double that of unstructured VQ; using binary 

tree for a codebook size of M  the total storage requirement for TSVQ is ( )2 1M −  

vectors compared to M  for Seg-VQ.  Similar to the performance in Table 4.1, the 

results in Table 4.2 for Seg-VQ+GLA indicate that Seg-VQ is a good alternative to 

PNN as a codebook initialization. 
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We have compared the Seg-VQ algorithm with PNN+GLA for performance and 

with TSVQ for encoding complexity for the image source too.  The results shown in 

Table 4.3 indicate that Seg-VQ can perform very close to the unstructured  

PNN+GLA with very low encoding complexity.  Note that the performance achieved 

using the Seg-VQ codebook as an initialization for GLA, Seg-VQ+GLA, is very 

close to PNN+GLA and, Seg-VQ’s very small performance difference from Seg-

VQ+GLA means that Seg-VQ is able to achieve very high performance codebooks 

with low encoding complexity.  At the same encoding complexity, Seg-VQ 

outperforms TSVQ 0.4 – 0.5 dB at the rates considered.  This result, together with 

the results in Tables 4.1 and 4.2, show that the higher the correlation in the source, 

the higher the performance gain of Seg-VQ over TSVQ.  The results also clearly 

demonstrate that Seg-VQ is able to exploit the directional preferences in the source 

to achieve high performance codebooks.   

The results in Tables 4.4, 4.5 and 4.6 compare ECVQ and Seg-ECVQ 

performances for (uncorrelated) Gaussian, Gauss-Markov (correlation coefficient 

0.9) and image source, respectively.  We observe that, although Seg-ECVQ closes 

     
Rate  
(bpp) 

PNN+GLA  
(dB) 

TSVQ  
(dB) 

Seg-VQ  
(dB) 

Seg-VQ+GLA  
(dB) 

0.4375 29.39 28.75 29.27  (L=14) 29.36 
0.5 30.15 29.44 29.85  (L=16) 30.11 

 
Table 4.3: Test image is “Lena,” outside training set.  The results are PSNR. 
Vector dimensions are 16 (4x4 blocks) in both cases. In Seg-VQ, L is the 

number of segments. 
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the performance gap compared to ECVQ as the source correlation increases, it 

cannot outperform ECVQ.  This is because, while ECVQ optimizes a VQ’s 

performance minimizing the average distortion for a given rate on the entropy of the 

codewords, Seg-ECVQ optimizes Seg-VQ’s performance for a given rate on the  

entropy of the codewords.  However, the segment constraints in Seg-VQ limit the 

improvement that it can gain from the ECVQ design principle compared to the 

improvement that VQ gains.  For example, in all the sources considered in Tables 

4.4, 4.5 and 4.6 the effective Seg-ECVQ codebook sizes were always less than half 

Seg-ECVQ (dB) Rate 
(bps) ECVQ (dB) 

L=4 L=8 L=16 L=32 
0.375 3.82 0.99 1.50 2.05 2.41 
1.5 9.52 4.63 6.47 7.94 8.33 

 
Table 4.4: Gaussian source.  Vector dimensions are 4 and 16.  In Seg-

VQ, L is the number of segments. 
 

Seg-ECVQ (dB) Rate 
(bps) ECVQ (dB) 

L=4 L=8 L=16 L=32 
0.375 8.67 6.75 7.27 7.67 7.95 
1.5 14.10 12.68 12.92 13.40 13.80 

 
Table 4.5: Gauss-Markov source, correlation coefficient 0.9.  Vector 
dimensions are 4 and 16.  In Seg-VQ, L is the number of segments. 

 

Rate 
(bpp) ECVQ (dB) Seg-ECVQ (dB) 

0.4375 30.20  (retained |C| = 639) 29.56  (L=14)  (retained |C| = 282) 
0.5 30.76  (retained |C| = 1280) 29.95  (L=16)  (retained |C| = 622) 

 
Table 4.6: Test image is “Lena,” outside training set. The results are 

PSNR.  Vector dimensions are 16 (4x4 blocks) in both cases. In Seg-
VQ, L is the number of segments. 
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of the effective ECVQ codebook sizes.  Hence, while the segment-based structure 

provides an advantage in correlated sources, the same structure reduces the gain in 

entropy constraint design.  But, we should also bear in mind that we are comparing a 

constrained VQ to an unconstrained VQ; Seg-ECVQ’s encoding complexity depends 

on the number of segments and ECVQ’s is much higher depending on the codebook 

size.  Furthermore, if we consider that ECVQ retains more than twice the number of 

codevectors than Seg-ECVQ, then we see that ECVQ’s storage complexity is also 

higher than Seg-ECVQ’s storage complexity.  Hence, in the case of correlated 

sources Seg-ECVQ becomes an alternative to ECVQ where the choice between them 

provides a trade-off between performance and encoding – storage complexity. 

 

4.4 Segment Constrained Multistage VQ 

4.4.1 Motivation for Multiple Stages 

Although Seg-VQ has a low encoding complexity its storage complexity is the 

same as that for an unstructured VQ codebook.  This prohibits using codes with large 

dimensions; for example, using 64n =  dimensional vectors (8 8×  image blocks) at 

rate 0.5r =  bits/pixel require a codebook size of 322 2nr =  which is not practical.   

An alternative technique that has low storage complexity compared to 

unstructured VQ storage requirement is multistage VQ (MSVQ) [49].  The basic idea 

of MSVQ is to divide encoding into successive stages, where the first stage quantizes 

the input vector and after this each successive stage quantizes the error vector from 
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the previous stage.  The quantized error vectors in successive stages provide 

successive refinement of the input vector, hence the reproduction vector is obtained 

by sequentially quantizing the residue vector in each stage.  This multiple-stage 

processing results in a product codebook, ( ) ( ) ( )1 2 SC C C× × ×L  that is the Cartesian 

product of each stage codebook, ( )iC  1,2,...,i S=  stages.  If the size of thi  codebook 

is ( ) ( ) 2 ii i BM C= = , where 1

S

ii B n r= = ⋅∑ , then the product codebook size is 

1 2 2iS B nr
i= =∏ , and we see that the storage complexity of MSVQ is reduced from 

1 2 2iS B nr
i= =∏  to ( )

1 12 iS S iB
i i M= ==∑ ∑ . 

In order to be able to use large dimensions and thus also have low storage 

complexity besides low encoding complexity, Seg-VQ is designed with multiple 

stages (Seg-MSVQ).  In Seg-MSVQ with S  stages, Seg-VQ design is used in each 

stage to obtain the stage codebook using the residue vectors from the previous stage.  

In other words the residue vector set generated in stage 1k −  is the input set to stage 

k .  This set is trained as in Seg-VQ to obtain the codebook in stage k .  Then, the 

residue vector set in stage k  is generated with the stage k  codebook using the 

nearest segment encoding of the input set.  Hence, note that the residue vector set 

generated in each stage is unique.  The encoding complexity of Seg-MSVQ is 

1

S

ii L=∑  where iL  is the number of segments in stage i , and its storage complexity is 

the same as in MSVQ.  The reproduction vector x̂  for an input vector x  is the sum 

of the stage codevectors obtained in each stage,  
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 ( ) ( ) ( ) ( )1 2
1

ˆ ...
SS i
ix c c c c== + + + = ∑  (4.9) 

where ( )ic  is the codevector used in stage i  to quantize the input vector from the 

previous stage.  The overall quantization error between x  and its reproduction x̂  

after S  stages is equal to the quantization error introduced in the last stage.  To see 

this, let ( )iR  be the residue vector in stage i , where the input vector to stage i  is the 

residue vector in stage 1i − , ( )1iR − , and let ( )ˆ kx  be the reproduction vector at stage k : 
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 (4.10) 

Since the residue (error) vectors in stage k  form the input vector set to stage 1k + , 

the error variance in stage k  is the source variance of stage 1k + .  So, the SNR in 

dB of the system becomes sum of the SNRs  in each stage i , iSNR  [49], 

 
1

S

i
i

SNR SNR
=

= ∑ . (4.11) 

Each stage generates an index corresponding to the codevector selected and these 

indexes are sent to the decoder.  Decoding is done by a table look-up for each stage. 
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4.4.2 Multistage Seg-VQ Training 

In the Seg-MSVQ system we assume that all stages are fixed rate vector 

quantizers, each stage is trained as a separate Seg-VQ using the residue set from the 

previous stage, and encoding is done by nearest segment encoding. 

The codevectors are entropy coded in each stage separately using Huffman 

coding.  Since it is unlikely that each codevector in a stage will be used with the  

same frequency, entropy coding reduces the average rate for the codevector indexes 

from ( )
2log iM  to their entropies in all stages 1,2,...,i S= .  The entropy codes are 

obtained using the training set and they can be computed sequentially for each stage 

right after stage training is finished as shown in Figure 4.7.  We will denote the 

length of an arbitrary entropy codeword in stage i  as ( )i
cb .  Note that the subscript ‘c’ 

in ( )i
cb  is used to distinguish between bit lengths for codevectors and bit lengths for 

stage codewords; later we will use subscript ‘s’ for stage codeword lengths, ( )i
sb . 

 

Figure 4.7: Multistage Seg-VQ. In each stage Seg-VQ algorithm is used to
generate the stage codebook.  After each stage the codevectors are entropy

coded using Huffman copding.
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Note that using all S  (maximum stage number) stages to encode may not always 

give the best result.  It is possible that in a stage k , k S< , the residue vector is the 

zero vector, ( ) ( ) ( )1k k kR R c−= − = 0 , i.e., ( ) ( )1k kR c− = .  From (4.10) we see that in this 

situation we can perfectly reconstruct x  with k  stages, ( )ˆ kx x= , and there is no need 

to proceed to the next stage.  A more important situation to consider is when we have 

a rate budget. It is obvious that with each additional stage used the rate increases.  

So, at a stage k  the decrease in distortion to be obtained by encoding with one more 

stage ( 1k + ) may not worth the increase in rate. In such situations we encode the 

input vector using stages 1 to k .  Therefore, optimal encoding does not necessarily  

require all stages to be used for each input vector, both with and without a rate 

budget. 

This means that we will use a variable number of stages to encode each vector,  

and so we need an index to specify the number of stages used for each vector.  We 

 

stage 1
codewordm(n) = 6 stage 2

codeword
stage 3

codeword
stage 4

codeword
stage 5

codeword
stage 6

codeword

Start codeword
for xn

End codeword
for xn

2log S ( )1
,c nb ( )2

,c nb ( )3
,c nb ( )4

,c nb ( )5
,c nb

( )6
,c nb

Figure 4.8: Codeword for xn in the encoded bit stream. The index m(n)
indicates how many stages are used to encode xn. In this example the index

m is not entropy coded.        is the length of the stage i codeword for xn.( )
,
i

c nb
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can do this in a straightforward manner encoding the indexes into fixed length 

codewords requiring 2log S  bits ( S  is the number of stages).  Let this index be m ; 

m  takes on values 1,2,…, S .  This allows the decoder to know the boundaries of 

each vector in the bit sequence it receives.  The situation is depicted in Figure 4.8. 

To find the optimal number of stages ( )m n  to encode each input vector nx  from 

an input set such that the total distortion D  is minimized for a given rate constraint 

Ρ , we have to solve 

 
( ){ }

( )( ) ( )( )2

min m n m n
n nm n n n

R such that r ≤ Ρ∑ ∑ . (4.12) 

Note that ( )( ) 2
m n

nR  is the squared error incurred by encoding nx  up to stage ( )m n , 

and ( )( )m n
nr  is the number of bits required to encode nx  up to stage ( )m n .  We use the 

Lagrangian optimization to convert the constrained problem in (4.12) to an 

unconstraint problem parameterized by the Lagrange multiplier λ , 

 

( )( ) ( )( )

( )( ) ( )( )

2

2

D +
m n m n

n n
n n

m n m n
n n

n

J

R r

R r

λ

λ

λ

= ⋅ Ρ

= + ⋅

 = + ⋅ 
 

∑ ∑

∑ . (4.13) 

To encode an input vector nx  let the codevector selected at stage k  be ( )k
nc .  Then the 

Lagrangian cost of encoding nx  up to stage k  is, 

 ( ) ( ) ( )2k k k
n n nJ R rλ= + ⋅ . (4.14) 

In (4.14) ( ) ( ) ( )1k k k
n n nR R c−= −  and ( )k

nr  is the number of bits used up to stage k , 
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 ( ) ( )
2 ,

1
log

k
k i

n c n
i

r S b
=

= + ∑  (4.15) 

where ( )
,
i

c nb  is the length of the codeword in bits corresponding to the codevector ( )i
nc .  

So, the cost function in (4.14) is, 

 ( ) ( ) ( )2

2 ,
1

log
k

k k i
n n c n

i

J R S bλ
=

 = + ⋅ + 
 

∑ . (4.16) 

Note that currently we use fixed length codewords, 2log S , to define the stage; later 

we will explain how to obtain entropy codes for them.  The Lagrangian cost in (4.13) 

that we would like to minimize over ( )m n n∀  becomes, 
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∑ ∑

∑ ∑  (4.17) 

which means that the minimum can be computed independently for each input vector 

for a given λ .  The algorithm is shown in Figure 4.9.  For each input vector nx , we 

compute the residue vector ( )1
nR  in the first stage and if ( )1 0nR =  then the 

reproduction vector is ( )1ˆn nx c= , which in this case ˆn nx x= , and go to encode the next 

input vector, 1nx + .  Otherwise, we compute the cost ( )1
nJ  using (4.16) with 1k =  and 

go to stage 2.  If the stage 2 cost is less than stage 1 cost, ( ) ( )1 2
n nJ J> , we go to stage 3, 

and continue until the cost is no longer decreasing.  If the minimum cost is achieved 

for example at stage k , that is, ( ) ( )1k k
n nJ J +≤ , then the reproduction vector is  



 157
 

Figure 4.9:  Multistage Seg-VQ encoding algorithm for a given rate. The
Lagrangian cost function is used to determine the optimal number of stages to be
used to encode each input vector for the given rate. 8 is the Lagrange multiplier.
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( )
1

ˆ k i
n nix c== ∑ .  Recall that in each stage i  we use the nearest segment encoding to 

generate the codevector ( )i
nc  n∀ ; it is the codevector that the input vector to stage i  

is quantized with. 

We have used fixed length codewords, 2log S , to define the stages.  But, entropy 

coding reduces the average rate from 2log S  for stage indexes to their entropies.  To 

obtain the entropy codes for each stage index i  and thus their bit lengths ( )i
sb  

(subscript ‘s’ is to denote that the bit length is for a stage index), we start with 

( )
2logi

sb S i= ∀  and iterate using the algorithm in Figure 4.10, where the block F is  

the algorithm in Figure 4.9.  Define the stage probabilities with ( )sp i  1,2,...,i S= .  

So, ( )
2logi

sb S i= ∀  means that ( ) 1sp i S i= ∀  in the first iteration.  Let ( )t i  be the 

number input vectors that were encoded using stages 1 to i .  At the end of each 

iteration we compute ( ) ( )sp i t i N i= ∀ , where N  is the training set size, and use 

 

Figure 4.10: The algorithm to obtain the entropy codes for the stage indexes.
The block F is the algoritm in Figure 4.9.
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( ) ( )2logi
s sb p i=−  in the next iteration in the cost function.  The cost function at 

stage k  becomes, 

 ( ) ( ) ( ) ( )2

2 ,
1

log
k

k k i
n n s c n

i

J R p k bλ
=

 = + ⋅ − + 
 

∑ . (4.18) 

We iterate until probabilities be ( )sp i  1,2,...,i S=  converge.  After convergence 

we use ( )sp i  to get the entropy codes for the stages using Huffman coding, where 

( )i
sb  are the length of the codes in bits.  The obtained codes are optimal for the 

Lagrange multiplier λ  used which corresponds to a rate.  If this rate is not our target 

rate we have to change λ  and repeat this process until the desired rate is reached.  

We have used the bisection method to search for the right λ  for the target rate. 

To encode a source for a given rate budget we use the algorithm in Figure 4.9 

with the Huffman tables generated.  Let ( )i
sb  be the length of the binary codeword 

representing stage i , and let ( )
,
i

c nb  be the length of the binary codeword representing 

the codevector ( )i
nc which is used to quantize the thn  input vector to stage i .  Then, at 

each stage the Lagrangian cost of encoding vector n  is, 

 

( ) ( ) ( )

( ) ( ) ( )
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2

,
1

.

k k k
n n n

k
k k i

n s c n
i

J R r

R b b

λ

λ
=

= + ⋅

 = − ⋅ + 
 

∑  (4.19) 

To encode each input vector nx , we compute the residue vector ( )1
nR  in the first stage 

and if ( )1 0nR =  then the reproduction vector is ( )1ˆn n nx c x= = , and we go on to 
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encode the next input vector, 1nx + .  Otherwise, we compute the cost ( )1
nJ  using (4.19) 

and go to stage 2.  We continue sequentially through the stages until the cost is no 

longer decreasing.  If this happens for example at stage k , ( ) ( )1k k
n nJ J− ≤ , then the 

reproduction vector is ( )
1

ˆ k i
n nix c== ∑  and the number of bits used is 

( ) ( ) ( )
,1

kk k i
n s c nir b b== + ∑ .  We search through λ  to reach the desired rate budget.  In our 

experiments we used the bisection method to locate the correct λ  for the desired rate 

budget. 

 

4.4.3 Μ −Algorithm for Encoding 

In the sequential encoding with Seg-MSVQ explained above, in each stage the 

nearest-segment encoding is performed greedily without considering the upcoming 

stages.  Hence, it overlooks at the possibility that a sub-optimal codevector choice in 

stage k  (sub-optimality is with respect to nearest-segment encoding) may result in a 

smaller residue error in a stage 1h k≥ + .  For example, let ( )kR  be the residue vector 

in stage k  corresponding to the nearest codevector on the nearest-segment, ( )kc , and 

let ( )kR  be the residue vector corresponding to codevector ( )kc  such that 

( ) ( )k kR R< .  Seg-VQ selects ( )kc .  However, the residue vectors ( )1kR +  and ( )1kR +  

generated in stage 1k +  corresponding to ( )kR  and ( )kR , respectively, may be such 

that ( ) ( )1 1k kR R+ +> .  And so, considering both stages k  and 1k + , ( )kc  is a better 



 161

choice than ( )kc  in stage k .  This means that the optimal codevector sequence for the 

stages requires an exhaustive search to be performed among ( )
1

S i
i M=∏  choices, 

which is the encoding complexity of an unstructured codebook of that size.  Since 

this is not practical for large codebooks, the Μ− algorithm is used to improve the 

performance at the expense of controlled increase in complexity. 

The basic idea of the Μ− algorithm [49] is to grow a tree of choices where each 

level of the tree corresponds to a stage and at each level no more than Μ  paths are 

preserved as shown in Figure 4.11.  The tree is constructed out to level p , where p  

is the largest integer for which 2 p ≤ Μ , keeping all 2 p  paths.  At level (stage) 1p +  

the total number of paths reaches 12 p+ > Μ , however, only the “best” paths are 

saved as candidate codeword sequences.  Then, at level 2p +  all of the Μ  retained 

paths are extended producing 2Μ  paths, and again only the “best” Μ  of the 2Μ  

paths are saved the others are pruned.  This is repeated until the last level (stage) S .  

At this point we have Μ  sequences of codewords from stage 1 to S  and the best one 

is chosen. 

Recall that Seg-VQ selects the nearest codevector on the closest segment in each 

stage.  Therefore, at each node of the tree we select: the nearest codevector on the 

closest segment as the first choice and closer of {the second nearest codevector on 

the closest segment, the nearest codevector on the second closest segment} as the 

second choice.  At each level/stage we keep the paths corresponding to the Μ  
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smallest cost, where the cost function is (4.19).  A path is grown as long as it is one 

of the Μ  best paths and the cost is decreasing.  We select the minimum cost path at  

the last stage or if the costs start to increase before reaching the last stage, as shown 

in the example in Figure 4.11, we select the path up to the stage/level where the cost 

is minimum. 

 

 

Figure 4.11: An example of encoding using the M-algorithm with M=4.
At any stage no more then M paths are allowed; the larger cost paths are

pruned.  Also, a path is not grown if the cost function is no longer
decreasing. In this example the cost at each node is shown in paranthesis.

The best path has a cost of 49 at stage 4. Hence, the input vector is encoded
using the codeword choices made along that path up to stage 4.
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4.4.4 Experimental Results 

We have trained the Seg-MSVQ codebooks using three 512 512×  monochrome 

images from the USC image database (each with pixel amplitude quantized to 8 

bits).  We used 8 8×  blocks corresponding to 64 dimensional vectors and the 

performance is tested on “Lena” which was outside of the training set. In each stage 

we trained the stage codebook using 64 codevectors and 15L =  segments.  The 

results for various stages and rates are shown in Table 4.7.  Note that at very low 

rates (below 0.3 bpp) the results are better than standard JPEG.  We observe from the 

Table that the results improve with increasing number of stages especially at high  

   
Seg-MSVQ Rate 

(bpp) JPEG 
8 stages 12 stages 16 stages 32 stages 

0.20 28.47 29.14 29.48 29.50 29.49 
0.25 30.12 30.01 30.39 30.41 30.42 
0.30 31.82 30.63 31.11 31.14 31.16 
0.40 33.45 31.43 32.14 32.27 32.33 
0.50 34.60 31.84 32.84 33.10 33.25 
0.75 36.45 -- 33.70 34.40 34.92 

 
Table 4.7:  Test image is “Lena.”  The results are in PSNR. In all cases, each 

stage is designed with 64 codevectors and L=15 segments. 
 
 

rates.  With more stages the distortion is naturally expected to decrease, and since 

rate-distortion optimization is used to determine the optimal number of stages to be 

used, this results in reducing the distortion the most for the given rate.  In other 

words, depending on the available rate, the Lagrangian optimization determines the 

number of stages to be used for each input vector.  If there are many stages available, 

the higher order stages can only be used if the rate is high enough.  A low rate will 
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not be enough for higher order stages to be used to encode the input vectors.  This 

can be seen at rate 0.20 bpp in Table 4.7.  We see an improvement going from 8 

stage to 12 stage case.  However, having more stages (16 and 32) does not further 

improve the performance, because 0.20 bpp does not provide the enough bit 

resources to go over 12 stages. 

The Tables 4.8 and 4.9 show the results obtained using the Μ− algorithm with 

4Μ =  and 8Μ =  for the 16-stage and 32-stage Seg-MSVQ, respectively.  The 

column “1 path” contains the results from Table 4.7 for comparison.  We observe  

from Table 4.8 that starting from 0.25 bpp we see an improvement in using multiple 

    

Rate 
(bpp) 

M = 1 (single path) 
In each stage nearest codevector 
on the closest segment is chosen 

M = 4 (paths) M = 8 (paths) 

0.20 29.50 29.51 29.53 
0.25 30.41 30.64 30.65 
0.30 31.14 31.48 31.51 
0.40 32.27 32.79 32.85 
0.50 33.10 33.70 33.82 
0.75 34.40 35.24 35.30 

 
Table 4.8:  Test image is “Lena.”  Seg-MSVQ with 16 stages. 

 
 

    

Rate 
(bpp) 

M = 1 (single path) 
In each stage nearest codevector 
on the closest segment is chosen 

M = 4 (paths) M = 8 (paths) 

0.20 29.49 29.53 29.54 
0.25 30.42 30.62 30.60 
0.30 31.16 31.45 31.45 
0.40 32.33 32.83 32.86 
0.50 33.25 33.81 33.91 
0.75 34.92 35.71 35.82 

 
Table 4.9:  Test image is “Lena.”  Seg-MSVQ with 32 stages. 
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paths over the single path.  And as the rate increases the improvement increases; for 

example, at 0.75 bpp the difference between 1Μ =  and 4Μ =  is 0.84 dB.  Note 

that this is a large increase considering that the search is narrowed down to only 4 of 

the possible 162  paths (codeword sequences).  The result with 8Μ =  at the same 

rate is only 0.06 dB better than the one with 4Μ = .  This shows that at rates below 

1 bpp we can obtain large performance increase in exchange of a small increase in 

the search space, and thus, the encoding complexity.  Observe that at low rates, for 

example 0.20 bpp, the improvement going from 1Μ =  to 4Μ = (and 8Μ = ) is 

negligible.  This is because when the rate budget is low, the Lagrangian-based 

encoding allocates a small number of encoding bits to each input vector, which leads 

to a small number of stages being used.  Therefore, for all of the input vectors in all 

of the 1Μ >  paths, the Lagrangian cost function reaches the minimum at early 

stages.  In Table 4.9, where the results are compared with 1Μ =  and 1Μ >  for 32 

stages, the improvements obtained with the Μ− algorithm are similar to those in the 

case of 16 stages in Table 4.8.  The only difference is that at high rates we get better 

results with 32 stages than with 16 stages for both 1Μ =  and 1Μ > . 
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4.5 Segment Constraint Multistage VQ with Uniform 

Quantization of the Segments 

4.5.1 Motivation 

In the previous sections we have designed systems using Lloyd-Max quantization 

on the segments.  In this section we will consider a system that uses uniform 

quantization of the segments where the step sizes ∆ , and thus the codevectors, will 

be adapted to the desired rate.  The codevectors are at the center of the bins of size 

∆  and we use mid-rise quantizers on the segments. The reason for the latter is  

explained below.  A system that has adjustable quantization bins rather than fixed 

bins is more flexible to rate changes. 

 

Figure 4.12: The vector x is closer to segment 1 than to segment 2. Its
perpendicular projection falls in the bin of level 2.  The bin (step) sizes are

uniform.  x is quantized to the center point of level 2.  To be able to
reproduce the quantized value of  x the decoder needs to know the step

size, the segment and the level number.
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The system consists of stages with segments and step sizes for each stage.  The  

segments in each stage are designed as in Seg-MSVQ.  The encoding of an input 

vector x  in stage k  is done by projecting it onto the nearest segment, and quantizing 

it with the center of the bin it falls into as shown in Figure 4.12.  This means that the 

codeword will need to specify the segment and the level used for quantization.  

Therefore we need to design codewords for the segment indexes and codewords for 

level indexes. 

 

4.5.2 System Design 

Since we are using the nearest segment there is a unique segment selection for 

each input vector in each stage.  The popularity of the segments is not expected to be 

uniform and therefore we entropy code the segment indexes.  Using the training set 

we count the number of times each segment is selected and we rank the segments 

according to their popularity in each stage.  The most popular segment in each stage 

is given index 0, the second most popular segment is given index 1, etc.  The 

frequencies of these indexes are used to entropy code them using Huffman coding.  

Hence, we have one segment Huffman table for all the stages.  We could have 

obtained separate Huffman tables for each stage, however, we observed that the 

variation in the popularity of the segments in each stage is not large.  To explain this 

consider a system with 3 stages having 2 segments in each stage, and let the training 

set size be 100.  Then, we say that the variation in the popularity of the segments is 
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small if the cardinalities of the popular segment in the 3 stages are close to each 

other, for example, they are 71, 69 and 73.  And the cardinalities of the second 

popular segment are also close to each other; 29, 31 and 27.  

Obtaining the level codewords is not straightforward because the number of 

levels depends on the step sizes and step sizes depend on the rate.  For large rates the 

step sizes are small compared to low rates.  Therefore, first of all, we need to find the 

optimal step sizes for each stage for a given rate such that the total distortion is 

minimized.  To simplify the problem we can think of limiting the number of possible 

step size choices to p .  The initial problem with this approach is how to choose the 

p  step size choices for each stage.  However, note that even if we find a way of 

choosing p  step sizes for each stage there is another problem.  Each input vector 

will generate a residue vector for each step size choice, so in stage 1 we will have p  

different residue vectors for each input vector. This means that there will be p  input 

sets for stage 2 corresponding to each choice in stage 1.  At the end of stage 2 there 

will be 2p  residue sets, and the number of residue sets at the end of stage S  will be 

Sp .  Therefore, this approach requires that we find the best step size sequence from 

the set of Sp  sequences, which would be a very complex task.  It is apparent that the 

problem of this approach is the step size (or the quantization) dependency among the 

stages. 

We can decouple the step size dependency among the stages by using the 

perpendicular projection vectors on the nearest segment in a stage as the input vector 
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set to the next stage.  For example, in stage 1 let the perpendicular projection of x  on 

the nearest segment be ( )1y , then the residue vector is ( ) ( )1 1R x y= − .  Hence, for each 

x  there is a unique residue vector, and so there is a unique residue vector set ( ){ }1R  

which will be the input set for stage 2 as shown in Figure 4.13 where 

( ) ( ) ( )1 1 1l m u r= + ⋅  is the closest segment to x  in stage 1.  In this way there is a unique 

input vector set for each stage.  The sub-optimality introduced by this approach is 

small for small step sizes (high rate), and it increases with increasing step sizes. 

In order to solve for the optimal step sizes (and so for the optimal number of 

levels) for each stage for a given rate such that the total distortion is minimized, we  

need an expression for the total distortion.  We will use the decoupling of the stages 

explained above to derive an upper bound on the distortion in terms of the number of 

levels.  Note that the segments can be anywhere in the space with respect to the 

 

Figure 4.13: In each stage perpendicular projection of the input vectors on the
nearest segments are used to generate the residue vectors.
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origin, as in the 2D examples in Figure 4.13.  In the derivation of the distortion 

bound we assume that in each stage the coordinate system is shifted by the mean 

vector, m , of the nearest segment to the input vector in consideration.  This brings 

the vector r  of the nearest segment to the origin.  We can represent the shifted 

vectors as follows, 

 

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

1

1 1 1

1

,  is the input vector to stage .

k k k

k k k k

x x m stage

y y m stage k

R R m stage k R k− − −

′ = −

′ = −

′ = −

 

Note that shifting the coordinate system by the mean vector of the nearest segment 

has no effect on the derivation of the distortion bound, because the magnitudes of the 

residue vectors and the quantization errors do not change.  For the sake of notational 

simplicity, in the following we will omit the dashed representation and assume that 

the coordinate system is shifted by the mean vector in each stage. 

We can represent ( )1y  as, 

 ( ) ( ) ( )1 1 1,y x r r= ⋅  (4.20) 

where ,a b  is the inner product of vectors a  and b .  Since ( )1R  is orthogonal to 

( )1r , 

 ( ) ( )2 22 1 1,x x r R= + . (4.21) 

( )1R will be the input vector to stage 2.  Let ( )2y  be the perpendicular projection of 

( )1R  on the closest segment in stage 2, then, 
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( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 2

2 1 2 2,

R y R

y R r r

= +
= ⋅  

 ( ) ( ) ( ) ( )22 21 1 2 2,R R r R= + . (4.22) 

Hence, 

 ( ) ( ) ( ) ( )2 2 22 1 1 2 2, ,x x r R r R= + + . (4.23) 

Note that this does not require that the segments be perpendicular.  After k  stages, 

letting ( )0R x= , 

 ( ) ( ) ( )2 22 1

1
,

k
i i k

i
x R r R−

=
= +∑ . (4.24) 

So far there is no quantization.  Define ( )kα  as the inner product ( ) ( )1 ,k kR r−  at stage 

k , i.e., ( )kα  is a coefficient, 

 ( ) ( ) ( )1 ,k k kR rα −=  

 ( ) ( ) ( ) ( ) ( ) ( )1 ,k k k k k ky R r r rα−⇒ = ⋅ = . (4.25) 

We can call ( )kr  as the chosen basis function, recall that ( )kr  lies on the segment.  Let 

( )kx  be the reconstruction of x  up to stage k  using perpendicular projections on the 

closest segments, then, 

 

( ) ( )

( ) ( ) ( ) ( ) ( )

1

1

1 1
,

k
k i

i

k k
i i i i i

i i

x y

R r r rα

=

−

= =

=

= ⋅ =

∑

∑ ∑ . (4.26) 
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But, we will be reconstructing the input vectors using quantized coefficients. Let the 

quantized coefficients be ( ){ }kα , and let the reproduction vector corresponding to the  

quantized coefficient be ( ) ( ) ( )k k kc rα=  as shown in Figure 4.14.  Then, the 

reconstructed vector at stage k  using the quantized coefficients, ( )kx is, 

 

( ) ( ) ( ) ( ) ( )

( ) ( )

1 2

1

1

...

.

k
k k i

i

k
i i

i

x c c c c

rα

=

=

= + + + =

=

∑

∑  (4.27) 

The squared error distortion between ( )kx  and ( )kx  is, 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )

2
2

1 1

2

1
.

k k
k k i i i i

i i

k
i i i

i

d x x r r

r

α α

α α

= =

=

= − = −

= −

∑ ∑

∑  (4.28) 

Recall that ( ) 21 1r i= ∀ .  Using triangular inequality we can upper bound the 

distortion, 

 

Figure 4.14:  Both non-quantized and quantized coefficients are shown. In each
stage the quantized coeffiecients will be used to reconstruct the input vectors.
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( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( )

2

1

2 2

1

2

1
.

k
i i i

i

k
i i i

i

k
i i

i

d r

r

α α

α α

α α
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=

=

= −

≤ −

= −

∑

∑

∑  (4.29) 

Therefore, the upper bound on the total distortion for all input vectors using all S  

stages is, 

 ( ) ( )( )1 2

0 1

1 N S
i i

n n
n i

D
N

α α
−

= =
≤ −∑ ∑  (4.30) 

where N  is the training set size and, ( )i
nα  and ( )i

nα  are the non-quantized and 

quantized coefficients of the thn  vector in stage i . 

Recall that we were going to uniformly quantize the segments.  Using a step size 

of ∆  the quantization error lies in the interval [ ]2 2,∆ ∆− .  For small ∆  we assume 

that the input is uniform in this interval, and thus the mean squared quantization error 

in the interval [ ]2 2,∆ ∆−  is 2 12∆ .  Recall also that we were going to quantize the 

segments in each stage.  Since the segments in a stage are not necessarily of same 

length we will use the average segment length in each stage.  Let the average 

segment length in stage k  be kL  and let kµ  be the number of equal intervals on kL .  

Then the step size k∆  in stage k  is, 

 k
k

k

L
µ

∆ =  (4.31) 

and the uniform quantization error in stage k  is, 
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2 2

212 12
k k

k

L
µ

∆
=

⋅
. (4.32) 

Using (4.32) we can represent the upper bound on the total distortion in (4.30) as 

 

( ) ( )( )1 2

0 1

21
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0 1
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1

1
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.
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N S
i i
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N S
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−
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−

= =

=

≤ −

=
⋅

=
⋅

∑ ∑

∑ ∑

∑  (4.33) 

Hence, we have an expression of the total distortion in terms of the number of levels 

iµ for each stage, 1,...,i S= .  Since we know average segment lengths iL  we can 

compute i∆  using (4.31) if we know iµ .  Therefore, to obtain the optimal number of 

levels for each stage, 1,...,i S= , we need to solve for iµ  such that the total distortion 

is minimized for a given bit rate.  Let the total rate be H , which is the sum of the 

rates in each stage, where the rate in a stage k , kH  is a function of the number of 

levels, iµ , ( )k kH µ .   We can solve this problem using the Lagrangian optimization 

using the distortion expression in (4.33), 

 

( )

( )
2

2
1 1

.
12

S S
i

i i
i ii

J D H

L
H

λ λ

λ µ
µ= =

= + ⋅

= + ⋅
⋅∑ ∑  (4.34) 

The level probabilities are assumed to be uniform which assumes fixed length 

codewords for ease of computation, and so (4.34) becomes, 

 ( ) ( )
2

22
1 1

log .
12

S S
i

i
i ii

L
J λ λ µ

µ= =
= + ⋅

⋅∑ ∑  (4.35) 
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To find optimal k kµ ∀ , at the given λ , solve for ( )( ) 0kJ λ µ∂ ∂ = : 

 
( ) 2

3 0
6 ln2

k

k k k

J Lλ λ
µ µ µ

∂
= − + =

∂ ⋅
. 

Finally, the optimal number of step sizes for a given rate budget dictated by λ  are, 

 
ln2
6k kL kµ

λ
= ∀

⋅
, (4.36) 

and so the optimal step sizes are, 

 
6
ln2k k

λ⋅
∆ = ∀ . (4.37) 

Therefore, the optimal step sizes are the same for all stages. 

We train our system using the result in (4.37) for a given rate budget.  In other 

words, we search for the correct λ  using (4.37) that gives us the desired rate.  

Although the result in (4.37) assumes that the level indexes will be of fixed length 

(this assumption means that in each stage the level probabilities are equal), in 

practice the frequency of occurrence of each level in a stage k  using k∆  will not be 

the same.  More specifically, in each stage there are more vectors that are projected 

to the center of the segments than to the edges.   Hence, entropy coding of the level 

indexes improves the result.  To take advantage of the fact that projections are 

concentrated at the center we combined the negative and positive indexes of the 

same integer into one category.  Hence, level indexes { }1,1−  form category 1, 

{ }2,2−  form category 2, etc.  A sign bit is used to differentiate between the two 

selections in a category.  Therefore, to represent a codeword in a stage k  we specify, 
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 segment codeword categorycodeword signbit+ + . 

For the thn  input vector to stage k  let the length of the chosen segment codeword be 

defined as ( )
,
k

l nb .  Then the length of the codeword required to encode the thn  input 

vector in stage k  using fixed length codewords for the categories is, 

 ( ) ( )
, , 2log 1

2
k k k

c n l nb b
µ = + + 

 
 (4.38) 

 Note that if there are kµ  levels, using 2 levels in each category gives 2kµ  

categories.  And since we are using mid-rise quantizers there is an even number of 

levels resulting in an integer number for the category size.  Using (4.38) the total 

codeword length required to encode nx  up to stage k  is, 

 ( ) ( )
, , 2

1 1
log 1

2

k k
i i i

c n l n
i i

b b
µ

= =

  = + +    
∑ ∑  (4.39) 

We want to compute the entropy codes for each category in each stage.  Hence, 

we need the category probabilities.  To obtain the category probabilities in each stage 

for a given λ  we start with uniform assignments and iterate until they converge.  In 

other words, given λ  we find the number of levels using (4.36) and assign uniform 

probabilities to the corresponding categories: for example, if 10kµ =  then there are 5 

categories, { }1,1− , { }2,2− , { }3,3− , { }4,4−  and { }5,5− , each with probability 

0.2.  In each iteration we keep track of the number of occurrences of the categories in 

each stage, compute their probabilities and generate their Huffman codes.  We use 

these codes in the next iteration.  We repeat this until convergence.  After 
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convergence we have the entropy codes for the category indexes in each stage for the 

given λ .  Let the length of the category codeword that encoded the thn  input vector 

to stage k  be ( )
,
k
nbτ , where the subscript ‘τ ’ is to indicate category, then, (4.39) 

becomes, 

 ( ) ( ) ( )( ), , ,
1 1

1
k k

i i i
c n l n n

i i
b b bτ

= =
= + +∑ ∑ . (4.40) 

This is the total rate required to encode nx  up to stage k . 

Therefore, after the system is trained for each stage we have a category Huffman 

table and one Huffman table for the segments.  Note that the decoder also needs the 

index for stage k to be able to decode correctly.  We can either use fixed length 

codewords for the stage indexes, ( )
2logi

sb S=  for S  stages, or we can obtain their 

entropy codes while obtaining the entropy codes for the category indexes.  We can 

do the latter by alternating between updating the category index codewords with 

fixed stage index codewords, and updating the stage index codewords with fixed 

category index codewords.  This is repeated until convergence.  In this way we 

obtain a Huffman table for the stage indexes too. 

The encoding of an input set is done using the algorithm in Figure 4.9 where in 

each stage we project the input vector on the nearest segment, compute the level it 

falls into using the step size, compute the residue error, and compute the Lagrangian 

cost. The cost of encoding the thn  input vector up to stage k  is, 
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( ) ( ) ( )
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( ) ( ) ( ) ( )( )
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R b b bτ

λ

λ

λ

=
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 
 = + ⋅ + + + 
 

∑

∑  (4.41) 

To encode the input set for a given rate budget we search for the correct λ  using the 

bisection method.  We have named this system Seg-U-MSVQ, where ‘U’ is used to 

indicate the uniform quantization nature of this system. 

 

4.5.3 Experimental Results 

The trained Seg-U-MSVQ using 16S =  stages for a high rate, 1.2 bpp, and for a 

lower rate, 0.6 bpp.  The training set used was the same one that was used to train the 

Seg-MSVQ in the previous section.  We have tested Seg-U-MSVQ on the Lena 

image, which was outside the training set.  The results are shown in Figure 4.15.  

The Seg-MSVQ plot is also shown as a reference.  Note that when the system is 

trained for a high rate, 1.2 bpp (small step size) it performs better than Seg-MSVQ at 

the design rate 1.2 bpp and at mis-match rates down to about 0.45 bpp.   On the other 

hand, when Seg-U-MSVQ is trained for a relatively lower rate, 0.6 bpp, then we see 

that its performance is below Seg-U-MSVQ optimized for 1.2 bpp at all rates.  At 

low rates, we would have expected to see Seg-U-MSVQ optimized for 0.6 bpp to 

outperform Seg-U-MSVQ optimized for 1.2 bpp.  However, this is not the case.  The 



 179

reason for this is that the upper bound for the distortion is tight for small step sizes, 

and the step sizes that are derived are for fixed length codewords.  At high rates the  

step sizes are small and the level probabilities are more uniform requiring codewords 

close to uniform length.  Hence, the equation for the step sizes is optimal for high 

rate quantization, and the results confirm this. 
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Figure 4.15:  The Seg-U-MSVQ system optimized for a high rate, 1.2 bpp,  
and for a lower rate, 0.6 bpp. The performance is shown on image Lena. 
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4.6 Possible Extensions - Future Work 

4.6.1 Hybrid Models 

As the number of stags increase the residue vectors become more random and so 

the residue vector set become less correlated.  We have seen that segment constraint 

VQ’s performance decreases as the correlation in the source decreases.  Therefore, 

we can use hybrid models where the lower order stages use Seg-VQ and higher order 

stages use, for example, either unstructured VQ or TSVQ.  Using unstructured VQ 

keeps the storage complexity same as Seg-VQ while increasing the encoding 

complexity.  And using TSVQ keeps the encoding complexity comparable to Seg-

VQ increasing storage complexity.  Therefore, there is a storage – encoding 

complexity tradeoff between these two hybrid models. 

 

4.6.2 Joint Stage Quantizer Design in Seg-MSVQ 

In multistage Seg-VQ, Seg-MSVQ, each stage is designed as if it is the last stage.  

In other words, each stage codebook is generated considering only the error due to 

the previous stages, i.e., the causal error.  The anticausal error, the error due to the 

subsequent stages is ignored.  A joint design approach that takes both the causal and 

anticausal errors into account will reduce the overall error.  The joint design will 

increase the performance of Seg-MSVQ at a given rate compared to causal (or 

greedy) Seg-MSVQ performance. 
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4.6.3 Using Level Entropies in the Design of Optimal Step Sizes 

We have designed the optimal step sizes for the uniform quantization of the 

segments assuming that the level probabilities will be uniform, and so the level 

indexes will have fixed codeword lengths.  Specifically, we solved for the optimal 

number of levels, iµ  1,2,...,i S= , using the cost function in (4.35) which is shown 

here again for convenience, 
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⋅

∑ ∑

∑ ∑  (4.42) 

The solution to (4.42) assumes that each level of the optimal number of levels, iµ  in 

a stage i , will be represented with 2log iµ  bits.  Which means that the probability of 

each of the iµ  levels are assumed to be uniform: ( ) 1
iip l µ=  for all  

l ∈ { 2,..., 2, 1,iµ− − −  }1,2,..., 2iµ .  However, the frequency of occurrence of each 

level is not necessarily the same.  Therefore, the optimal number of levels, iµ  

1,2,...,i S= , should be solved using, 
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which does not assume uniform distribution of the levels. 
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4.7 Conclusion 

The vast majority of practical image coding systems used today are based on the 

transform coding paradigm, where image blocks are projected into a series of basis 

functions, and the expansion coefficients are subsequently quantized. In this chapter 

we introduced a novel constrained vector quantizer (VQ), which we called Seg-VQ.  

As an extension of the transform coding framework, in our approach codevectors are 

constrained to be located on a series of line segments in the multidimensional space.   

These segments are designed sequentially based on a training set.  The advantages of 

Seg-VQ are twofold: first, the encoding complexity is proportional to the number of 

segments rather than to the number of codevectors, and second, it can efficiently 

exploit the directional preferences (correlations) in sources such as images. For 

image sources, at low dimensions (e.g., 4 by 4 blocks), with the same encoding 

complexity of TSVQ, Seg-VQ outperformed TSVQ by 0.5 dB at 0.4375 bpp 

achieving a performance close to the optimal fixed rate unconstrained VQ.  At higher 

dimensions (e.g., 8 by 8 blocks) we use multi-stage Seg-VQ where the input block 

(as in transform coding) is projected into a series of segments in order to be 

quantized.  We have proposed two different systems using multiple stages: In the 

first one we designed fixed codevectors constrained to be on the segments using 

Lloyd-Max quantization.  And in the second one there are no fixed codevectors on 

the segments; the segments are uniformly quantized depending on the required rate 
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making it more robust for rate adaptation.  The latter proposed system is optimal for 

high rate quantization. 
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Appendix 

In Chapter 2 we proposed two low complexity soft assignment measures, the 

triangular soft information measure and the multi-triangular soft information 

measure, as simplified ways of computing the soft assignments for the VQ design 

problem using deterministic annealing.  Although these measures significantly 

reduce the computational cost of the soft assignments compared to the optimal Gibbs 

soft measure, this improvement in computational cost comes in exchange for some 

loss in performance since Gibbs is the optimal soft measure.  In this section we 

derive the penalty paid in distortion for using the simplified soft measures instead of 

the optimal one at a given system entropy (softness). 

For a given soft assignment measure (conditional probability), ( )p c x  we have 

the expected distortion, 

 ( )( ) ( ) ( ) ( ),
x c

D p c x p x p c x d x c= ∑ ∑ , (1) 

and the average mutual information, 

 ( ) ( ) ( ) ( )
( )

; log
x c

p c x
I X C p x p c x

p c
= ∑ ∑ . (2) 

Let IP  be the set of all I-admissible soft assignment measures, 

 ( ) ( ){ }: ;IP p c x I X C I= ≤ , (3) 

and hence, for fixed I , 

 ( )
( )

( )( )min
Ip c x P

D R D p c x
∈

= , (4) 
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where ( ) ( ) ( )min ;
Ip c x PR D I X C∈= .  Now, let ( )Gp c x  and ( )0p c x  be two different soft 

assignment measures, and assume that ( )Gp c x  is the optimal I-admissible soft 

assignment measure for some rate I, ( )G Ip c x P∈ , and the expected distortion 

corresponding to ( )Gp c x  is ( )( )GD p c x .  Let the other soft assignment measure, 

( )0p c x  to be defined as, 

 ( ) ( ) ( )0 ,Gp c x p c x p c x c x= + ∆ ∀ . (5) 

We require two conditions to be satisfied by (5): 

 ( ) 0
c

p c x x∆ = ∀∑ , (6) 

and 

 ( )0 ; ( ; ) 0GI I X C I X C∆ = − = . (7) 

The condition in (6) is required so that ( )0p c x  in (5) is a valid pmf, ( )0 1
c

p c x =∑ , 

and the condition in (7), the difference in the mutual information to be zero, is 

required so that ( )0 Ip c x P∈ .  We would like to obtain the difference in the expected 

distortion, ( )( ) ( )( )0 GD D p c x D p c x∆ = −  subject to the conditions (6) and (7).  The 

situation is depicted in Figure A.1, and a real simulation result is shown in Figure 

A.2. 

We will start by expanding, ( )0 ; ( ; )GI I X C I X C∆ = − , 

 ( ) ( ) ( )
( )

( ) ( ) ( )
( )

0
0

0

log log G
G

x c x c G

p c x p c x
I p x p c x p x p c x

p c p c
∆ = −∑ ∑ ∑ ∑ . (8) 
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Substitute ( ) ( ) ( )0Gp c x p c x p c x= − ∆  from (5) into (8): 

 

( ) ( ) ( )
( )

( ) ( ) ( )( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )

( )

0
0

0

0

0 0
0 0

log

log

log

log log

x c

G

x c G

G

x c G

x c GG

p c x
I p x p c x

p c

p c x
p x p c x p c x

p c

p c x
p x p c x

p c

p c x p c
p x p c x p c x

p cp c x

∆ =

− − ∆

= ∆

 
+ − 

  

∑ ∑

∑ ∑

∑ ∑

∑ ∑

 

Simplifying the above expression, we get, 

 

Figure A.1:  Convergence of the optimal and a non-optimal soft assignment
measures (distributions).  Starting with equal, uniform soft assignments, the
optimal soft assignment measure achieves a lower distortion than the non-
optimal soft measure.  At a given system entropy level, I'  the difference in
distortion is shown as ∆D.  The term n  is the vector dimension and |C| is the
size of the codebook.
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 ( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( )( )0 0log G

G G
x c G

p c x
I p x p c x D p c x p c x D p c p c

p c
∆ = ∆ + −∑ ∑ . (9) 

The optimal distribution is the Gibbs distribution, ( )
( )

( )

,

,

e
e

d x c

G d x c

c

p c x
β

β

−

′−

′

=
∑

, where 

( )Gp c   is uniform. Let ( )Gp c ζ= , a constant c∀ , and substitute the Gibbs 

distribution in the first term in (9), 
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Figure A.2:  Plot showing the convergence of two experiments, one 
with Gibbs soft assignment measure and the other with Triangular 
soft assignment measure, for the design of a codebook of size 64, 
vector dimension 16, and the source type zero-mean, unit variance 
Gaussian. 
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Therefore, 
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 (10) 

Substituting (10) into(9), and using the condition in (7) that 0I∆ = , we get, 

 ( ) ( )( ) ( ) ( )( )0 0 0
ln2 G GI D D p c x p c x D p c p c

β−∆ = ∆ + − = . (11) 

Finally, the difference in the expected distortion is, 

 ( ) ( )( ) ( ) ( )( )0 0
ln2

G GD D p c x p c x D p c p c
β

 ∆ = −  
. (12) 

Note that for large vector dimensions [106], ( ) ( )( ) ( ) ( )( )0 0G GD p c p c D p c p c− ≅ .   

Hence, for large dimensions the penalty paid in terms of distortion at a given system 

entropy for using the non-optimal soft assignment measure, ( )0p c x  instead of the 

optimal one, ( )Gp c x , is, 

 ( ) ( )( ) ( ) ( )( )0 0
ln2

G GD D p c p c D p c x p c x
β

 ∆ = +  
. (13) 
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Note also that ( )Gp c  is uniform and ( )0p c  depends on ( )0p c x .  Hence, minimizing 

the conditional relative entropy, ( ) ( )( )0 GD p c x p c x  in (13) minimizes D∆ . 

 


