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Abstract

Reservoir characterization is important for reservoir management and performance

optimization. For waterflood optimization, traditionally several techniques have

been suggested, most of which are either too time-consuming or the data needed

are often unavailable. There is a new research trend to overcome these limitations

by applying advanced statistical techniques on only injection and production data,

which are often readily available for any waterflood operations.

In this work, we follow this trend to formulate the reservoir characterization and

forecasting problems in waterflood projects using a system identification framework:

the injection rates are seen as inputs; the production rates are seen as the outputs;

and the reservoir is considered as a dynamic system. By addressing the properties

of general linear dynamic systems, we discuss the limitations of previous models and

build three new predictive models to characterize some reservoir behavior, such as

producer-to-producer interactions, which was not considered in previous literature.

Then we discuss a general parameter estimation approach under the prediction-

error framework.

For model evaluation, we propose two techniques: one is based on evaluating

their prediction ability on a fresh data set, while the other is based on comparing the

interpretations they provide about certain reservoir characteristics with the ground

truth. All proposed models are verified by these two approaches. To perform

a comparative analysis, we provide a practical metric to compare the prediction

xi



performance of different proposed models under various scenarios. From the results,

we make several observations and suggestions for reservoir engineers to use the

models.

To clarify the relationship between different models, we develop a general linear

modeling framework and demonstrate that all proposed models can be considered as

special cases within this framework. Moreover, the transfer function of the general

linear model can be interpreted to provide insight on reservoir characteristics. Also,

the relationship between different models can easily be built from this work.

We propose a multivariate autoregressive model to characterize situations in

which a producer is shutting-in or a new producer is being brought online. As

a totally new application, we introduce a novel “constrained producer” approach

which that only requires minimal changes in production rates (e.g., limiting them

to some level below their normal production capacity) to predict the performance

after a producer is shut-in. This allows us to handle various “what if” scenarios in

waterflood management.

Finally, to achieve a better model estimation, the patterns of injection rates

play an important role. We addressed the problem of designing a set of injection

rates to achieve a better estimation of target parameters in the reservoir. Two

different approaches, deterministic and stochastic approaches, are discussed. For

the deterministic approach, we propose a new procedure using a set of inverse-

repeat signals to design a set of signals with zero cross-correlation property. For

stochastic approach, we applied a common approach in system identification and

evaluate all design procedures on some predictive model.

xii



Chapter 1

Introduction

1.1 Background

Waterflooding is a common operation in many petroleum reservoirs. It refers to a

process where some wells, denoted as injectors, inject water into the reservoir in

order to increase the reservoir pressure and displace the oil to some surrounding

wells, which denoted as producers. The pressure gradient between injectors and

producers helps in increasing oil production.

To maximize oil recovery by waterflooding, it is useful to “understand” the un-

derground structure of the reservoirs. Traditionally, there are several approaches to

estimate the reservoir characteristics among wells. Among these methods, multiple-

well tests (interference and pulse tests [27]), a type of pressure-transient test ( [53]

[24]), have been developed to establish communication between wells and deter-

mine the interwell reservoir properties. Basically these approaches rely on matching

pressure response from wells to a theoretical model of reservoir. Using a nonlinear

parameter estimation, some crucial reservoir characteristics can be approximated.

Refer to Kamal [29] for a review on this topic. For these tests, the costs are signifi-

cant because the amplitudes of responses are small (sometimes less than 1 psi) and
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precise pressure measurements are needed to get meaningful data. On the other

hand, downhole pressure recorders data are not available for most of the field op-

erations. This becomes an impediment for routine application of these techniques.

As a alternative, tracer tests have widely been used for mapping flow commu-

nication among wells. Tracer studies can also be useful for estimation of reservoir

parameters, such as reservoir swept volume, fluid velocities, and flow geometry in a

reservoir. Basically this method requires injecting some chemicals (tracers) in some

wells and observing the tracer concentration curve on the produced fluid from the

surrounding wells. Such information is used to estimate the underground flow in the

reservoir. For instance, Abbaszadeh-Dehghani and Brigham [1] [2], and Oliver [13]

showed some successful flow-simulation and field examples. However, conducting

frequent tracer tests is often uneconomical and time consuming. Moreover, tracer

testing cannot provide a dynamic view of the system: an estimate of the flow

characteristics is obtained after the testing, but the model parameters cannot be

updated unless a new test (e.g., using a different tracer) is conducted.

Besides characterization, engineers sometimes need to have a more complete

understanding of the reservoir as well as the ability to forecast the future flows of

the fields in order to improve the waterflood management. To achieve this, com-

prehensive reservoir simulations are widely used to simulate the whole reservoir (or

region-of-interests in the reservoir) by integrating all information available for the

reservoir. With the reservoir simulation approach, it is possible to predict both the

reservoir and individual well performance and decide on a better strategy for man-

agement and decision-making. However, in this kind of approach, the integration

of numerous data types throughout the life of the reservoir is required, and this

is time-consuming and costly. Some techniques for managing reservoir uncertainty

have been proposed including improved sampling techniques (such as using Monte

2



Carlo simulation [43] [40]) or speeding up the model simulation (such as using the

coarse grid simulation [26] or a predictive model [20]). But these kinds of reservoir

simulations are still not suitable for many field applications because of the high

complexity. Furthermore, some of the inputs for building this model may not avail-

able or determinable. As a result, it is rather impractical for reservoir engineers to

use complex simulation models for daily monitoring of operations.

1.2 A New Research Trend

Injection and production rates are the most abundant data available in any water-

flood operation and they often correlate to each other in some complex manner in

the reservoir. Recently, a variety of methods have been used to express the rate

performance of a production well as a function of injection rates in the surrounding

injectors. In all these works, the reservoir is viewed as a system that converts an

input signal (injection rate at injector) into an output signal (production rate at

producer) and the goal is to analyze input and output signals to estimate some

characteristics of the reservoir. If this can be achieved, the estimated parameters

can be used to facilitate waterflood management and optimization.

As an example, Heffer et al. [22] used Spearman rank correlations to relate

injector-producer pairs and associated these relations with geomechanics. Panda

and Chopra [50] used artificial neural networks to determine the interactions be-

tween injection and production rates. Albertoni and Lake [3] estimated the con-

nectivity between wells based on a linear model using the multiple linear regression

(MLR) method. Gentil [15] explained the physical meaning of MLR constants by

presenting the connectivity weight as a function of transmissibility. This trend

turned to a predictive modeling approach in 2006, in which Yousef et al. [64] [65]
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improved previous work by building a simple reservoir model, called the capacitance

model, to describe the relationship between injection and production wells. They

used a parameter to describe the effects of compressibility, in addition to trans-

missibility, between the injection-production interwell channels. Liang et al. [38]

used this model, accompanied with a fractional-flow model, to perform the oil rates

optimization procedure in waterfloods. Sayarpour et al. [55] used the model and

presented analytic solutions to three different reservoir-control volume scenarios.

This facilitates the capacitance model’s application for rapid assessment at dif-

ferent levels of a field study, from a single well, to a group of wells, and to an

entire field. Weber et al. [62] extended this work to large scale reservoirs and

Izgec and Kabir [25] made a comparison between the model and transient-pressure

approaches, and proved that it is valid for both before and after the water break-

through. Although this work has been successful, the possible use of alternative

predictive models, together with theoretical discussions from a system identification

point of view, have never been investigated and are proposed for the first time in

this thesis.

The above approaches all assumed the system (reservoir) is time-invariant during

some period of time. In 2007, Liu et al. [39] proposed an extended Kalman filter

approach to characterize the reservoir by assuming that the parameters in the model

will change over time (time-varying system), so that the Kalman filter is used to

track and estimate the model parameters. Independent of these works, Thiele

and Batycky [59] [60] estimated the connectivity between wells using streamline-

based workflow. Their approach requires building a complete stream flow reservoir

model for the region of interest, which is hard to achieve for most fields with daily

operations.
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1.3 Research Contributions

In our work, we follow the predictive modeling approach by addressing the problem

of estimating reservoir properties in waterfloods from injection/production rates

and note that it can be seen as a system identification problem, where injection

rates are inputs and production rates are outputs. System identification refers to

the process of building mathematical models of systems based on measured data.

Before the parameters are identified, it is necessary to build a relatively simple

but reliable (depending on applications of need) model. We denote these models

as predictive models (because the main objective of these models is to predict the

reservoir behavior) in this thesis. The model can be built by first principles (e.g.,

conservation of momentum, mass, and energy), or empirically, or as a combination

of both approaches.

The state-of-the-art capacitance model (CM) [64] and its applications can be

seen as a pioneering predictive modeling approach. But, in spite of its success, CM

still has some limitations and many other possible predictive models still have not

been investigated. Our first contribution is to build three new predictive models:

the first one is the finite-impulse-response model, which leads to impulse responses

with more general shapes than those possible within the capacitance model. The

second one is the distributed capacitance model, which extends the concepts of

CM to more heterogeneous reservoir scenarios. The third one is the multivariate

autoregressive model. This model takes into consideration the producer-to-producer

relationships, which are not captured in all previous modeling approaches.

As a second contribution, we first propose two approaches for model evaluation:

(1) evaluating their prediction ability on a fresh data set; (2) comparing their

interpretation in terms of reservoir characteristics to the ground truth knowledge
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for that reservoir. We verify all proposed models using both evaluation methods.

The so-called“grey-box”approach for model estimation procedure is also introduced

and fully investigated in this dissertation. Moreover, we define a practical metric

and compare the prediction performance of all models under various scenarios, and

make some suggestions to reservoir engineers about how to select among these

predictive modeling approaches.

The third contribution is that we provide a unified framework for predictive

modeling. We first show that all predictive models proposed up to now all belong

to a special case of a general linear dynamic model. Moreover, from this framework,

we show that the transfer function of this general linear model can be interpreted

in terms of some reservoir characteristics (by given its poles) in the interwell region

between each well pair. Finally, the relationship between different models can be

easily seen from this framework.

We demonstrate a totally new application of the multivariate autoregressive

model: forecasting the performance when some producer is shutting-in or some new

producer is brought into operation. Using this model, one only needs to constraint

producers to operate at a certain rate in order to estimate the impact of a well

shut-in, while all previous modeling approaches actually require to actually shut-in

the well for forecasting, thus potentially reducing overall production significantly.

This new application makes it much more practical to control producers in order to

predict performance under several possible “What if” scenarios, which is our fourth

contribution.

Our last contribution is to consider the injection rate designs. It can be easily

shown that the shapes of the inputs (injection rates) affect the model estimation

results noticeably. To the best of our knowledge, the improvements for reservoir

parameter estimation that can be achieved by carefully designing injection rates

6



have not been discussed in the literature. There are two different approaches:

deterministic and stochastic. For deterministic approach, we propose a new pro-

cedure based on the property of inverse-repeat signals and that can generate a set

of periodic signals with vanishing cross-correlation to each other. For stochastic

approach, we apply a procedure in system identification to reservoir applications

and demonstrate its performance on some predictive model.

The outline of this dissertation is as follows: In chapter 2, we develop three

new predictive models by that address the limitations of the previous proposed

models. In chapter 3, we discuss the Verification these new models with different

approaches, and making a comparative analysis of these models so that reservoir

engineers have guidelines to use them. We also investigate the grey-box approach

for modeling and summarizing its influence. In chapter 4, we provide a general

and unified framework for all predictive models, and clarifying the relationship

between different models. Moreover, we try to interpret the transfer function of

linear model as some reservoir characteristics in the field. In chapter 5, we develop

a novel application for multivariate autoregressive models. This new application

makes it much more practical to control producers in order to predict performance

under several possible “What if” scenarios, without actually shutting-in the wells.

In chapter 6, we investigate different ways of injection rate design to improve the

parameter estimation for the predictive models. We develop a new deterministic

procedure to generate a set of injection rates with vanishing cross-correlation to

each other, and apply a common stochastic procedure to field applications. Both

methods are evaluated by some predictive model.
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Chapter 2

New Predictive Models

In mature waterfloods, fluids are produced by two main factors: either they corre-

spond to the primary production rates from the reservoir itself, or they are due to

the pressure gradients caused by fluid injections. As discussed in the introduction,

new techniques aim to capture the well interactions using statistical techniques

based on the fluctuations of injection and production data. The core procedure

relies on modeling for the reservoir, especially between injection and production

wells. These predictive models can be estimated using a common methodology:

(1) building the models based on physical principles and statistical techniques; (2)

estimating the parameters in the models mainly by rate information; (3) using the

trained models to characterize the reservoir or predict the future performance.

In this chapter, we propose and develop several new predictive models. We

first discuss the general linear time-invariant system, and revisit the state-of-the-art

modeling approach: capacitance model (CM). By addressing the limitations of CM,

we propose several new models. The first one is the finite impulse response (FIR)

model, which releases the constraints on the impulse response shape of CM. This

leads to improvement of the prediction performance for some scenarios. Second, we

8



generalize the concepts of CM to deal with more heterogeneous reservoir cases. We

call this approach the distributed capacitance model (DCM).

The above models are all based on using injection rates to predict the future

production rates. All these models do not consider changes in production in certain

wells may affect other wells. To address the producer-to-producer interactions, we

propose a new model: multivariate autoregressive with extra inputs (M-ARX).

Finally, we discuss a general approach for finding the model parameters. This

approach is based on minimizing the residues between actual and estimated produc-

tion rates, which involves some non-linear optimization procedures. The so-called

“linear-in-the-parameter” property is discussed which leads to a much less complex

optimization.

2.1 Linear Time-invariant System

From the system point of view, if we have M inputs and N outputs, and assuming

the system is linear and time-invariant (LTI), the outputs yj(t) with j = 1, ..., N

can be expressed as

yj(t) = yj(t0) +
M∑
i=1

u′
ij(t) (2.1)

where u′
ij(t) is a filtered version of the input ui:

u′
ij(t) = ui(t) ∗ hij(t) =

∫ ∞

ξ=0

ui(t − ξ)hij(ξ)dξ (2.2)

The hij(t) is denoted as the impulse response between input i and output j. Basi-

cally (2.1) and (2.2) mean that the output can be expressed as a linear combination

of some filtered version of the inputs. If we assume that the reservoir in the region-

of-interest (ROI) is a LTI system, the injectors are inputs, and the producers are

9



the outputs, as we will see, the main difference between various linear models is

depending on how they describe the impulse response hij(t), which accounts for

any shape of attenuation and delays between the injector i and producer j. If one

injects a water pulse into the reservoir, which leads to changes in production over

time, the impulse response hij(t) describes these changes. As the waterflood project

begins, it denotes secondary oil recovery period. During this period, the primary

production curve stays relatively constant compared to the influence caused from

injection rate fluctuations, so the constant value yj(t0) can be seen as the primary

depletion effects.

2.2 Revisiting the Capacitance Model

In this section, we revisit the capacitance model, as a predictive modeling approach

from rate fluctuations [63] [64]. The CM is based on deriving a total mass balance

equation with compressibility. Take one injector-producer well pair in a drainage

volume as a representative element, the governed material balance differential equa-

tion is given by:

ctVp
dp

dt
= u(t) − y(t), (2.3)

where ct is the total compressibility, Vp is the drainage pore volume, P is the average

pressure in Vp, u(t) is the injection rate (input) and y(t) is the total gross production

rate (output). Also, a linear productivity model can be used to relate pressure to

rates:

y = J(P − Pwf) (2.4)

where Pwf and J are the flowing bottom hole pressure (BHP) and productivity

index of the producer, respectively. Note that (2.4) holds only for stabilized flow,
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Figure 2.1: The response of capacitance model by step injection. Different colors
show the responses of different time constant τ .

so its appropriateness can only be established by numerical simulation [64]. By

eliminating the average pressure on (2.3) and (2.4) using these two equations, and

solving the differential equation, the resulting production rates can be expressed as:

y(t) = y(t0)e
−(t−t0)

τ +
e−t/τ

τ

∫ ξ=t

ξ=t0

eξ/τ i(ξ)dξ

+ J

[
Pwf(t0)e

−(t−t0)
τ − Pwf(t) +

e−t/τ

τ

∫ ξ=t

ξ=t0

eξ/τPwf(ξ)dξ

]
(2.5)

where the τ is defined as the “time constant” of the drainage volume:

τ =
ctVp

J
(2.6)

and t0 is the initial time.

(2.5) summarizes the capacitance model, and is easy to interpret: it shows that

the production rates of the producer can be divided into three components. The
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Figure 2.2: Analogous resistor-capacitor circuit for capacitance model.

first term accounts for primary production depletion. The second component is the

contribution from the injection rates. The impulse response shape is determined

by the variable τ , and Fig. 2.1 shows the response curve of different τs. The last

component is the influence of production rates caused by the change on bottom-hole

pressure of the producer.

We can make an analogy between the CM and the resistor-capacitor (RC) cir-

cuit, shown in Fig. 2.2. This analogy highlights the resistive and capacitance effects

of this model: the fluid flowing into the reservoir is like the electric current in the

circuits, and the reservoir behaves like a capacitance with C = ctVp and a re-

sistance with R = 1
J
, and the time constant τ is equal to R × C. So generally

speaking, the CM tries to model the reservoir with its capacitance effects, together

with its resistive effects. For this reason, several researchers have called this model

“capacitance-resistive model” or CRM for short [54] [62].

This representative element can easily be extended to multiple injectors and

producers using superposition principle. For each injector-producer pair, weights
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or coefficients, λij , are defined to incorporate the fact that one injector is shared by

more than one producer, and τij describes the impulse response shape between the

injector i and producer j. For the formulas and further reference, see [64] for more

discussions.

2.3 Finite Impulse Response Model

For CM with multiple wells, the λij accounts for the weight of this impulse response,

and τij accounts for the shape of the response. If we try to model the reservoir

by a general LTI system, the drawbacks of CM is it only uses one parameter τ

to describe the response shape. From a petroleum engineering point of view, it

only uses one parameter to characterize the attenuation and delays between each

injector-producer well pair. Even in numerical simulations, we can easily see that

one parameter is not enough for describing the shape of impulse response [35]. Thus,

we develop a new model by relexing the constraints on the impulse response and only

assume that the response is finite (which is reasonable for physical phenomenon).

This leads us to the finite-impulse-response (FIR) model.

This model can be built directly from the general LTI system description: sup-

pose we have M injectors and N producers in the ROI, the FIR model can be

written the same as (2.7) and (2.8), where now the length of impulse response

is limited to L (which means the response is finite). That is, the model can be

expressed as

yj(t) = yj(t0) +
M∑
i=1

u′
ij(t) (2.7)

with

u′
ij(t) = ui(t) ∗ hij(t) =

∫ L

ξ=0

ui(t − ξ)hij(ξ)dξ. (2.8)
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The (2.7) and (2.8) represents the basic FIR model, where the production rate

of each well depends on its surrounding injectors and is captured by the finite

impulse response. The FIR model can be approximated to other predictive models,

provided that the response length of the FIR model L is large enough. But the

penalty of doing this is also obvious: it may requires an unnecessarily large number

of parameters. This will be discussed in more detail in Chapter 3.

2.3.1 Discrete Model

For any predictive model, history matching on performance data is a necessary

step for estimating parameters in the models. Injection and production rates are

measured by sampling, so discrete models are preferable in general. For FIR model,

we discretize the integrals in (2.8) leading to

yj(n) = yj(n0) +
M∑
i=1

u′
ij(n) (2.9)

and

u′
ij(n) = ui(n) ∗ hij(n) =

L−1∑
m=0

ui(n − m)hij(m) (2.10)

where L is the length of hij(n), and n is the discrete index, n ∈ Z. As in the

continuous case, 2.9 and 2.10 state that the total production rate at time n is a

function of the primary production component and the injection history between n

and n − L + 1.

After constructing the FIR model, the next step is to estimate the unknown

parameters in the model. We will discuss a general approach for training the model

parameters in Section 2.6.
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2.4 Distributed Capacitance Model

In (2.3) and (2.4), the pressure support that helps maintain production rates at pro-

ducers is denoted as the average pressure in the reservoir. The “average” pressure

accounts for the averaging effects which are caused by the whole interwell region

of the reservoir, including any heterogeneity and discontinuity in-between. If the

reservoir between injector-producer pair includes some heterogeneity, such as the

presence of some high permeability channels, fractures or faults, the analytic solu-

tion of CM [64] should be modified to take the heterogeneity into consideration. To

address this, we consider a new representative element, which is constructed by one

injector and one producer with a fracture or high permeability channel in-between.

This is illustrated in Fig. 2.3. The high permeability channel divides the interwell

region into two parts, and for each part, we can derive the material balance dif-

ferential equation with a linear injectivity (productivity) equation, similar to CM.

Mathematically, the equations in first region can be expressed as:

u(t) − uf(t) = ct1Vp1
dP 1

dt
(2.11)

where ct1 is the compressibility of the first interwell region; Vp1 is the drainage

pore volume for this region; P 1 is the average pressure in Vp1; u(t) is the injection

rate and uf(t) is the total liquid flowing from this region to the high permeability

channel. The linear injectivity equation for this region can be expressed as:

uf = J1P 1 (2.12)
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where J1 is the injectivity index of the injector. Similarly, we can derive equations

for the second region:

uf(t) − y(t) = ct2Vp2
dP 2

dt
(2.13)

and

y = J2

(
P 2 − Pwf

)
(2.14)

where J2 is the productivity index and Pwf is the flowing bottom hole pressure

(BHP) of the producer. (2.11), together with (2.13), state that the net rates of

mass depletion from the drainage volume are proportional to the change of aver-

age pressure in the first and second regions, respectively. Combining these four

equations and eliminating the average pressure P 1 and P 2, we get:

τ1τ2
d2y

dt2
+ (τ1 + τ2)

dy

dt
+ τ1τ2J2

d2Pwf

dt2
+ τ2J2

dPwf

dt
= u(t) − y(t) (2.15)

where τ1 and τ2 are the “time constant” of the drainage volume similar to the

definition of CM. They are defined by:

τ1 =
ct1Vp1

J1

and τ2 =
ct2Vp2

J2

(2.16)

Although the
dPwf

dt
term appeared explicitly in capacitance model, pressure data are

often not available on a daily basis in real fields. For most applications, researchers

assume that the changes in BHP are slow compared to the fluctuations in injection

and production rates. Thus we assume that the terms relating to
d2Pwf

dt2
and

dPwf

dt
are

close to zero and can be removed from the equation. Note that our new proposed

model still has the ability to incorporate the BHP data when they are available. It
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Figure 2.3: Representative element for distributed capacitance model. There is a
high permeability channel between the injector and producer.

only needs to re-derive the equations to include these terms, but this is out of the

scope of most daily applications so we just skip the derivations here.

After removing the BHP terms, (2.15) is a linear second order differential equa-

tion with constant coefficients, and the solution is well-known:

y(t) =

⎧⎪⎪⎨
⎪⎪⎩
[
c1e

−t
τ1 + c2e

−t
τ2

]
+ 1

τ1−τ2

[∫ t

0
e

ξ−t
τ1 u(ξ)dξ − ∫ t

0
e

ξ−t
τ2 u(ξ)dξ

]
if τ1 �= τ2[

c1e
−t
τ1 + c2te

−t
τ1

]
+ 1

τ2
1

∫ t

0
(t − ξ)e

ξ−t
τ1 u(ξ)dξ if τ1 = τ2

(2.17)

The case τ1 = τ2 rarely happens in real geological situations. Thus here we discuss

the latter case without the loss of generality. In this case, the first term accounts for

the primary production associated with the total gross production; the second term

is the contribution from the injected water and describes the interactions between

injection and production rates. Note that (2.17) is the basic form of the model.
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The impact from injected water can be shown more clearly in terms of convolu-

tion between injection rate and a particular shaped function; that is, we can rewrite

(2.17) as:

y(t) =
[
c1e

−t
τ1 + c2e

−t
τ2

]
+ u(t) ∗

[
1

τ1 − τ2

(
e

−t
τ1 − e

−t
τ2

)]
(2.18)

and from a system point of view, the impulse response h(t) can be expressed as:

h(t) =
1

τ1 − τ2

(
e

−t
τ1 − e

−t
τ2

)
(2.19)

The influence of water injection in the injection history is described by the time

constants τ1 and τ2. The time constants, similar to CM, can be seen a direct

measurement of dissipation of the pressure waves between injector-to-fracture and

fracture-to-producer. As an illustration, Fig. 2.4 shows h(t) with several different

τ1 and τ2. If one of the values of τ is small, the model behaves just like the original

CM; otherwise, the new model leads to a “smoother” response than CM, as shown

in Fig. 2.4.

As in Section 2.3.1, in order to apply this model to real field applications, it

should be discretized with some selected discretization interval. The discrete version

of the model is given by:

y(n) =
[
c1e

−n
τ1 + c2e

−n
τ2

]
+

1

τ1 − τ2

[
n∑

k=0

e
k−n
τ1 u(k) −

n∑
k=0

e
k−n
τ2 u(k)

]
(2.20)

(2.20) can also be written in terms of convolution between injection rate and impulse

response function:

y(n) =
[
c1e

−n
τ1 + c2e

−n
τ2

]
+ u(n) ∗ h(n) (2.21)
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Figure 2.4: Impulse response curves of distributed capacitance model for different
τ1 and τ2. The injected water of injector is also shown.

where the impulse response function h(n) is defined by

h(n) =
1

τ1 − τ2

(
e

−n
τ1 − e

−n
τ2

)
(2.22)

As in the continuous case, (2.21) states the total production rate at time step n can

be divided into two components. The first term accounts for the primary depletion

of the production rates, and the second term is the contribution of injected water.

In general, there are many injectors and producers in a reservoir. The production

rates at one producer are often supported by several surrounding injectors. So we

need to generalize our proposed model to the multiple producers and injectors case.

Given M injection wells and N production wells in the ROI, we use coefficients

or weights λij with i = 1, 2, ..., M and j = 1, 2, ..., N in order to capture the fact
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that one producer is supported by more than one injector (similar to CM). Putting

these weights into the expression, the generalized model between the producer j

and the M surrounding injectors can be expressed as

yj(n) = c1e
−n
τp +

M∑
i=1

λijii(n) ∗ hij(n) (2.23)

The first term accounts for the primary production of this producer, and represented

by an exponential decay function of “total effect” time constant τp. The impulse

response function for this well pair, hij(n), is defined as

hij(n) =
1

τij1 − τij2

(
e

−n
τij1 − e

−n
τij2

)
(2.24)

τij1 and τij2 are two parameters which represent the dissipation of pressure wave

between injector i and producer j when this well pair is the only active well pair

in the reservoir. (2.23), together with (2.24), represent the distributed capacitance

model for the multiple wells case.

For the estimation of model parameters, see Section 2.6.

2.4.1 Interpretation of Model

This model can be seen as a cascading of two CMs, that is, where the output of first

CM becomes the input of the second CM, and these two CMs are combined together

to form a bigger system, as shown in Fig. 2.5. This is because we can see the each

interwell region in the considered scenario (see Fig. 2.3) as a relative homogeneous

region, and separated by some discontinuous region (e.g., high permeability channel

in Fig. 2.3). It is this interpretation that led us to call this model as Distributed

Capacitance Model (DCM).
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Figure 2.5: Interpretation of distributed capacitance model in terms of CMs.

Thus, DCM can also be interpreted in terms of some particular geological fea-

tures. For example, if the reservoir has many layers and the injection wells and

production wells are in different layers, they must communicate with each other

by passing some interface between different layers. These layers may be relatively

homogeneous, so the total communication path can be seen as the pressure pass-

ing two different regions, which means the path is heterogeneous even though each

region is homogeneous. In these kinds of situations, the proposed DCM is more

suitable than CM because it accounts for some heterogeneity between the interwell

regions. Moreover, DCM will behave similarly to CM when one of the parameters

τ is small, so DCM can be seen as a generalized version of CM.

2.5 Multivariate ARX Model

For all proposed models up to now, the production rates are described as a linear

combination of some filtered version of injection rates from surrounding injection
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Figure 2.6: Scenario with multiple injection and production wells. The red shadow
areas represent the pore volume related to that producer.

wells. Generally speaking, in this kind of approaches, the influences from other pro-

ducers are approximated by the injection rates of injection wells. This means that

the influence a producer on neighboring producers is ignored and the production

rates are modeled only as a function of injectors in the reservoir. To achieve a better

estimation, we develop a multivariate autoregressive with extra inputs (M-ARX)

model in [33] to take the producer-to-producer interactions into account.

Most predictive models first consider a 1-injector/1-producer scenario, and then

extend the derived relationship to multiple injectors and producers using the super-

position principle. In this kind of approach, every producer is treated independently.

To account for this producer-to-producer influence, we will follow a derivation sim-

ilar to that leading to the CM in [64], but considering the whole reservoir including

multiple injectors/producers.
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We consider a ROI in the reservoir with M injectors and N producers, as shown

in Fig. 2.6. For the region close to a given producer j, the material balance equations

are given by a set of differential equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ctVp1
dP̄1

dt
=

M∑
i=1

α1iui(t) −
N∑

j=1

β1jyj(t)

ctVp2
dP̄2

dt
=

M∑
i=1

α2iui(t) −
N∑

j=1

β2jyj(t)

...

ctVpN
dP̄N

dt
=

M∑
i=1

αNiui(t) −
N∑

j=1

βNjyj(t)

(2.25)

where Vpj with j = 1, ..., N is the drainage pore volume related to producer j;

P̄j is the average pressure in Vpj. αki and βkj with k = 1, ..., N are the weight

factors for injection rates ui(t) and production rates yj(t), respectively. This set

of equations is similar to the material balance equation of CM as shown in (2.3).

Note that for ROIs with closed boundaries, we will also have that
∑M

k=1 αki = 1 and∑N
k=1 βkj = 1, but for most practical use scenarios for the model, these conditions

often no longer hold because of the open boundary around the ROI. We also use a

linear productivity model to change the pressure variables in the set of equations

into rates. This set of linear productivity model equations can be expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

y1(t) = J1(P̄1 − P1,wf)

y2(t) = J2(P̄2 − P2,wf)

...

yN(t) = JN(P̄N − PN,wf)

(2.26)
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where Pj,wf with j = 1, ..., N is the flowing bottom-hole-pressure (BHP) of producer

j and Jj is the productivity index of that producer. Substituting for the average

pressure in (2.25) using (2.26), we get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ1
dy1(t)

dt
+ τ1J1

dP1,wf(t)

dt
=

M∑
i=1

α1iui(t) −
N∑

j=1

β1jyj(t)

...

τN
dyN(t)

dt
+ τNJN

dPN,wf(t)

dt
=

M∑
i=1

αNiui(t) −
N∑

j=1

βNjyj(t)

(2.27)

where τj with j = 1, ..., N is the “time constant”of the drainage volume of producer

j and is defined by

τj =
ctVpj

Jj
(2.28)

In (2.27), the BHP terms
dPj,wf(t)

dt
are often set to zero because we assume

that the BHPs are changing slowly, as compared to the changes in injection and

production rates, as discussed in Section 2.4. This assumption is important in

practical uses of the model because for many fields the BHP information is often

not available. Therefore most injector-producer modeling techniques make this

assumption. For techniques that can be used in situations where large variations

of BHP occur, refer to [30].

Here we assume that changes in BHPs are negligible, and divide each of the

equalities in (2.27) by its corresponding τj , so that (2.27) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy1(t)

dt
=

M∑
i=1

b1iui(t) −
N∑

j=1

a1jyj(t)

...

dyN(t)

dt
=

M∑
i=1

bNiui(t) −
N∑

j=1

aNjyj(t)

(2.29)
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We define a set of variables bki = αki/τj and akj = βkj/τj . The equalities in (2.29)

are the 1st-order multivariate autoregressive model with some extra inputs (1st-

order M-ARX model). The order of the model refers to the maximum order of

the differential operator (a first order differential operator is used in (2.29)) This

modeling approach is well-known in time series analysis and system identification

research [28] [52]. For convenience, the M-ARX model is often expressed in ma-

trix form. Let y and u represent the production rate and injection rate vectors,

respectively; that is,

y(t) = [y1(t) y2(t) ... yN(t)]T (2.30)

and

u(t) = [u1(t) u2(t) ... uM(t)]T (2.31)

We also define two coefficient matrices A and B as

Ac =

⎡
⎢⎢⎢⎢⎣

a11 · · · a1N

...
. . .

...

aN1 · · · aNN

⎤
⎥⎥⎥⎥⎦ (2.32)

Bc =

⎡
⎢⎢⎢⎢⎣

b11 · · · b1M

...
. . .

...

bN1 · · · bNM

⎤
⎥⎥⎥⎥⎦ (2.33)

where Ac is N by N and Bc is N by M and the subscript c denotes the continuous

model. Thus, (2.29) can be expressed in matrix form as

dy(t)

dt
+ Acy(t) = Bcu(t) (2.34)
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where Ac represents the “characteristic” of the autoregressive behavior of the sys-

tem, while Bc represents the weighting coefficients from the system inputs u.

2.5.1 Discrete Model

Discretizing (2.29), we can get the following expression

y(k + 1) = −Ay(k) + Bu(k) (2.35)

The matrices A and B are both coefficient matrices and correspond to the autore-

gressive behavior and the input weights of the system, respectively. (2.35) shows

that the production rate of any producer at time instant t = k+1, can be computed

in terms of two factors: one that depends on ALL production rates at time instant

t = k; the other on the injection rates at t = k. This means that the system out-

puts (production rates) are described by both the new inputs (injection rates) and

a feedback loop from the outputs of the previous time instant, as shown in Fig. 2.7.

After the M-ARX model is built, the next step is to estimate the unknown

coefficients in the model. For the model training process, please refer to Section

2.6.

2.6 Finding the Model Parameters

To estimate the unknown model parameters, the most common approach is to try to

“fit” the observed data using a quadratic function of the fitting-errors [41]. Suppose
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Figure 2.7: Diagram of the modeling process of M-ARX model.

we have a model M with some parameter vector θ, then we try to minimize the

following criterion:

VK(θ) =
1

2K

K∑
k=1

[y(k) − ŷ(k|θ)]T [y(k) − ŷ(k|θ)] (2.36)

where ŷ(k|θ) denotes the vector of predicted production rates at time k under

model M with parameter value θ. For example, for CM, θ is

θ = [λ11 ... λMN τ11 ... τMN ]T (2.37)

For each particular value of θ∗, we have a corresponding VK(θ∗), so the optimization

procedure is basically searching the minimum value over a space with dimension

M×N×2. This can be achieved by some iterative search methods, such as gradient

or steepest-descent method. For further reference, see [41].
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The above procedure discusses the general approach for estimating model pa-

rameters. In our work, this method still involves many computations and we only

follow some simpler procedure from [63]. That is, we first start from τij = 0.1 to

30 with increasing 0.1 each time. For each fixed τij , the remaining parameters in

criterion VK(θ) are λijs, which can be solved by multiple linear regression. After

iterating among all possible τij , we choose the parameter set which has the mini-

mum value of VK as the optimization results. For DCM, We also follow the same

procedure, with iterating among both τij,1 and τij,2 now.

The optimization procedure of (2.36) is a nonlinear optimization problem. To

solve these kinds of problems is often computationally expensive and no global

minimum solutions can be guaranteed. On the other hand, both the FIR and M-

ARX models have the property of being “linear-in-the-parameter”, which means

that the parameters are linear on the criterion function (for a discussion of the

linear-in-the-parameters property of models, see [23]). This allows the use of linear

regression techniques for parameter estimation. To see this, we take the M-ARX

model as an example (the procedure for FIR model is similar). We first define a

parameter matrix as follows:

θ = [A B]T (2.38)

and the vector of regressors (regression vector) as

ϕ(k) =

⎡
⎢⎣ −y(k − 1)

u(k − 1)

⎤
⎥⎦ (2.39)

So that the predicted production rate values at time k become

ŷ(k|θ) = θT ϕ(k) (2.40)
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and the minimization of the criterion

VK(θ) =
1

2K

K∑
k=1

[
y(k) − θT ϕ(k)

]T [
y(k) − θT ϕ(k)

]
(2.41)

can be seen as N different linear regressions, corresponding to each row of θT , all

with the same regression vector ϕ(k). Thus minimizing (2.41) will be equivalent to

solving the N linear regressions.

2.7 Summary

In this chapter, we have developed three different predictive models. The first one

was the FIR model, which allows very flexible modeling of the shape of impulse

response using a set of unknown parameters. The second model, DCM, was devel-

oped as a generalization of CM, which can deal with more heterogeneous scenarios.

Then we also proposed the third model, M-ARX model, to address the interactions

between producers to producers to facilitate the model building, which is deficient

in consideration for previous models. Finally, we discuss a general approach for

estimating the model parameters, and the linear-in-the-parameters property was

also pointed out.
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Chapter 3

Model Validation and Comparison

In this chapter, we first discuss the model validation issue. The central question is:

after building the model, how can we determine whether the model is suitable for

field applications or not? Do we have any validation step to double-check the model

we just built? To answer these questions, we will discuss two different approaches

to validate a predictive model in the reservoir: the first is trying to validate models

based on their prediction ability; another is trying to validate models by interpret-

ing the model parameters and comparing them to known geological features (or

characteristics estimated from other approaches).

The information we have used for building models up to now is often purely sta-

tistical, with only limited physical knowledge involved. In order to build a stronger

model, we also investigate the use of “grey-box” modeling approach on predictive

models. The grey-box approach refers to integrating some physical knowledge into

optimization procedures. Finally, we provide a comparative analysis by proposing

a prediction-error metric under various scenarios. Some noise sensitivity analysis is

also performed to deal with situations encountered in real fields. From the simu-

lation results, together with the theoretical discussions, we make some suggestions

for reservoir engineers to use the predictive models on field applications.
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3.1 Validation of Models

To test whether a predictive model is suitable or not, there are two common ap-

proaches: the first approach is to evaluate its prediction ability. This can be

achieved by validation on a given data set. The second approach is to validate

by the interpretation of parameters. This can be achieved by comparing the es-

timated parameters against the theoretical values of the synthetic data or known

geological features of the real fields. We will discuss both validation procedures in

the section.

To examine whether a built model is suitable for a physical system, the most

natural approach is to evaluate model behavior on a fresh data set that has not

been used for training [57]. Thus, given a historic data set, we can separate it into

two data sets: the estimation (or training) data set and the validation (or testing)

data set. We first estimate the model parameters on the estimation data set, then

compute and measure the error on the validation data set. In addition, we can

use this validation procedure to evaluate different predictive models and favor the

model that shows the better prediction performance on a fresh data set. This leads

to the quantitative comparisons between models, which will be discussed later in

this chapter.

A second way to evaluate a model is to first estimate the model parameters,

which are often related to some characteristics of inter-well region, such as per-

meability or porosity, and then compare the estimated values against the ground

truth or some known geological features (of real field data). Although sometimes

only qualitative comparisons are available, this kind of evaluation highlights one

very important practical usage of model: it can be used to indicate and estimate

some important reservoir characteristics of the reservoir. In our problem, the most
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important reservoir characteristics are the static gains between each input-output

pair in the system. The static gains between well pairs are interpreted as the ef-

fective contribution from a particular injector to a specific producer, and are given

different names by different authors, e.g., interwell connectivity in the context of

CM [64] [54]; injector-producer relationships for Kalman filter approaches [39] [67];

effective flow units for active method and FIR model [34] [35]. The reader should

keep in mind that although these are different names, they all refer to the static

gain of the system, and we will use these terms interchangeably in our work.

The static gains are easy to calculate for different predictive models. For CM

and DCM, the static gain between the i-th injection well (input i) and the j-th

production well (output j) is denoted as λij and appears in the models explicitly.

For FIR model, λij can be estimated as:

λij =

L−1∑
n=0

hij(n). (3.1)

For the 1st order M-ARX model, the static gain λij can be estimated easily from

z-domain. To see this, we apply the z-transform in (2.29) and get:

zY(z) = −AY(z) + BU(z) (3.2)

where Y(z) and U(z) are the z-transforms of y(k) and u(k), respectively. Then we

can write the relationship between Y(z) and U(z) as:

Y(z) = (zI + A)−1 BU(z)

=
(
I + Az−1

)−1
Bz−1U(z), (3.3)
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where I denotes the N by N identity matrix. (3.3) uses the matrix fraction descrip-

tion (MFD) for the transfer function matrix between Y(z) and U(z). For detailed

discussions about MFD, see [28]. The frequency domain representation can be ob-

tained by setting z = ejω where ω denotes the angular frequency. By definition, the

static gain (interwell connectivity) represents the cumulative effect of total injection

on total production and thus can be computed as the transfer function at ω = 0,

i.e., at the zero frequency. In z-domain, the zero frequency corresponds to z = 1

and if we substitute this into (3.3) we obtain

Y(z)

U(z)

∣∣∣∣
z=1

= (I + A)−1 B, (3.4)

which can be interpreted as follows: once the M-ARX model parameter matrices

A and B have been computed, the interwell connectivities are represented by the

N by M matrix (I + A)−1 B, in which the element on j-th row and i-th column

denotes the interwell connectivity between injector i and producer j. This shows

the M-ARX model can be used to estimate the interwell connectivity, as can be

done for other predictive models.

3.2 Simulation Setting

In this section, we will validate and compare different models using using a numer-

ical flow-simulator, named CMG [42], under various scenarios. To make it more

clear, we summarize in Table 3.1.

For the pattern of injection and production wells, we use three different patterns:

(1) five-spot with five injectors and four producers (Scenarios A and B); (2) line-

drive with six injectors and three producers (Scenarios C and D); (3) peripheral

33



Table 3.1: Simulation Settings for CMG simulator.

Scenario Inj. & Pro. Pattern Permeability Map Inj. Rate
A five-spot channel (Fig. 3.1)

From [63] (Fig. 3.6)
B (5-inj./4-pro.) streak (Fig. 3.2)
C line-drive homogeneous (Fig. 3.3)
D (5-inj./4-pro.) multiple fractures (Fig. 3.4)
E peripheral injector hydraulic fractures one injector
F (8-inj./6-pro.) (Fig. 3.5) step (Fig. 3.7)
G variable (Fig. 3.8)

Figure 3.1: Permeability map for channel case (Scenario A). Note that Producer 4
is included in the high permeability area.

injectors with 8 injectors and 6 producers (Scenarios E, F, and G). It constructs

with all producers close to the center and surrounded by injectors.
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Figure 3.2: Permeability map for streak case (Scenario B). Note that well pairs
I1-P1 and I3-P4 are connected by high permeability channels.
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Figure 3.3: Permeability map for homogeneous case (Scenario C).

3.2.1 Permeability Map

For the five-spot pattern, we test two different permeability maps: (1) channel case,

where there is a large area passing through Producer 4 with permeability of 500 md

and the background permeability is of 10 md; (2) streak case: there are two high
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Figure 3.4: Permeability map for multiple fractures case (Scenario D).

100 200 300 400 500 600 700 800

100

200

300

400

500

600

Figure 3.5: Permeability map for Scenarios E, F, and G.

permeability streaks passing through I1 to P1 and I3 to P4, and they are with

permeability of 1000 md and 500 md, respectively (Fig. 3.2).

For the line-drive pattern, it also has two different permeability settings: (1)

homogeneous case: there is an isotropic permeability of 100 md for all directions
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Figure 3.6: Injection rates for Scenarios A-D. For Scenarios C and D, we randomly
generate the injection rates for Producer 6.

(Fig. 3.3); (2) multiple fractures case: there are three fractures (high permeabil-

ity channels) of permeability 1000 md passing through the production wells with

different lengths and all lay in about 45 degree direction (Fig. 3.4).

For the peripheral injectors pattern (Scenarios E, F, and G), the reservoir has

a background permeability of 1 md, and there are 14 fractures of 1000 md passing

through all injection and production wells, with a 135 degree orientation (3.5). The

fractures passing through wells are analogous to the hydraulic fractures.

3.2.2 Injection Rate Setting

For five-spot and line-drive patterns (Scenarios A-D), the injection rates we used

are the same as those used in [63], which were obtained from a real oilfield. These

rates are shown in Fig. 3.6.
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Figure 3.7: Injection rates set for Scenario F. At one time, only one injector changes
the injection rate from 500 to 1000 bbl/day.

Injection rates is the only difference between Scenario E, F, and G. For Scenario

E, we only inject water into one injector at a time and observe the response from

other wells, so we denote this scenario as one injector case. For Scenario F, we

have a step function in each injector, as shown in Fig. 3.7. We denote this scenario

as step case. For Scenario G, each injection rate is set to constant for each 200

days, and all injection rates are made to vary randomly between a predetermined

set of values, as shown in Fig. 3.8. This scenario is denoted as variable case. We

will discuss why we use three different kinds of injection rates for the peripheral

injector pattern in Section 3.3.
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Figure 3.8: Injection rates set for Scenario G.

3.2.3 Other Setting

In all cases we simulate two component water and oil fluid systems, and have only

vertical wells, with the sampling interval set to 1 day, that is, assuming that daily

data are available. Five-spot and line-drive patterns (Scenarios A-D) simulate a

five-layered reservoir, while for the peripheral injectors pattern (Scenarios E, F,

and G), we consider one-layered reservoir simulation.

3.3 Validation Results for Interwell Connectivity

In order to validate proposed models, we use the models we built to estimate the

static gain (interwell connectivity) of each well pair for Scenarios A and B. The
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Table 3.2: Estimated values of interwell connectivity for Scenario A.

CM FIR Model
Pro 1 Pro 2 Pro 3 Pro 4 Pro 1 Pro 2 Pro 3 Pro 4

Inj 1 0.035 0.060 0.020 0.892 0.035 0.060 0.020 0.890
Inj 2 0.182 0.029 0.222 0.567 0.185 0.029 0.226 0.567
Inj 3 0.052 0.045 0.053 0.847 0.048 0.045 0.049 0.847
Inj 4 0.037 0.031 0.018 0.901 0.039 0.031 0.020 0.906
Inj 5 0.042 0.017 0.130 0.809 0.042 0.017 0.129 0.809

DCM M-ARX Model
Pro 1 Pro 2 Pro 3 Pro 4 Pro 1 Pro 2 Pro 3 Pro 4

Inj 1 0.035 0.060 0.020 0.893 0.023 0.063 0.015 0.905
Inj 2 0.182 0.029 0.222 0.566 0.181 0.030 0.222 0.566
Inj 3 0.052 0.045 0.053 0.847 0.083 0.038 0.066 0.812
Inj 4 0.038 0.031 0.018 0.898 0.069 0.025 0.033 0.870
Inj 5 0.042 0.017 0.130 0.811 0.024 0.020 0.121 0.830

Table 3.3: Average absolute differences of interwell connectivities between CM and
other models for Scenario A.

Model Avg. abs. diff. to CM
FIR model 0.0015

DCM 0.0006
M-ARX model 0.0131

results are validated via comparisons with the state-of-the-art approach, CM, and

also with the ground truth of the simulators.

For the Scenario A, the total data available are approximately three thousand

days. This three thousand days period includes both before and after water break-

through time. We used 75th to 2074th day, totally 2000 days as the training period,

to estimate the static gains (interwell connectivity) of the system. The results are

shown in Table 3.2 and Fig. 3.9.

From the results, the estimated interwell connectivities from FIR model, DCM

and 1st order M-ARX model are all highly consistent with the values estimated
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Figure 3.9: Estimated interwell connectivities with different predictive models for
Scenario A. Note that the longer arrows, represent the larger values.

from CM. To be more specific, the average absolute differences between CM and

other models are shown in Table 3.3. This shows that all predictive models can

generate highly consistent results when they are used to estimate the interwell

connectivities. If we compare the estimated results against the ground truth of

Scenario A (Fig. 3.1), the results are also consistent with qualitative descriptions

that can be inferred from the ground truth. For example, because P4 is inside

the high permeability area, we expect that for all injectors the largest interwell

connectivities values will correspond to P4, which is the case for the estimated

values from all models. This further validates the results we got from all proposed

predictive models. Of course, the estimated interwell connectivities could be wrong

even if all the results are consistent, so we will provide quantitative verification in

the next section.
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For the Scenario B, we used the 75th to 2074th days as the training period to

estimate the interwell connectivity. The results are shown in Table 3.4 and Fig. 3.10.

Table 3.4: Estimated values of interwell connectivity for Scenario B.

CM FIR Model
Pro 1 Pro 2 Pro 3 Pro 4 Pro 1 Pro 2 Pro 3 Pro 4

Inj 1 0.962 0.012 0.009 0.032 0.961 0.012 0.008 0.029
Inj 2 0.519 0.009 0.179 0.287 0.532 0.009 0.182 0.289
Inj 3 0.101 0.005 0.008 0.899 0.084 0.006 0.003 0.890
Inj 4 0.153 0.167 0.030 0.640 0.161 0.169 0.029 0.640
Inj 5 0.140 0.018 0.170 0.655 0.135 0.018 0.173 0.671

DCM M-ARX Model
Pro 1 Pro 2 Pro 3 Pro 4 Pro 1 Pro 2 Pro 3 Pro 4

Inj 1 0.962 0.012 0.009 0.032 0.966 0.012 0.009 0.030
Inj 2 0.519 0.009 0.179 0.287 0.521 0.009 0.180 0.287
Inj 3 0.101 0.005 0.008 0.898 0.091 0.006 0.006 0.899
Inj 4 0.153 0.166 0.029 0.640 0.149 0.169 0.030 0.646
Inj 5 0.140 0.019 0.171 0.655 0.141 0.017 0.170 0.655

Similar to the Scenario A (channel case), the estimated interwell connectivities

from all models are highly consistent with the values estimated from CM. The av-

erage absolute differences between CM and other models are shown in Table 3.5.

If we compare the results with the ground truth of Scenario B, the estimated val-

ues are also consistent with the geological features of the permeability distribution

(Fig. 3.2). To see this, we examine the estimated interwell connectivities between

I1-P1 and I3-P4, which are very large values (close to 1), which indicates high

permeability channels exist between these well pairs. In short, both Scenario A

and B validate that all proposed predictive models can generate estimated inter-

well connectivities similar to CM, and that these estimates are consistent with the

geological features of the ground truth in the simulations.
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Figure 3.10: Estimated interwell connectivities with different predictive models for
Scenario B. Note that the longer arrows, represent the larger values.

Table 3.5: Average absolute differences of interwell connectivities between CM and
other models for Scenario B.

Model Avg. abs. diff. to CM
FIR model 0.0050

DCM 0.0001
M-ARX model 0.0021

3.3.1 Quantitative Verification

To quantitatively verify the estimated interwell connectivities, we consider scenarios

E, F, and G, which have different kinds of injection rates. In Scenario E, we shut-in

all injectors except for one target injector each time, injecting some constant water

into this target injector, then observing the total fluid obtained from each producers.

The ratio between the produced fluid and the injected water can be calculated and is

a good approximation to the interwell connectivity for the corresponding well pair.
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This is because the definition of interwell connectivity is the effective contribution

to a producer from a particular injector.

For Scenario F, we keep constant on all injection rates, and only change one

injection rate to another constant at each time. The injection rates are shown in

Fig. 3.7. As this target injection rate changes to another constant value, we would

expect all production rates to increase by different amounts. The ratio between the

increased fluid of this producer and the injected amount of water in the injector is

also a good approximation to the interwell connectivity for this well pair.

Scenario G is designed for validation of proposed predictive models. The simu-

lation time is 2160 days and we use the data obtained from Scenario G to estimate

the interwell connectivities. The estimated values are compared with the value ob-

tained (directly from the simulation data and divisions on the data) from Scenario E

and F. Here we only show the estimated interwell connectivities for FIR model, and

all other models have similar estimations. The results are shown in Table 3.6 and

also plotted in Fig. 3.11. From the results, we found the estimated interwell con-

nectivities are highly consistent with the simulation results, which strongly justifies

the use of predictive models for the estimation of interwell connectivity.

3.4 Physical Constraints on Parameters

When the statistical identification techniques are applied assuming a “black box”

model structure (i.e., no insights about the physical system are used), sometimes

they produce unrealistic results which are not compatible with the underlying phys-

ical reality. For example, the use of CM sometimes results in negative interwell

connectivity values [64], which contradicts what we expect to be the reservoir be-

havior. While some models can relate some or all their parameters to the reservoir
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Table 3.6: Estimated interwell connectivities from both simulations and FIR model
for peripheral injector pattern (Scenario E, F, and G).

Scenario Pro 1 Pro 2 Pro 3 Pro 4 Pro 5 Pro 6

Inj 1
E 0.73 0.14 0 0.025 0 0
F 0.73 0.15 0.05 0.05 0.01 0.00
G 0.74 0.15 0.05 0.05 0.01 0.00

Inj 2
E 0.18 0.48 0.27 0. 0 0
F 0.19 0.48 0.28 0.01 0.01 0.00
G 0.19 0.48 0.28 0.00 0.01 0.00

Inj 3
E 0 0.13 0.75 0 0 0
F 0.04 0.14 0.75 0.00 0.01 0.05
G 0.04 0.14 0.75 0.00 0.01 0.05

Inj 4
E 0.37 0.01 0 0.48 0.04 0
F 0.38 0.05 0.01 0.49 0.06 0.01
G 0.38 0.04 0.01 0.50 0.06 0.01

Inj 5
E 0 0.04 0.47 0 0.01 0.38
F 0.01 0.06 0.48 0.01 0.05 0.39
G 0.01 0.06 0.49 0.01 0.05 0.39

Inj 6
E 0.01 0 0 0.75 0.13 0
F 0.05 0.01 0.00 0.74 0.14 0.04
G 0.05 0.01 0.00 0.75 0.15 0.04

Inj 7
E 0 0 0 0.26 0.48 0.18
F 0.01 0.01 0.01 0.28 0.48 0.20
G 0.02 0.01 0.01 0.29 0.48 0.20

Inj 8
E 0 0 0.02 0.01 0.14 0.73
F 0.00 0.01 0.04 0.03 0.13 0.70
G 0.01 0.01 0.05 0.04 0.16 0.74

characteristics, these parameters can also be constrained by some general physical

knowledge. In general, this identification process is often denoted as “grey-box”

modeling [61]. In our problem, an important constraint is the static gain between

each input-output pair in the system, whose value should be between zero and one.

As mentioned before, the static gains between well pairs can be interpreted as the

effective contribution from a particular injector to a producer, and should have a

non-negative impact that can be no greater than one. Theoretically speaking, the
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(a) Calculated by Scenario E.

(b) Calculated by Scenario F.

(c) Estimated by FIR model for Scenario G.

Figure 3.11: Estimated interwell connectivities for peripheral injector pattern (Sce-
narios E, F, and G). Note that the longer arrows, represent the larger values.
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constraints on static gains can be applied to all interwell models: the static gains

are the zero frequency behavior (z = 1 in z-domain) of the system. In other words,

the constraints can be written as

0 ≤ H(z)|z=1 ≤ 1 (element-wise) (3.5)

where H(z) is the z-transform of the matrix of impulse response h(n). In some

models, such as CM, DCM and FIR, the constraints on the system are equivalent

to constraints on linear combination of parameters. For example, in FIR model,

the constraints become:

0 ≤

⎡
⎢⎢⎢⎢⎣
∑L

k=0 h11(k) · · · ∑L
k=0 hM1(k)

...
. . .

...∑L
k=0 h1N(k) · · · ∑L

k=0 hMN (k)

⎤
⎥⎥⎥⎥⎦ ≤ 1 (element-wise) (3.6)

Furthermore, since fluid production cannot be negative, the impulse response can-

not be negative at any time, and their sum should also smaller or equal to 1. So

that in addition to (3.6), we also have constraints for each FIR coefficient:

0 ≤ hij(k) ≤ 1 for all i, j, k. (3.7)

For CM and DCM, the static gains correspond to the parameters (λij), so the

constraints apply to them directly; that is,

0 ≤ λij ≤ 1 for all i, j,. (3.8)

For these models, the linear constraints on parameters can be integrated into the

optimization procedures to have a more reasonable and reliable estimation of model
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parameters. Generally speaking, the linear inequality constraints will form a convex

set, and if the estimation criterion (2.36) is convex on the parameter vector θ, we

can solve the optimization by some general methods from convex optimization [7].

But the optimization work is much too involved. In our work, we extend a simple

methods provided by [63]. Taking CM for example, we first assume the τ is given,

then the criterion function (2.36) becomes linear on the remaining parameters λij.

So given the linear constraints on λij , we can perform quadratic programming

to minimize (2.36). Then we iterate on different possible τ to find the smallest

parameter set which has the minimum value of (2.36). For DCM, we can use

a similar procedure to estimate the model parameters. For FIR model, because

of its “linear-in-the-parameter” property, it is particularly easy to use the linear

constraints. Linear objective function with linear constraints can be solved by

quadratic programming method [7].

The “grey-box” modeling approaches are particularly preferable when the pro-

vided system information is very limited, so that not many training data are avail-

able. In these more challenging situations, the black-box approaches often result in

models that violate the constraints imposed by some common physical knowledge.

On the contrary, the static gains of the M-ARX model cannot be expressed as

a linear combination of its parameters, which makes these kinds of physical con-

straints much harder to integrate into the M-ARX modeling procedure. For these

models, we can only examine the appropriateness of the models by checking the

system behaviors in order to determine whether it satisfies the physical constraints.
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3.5 Model Comparison

In this section, we perform a comparative analysis of all proposed predictive mod-

els (including the state-of-the-art CM work). For all models, the “Grey-box” .ap-

proaches are also included if possible. The simulation results, together with some

theoretical analysis, leads to some general suggestions for using the predictive mod-

els for field applications in the next section.

3.5.1 Number of Parameters

The number of model parameters plays a crucial role for the quality of the model.

Basically we would like to include more unknown parameters into the model in

order to describe all possible responses for the reservoir, but increasing the number

of unknowns also increases the uncertainty for parameter estimation. In particular,

the quality of the model may be more easily affected by noise in the observed

data. In general, the best model structure for identifying a system is a trade-off

between [41]:

• Flexibility: The model structure should provide good capabilities of describing

different possible systems. This can be achieved by adding more parameters

or putting the parameters in “strategic positions”.

• Parsimony: Do not use unnecessarily parameters; the model parameterization

should be kept as parsimonious as possible.

Table 3.7 shows the number of parameters used for different interwell models

with an example of 5 injectors and 4 producers. From the table, we can see that

the FIR model has the largest degree of flexibility with a large number of unknown

parameters, while other models have a comparable number of parameters. This
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Model # of Parameters 5-inj/4-pro
CM M × N × 2 40

DCM M × N × 3 60
z-domain M × N × 2 40

FIR M × N × L 600 (L = 30)
1st order M-ARX M × N + N2 36

Table 3.7: Number of parameters used for different models.

means that the FIR model should have worse noise performance than other models,

as will be shown by a noise sensitivity analysis in the Section 3.6.1.

3.5.2 Prediction Performance Comparisons

For both theoretical and practical reasons, different predictive models should be

evaluated and compared by their prediction ability on observed data that has not

been used for training. This is a general methodology known as model validation

on fresh data set [41, 57] or out-of-sample forecasts in time series analysis [9, 10].

The quadratic criterion is commonly used for mathematical reasons. Assume

we have trained an interwell model with some estimated parameters, denoted as M.

Let the predicted production rates on the data set not used for training at time k

be denoted as ŷ(k|M), then the prediction error can be expressed as

Jsqu(M) =
1

T

T∑
k=1

‖y(k) − ŷ(k|M)‖2 (3.9)
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where T is the number of data points in the validation data set. Although this

is mathematically convenient, for practical field applications it is often more ap-

propriate to define an error metric that captures the relative error. Defining the

absolute difference between the predicted and actual rates:

Jabs(M) =
1

TN

T∑
k=1

N∑
j=1

|yj(k) − ŷj(k|M)| , (3.10)

a normalized performance measurement Rabs can be defined as

Rabs =
Jabs(M)

1
TN

T∑
k=1

N∑
j=1

|yj(k)|
. (3.11)

This measurement can be interpreted as the “average ratio of errors in prediction”

and makes it easy for reservoir engineers to judge if the trained model is “good

enough” to use for prediction. We will use (3.11) as the criterion function for our

comparisons.

3.6 Comparison Results

We evaluated and compared different models using the simulation data under dif-

ferent scenarios, as indicated in Section 3.2. The grey-box extensions of CM, DCM

and FIR model, which impose physical constraints on static gains, are included in

our comparisons. In the simulation, we denote the original CM and DCM as the

“Unconstrained CM” and “Unconstrained DCM”, respectively. The grey-box CM

and DCM, we denote as “Constrained CM” and “Constrained DCM”, respectively.

For the FIR model, we only simulate the grey-box case, which incorporates the
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Figure 3.12: Performance evaluation of different models on the Scenario C. All
models have reasonably good predictions in this case. Note that P − 1, P − 2 and
P − 3 represent the producers 1, 2 and 3, respectively.

physical constraints (3.6) and (3.7) into the model. This is because in some cases,

the FIR model without constraints has much worst results than other approaches.

We first show the estimation results using the data from Scenario C (homoge-

neous case). The simulation time is 2835 days. Various training periods are chosen,

and the days after the 1800th are selected as the validation period. The predic-

tion results are evaluated via Rabs for all producers, as shown in Fig. 3.12. The

results show that all models have reasonably good predictions in this case, with the

maximum Rabs ≈ 0.006, i.e., average prediction errors of about 0.6%.

Then we turn to estimation results of the Scenario D (multiple fractures case).

The simulation time are the same as we have done in Scenario C, and the results

are shown in Fig. 3.13. In this scenario, the 1st-order M-ARX model performs
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Figure 3.13: Performance evaluation of different models on the Scenario D. From
the results, the M-ARX model performs the best for all training periods of all
producers, and (constrained) FIR model perform almost in the second place. Note
that P − 1, P − 2 and P − 3 represent the producers 1, 2 and 3, respectively.

the best for all training periods of all producers, and (constrained) FIR model

perform almost in the second place. The constrained CM and DCM perform slightly

better than unconstrained ones, but not too much gain is achieved when taking into

consideration physical constraints. If we take producer 2 for example, the M-ARX

model achieve Rabs ≈ 0.01 to 0.02, which is less than half the Rabs achieved by CM

or DCM.

The next simulation is using the setting of Scenario A. Its simulation time is

3040 days, and various training periods of 500, 1000, 1500 days are chosen and

the period after 2000 days is used as the validation period. The Rabs of prediction

results for all producers are shown in Fig. 3.14. From the results, all models have

good predictions and the maximum Rabs value is about 0.03, which means the
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Figure 3.14: Performance evaluation of different models for Scenario A. There is no
model that can always outperform the others. Note that P − 1, P − 2, P − 3 and
P − 4 represent the producers 1, 2, 3 and 4, respectively.

maximum average prediction-errors are about 3%. If we compare the performance

of different models, there is no model that can always outperform the others, and

all are good enough to satisfy most applications.

The last simulation is for the Scenario G (variable injection case). The simula-

tion time is about 2160 days. The training periods are chosen as 600, 1000, 1400

and the period after 1600 days is used as the validation period. For the results, the

unconstrained CM and DCM are much worse than other models, sometime leading

to totally useless predictions. For example, the Rabs for producer 2 using the un-

constrained CM is about 33% average prediction errors. This is also the case for

modeling via unconstrained DCM. If we consider the static gains (interwell connec-

tivities), we will find that there are many unreasonable values, such as values much
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Figure 3.15: Performance evaluation of different models for Scenario G. From the
results, the 1st M-ARX model performs worse for most of the situations. Note that
P − 1, P − 2, P − 3, P − 4, P − 5 and P − 6 represent the producers 1, 2, 3, 4, 5
and 6, respectively.

higher than 1 or negative values. For the performance, we only show constrained

CM and DCM, together with (constrained) FIR model and 1st order M-ARX model,

which is shown in Fig. 3.15. As the results shows, the 1st M-ARX model performs

worse for most of the situations. This is because the 1st M-ARX model is the only

one that does not integrate the physical constraints into the model, while other

“constrained” models are built taking this information into consideration. We will

discuss why this affects the prediction results for this case in Section 3.7.
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3.6.1 Noise Sensitivity Analysis

In real applications, the measured rates often are subject to measurement errors,

especially on the producers. To address this kind of problem, we perform a noise

sensitivity analysis by adding different levels of white noise (uncorrelated, zero mean

and normally distributed) into the production rates and evaluating the performance

of different models from this artificial noisy data. Part of this analysis has been done

in previous literature, see [64] [33] for details. In this work, we extend this prior

work to provide a general evaluation of noise sensitivity for all models. While the

white noise does not correspond to what the observed in the real field data, using

this analysis can still provides us about the robustness of various models. Because

different models have different parameters, we cannot compare the models only

by measuring the difference of estimated parameters between noiseless and noisy

data. To solve this, we choose the static gains (interwell connectivities or injector-

producer relationships) as the comparison basis; that is, we calculate the absolute

differences of the static gains estimated by various models between noiseless and

noisy data and plot them together.

For the analysis, we choose the data from Scenario A. We add white noise of

different energy levels to the production rates. The noise level is measured by the

signal-to-noise ratio (SNR) in dB, which is defined as

SNR(dB) = 10 · logPsignal

Pnoise

(3.12)

where Psignal and Pnoise are the signal and noise powers, respectively. Because of

the randomness of the noise, we perform 50 realizations (with respect to the white

noise) and obtain the average measurement errors. We also include the FIR model
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Figure 3.16: Noise sensitivity analysis for different models for Scenario A. The
comparisons are made by calculating the average absolute differences of the static
gains estimated under noiseless and noisy production rates data.

without using any physical constraints, which is denoted as “unconstrained FIR”

model. The results are shown in Fig. 3.16.

From the results, the constrained approaches of a model all outperform the

unconstrained version of same model. If we compare unconstrained FIR, CM,

DCM and 1st order M-ARX model, or the constrained CM, DCM and FIR model,

in both cases the FIR model has the worst performance. This is because the FIR

model uses many more parameters than the other models, which increases the

estimation uncertainty under noisy environment. The constrained FIR model has

similar performance to that of the 1st order M-ARX model, which again shows the

power of grey-box modeling approaches. Of course, both constrained CM and DCM

have the best performance.
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3.7 Discussions

3.7.1 Drawbacks of Purely Statistical Methods

All the interwell models presented in this thesis can be considered as statistical

modeling approaches: we try to understand the whole system from only the statis-

tical analysis of the data sent to the system and the data generated by the system.

For these kinds of approaches, if the measured input and output data are not “infor-

mative” enough to provide sufficient information in order to build reliable models,

the models may not able to track the “true” behavior of the system. In this work,

the injection rates of Scenario G are different from those of Scenario A-D because

they are much more collinear (see [63], [34] and Section 6 for more discussions of

collinearity). If we check the static gains estimated by M-ARX model in this case,

we will find that there are some negative values between some well pairs. But the

static gains estimated by 1st M-ARX model in other cases are all between 0 and 1.

In the Scenario G, the designed injection rates are all constant for most of the time,

and only change at some time instants. The statistical modeling approach can only

gain information when the rates are fluctuating, which means injection data with

constant rates is not helpful for building the models. That is the reason why while

the 1st M-ARX model has good performance in other cases, but it is not so suitable

for Scenario G.

In real field applications, it is not uncommon to face a situation where the given

injection and production rates are not informative enough, e.g., the injection rates

are often kept relatively constant during normal operations or the training data

available are very limited. For all cases, we suggest that it is always better to use

the “grey-box” modeling approach by combining physical constraints. For some

models it may be difficult to combine the physical constraints into the optimization
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procedure, e.g., as in the M-ARX model, it is always a good practice to double-

check whether the estimated parameters lead to reasonable reservoir characteristics

or not; if the answer is no, we should discard this model and look for other models.

3.7.2 Large Scale Problems

One of the main advantages of using predictive modeling approaches is their ability

to describe large scale systems, with computation time significantly lower than that

of traditional reservoir simulations. However, applying these predictive models to

large reservoirs still presents several challenges. In [62], a good example of applying

CM to large scale reservoirs is presented. Most of the procedures discussed in [62]

also apply to other predictive interwell models. In this section, we particularly focus

on issues associated with dealing with large scale systems.

For any models, the number of unknown parameters increases with the number

of injection and production wells in the ROI, which means we will face a large num-

ber of system unknowns when applying these techniques to large scale reservoirs.

Statistically speaking, given enough data for parameter estimation, including more

injectors into the optimization procedure of modeling will often generate a better

fit to the historic matching, but sometimes results in an unrealistic and unreliable

model. This is because the built models are statistical (even with some physical

constraints) without involving any geological considerations. For example, if by

coincidence a particular pair of injection and production wells has some common

distinct changes during a period of time, they will have relatively large connectivity

(static gain) even if they are far away from each other in the reservoir. Common

knowledge of the reservoir often assumes that two wells should have very limited

interactions if they are far away from each other, except if there exist some special
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fractures connecting them. To reduce these kinds of errors, we need to decide a

suitable region of interest (ROI) for each producer (or injector). Only injectors and

producers in this ROI are considered for building models, and the connectivity of

outside wells is assumed to be zero. So now the problem becomes how to decide a

suitable ROI. There are several common approaches for this:

• Set a threshold distance for the ROI. So given the target producer (or injec-

tor), the ROI is a circle with the radius chose as the threshold. [62]

• Use a similar strategy as the first one but with the shape of the ROI chosen

as an ellipse instead of a circle. This situation accounts for some prior field

knowledge available which indicates that there are some parallel fractures

in the field. The ROI along with the directions of fractures should be the

semi-major axis.

• Use a prediction error approach. begin with the target producer, and increase

the radius (or semi-major/semi-minor axis) of ROI, which in order to include

more and more and increasing number of wells, and use these models for

production rate prediction and to calculate the prediction error. When the

prediction errors are below some threshold, we use this circle (or ellipse) as

ROI [67]

The threshold can be decided based on field experience. It often needs some ex-

perience from the reservoir engineers to decide a suitable threshold, and it depends

on the field conditions. In [62], 4000 ft was chosen for their target reservoir. The

prediction error approach is used because it can provide reasonable prediction for

the target producer. This is the approach used by [67]. In short, the prediction

error approach may get better prediction results and no field experience is needed.
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But as a penalty, much more computation is involved and may still result in large

connectivity for well pairs that are far away from each other.

3.7.3 Suggestions for Using Predictive Models

From the above comparative analysis of different models, we can make some sug-

gestions for the use of linear predictive models:

1. Always use historic data for validation of prediction ability before applying

any predictive models. This will give us some ideas about how good the

models are.

2. Always use the “grey-box” extensions of the models when the physical con-

straints can be imported into the optimization procedures. For models with-

out grey-box extension, the results should be verified by checking some phys-

ical characteristics, e.g., the static gain. If these characteristics are not com-

patible with the physical reality, we need to discard the model and look for a

new one.

3. In terms of computational complexity, we can use the 1st M-ARX model for

fast evaluation. Because of the “linear-in-the-parameter” property, the pa-

rameters in M-ARX model can be easily estimated by linear regression tech-

nique. Then we check the physical characteristics and the prediction errors

via cross-validation. If the results are compatible with the physical reality

but the prediction errors remain high, it is likely that the linear assumption

is not suitable for the field. We should change to other modeling approaches

or try the LTV approaches.
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4. If the measurement errors of the rate information are high or the injection

rates are highly collinear, the “constrained” CM/DCM approaches are prefer-

able as they require fewer parameters and are more robust.

3.8 Summary

In this chapter, we discussed the verification and comparisons of predictive mod-

els. For verification, there are two schemes used in this work. The first one is

verification via prediction ability on fresh data set. The second one is via the inter-

pretation of interwell connectivity against ground truth (synthetic data) or some

geological features (field data). We also discussed the so-called“grey-box”approach

of predictive models, the advantages of using it are investigated. Finally, we de-

fined a prediction-error based metric and compare all proposed predictive models.

Some suggestions for reservoir engineers are made from the results of comparative

analysis.
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Chapter 4

Linear Modeling Framework

Having evaluated and compared different models, some theoretical questions about

statistical modeling remain open: what is the relation between the different models?

Is there a unified framework that can include all models? Are there alternative

models with similar or better performance?

In this chapter, we develop a linear modeling framework that allows us to in-

tegrate all predictive models proposed to date. Different predictive models are ex-

pressed as special cases of this framework. Also, the relationships between different

models become much clearer when we use this framework.

4.1 Linear Models for Well Interactions

Suppose we have M injection wells with the sequence of injection rates at the i-th

injector denoted as ui(k), and N production wells with the sequence of production

rates at the j-th producer denoted as yj(k), where k denotes the time index for

the measurement data of rates. We also assume the system behavior can be ap-

proximated as being linear. If the system response does not change for a period of
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time, i.e., it can be seen as time-invariant, the linear model can be expressed using

a rational transfer function via z-transform:

⎡
⎢⎢⎢⎢⎣

Y1(z)

...

YN(z)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

C11(z)
D11(z)

· · · CM1(z)
DM1(z)

...
. . .

...

C1N (z)
D1N (z)

· · · CMN (z)
DMN (z)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

U1(z)

...

UM(z)

⎤
⎥⎥⎥⎥⎦ , (4.1)

which can be written in matrix form as:

Y(z) = G(z)U(z) (4.2)

where Ui(z) and Yj(z), i = 1, ..., M and j = 1, ..., N , are the z-transforms of

ui(k) and yj(k), respectively. Cij(z) and Dij(z) are polynomial functions of z.

Another commonly used description is the matrix fraction description (MFD) for

multivariate systems [28], which is analogous to the rational transfer function of

univariate (single-input and single-output) systems. In the MFD, (4.2) can be

expressed as:

Y(z) =
[
DL(z)−1NL(z)

]
U(z) (4.3)

= U(z)
[
NR(z)DR(z)−1

]
(4.4)

where all DL(z), NL(z), NR(z) and DR(z) are all matrices where each element is

a polynomial function of z. (4.3) is called left MFD, and (4.4) is called right MFD.

DL, DR are analogous to the denominator in the univariate case, and similarly NL,

NR are analogous to the numerator. We will use MFD for model description when

it is more convenient.
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Although various predictive modeling approaches have been proposed since 2006

[64] [39] [35] [33], we propose for the first time that all these predictive modeling

for describing the interactions between wells can be seen as special cases of the

linear time-invariant (LTI) models of (4.2) or (4.3). Although in this thesis only

LTI systems are discussed, all the models can be extended to linear time-varying

(LTV) systems, where now the parameter estimation methods become recursive in

nature [41] and continuously update the current estimate. The transfer function

representation of LTV systems are much more involved and out of the scope for this

paper. For a reference about more details on the transfer function representation

of LTV systems, see [4].

Also we need to note that although the behavior of many physical systems,

including reservoirs, is nonlinear, it is still useful to approximate the system first

using linear models. As we will show in the simulation results, the numerical flow

simulator we use [42] makes no linearity assumptions, but its results can be rea-

sonably matched and predicted using some LTI modeling approaches. Moreover,

the LTV system is related to linearization of a nonlinear system around a certain

trajectory [41], although we do not exploit the possibility of tracking nonlinear be-

havior in this work. In this work, we mainly focus on the linear modeling for LTI

systems.

4.2 A Framework for Predictive Models

In this section, we focus on putting the models introduced in Chapter 3 into the

transfer function matrix representation to show that they are actually a special

case of linear modeling approach. Using this linear modeling framework, we can
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also extend the existing models to higher order and interpret the model parameters

easily.

4.2.1 Capacitance Model

As introduced in Section 2.2, in discrete form, the CM can be expressed as [64]

y(k) = y(0)e
−k
τ +

1

τ

k∑
ξ=0

e(ξ−k)/τu(ξ) (4.5)

where τ accounts for the attenuation and delays between wells. Applying the z-

transform and assuming that the initial state is negligible at the time when a

waterflood project begins, i.e., that production is essentially almost zero at that

time, we can compute the transfer function in z-domain as:

Y (z) =
1

1 − e
−1
τ z−1

U(z), (4.6)

which shows that in CM, there is a pole located at z = e−1/τ .

The CM can be easily extended to the multiple wells case using the superposi-

tion principle [64]. In this case, the z-domain expression for the transfer function

becomes:

⎡
⎢⎢⎢⎢⎣

Y1(z)

...

YN(z)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

λ11

1−e
−1
τ11 z−1

· · · λM1

1−e
−1

τM1 z−1

...
. . .

...

λ1N

1−e
−1

τ1N z−1

· · · λMN

1−e
−1

τMN z−1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

U1(z)

...

UM(z)

⎤
⎥⎥⎥⎥⎦ (4.7)

where λij with i = 1, ..., M and j = 1, ..., N are the weight factors (interwell connec-

tivity). The time constants τij , extended from single injector/producer case, play

a role as a pole (at z = e
−1
τij ) between the i-th input and j-th output. This shows
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that CM is a special case of the general LTI model (4.1), which possesses one pole

for each injector-producer well pair.

Besides, because the interpretation of CM in terms of reservoir characteristics

has been fully discussed in [63] [64] (also see Section 2.2 for a brief discussion), this

gives us a way to connect the transfer function representation to the characteristics

in the reservoir. A pole in transfer function representation can be interpreted as the

resistive and capacitance effects of the interwell region, since this is an interpretation

that has been proposed for the CM. Moreover, the location of the pole is e
−1

RijCij ,

where Rij and Cij represent the equivalent resistive and capacitance effects between

injector i and producer j, respectively.

4.2.2 Distributed Capacitance Model

In the distributed capacitance model (DCM) introduced in Section 2.4, for the

single injector and single producer case, the production rates can be expressed as

q(k) =
[
c1e

−k
τ1 + c2e

−k
τ2

]
+

1

τ1 − τ2

[
k∑

ξ=0

e
ξ−k
τ1 u(ξ) −

k∑
ξ=0

e
ξ−k
τ2 u(ξ)

]
(4.8)

where τ1 and τ2 account for the attenuation and delays of the regions between

wells, and are analogous to the time constant τ in CM. We can easily derive the

corresponding transfer function in the z-domain:

Y (z) =
1

(1 − e
−1
τ1 z−1)(1 − e

−1
τ2 z−1)

U(z) (4.9)

This shows that DCM leads to a transfer function with two poles at z = e
−1

τij,1 and

z = e
−1

τij,2 in order to describe the injector-to-producer relationships. Comparing

(4.9) to (4.6), it is clear that DCM is equivalent to cascading two CMs, with time
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constants τ1 and τ2, respectively [32]. Similar to CM, the DCM can be extended

to the multiple wells case using the superposition principle, so that the transfer

function becomes

⎡
⎢⎢⎢⎢⎣

Y1(z)

...

YN(z)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

λ11

(1−e
−1

τ11,1 z−1)(1−e
−1

τ11,2 z−1)

· · · λM1

(1−e
−1

τM1,1 z−1)(1−e
−1

τM1,2 z−1)

...
. . .

...

λ1N

(1−e
−1

τ1N,1 z−1)(1−e
−1

τ1N,2 z−1)

· · · λMN

(1−e
−1

τMN,1 z−1)(1−e
−1

τMN,2 z−1)

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

U1(z)

...

UM(z)

⎤
⎥⎥⎥⎥⎦

(4.10)

where λij with i = 1, ..., M and j = 1, ..., N have the same meaning as in CM and

can also be interpreted as the interwell connectivities in the reservoir. The time

constants τij,1 and τij,2 are extended from single well pair case and model the two

poles at z = e
−1

τij,1 and z = e
−1

τij,2 between the i-th input and j-th output. In general,

the DCM behaves as a second-order (two poles) LTI system for each input-output

pair, where the numerators are described by a constant (zero-order) now.

4.2.3 Double Pole Model [39]

The double pole model (initially introduced in [39] with the name of “z-domain

model”) is a two parameter auto-regressive model for the single well pair case. In

this case, the transfer function of the model can be expressed in z-domain as

H(z) =
γz−1

(1 − αz−1)2
(4.11)

where γ and α are the unknown parameters. Obviously, this model describes the

system behavior with a double pole at α and a weight coefficients γ. Similar to CM
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and DCM, this model can be extended to the multiple wells case by the superposi-

tion principle and expressed as

⎡
⎢⎢⎢⎢⎣

Y1(z)

...

YN(z)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

γ11

(1−α11z−1)2
· · · γM1

(1−αM1z−1)2

...
. . .

...

γ1N

(1−α1N z−1)2
· · · γMN

(1−αMN z−1)2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

U1(z)

...

UM (z)

⎤
⎥⎥⎥⎥⎦ (4.12)

If we compare (4.12) with (4.10), we can see that double pole model is a special

case of DCM, where now the two poles in DCM overlap and become a double pole

(e−1/τij,1 = e−1/τij,2 = αij). The weight factors γij in double pole model play similar

roles as λij in CM and DCM, all indicating the static gains of the system (different

names are used by different authors: interwell connectivity in CM [64] and DCM;

injector-producer relationship in double pole model [39] [67]). This also means that

the z-domain model can be interpreted and related to some reservoir characteristics

in a similar way as the DCM.

4.2.4 Finite-Impulse-Response Model

As the finite-impulse-response (FIR) model introduced in Section 2.3, the produc-

tion rates of j-th producer can be expressed as

yj(k) =
M∑
i=1

ui(k) ∗ hij(k) (4.13)

where hij(k) with k = 0, 1, ..., L − 1 denotes the impulse response of producer j

from the i-th injector, which describe the response curve between this input-output

pair. The shape of the impulse response can be easily interpreted in terms of some

characteristics of the reservoir, see [35] and Section 2.3 for more details.
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For the multiple wells, the transfer function of FIR model is expressed as

⎡
⎢⎢⎢⎢⎣

Y1(z)

...

YN(z)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
∑L−1

k=0 h11(k)z−k · · · ∑L−1
k=0 hM1(k)z−k

...
. . .

...∑L−1
k=0 h1N (k)z−k · · · ∑L−1

k=0 hMN(k)z−k

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

U1(z)

...

UM(z)

⎤
⎥⎥⎥⎥⎦ , (4.14)

which is a special case of (4.1). This is easily seen by setting Cij(z) equals to

hij(0) + ... + hij(L − 1)z−L+1 and Dij(z) = 1 for all i = 1, ..., M and j = 1, ..., N .

So the FIR model belongs to general LTI system with no poles in each well pair.

Moreover, the FIR model can approximate any LTI system provided that the

impulse length L is long enough. To see this, we know that each pole can be

expressed as an infinite series. For example, in the discrete model, suppose we have

a pole at z = α with |α| < 1, this pole can be expressed as

1

1 − αz−1
= 1 + αz−1 + α2z−2 + α3z−3 + ... (4.15)

So each fractional polynomial of z for the i-th input and j-th output can be ex-

pressed as

Cij(z)

Dij(z)
=

Cij(z)

(1 − α1z−1)...(1 − αpz−1)

= Cij(z)(1 + α1z
−1 + α2

1z
−2 + ...)(...)(1 + αpz

−1 + α2
pz

−2 + ...) (4.16)

= hij(0) + hij(1)z−1 + hij(2)z−2 + hij(3)z−3 + ...

here we assume Dij(z) was expressed by p poles α1, ..., αp and the last equality holds

because Cij(z) is also a polynomial of z. For a stable system, the coefficients hk

converge to zero asymptotically, with the rate depending on the dominant pole (the

absolute value of the pole which is closest to the unit circle). Suppose we truncate
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the infinite series at k = L− 1, this new set of coefficients {hij(k)|k = 0, ..., L − 1}
are the unknown parameters in (4.13), which will be determined from the training

data. So this justifies that the FIR model can approximate any possible response

within some estimation errors provided the FIR length L is long enough. But the

penalty is also obvious: many more unknown parameters are needed than for other

models.

4.2.5 Multivariate ARX Model

As for the Multivariate Auto-Regressive with eXogenous (M-ARX) model intro-

duced in Section 2.5 (here we all refer to first-order M-ARX model) for describing

injection and production relationships, it can be expressed as

⎡
⎢⎢⎢⎢⎣

y1(k)

...

yN(k)

⎤
⎥⎥⎥⎥⎦ = A

⎡
⎢⎢⎢⎢⎣

y1(k − 1)

...

yN(k − 1)

⎤
⎥⎥⎥⎥⎦+ B

⎡
⎢⎢⎢⎢⎣

u1(k − 1)

...

uM(k − 1)

⎤
⎥⎥⎥⎥⎦ (4.17)

where A and B are N by N and N by M coefficient matrices, respectively, which

are independent of time index k for a LTI system. (4.17) shows that the production

rates at time k can be expressed as a linear combination of both injection and

production rates at time k − 1. In z-domain, (4.17) becomes

Y(z) = Az−1Y(z) + Bz−1U(z) (4.18)

Then the transfer function matrix representation becomes

Y(z) =
(
I −Az−1

)−1
Bz−1U(z) (4.19)
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This expression is obviously the left MFD (4.3) with DL(z) = I−Az−1 and NL(z) =

Bz−1. In other words, the 1st order M-ARX model is a special case of (4.3), with

now all elements in denominator matrix DL(z) with maximum order of z−1.

As we will show in the Section 5.1, when the coefficient matrix A is diagonal,

the 1st-order M-ARX model will reduce to the capacitance-resistive model with one

time constant for each producer (CRMP), which is a special case of CM [54]. In

general, the off-diagonal terms of matrix A are not zeros, which means the 1st-order

M-ARX model uses the production rates from other producers, together with the

injection rates, in order to estimate the future value of the production rates.

4.2.6 Higher Order Models

By putting all interwell models into the transfer function matrix representation, we

can easily extend the interwell models to higher orders. When we try to character-

ize the reservoir behavior with higher order LTI models (4.2) or (4.3), we basically

introduce more poles to describe the system. From the CM [64] and (4.6), the loca-

tion of each pole can be interpreted as some capacitance and resistive effects in the

reservoir. So when higher order models are involved, this can be seen as modeling

the reservoir by cascading a series of small fluid-capacitors and fluid-resistors, which

implies high heterogeneity along the path of a particular well pair. Although high

order models have the potential to describe a broader range of possible systems,

there is also a penalty for using them: the number of unknown parameters in these

models increases. For more discussions on issues related to number of parameters

issue, please refer to Section 3.5.1.
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Table 4.1: Different predictive models and the characteristics of their transfer func-
tion.

Model Transfer func. Pole # and location

CM
λij

1−e
−1
τij z−1

(each pair) One at z = e
−1
τij

DCM
λ11

(1−e
−1

τij,1 z−1)(1−e
−1

τij,2 z−1)

(each pair)
Two at z = e

−1
τij,1 and z = e

−1
τij,2

Double Pole Model
γ11

(1−α11z−1)2
(each pair) Two at z = αij (double-pole)

FIR Model
∑L−1

k=0 hij(k)z−k (each pair) No Pole

M-ARX Model (I − Az−1)
−1

Bz−1 Depends on A

4.3 Conclusion

In this chapter, we use the general transfer function for LTI system to show that each

model belongs to a special case of this model, which means all proposed models are

linear models. Moreover, the relationship between different models is investigated,

so the interpretation of CM for reservoirs can be easily extended to all models. In

summary, Table 4.1 summarizes all proposed models discussed in this chapter.
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Chapter 5

Prediction Under Controlled Producers

In waterflood projects, the number of producers sometimes changes, e.g., a producer

is shut-in or a new producer is added. To analyze these data sets using conventional

predictive models, which assume a fixed number of producers, we would need to

divide the whole data period into several smaller intervals, so that the number of

producers remains constant in each interval. This is because when the number of

producers changes, it leads to a totally different input-output relationship, so that

the model parameters need to be re-estimated. Thus, every time a producer is

shutting in, we need a new data set to retrain the model parameters.

In this chapter, we investigate the use of M-ARX models for this kind of situ-

ation. The M-ARX model can reduce the number of parameters that needs to be

retrained as compared to other predictive models. More importantly, the M-ARX

model can predict the performance in the shut-in case, only requiring that the pro-

ducer be set to a constant rate for a while. This makes it much more practical to

control producers in order to predict performance under several possible “What if”

scenarios.
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Figure 5.1: The CRMP and M-ARX model in 2-injectors/2-producers scenario. The
black arrows denote the contributions from other producers, which are considered
in 1st order M-ARX model but not in CRMP.

5.1 Interpreting M-ARX Model

In order to describe the producer-to-producer relationships included in 1st order

M-ARX model, we need to understand the relationship between M-ARX model

and CM. We first consider a simplified version of CM, named capacitance-resistive

model with one time constant for each producer (CRMP), which was proposed

in [54]. This model uses one time constant τ for each producer by indicating that

for each producer, the pore volume shared with any injectors should be similar,

since it corresponds to the region surrounding the well, and therefore they should

have similar time constants. The CRMP was proposed with the goal of reducing

the number of unknown parameters and simplifying the optimization procedure,

while still achieving reasonable prediction results (see [54] for more discussions).

Here we will show that the 1st order M-ARX model can be interpreted as a

CRMP that takes into consideration producer-to-producer interactions. To simplify

the derivation, suppose we have two injectors and two producers in the ROI, as
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shown in Fig. 5.1. Under the CRMP model, the production rates of each producer

can be expressed as:

yj(k) = yj(0)e−k/τj +
2∑

i=1

λiui(k) ·
[

1

τj

e−k/τj

]
(5.1)

Applying the z-transform in (5.1), we get:

⎡
⎢⎣ Y1(z)

Y2(z)

⎤
⎥⎦ =

⎡
⎢⎣

λ11z−1

1−e
−1
τ1 z−1

λ21z−1

1−e
−1
τ1 z−1

λ12z−1

1−e
−1
τ2 z−1

λ22z−1

1−e
−1
τ2 z−1

⎤
⎥⎦
⎡
⎢⎣ U1(z)

U2(z)

⎤
⎥⎦

=

⎡
⎢⎣ 1 − e

− 1
τ1 z−1 0

0 1 − e
− 1

τ2 z−1

⎤
⎥⎦
−1 ⎡
⎢⎣ λ11z

−1 λ21z
−1

λ12z
−1 λ22z

−1

⎤
⎥⎦
⎡
⎢⎣ U1(z)

U2(z)

⎤
⎥⎦

(5.2)

Recalling the M-ARX model expression (3.3) and comparing it with (5.2), this

means that when the coefficient matrices A and B are as follows:

A =

⎡
⎢⎣ e

− 1
τ1 0

0 e
− 1

τ1

⎤
⎥⎦ , (5.3)

B =

⎡
⎢⎣ λ11 λ21

λ12 λ22

⎤
⎥⎦ . (5.4)

the 1st order M-ARX model will reduce to the CRMP model, and the coefficients

in matrices A and B can be interpreted the same way as in the CRMP model.

A being a diagonal matrix can be interpreted by stating that no improvements in

modeling accuracy can be achieved by using production rates from other producers

in order to estimate production for a given producer, which may happen when the

producers are far away from each other (thus with little influence on each other).
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Although only shown in the 2-injectors and 2-producers case, the result can be

easily extended to cases involving more injectors and producers.

In general, the off-diagonal terms in A are not zero, and they can be interpreted

as representing the contribution from the production rates of other producers. This

implies that in the 1st order M-ARX model, the producer-to-producer interactions

can be analogous to the injector-to-producer interactions in the CRMP model. To

see this, assume the matrix A in (5.3) has non-zero off-diagonal terms a11 and a21,

then (5.2) in the time-domain can be expressed as

⎡
⎢⎣ y1(k + 1)

y2(k + 1)

⎤
⎥⎦ =

⎡
⎢⎣ e

− 1
τ1 z−1 a12

a21 e
− 1

τ2 z−1

⎤
⎥⎦
⎡
⎢⎣ y1(k)

y2(k)

⎤
⎥⎦+

⎡
⎢⎣ λ11 λ21

λ12 λ22

⎤
⎥⎦
⎡
⎢⎣ u1(k)

u2(k)

⎤
⎥⎦ ,

(5.5)

y1(k), y2(k) have a similar role as the inputs of u1(k) and u2(k). In short, the 1st

order M-ARX model can be seen as a generalization of the CRMP model, where

now the producer-to-producer interactions are considered in a similar way to the

injector-to-producer relationships.

5.2 Prediction for Shut-In Producers

When the production of a target producer is forced to zero (shut-in) during some

time period, the question we want to solve is: can we predict the performance of

all other producers in the reservoir? Forecasting is important here because on the

one hand sometimes producers on daily operations for such as due to maintenance

or other reasons. On the other hand, shutting-in producer is sometimes a good

solution for waterflood management and optimization, and we need some forecasting

ability in order to determine whether a specific producer should be shut-in. When
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some producer is shutting-in, the whole system is considered changed and most

of the predictive modeling approaches, such as CM or FIR model, can only deal

with this kind of situation by considering that the whole fluid distribution has

changed, which requires re-training all parameters in the reservoir model. In [30],

a compensated capacitance model (CCM) was proposed to reduce the number of

parameters that need to be re-trained by introducing a“pseudo-injector”at the well

that is being shut-in. In this work, the relations between the pseudo-injector and

the producers are also interpreted as producer-to-producer interactions between the

shut-in producer and the other producers. Now we will show how to use the 1st

order M-ARX model to further reduce the data required for retraining, and also

extend the concept of pseudo-injector to deal with a more general scenario.

As shown before, the producer-to-producer interactions in the 1st order M-ARX

model can be interpreted as being similar to injector-to-producer interactions in

CRMP, so when a producer, e.g., the α-th producer, is artificially shutting in after

some time instant, the new production rates yj(t) on all other producers can be

expressed as:

ỹj(t + 1) = yj(t + 1) − yα(t) ∗
[
λjα

τj
e−t/τj

]
(5.6)

where j = 1, ..., N and j �= α; yj(t + 1) and yα(t) are the original production rates

(the predicted production rates without any constrained producer at producer j

and producer α, respectively.) (5.6) shows that there is a transient period when

constraints on a producer are first imposed, and each producer will have an in-

creasing rate. (Because the interaction λjα between producers j and α is always
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negative, the production rate ỹj(t + 1) will increase.) To highlight the transient

effects, ỹj(t + 1) can be rewritten as

ỹj(t + 1) = yj(t + 1) + yα(t) · kj

[
1 − e−(t−tsh)/τj

]
(5.7)

where tsh denotes the time at which the shut-in begins, and the coefficients kj =

−λjα can be interpreted as the influence of producer α on producer j. As time t

increases, e−(t−tsh)/τj becomes close to zero, so the ỹj can be approximated by

ỹj(t + 1) = yj(t + 1) + yα(t) · kj (5.8)

We can use (5.7) when the data are in transient period (from the simulation data,

usually t − tsh < 20
T

where T is measured in days) or (5.8) with the data after the

transient period. Note that (5.7) and (5.8) can also be derived based on pseudo-

injector concepts [30], but a 1st order M-ARX model is being used instead of CM.

For (5.7), only two parameters need to be retrained for each producer (kj and τjα),

and if (5.8) is used, only kj needs to be estimated. Compared to CCM, which needs

to estimate (M + 1) × N unknown parameters (a smaller number of parameters

than required by other models), the 1st order M-ARX only needs to re-estimate

(N −1)×2 parameters. Table 5.2 summarizes the number of parameters that need

to be retrained for different predictive models.

5.2.1 Simulation Results

In the simulations, we show the application of M-ARX model to the producer shut-

in case, where it can be used for performance prediction with a very short re-training

period after the shut-in has begun.
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Table 5.1: The number of parameters needed to be retrained when a producer is
shut-in.

# of Parameters 5-injectors/4-producers Case
CM M × (N − 1) × 2 30

FIR Model M × (N − 1) × L 450 (L = 30)
DCM M × (N − 1) × 3 45

Compensated CM (M + 1) × (N − 1) 18
M-ARX Model (N − 1) × 2 6

For the synthetic data, we use the Scenario A introduced in Section 3.2, which is

shown in Fig. 3.1. In this case, P4 is shut-in from the 730-th day to the 1824-th day.

Because P4 has the maximum production rates among all producers before shut-in,

as the simulation data show, the production rates at all other producers increase

significantly during the P4 shutting-in period. We use the prediction procedure

built on M-ARX model (5.7) to predict the gross production rates during the shut-

in period with different training periods after the shut-in begins. The prediction

results are also evaluated via the R2 measurement, which is defined as

R2 =
J2(M)

1
T

∑T
k=1 ‖y(k)‖2

(5.9)

where

J2(M) =
1

T

T∑
k=1

‖y(k) − ŷ(k|M)‖2 (5.10)

The results for P1 - P3 are shown in Fig. 5.2. Also, Fig. 5.3 illustrates the prediction

results when re-training period is equal to 20 days. As the results show, we can

generate good prediction results when re-training periods are chosen larger than 15

days. This validates this procedure and demonstrates one of the applications on

M-ARX model.
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Figure 5.2: Performance of prediction error for production rates based on M-ARX
model in Scenario A with P4 shut-in from the 705-th day to the 1800-th day. The
performance is measured via R2 and different retraining periods are evaluated.

5.3 Prediction for Constrained Producers

The main drawback of the prediction with a shut-in producer is obvious: we need to

close this producer at least for a while in order to predict the long term performance.

This heavily limits this application for economic reasons, because any producer

shut-in can potentially lead to a decrease of oil production. To successfully handle

several“what if”scenarios, we would like to predict the performance after a producer

shut-in but requiring minimal changes in production rates so the economic impact

of adjusting production for modeling is small. This can be achieved by the use

of M-ARX model with producer set to constant rate. For example, we first limit

the producer to operate at a certain rate C (we denote the target producer with

81



200 400 600 800 1000 1200
0

500

1000

1500

Before Shut−In←→ Shut−In Period

Time(day)

P
ro

d
u

ct
io

n
 R

at
e

P − 3

200 400 600 800 1000 1200
0

500

1000

1500

2000

2500

Before Shut−In←→ Shut−In Period

Time(day)

P
ro

d
u

ct
io

n
 R

at
e

P − 3

200 400 600 800 1000 1200
0

500

1000

1500

2000

Before Shut−In←→ Shut−In Period

Time(day)

P
ro

d
u

ct
io

n
 R

at
e

P − 3

Simulation Data

Predicted by 1st−order M−ARX Model

Figure 5.3: Prediction of production rates by M-ARX model in Scenario A with P4
shut-in. Note that for retraining data between two black lines (solid and dash) are
used.

artificial control, shut-in or set to some rate, as constrained producer in the following

discussions). Based on the M-ARX model, in this case (5.7) can be rewritten as

ỹj(t + 1) = yj(t + 1) + (yα(t) − C) · kj

[
1 − e−(t−tsh)/τj

]
(5.11)

This expression can be seen as a general case of (5.7), in which the constant rate

C was set to zero. By estimating the parameters using (5.11), we can then predict

performance under the scenario where the constrained producer can be set to any

rates, including the shut in condition. This of course gives us much more flexibility

to forecast performance given that some producers are under artificial control.

Besides, in this situation the estimated parameters kj can be interpreted as the

weight factors of the influence from producer α to producer j, which highlights the
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interactions between these two producers. So we can define kj as the producer-

producer relationship (PPR), which denotes the weight factors that characterizes

the effective contribution of production decrease of a target production well to the

total gross production of surrounding production wells.

Note that the main novelty of this application is that one does not actually need

to shut-in a well (and thus potentially reduce overall production significantly) in or-

der to estimate the impact of a well shut-in, while all previous modeling approaches

(including CCM) need to actually do the shut-in for forecasting. We summarize

this new constrained producer method as follows:

1. Training phase: the field has been under normal operation (without any con-

strained producer) for some time period. Then we constrain the target pro-

ducer for a while (e.g., 30 days in the simulation data). Only these data are

needed for the training of M-ARX model.

2. Predicting phase: we use the trained M-ARX model to predict the perfor-

mance when the target producer is under ANY constrained rates, including

the shut-in.

5.3.1 Simulation Results

In the simulations, we show the prediction results for the constrained producer. As

the previous section, Scenario A (introduced in Section 3.2) is used, and all settings

are the same. The only difference is now we set the target constrained producer

to some constant rate after day 730. Using production rate data up to day 760

(which means 30 days are used for re-training the parameters), we can estimate the

parameters in (5.11) and use them to predict the performance when the constrained

producer is shutting in. Figures 5.4, 5.5 and 5.6 show the prediction results when
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Figure 5.4: Prediction of production rates for P1 shut-in by M-ARX model in
Scenario A when P1 is set to 200 bbl/day.

P1, P2 and P3 are set to constant rate 200, 100, and 200 bbl/day, respectively. For

P4, we simulate two different constant rates, 600 and 2500 bbl/day, and the results

are shown in Figures 5.7 and 5.8. All results show that the constrained producer

application is very promising.
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Figure 5.5: Prediction of production rates for P2 shut-in by M-ARX model in
Scenario A when P2 is set to 100 bbl/day.
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Figure 5.6: Prediction of production rates for P3 shut-in by M-ARX model in
Scenario A when P3 is set to 200 bbl/day.
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Figure 5.7: Prediction of production rates for P4 shut-in by M-ARX model in
Scenario A when P4 is set to 600 bbl/day.
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Figure 5.8: Prediction of production rates for P4 shut-in by M-ARX model in
Scenario A when P4 is set to 2500 bbl/day.
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Chapter 6

Injection Rates Design

For parameter estimation in dynamic systems, it is desirable to control the con-

ditions under which the data are collected. The objective of this chapter is to

investigate the problem of designing inputs so that the collected outputs are as

informative as possible with respect to the models to be built using the data. The

ultimate goal is to design a set of injection rates based on some criterion in order

to facilitate the estimation of model parameters and reservoir characteristics.

In this chapter, we first provide a brief literature review focusing on both system

identification and channel estimation in communication systems. Deterministic and

stochastic approaches are discussed and a brief comparison is made. For determin-

istic approach, the novelty of this work is that we propose a novel procedure for

designing a set of signals with zero circular cross-correlation for arbitrary shifts.

This procedure is based on a property of set of inverse-repeat signals. For the

stochastic approach, we first survey input design in system identification and ex-

tend the work in the literature to the multiple well case. Another novelty is that we

apply a well-known procedure to field applications and evaluate the performance

based on some predictive models.
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6.1 Literature Review

In this section, we review prior work on input design within two different fields:

system identification and channel estimation in communication systems. In both

fields the goal is to design the inputs used for probing the system in order to estimate

some system characteristics. While the goals are similar, the approaches are totally

different. We will focus on the frameworks proposed in each of these fields, namely

as deterministic and stochastic approaches, respectively. Finally, some comparisons

between these two approaches are provided.

6.1.1 Optimal Input Design

Optimal input design for linear dynamic systems was first considered around 1960

( [36] is one of the earliest contributions) and it became an active area of research

in the 1970’s. Different qualify measures for the identified model were used. For

more comprehensive discussions, see Mehra [46] [47], Zarrop [66], Goodwin and

Payne [18] and Goodwin [17]. Until the 1990’s, almost all research focused on the

minimization of some measure of the variance error of the estimated quantity. The

goal was to minimize some objective functions, usually various measures of the

covariance matrix Pθ, where θ is defined as the parameter vector of the model

that is being estimated. An open-loop structure was used in this case. Even

though some of the optimal input design work of the 1970’s considered closed-loop

experiments [48] [49], the objective functions considered at that time were limited

to functions of the covariance of the open-loop model parameters.

In the system identification literature, the prediction error method (PEM) [41]

is widely used with a full order model structure. The estimated parameter vector,

90



denoted as θ̂N , was proven to converge to a Gaussian distribution under some mild

assumptions: (
θ̂N − θ0

)
N→∞→ N(0,Pθ) (6.1)

where θ0 denotes the “true” value of the system parameters and Pθ denotes the

asymptotic covariance matrix of parameter estimation, which can be estimated from

the data. The matrix has been used to judge the “goodness” of different designs

because it provides a measure of the average difference between the estimated and

the true value of the parameters. The classical approach has been to minimize some

scalar function of the asymptotic covariance matrix Pθ with constraints on input

and/or output power. Examples of criteria that are commonly used are [51]:

A-optimality : min Tr {Pθ} (6.2)

D-optimality : min det {Pθ} (6.3)

E-optimality : min λmax {Pθ} (6.4)

L-optimality : min Tr {WPθ} (6.5)

where Tr is the trace function of the matrix, det is the determinant of the matrix,

λmax represents the maximum eigenvalue of the matrix and W is a nonnegative

weighting matrix.

Both time and frequency domain approaches are considered in the previous

literature. For designing the signals in the time domain, the problem typically

reduces to a nonlinear optimal control problem with N free variables, in which

N is the data length [11]. The resulting complexity was one of the reasons that

motivated researchers to solve the input design problem in the frequency domain

instead. Making some assumptions, it is possible to derive nice expressions for
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the asymptotic covariance matrix. Moreover, it is easier to interpret the results in

general for design in the frequency domain.

In short, the optimal input design for system identification is typically based

on a stochastic approach where every actual input for the system can be seen as

a realization of a process. The criterion used for input design was the spectrum

of the input signals, with performance guaranteed achievable when N is large (by

asymptotic parameter variance Pθ). We will discuss how to apply this approach

with field applications where the goal is injection rate design later in this chapter.

6.1.2 Channel Estimation in Communication

In communication systems, the multiple-input multiple-output (MIMO) technique

has been shown to greatly increase the capacity of wireless systems, and it can fit the

growing demand for high data rates in the wireless environment. However, to use the

advantages of MIMO systems, accurate channel state information (CSI) is required.

If space-time coding is used, an accurate CSI is crucial for the performance of

decoders. Therefore, channel estimation plays a key role in MIMO communication

systems [19] [8].

Using training sequences is one of the most widely applied approaches for

MIMO channel estimation. In this approach, the channel is estimated using the

received signal resulting from a predetermined sequence, denoted as training se-

quence, being sent from the transmitter. There has been a growing interest in the

training-based MIMO channel estimation. For example, Hassibi and Hochwald [21]

linked the training sequence problem with channel capacity; Marzetta [44] consid-

ered the BLAST training using maximum likelihood (ML) method; Li [37] devel-

oped a least-square (LS) training-based channel estimation technique for orthogonal
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frequency-division multiplexing (OFDM) systems with multiple transmit antennas;

Scaglione and Vosoughi [56] improve the LS approach via minimum mean-square-

error (MMSE) symbol estimate. As a comprehensive study, Larsson and Stoica [31]

gave a general discussion on optimal MIMO training schemes based on LS crite-

rion. Biguesh and Gershman [6] discussed the tradeoffs between LS, scaled LS, and

MMSE methods.

The training sequence design was treated as a deterministic approach, that is,

the aim is to select the value of training sequences exactly before transmission.

Some authors, e.g., [12] and [14], constraint the training sequences to be derived

from a finite alphabet (such as BPSK constellation). This work concludes that,

except for some special cases, the deterministic optimal training sequence for any

length could only be found via exhaustive search, but only possible for short se-

quences with small alphabet size because of complexity. One of the main conclu-

sions derived from the training-based channel estimation was the optimal sequences

should have an impulse-like auto-correlation and zero cross-correlation properties.

Actually, the sequence design for good correlation properties was very crucial for

some communication fields, such as code division multiple access (CDMA) system,

where Gold pair and Kasami sequences are commonly used because of their good

correlation properties. For details, see [16]. Because these designs were focused on

minimizing the maximum absolute auto-correlation and cross-correlation values,

they are not optimal for parameter estimation in dynamical systems.
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6.2 A Novel Deterministic Approach for Input

Sequence Design

In this section, we approach the input design problem using a deterministic ap-

proach. We developed a procedure to generate a set of signals, which have vanish-

ing cross-correlation with each other with arbitrary shifts. To design these inputs,

inverse-repeat signals are first introduced and one property of these signals is dis-

covered. Then a new procedure is proposed to generate a set of signals with all zero

cross-correlation with each other with arbitrary time shifts.

Note that the procedure described in this section is also valid for continuous

signals but here we only discuss the discrete case because for our problem, datasets

(inputs and outputs) are all discrete in some time scale (day, week, or month).

6.2.1 Inverse-repeat signals

Inverse-repeat signals are signals x(n) with period N and defined as

x(n +
N

2
) = −x(n) for n ∈

[
0,

N

2

]
(6.6)

Inverse-repeat signals are such that their even harmonic frequency components are

all equal to zero. That is, they only have non-zero values in the odd-order harmonic

frequencies ±f0,±3f0,±5f0, ... with f0 = 2π
N

. To see this, we just need to calculate
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the corresponding N -point discrete Fourier transform (DFT). The DFT of signal

x, denote as X, can be calculated as

X(k) =
N−1∑
n=0

x(n)e
j2πnk

N (6.7)

=

N
2
−1∑

n=0

x(n)e
j2πnk

N +

N
2
−1∑

n=0

x(n +
N

2
)e

j2πk
N

(n+ N
2

) (6.8)

=

N
2
−1∑

n=0

x(n)e
j2πnk

N −
N
2
−1∑

n=0

x(n)(−1)ne
j2πnk

N (6.9)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2

N
2
−1∑

n=0

x(n)e
j2πnk

N for k odd

0 for k even

(6.10)

6.2.2 Property of a Set of Inverse-Repeat Signals

Now, we investigate the non-overlapping frequency components property of a set of

inverse-repeat signals. To the best of our knowledge, this property has never been

used for input sequence design in the literature.

Considering a signal with period N , when we apply 2N -point DFT, the fre-

quency domain representation can be obtained by inserting a zero in between each

original N -point DFT. This can be written as follows:

⎧⎪⎨
⎪⎩

X2N (2k) = XN(k) for k = 0, ..., N − 1

X2N (2k + 1) = 0 otherwise
(6.11)

where XN and X2N denote the N -point and 2N -point DFT, respectively. So

for an inverse-repeat signal with period N , when we apply the 2N -point DFT, it

will have non-zero values only in frequency components (±f0,±3f0,±5f0, ...)×2 =

±2f0,±6f0,±10f0, ... Following this rule, for an inverse-repeat signal with period
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Table 6.1: Non-zero DFT indexes fro inverse-repeat signals.

2αN -point DFT for Inverse-Repeat Signal
Period Non-zero DFT index
2αN ±1,±3,±5,±7, ...

2α−1N ±2,±6,±10,±14, ...
2α−2N ±4,±12,±20,±28, ...

...
...

N 2α × {±1,±3,±5,±7, ...}

{ }...5,4,3,2,1

{ } { }...7,5,3,112 =+l

{ }l2

{ } { }...14,10,6,224 =+l

{ }l4

{ } { }...20,12,448 =+l

{ }l8

Non-zero index for first signal

Non-zero index for second signal

Non-zero index for third signal

{ }...5,4,3,2,1

{ } { }...7,5,3,112 =+l

{ }l2

{ } { }...14,10,6,224 =+l

{ }l4

{ } { }...20,12,448 =+l

{ }l8

Non-zero index for first signal

Non-zero index for second signal

Non-zero index for third signal

......

Figure 6.1: Illustration of non-zero frequency indexes for inputs with different pe-
riods.

N , if we apply 2αN -point DFT, it will have non-zero values only at frequencies

±2αf0,±2α3f0,±2α5f0, ... Now suppose we have an inverse-repeat signal set: x1,

x2, ..., xα+1 with different periods N1 = N , N2 = 2N , N3 = 4N , ..., Nα+1 = 2αN ,

where the number of the set is α + 1. When we apply DFT over 2αN to all of the

signals, they will possess non-zero value for some frequency components as shown

in Table 6.1:

Fig. 6.1 shows the non-zero DFT indexes, which obviously form a disjoint set.

So we find that signals with different periods occupy non-overlapping frequency

components in the frequency domain. This means that if we select signals from the

set as inputs to a LTI system, any of two signals will have circular cross-correlation
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equal to zero with period 2αN with any shifts. This design procedure will be

illustrated with an example in the following section.

6.2.3 Design Example

Using the procedure, we can construct a set of discrete α+1 inverse repeat signals,

whose periods are N , 2N , 4N , 8N ,..., 2αN . To apply this set of signals in practice,

a natural way is to choose the periods as small as possible. The smallest period

is N = 2 (for discrete inverse-repeat signals, the smallest period is 2) and for this

signal within one period, it has the a positive value and a negative value, with the

same amplitude (normally chosen as 1√
2

to make the energy normalized to 1). For

the signal with period 2N = 4, it is natural to choose two positive values followed

by two negative values with the same amplitude. We can use the same procedure

and extend it to the signal with period 2αN = 2α+1, which has 2α positive values

followed by 2α negative values, all with the same amplitude. Fig. 6.2 shows an

example for one period of this set of signals with in the α = 3 case. As mentioned

before, if we choose any two signals from this set, they will have zero circular cross-

correlation with period 2α+1 for arbitrary shifts. This is a very nice property because

that means if we set these signals into a multiple-inputs LTI system, each signal

will not cause interference to other signals (because of vanishing cross-correlation

with period 2α+1). As a result, this set of signals can be used for some applications

if the goal is to separate the influence from different inputs. We will apply this

inverse-repeat signal design to some reservoir models and compare the results with

those achieved with some well-known deterministic sequences in Section 6.3.5.

In summary, this new procedure is formulated as follows:

97



Figure 6.2: This figure shows an example for designed set of inverse-repeat signals.
α = 3 (period is equal to 2α+1 = 16) and one period is displayed.

1. Deciding the whole period of the input signal set, which is 2αN where N is

an integer with N ≥ 2 and α + 1 is the number of signals in this set.

2. Choose an arbitrary signal with length N/2 that meets the constraints on

input signals (e.g., finite-alphabet), and transform it into an inverse-repeat

signal by adding the inverse version of itself. Then repeat the signal until its

length becomes 2αN

3. Repeat step 2 with signal lengths N , 2N , ..., to 2α−1N . This will generate

α + 1 inverse-repeat signals with vanishing cross-correlation with each other

at arbitrary shifts.

6.2.4 Discussion

This proposed procedure can be used to design a set of signals with perfect cross-

correlation property. As a well-known result, chosen as inputs to a dynamic system

should be designed by the following rules:

1. Low out-of-phase auto-correlation value (ideal value is zero)

2. Low cross-correlation value (ideal value is zero)
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As shown in the CDMA literature, in order to achieve the first goal, the maximum-

length-sequence (MLS) or m-sequence was introduced and developed. In order to

solve the second goal, Welch’s bound [45] was derived to describe the upper bound

on performance. Different design techniques, such as Gold pair sequences, Kasami

sequence, were proposed to approach this bound [45]. Our proposed procedure try

to addresses the problem by optimizing the second design rule, that is, it aims to

make the cross-correlation values all equal to zero. In this sense, we reach the ideal

value for the second design rule.

The problem with our proposed method is that is has relatively high out-of-phase

auto-correlation values. This can be shown in either time or frequency domain. In

time domain, the signals in this set have different periods, from N to 2αN . When

we calculate the circular auto-correlation over 2αN points, the signal of period N

will perform the worst among this set of signals. Its out-of-phase auto-correlation

value will reach the maximum value for every shift by N . Of course this does not

satisfy the first goal. In frequency domain, the frequency components with non-zero

values for signal with period N are only on 2α ×{±1,±3,±5,±7, ...}. As we know,

a “good” probing signal should occupy (have non-zero value) as many frequency

components as possible in the frequency domain, so the signal with period N is far

away from being “good”.

The input sequence design problem based on a deterministic approach often has

some constraints on the input signals, such that the signals can only be taken in

some ranges (usually positive values with some upper and lower bounds). For some

industrial applications, the input signals may be even more constrained, e.g., they

can only be taken from some discrete values. For all of these cases, it is impossible

to design a set of input signals that reaches both the ideal value of both design

rules. What makes the design even worse is that the only way to find the optimal
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input signals is via exhaustive search, except for some special cases. Sequences with

“good”properties according to both rules, such as Gold pair or Kasami sequence, are

only optimal for some specific applications, and not always optimal in a more general

situation such as parameter estimation of a dynamic system. Our work can be seen

as an example of designing a set of “good” input signals with perfect performance in

the second design rule, but with suboptimal performance with respect to the first

rule. Also, there may be some applications where the cross-correlation property is

much more important than the auto-correlation property, and our design can be

used to get a good performance in that kinds of applications.

Back to the goal of this chapter, to solve the optimal injection rates problem,

we will turn to the stochastic approach in the next section.

6.3 Stochastic Approach

Because of the drawbacks of the deterministic approach, we now consider the

stochastic approach. As discussed, this framework is used for most optimal in-

put design work in the system identification literature.

From the system identification literature [41], there are two design criteria for

input design. The first consideration is the input signal spectrum. [41] proposed a

criterion for the single-input single-output (SISO) case, and we extend it to multiple-

inputs single-output (MISO) and multiple-inputs multiple-outputs (MIMO) case.

Another design criterion, crest factor, quantifies the amount of input energy into

the system. Based on these two criteria, there is a design procedure to come to

achieve a compromise between them. The main novelty of this Section is we apply

this procedure to field applications with evaluation. An example for estimating

parameters in capacitance model is shown and some general discussions are made.
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6.3.1 Criterion for Injection Rate Design

For a LTI system, in the system identification literature a complete model is used

to describe the LTI system, which we are going to use for the rest of the discussion.

Consider a discrete-time LTI system, denoted as G(z) in the z-domain, with inputs

u(t), outputs y(t), and additive disturbance with spectrum σ2 |H(ejω)|2, the model

in the z-domain is expressed as

y(t) = G(z)u(t) + H(z)e(t). (6.12)

A particular model thus corresponds to specification of the functions G, H and the

probability density function (PDF) of e(t). In practice, it is very common to assume

that e(t) is Gaussian, in which case the PDF is entirely specified by its first and

second moments. The specification of (6.12) in terms of a finite number of numerical

coefficients is the most important for the purposes of system identification. That

is, the coefficients in question in model (6.12) will the same as parameters to be

determined. So we can denote the target parameters by the vector θ and have a

model description

y(t) = G(z, θ)u(t) + H(z, θ)e(t), (6.13)

The θ ranges over a subset of Rd, where d is the dimension of θ:

θ ∈ DM ⊂ Rd (6.14)

This is the parameterized LTI model for any modeling approaches.
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In [41], for prediction-error methods (PEMs), the covariance matrix of the pa-

rameter estimation Pθ can be expressed as

Pθ ∝ σ2

[
E

(
dŷ(t|θ)

dθ

)(
dŷ(t|θ)

dθ

)T
]−1

, (6.15)

where ŷ(t|θ) is the predicted value of the outputs based on the parameters. The

expression (6.15) gives a suggestive hint for the choice of input signals: choose the

outputs y(t) and corresponding inputs u(t) so that the predicted output becomes

sensitive with respect to target parameters of our interests.

In frequency domain, the asymptotic covariance matrix Pθ is given by the inverse

of average information matrix per sample, M̄ , as

M̄ ∝ σ2

∫ π

−π

G′
θ(e

jω, θ0)
[
G′

θ(e
−jω, θ0)

]T Φu(ω)

Φv(ω)
dω

+ σ2

∫ π

−π

H ′
θ(e

jω, θ0)
[
H ′

θ(e
−jω, θ0)

]T σ2

Φv(ω)
dω (6.16)

provided inputs u and e0 are independent. Here G′
θ and H ′

θ are the d× 1 gradients

of G and H . Introducing

M̃(ω) =
σ2G′

θ(e
jω, θ0) [G′

θ(e
−jω, θ0)]

T

Φv(ω)
(6.17)

Me = σ4

∫ π

−π

H ′
θ(e

jω, θ0) [H ′
θ(e

−jω, θ0)]
T

Φv(ω)
dω (6.18)

We have

M̄(Φu) =

∫ π

−π

M̃(ω)Φu(ω)dω + Me (6.19)

This expression helps us understand the influence of input spectrum to the infor-

mation matrix: to achieve a large information matrix (small covariance matrix),
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the input power should be spent at frequencies where the weight M̃(ω) is large,

that is, where the Bode plot is sensitive to parameter variations. This expression,

together with the intuitions described, help us in designing the desired input signal

spectrum. Now we extend the criterion in (6.16) to MISO and MIMO cases.

6.3.1.1 MISO case

The goal now is to extend the design criterion (6.15) and (6.16) to MISO case.

Suppose now we have M inputs, for the LTI system model, the output signal can

be expressed as

y(t) =

M∑
i=1

Gi(z, θ)ui(t) + H(z, θ)e(t) (6.20)

Because the output number is the same as in the SISO case (only one output), we

can use the same formula in time domain as in the SISO case:

Pθ ∝ σ2

[
E

(
dŷ(t|θ)

dθ

)(
dŷ(t|θ)

dθ

)T
]−1

(6.21)

In the frequency domain, the expression (6.16) needs to be slightly changed:

M̄ ∝ σ2

∫ π

−π

G′
θ(e

jω, θ0)Φu(ω) [G′
θ(e

−jω, θ0)]
H

Φv(ω)
dω

+ σ2

∫ π

−π

H ′
θ(e

jω, θ0)
[
H ′

θ(e
−jω, θ0)

]H σ2

Φv(ω)
dω (6.22)

where now G′
θ became a d × M matrix and Φu became a M × M matrix, which

are expressed as

G′
θ(e

jω) =

⎡
⎢⎢⎢⎢⎣

dG1(ejω ,θ)
dθ1

... dGM (ejω ,θ)
dθ1

...
. . .

...

dG1(ejω ,θ)
dθd

... dGM (ejω ,θ)
dθd

⎤
⎥⎥⎥⎥⎦ (6.23)
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and

Φu(ω) =

⎡
⎢⎢⎢⎢⎣

Φ11(ω) ... Φ1M (ω)

...
. . .

...

ΦM1(ω) ... ΦMM (ω)

⎤
⎥⎥⎥⎥⎦ , (6.24)

where Φij represents the cross-spectral density (CSD) function between input i and

j. Therefore the matrix Φu is the CSD matrix over inputs 1, 2, ..., M .

The expression in the frequency domain gives us a key intuition: if we want

some measurement (such as Tr
{
M̄
}
) of the information matrix to be large, we

should make the matrix Φu as diagonal as possible, that is, all cross-spectral density

function Φij should be as small as possible (ideally zero) for i �= j, which means

all inputs should be uncorrelated to each other. This perfectly matches the second

design rule described in the deterministic approach section.

6.3.1.2 MIMO case

In MIMO case, the number of outputs no longer one, so we need to derive the

expression for both time and frequency domain. For LTI model, suppose we have

N outputs, the output j can be expressed as

yj(t) =

M∑
i=1

Gij(z, θ)uij(t) + Hj(z, θ)ej(t) (6.25)

for j = 1, 2, ..., N . In this expression, we make an assumption that each output is

statistically independent of other outputs. For real physical systems, the outputs

often interfere with each other, and this is also true for the system we are trying

to characterize. The producers in the reservoir will affect each other because the

production rates of each producer will affect the bottom-hole flowing pressure on
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its well. In our work, however, we still make the independence assumption, which

will be verified via simulation data.

In this model and under the PEMs approach, the criterion (6.15) in the time

domain becomes

Pθ ∝ σ2

{
E

[
N∑

j=1

(
dŷj(t|θ)

dθ

)(
dŷj(t|θ)

dθ

)T
]}−1

. (6.26)

This is based on the independence of outputs. In the frequency domain, the criterion

(6.16) becomes

M̄ ∝
N∑

j=1

σ2

∫ π

−π

G′
j(e

jω, θ0)Φu(ω)
[
G′

j(e
−jω, θ0)

]H
Φv(ω)

dω

+ σ2

N∑
j=1

∫ π

−π

H ′
j(e

jω, θ0)
[
H ′

j(e
−jω, θ0)

]H σ2

Φv(ω)
dω (6.27)

where now G′
j(e

jω, θ0) is the same as G′
θ(e

jω, θ0) but we add the subscript j to

denote for output j, and so is the gradient of disturbance vector H ′
j(e

−jω, θ0).

The equation (6.35) has a very intuitive interpretation: the energy of desired

input signals should be concentrated on the frequencies that are very sensitive to the

target parameters (large G′
j) and small noise energy (small Φv) so that the target

parameters θ could have a better estimation. We will use this formula, together

with other considerations, and take the capacitance model as an example to design

a set of signals that fit our need.

6.3.1.3 The Crest Factor

Another consideration for input design is the input power. This is because the

covariance matrix is typically multiplied by a term that is inversely proportional
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to the input power. For practical situations, the inputs are often limited by some

upper and lower values, that is, the input signals u satisfy u ≤ u ≤ u where u and

u are defined upper and lower bounds on the signal instantaneous values. Thus a

desired property of the waveform can be defined in terms of the crest factor Cr.

For a zero-mean signal, it is

C2
r =

maxt u2(t)

limN→∞ 1
N

N∑
t=1

u2(t)

(6.28)

A good signal waveform is one that has a small factor, with a theoretic lower bound

of Cr ≥ 1, which is achieved for binary, symmetric signals.

6.3.2 A Design Procedure

The basic design rule for the input signal design is obvious now: we should design a

signal to achieve the desired input spectrum and as small a crest factor as possible

at the same time. But these properties are somewhat in conflict. A common and

easy choice [41] to achieve the desired spectrum is to pass a white Gaussian noise

through a linear filter. By choosing the filter, we can virtually design any signal

with the desired spectrum. But the problem is that: this filtered Gaussian white

noise may have a large crest factor, so input energy sent to the system remains

small. To overcome this, another common approach [41] is to simply take the sign

of the filtered signal to make it into a binary signal. This can be adjusted to any

desired binary levels. In this design, the crest factor takes the ideal value of 1,

but by taking the sign operation, the spectrum of the signal may change. In this

situation, we can however check the spectrum of the signal before using it as input

signal, to make sure it is acceptable for our need. The main novelty here is that we
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Figure 6.3: Block diagram of a system to generate the set of inputs obtained from
the rate design procedure. Note this design comes from the stochastic approach
and the signal will be different for each realization.

apply this procedure into field applications and take the state-of-the-art modeling

approach CM as a design example to evaluate this method.

This procedure can be summarized as follows:

1. Calculate the input spectrum criterion (6.27) from the data available

2. Design a filter using the criterion and pass a Gaussian white noise through

the filter

3. Pass the filtered signal to a sign operator

This diagram of this procedure is shown in Fig. 6.3.
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6.3.3 Design Example: Application to CM

We now apply the design procedure to the reservoir problem. The ranges of the

injection rates vary for different injectors, and we roughly use the average value

of historic data in some time period. The injection rates should also be upper

bounded, this is because if the injected water volume is too high, the pressure will

be very high and it may break some rock layers and create some fractures. This

should be avoided in any case. The injection rates can be as low as zero (shut-in).

Thus the injection rate ui(k) for the injector i has the following constraint:

0 ≤ ui(k) ≤ umax for k = 1, 2, ..., K, (6.29)

where K is the time period for our design and this constraint is applied to all

injectors i = 1, 2, ..., M . Besides, the injection rates should not be selected far away

from the normal operating points in order to preserve the linearity assumption.

In order to design a set of injection rates according to the CM, we need to

calculate the criterion (6.27) in advance. In CM, the system transfer function gij

between injector i and producer j is expressed as

gij(t) =
1

τij

e
−t
τij (6.30)

In the frequency domain, this becomes

Gij(e
jω) =

1√
2π(1 + jτijω)

(6.31)
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Suppose now we are interested in the interwell connectivities λij for all injector-

producer well pairs. Thus, the target parameter vector θ is:

θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Λ1

Λ2

...

ΛN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6.32)

where Λi represents the interwell connectivity related to producer i:

Λi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ1i

λ2i

...

λMi

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6.33)
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Now we can calculate the criterion (6.27) for the design of input spectrum. The

G′
j(e

jω, θ0) in (6.27) becomes

G′
j(e

jω, θ0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

...

0

1
1+jτ1jω

0 ... 0

0 1
1+jτ2jω

...
...

...
. . . 0

0 ... 0 1
1+jτMjω

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.34)

If we design a set of sequences with zero CSD function, which is easily achieved by

generating each signal independently, the criterion (6.27) becomes

M̄ ∝
∫ π

−π

diag
(

1
1+τ2

11ω2 Φ1(e
jω), ..., 1

1+τ2
MN ω2 ΦM(ejω)

)
Φv(ω)

dω + Noise Term (6.35)

Here we do not write the noise term because we focus on the injection rate design,

which affects only at the first term of this formula. According to (6.35), we need

to design the input spectrum of injector i based on the weights 1
1+τ2

i1ω2 ,...,
1

1+τ2
iN ω2 ,

which means we need to have a rough estimation of the parameters τi1,...,τiN in

advance. This makes sense because unless we know some rough characteristics on

the system, we can not design a set of optimized inputs for parameters estimation

because the optimal inputs depend on the system behavior. In field application,
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we can always have some rough estimation of the system from historical data, so it

is not unrealistic to design a set of injection rates optimized for better parameter

estimation in a reservoir.

From this interpretation, it seems that we should put the energy into as low

frequency as possible. In practice, this is not true because the performance of

stochastic approach is only guaranteed by its asymptotic property. To put it into

practice, the stochastic approach is only justified by a large data set K, and this

is usually not the case for our applications. If the daily data are available for both

injection rates and production rates, a typical practical duration for these experi-

ments is on the order of a few months. In this situation, if we put the energy of

injection rates on very low frequency components, the parameter estimation per-

formance will degrade because the injection rates will appear to be almost constant

during the time-frame chosen to observe the system.

6.3.4 Simulation Results

In our simulation, we assume the underground model is capacitance model, and

we consider the five-spot scenario with 5 injectors and four producers. The target

parameters are only the interwell connectivity weights λij between all injector-

producer well pairs, as we have described above. We use (1) a binary white sequence;

(2) sequences generated from our procedure with different cutoff frequency. The

first-order low-pass filter (LPF) is used in order to design the inputs energy at low

frequency components. The first-order LPF in the frequency domain is expressed

as

HLPF (ω) =
K

1 + jωT
(6.36)
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where K is the passband gain and T is the time constant that controls the cut-off

frequency for this filter. A larger T means a lower cut-off frequency and the signal

passing it will have more energy on the low frequency.

Fig. 6.4 shows one realization of the injection rates for two different sequences:

one is a binary white sequence and another is the filtered binary sequence with the

time constant T set to 20. The operating points of the injection rates are set to 500

bbl/day and the variations are set to plus or minus 100 bbl/day. The experiment

period is set from 60 days to 300 days with a gap of 30 days; that is, from about 2

months to 10 months.

The performance is evaluated with different experiment periods. The noise are

all set to Gaussian white noise with standard deviation 30, to simulate the noisy

environment for the data gathering and other error factors. The results are shown

in Fig. 6.5. Two different sets of system parameters, one with the τij range from 1

to 3 and another range from 10 to 15, are presented to simulate two totally different

systems. For systems with small τij , the variations on injection rates cause a nearly

instantaneous and equal change at the producer; on the other hand, the large τij

result in large attenuation and more time delay. So this simulation presents two

extreme cases which are also typical in the CM.

The results show that for these two cases, the filtered binary sequence obtained

using the discussed procedure always outperforms the binary white sequence. For

the first case (τij range from 1 to 3), the performance is similar, and this is because

when the time constant τ is small, the reservoir behaves like an all-pass filter, so

there is not much improvement for putting inputs energy into the low frequency

components. For the second case (τij range from 15 to 20), the filtered binary

sequence with T ≥ 5 outperforms white binary sequence noticeably. This is because

now the reservoir behaves like a low-pass filter, if we put the input energy into
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(a) Binary white sequence

20 40 60 80 100 120 140
0

200

400

600

Time (Day)

In
je

ct
io

n
 R

at
es

 (
b

b
l/d

ay
)

Injector 1

20 40 60 80 100 120 140
0

200

400

600

Time (Day)

In
je

ct
io

n
 R

at
es

 (
b

b
l/d

ay
)

Injector 2

20 40 60 80 100 120 140
0

200

400

600

Time (Day)

In
je

ct
io

n
 R

at
es

 (
b

b
l/d

ay
) Injector 3

20 40 60 80 100 120 140
0

200

400

600

Time (Day)

In
je

ct
io

n
 R

at
es

 (
b

b
l/d

ay
) Injector 4

20 40 60 80 100 120 140
0

200

400

600

Time (Day)

In
je

ct
io

n
 R

at
es

 (
b

b
l/d

ay
) Injector 5

(b) Filtered binary sequence by our procedure

Figure 6.4: A realization of designed injection rates used for performance evaluation.
Here we only show two cases: binary white sequence and sequence obtained by
proposed procedure with the filter parameter T = 20. The noise level is set to SNR
= 10.46 dB.

low-frequency components, a significant gain can be achieved. Another interesting

phenomenon is for the filtered binary sequence with T = 20, which performs much
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(b) Reservoir parameter τijs range from 10 to 15

Figure 6.5: Performance plot for injection rates design with different sequences.
The candidate sequences are binary white sequence and filtered binary sequence by
our procedure with different cut-off frequencies (controlled by T ). The noise level
are all set to SNR = 10.46 dB. The results are averaged on 500 realizations.

worse when the experiment period length is small. As we have described, this is
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because the performance is only guaranteed asymptotically whereas the experiment

period is too short in this case.

Here we only show the application of injection rate design scheme to CM. Follow-

ing the same procedure, we can apply this scheme on all predictive models, accord-

ing to the models we decide to use. There are also some potential applications for

the injection rate design, such as waterflooding surveillance and monitoring [58] [5].

We will discuss these possible applications in the last chapter.

6.3.5 Comparison to Deterministic Approach

To complete this chapter, we compare all discussed procedures, including both

deterministic and stochastic approaches. For the deterministic approach, we choose

the proposed inverse-repeat signal design, together with well-known Gold pair and

Kasami sequence [16]. For stochastic approach, we show the white binary sequence

and the filtered binary sequence with T = 5. All simulation settings are the same

as in the previous section. The results are shown in Fig. 6.6.

If we only compare deterministic approaches (Inverse-repeat design, Gold pair

and Kasimi sequence), the proposed inverse-repeat design almost always outper-

forms the rest otherdeterministic sequences, especially when the data length is

short or the reservoir setting τijs are small. For both approaches, the filtered bi-

nary sequence has the best performance for all cases except when data length is

very short. This means that with careful design, the stochastic approaches can

achieve better “average” performance than the deterministic approaches.

We need to note here that for stochastic approaches, the results are the“average”

performance on 500 realizations, but for deterministic approaches, the sequences

are fixed so the performance is identical for each run. In real field applications, the
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Figure 6.6: Performance plot for injection rates design with both deterministic and
stochastic approaches. The noise level are all set to SNR = 10.46 dB. For stochastic
approaches, the results are averaged on 500 realizations.

reservoir engineers need to be careful about this: the performance is only guaranteed

on the average sense, not for each realization, so when one realization of the filtered
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binary sequence is selected, one needs to examine if any value of its out-of-phase

auto-correlation or cross-correlation is large. If it is the case, one should discard

this realization and look for another realization to use.

6.4 Conclusion

In this chapter, we investigate the problem of injection rate design for parameter es-

timation. After the literature review, we first propose a new deterministic approach.

We introduce a property for a set of inverse-repeat signals, and use this property

to design a set of injection rates having zero cross-correlation with arbitrary shifts.

For the stochastic approach, we discuss two criterions: spectrum criterion and in-

put power criterion. We extend the spectrum criterion on SISO case [41] to MIMO

case, and apply a design procedure, binary filtered sequence, to field applications.

Finally, both deterministic and stochastic approaches are evaluated and compared

on capacitance model to show the superiority of the filtered binary sequence design.

117



Chapter 7

Conclusions and Future Work

7.1 Conclusions

In Chapter 2, we proposed three new predictive models. We first show a general

LTI system, and address the limitation of CM on its impulse response shape. The

FIR model was developed to release the shape of response curve between injectors

and producers. The second model, DCM, was derived by extending the concepts

of CM to dealing with more heterogeneous scenarios. When building the model,

in order to take the producer-to-producer interaction into consideration, we pro-

posed the M-ARX model to characterize this effect between producers. Finally,

we suggested using the prediction-error method to estimate the model parameters.

This often involves some non-linear optimization procedure, but the FIR and M-

ARX model possess the linear-in-the-parameter property so the optimization can

reduce to some kind of linear regression procedure, which makes the estimation

much less-computationally intensive.

In Chapter 3, we first discussed two approaches for model validation: (1) val-

idation based on its prediction ability on fresh data set; (2) validation based on
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interpretation of model parameters according to some reservoir characteristics. Fol-

lowing this, we verified all proposed models and compared them with the numer-

ical simulation data. We investigated the grey-box approach for model building

procedures, and the results were also evaluated completely. Finally, we defined a

practical metric based on prediction-errors and provided a comparative analysis of

all predictive models using this metric.

In Chapter 4, a unified linear modeling framework was proposed to integrate

all predictive models. It was shown that they all can be seen as some special cases

of a general linear model, and the transfer function of this linear model can also

be interpreted as some reservoir characteristics. Also, the relationships between

different models were easily shown under this framework.

In Chapter 5, we demonstrated a totally novel application for M-ARX model.

Comparing to other models, hen we use the model to predict the behaviors for

a producer shut-in, the number of parameters needed to be retrained by M-ARX

model is much fewer. More importantly, we showed that the shut-in performance

prediction can be achieved by using the“constrained producer”, which means setting

this producer to some constant rates (instead of shutting it in) during a period of

time. As compared to actual shut-in of a producer, this procedure keeps most of

the produced rates, which makes it much more practical when we want to evaluate

various “what if” scenarios, in particular those involving a potential shut-in of some

wells.

In Chapter 6, we first did a literature survey of the input design problem on

two different fields: system identification and channel estimation in communication

systems. Two frameworks, deterministic and stochastic approaches, are discussed.

For the deterministic approach, we proposed a new procedure for generating a set

of input signals with vanishing cross-correlation property. For stochastic approach,
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we extended the results in system identification field to MIMO case, and applied a

common procedure to field applications to generate a set of “good” injection rates.

All proposed procedures were evaluated on the capacitance model.

7.2 Future Work

For future research, the emphasis will lie on combining some automatic control

knowledge to extend the current work to waterflood management and optimization.

The following recommendations are suggested for future work:

• Most of the predictive models were only verified with synthetic simulation

data, but not on real field data. The field data, especially the production

rates, are very noisy and with many measurement errors. The linearity as-

sumption of the system and the assumption of constant bottom-hole pressure

also need to be calibrated via the field data. Besides, more field trials should

be performed to decide the parameters, such as the amplitude of variations,

the cut-off frequency and suitable time resolution of the injection patterns,

for the injection rate design experiments.

• The discussion of the predictive models focused on gross fluid production

rate (oil + water) and assumed that gas is negligible, but actually only the

oil production rates that has the important economic values. There are a

number of reference discussing the water-to-oil ratio (WOR), i.e., [38] and [54]

proposed an oil fractional-flow model to separate the oil rates from the total

liquid rates for CM. We should point out here that the model is general to all

predictive models, so it can be applied to other models directly without any

changes. More simulations and evaluations are needed for this.
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• Up to now, the injection rate design problem only focused on the parameter

estimation part, without considering waterflood management and optimiza-

tion. Actually, one of the ultimate goals for understanding the reservoir is to

help us in decision-making. Once we have a better understanding of the reser-

voir, the next step is to make some “smart” decision or changes to increase

the oil recovery. This work provides the basis for some approaches to real-

time waterflood management and optimization, and it needs to be extended

to cover these topics.

• The injection rate design concepts could be further extended to some ap-

plications of waterflood surveillance. When the injection rates are designed

to have some variations, such as piece-wise constant curves, the correlations

between injection/production rates will reveal some information about the

reservoir. The injection rates often can be scheduled and controlled auto-

matically and precisely, which means using a designed injection rate on daily

field production without disturbing the operation is feasible. Some kinds of

real-time monitoring on the waterflood conditions can be achieved by the use

of injection rate design.

• The concepts of constrained producers for performance prediction is a totally

new idea for the predictive modeling approach, and we demonstrate how to

use it to predict the future reservoir behavior when a particular producer is

shutting in, but without needing to actually shut in this producer. Up to

now, the validation was mainly based on the synthetic simulation data, and

only single producer shut-in case was discussed. Conceptually this can be

extended to multiple-producers shut-in case. This topic looks very promising

and needs more investigation and verification for further studies.
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