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Abstract

Digital video's increased popularity has been driven to a large extent by a 
urry

of recently proposed international standards (MPEG-1, MPEG-2, H.263, etc.). In

order to transmit compressed videos over a communication channel, it is required

to control the compression in the encoder such that the output data rate can

be �t within the channel constraints. The rate control scheme, which plays an

important role for improving and stabilizing the decoding and play-back quality,

is not de�ned in the standard and thus di�erent strategies can be implemented in

each encoder design. The control scheme de�ned in MPEG Test Model 5 provides

a solution with very light computational overhead. However, the results are not

always good for any given video sequence and channel rates. It is also di�cult

to adjust parameters to improve the quality without the help of some trial and

error encoding tests. Moreover, it does not control the bu�er to prevent bu�er

over
ow. Several rate-distortion (R-D) based techniques have been proposed.

The new approaches solved all these problems and generate better and more

stable results. However, these approaches are complex because they require the

R-D characteristics of the input data to be measured before making quantization

assignment decisions.

In this research, we show how the complexity of computing the R-D data can

xiii



be reduced without reducing too much the performance of the optimization proce-

dure. We propose three stages which provide successive reductions in complexity.

In the �rst stage, we propose an algorithm based on penalty functions and iter-

ative gradient search. The computational complexity is reduced because we only

need to evaluate rate and distortion functions along the search path, which is

much less than the requirement in other R-D based methods (e.g., trellis-based

approaches). Although the algorithm only converges to a local optimum solution,

our experiments show that it is close to the global optimum solution.

The second stage of the research focuses on the approximation of rate and

distortion functions, which can greatly reduce the complexity of R-D based rate

control techniques. Previous work was mainly based on statistical models, for

which it is di�cult to accurately determine the model parameters, and where the

model error may be too large to be useful for our R-D optimized rate control

algorithm. Therefore, we propose an approximation method based on computing

a few R-D points and interpolating the remaining points using spline functions.

The inter-frame dependency of R-D functions is also considered and modeled by

linear-constant functions. MPEG encoding tests show that, by using the proposed

approximated R-D functions within our gradient-based rate control scheme, the

results are very close to the ones based on the original R-D data, with only about

15% to 20% of computations.

In the �nal stage, we propose a fast algorithm suitable for real-time encoding.

The R-D optimized approach is still used in the algorithm, except that the R-D

data for those un-coded frames are predicted from the coded frames. Properties

of human visual system (HVS) are also used to enhance the visual quality. The

experimental results shows that better and more stable quality can be achieved

xiv



by our algorithm, especially when the channel rate is low (e.g., CIF format at 192

to 256 kbits per second). All our algorithms and encoding results are compatible

with standard MPEG decoders, hence the resulting encoded sequences can be

used by any MPEG decoder to achieve the improved quality.
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Chapter 1

Introduction

1.1 Signi�cance of the Research

The use of digital techniques for recording and transmitting signals has been

known to have many desirable features such as robustness and 
exibility. Recently,

after remarkable success of digital technology for audio (e.g., CD), digital video

has gained more and more attention. Compared to audio, the major problem

for video is its excessive amount of data, which makes e�cient data compression

indispensable. The e�ort for de�ning a video compression standard started in

1988, when a study group named Moving Picture Expert Group, or MPEG, was

formed [28]. The original goal for this standard was to put video programs in

the same media used by digital audio, the compact disk. Hence the data rate

was set to be the same as digital audio, about 1.5 megabits/sec. This standard,

known as MPEG-1 [21], was �nalized at the end of 1992. Many hardware and

software codecs has become available since then. Now, after quick development

of multimedia computers, the standard has been widely used to encode the video

1



clips in interactive multimedia programs. However, its original goal as a standard

for CD-Videos, which store up to 74 minutes of continuous video in VHS quality on

a compact disk, has not been achieved successfully, because, when encoding at the

standard bit-rate and resolution, its play-time is not long enough to �t a full-length

movie and its quality is not good enough to supersede the VCR. Therefore, there

are not many dedicated CD-Video players available, and most of playback devices

have been built for use with personal computers, where signi�cant CPU power

is used and large amount of main memory space is allocated as decoder bu�er.

The follow-up standard, MPEG-2 [22], which covers a wide range of applications

from current broadcast-quality video to HDTV, was also �nalized at the end of

1994. The �rst application of the new standard is for satellite broadcasting (e.g.,

DirectTV) to deliver TV programs with better quality, more channels, and better

protection from unauthorized viewing. Another application is on the Digital Video

Disc (DVD), which features at least ten times the capacity of the current standard

CD, and can store up to 133 minutes of video at 4.69 megabits/sec, and is expected

to replace current VCR tapes and Laser Disks for delivering programs and movies.

The superior features of digital video can not be realized without a good video

compressor, because playback quality is mostly determined by the encoder, where

compression settings have to be determined for video frames such that the out-

put rate of bit stream can be �tted into a data channel. Beside the quality for

each individual frame, another fact that also deteriorates the quality is that the

system sometimes may lose the synchronization and begin dropping pictures pe-

riodically, which makes the playback un-smooth. And again, the causes of the

synchronization problem are usually not in the decoder, but in the encoder. This

is because the compressed video stream is in variable-bit-rate (VBR) format due
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to the use of entropy coding, while the satellite broadcasting and CD-ROM play-

back are using constant-bit-rate (CBR) channels. (For CD-ROM playback case,

the CD-ROM drive is a slow device and data has to be read out continuously at

a �xed rate, so it is considered as a CBR channel.) Hence, memory bu�ers have

to be put between the encoder and CBR-channel to smooth out the variation,

and also between the CBR-channel and the decoder to restore the original VBR

format, as shown in Fig. 1.1. The diagram shows the case for real-time encoding

and decoding. The loss of synchronization is usually caused by bu�er over
owing.

To prevent this from happening, the bit-stream production rate in the encoder

should be regulated by a bit-rate control algorithm. The goal of bit-rate control is

to, given a video sequence, a bu�er size, and a channel rate, determine the quan-

tization settings in the encoder, such that the bu�er does not over
ow. These

constraints stem from the synchronous operation of encoder and decoder with a

constant delay in the system. A detailed description of the connection between

bu�ering and delay constraints can be found in [47]. Additional requirements are

usually added to improve the video quality given the rate and bu�er constraints,

such as optimizing the quality of each picture frame, while keeping the quality dif-

ference between consecutive frames small to potentially maintain constant quality

in playback. In the CD-ROM or DVD case, although the encoding can be done

o�-line, the bit-rate still needs to be controlled correctly to prevent the decoder

bu�er from over
owing during the real-time playback. Since the compression can

be done o�-line and only has to be done once, more computing power will be

available for the encoding, hence more sophisticated pre-analysis and optimiza-

tion algorithms will become feasible to improve and maintain the quality, which

is essential for video program or movie publishers to control the quality of their

3



encoding.
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Figure 1.1: Video encoder and decoder

Another type of application is for real-time video communication, or video

conferencing. The �rst standard for this purpose is H.261 [23], which is designed to

be used over p�64 kbits/sec channels (e.g., ISDN). A newer standard for low-bit-

rate channels (lower than 64 kbits/sec such as V.34 modem over telephone line),

H.263 [24], is also proposed and now under draft phase. These standards share

many similar building blocks with MPEG, and again, the bit-rate control scheme

plays an important role for improving and stabilizing the quality of playback.

Because of low-delay requirements in these applications, the bu�er size should

be keep small to reduce bu�er-delay, which makes the bit-rate control even more

essential.

Besides the CBR encoding, recently, the variable-bit-rate (VBR) encoding,

which is useful for transmitting videos over statistically multiplexed network (e.g.,

ATM, Ethernet, or other Internet links), has also gained more and more attention.

Potential applications include video on demand, video conference over Internet,
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wireless video phone, etc. It has been shown that when multiplexing several

video streams into a single communication link, properly designed VBR encod-

ing usually can achieve better qualities for all parties over CBR encoding, hence

e�ectively increasing the capacity of the channel [37, 55, 48, 47, 45, 6, 20].

Therefore, research aimed at improving video compression quality and e�-

ciency over a large variety of channel conditions is very important. There are two

major research topics in the area of bit-rate control, namely, (i) developing more

e�ective and generic optimization coding control strategies for any given channel

conditions, and (ii) developing more accurate and e�cient models for estimating

the rate-distortion characteristics of video sources. The second topic is necessary

to make the optimization procedures successful and computationally realizable.

In this dissertation, we address both topics. Although our �rst focus has been

mainly based on the video compression standards (MPEG-1, MPEG-2, H.261,

H.263) over CBR channels, the algorithms and models are generic and, with sim-

ple modi�cations, are applicable to more general scenarios such as VBR channels,

proprietary algorithms and some of emerging MPEG-4 schemes.

1.2 Video Compression and Rate Control

In this dissertation, we use the MPEG standard, which we now introduce brie
y

in this section, as a basis for our rate control algorithm and our experiments.

1.2.1 MPEG Encoding

We show in Fig. 1.2 a typical block diagram of an MPEG encoder. The input pic-

ture Xn is segmented into blocks of 16� 16 pixels, called the macroblocks, which
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are the basic encoding units in MPEG. Each macroblock can be a non-intra block

or an intra block. A non-intra block does not depend on any other blocks, so

the feedback path in the diagram is not used, and the value of pixels go directly

to the DCT compression unit. For an intra block, prediction is �rst formed by

using pixels in the reference frame, at the same location with a displacement by

a motion vector (also known as the motion compensated prediction). Then, pre-

dicted values are subtracted from the pixels in the current block and the results

are called prediction residue. The residue Yn is further segmented into blocks of

8� 8 pixels and transformed to the DCT domain. The resulting DCT coe�cients

are then quantized by a set of uniform quantizers, whose step sizes are determined

by a quantization table and quantization scales known as mquant's. By de�nition

in the standard, the quantization step size is proportional to the value of mquant,

except for the DC coe�cients of intra-block, whose quantization step-size is �xed.

The quantized coe�cients are then encoded by an entropy coder, where the zigzag

scanned zero-run length and Hu�man coding is used. Note that during the encod-

ing, the quantization error, or distortion d, can be calculated in the quantization

stage, and the code-length r can be calculated in the entropy coding stage, as

indicated in the �gure.

The intra/non-intra selection strategy is not de�ned in the standard, but there

are some constraints according to di�erent types of picture frames. Three frame

types are de�ned in MPEG, known as I, P, and B. In I (intra) frames, all the mac-

roblocks should be coded as intra block, i.e., they are compressed without using

the information from any other frames. In P (predicted) frames, each macroblock

can be coded as intra block or non-intra block. In B (bi-directionally interpolated)

frames, each macroblock can be coded as an intra-block, with forward prediction
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Figure 1.2: Typical encoder block diagram

only, with backward prediction only, or as a bi-directionally interpolated block.

Fig. 1.3 shows a typical frame con�guration and their dependencies. The set of

pictures is called group of pictures (GOP). Note that in order to decode a B

frame, the information from its future P or I frame is required, therefore those P

or I frames have to be encoded and transmitted before their previous B frames.

More details of MPEG encoding can be found in [28, 19, 38] and in the standard

documents [21, 22].

In Fig. 1.2, two parameters have to be supplied for each macroblock in order to

complete the encoding, namely, motion vector and quantization scale. The motion

vector is calculated by a motion estimation algorithm, and the quantization scale is

determined by a bit-rate control algorithm. These two algorithms are not speci�ed
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Figure 1.3: Typical frame con�guration in a group of pictures (GOP)

in the standard and are often considered as key components to the encoding speed

and quality. The study of the motion estimation algorithm is out the scope of

this dissertation. We will focus on the bit-rate control algorithm in this research.

1.2.2 Bit-Rate Control

In MPEG, the value of mquant assigned for each macroblock determines the

quantization step-size, and hence controls the rate-distortion trade-o�. The per-

missible values for mquant are integers from 1 to 31. The objective of bit-rate

control is to determine mquant for each macroblock to keep the output bit-rate

within the rate and bu�er constraints while maintaining good and stable quality.

Depending upon the types of communication channel to be used, the bit-rate

control can be designed for variable-bit-rate (VBR) encoding or constant-bit-rate

(CBR) encoding. Earlier VBR encoders, e.g. [39], simply use a constant value for

mquant's to encode the entire video. Because there is no control over bit-rate,

the only application is for computer-based playback where very large bu�er (main

memory) and fast channel (hard drive) are available. The second type of VBR
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encoder is targeted for the ATM networks, where it is often necessary to regulate

the bit-rate in order to comply with some constraints imposed by the network [2].

The last type, CBR encoder, can be used for CD-ROM or DVD devices or other

dedicated constant rate channels such as ISDN or satellite broadcast channels. In

this dissertation, we concentrate in the case of constant bit rate (CBR) encoding.

Transmission over variable bit rate (VBR) channels may also require a rate control

strategy to allow synchronous operation of encoder and decoder [47, 6, 20] and

some of our results could be extended to VBR transmission.

Fig. 1.4 shows a VBR to CBR conversion through bu�ering. The memory

bu�er is used to smooth out the bit-rate variations. These bit-rate variations not

only depend on the image contents, but also depend on di�erent frame types, i.e.,

at a similar quantization setting and quality level an I frame generates more bits

than a P or B frame. A bu�er has also to be put at the decoder so that the video

can playback synchronously, since the information received at constant rate is

read by the decoder at variable rate [47]. The rate control mechanism is required

for determining the quantization settings for each block such that the encoder

bu�er does not over
ow, or equivalently, the decoder bu�er does not under
ow.

Buffer
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Figure 1.4: VBR to CBR conversion

We can classify bit-rate control schemes into two major classes depending
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on whether they are based on prediction or pre-analysis. In predictive control

schemes, rate allocation decisions are based on current information such as the

bu�er state or the expected rate for future blocks. Examples include direct bu�er-

state feedback methods where the bu�er occupancy determines the quantization

setting [4]. These methods may su�er in performance if the assumptions, which

may be based on a particular type of sequence or scene, do not hold. Moreover,

most predictive methods su�er from degradation at scene changes since they oper-

ate based on a model that is no longer valid. The advantages of these approaches

are low computational complexity and low delay at the bit-rate control stage,

thus making them suitable for real-time communication environments such as

video conferencing.

The second class of bit-rate control schemes is based on pre-analysis, in which

the choice of mquant can depend on future macroblocks or frames which are read

and cached in the encoder. The schemes are usually called delay-decision control

schemes because the pre-analysis causes additional delay in the rate control stage.

The encoding quality is usually better than that of predictive scheme. Some meth-

ods have been proposed which are based on a single-frame pre-analysis, including

the works in [26, 18, 59, 13]. Other schemes are based on rate-distortion opti-

mization techniques. Their goal is to meet the constraint of over
ow prevention

while maximizing the video quality. Methods based on Lagrangian optimization

[58, 8, 46, 31, 27] or dynamic programming [43] have been considered. These

methods typically rely on much more intensive pre-analysis, usually over an en-

tire GOP, to measure the rate-distortion characteristics. If frame dependencies

are taken into account [46] the complexity can become very high making some of

these methods only suitable for o�-line encoding.
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A detailed review of the various classes of bit-rate control schemes will be

presented in Chapter 2.

1.3 Outline of the Dissertation

In this dissertation, our objective is to develop new rate control techniques which

give good and stable quality, with reasonable computation complexity for practical

applications. In Chapter 2, we survey several previous works on the rate control

problem, ranging from low-complexity MPEG Test Model 5 (TM5) algorithm

to high-complexity pre-analysis-based optimization algorithms. Although low-

complexity methods such as TM5 can give a reasonable result for some video

sequences at some range of channel rates, they usually require \manual tweaking"

on the control parameters to achieve good result for a speci�c selection of video

sequence and channel rate. Therefore, we consider techniques motivated by rate-

distortion criteria within a delayed-decision pre-analysis optimization framework.

With the optimization mechanism, our techniques can automatically adapt to any

given video sequence and channel rate without any manual intervention.

Because the major disadvantage of these optimization-based approaches is high

computational cost, our �rst step is to reduce computation requirements to a level

where practical implementation is possible. To achieve this goal, we develop a new

bu�er control technique which uses penalty functions and iterative gradient search

techniques for solving the optimization problem. The computations are reduced

because, instead of measuring R-D data on all possible quantization settings, we

only measure the data along the search path. Note that because the cost function

is not perfectly smooth, the solution may be trapped in a local optimum point

11



during search process. However, we have veri�ed that the solution is in general

still close to the optimal point achievable through exhaustive search. A detailed

description of the algorithm and experimental results is presented in Chapter 3.

In the second step, we introduce a new approximation model to reduce com-

putation complexity by avoiding the need to measure the R-D data on all possible

settings. The models we propose are better suited to rate-distortion optimization

in realistic video coding scenarios, because they (i) make relatively few assump-

tions on the shape of the R-D characteristics and are thus suited when operating

with a small number of quantizers and (ii) take into account the dependencies

typical of video coding. These models are based on computing a few R-D points

and interpolating the remaining points using spline functions. Compared to other

models, e.g. those based on exponential R-D functions, ours provide better ap-

proximation in terms of model errors. The price to pay for the increased accuracy

is a somewhat higher complexity. We apply our models to the gradient-based

method and show that, with only about 15% of computation cost, we can achieve

performance close to that obtained with the actual R-D data. The approximation

model and its application are presented in Chapter 4.

In the third step, based on our rate-distortion approximation scheme, we pro-

pose a new fast algorithm with only one frame of delay. The algorithm combines

the simplicity of a predictive control scheme, such as the one de�ned in the MPEG

Test Model 5, and our rate-distortion optimization approach, using the predicted

rate-distortion characteristics. Simulation results show that both the PSNR and

the stability of the quality are improved. We then re-con�gure the algorithm for

optimizing the visual quality instead of PSNR, and achieve signi�cant improve-

ment on the quality over MPEG Test Model 5, especially when the channel rate is
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limited. In Chapter 5, we introduce this fast bit-rate control scheme and present

several experimental results.

Finally, concluding remarks and future extensions are stated in Chapter 6.

1.4 Summary of Contributions

The following contributions have been made in this dissertation.

� A thorough survey has been made for the bit-rate control algorithms, from

fast predictive control schemes to computation intensive deterministic rate-

distortion optimal control schemes.

� We have studied and analyzed the MPEG TM5 algorithm, focusing on its

assumptions, e�ects of parameter choices, and performance.

� We have proposed a new bit-rate control algorithm based on gradient search,

and achieved nearly optimum solution with less computation complexity

compared to other deterministic optimum control schemes.

� We have proposed a new approximation model for the rate and distortion

characteristics. In the model, the intra-frame R-D data is approximated

by spline interpolation functions, and inter-frame dependency is modeled

by a linear-constant function. Extensive model compliance tests have been

carried out.

� Based on the original gradient-based bit-rate control algorithm and the new

proposed R-D approximation model, we have proposed a new algorithm

which achieves a solution similar to the results from the original method,

with only about 15% of computations.
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� We have proposed a new fast bit-rate control algorithm, with only one frame

delayed for pre-analysis. Compared to TM5, the method gives more stable

quality with only small amount of computation overhead (several additional

quantization and encoding operations for each frame).

� Based on our fast algorithm, we propose a scheme to optimize the visual

quality using pre-�ltering and block-classi�cation procedures. The side-by-

side playback comparison with TM5 shows that our encoding algorithm

gives better and more stable quality, especially at lower bit-rate where the

impact of rate control scheme is more signi�cant.

� We have implemented all our new methods in standard MPEG format. All

the encoded video were compatible with any standard MPEG player. Fur-

thermore, they could be easily adapted to be used within a H.261, H.263,

and other video coding standards.
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Chapter 2

Bit-Rate Control Techniques

2.1 Introduction

As mentioned in the previous chapter, we can classify bit rate control schemes

into two major classes depending on whether they are based on prediction or

pre-analysis. In predictive control schemes, the quantization settings for each

macroblock only depends on the current macroblock and all the previous en-

coded macroblocks. In the second class, delayed-decision pre-analysis control

schemes, the quantization settings can be dependent on future macroblocks or

future frames. Depending on the number of frames delayed for pre-analysis, these

delayed-decision schemes can be further categorized into either single or multiple

(usually an entire group of picture) frame delay.

In this chapter, we review the existing bit-rate control schemes. In Section 2.2

we review general ideas of predictive rate control scheme. In Section 2.3 we review

and analyze MPEG Test Model 5 (TM5) algorithm, which was originally presented

in MPEG Test Model documents [51, 40]. The results from TM5 algorithm will be
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used extensively throughout this dissertation as references1. In Section 2.4 we re-

view some delayed-decision control schemes which are based on the rate-distortion

optimization. And �nally, in Section 2.5 we review and evaluate previous works

on the approximation models for rate-distortion characteristics.

2.2 Predictive Bit-Rate Control Scheme

As introduced in the previous chapter, for MPEG encoding, the basic compression

unit is a 16�16 macroblock and the bit-rate is controlled by the value of mquant

assigned to each macroblock. The possible value for mquant is an integer number

between 1 and 31. The simplest way to control the compression is to use bu�er

occupancy level to determine the value of mquant for the next block, as shown in

Fig. 2.1. The method is also known as direct bu�er-state feedback scheme.

Buffer 
OccupancyQ

Mapping
Function

Entropy
Encoder

Quantizer
Prediction

and
Transform

Buffer

Figure 2.1: Direct Bu�er-State Feedback Control Scheme

In our formulation, the following notations are used.

1Although better methods are available in commercial systems, TM5 is representative of fast

and simple rate control approaches
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R : channel rate in bits per second.

F : frame rate in frames per second.

Mb : total number of macroblocks in a frame.

rb : channel rate in bits per block, i.e., rb = R=(F �Mb).

i : index to a macroblock.

qi : value of mquant assigned to the block i, where

qi 2 f1; 2; : : : ; 31g; 8i = 1 : : :Mb:

ri : number of bits generated by the block i. Note that the value of ri

depends on qi, and may also depends on the reference frame if it is a

non-intra block.

b(i) : bu�er occupancy (in bits) after the ith block is coded.

The bu�er occupancy after block i is coded can be calculated by

b(0) = b0; b(i) = max(b(i� 1) + ri � rb; 0) ; (2.1)

where b0 represents the initial bu�er occupancy. Note that the max function is

used in (2.1) because a negative value of bu�er occupancy does not have any

physical meaning, and we can simply add padding bits into the bit stream when

the bu�er is under
owing. A typical controller which maps the bu�er occupancy
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into quantization setting q could be

qi+1 =

8>>>>>><
>>>>>>:

1; b(i) � 0:2bmax;

50 � b(i)=bmax � 9; 0:2bmax < b(i) < 0:8bmax;

31; b(i) � 0:8bmax;

(2.2)

where bmax is the bu�er size, and qi+1 will be rounded to an integer and used as

mquant for the next block. The mapping function is shown in Fig. 2.2. This map-

ping provides a negative feedback mechanism because when the bu�er occupancy

becomes higher, the mquant also becomes larger and thus reduces the output

bit-rate and decreases the bu�er occupancy. Other types of mapping functions

were also proposed in previous works. For example, in [10], an S-shaped mapping

function was used in the controller. Note that in the mapping (2.2), the e�ective

control range for the bu�er occupancy is con�ned to be within 20% to 80% of

bu�er fullness, so that the probability of bu�er over
ow and under
ow can be

lower. If the bu�er is under
owing, we can simply add padding bits. On the

other hand, if the bu�er is over
owing, the only thing we can do is to drop blocks,

which will severely degrade the output quality. Because the control is done at

macroblock level, thus can be labeled a Local Control scheme.

There are many disadvantages in the above feedback control scheme. The �rst

problem is caused by the use of Local Control, which may cause quality varying

within a frame. The problem can be solved if we can control bit-rate at frame level

by using a single control parameter for each frame (also known as Global Control),

and leave the value of mquant's in a frame to be either constant or adaptively

adjusted in a way (independent of rate control) aimed at improving visual quality.

However, this approach usually increases quality variation between consecutive
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Figure 2.2: A typical mapping function which maps a bu�er fullness to a quanti-
zation scale. The bu�er fullness of 1 means full bu�er, or bmax in the formulation.

frames and also increases the probability of bu�er under
ow and over
ow, thus

making the control of bit-rate more di�cult. Hence, it is not practical unless

a rate-distortion optimization control approach is introduced (see Section 2.4).

Another approach for reducing quality variations is to add a control stage to

damp the change of mquant, for example, by de�ning

q0i = qi + � � (qi�1 � qi) ; 0 < � < 1; (2.3)

and using q0i as mquant instead of qi. By slowing down the variation of mquant,

we not only get a more uniform quality, but also reduce the coding overhead for

mquant, which requires 5 bits for each change in value (see [42], which addresses

optimum allocation when the overhead is important). Unfortunately, the new

controller will also decrease the control on rate and increase the probability of

bu�er under
ow and over
ow. The work in [4] is intended to cope with this
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problem. Other works suggested a non-linear mapping function in the controller,

which was adopted by MPEG-2 standard by providing an optional mapping from

mquant (now between 1 and 62) to quantization step-size (still 31 di�erent choices)

[22].

However, the most obvious disadvantage in the above approach is that the

di�erent properties of I, P, B frames are not considered. The feedback mecha-

nism tends to decrease bit-rate for I frames and increase bit-rate for B frames,

which usually decrease the overall quality. The �rst practical control algorithm

for MPEG which takes the di�erence of I, P, B into account is presented in an

MPEG test model speci�cation and is often referred to as Test Model 5 (TM5)

algorithm [40]. The algorithm is described in the next section.

2.3 MPEG Test Model 5 Algorithm

The TM5 algorithm is based on the direct bu�er-state feedback method, with

modi�cations to take into account the di�erence between frame types (I, P, B)

and keep the quality at a similar level for all frames. The algorithm uses a two-

step control approach, with a Global Control which calculates a control parameter

q (quantization scale) at frame level, followed by a Local Control which determines

mquant for each macroblock based on both q and bu�er fullness. To explain how

the algorithm controls the \frame quality", we use mean squared error (MSE) for

quality measurement, de�ned as

d =
1

H �W
�

HX
x=1

WX
y=1

(v(x; y)� v̂(x; y))2 ; (2.4)
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where v(i; j) is the pixel value of the original image, v̂(i; j) is the pixel value of the

quantized image, and H and W are the height and width of the image respectively.

2.3.1 Assumptions on R-D Characteristics

The following assumptions on the rate and distortion characteristics of frames

were made to keep the algorithm simple.

1. The distortion d increases linearly with quantization scales. The rate of

increase (or slope) for di�erent frame types is di�erent, as shown in Fig. 2.3.

2. In order to achieve the same distortion for di�erent frame types, the values

of quantization scales, denoted as qI, qP , qB for each frame-type respectively,

should be kept at a constant ratio, i.e.,

qI

1
=

qP

kP
=

qB

kB
(2.5)

where kP and kB (known as q-ratio parameters) are constants.

3. The total code-length of a frame, denoted as r, is inversely proportional to

the distortion d, i.e., r � d = constant.

Based on the �rst and third assumptions, we have r � q = constant. Thus we

can de�ne a frame activity (or complexity) for each frame type as

AI = rI � qI;

AP = rP � qP=kP ;

AB = rB � qB=kB;

(2.6)
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Figure 2.3: Ideal distortion-quantization curves of I, P, B frames in TM5. At the
same distortion level, the ratios between qI, qP , and qB are �xed.

where rI , rP , and rB are the frame code-length for each frame type, and kP and

kB are used compensate the di�erence between I, P, B frame types, based on the

second assumption. Note that, because the value of mquant can be changed for

di�erent macroblocks, the values of quantization scales (qI, qP , qB) in (2.5) and

(2.6) have to be de�ned as the average of mquant's over all macroblocks in a

frame.

2.3.2 Control Procedures

Global Bit Allocation

In TM5, a Group of Pictures (GOP) is considered as a basic unit for rate control.

The bit allocation is made in such a way that the number of bits assigned for a

frame is proportional to its activity measure in (2.6), and the total number of bits

assigned to the GOP meets the bit budget. Note that in the predictive encoding

model, the frame activity of a future frame is not known until it is coded, and
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thus the activity of the previous frame of the same type is used instead. Let the

numbers of I, P, B frames in a GOP be NI , NP , NB, respectively. For example,

for a GOP with structure like that of Fig. 1.3, NI = 1, NP = 3, and NB = 8. The

total bit budget, denoted as B, is

B = B0 + (NI +NP +NB) �
R

F
; (2.7)

where B0 is the number of bits left (or over-used if it is negative) from the previous

GOP, R is channel rate in bits per second, and F is frame rate in frames per

second. Then, the target number of bits for each frame type, denoted as TI, TP ,

and TB respectively, can be derived by solving the following set of equations,

8>><
>>:
TI=AI = TP=AP = TB=AB

NITI +NPTP +NBTB = B:

(2.8)

The solution is

TI =
B

NI +NP �AP=AI +NB �AB=AI

; (2.9)

TP =
B

Ni �AI=AP +NP +NB �AB=AP

; (2.10)

TB =
B

Ni �AI=AB +NP �AP=AB +NB

: (2.11)

The target bit-budget of a frame is then used for the next two steps described

in the following sub-sections. The actual code-length generated by the frame is

usually di�erent from the target bit-budget, and thus after a frame is coded, the

total bit budget B is updated by subtracting the bits actually consumed by the

coded frame, and one of the NI , NP , NB is decreased by one (depending on the
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frame type of the coded frame) to re
ect the number of frames left for encoding

in the GOP. Then, equation (2.8) is re-calculated to get a new target bit-budget

for the next frame. Also, because the activity is measured from the previously

encoded frames, the values of AI , AP , or AB in (2.8) are also measured and

updated for future use, based on the new available data after a frame of a given

type has been encoded.

Local Rate Control

After the bit-budget for a frame is determined, a direct bu�er-state feedback

technique is used to monitor the code-length and determine quantization scale for

each macroblock. Suppose there are Mb macroblocks in a frame, the number of

bits per macroblock is

cI = TI=Mb;

cP = TP=Mb;

cB = TB=Mb;

(2.12)

where the subscript denotes the frame type. To take into account the di�erence

between frame types, three virtual bu�ers are used. By using i (i = 1 : : :Mb) to

index the macroblocks, the occupancy for the three virtual bu�ers can be derived

as

bI(i) = bI(i� 1) + ri � cI ;

bP (i) = bP (i� 1) + ri � cP ;

bB(i) = bB(i� 1) + ri � cB;

(2.13)

where ri is the code-length of ith macroblock, and the initial bu�er occupancy is

carried over from the previous frame. Then, a simple scaling is used to map the
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bu�er occupancy into q (global quantization scale),

qi =

8>>>>>><
>>>>>>:

31 � g � bI(i)

31 � g � bP (i)

31 � g � bB(i)

(2.14)

where the parameter g determines the gain of controller.

Adaptive Quantization

The global quantization scale qi from the rate control stage is ready to be used to

quantize the macroblock, but in TM5 it is weighted further by a \block activity"

factor. The block variance of the original pixel values is used to measure the block

activity, denoted as xi for the ith block. To reduce the weighting for macroblocks

that contain an edge, for which higher quality is usually preferred, the variances

of the four 8 � 8 blocks, denoted as �2imn, m;n = 1; 2, are calculated separately,

and then the minimum among them is picked, so that the block activity is

xi = 1 +min(�2i11; �
2
i12; �

2
i21; �

2
i22): (2.15)

Then, the scaling factor is calculated by the following non-linear mapping,

si =
2 � xi + x

xi + 2 � x
; (2.16)

where x is the average of xi over an entire frame, calculated from the previous

frame. After this mapping, the range of si is con�ned in between 0:5 and 2, as

shown in Fig. 2.4. Finally, the value si �qi (rounded to the nearest integer between
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1 and 31) is used as mquant to quantize the macroblock. The purpose of this

adaptive quantization scheme is to re-distribute the bits from high activity blocks

to low activity blocks, so that bits for all blocks are somewhat equalized, which

e�ectively reduce chance of bu�er over
ow. This mapping also gives more bits to

the smoother areas in the picture frame and less bits to the texture areas, thus

tending to preserve the quality of smoother areas.
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Figure 2.4: Nonlinear mapping function for adaptive quantization.

2.3.3 Problems in TM5 Algorithm

There are several problems in the TM5 algorithm:

1. The basic assumptions on the R-D characteristics may not be met in prac-

tice. To examine the compliance of the assumptions, we repeatedly encode

the same frame with di�erent type (I, P, and B) using the 31 quantization

scales (all the macroblocks use the same quantization in each encoding).

26



The resulting distortion curves are shown in Fig. 2.5, and the frame activ-

ities in Fig. 2.6. From the �gures, we see that the Football sequence (high

activity) is closer to the assumptions than the Miss America sequence (low

activity). In general, the error can be somewhat large for particular video

sequences.
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Figure 2.5: Distortion as function of q for the three frame type, measured from
(a) Football and (b) Miss America.

5 10 15 20 25 30
0

1

2

3

4

5

6

7
x 10

5

q

q 
* 

ra
te

(a)

5 10 15 20 25 30
0

1

2

3

4

5

6

7
x 10

5

q

q 
* 

ra
te

(b)

Figure 2.6: \Activity" of a frame in (a) Football and (b) Miss America, computed
by multiplying the code-length and the quantization scales.
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2. There are several parameters that need to be speci�ed in the algorithm.

The ratio parameters, kP and kB in (2.5), specify the relative slope of the

distortion-quantization function between di�erent frame type. It directly

a�ects the relative output quality between di�erent frame types. The values

suggested in [40] are kP = 1:0 and kB = 1:4, which are also used in the

Software Simulation Group's codec implementation [41]. To evaluate the

e�ect of the parameters, we repeatedly encode the Football sequence with

many di�erent settings of kP and kB. The average distortion (MSE) of a

GOP is shown in Fig. 2.7. The �gure shows that the minimum distortion

actually occurs around kP = 1:2 and kB = 1:7. Other experiments show

that the optimum values of kP and kB depend on the content of video.

One possible enhancement is to �nd a better way to determine the ratio

parameter (kP , kB) rather then just use constant values, as suggested in [25].

Another parameter, the controller gain g in (2.14), determines the mapping

between the bu�er occupancy and the quantization scales. A larger value

can reduce the transition time during scene changes but could also make

the system become unstable, i.e., oscillating between good and bad quality.

In TM5 document, the suggested value of g is 0:5 � (R=F ). Although the

values of kP , kB and g can be properly tuned for a speci�c video clip in order

to achieve good and stable results, it is di�cult to �nd and use a single set

of parameters to achieve good results for all video sequences.

3. The algorithm does not include a mechanism to prevent bu�er over
ow.

As shown in (2.13), three virtual bu�ers, one for each frame type, are used

instead of a single real bu�er. Hence, the real bu�er fullness is not monitored
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Figure 2.7: Average distortion (MSE) as a function of kP and kB, measured from
a GOP of Football sequence. The minimum distortion is occurred at kP = 1:2
and kB = 1:7

and the control may fail, especially when the bu�er size is small.

4. The algorithm cannot handle scene changes well. This is due to the \pre-

dictive" requirement that the encoding cannot depend on the future blocks,

and thus the average block activity in (2.16) and frame activities in (2.6)

are all measured from previous frames, which might be quite di�erent from

current frame, especially after a scene change.

Many control schemes have been proposed to cope with these problems. Some

of them are based on pre-analyzing the rate-distortion characteristics of the input

sequence and then calculating the best choice of quantization settings which opti-

mize the quality. One important feature of these schemes is that they make very

few assumptions on the rate-distortion characteristics, therefore, in theory, they

can be applied equally well to virtually all video sequences and channel rates. In

the next section, we review some previous work on these schemes.

29



2.4 Delayed-Decision Bit-Rate Control

In delayed-decision rate control schemes, one or several frames are read and ana-

lyzed before the decision for q is made. These schemes usually give better quality

through the use of pre-analysis. Most of the recent research activities on bit-rate

control belong to this category. In most cases the pre-analysis is based either on

one frame or on a GOP.

For the single-frame delay case, the TM5 algorithm can be directly improved

by measuring the frame and block activities from the current frame before it is

encoded, rather than from previously coded frames. Another TM5-based method

proposed in [26] uses a constant q to quantize and encode all the macroblocks

in the frame to get a bit-usage pro�le, and then uses the pro�le during the real

encoding phase to get better prediction and control on the rate. Another method

proposed in [18] measures the entropy and uses it to predict the bits at macroblock

level to, again, get better control on the rate.

A common problem of these algorithms is that, the quality, or the distortion,

is not measured and controlled explicitly. To cope with this problem, another

class of rate control methods have been proposed which take the distortion into

account. The goal of these methods is to determine the best achievable quality

for a given channel rate and bu�er size, if the entire video sequence or part of its

\future frames" are known in advance. Fig. 2.8 shows a typical block diagram

of these rate-distortion based control techniques. The solution found by these

techniques can be used as a benchmark for other rate control algorithms. In this

section, we present surveys of these techniques.
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Figure 2.8: Rate-distortion based control scheme

2.4.1 Lagrange Multiplier Techniques

We �rst consider the case where the blocks are assumed to be coded independently,

and where the bu�er size is in�nite (no bu�er constraints). The independence of

quantization means that the quantization setting for a given block does not a�ect

any of the other blocks. The size of a \block" can be a macroblock in a Local

Control case, or a frame in a Global Control case. In this section, we use Local

Control as an example, and use the same notations as de�ned in Section 2.2, i.e.,

R denotes the channel rate in bits per second, F denotes the frame rate in frames

per second, Mb denotes the total number of blocks in a frame, i denotes the index

to a macroblock, and qi denotes the value of mquant assigned to the block i where

qi 2 f1; 2; : : : ; 31g; 8i = 1 : : :Mb:

The rate and distortion of a block are then de�ned as below.
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ri(qi) : number of bits generated for block i, when qi is used to encode the

block. We refer to this as a \rate-quantization function".

di(qi) : distortion introduced by the quantization of block i, when qi is used

to encode the block. Any kind of meaningful distortion measure can

be used here, including the MSE de�ned in (2.4) We refer to this as a

\distortion-quantization function".

The rate-control problem is to determine qi, i = 1; 2; : : : ;Mb, for all blocks

such that the total distortion is minimized and the total number of bits does

not exceed the total budget B = R=F (assuming that the basic control unit is a

frame).

Formulation 2.1 Independent Block Coding without Bu�er Constraints:

Determine qi, i = 1; 2; : : : ;Mb to

minimize
MbX
i=1

di(qi); subject to
MbX
i=1

ri(qi) � B: (2.17)

The problem can be solved using the standard method of Lagrange multipliers,

based on the following theorem.

Theorem 2.1 Lagrange Multiplier Method

If a set of q�i , i = 1; 2; : : : ;Mb minimize the following set of expressions for a given

�,

di(qi) + � � ri(qi); i = 1; 2; : : : ;Mb; (2.18)

then it is also a solution of Formulation 2.1 for a given B equal to

B0(�) =
MbX
i=1

ri(q
�

i ): (2.19)
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Theorem 2.1 is valid in both continuous space (where qi takes a continuous

range of values) and discrete space (where qi only de�ned in some discrete values,

as in the MPEG case, where the qi's are integers between 1 and 31). A proof of

this theorem can be found in Chapter 14 of [36] for the continuous case, and in

[15] for the discrete case. To �nd a solution of Formulation 2.1, we search for a �

in (2.18), such that B0(�) meets the speci�ed value of B. The search can be done

by the following bisection method.

Algorithm 2.1 Lagrange Multiplier Method with Bisection Search

Step 1. Make an initial guess on �1 and �2, with �1 < �2.

Step 2. Substitute �1 into (2.18) and minimize the expression to derive q�i , i =

1; 2; : : : ;Mb. Substitute q
�

i into (2.19) to get B0(�1).

Step 3. Follow the same procedure as in Step 2 for �2 to get B0(�2).

Step 4. If [B0(�1)�B] � [B0(�2)�B] > 0, i.e, the solution does not fall in

between the two initial guess values, go to Step 1 and make another

guess. Otherwise, continue to the next step.

Step 5. Let �m = (�1 + �2)=2.

Step 6. Follow the same procedure as in Step 2 for �m to get q�i , i = 1; 2; : : : ;Mb

and B0(�m).

Step 7. If [B0(�1)�B] � [B0(�m)�B] < 0, substitute �2 by �m, otherwise, sub-

stitute �1 by �m.

Step 8. Check if �����B
0(�m)�B

B

����� < �;
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where � is a preset small number. If it is true, the optimization is done

and the solution is q�i , i = 1; 2; : : : ;Mb. Otherwise, go to Step 5 for

another iteration.

In addition to bisection search, other iterative algorithms for solving nonlinear

equations (see Chapter 6 of [12]) can also be used for searching the solution.

For the case where qi's are discrete and �nite, a fast search algorithm has been

proposed in [50]. Note that in the Lagrange MultiplierMethod, all input data have

to be collected (for calculating r-q and d-q functions) before any real encoding

can take place. A method which used sliding-window to shorten the delay based

on constant slope optimization algorithm has been proposed in [43].

The computational complexity of Algorithm 2.1 is relatively low because of the

assumption of independent quantization, which allows both the R-D measurement

and the minimization of (2.18) to be done independently for each block. However,

this assumption is not met by an MPEG encoding scheme where rate-distortion

values for a given frame depend on previously quantized frames. Therefore, the

algorithm can not be applied to MPEG directly. In Chapter 4 and Chapter 5, we

still �nd this algorithm useful in our fast algorithm after the coding dependency

is removed.

Note that the Lagrange multiplier � can also be used as a control parameter

instead of q in the bu�er state feedback control scheme [8].

2.4.2 Trellis-Based Techniques

Now we consider constraints from the �nite bu�er size, and still assume that the

blocks are independently coded. The same notation as in the previous section is
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used. The bu�er occupancy is still calculated by (2.1), but considering the fact

that the bu�er occupancy after block i is coded depends on all the quantization

settings prior and up to the block i, a more accurate expression would be

b(i; q1; q2; : : : ; qi) = max(b(i� 1; q1; q2; : : : ; qi�1) + ri(qi)� rb; 0) ; (2.20)

with a given initial bu�er occupancy b(0). Again, as in (2.1), the max function

is used to represent the bu�er under
ow case, where padding bits are appended.

Because the value of bu�er occupancy after block i is coded also depends on q's for

the previous blocks, it is no longer possible to optimize each block independently.

Formulation 2.2 Independent Block Coding with Bu�er Constraints:

Determine qi, i = 1; 2; : : : ;Mb to

minimize
MbX
i=1

di(qi); (2.21)

subject to b(i; q1; q2; : : : ; qi) < bmax; i = 1; 2; : : : ;Mb; (2.22)

where bmax is the bu�er size.

There are multiple constraints in this formulation. It is still possible to solve

the problem with multi-dimensional Lagrange multiplier [6], but it would become

too complex in both the formulation and the calculation at a higher dimension.

A method based on a forward dynamic programming approach known as Viterbi

algorithm has been proposed in [43] to solve this problem. The �rst step in the

algorithm is to build a special trellis graph. The trellis consists of several stages,

with each stage corresponding to a block to be coded. A node in a stage is

de�ned as a particular bu�er occupancy after the block corresponding to that
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stage is coded. With these de�nitions, the branches, which connect nodes from

stage i to stage i+ 1, are grown for every node in stage i and for every possible

quantization setting for block i. The cost for each branch is then de�ned as the

distortion produced with the corresponding quantization setting. The problem

becomes to �nd a path in the trellis graph that has smallest total cost, which

can be solved by dynamic programming techniques. The bu�er constraints are

satis�ed by \pruning" all the branches which violate the constraints during the

growth of the trellis. By this algorithm, the true global optimum solution can

be found. However, the number of nodes could grow rapidly with the number of

stages, which contributes the increase of both the computational complexity and

the memory requirement. Several techniques have also been proposed to reduce

the complexity, including the use of bu�er state clustering, sliding window, and a

fast approximation using a Lagrange multiplier method. These techniques result

in a sub-optimum solution which is very close to the global one [43].

2.4.3 Techniques for Dependent Quantization

In the previous two formulations, we assumed that the blocks are coded indepen-

dently, which is not true for most video compression schemes, including MPEG,

where predictive coding is used. In the following formulation, we assume the cod-

ing unit is a frame, and prediction between consecutive frames is used for coding

(e.g. a IPPPP... structure in MPEG). Suppose there are N frames, and quanti-

zation scales qi, i = 1; 2; : : : ; N are assigned to each frame, respectively. Because

of dependency, the number of bits generated by frame i becomes ri(q1; q2; : : : ; qi),

and distortion becomes di(q1; q2; : : : ; qi). In the following formulation, we ignore

the bu�er constraints. Suppose the channel rate is R bits per second and the frame
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rate is F frames per second, the total bits available for N frames are B = N �R=F .

Formulation 2.3 Dependent Frame Coding without Bu�er Constraints:

Determine qi, i = 1; 2; : : : ; N to

minimize
NX
i=1

di(q1; q2; : : : ; qi); subject to
NX
i=1

ri(q1; q2; : : : ; qi) � B: (2.23)

A theorem similar to Theorem 2.1 also holds, except that the cost function for

each frame can no longer be minimized independently. To solve the problem with

Lagrange multiplier method, we de�ne a set of Lagrangian cost for a given � as

Ji(q1; q2; : : : ; qi) = di(q1; q2; : : : ; qi) + � � ri(q1; q2; : : : ; qi); i = 1; 2; : : : ; N: (2.24)

Then, the expression corresponding to (2.18) becomes

min
q1;q2;:::;qN

NX
i=1

Ji(q1; q2; : : : ; qi); (2.25)

which has to be minimized in N-dimensional space. We can see that the complexity

grows exponentially, not only for the operations in minimization, but also for the

evaluation of the rate-quantization and distortion quantization functions, which

has to be done over all possible quantization settings.

Several methods have been proposed to solve this problem [46, 6]. The algo-

rithm in [46] is still based on the Lagrange multiplier technique, and inside the

procedure, it calls for a trellis-based dynamic programming procedure to solve the

multi-dimensional unconstrained minimization problem de�ned in (2.25). Note

that in this algorithm, the de�nition of trellis nodes is the quantization setting of

a frame (while the one used in Section 2.4.2 is the bu�er state). In MPEG, for a

37



general frame structure such as IBBPBBPBB..., and a given set of quantization

settings for all I and P frames, the coding of B frames becomes independent and

can be independently minimized. Hence, it is not necessary to include B frames in

the trellis graph, thus reducing the number of nodes and branches. The complex-

ity can be further reduced with the Monotonicity assumption, which is de�ned as

follows [46].

De�nition 2.1 Monotonicity Property

For a dependent coding system, for any given � � 0, if \the quantization step-size

of q1 is �ner than that of q01" implies

J2(q1; q2) < J2(q
0

1; q2); (2.26)

then the coding system is de�ned to possess monotonicity property.

This monotonicity property implies that a better quality (�ner quantization)

in the reference frame will lead to more e�cient coding in the rate-distortion

sense. Most of the MPEG encoding results in [46] and in our experiments con�rm

this property. By applying this property, many branches and nodes in trellis can

be eliminated, thus saving computations, including the costly evaluation of rate-

quantization and distortion-quantization functions associated with these nodes

and branches.

Note that bu�er constraints are ignored in the algorithm. It is possible to take

the bu�er constraints into account by checking and \pruning" all the paths which

lead to bu�er over
ow. Also note that the algorithm is complex in that the trellis

has to be built and processed for every unconstrained minimization of (2.25),

which has to be done for every �'s in the search procedure of Lagrange multiplier
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method. Another problem is the number of evaluations on the rate-quantization

and distortion-quantization functions, which is in the order of NB � (NP +NI)M ,

where NB, NP and NI are the number of B, P, I frames in a GOP respectively, and

M is the number of choices of quantizers for a frame (M = 31 in MPEG). Because

these R-D evaluations require to run actual encodings for all quantization settings,

they consume a substantial amount of computations, even after \pruning" many

of them with the monotonicity assumption. In Chapter 3, we will introduce the

use of penalty functions to take the bu�er constraints into account, and the use of

gradient search to greatly reduce the number of rate and distortion evaluations.

It is also possible to reduce the complexity by approximating the rate and dis-

tortion functions without actual encoding process taking place on every quantiza-

tion settings. A survey of previously proposed approximation models is presented

in the next section.

2.5 Approximation Models for Rate and Dis-

tortion Functions

As we mentioned in the previous section, although the methods based on the

rate-distortion (R-D) optimal techniques usually can achieve better quality, they

require a signi�cant amount of computations for measuring the rate and distor-

tion functions, which makes these algorithms impractical in many applications,

although they may still be useful for benchmarking purposes. The rate and dis-

tortion models provide a way to realize these algorithms, by avoiding the need for

measuring the rate-distortion data on all possible quantization settings. Previous
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work on rate and distortion modeling has been based to a large extent on the ex-

ponential statistics models. In this section, we review and examine the feasibility

of applying these models to the optimum bit-rate control problem.

In the following survey, to evaluate the accuracy of the approximation models

we use the MPEG-2 encoder of [41] to obtain MSE and code length, for all the

quantization settings (from 1 to 31). Both I, P, and B frames are included in the

test. For P and B frames, their reference frames are �xed at quantization scale

10. Then we calculate the approximated data from the model. The relative error

is then calculated by

RelativeError =

�����EstimatedValue�OriginalValue

OriginalValue

����� : (2.27)

2.5.1 Statistical Model for Gaussian Source

Many statistical models are based on the Gaussian source assumption, because it

usually leads to simpler expressions.

Theorem 2.2 Rate-Distortion Function for Gaussian Source

The rate-distortion function for a zero-mean Gaussian source with variance �2 is

r(d) =

8>><
>>:

(1=2) � log(�2=d); 0 � d � �2;

0; d > �2;

(2.28)

where d is distortion measured by squared error.

A proof of Theorem 2.2 can be found in [11]. Note that the rate r(d) in

(2.28) is de�ned in bits-per-pixel. If we still assume that the linear relationship
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of distortion-quantization as in Section 2.3.1 holds, i.e.,

d(q) = m � q; (2.29)

substituting (2.29) into (2.28) and multiplying by the total number of pixelsW �H,

we get

r(q) = �+ � � log
1

q
; (2.30)

with

� = W �H �
1

2
� log

�2

m
; (2.31)

� = W �H �
1

2
: (2.32)

This model has been used in many contexts where a rate-distortion function is

required [14]. To estimate the model parameters, the variance �2 can be measured

directly from the source data, and the value of m has to be estimated in some

way. The problems of this model when applying it to MPEG coding are that a

general DCT transformed video data is usually not a Gaussian source, and the

linear assumption in (2.29) does not generally hold (see Section 2.3.3), especially

for P and B frames.

To evaluate \how good" this model is for MPEG coding, we select several

frames (with di�erent type) from several di�erent video sequences, and measure

their rate-quantization functions by encoding the frames at all 31 quantization

settings. For each frame, the measured data is then used to derive the \best

possible" values of � and � for the frame, using curve �tting which minimizes

the error between the curve and actual data. This represents the best achievable
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accuracy of the model for a given frame. A test case which uses a P frame

from Miss America sequence is shown in Fig. 2.9, where both the actual data

and the best-�tted curves are plotted. For the approximated curve, the value of

parameters are � = 1:54 � 105 and � = 5:21 � 104. Note that the value of � is

di�erent from the one in (2.32), which is 352 � 240=2 = 4:22 � 104.
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Figure 2.9: The best possible approximation with logarithm model for a Miss
America P-frame, derived by curve �tting. � = 1:54 � 105, � = 5:21� 104.

Some maximum and average relative errors are calculated by (2.27). The

results show that the average relative error is about 40% for a typical I frame and

150% to 400% for P and B frames, and the maximum relative errors are several

times larger. A set of data calculated over all frames and di�erent frame types

are shown in Table 2.1, under the column opt.log. We observe that the relative

errors from this model are too large to be useful.
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2.5.2 Exponential Model

To cope with the di�culties of the model of (2.30), a new model has been proposed

speci�cally for MPEG coding in [13, 14]. In the model, the approximation function

is de�ned as

r(q) = �+
�

q

: (2.33)

The performance is better because of a third parameter 
, which controls the

curvature of the function, is added.

We also evaluate the best achievable performance for this model, in the same

way as we did in Section 2.5.1, i.e., we use curve �tting to �nd \optimum param-

eters" for each given frame. A test case which also uses the same P frame from

Miss America sequence is shown in Fig. 2.10. For the approximated curve in the

�gure, the values of parameters are � = 2:09�103, � = 3:11�105, and 
 = 1:456.
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Figure 2.10: The best possible approximation with exponential model for a Miss
America P-frame, derived by curve �tting. � = 2:09 � 103, � = 3:11 � 105,

 = 1:456.

The average and maximum relative errors from several di�erent frames are
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also shown in Table 2.1, in the column labeled as \opt.expon" (for \optimum

exponential"). The results are better but the errors are still somewhat large. The

larger error usually comes from the B and P frames of low activity video sequence,

because the function cannot model the characteristic of prediction residues well.

Intra-frames Relative Errors for BITS(q)
average error maximum error

opt.log opt.expon opt.log opt.expon
Claire 133.43% 5.77% 615 73% 28 46%
Football 107.72% 14.95% 538.76% 77.09%
Miss America 207.01% 26.75% 934.64% 100.03%
Susie 208.04% 21.15% 749.56% 68.00%

Table 2.1: Relative errors for intra-frame approximation functions using exponen-
tial models. The statistic is over the entire quantization scale range, and over
three type of frames (I, P, B). opt.log: optimum logarithm, opt.expon: optimum
exponential.

Several problems arose when we attempted to put this model into practical

implementation. First, the model is derived from the assumption that the dis-

tortion (measured by MSE) is linearly proportional to q, which will contribute to

large errors for the distortion-quantization functions. Second, it is not possible

to derive the \optimum" parameters without knowing the actual R-D data �rst,

so the parameters are either �xed at some empirical value or adaptively adjusted

based on some statistics measured from the source. Hence, the actual results

could be much worse than the optimum ones derived above. Although the model

might be useful to determine the bit-allocation of frames in a predictive feedback

control algorithm [14], the model error is still too large to be useful for optimum

rate control algorithms presented in the previous section.
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2.5.3 Other Models

Several other statistical models have also been proposed or used in their speci�c

rate control algorithm. For example, in [18, 5, 25], exponential expressions other

than (2.33) were used to model the relationship between the rate, distortion, and

quantization step size in a macroblock. Many of them do not take into account the

dependencies that arise in the choice of quantizers for the reference frames and the

predicted frames. Even when these models take the dependencies into account,

as in [53], they ignore some non-linear e�ects that are typical in video coding.

For example, under the general intra/inter selection rule, there is no dependency

if the quality of the reference frame is too low, because blocks are coded in intra

mode if the prediction is not su�ciently good. Therefore, in general, previous

models are not suitable for the R-D optimization based rate-control algorithm.

In Chapter 4, we will introduce an approximation method using interpolation

functions and taking into account the inter-frame dependencies.

2.6 Conclusions

In this Chapter, we �rst surveyed rate control schemes based on direct bu�er state

feedback. Then, we reviewed and analyzed the rate control algorithm de�ned in

MPEG Test Model, known as TM5, and showed that their assumptions on R-D

characteristics do not usually hold. Although the algorithm with default setting

of parameters can get good encoding quality for some video sequence, it can not

be applied for any given video sequence and any given rate. It is also di�cult to

adjust parameters to improve the quality without many test encoding. Another

problem is, it does not control the bu�er to prevent the encoder bu�er from
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over
ow.

We next reviewed another class of bit-rate control algorithms which use rate-

distortion optimization, including Lagrange multiplier technique and trellis based

technique, and an algorithm which combines both and takes dependency coding

into account. With the algorithm, it is possible to derive the optimum solution

for any given video sequences and any given channel conditions. However, the

costly computation complexity, mainly from the evaluation of rate and distortion

functions for many quantization settings, makes the algorithm impractical for

many applications, although it is a good benchmark reference for other rate control

techniques.

Finally we surveyed approximation models for rate and distortion, which, if

feasible, can save a lot of computations for the optimum rate control algorithm.

We tested both Gaussian and exponential models using real video frames from

several di�erent sequence. The results showed that the relative model errors are

too large to be useful for the optimum rate control algorithm.

In the follow-up chapters, we will present (i) our approach of optimum rate

control which makes practical implementation possible, (ii) our techniques to the

rate-distortion approximation which can be applied to optimum rate control al-

gorithms, and (iii) a fast method which makes it possible to achieve the quality

of optimum rate control within near real-time encoding environments.
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Chapter 3

Bit-Rate Control Using Gradient

Search

3.1 Introduction

In this dissertation, our �rst objective is to develop a practical method to achieve

a good and robust solution to the rate control problem. We follow the delayed-

decision rate-distortion optimization approach as introduced in Section 2.4, and

formulate the bit-rate control as a constrained optimization problem. To solve

the problem, the dynamic programming technique presented in Section 2.4.3 can

be used. Although, in theory, the global optimum solution can be achieved, the

algorithm needs the rate-distortion (R-D) data for many possible quantization

settings. To measure those data, the input video has to be repeatedly encoded for

each quantization setting, which requires a signi�cant amount of computations.

For example, for a small GOP of just 6 frames, the amount of computations

is equivalent to that of encoding about 6 � 104 frames, and the number grows
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exponentially as GOP size increases. In the current context, we do not intend

to obtain the global optimal solution. Instead, we only look for reasonable sub-

optimal solutions while reducing the computation cost to a practical level. In this

chapter, we present a method which is based on using penalty functions and an

iterative gradient search and only requires the R-D data to be computed along

the search path [32, 33].

This chapter is organized as follows. In Section 3.2 we �rst formulate the

bu�er control as a nonlinear constrained optimization problem. In Section 3.3

we approximate the solution by using penalty functions and a gradient search

method. In Section 3.4 we present some results, where a short GOP sequence is

used to demonstrate that the performance is close to the optimal point achievable

by exhaustive search. We also apply our technique to encode short image se-

quences and compare our performance with that achieved by the TM5 algorithm.

Note that although we provide experimental results for an MPEG encoder, the

algorithms presented here are applicable with simple modi�cations to other video

encoding scenarios as well. Also note that this algorithm still takes considerable

computations. Techniques to further reduce the complexity are presented in the

next chapter.

3.2 Problem Formulation

We use a Group of Pictures (GOP) as our basic rate control unit. In addition to

the usual bu�ering constraints, we also impose a constraint to maintain a strictly

constant number of bits for each GOP. This constraint is required for recording

compressed stream on a digital tape recorder [58], and also allows faster searching
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and indexing for video streams stored in a CD-ROM or hard drive. The goal

of our approach is to maintain constant bit rate for every GOP, keep the bu�er

occupancy within constraints, while minimizing the overall distortion.

As mentioned in the previous chapter, rate control can be achieved by a Global

Control procedure, which assigns q for each frame, followed by an Adaptive Quan-

tization procedure, which modulates the q to determine mquant for each mac-

roblock. Although we only consider the Global Control procedure in this section,

our method applies to choosing one among a �nite set of operating points. Thus it

would be easy to extend our algorithm to the case where the operating points are

de�ned by their various \quality levels", with adaptive q allocations performed

for each frame and quality level, as in [42]. For now, we only use constant quan-

tization for each frame, to demonstrate the performance of our technique. Under

this assumption, the bu�er control problem is to assign the quantization scale qi

for the ith frame in a GOP, as shown in Fig. 3.1, such that the overall quality,

measured by a pre-de�ned cost function, is optimized.

I PB BB B P PB BB B

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12

Figure 3.1: Quantization assignment for global control

Because MPEG is a dependent coding system, we use vector notation for

the set of quantization scales in a GOP, denoted as q = (q1; q2; : : : ; qN)T . By
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using a vector expression for q, we are taking into account the \dependency" of

the problem, i.e., the distortion/rate trade o� for predicted/interpolated frames

depends on the frames that were used to generate the prediction [46]. In the

formulation, the following notation is used:

R : channel rate in bits per second.

F : frame rate in frame per second.

N : number of frames in a GOP.

i : index to a frame.

q : quantization setting assigned to a GOP, i.e.,

q = (q1; q2; : : : ; qN)T , where qi represents the quantization scale as-

signed to frame i.

ri(q) : number of bits generated by frame i, when the value of q is used to

encode the GOP.

di(q) : distortion introduced by quantization of frame i, when the value of q

is used to encode the GOP. Again, any kind of meaningful distortion

measure can be used here, including the MSE de�ned in (2.4), which

is the one used in our experiments.

b(i;q) : bu�er occupancy after the ith frame is coded, when the value of q is

used to encode the GOP.

The bu�er occupancy after frame i is coded can be calculated by

b(i;q) = max
�
b(i� 1;q) + ri(q)�

R

F
; 0
�
; 8i = 1; 2; : : : ; N: (3.1)
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With the requirement of strictly constant number of bits for each GOP, the initial

bu�er occupancy should be b(0;q) = 0 for all GOP's. Note that the max func-

tion in the formulation is needed to re
ect under
ow situations, where the bu�er

occupancy never falls below zero since stu�ng bits are appended to the output

stream to prevent under
ow. To maintain a constant number of bits per GOP,

the �nal bu�er occupancy b(N;q) should be zero (possibly after adding stu�ng

bits).

We de�ne the cost function as

J(q) = D(q) + wE(q); (3.2)

where D(q) represents the average distortion in the GOP and is de�ned as

D(q) =
1

N

NX
i=1

di(q); (3.3)

E(q) is the average squared di�erence in distortion between consecutive frames,

E(q) =
1

N

NX
i=1

[di(q)� di�1(q)]
2; (3.4)

and w is the weighting coe�cient between D(q) and E(q). The purpose of E(q)

in the cost function is to minimize the abrupt changes in quality and avoid the

\
icker problems". When w = 0, the cost function is simply an average distortion

similar to the one used in Section 2.4.

The rate control problem is formulated as below.

Formulation 3.1 Dependent Block Coding with Bu�er Constraints:
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Determine q� = (q�1; q
�

2; : : : ; q
�

N)
T such that

q� = arg min
q

J(q); (3.5)

subject to

qi 2 f1; 2; : : : ; 31g ; i = 1; 2; : : : ; N; (3.6)

b(i;q) � bmax ; i = 1; 2; : : : N � 1; (3.7)

b(N;q) = 0; (3.8)

where bmax is the prescribed maximum bu�er size.

Note that the constraint in (3.8) is required to maintain a constant number of

bits per GOP.

3.3 Solution Using Gradient Search Techniques

The optimization problem formulated in the previous section is an integer pro-

gramming problem with a nonlinear cost function and nonlinear constraints.

These characteristics make the problem di�cult to solve e�ciently. In order

to reduce the complexity, our �rst approximation is to change the integer-valued

variable into a continuous one, so that many optimization techniques de�ned in

continuous domain [36, 16] can be applied.
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3.3.1 Penalty Functions

The constraints of (3.7) and (3.8) can be taken into account by adding penalty

functions to the cost, J(q). The penalty functions are de�ned as

Pi(q) = fmax[(b(i;q)� bmax); 0]g
2
; (3.9)

Q(q) = b(N;q)2; (3.10)

where Pi(q) penalizes exceeding the maximumbu�er size and Q(q) favors a nearly

empty bu�er at the end of GOP. The new cost function is then de�ned as

�(q; c) = J(q) + c

 
N�1X
i=1

Pi(q) +Q(q)

!
(3.11)

where the parameter c determines the amount of the penalty. The original prob-

lem can be approximated by iteratively solving the unconstrained problem of

minimizing �(q; c) as c!1. This can be done by either assigning a single large

value to c and solving the optimization problem (Single-Pass Penalty), or using

iteratively increasing c as shown in the following procedure (Iterative Penalty):

Algorithm 3.1 Iterative Penalty

Step 1. Initialize k = 1, and preset ck = c1 to a small value.

Step 2. Minimize �(q; ck) with variable q. Denote the solution as q�.

Step 3. Check if the constraints are violated, i.e.,

N�1X
i=1

Pi(q
�) +Q(q�) < �
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where � is a preset small number. If the inequality is met, the optimiza-

tion is done and the solution is q�. Otherwise, assign ck+1 = g � ck (g is

also a preset factor, usually 10), increase k by one, and go to Step 2.

The convergence of Algorithm 3.1 is based on the following theorem.

Theorem 3.1 Penalty Function Convergence

In the Algorithm 3.1, if ck increases in each iteration, then

1. �(q�; ck) is non-decreasing,

2.
PN�1

i=1 Pi(q�) +Q(q�) is non-increasing,

3. J(q�) is non-decreasing,

Also, if ck �! 1, then
PN�1

i=1 Pi(q�) + Q(q�) �! 0, and q� converges to the

solution of Formulation 3.1.

A proof of Theorem 3.1 can be found in Chapter 12 of [16].

3.3.2 Iterative Gradient Search

In order to solve the unconstrained problem e�ciently, we make an assumption

that the cost function is smooth. Because the encoding process is a nonlinear

operation, it is not easy to justify the smoothness of the cost function. To visualize

the shape of the function, we encode two frames of Miss America sequence with

every possible setting of quantization scales, and calculate the cost function. The

surface plot of the function is shown in Figure 3.2. From the �gure, we observe

a smooth surface for the cost function and thus can resort to iterative gradient

methods. In a real situation where several frames are involved, the function may
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not be perfectly smooth, but we still can reach a reasonably good sub-optimal

point by the iterations.
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Figure 3.2: Typical cost function in two dimensional case

There are several iterative gradient search algorithms available for our problem

[36, 16]. The �rst one that we have considered is cyclic coordinate descent method,

also known as alternating variables method. This method minimizes the cost

function with respect to one coordinate component qi at a time. There are two

strategies for searching the solution. The �rst search strategy is to search for a

minimum for each coordinate component, as shown in Algorithm 3.2 (CCD-LS)

(see Fig. 3.3(a) for a search path in discrete case).

Algorithm 3.2 CCD-LS: Cyclic Coordinate Descent with Line Search

Step 1. Initialize the index variable k = 1. Also make an initial guess for

q = (q1; q2; : : : ; qN).
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Step 2. Search for qk such that the cost �(q) in (3.11) is minimized, i.e.,

min
qk

�(q�1; q
�

2; : : : ; q
�

k�1; qk; : : : ; qN): (3.12)

Denote the solution as q�k. Note that q�1; q
�

2; : : : ; q
�

k�1 are the variables

that have been optimized in the iterations before k.

Step 3. Increase k by one, if k < N , go to Step 2.

Step 4. Now we have completed a round for all variables, so we need to check

for convergence. Denote (q�1; q
�

2; : : : ; q
�

N) as q
�. Check if

������(q
�)� �(q)

�(q)

����� < �

where � is a preset small value. If the inequality is met, the optimization

is done and the solution is q�. Otherwise, assign k = 1, q = q�, and go

to Step 2 for the next iteration.

Another search strategy is to only allow to search within a �x step size for each

coordinate component in each iteration. The search path with this strategy will

be closer to a steepest descent search, and is expected to have better convergence

property. The procedure is shown in Algorithm 3.2 (CCD-US) (see Fig. 3.3(b) for

a search path in discrete case).

Algorithm 3.3 CCD-US: Cyclic Coordinate Descent with Unit Stepping

Step 1. Initialize the index variable k = 1. Also make an initial guess for

q = (q1; q2; : : : ; qN).
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Step 2. Search for qk such that

�(q�1; q
�

2; : : : ; q
�

k�1; qk; : : : ; qN)

is minimized, subject to

qk � 1 � q�k � qk + 1;

where the notations are the same as in Algorithm 3.2.

Step 3. Increase k by one, if k < N , go to Step 2.

Step 4. Check for convergence: Denote (q�1; q
�

2; : : : ; q
�

N) as q
�. Check if

������(q
�)� �(q)

�(q)

����� < �

where � is a preset small value. If the inequality is met, the optimization

is done and the solution is q�. Otherwise, assign k = 1, q = q�, and go

to Step 2 for the next iteration.

The advantage of this coordinate descent method is its simplicity. However,

there is not a strong theoretical background for its convergence, as described in

Chapter 7 of [36]. We consider this method because it can avoid the computation

for gradient, which is costly in our rate control problem.

The second method that we have applied is the steepest descent method. In

this method, we search along the direction pointed by the negative gradient vector
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�r�(q)T , and update q with

qk+1 = qk � �kr�(qk)
T (3.13)

where �k is a nonnegative scalar value. Similar to cyclic coordinate descent, there

are also two strategies for searching the solution, either searching for a minimum

along the search direction, as shown in Algorithm 3.4 (STD-LS) (see Fig. 3.3(c)

for a search path in discrete case), or only allowing to search within a �xed step

size along the direction, as shown in Algorithm 3.5 (STD-US) (see Fig. 3.3(d) for

a search path in discrete case).

Algorithm 3.4 STD-LS: Steepest Descent with Line Search

Step 1. Initialize the index variable k = 1. Also make an initial guess for

qk = q1.

Step 2. Approximate the gradient vector r�(qk) using �rst order di�erence for

each coordinate component.

Step 3. De�ne the function '(�) = �
�
qk � �r�(qk)T

�
, which represents a

parametric line along the negative direction of gradient vector.

Step 4. Search for a positive �, such that '(�) is minimized. The solution is

denoted as �k.

Step 5. Calculate qk+1 = qk � �kr�(qk)T .

Step 6. If k = 1, skip the convergence checking and go to Step 2 directly. Oth-

erwise, check if �����'(�k)� '(�k�1)

'(�k)

����� < �:
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If the inequality is met, the optimization is done and the solution is qk+1.

Otherwise, increase k by one, then go to Step 2 for the next iteration.

Algorithm 3.5 STD-US: Steepest Descent with Unit Stepping

Step 1. Initialize the index variable k = 1. Also make an initial guess for

qk = q1.

Step 2. Approximate the gradient vector r�(qk) using �rst order di�erence for

each coordinate component.

Step 3. De�ne the function '(�) = �
�
qk � �r�(qk)T

�
, which represents a

parametric line along the negative direction of gradient vector.

Step 4. Search for a positive � within a range de�ned by

k�r�(qk)k1 � 1

such that '(�) is minimized. The solution is denoted as �k.

Step 5. Calculate qk+1 = qk � �kr�(qk)T .

Step 6. If k = 1, skip the convergence checking and go to Step 2 directly. Oth-

erwise, check if �����'(�k)� '(�k�1)

'(�k)

����� < �:

If the inequality is met, the optimization is done and the solution is qk+1.

Otherwise, increase k by one, then go to Step 2, for the next iteration.

The steepest descent algorithm guarantees convergence to a local minimum,

and the di�erence of step-size between Algorithm 3.4 and Algorithm 3.5 a�ects the
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convergence rate. A proof of the convergence property can be found in Chapter 6

of [36].

Besides the above two approaches, there are several other methods that aim at

improving convergence rate, including the Conjugate Gradient and Quasi-Newton

methods. These methods are generally preferred for cost functions that include

penalties, as in our formulation, because convergence is usually slow when the

penalty parameter c is large (see Chapter 12 of [36]). Unfortunately, those meth-

ods require a second derivative matrix, or Hessian, either by a direct computation

or by an indirect estimation, which is, in our case, costly to compute. Also,

because we do not have a perfectly continuous cost function, the error in the ap-

proximation is subject to be ampli�ed during the computation of second deriva-

tive, which might cause the algorithm to become unstable. So, we do not use

these more advanced algorithms at the current stage, and leave a study of their

feasibility for future research.

3.3.3 Integer Approximation

In our formulation, the variable q is only de�ned on a discrete integer grid. How-

ever, the gradient-based optimization algorithms have to be operated in continu-

ous space. A method to cope with this problem would be to de�ne an interpolation

scheme to reconstruct the cost function in continuous space based on the available

discrete data. This is what we will do in the next chapter, where an approximated

R-D model de�ned in continuous space is used. In this chapter we do not rely

on any interpolation models, and so, the algorithms are modi�ed to make them

only search through the available data on the integer grid. The search paths of

the four search algorithms are shown in Fig. 3.3 in the two-dimensional case. As

60



shown in the �gure, for the cyclic coordinate method, the search direction is al-

ways parallel to one of the coordinate axes and hence all the search points will

always fall on the integer grid. For the steepest descent method where the search

direction can be arbitrary, the search points no longer fall on the integer grid. In

this case, we create a search path consisting of those points that are closest to

the line, as shown in Fig. 3.3. Those points can be e�ciently derived by a line

drawing algorithm used in raster computer graphics [17].

3.3.4 Initialization

One problem of the gradient search is that, it only converges to a local minimum

solution. Hence initialization is an important factor for the performance. It also

a�ects the rate of convergence. Before coding the �rst GOP, because we do not

know the characteristics of the input sequence, the �rst initial guess is based on

common knowledge for typical quantization scales. Perhaps the best way is to

encode the �rst GOP by the dynamic programming technique [43] to obtain the

true global optimum solution, but here, we just set the initial guess to a �xed

set of typical values, for example, 8 for I frame, 10 for P frames, and 14 for B

frames. For the succeeding GOPs, we can take advantage of the similarity between

adjacent GOPs, and use the solution of the previous GOP for the initial guess. In

this case, because the solution is usually close to that of previous GOP, the rate

of convergence is faster, and thus the computational complexity is reduced.
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Figure 3.3: Discrete line search paths in 2-D case for the four search algorithms.
Figure (a) and (b) show the paths of cyclic coordinate method, where the search
points always fall on the integer grid. Figure (c) and (d) show the paths of steepest
descent method. In this case, the solid line indicates a path along negative gradient
direction. The actual search path is along those points indicated by the circle dot.
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3.4 Experiments and Results

Our �rst experiment is to compare several approaches of the iterative search pro-

cesses. The objective is twofold: to study their relative performance, and to �nd

out how much they deviate from the optimal solution. We thus consider an exper-

iment on a sub-GOP, which is a set of four frames, with frame type assigned as I,

B, B, P respectively. Because at this scale the optimal solution can be derived by

exhaustive search, we can compare each of our methods with the optimal solution.

We then test the algorithms by encoding short video clips.

3.4.1 Evaluation of Search Algorithms

In this experiment, we choose a set of four frames from Miss America video se-

quence, and then encode it by an MPEG encoder with all possible combinations

of quantization settings to measure the actual distortions and rates in all cases.

A modi�ed version of MPEG-1 Encoder version 1.3 from U. C. Berkeley [39] is

used for the encoding. To get a reasonable value for the weighting factor w in

(3.2) for our �rst experiment, we calculate and set it to be the ratio between the

two standard deviations of D(q) and E(q) over all possible quantization settings.

The �rst encoding experiment, denoted as Global, is to use exhaustive search

over all combinations of quantization settings to obtain the global optimal so-

lution. The result serves as a reference for the other methods. Then, the four

methods, CCD-LS, CCD-US, STD-LS, and STD-US, are tested. For the penalty

parameter c in (3.11), the following two choices are used in our experiment: either

use a �xed value at c = 0:05, or use an iterative strategy as shown in Algorithm 3.1

with an initially setting c = 10�10.
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The above procedures are tested over several di�erent rate settings and the

results are summarized in Figure 3.4 and Table 3.1. The computation complexi-

ties are also presented in the table, where the unit of computation is a one-pass

encoding (equivalent to encoding 4 frames of video).

c = 0:05
Method Relative Error PSNR (dB) Complexity
GLOBAL 38.3024 1:5� 104

CCD-LS 0.04234 38.1580 16.29
CCD-US 0.03671 38.1529 14.08
STD-LS 0.01922 38.2198 15.46
STD-US 0.02851 38.1884 20.13

iterated on c

Method Relative Error PSNR (dB) Complexity
GLOBAL 38.3024 1:5� 104

CCD-LS 0.01062 38.2558 68.46
CCD-US 0.00685 38.2738 50.08
STD-LS 0.00163 38.2893 81.25
STD-US 0.00163 38.2874 117.25

Table 3.1: Four frame experimental result. The relative error is the relative
di�erence of the cost value between the speci�c search method and the global
solution. The complexity is the total computation requirement relative to one-
pass encoding (where 4 frames are coded). All the values are the average over the
results from the six test cases, at bit rates 0.8333, 0.9167, 1.0, 1.0833, 1.1667, and
1.25 Mbps, respectively.

Based on the results, we have the following conclusions.

� A good approximation to the optimal solution can be obtained at a fraction

of the complexity. Compared to the exhaustive search, the reduction in

complexity is of the order of 103.

� The method that iterates over the penalty parameter c has much better

approximation to the optimal solution, at the expense of about 5 times
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higher computational complexity over the method that uses only one �xed

c.

� Among these search methods, the steepest descent with line search strategy

has the best performance.

� The computation complexity seems to be at least 15 times higher than in the

single pass encoding algorithm. In actual implementation, it can be lower

than this value. For example, the costly motion estimations can be done by

using the original frames and only have to be done once during the whole

encoding process. Furthermore, we can take advantage of the fact that there

is no frame dependency on the quantization setting of the B frames when

all I and P frames are �xed.

By a trade o� between the performance and computation complexity, in the

following video encoding simulations, we choose the steepest descent with line

search strategy, and use one �xed penalty parameter at c = 0:05 in the cost

function.
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Figure 3.4: Four frames experiment (a) PSNR at bit rate 1.0833 Mbps, (b) bu�er
occupancy at bit rate 1.0833 Mbps, (c) rate-distortion curve. (a), (b), (c) are the
results for single-pass penalty method, where c is �xed to 0:05. (d) rate-distortion
curve for iterative penalty method, where c is iterated from 10�10, multiplied by 10
after each iteration, until the solution converges and the constraints are satis�ed.
In each �gure, GLOBAL: exhaustive search to obtain the global optimumsolution;
CCD-LS: cyclic coordinate descent with line search strategy; CCD-US: cyclic
coordinate descent with unit stepping strategy; STD-LS: steepest descent with
line search strategy, and STD-US: steepest descent with unit stepping strategy.
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3.4.2 MPEG Encoding

In this part of the experiment, two video clips in CIF format are used: the Football

sequence, 352�240 pixels, 30 frames per second, and theMiss America sequence,

352 � 288 pixels, 25 frames per second. For each video clip, 22 frames are used

for the encoding. To do the experiment, we use a program derived from MPEG-2

encoder version 1.1a, published by MPEG Software Simulation Group [41]. One

major modi�cation is that the motion estimation is done by using the original

frames and is independent of the quantization setting. By doing so, we avoid

the motion search on every iteration in the steepest descent method and speed

up the experiment. Although the modi�cation will degrade the performance, the

degradation is less then 0.1 dB in all our test cases. In all the experiments, the

bu�er size is set to be 20 � 16384 bits. The original Test Model 5 rate control

procedure that is included in the encoder is also used for comparison purposes.

The average PSNR and computation complexity for the Football and Miss

America sequences is presented in Table 3.2. Figure 3.5 (a), (b) shows the PSNR

and bu�er occupancy for the Football sequence at 1.152 Mbps. The PSNR curve

is presented in display order, while the bu�er occupancy is in coding order. From

the �gure, we observe higher PSNR for the steepest descent method. It is still

better even when we compare the steepest descent method at GOP size 6 with the

Test Model 5 at GOP size 12. Also, when the squared di�erence of MSE, E(q), is

introduced in the cost function, the PSNR curve becomes smoother, thus resulting

in a more stable video quality. Figure 3.5 (c), (d) shows a similar result for the

Miss America sequence at 1.152 Mbps. The e�ect of the weighting coe�cient w

is presented in Figure 3.6 (a), (b), and �nally, a test case for steepest descent
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method with GOP size 12 is shown in Figure 3.6 (c), (d).

Football at 1.152 Mbps
Test Model 5 Steepest Descent

GOP Size 12 6 6 6 6
Weighting Factor (w) � � 0 103 106

PSNR (dB) 30.6895 30.5728 31.1776 30.8281 30.7809
Complexity 1 1 28.8 56.8 51.1
Complexity for Last GOP 1 1 22 26 22

Miss America at 1.152 Mbps
Test Model 5 Steepest Descent

GOP Size 12 6 6 6 6
Weighting Factor (w) � � 0 103 106

PSNR (dB) 41.4331 41.3376 42.1133 42.0891 42.1121
Complexity 1 1 18.1 15.9 15.0
Complexity for Last GOP 1 1 20 14 14

Miss America at 0.8 Mbps
Test Model 5 Steepest Descent

GOP Size 12 6 6 6 6
Weighting Factor (w) � � 0 103 106

PSNR (dB) 40.8956 40.7740 41.4301 41.3819 41.3819
Complexity 1 1 25.5 31.7 31.7
Complexity for Last GOP 1 1 24 21 21

Table 3.2: MPEG encoding results.
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Figure 3.5: (a) PSNR, (b) bu�er occupancy of Football sequence; (c) PSNR, (d)
bu�er occupancy of the Miss America sequence. The bit-rate is set to 1.152 Mbps
for both sequence. In each �gure,MSE-only: Steepest descent method with w = 0
and GOP size = 6; MSE+di�: Steepest descent method with w = 106 and GOP
size = 6; TM5-G12: Test model 5 with GOP size = 12; TM5-G6: Test model 5
with GOP size = 6.
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Figure 3.6: (a) PSNR, (b) bu�er occupancy for Football sequence, over several
di�erent settings of w. These two �gures shows the e�ect of the weighting co-
e�cient, w. (c) PSNR, (d) bu�er occupancy for Football sequence, STD-G12:
Steepest descent with GOP size = 12; STD-G6: Steepest descent with GOP size
= 6. TM5-G12; Test model 5 with GOP size = 12; TM5-G6: Test model 5 with
GOP size = 6.
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3.5 Conclusions

We have implemented and demonstrated the feasibility of using a gradient-based

optimization algorithm for bu�er control. By using this technique, we are able to

achieve strictly constant bit rate per GOP, increase the overall quality (in MSE

sense), while decreasing the variation of qualities between consecutive frames.

From the results that we have reached, we would like to emphasize the following.

� Compared to TM5, we can observe the complexity is 30 - 50 times higher

for the �rst few GOPs, where the initial guess is far away from the optimum

solution. In the follow-up GOPs, because the solution in the previous GOP

is used for the initial guess, the complexity is reduced to 15 to 25. The actual

complexity can be made smaller by taking the costly motion estimation out

of the iteration loop.

� We have observed that our technique using GOP of size 6 already has a

better performance than Test Model 5 using GOP of size 12. When the

GOP size is increased to 12 in our technique, the computation complexity

becomes higher. This is due to the slow convergence in higher dimensional

vector space. However, because only an I frame becomes P, the increase in

PSNR not signi�cant. A revised algorithm applicable to a higher GOP size

will be presented in Chapter 5.

Even though a better quality (in the MSE sense) can be achieved by the

gradient technique, it requires a higher computational complexity. This should

not be a problem for benchmarking purposes. Further approximation can be done

to make it suitable for o�-line encoding and real-time encoding as described in

the next chapter.
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Chapter 4

Approximation of

Rate-Distortion Functions

4.1 Introduction

Most of the computation cost for the gradient based rate control algorithm pre-

sented in Chapter 3 comes from the evaluation of rate-quantization and distortion-

quantization functions, which involves repeatedly encoding the video data on all

required quantization settings. In order to reduce the computations, it is nec-

essary to introduce an approximation model so that we can estimate rate and

distortion without having to encode with all settings.

As shown in Chapter 2, several rate and distortion modeling methods [53, 18,

5, 13, 25] have been proposed or used in their speci�c bit-rate control schemes,

and most of them are based on the exponential statistics model. The di�culty in

determining model parameters and high model errors make them unsuitable for

72



our optimization control problem. In this chapter, we present a novel approxi-

mation model which makes relatively few assumptions on the shape of the R-D

characteristics and takes into account the typical dependency of video coding.

These models are based on computing a few R-D points and interpolating the

remaining data using spline functions [33, 34, 35].

This chapter is organized as follows. In Section 4.2 we describe the formulation

of spline interpolation functions and apply this function to an optimal adaptive

quantization algorithm for image compression. In Section 4.3 we present a scheme

to model the coding dependencies for P and B frames. In Section 4.4 we apply

the approximation model to the gradient-based rate control algorithm described

in the previous chapter, and present several experimental results.

4.2 Spline Approximation Method

In a typical DCT-based encoder the rate-distortion trade-o� is controlled by a

quantization scale. This parameter is used to compute the step size of a set

of uniform quantizers used for the DCT coe�cients (see [44, 19, 38] for details).

When an image block (or an entire image frame if constant quantization is used) is

quantized and encoded with a speci�c quantization scale, q, the rate (the number

of bits generated by the coder), r(q), and the distortion (here the MSE is used),

d(q), can be calculated. The computational cost can be reduced signi�cantly if

these two function values can be correctly estimated without actually quantizing

and encoding the source data. However, due to the complex nonlinear properties

of the quantization and entropy coding processes, it is di�cult to predict the

function value accurately enough by using simple mathematical expressions. In
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this dissertation, we propose an approach which calls for encoding the data and

measuring the R-D functions, but only on a small set of quantization scales which

we call \control points". Piece-wise polynomials, or splines, are then used to

interpolate the function for other q's where the actual data has not been measured.

4.2.1 Formulation of Spline Interpolation Function

Two di�erent interpolation functions are tested in this dissertation, linear inter-

polation and cubic interpolation. Linear interpolation simply uses a straight line

to connect two consecutive control points. Its approximation error is expected

to be higher when applied to the rate-quantization curves, because the shape of

these functions cannot be approximated by line segments.

A second choice is to use cubic interpolation. Because the rate and distortion

functions are to be used in an optimization algorithm (gradient search, Lagrange

method, etc.), it may be useful to operate with interpolation functions having

well-de�ned �rst order derivatives. A good candidate would be the \interpolating

cubic-spline", which possesses the second-order continuity property (see Chapter 4

of [12]). The disadvantage of this method is that the interpolation polynomial

for any given segment (a segment is de�ned as a set of points between the two

consecutive control points) depends on all the control points, i.e., it will require

the coder to encode the source on all the control points even though only a small

portion of the function data is required in the rate control algorithm. In this

dissertation, we use another type of spline, which requires smaller computation

cost, still possesses �rst-order continuity, and for which each segment depends

only on four nearest control points.

We assume the control points are de�ned as (xi; yi), i = 1; 2; : : : ;M , where M
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is total number of control points. Fig. 4.1 shows an example set of control points,

where xi represents the quantization scale (for MPEG, the applicable values are

f1; 2; : : : ; 31g), and yi represents the actual measured rate or distortion. The

function between two consecutive control points, xi and xi+1, is de�ned as

fi(x) = ai � x
3 + bi � x

2 + ci � x+ di (4.1)

where i = 1; 2; : : : ;M � 1. There are M � 1 polynomials, each corresponding

to one segment. For each polynomial, the four parameters, ai, bi, ci, di, can be

derived from four control points, (xi�1; yi�1), (xi; yi), (xi+1; yi+1), (xi+2; yi+2), by

imposing the following two constrains:
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Figure 4.1: Control points for a typical (a) rate and (b) distortion curve. In the
�gure, a control point (xi; yi) represents that if the quantization scale is set to xi,
the measured rate or distortion value is yi.

1. The interpolated data should take the same values as the original one at the

control points, hence

x3i � ai + x2i � bi + xi � ci + di = yi; (4.2)
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x3i+1 � ai + x2i+1 � bi + xi+1 � ci + di = yi+1: (4.3)

2. The �rst-order derivative should be continuous at the control points. This

condition can be achieved by de�ning the slope at control point xi as (the

�rst derivative of f(x) is denoted as f 0(x))

f 0i(xi) = f 0i�1(xi) =
yi+1 � yi�1

xi+1 � xi�1
: (4.4)

By taking the derivative of (4.1) and substituting into (4.4) on the two end

points of fi(x), we get

3x2i � ai + 2xi � bi + ci =
yi+1 � yi�1

xi+1 � xi�1
; (4.5)

3x2i+1 � ai + 2xi+1 � bi + ci =
yi+2 � yi

xi+2 � xi
: (4.6)

The four unknowns of fi(x), ai, bi, ci, di, can be readily found by solving the set of

equations (4.2), (4.3), (4.5), and (4.6). The computation can be simpli�ed further

if we translate xi to 0, and xi+1 to 1, by using

z(x) =
x� xi

xi+1 � xi
; (4.7)

and re-de�ne the polynomial de�ned as fi(z) = ai � z3 + bi � z2 + ci � z + di. Now,

the four parameters, ai, bi, ci, di can be calculated directly using

d1 = (xi+1 � xi) �
yi+1 � yi�1

xi+1 � xi�1
; (4.8)

d2 = (xi+1 � xi) �
yi+2 � yi

xi+2 � xi
; (4.9)
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e = yi+1 � yi � d1; (4.10)

g = d2 � d1; (4.11)

ai = g � 2e; (4.12)

bi = 3e� g; (4.13)

ci = di; (4.14)

di = yi: (4.15)

4.2.2 Compliance Test for Intra-Frame Approximation

In order to capture the exponential-decay property, which is typically observed in

rate-quantization functions, we choose the control points to be with the relation

as xi = xi�1 + xi�2, so that, in the MPEG case, the set of eight control points

becomes

f1; 2; 3; 5; 8; 13; 21; 31g:

However, on a typical video sequence at standard rate (e.g. CIF at 1.152 Mbps),

the settings for q = 1; 2, or even q = 3; 4, are rarely used, hence, only 5 to 6 control

points are required in most cases. Note that while approximately exponential

characteristics are typical, the error incurred with our approach will normally be

smaller than using a exponential model, because we have more degrees of freedom,

and the characteristics are not exactly exponential.

To test the accuracy of approximation at frame level, we use an MPEG-2

encoder [41] to encode the image frames from several di�erent sequences and

di�erent frame type, by encoding and measuring the MSE and code length for all

possible quantization settings (from 1 to 31). Note that when encoding P and B
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frames, the quantization scales of their reference frames are set to 10. Also note

that the computational overhead is small because the DCT operation only has to

be done once, and only the quantizations and the zero-run-length variable-length-

codings are involved in each iteration of the coding process. Then, based on the

value at pre-de�ned control points, we derive the approximated data. Fig. 4.2

shows the rate of an I frame in the football sequence, as a function of q. The

relative errors are then derived in the same way as in Section 2.5, using (2.27).

The results are shown in Table 4.1. For convenience, the data from the optimum

exponential model in Table 2.1 are also included for comparison. The data shows

that the interpolation approximation o�ers smaller approximation errors than

the optimum exponential model, and cubic interpolation is better than linear

interpolation, especially for the rate-quantization functions.
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Figure 4.2: Rate function of an I frame in the football sequence. The circles
indicate the control points, which are chosen to capture the exponential-decay
property of the rate function.
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Intra-frames Average Relative Errors for BITS(q)
opt.expon pw.linear pw.cubic

Claire 5.77% 2.27% 0.65%
Football 14.95% 4.30% 0.90%
Miss America 26.75% 3.07% 1.16%
Susie 21.15% 3.35% 1.24%

Intra-frames Maximum Relative Errors for BITS(q)
opt.expon pw.linear pw.cubic

Claire 28 46% 28.89% 7.57%
Football 77.09% 15.43% 6.32%
Miss America 100.03% 26.05% 9.86%
Susie 68.00% 23.65% 7.13%

Intra-frames Relative Errors for MSE(q)
average error maximum error

pw.linear pw.cubic pw.linear pw.cubic
Claire 0.72% 0.55% 2.95% 4.37%
Football 0.95% 0.55% 6.13% 7.01%
Miss America 0.65% 0.43% 4.63% 3.84%
Susie 0.84% 0.51% 5.95% 6.10%

Table 4.1: Relative errors for intra-frame approximation functions. The statistics
are over the entire quantization scale range, and over three type of frames (I,
P, B). opt.expon: optimum exponential. pw.linear: piecewise linear. pw.cubic:
piecewise cubic.

4.2.3 Application to Local Adaptive Quantization

By applying the spline approximation model at DCT block level, we are able to

reduce the computational load in searching for optimal adaptive quantization in

DCT-based image compression. Suppose there are Mb blocks in an image, and for

each block the rate and distortion for a given quantization setting are denoted as

ri(qi) and di(qi), where i is the index for block and qi is the quantization scale (an

integer between 1 and 25 in our image-coding experiment) assigned to block i.

The optimum adaptive quantization problem is to determine quantization scales
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for all blocks (q1; q2; : : : ; qMb
), such that the overall distortion

MbX
i=1

di(qi) (4.16)

is minimized for variables (q1; q2; : : : ; qMb
), subject to the rate constrains (total

bit-budget is B)
MbX
i=1

ri(qi) � B; (4.17)

which is the same as in Formulation 2.1. Because there is no inter-block depen-

dency, each variable can be optimized independently and thus the problem can

be solved by the Lagrange multiplier method of Algorithm 2.1. Note that the

overhead for coding the quantization scale for each block is ignored in the above

formulation (but is included in counting the total bits). That overhead can be

taken into account by using the techniques proposed in [42].

In the experiment, we encode the 512 � 512 grayscale Lena image using a

modi�ed JPEG encoder. The modi�cation was made such that a quantization

scale can be assigned for each DCT block as is done in MPEG. To test the ef-

fectiveness of the spline approximation model, we replace ri(qi) and di(qi) by the

approximated data, and run the adaptive quantization procedure again. The re-

sults are shown in Table 4.2 and Fig. 4.3. We conclude from the results that,

(i) the spline approximated model produces a much smoother R-D curve, which

may have potential to be used to reduce the complexity of the search procedure

in optimization algorithm, (ii) the result with approximated R-D is close to the

one using actual R-D, and (iii) the constraint (4.17) may not be strictly satis�ed

due to the error in the approximated rate. In practice, this will not be a problem

because the errors are typically small and the variations can be absorbed through
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bu�ering. By using the spline model, the computation complexity for the eval-

uating R-Ds is reduced to about 20% (6 control points instead of 31 settings).

Fig. 4.4 shows the original and spline interpolated rate-distortion function of a

DCT block. Note also that many blocks have R-D characteristics similar to that

of Fig. 4.4 and the lack of smoothness in the shape makes our approach based on

several control points more e�ective than exponential based models.

constant q. a.q. with original R-D a.q. with spline R-D
q bpp PSNR bits over
ow PSNR bits over
ow PSNR
3 1.554 37.96 -34 38.66 1223 38.59
6 0.993 35.94 -17 36.58 2290 36.46
9 0.755 34.84 -2 35.32 2358 35.16
12 0.621 34.08 0 34.37 2095 34.26

Table 4.2: Adaptive quantization encoding of Lena image. constant q.: constant
quantization; a.q. with original R-D: adaptive quantization using the original
R-D; a.q. with spline R-D: adaptive quantization using spline approximated R-
D. The bits over
ow is the di�erence in bits between the actual number of bits
generated and the bit-budget.
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Figure 4.3: PSNR curves of constant quantization, adaptive quantization using
original data, and adaptive quantization using spline approximated data.
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Figure 4.4: Comparison between the original and approximated rate-distortion
function of a DCT block in the Lena image, to illustrate the lack of smoothness
in the original R-D characteristics.

4.3 Inter-Frame Dependency Model

We now consider the P and B frames in MPEG video. The intra-frame approxima-

tion functions de�ned in the previous section can be applied when their reference

frames are �xed. However, because the R-D characteristics also depend on the

quality of their reference frames, we have to deal with multi-dimensional func-

tions. In this section, we introduce methods that are less complex than full-blown

multi-dimensionalmodels while still capturing the inter-frame dependencies. Note

that the ideas presented in this section are introduced in an MPEG framework,

but are applicable to more general video coding environments. To simplify the

computation, we make the motion estimation refer to the original image, so that

it only has to be computed once for each of the P and B frames, and does not have

to be re-computed when the P and B frames are encoded repeatedly to sample

their respective R-D functions at the control points.
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4.3.1 R-D Model of Predictive Frames

We consider the �rst P frame in a GOP, and its reference I frame (note that the

model still can be applied when the reference is another P frame). Because of

the dependency, the rate and distortion functions become two-dimensional, i.e.,

they have the form of d(qI ; qP ) and r(qI ; qP ), where qI and qP are the quantization

scales for the I and P frame respectively. Fig. 4.5 shows the function d(qI ; qP ) of a

P frame from the Football sequence as a 2-D surface plot. Note the dependency,

so that the data has to be sampled in the two-dimensional space. One straightfor-

ward extension is to sample the data at the same 6 control points as in Section 4.2

for each dimension (total 36 control points), but this requires many more compu-

tations. This is because, in order to compute the data for each additional control

point along qI axis, the I frame has to be re-compressed and reconstructed again

(involving DCT, quantization, de-quantization, and IDCT), and the P frame has

to be re-encoded (involving prediction, DCT, quantization, and encoding). This

complexity is much higher than the one for computing the data along qP axis

(only involving quantization and encoding for the P frame). To cope with this

problem, we introduce a model for inter-frame dependency which only requires

two control points along qI axis.

To consider the e�ect of prediction, we denote the data in an I frame asX1, and

its quantized version as X̂1 = QI(X1), as shown in Fig. 4.6. We also denote the

data in a P frame as X2, so that the prediction residue becomesD = X2�QI(X1).

Note that the motion compensation block in Fig. 4.6 is ignored in the expressions

because it only a�ects the coordinate index but not the signal itself. Hence, the
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Figure 4.5: MSE of a P frame in the Football sequence, plotted as a 2-D function
of qI and qP .

reconstructed P frame becomes

X̂2 = QI(X1) +QP (X2 �QI(X1)) : (4.18)

Now we denote the error for the I frame as EI = X1 �QI(X1), and the error for

the P frame as EP = X2 � X̂2. Substituting QI(X1) in (4.18) by X1�EI , we get

X̂2 = X1 � EI +QP (X2 �X1 + EI); (4.19)

and the error for P frame becomes

EP = X2 �X1 + EI �QP (X2 �X1 + EI): (4.20)

Now consider the case where qI is smaller than qP , which means uI < uP ,

where uP and uI are, respectively, the quantization step-size of the uniform quan-

tizer for P-frame and I-frame. If the motion prediction is correct and the initial
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Figure 4.6: Prediction Model

error was small we have Qp(X2 � X1 + EI) � 0, due to the coarse quantization

used for the P frame. Thus we have

EP � X2 �X1 + EI ; (4.21)

and, in this case, for a �xed qP , when qI varies, we expect a linear relationship

between the error for I and P frames. For the case where blocks are perfectly

matched to their predicted blocks from the reference frame, or, X2 � X1, the

quantization can be illustrated as a two-step quantizer shown in Fig. 4.7. So, it is

reasonable to assume that the quantization error in the predictive frame linearly

depends on the error in its reference frame if qI < qP .

In the second case where qI is larger than qP , i.e., uI > uP . we have a �ner

quantizer uP to quantize the X2�X1+EI term in (4.20). Hence the quantization

error is dominated by uP , i.e., the maximumabsolute value of EP is not larger than

uP =2, and independent of uI . So, in this case, for a �xed qP , when qI varies, we

expect EP to be roughly constant. Again for the case where blocks are perfectly

matched to their predicted blocks from the reference frame, or, X2 � X1, the
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Figure 4.7: Quantization of predictive signal for qI < qP

quantization can be illustrated as a two-step quantizer shown in Fig. 4.8, which

shows that the error in the P frame is independent of qI . On the other hand,

in the case where good inter-frame prediction can not be made, e.g., for high

activity, fast moving video sequence, another factor which a�ects the relationship

between EP and EI comes from the selection of intra and inter block coding in

MPEG. If the MSE in the reference is larger, not only the rate and distortion of

the predictive frame will become larger, but also more macroblocks will be coded

in \intra" mode (given the typical decision rules used in general MPEG encoders,

e.g. in [41]), which will also decrease the dependency on the reference frame. Thus

it is reasonable to assume that, for any video sequence, the quantization error in

the predictive frame is independent of its reference frame, if qI > qP .

The two cases shown in Fig. 4.7 and Fig. 4.8 can be summarized by a single
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statement, i.e., the R-D characteristics only depend on

min(qI; qP ): (4.22)

For the intermediate cases, where qI and qP have similar values, we expect the

function of EP vs. EI will be gradually changing from linear-increasing to con-

stant.

Based on the above analysis, we conclude that, for a �xed qP , if qI is increasing

from a small value, we should expect the MSE of P frame to be a linear increasing

function of the MSE of I frame. The dependency will decrease when qI is nearly

equal to qP , and after that, it will be completely independent of the I frame

and become a constant value. Fig. 4.9 shows the results derived by repeatedly

encoding the I and P frames with all the quantization settings. The experimental

results con�rm the analysis.
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Figure 4.9: MSE for the P frames from two video sequences, plotted as a function
of MSE for their reference frames. Each solid line is a MSE curve for a given q

in the predictive frame. The dotted line indicates the boundary where q for the
predictive and reference frames are equal.

4.3.2 Approximation Models

Distortion Functions for P Frames

The I-P dependency model is proposed as below. Suppose qP �xed at a constant

value C, so that d(qI ; qP = C) becomes a one-dimensional function with variable

qI . The MSE of the reference frame (I-frame) is denoted as dI(qI). The frame

dependency for the distortion of a P-frame is modeled as a linear increasing func-

tion with respect to dI (qI) for qI � C, and as a constant function for qI > C, as

shown in the following expression:

d(qI ; C) =

8>><
>>:

�� � � [dI(C)� dI(qI)]; qI � C;

�; qI > C:

(4.23)

The two model parameters, � and �, can be determined by encoding and mea-

suring the distortion at two values of qI, as shown in Fig. 4.10, which is done by
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Figure 4.10: Constant-linear function reconstructed by two control points.

We denote the position of the two control points as x1 and x2, and the measured

function values at control points as y1 and y2, respectively. For case 1 in Fig. 4.10

where x2 < C, both control points fall on the linear-increasing part. In this case,

we substitute the values of the two control points into (4.23) and solve for � and

�, and get

� = y1 + (y2 � y1) �
dI(C)� dI(x1)

dI(x2)� dI (x1)
; (4.24)

� =
y2 � y1

dI (x2)� dI(x1)
: (4.25)

For case 2 in Fig. 4.10 where x1 < C < x2, the second control point x2 falls on

the constant part, hence we have

� = y2; (4.26)

� =
y2 � y1

dI(C)� dI(x1)
: (4.27)
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For case 3 in Fig. 4.10 where C < x1, both control points fall on the constant part.

It is not possible to solve for � and � in this case. Because C (value of qP ) is small,

it is reasonable to assume that the entire function is constant. However, because

the value of y1 and y2 may be di�erent, we take this di�erence into account and

use the following piece-wise linear expression to approximate this case:

d(qI ; C) =

8>>>>>><
>>>>>>:

d(x1; C); qI � x1;

d(x1;C)(dI(x2)�dI(qI))+d(x2;C)(dI(qI)�dI(x1))

dI(x1)�dI(x2)
; x1 < qI < x2;

d(x2; C); qI � x2:

(4.28)

The complete reconstruction of the two-dimensional function d(qI ; dP ) is illus-

trated in Fig. 4.11. The values of the two inter-frame control points are chosen to

be 5 and 13, and the same spline model with 6 control points as in Section 4.2 is

used along qP axis. Thus the set of 12 control points becomes

8>><
>>:

(5; 3) (5; 5) (5; 8) (5; 13) (5; 21) (5; 31)

(13; 3) (13; 5) (13; 8) (13; 13) (13; 21) (13; 31)

9>>=
>>; : (4.29)

To interpolate the function value for any given settings, say (10; 10), the above

inter-frame model is applied 4 times with C set to f5; 8; 13; 21g, so that the func-

tion values are derived at (10; 5), (10; 8), (10; 13) (10; 21). Then spline interpola-

tion is used to derive the value at (10; 10) using the 4 derived data.

Rate Functions for P Frames

Due to the di�erence in properties, a similar model for distortion does not work

as well for the rate. Fig. 4.12 shows the inter-frame dependency of rates for P
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Figure 4.11: Reconstruction of approximated distortions of P frames. The left
diagram shows the 2-D domain of a P frame distortion function, d(QI ; QP ). The
circles in the diagram indicate the control points, at which actual function values
are sampled. To reconstruct the function values from these control points, we �rst
approximate the function values along the horizontal (QI) direction where control
points are available (indicated by horizontal dashed lines) using the inter-frame
model, and then approximate the values along the vertical (QP ) direction with
the intra-frame interpolation functions.

frames in the Football and Miss America sequence. From the �gure and based

on the observation over several other video sequences, we conclude that, for the

quantization scales between 3 and 24, the inter-frame dependency for rate is rea-

sonably low. Because we already have two known values from the two control

points, it is reasonable to simply use the same linear interpolation model as in

(4.28) to approximate the rate:

r(qI ; C) =

8>>>>>><
>>>>>>:

r(x1; C); qI � x1;

r(x1;C)(dI(x2)�dI(qI))+r(x2;C)(dI(qI)�dI(x1))

dI(x1)�dI(x2)
; x1 < qI < x2;

r(x2; C); qI � x2:

(4.30)
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Figure 4.12: Code length for the P frames from two video sequences, plotted as
a function of quantization scales for their reference frames. Each solid line is a
code length curve for a given q in the predictive frame.

Rate and Distortion Functions for B Frames

For B frames, the distortion function becomes d(qI ; qP ; qB), where qB is the quan-

tization scale for the B frame itself, and qI and qP are the quantization scales

for the two reference frames. With a straightforward extension of (4.22), it is

reasonable to assume that the R-D characteristics only depend on

min(qI; qP ; qB): (4.31)

Based on this assumption and also to keep the computation simple, as illustrated

in Fig. 4.13, we �rst �x one reference frame by setting qI = c (where c is one of the

inter-frame control points), and evaluate the dependency for the other reference

frame by using the same model for P frames to get d1(c; qP ; qB). We then �x the

other reference frame and derive d2(qI ; c; qB). Finally, d(qI ; qP ; qB) is de�ned as

min(d1(c; qP ; qB); d2(qI ; c; qB)). This procedure also simulates in part the strategy
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for selecting \forward" or \backward" motion vectors in the MPEG encoder. The

same approach is also used for the rate function. There are a total of 18 control

points to be measured if the same set of control points as in (4.29) is used, as

8>>>>>><
>>>>>>:

(5; 5; 3) (5; 5; 5) (5; 5; 8) (5; 5; 13) (5; 5; 21) (5; 5; 31)

(5; 13; 3) (5; 13; 5) (5; 13; 8) (5; 13; 13) (5; 13; 21) (5; 13; 31)

(13; 5; 3) (13; 5; 5) (13; 5; 8) (13; 5; 13) (13; 5; 21) (13; 5; 31)

9>>>>>>=
>>>>>>;
: (4.32)
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Figure 4.13: Reconstruction of approximated distortions of B frames. The left
diagram shows the 3-D domain of a B frame distortion function. The circles
in the diagram indicate the control points, at which actual function values are
sampled. To reconstruct the function values from these control points, we �rst
approximate the function values on the two vertical planes (shown in the left
diagram) using the same procedures as for P frames. Then, for any given point
in the space, the two values of its perpendicular projections on the two planes are
picked and the smaller one is chosen to be the approximated function value, as
shown in the right diagram.

4.3.3 Compliance Test for Inter-Frame Model

We use a MPEG-2 encoder [41] to test the accuracy of the approximation model,

with the following steps. We �rst encode the frames, measure and record their
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MSE and code length for every possible quantization settings. Based on the

function values at the pre-de�ned control points (i.e., f1; 2; 3; 5; 8; 13; 21; 31g for

intra-coded frame approximation, f5; 13g for inter-framemodel), we build a model

using the procedure described in Section 4.2 and Section 4.3, and calculate the

estimated rate and distortion values. The relative errors are then calculated by

(2.27).

The average and maximum of relative errors are calculated over a typical

operating range of quantization scales, which is from 3 to 24. The results are

shown in Table 4.3 and Table 4.4. The results show that the errors are reasonably

small for P frames but somewhat larger for B frames. Several sample graphical

comparisons are also shown in following �gures. Fig. 4.14 shows the 3-D plot

of the approximated distortion function of a P frame in the football sequence,

for comparison with the original data shown in Fig. 4.5. Fig. 4.15 shows a case

of the MSE of a P frame in the football sequence, as a function of MSE its

reference frame. Fig. 4.16 shows MSE of a B frame in the football sequence, as

a 2-D function of q's for the two reference frames. Although there are still errors

introduced by the approximation models, the actual usefulness of the methods

comes from using them in the optimization framework for rate control, which will

be presented in the next section.
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P-Frame BITS Model Errors
average error maximum error
linear cubic linear cubic

Claire 9.34% 2.49% 40.90% 33.02%
Football 5.38% 0.66% 14.01% 8.41%
Miss America 12.39% 3.27% 43.54% 45.82%
Susie 11.04% 2.92% 39.33% 15.88%

P-Frame MSE Model Errors
average error maximum error
linear cubic linear cubic

Claire 3.03% 0.88% 12.30% 12.30%
Football 1.81% 0.39% 5.59% 6.60%
Miss America 2.89% 0.89% 11.03% 11.03%
Susie 4.30% 1.24% 15.88% 15.88%

Table 4.3: Relative errors for predictive coding model. The statistics are calcu-
lated over the range from 3 to 24.

B-Frame BITS Model Errors
average error maximum error
linear cubic linear cubic

Football B1 5.08% 3.74% 22.14% 22.72%
Football B2 5.73% 4.43% 23.43% 23.64%

B-Frame MSE Model Errors
average error maximum error
linear cubic linear cubic

Football B1 3.08% 2.61% 17.56% 17.56%
Football B2 3.13% 2.58% 13.92% 14.73%

Table 4.4: Relative errors for bi-directional predictive coding model. The statistics
are calculated over the range from 3 to 24.
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Figure 4.14: Reconstructed function of MSE of a P frame in the Football sequence
using the P approximation model, plotted as a 2-D function of qI and qP .
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Figure 4.15: The dotted line is the MSE of a P frame in the football sequence,
with respect to the MSE of its reference frame. The quantization scale of the P
frame, qP , is �xed at 10. The curve is approximated by a linear-constant function,
indicated by solid line. The circles indicate the two control points, at qI = 5 and
qI = 13. The corner point is at qI = qP = 10.
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Figure 4.16: (a) Original measured data and (b) reconstructed with B-frame
model, of a B frame in the football sequence, as a function of qI and qP , with qB
�xed at 10.
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4.4 Bit-Rate Control with Approximated R-D

In this section, we apply the approximation model to MPEG video encoding. The

gradient-based algorithm in Chapter 3 is used for the rate control, with the R-D

for I frames substituted by the approximated data using procedures de�ned in

Section 4.2, and R-D for P and B frames substituted by the approximated data

using procedures de�ned in Section 4.3.

4.4.1 Revised Gradient-Based Algorithm

To evaluate the e�ectiveness of the proposed model, we apply the approxima-

tion model to the gradient-based rate control algorithm introduced in Chapter 3,

by substituting the rate and distortion functions with the approximated values.

Because of the model error in rate, the original strictly-constant-rate for GOP con-

straint may no longer be satis�ed, but we expect the bu�er constraints will still

be satis�ed most of the time because most of the errors are due to the B frames,

which consume the fewest bits. Considering the fact that the model errors in B

frames are relatively large, we can further improve the solution by re-allocating

bits for the B frames after a solution for the GOP is obtained. This is done by

encoding the I and P frames using the solution from the gradient-based algorithm,

and calculating the total number of bits remaining for the B frames, which we de-

note as TB. Using this available bit budget, the bit allocation for B frames is then

re-optimized. The additional optimization procedure does not cost much in terms

of computation, because all the reference frames (I and P) are �xed and all the B

frames are independent of each other. Denote the rate and distortion functions of

B frames as rj(qj) and dj(qj), where j is the index of B frames. The optimization
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problem is to determine quantization scales for B frames (q1; q2; : : : ; qNB
, where

NB is the total number of B frames in a GOP), such that the overall distortion is

minimized, as

minimize
NBX
j=1

dj(qj); subject to
NBX
j=1

rj(qj) � TB: (4.33)

The problem can be solved by the method of Lagrange multipliers, using Algo-

rithm 2.1 presented in Section 2.4.1. The function values of rj(qj) and dj(qj)

are obtained by evaluating the function at control points and interpolating by

the intra-frame model. By using this approach, the solution is improved and the

strictly-constant-rate for GOP are satis�ed again.

4.4.2 Experiments and Results

We encode two video sequences, football and table tennis, in CIF format at 1.152

Mbps, using three di�erent con�gurations: (i) gradient-based method with ap-

proximated R-D from the proposed model; (ii) use (i) with additional bit-re-

allocation for B frames using Lagrange method; (iii) gradient-based method with

the original R-D. The GOP was chosen to be size of 6 (IBBPBB) for a reason-

able convergence rate (algorithms suitable for higher GOP size will be introduced

in the next chapter). The results are shown in Fig. 4.17 and Table 4.5. An

additional result from the Software Simulation Group's MPEG-2 encoder [41],

which uses an implementation of the TM5 algorithm [40], is also shown for refer-

ence. Note that in this experiment, we do not include the adaptive quantization

scheme into consideration, while the standard TM5 program we used here in-

cludes an adaptive quantization procedure. The computation complexities shown
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in the Table are relative to the TM5 algorithm, and are estimated based on the

subroutines used in [41], where (i) 13 multiplication operations and 29 addition

operations are required for each 8�1 DCT, (ii) two-step search method is used for

the motion estimation, in which the spiraling outward full search is applied �rst

for full-pixel displacement, followed by the search for 8 neighboring half-pixel dis-

placement. The motion estimation takes about 90 percent of overall computations

in a single-pass encoding. We assume that the memory is large enough to hold

all the intermediate data including the motion vectors, reconstructed reference

frames, DCT coe�cients, etc., so that many of the operations only have to be

done once during the evaluation of R-D data on the control points. Note that the

relative increase in complexity with respect to TM5 will become larger if a faster

motion estimation algorithm is used, since the motion estimation is responsible

for the bulk of the complexity in the entire encoding process.

Football Table Tennis
PSNR Complexity PSNR Complexity

Model R-D 33.13 1.68 32.64 1.71
B-Frame Re-Alloc. 33.17 1.70 32.80 1.73
Original R-D 33.17 8.87 32.74 11.35
Test Model 5 32.43 1.00 31.25 1.00

Table 4.5: Average PSNR and computation complexity with di�erent encoding
method. The second row is based on the model R-D with additional bit-re-
allocation for B frames. The computation complexity is relative to the Test Model
5 algorithm.

The results show that, by using the approximated model, the number of

computations is reduced signi�cantly with very little loss in PSNR. With bit-

re-allocating on B frames, we are able to achieve the same PSNR with only a

fraction of computation overhead. The results also show that, for the table tennis

sequence in Fig. 4.17 (b), the optimummethod is capable of adjusting to the scene
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changes much faster than the test model 5 algorithm.

4.5 Conclusions

With the above experiments, we have demonstrated that the proposed model pro-

vides a good approximation of rate-distortion characteristic for any given quanti-

zation setting. The �rst application to the gradient-based rate control algorithm

shows the same performance can be achieved with only 15 to 20 percent of the

computation cost. The model is also applicable to other optimal rate control

techniques such as the dynamic programming approach in Section 2.4.3. In addi-

tion, our model is also useful for a VBR encoding (e.g. ATM network) scheme to

potentially achieve a constant quality.

In the next chapter, we propose a new bit-rate control scheme with relatively

low delay and complexity, by using the R-D curve predicted from the previously

coded frames.
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Figure 4.17: PSNR of image frames for Football and Table tennis. In each �gure,
mrb: gradient-based method using the approximated R-D by the proposed model,
with additional bit-re-allocation for B frames; mdl: gradient-based method using
the approximated R-D only; org: gradient-based method using the original mea-
sured R-D; tm5: Test model 5 algorithm. Note that for the Table Tennis sequence,
the TM5 algorithm does not handle the scene change (at 68th frame) well.
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Chapter 5

Fast Bit-Rate Control Schemes

5.1 Introduction

In the previous chapter, we have demonstrated that the optimum bit-rate control

techniques achieved a better encoding quality, and the spline approximation R-D

model reduced the computation complexity without degrading the quality. How-

ever, the computational complexity is still higher than those bu�er-state-feedback

based approaches such as MPEG Test Model 5 (TM5). Even when the computing

power is high enough to carry out the bit-rate-control operations in real-time, it

still cannot be used for real-time encoding, because the entire GOP has to be

fed-in and processed before encoding its �rst frame, i.e., there is a delay time of

one GOP. Therefore, the method is only suited for o�-line encoding.

In this chapter, we focus on real-time encoding applications. Currently, many

rate-control schemes for real-time encoding are based on schemes similar to the

TM5 algorithm, and only control the rate, without a mechanism to monitor the

distortion. In order to improve and stabilize the encoding quality, we still follow
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the framework of rate-distortion optimization, but only allow one frame delayed

for pre-analysis. The new algorithm is an enhancement of TM5, by adding the

approximated R-D model in the previous chapter to control the quality. Note

however that, one problem in TM5 is that it does not include a mechanism prevent

the encoder bu�er from over
owing. It only monitors the bu�er occupancy and

gives warnings whenever over
ow occurs. Although the over
ow rarely occurs

when using the standard decoder bu�er size recommended by MPEG, it is not true

when the bu�er size is smaller due to short delay requirement. In this chapter, we

still follow the same rule as for the TM5 algorithm and relax the bu�er constraints.

This chapter is organized as follows. In Section 5.2 we present a fast R-D

optimized bit-rate control scheme which uses the predicted R-D data to control

the quality. In Section 5.3, based on the new fast algorithm and with the help of

studies on the human visual system (HVS), we present a new quantization scheme

to improve visual quality, and show some MPEG encoding results.

5.2 Fast Bit-Rate Control with Predicted R-D

Consider the fact that, unless there is a scene change, the contents of image frames

are usually similar to each other within a short period of time (e.g. within a GOP).

When encoding a GOP, it is reasonable to assume that the R-D characteristics of

a future, not yet coded, frame are similar to the most recently coded frame of the

same type. In this section we propose an algorithm which uses models analogous

to those considered earlier but where we now assume that only the current frame

will be modeled while we use models based on already encoded frames for the

remaining frames in the GOP. Thus, the R-D data of un-coded frames remaining
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in the GOP is predicted using their nearest frame of the same type. Because the

predicted R-D data is not accurate enough, additional procedures are incorporated

to control the rate. The intra-frame spline approximation method introduced in

Section 4.2 is still used here for reducing computations.

5.2.1 Control Procedures

In the new control procedure, we use optimization approaches similar to those

presented in the previous chapters, and still consider a GOP as a basic unit in

the optimization. We follow the same notation as in Section 2.3.2 for TM5, and

denote the number of frames for each frame-type within a GOP as NI , NP , NB.

The total number of bits allocated for the GOP is then derived by

B = B0 + (NI +NP +NB) �
R

F
; (5.1)

where B0 is the number of bits left (or over-used if it is negative) from previous

GOP,R is channel rate in bits per second, and F is frame rate in frames per second.

The encoding procedure is as follows. After a frame of image data arrives, we �rst

measure and approximate its R-D functions, r(q) and d(q). Unlike the algorithms

presented in the previous chapters which allow all frames of a GOP to be read

and analyzed before any real encoding takes place, we now have to encode the

input frame and deliver it to the output stream immediately. In order to complete

the optimization procedure, the R-D data of future frames are substituted by the

data from most recently coded frame of the same type. For example, the latest P

frame model is used for all future P frames remaining in the GOP, and the latest

B frame model is used for all future B frames remaining in the GOP. Therefore, we

105



need to keep three sets of R-D data for the future frames, denoted as rI(q), dI(q),

rP (q), dP (q), rB(q), dB(q), for I, P, B frames respectively. With this R-D data,

the optimization procedure is operated and a solution is derived. The solution is

a set of quantization scales for all frames in the GOP, but only the one for the

current input frame is used to encode the current frame. After the current frame

is encoded, we count the actual number of bits consumed by the frame, subtract

it from B in (5.1), and then remove the current frame from the GOP (so the

number of frames is decrease by one). In the next step, we read the next frame

and repeat the same optimization procedure using the new value of B and new

structure of GOP. The entire procedure is then repeated again until all frames in

the GOP are encoded.

Two possible choices of optimization criteria are tested in this dissertation,

including minimization of total MSE (Minimum MSE), and minimization of dif-

ference in MSE between consecutive frames (Smooth MSE).

Minimum MSE

The �rst optimization criterion is to minimize the total MSE, as we did in the

previous chapters. Because we do not have access to the data from future frames,

it is not possible to build an inter-frame model as presented in Section 4.3. To

keep the computation simple, we consider the monotonicity property de�ned in

De�nition 2.1, Section 2.4.3. If the MPEG coder possesses this property, a better

quality in the reference frame (I and P) will lead to a better total coding e�ciency,

which has been observed in most of our MPEG encoding experiments (and also

in [46]). Hence, it is reasonable to con�ne the operating point within the domain

qI � qP � qB. Using the three sets of R-D data, one for each frame type, the
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total MSE becomes

D(qI ; qP ; qB) = NI � dI (qI) +NP � dP (qP ) +NB � dB(qB); (5.2)

and the optimization problem becomes to minimize D(qI ; qP ; qB) subject to

NI � rI(qI) +NP � rP (qP ) +NB � rB(qB) � B; (5.3)

qI � qP � qB; (5.4)

where B is total number of bits available for a GOP. Because there are only three

independent variables and there is no inter-frame dependency involved, it can be

e�ciently solved by the Lagrange multiplier method in Algorithm 2.1.

Algorithm 5.1 Minimum MSE

Step 1. Initialize the value of NI , NP , NB and the total bit-budget of a GOP

by (5.1).

Step 2. Read an image frame (which we call the current frame) and do the

necessary motion compensated prediction if it is a P or B frame, then

transform the data into DCT domain.

Step 3. Evaluate and approximate the rate-quantization r(q) and distortion-

quantization d(q) functions for the current frame, using the intra-frame

approximation method presented in Section 4.2. If the current frame

is an I frame, substitute the results into rI(q) and dI(q). If it is a P

frame, substitute the results into rP (q) and dP (q). Otherwise (must be a

B frame), substitute the results into rB(q) and dB(q).
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Step 4. Minimize total MSE in (5.2) subject to the constraints in (5.3) and

(5.4). The solution is denoted as (q�I ; q
�

P ; q
�

B). Note that at this stage,

compared to the TM5 algorithm, we have solved the \bit allocation" and

\rate control" in one step.

Step 5. If the current frame is an I frame, use q�I to encode the frame. If the

current frame is a P frame, use q�P to encode the frame. Otherwise (must

be a B frame), use q�B to encode the frame.

Step 6. Calculate the actual number of bits consumed by the current frame, and

subtract it from B. Also, depending on the current frame type (I, P or

B), decrease NI , NP , or NB by one.

Step 7. If the current frame is the last frame of GOP, assign B to B0, advance

to next GOP, and go to Step 1. Otherwise, advance to next frame and

go to Step 2.

Smooth MSE

Another criterion which often leads to a more stable playback quality is to mini-

mize the di�erence in MSE between consecutive frames, in addition to maximize

the quality within the rate constraint. This can be done by a two-step opti-

mization process. The �rst step is to minimize the MSE di�erence, by using the

following procedures. Based on the current frame type, we pick one variable in

fqI , qP , qBg as a primary variable. For example, suppose the current frame is

an I frame, the primary variable is qI . Given qI = x, the quantization scales for

P frames and B frames (denoted as y�(x) and z�(x) respectively) are derived by
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minimizing the MSE di�erence

y�(x) = arg min
y

[dP (y)� dI(x)]; (5.5)

z�(x) = arg min
z

[dB(z)� dI(x)]: (5.6)

As in the Minimum MSE case, we also add a constraint,

dI � dP � dB; (5.7)

which makes the quality of the reference to be better then that of predictive frame,

which in general gives better performance due to monotonicity property. Then, in

the second, the solution for I frame, denoted as q�I , is derived by minimizing the

di�erence between the total bits (generated by the model) and the total bit-budget

B,

j[NI � rI(x) +NP � rP (y
�(x)) +NB � rB(z

�(x))]�Bj ; (5.8)

over all possible x's (or values for qI).

If the current frame-type is P or B, the solution of q�P or q�B can be derived by

a similar procedure.

Algorithm 5.2 Smooth MSE

Step 1. Initialize the value of NI , NP , NB and the total bit-budget of a GOP

by (5.1).

Step 2. Read an image frame (named as current frame for later reference) and

do the necessary motion compensated prediction if it is a P or B frame,

then transform the data into DCT domain.
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Step 3. Follow the same procedure as in Algorithm 5.1, Step 3 to derive and

update R-D data.

Step 4. Derive the solution q�I , q
�

P , or q
�

B (according to the current frame type)

by using the above double-loop optimization procedure.

Step 5. Follow the same procedure as in Algorithm 5.1, Step 5 and Step 6.

Step 6. If the current frame is the last frame of GOP, assign B to B0, advance

to next GOP, and go to Step 1. Otherwise, advance to next frame and

go to Step 2.

5.2.2 Experimental Results

We encode the six test video sequences by the proposed algorithms. The results are

shown in Table 5.1 and 5.2. The PSNR curves of encoded image frames for GOP

size 15 are shown in Fig. 5.1, 5.2, and 5.3. The results from the previous chap-

ter (using gradient-search procedure with approximated R-D plus re-optimization

on B-frames) are also shown in the Table for comparison. Note that the com-

putation complexity of the new algorithm is similar to that of TM5 with only

8 additional quantization and encoding operations for each frame. Compared to

other operations like motion estimation or DCT, the additional overhead is not

signi�cant. It also has the potential to be sped-up further by using a parallel

hardware implementation.

110



Bicycle
GOP 6 GOP 15

PSNR Di� PSNR Di�
Gradient & Model 27.05 45.86 n/a n/a
Prediction & MinimumMSE 26.92 10.80 27.04 10.19
Prediction & Smooth MSE 26.86 8.83 27.01 7.57
Test Model 5 26.37 27.07 26.49 27.11

Cheer
GOP 6 GOP 15

PSNR Di� PSNR Di�
Gradient & Model 26.59 35.45 n/a n/a
Prediction & MinimumMSE 26.31 10.04 26.53 10.66
Prediction & Smooth MSE 26.19 6.44 26.40 4.96
Test Model 5 25.86 25.05 26.06 25.86

Football
GOP 6 GOP 15

PSNR Di� PSNR Di�
Gradient & Model 33.17 6.25 n/a n/a
Prediction & MinimumMSE 33.14 5.49 33.18 4.10
Prediction & Smooth MSE 32.98 7.35 33.10 5.19
Test Model 5 32.43 11.29 32.49 11.01

Table 5.1: Average PSNR and �rst-order di�erence of MSE for the test sequences.
Gradient & Model: gradient method with R-D approximated by the model with
additional bit-re-allocation for B frames; Prediction & Minimum MSE: Predicted
R-D with minimumMSE; Prediction & Smooth MSE: Predicted R-D with smooth
MSE.
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Flower
GOP 6 GOP 15

PSNR Di� PSNR Di�
Gradient & Model 27.07 26.25 n/a n/a
Prediction & MinimumMSE 26.89 15.10 27.62 14.43
Prediction & Smooth MSE 26.63 12.35 27.24 10.35
Test Model 5 25.91 14.04 26.70 15.01

Mobile
GOP 6 GOP 15

PSNR Di� PSNR Di�
Gradient & Model 25.25 30.38 n/a n/a
Prediction & MinimumMSE 24.70 18.16 25.75 15.19
Prediction & Smooth MSE 24.75 15.58 25.52 10.74
Test Model 5 23.96 30.02 25.07 21.44

Table Tennis
GOP 6 GOP 15

PSNR Di� PSNR Di�
Gradient & Model 32.80 7.13 n/a n/a
Prediction & Minimum MSE 32.60 7.91 33.43 7.15
Prediction & Smooth MSE 32.44 6.98 33.14 5.48
Test Model 5 31.25 8.62 32.13 7.58

Table 5.2: (Continued) Average PSNR and �rst-order di�erence of MSE for the
test sequences. Gradient & Model: gradient method with R-D approximated by
the model with additional bit-re-allocation for B frames; Prediction & Minimum

MSE: Predicted R-D with minimumMSE; Prediction & Smooth MSE: Predicted
R-D with smooth MSE.
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(b) Cheer

Figure 5.1: PSNR of encoded videos (GOP size 15). smooth: optimizing by
smooth MSE criterion; min-mse: optimizing by minimum MSE criterion; tm5:
Test Model 5 algorithm.
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(a) Football
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(b) Flower

Figure 5.2: (Continued) PSNR of encoded videos (GOP size 15). smooth: optimiz-
ing by smooth MSE criterion; min-mse: optimizing by minimum MSE criterion;
tm5: Test Model 5 algorithm.
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(a) Mobile

0 20 40 60 80 100 120 140

28

30

32

34

36

38

40

frame (in display order)

P
S

N
R

 (
dB

)

smooth
min−mse
tm5

(b) Table Tennis

Figure 5.3: (Continued) PSNR of encoded videos (GOP size 15). smooth: optimiz-
ing by smooth MSE criterion; min-mse: optimizing by minimum MSE criterion;
tm5: Test Model 5 algorithm. Note that for the Table Tennis sequence, the TM5
algorithm does not handle the scene change (at 68th frame) well.
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5.3 Enhancement of Visual Quality

We have proposed several optimization techniques for bit-rate control. Because

the cost functions used in the optimization problem are based on the Mean

Squared Error (MSE) or Peak Signal to Noise Ratio (PSNR), we observed higher

and more stable PSNR in our encoding results. However, it is well known that

MSE does not always correspond to quality perceived by the human visual sys-

tems. Our techniques are general enough that any quality measure can be used

as a cost function, as long as the quality-quantization function is smooth so that

the interpolation approximation can be applied. In this section, based on the al-

gorithm proposed in the previous section, we extend the algorithm for improving

and stabilizing the visual quality.

5.3.1 Human Visual System

Study of the perception in the Human Visual System (HVS) has been covered

within the �eld of psychophysics and it usually involves intensive experiments and

visual tests. Currently, it is still an active research topic. From the study, a model

which is particularly useful for image and video compression is the Multi-Channel

Model, in which an HVS is modeled by a bank of �lters, with each �lter tuned to

a speci�c band of spatial frequency and orientation [54]. The perception of the

signal in each band is governed by two key concepts, the contrast sensitivity which

accounts for the perception of single band, and the masking e�ect which quantizes

the interactions between several di�erent bands. Contrast sensitivity, is de�ned

as, for a given spatial frequency, the minimum amplitude of the signal required

so that it can be detected. Human eye perceives the output of each band with
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di�erent sensitivity. For example, it is more sensitive to lower spatial frequency

than to higher frequency, and is more sensitive to horizontal and vertical patterns

than to diagonal ones. The second concept, masking e�ect, describe the fact that,

if there are more than one signal (in di�erent bands) present in the same area,

and the energy of the largest signal is higher than any others by some threshold,

all other signals will be masked. There are two types of masking e�ects for a

still image. The �rst one is due to the DC band of the signal. Because the DC

band corresponds to the background luminance, it is also known as background

luminance masking. On the other hand, if the masking is caused by other higher

frequency bands, it is usually called texture masking. For video or motion pictures,

there is another type of masking, known as temporal masking, which is due to the

fact that human eyes have to be focused on an object long enough (e.g., 0.1 sec)

in order to clearly see the details of that object. Hence, a scene with fast moving

objects or frames just after a scene change is usually masked. More details of

HVS related studies can be found in [3, 29, 56, 54].

Some of the results from HVS study have been applied to improve the visual

quality for the image and video compression. For example, in [9], an algorithm was

proposed which utilized the study of the masking e�ect to derive a just-noticeable-

distortion (JND) pro�le. The JND pro�le was then applied to a wavelet-based

image compressor. The same approach is di�cult to apply to the MPEG rate

control algorithm while maintaining standard decoder compatibility.

For DCT based schemes such as in MPEG, the use of a quantization matrix

is a direct application of the study of contrast sensitivity. A method for �nding a

better quantization matrix was proposed in [57]. It might be useful to incorporate

the algorithm for bit-rate control, but that would require to allocate additional
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bits for di�erent quantization tables from time to time which would add overhead

signi�cantly.

In this dissertation, we propose an adaptive quantization scheme which im-

plicitly utilizes the masking e�ects and can be seamlessly integrated into the rate

control algorithm presented in Section 5.2.

5.3.2 Revised Fast Algorithm

In order to minimize the artifacts due to quantization, we �rst classify the 8 � 8

DCT block into three categories, namely 
at, edge, and texture blocks, and then

apply di�erent quantization scales, qF , qE, or qT , to the blocks in each category,

as shown in Fig. 5.4. To avoid the blocky artifact in 
at blocks, the quantization

scale qF should be kept as small as possible. On the contrary, because of masking

e�ects, the quantization scale qT for texture blocks can be set to a larger value.

Gaussian
Filter

Block
Classifier

Edge
Block Coder

Flat
Block Coder

Texture
Block Coder

Rate-Cost
Measurement

S

qF

qE

qT

Figure 5.4: Block-classi�ed controller
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The following procedures are used to classify the blocks:

Algorithm 5.3 Block Classi�cation

� Flat blocks: The 
at block is classi�ed by checking the summation of absolute

value of DCT ac coe�cients,

63X
i=3

jacij < Threshold; (5.9)

where the coe�cients are arranged in the zigzag scan order used in JPEG

and MPEG. Note that the �rst two ac coe�cients only contribute to smooth

variation within a block. Therefore they are not included in the summation.

� Edge blocks: For those blocks which do not pass the test in (5.9), if at least

one of their four nearest neighbors is a 
at block, they are considered as edge

blocks.

� Texture blocks: All the blocks that are not either 
at blocks or edge blocks

are considered as texture blocks.

Note that for the classi�cation of blocks in P and B frames, the DCT coe�-

cients of the original image data, not the prediction residue, are used, and thus

additional DCT operations are required for these frames. Fig. 5.5 shows classi�-

cation results from a frame in the Susie sequence, with the Threshold set to 100.

In MPEG, the mquant is assigned at macroblock level, which consists of four 8�8

DCT block. So, among the q's of four blocks, we choose the smallest one and use

it as mquant for the encoding.
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In Fig. 5.4, a Gaussian-shaped �lter is used for pre-�ltering. The impulse

response of this �lter is de�ned as

h(x; y) =
1

p
2�

� exp

 
�
x2 + y2

s2

!
; (5.10)

where s determines radius of the �lter. The parameter s also determines the trade-

o� of the rate and distortion and thus can be used as a rate control parameter

in a way similar to that of the quantization scales q. The advantage of using s

instead of q to control the rate is that the degradation in visual quality as the

rate decreases is lesser than that of the case when q is changed. This is due to

the fact that the Gaussian function has the same shape but without ripples in

both the spatial and frequency domain. Hence, better quality can potentially

be achieved by combining s and q in the rate control procedure, especially when

bit-rate is low. However, the computational complexity is expected to be higher

for our fast control scheme, because we need to repeatedly perform the �ltering,

encoding and measuring the R-D data for each frame at several di�erent values of

s, which requires pre-�ltering and DCT for each R-D measurement (in addition

to quantization and encoding). For the experiment in this section, to reduce the

computation cost, we set s to be a function of channel rate (i.e., set s to a larger

value when the channel rate is lower), and �x the value in the entire encoding

process.

To incorporate the above block-classi�cation procedure into our fast rate con-

trol algorithm, the �rst choice would be to rede�ne the cost function as the
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weighted sum of MSE of di�erent types of blocks, as

D(qF ; qE; qT ) =
X
i

wF � di(qF ) +
X
j

wE � dj(qE) +
X
k

wT � dk(qT ); (5.11)

where wF , wE, wT are the pre-set weighting coe�cients. Now, we have three

quantization scale values for each frame, and the measurement of R-D is made

independently for each quantization scale, hence the same interpolation R-D ap-

proximation scheme can still be applied. In the optimization procedure, there

are three q values for each of the I, P, B frames, so now the total number of

variables becomes 9. However, we can still independently optimize the cost for

each variable, hence the additional computation cost is not particularly high. The

parameters which are still left to be determined are the weighting coe�cients, wF ,

wE, wT .

The second method which is more computational e�cient is to just keep the

ratio of qF , qE, qT constant, as

qF

1
=

qE

kE
=

qT

kT
; (5.12)

and still use a single parameter, say qE, as the control parameter for each frame. In

this case, the algorithm in Section 5.2 can be applied directly, except that the �rst

optimization criterion (Minimizing the total MSE) is no longer applicable. This

is because the MSE measure does not re
ect the visual quality, it is meaningless

to just minimize the MSE. However, because MSE is still a good indicator for

comparing the quality between consecutive frames, the Smooth MSE criterion,

which minimize the di�erence in MSE between consecutive frames, is still useful
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for achieving stable quality.

Algorithm 5.4 Smooth MSE with Visual Quality Enhancement

Step 1. Based on the speci�ed output bit-rate, determine a value for s in (5.10),

and construct a Gaussian �lter.

Step 2. Initialize the value of NI , NP , NB and the total bit-budget of a GOP

by (5.1).

Step 3. Read an image frame (which we call the current frame) and apply the

Gaussian �lter.

Step 4. Transform the image into DCT domain (use original image data regard-

less of the frame type), and do the classi�cation using Algorithm 5.3.

Step 5. If the current frame type is P or B, do the motion compensated predic-

tion and transform residue into DCT domain.

Step 6. Follow the same procedure as in Algorithm 5.1, Step 3 to derive the

R-D data, except now for a given q, three di�erent values of mquant are

applied to di�erent block types, with qF = q=kE, qE = q, and qT = q � kT .

Step 7. Follow the same procedure as in Algorithm 5.2, Step 4 to derive the

solution q�I , q
�

P , or q
�

B (according to the current frame type.

Step 8. Set q to be q�I , q
�

P , or q�B (according to current frame type), and set

qF = q=kE, qE = q, and qT = q � kT , and encode the current frame using

qF , qE, and qT for each block type respectively.
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Step 9. Calculate the actual number of bits consumed by the current frame, and

subtract it from B. Also, depending on the current frame type (I, P or

B), decrease NI , NP , or NB by one.

Step 10. If the current frame is the last frame of GOP, assign B to B0, advance

to next GOP, and go to Step 2. Otherwise, advance to next frame and

go to Step 3.
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(a) Original Image

(b) After Block Classi�cation

Figure 5.5: Block classi�cation of a frame in Susie sequence, with Threshold set
to 100. Gray shade indicates edge blocks and black indicates texture blocks.
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5.3.3 Encoding Results

In the experiment, we use 40 frames in the Susie Sequence at 24 frames per second.

The Algorithm 5.4 is used for the encoding, with kE = 2 and kT = 3. Two channel

rates are chosen to demonstrate the control capability of our algorithm at lower

bit-rate, 256 kbits per second and 192 kbits per second. For comparison, we also

use the original TM5 algorithm to encode the sequence at the same rates. The

�le size and location (URL, for Internet web browser) are shown in Table 5.3.

The �les are in standard MPEG format and can be decoded and playback by

any standard MPEG player. Note that the traditional distortion measure, or

PSNR, is not included in the data because it does not re
ect the visual quality

and is not an optimization criterion to our control algorithm. Four reconstructed

images of the same frame from the four test results are shown in Fig. 5.6 and

Fig. 5.7. In the side by side playback test, we observe that the results generated

by TM5 algorithm show clear artifacts in some frames. The temporal variation in

quality are also noticeable throughout the playback. The results generated from

our algorithm give better and more stable playback quality.

bit-rate (kbps) �le size (bytes)
Test Model 5 256 53701
Algorithm 5.4 256 53435
Test Model 5 192 40124
Algorithm 5.4 192 40146
File location http://sipi.usc.edu/~liangjin

Table 5.3: MPEG �les of Susie Sequence, 40 frames, 24 fps.
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(a) Test Model 5 Algorithm

(b) Our Algorithm

Figure 5.6: Frame 9 of the Susie sequence, encoded at 256 kbps using (a) the Test
Model 5 algorithm and (b) our algorithm. The TM5 algorithm is not quite stable
at 256 kbps, while our algorithm still gives a reasonably result.
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(a) Test Model 5 Algorithm

(b) Our Algorithm

Figure 5.7: Frame 9 of the Susie sequence. The encoding procedure is the same as
that in the previous �gure, but encoded at 192 kbps. Again, the TM5 algorithm
is not quite stable at 192 kbps, while our algorithm still gives a reasonably result.

127



5.4 Conclusions

In the �rst part of this section, we have demonstrated that our proposed fast al-

gorithm which uses predicted R-D characteristics has successfully achieved higher

and smoother quality in terms of PSNR with only minor computational overhead.

The e�ects of the two di�erent optimization criteria are also clearly shown in the

results. The results show that the performance of the fast algorithm is quite close

to the previously proposed one-GOP-delay algorithms.

In the second part, we enhance the algorithm by adding a pre-�ltering and

block-classi�cation procedure, aimed at better visual quality. The side-by-side

playback comparison with the results from TM5 algorithm shows that a more

stable and better quality has been achieved by our algorithm. Because our ap-

proach is fully decoder compatible, the quality enhancement can be shown by any

standard MPEG player.
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Chapter 6

Conclusions and Extensions

6.1 Summary of the Research

In this research, our focus has been on bit-rate control techniques to improve the

quality of digital video which has to be encoded with a coder with limited bu�er

size and for a communication channel with limited channel rate. We �rst surveyed

several current bit-rate control algorithms, ranging from light overhead schemes

such as MPEG Test Model 5 (TM5) algorithm, to computationally-intensive tech-

niques using Lagrange multiplier and trellis-based dynamic programming meth-

ods. For the TM5 algorithm with default parameters, sometimes good quality

can be generated, but this is not generally true for any given video sequence. It is

also di�cult to adjust parameters to improve the quality without the help of man-

ual trial and error adjustments of the encoding. Another problem is, it does not

control the bu�er to prevent bu�er over
ow. The R-D optimized control schemes

solve all these problems and generate better and more stable results. However,
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the costly computation complexity, mainly from the evaluation of rate and dis-

tortion functions for many quantization settings, makes the algorithm impractical

for many applications, although it is a good benchmark reference for other rate

control techniques.

To cope with the high computational complexity problem in the R-D opti-

mized control schemes, we proposed an algorithm based on penalty functions and

iterative gradient search. The computational complexity is reduced because we

only need to evaluate rate and distortion functions along the search path, which

is much less than the requirement for trellis-based approach. Although the algo-

rithm only converges to a local optimum solution, our experiments show that it

is close to the global optimum solution.

Our second research topic was on the approximation of rate and distortion

functions, which can greatly reduce the complexity of R-D optimized rate control

techniques. Previous works were mainly based on speci�c statistical models. A

survey and experiment show that it is di�cult to accurately determine the model

parameters, and the model error is too large to be useful for R-D optimized

rate control algorithm. Therefore, we propose an approximation method based

on computing a few R-D points and interpolating the remaining points using

spline functions. The inter-frame dependency of R-D functions are also considered

and modeled by linear-constant functions. By a complete evaluation on all the

quantization settings, we show that the approximation error is small. A direct

application to our gradient-based rate control algorithm shows the results are very

close to the ones based on the original R-D data, with only about 15% to 20% of

computations.

Finally, we proposed a fast algorithm suitable for real-time encoding. The
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R-D optimized approach is still used in the algorithm, except that the R-D data

for those un-coded frames are predicted from the coded frames. Properties of

human visual system (HVS) are also used to enhance the visual quality. The

experimental results show that better and more stable quality can be achieved by

our algorithm, especially when the channel rate is low (e.g., CIF format at 192 to

256 kbits per second).

All our algorithms and encoding results are compatible with standard MPEG

decoders, and thus can be played back by any MPEG decoder with improved

quality.

6.2 Future Extensions

Based on the proposed algorithms in this dissertation, some possible extensions

of the work are presented in the following.

� Enhancement of Visual Quality

In Section 5.3, we proposed a scheme to enhance the visual quality based

on block classi�cation. Additional improvement is possible to make the

algorithm more robust to any type of input, including the use of image

classi�cation to adaptively adjust the value of kF , kT , and s.

� Rate Control for Scalable Video

Scalable video stream de�ned in MPEG-2 provide a way for a receiver to

decode only part of data and get the video at di�erent quality and resolution,

depending on the channel condition and player capability. This is useful

for video data browsing, HDTV with embedded TV and so on. The rate
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control algorithm in a scalable video encoder requires to determine the best

policy for assigning bits to di�erent hierarchies, which usually calls for a

rate-distortion optimizing procedure. Our R-D approximation model and

optimum rate control algorithms can potentially be used in this context to

reduce computation complexity.

� Rate Control for Multiple Program Encoding

In the de�nition of MPEG-2 system stream, several di�erent programs can

be multiplexed and transmitted through a single CBR channel. This trans-

mission scheme is now widely used in DirectTV and other digital cable TV

system to increase the total number of program channels in a system. Some

study has shown that, instead of assigning an equal bandwidth for each

program, if an optimization procedure can be performed across di�erent

programs, the quality can be improved on all programs. Again, the rate-

distortion optimized procedure is still required in this context, and our R-D

approximation model and optimum rate control algorithms can potentially

be used to reduce computation complexity.

� Rate Control for Wavelet Video Coder

Image compression using wavelets [1] has been demonstrated to have a better

performance compared to the DCT-based scheme in terms of both PSNR

and visual quality, especially in the low-bit-rate case. Recently, several

embedded and multi-rate wavelet encoding schemes were introduced in [49,

52]. The applications to video compression were also presented in [7, 30]. In

the embedded coding, the bits are ordered in importance so that the encoder

can terminate the encoding at any point to perfectly meet a target rate or
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distortion. This is particularly suitable for the bit-rate control within an

image (local control). However, when using this scheme for video, it is still

necessary to have a strategy in assigning bits to each frame (global control),

particularly when the same I, P, B structure as in MPEG is used. Our

rate-distortion model and optimization-based rate control scheme is useful

in this context.
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