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Abstract

Supervised learning is the machine learning task of inferring a function from labeled

training data. There have been numerous algorithms proposed for supervised learn-

ing, such as linear discriminant analysis (LDA), support vector machine (SVM),

decision trees, and etc. However, most of them are not able to handle an increas-

ingly popular type of data, high dimensional data, such as gene expression data,

text documents, MRI images, and etc. This phenomenon is often called the curse

of dimensionality. Our solution to this problem is an improvement to LDA that

imposes a regularized structure on the covariance matrix, so that it becomes block

diagonal while feature reduction is performed. The improved method, which we call

block diagonal discriminant analysis (BDLDA), effectively exploits the off diagonal

information in the covariance matrix without huge computation and memory re-

quirement. BDLDA is further improved by using treelets as a preprocessing tool.

Treelets, by transforming the original data by successive local PCA, concentrates

more energy near the diagonal items in the covariance matrix, and thus achieves

even better accuracy compared to BDLDA.

Supervised learning requires labeled information of all classes. However, since

labeled data is often more difficult to obtain than unlabeled data, there is an in-

creasing interest in a special form of learning, namely, one class learning. In one

class learning, the training set only has samples of one class, and the goal is to

vii



distinguish the class from all other samples. We propose a one class learning algo-

rithm, Graph-One Class Learning (Graph-OCL). Graph-OCL is a two step strategy,

where we first identify reliable negative samples, and then we classify the samples

based on labeled data and the identified negative samples in the first step. The

main novelty is the first step, in which graph-based ranking by learning with local

and global consistency (LGC) is used. Graph-based ranking is particularly accu-

rate if the samples and their similarities are well represented by a graph. We also

theoretically prove that there is a simple method to select a constant parameter

α for LGC, thus eliminating the necessity of model selection by time consuming

validation.

Graph-based methods usually scale badly as a function of the sample size. This

can be solved by using the Nyström approximation, which samples a few columns

to represent the affinity matrix. We propose a new method, BoostNyström, which

adaptively samples a subset of columns at each iterative step and updates the

sampling probability in the next iterative step. This algorithm is based on a novel

perspective, which relates the quality of Nyström approximation with the subspace

spanned by the sampled columns. BoostNyström can be potentially applied to

Graph-OCL to solve the problem of large data size.
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Chapter 1

Introduction

This thesis focuses on two machine learning problems: supervised learning and one

class learning. They are both classification problems, but they differ in one impor-

tant aspect, namely how the training samples are labeled. A supervised learning

algorithm analyzes the training data, which includes labeled data in all classes,

and produces an inferred classification function. The classification function is then

applied to the test data to find their classes. Supervised learning finds applications

in many real life problems. One example that many people might have encountered

is the classification of spam emails and normal emails. Supervised learning is also

used in many academic fields other than computer science. For example, it is used

to classify the gene expression data, which can help medical doctors to predict the

survival rate and identify possibly responsible genes for certain diseases. We will

discuss this application in more detail in Chapter 2.

One class learning, on the other hand, has labeled data that belongs to only one

of the classes. Only unlabeled data is available in all the other classes. There are two

reasons for the increasing popularity of one class learning. One reason is that usually

labeled data is more difficult to obtain than unlabeled data. Labeling data may

require special skills and equipment, which can be expensive to obtain. [9] described
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one situation that only one class has labeled data. In industrial production, there

is usually enough data available to characterize the state of the system when it is

operating correctly. However, there might not be enough information about how the

system malfunctions, because it certainly is not a good idea to disrupt the system

in order to obtain the corresponding negative data. If we want to classify future

samples, we have to build a model based on one class learning. The other motivation

for one class learning is that only one class has characteristic samples, and other

classes might not have typical samples. For instance, an e-business website wants to

classify the customers into valued customers and normal customers. They may have

well defined characteristics for valued customer, such as high shopping frequency,

large number of purchases or a large amount of money spent in certain period of

time. On the other hand, normal customers do not have typical characteristics to

describe their shopping behavior. Thus, we may need to do a one class learning in

which only the class of valued customers has labeled data.

There have been various algorithms proposed to solve supervised learning and

one class learning problems. Many times, the one class learning algorithm is derived

from a supervised learning algorithm. For example, [37] designed an adaptive SVM

method for one class learning of text data, and SVM is traditionally used in super-

vised learning. Similarly, [33] extended the naive bayesian method, a traditional

supervised learning method, to one class learning. With the advent of large data

in different fields, there emerge new challenges in applying the algorithms. These

challenges can be due to either high dimension or large sample size, that often arises

in big data problems. Each situation leads to challenges in many traditional algo-

rithms. This thesis will focus on large data challenges in supervised learning and

one class learning. We will first discuss a challenge in supervised learning, which

2



analyzes high dimensional data sets. Then we discuss a novel one class learning

algorithm, and the challenge of scaling it up to large sample size.

1.1 Supervised Learning of High Dimensional Data

The goal of supervised learning is to build a model that captures the intrinsic

associations between the class type and the features, so the class associated to a

sample can be accurately predicted from its feature values. For this purpose, the

data is usually divided into a training set and a test set, where the training set

is used to build the classifier which is validated by the test set. There are several

models developed for supervised learning, e.g., Naive Bayesian, neural networks,

decision trees [36], SVM [53], LDA [42] [21], and so on.

One of the challenges of supervised learning is to build a classification model

on high dimensional data sets. The emergence of various new application domains,

such as bioinformatics and e-commerce, underscores the need for analyzing high

dimensional data. For example, in a gene expression microarray data set, there

could be thousands or even millions of dimensions, each of which corresponds to a

specific segment of genome.

[54] described two challenges for analyzing high dimensional data. The first

one is the curse of dimensionality. Many machine learning algorithms have com-

plexity that is at least quadratic or even exponential with respect to the number

of dimensions. With a fixed number of training samples, the predictive power of a

learning algorithm decreases as the dimensionality increases. Sometimes, even the

prediction is impractical. Secondly, when a measure such as a Euclidean distance
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is defined on high dimension, there is little difference in the distances between dif-

ferent pairs of samples [6]. This phenomenon may cause many machine learning

algorithms to be vulnerable to the presence of noise.

Among the state-of-art supervised learning algorithms, SVM is one of the most

successful classification models. An SVM model represents the samples as points in

space, and derives a hyperplane as a boundary between separate categories to make

the margin as wide as possible. SVM achieves the nonlinear classification by using

the kernel trick, which transforms the input space into another higher dimensional

feature space. Without having to express the data explicitly in higher space, only

the kernel matrix is necessary to obtain the solution. SVM is a natural fit for high

dimensional data, because through the dual problem in convex optimization, its

complexity only depends on the sample size. However, the complexity of training

an SVM is O(N2) where N is the number of samples in the training data set.

This could be a big disadvantage when the training data set is large. The other

disadvantage is the difficulty to identify the top features that are responsible for the

classification if the data is transformed to higher dimensions, since only the kernel

matrix is involved in the solution.

Unlike SVM, LDA is a generative learning algorithm, which assumes that sam-

ples of a class are linearly separable from samples of other classes, and each of

them has a conditional probability distribution that is normally distributed with

common covariance matrix. Normal distribution is not a necessary condition to

apply the LDA model. Actually many real life data sets do not have a strictly

normal distribution. However, normal distribution guarantees optimality of the

LDA solution. LDA has simple closed form solution and is effective in many ap-

plications [21]. However given insufficient sample size, LDA becomes impractical

because of the singularity of the estimated covariance matrix. A few modifications
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to solve the overfitting problem have been proposed. One solution is to regularize

the covariance matrix by imposing a diagonal structure on it. Examples of tak-

ing the assumption of diagonal covariance matrix include [13] [39]. There are also

different ways of selecting the features involved in the classification. The features

can be selected in a batch mode, or selected sequentially by a certain criterion.

The regularization form and how the features are selected are influential factors to

decide the classification accuracy. Chapter 2 will focus on our novel method for the

regularization form and feature selection.

We have proposed and improved a novel supervised learning method, block di-

agonal linear discriminant analysis (BDLDA), for high dimensional data, especially

gene expression data. BDLDA is based on LDA, but does greedy feature selection

in order to maintain the most informative elements in the covariance matrix. Learn-

ing all elements in the full covariance matrix is impossible with limited sample size.

On the other hand, much useful information is lost if a diagonal covariance matrix

is assumed. BDLDA achieves a tradeoff between a full covariance matrix and a

diagonal one. The features are selected based on a simple metric, the discriminant

function, such that the most discriminant features found are added into the feature

set.

Though BDLDA is more accurate as compared with some state-of-art algo-

rithms, there is still much information in the covariance matrix not considered in

building the model. One solution is to increase the size and the number of blocks

used in BDLDA, but this comes at the cost of increasing complexity. We propose to

use treelets as a preprocessing feature reduction method. Treelets provides a tool for

feature transformation that imitates successive PCA. It localizes the energy of the

covariance matrix near the diagonal. As a preprocessing method, it allows BDLDA

to extract more informative features while maintaining the same complexity with
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regular BDLDA, and thus leads to better classification accuracy. The classifier

combining BDLDA and treelets is called Treelets-BDLDA (T-BDLDA).

The details of the algorithm and experimental results are described in Chapter 2.

1.2 One Class Learning and Extension to Large

Data

Supervised learning tries to distinguish between two or more classes with the train-

ing set containing samples from all the classes. But as already mentioned, usually

labeled data is more difficult to obtain than unlabeled data. This leads to the

situation where labeled data may be missing in certain classes. Therefore, nowa-

days, people are becoming more interested in one special case of learning: one class

learning. There is one other term, outlier detection, which is often used for this

problem. The term originates from a different application of one class learning, in

which the objective is to identify as many negative samples as possible.

The one class classification problem is different in one important aspect from

supervised learning. In one class classification only one of the classes has labeled

information that can be used in the training step. The other classes only have

unlabeled data. We name the class with labeled data as positive class, and all

other classes as negative class. The task is to learn a model that defines a bound-

ary between the positive and negative class such that classification accuracy is

optimized. The task is similar to semi-supervised learning in the sense that both

labeled and unlabeled data are used in the training step to build a model. Unlike in

semi-supervised learning however, the boundary is very likely to be biased, because

generally the amount of unlabeled data is much larger than that of labeled data.

6



In One class learning one encounters the same problem as in supervised learning,

in that the labeled set of samples may not characteristic enough. Limited number of

labeled samples or noise in the measurements may cause the sampling distribution

deviate significantly from the real distribution. For example, the labeled data may

be concentrated near the boundary, which will complicate the learning process. This

problem may be more prominent in one class learning, because we have even less

labeled information than in supervised learning. Though the problem is important,

we will not discuss it in this thesis. We assume that there is enough training data

to determine the characteristics of the labeled class.

Several algorithms have been proposed for one class learning. Koch [26] used

neural network for the detection of positive samples, but the resultign algorithm

does not have a good performance in case of high dimensions. There have been

algorithms proposed that are based on the Bayesian approach, such as Naive

Bayesian [35] and S-EM [33]. Naive Bayesian is simple to implement, but it re-

quires knowledge of prior distributions of the parameters and is not very accurate

in deriving the classification boundary, as shown in Chapter 3. S-EM is an advanced

form of Bayesian method, and uses the EM algorithm to predict the classification

parameters, but because EM algorithm is an iterative method, S-EM is computa-

tionally complex which restricts its wide application. An adaptive SVM algorithm

for one class learning was proposed in [37]. The algorithm iteratively refines the

SVM boundary until convergence. It has high accuracy, but is also computationally

expensive and cannot scale up to high sample size.

Recently, there has been a lot of research on spectral graph methods applied to

clustering and semi-supervised learning, such as Mincut [7], graph random walk [51],

Gaussian Random Fields [63], LGC [58], spectral graph transducer [24], manifold
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regularization [5] [49], and many other variants. In particular, [5] generalizes graph-

based learning to the manifold setting. In these graph based algorithms, samples are

represented as graph nodes, and their similarities are represented by edge weights.

Different algorithms may define different regularization forms on the graph. The

common goal is to infer a classification function that conforms to the initial labeling

and is also smooth on the graph. Graph based methods are generally considered

to have high accuracy and low complexity.

To the best of our knowledge, graph based learning algorithms have never been

applied to one class learning. Due to their success in semi-supervised learning,

graph based algorithms are well suited for learning tasks including both labeled

and unlabeled data. However, how graph based algorithms can handle missing la-

beled information in negative class is not obvious. We propose a novel one class

learning algorithm, Graph-OCL, which uses a graph based method, LGC, com-

bined with Transductive-SVM (TSVM). One class learning is usually solved in a

two step strategy. The first step is to detect reliable negative samples, which are

the most distant samples from the labeled ones. In our proposed algorithm, the

reliable negative samples are selected as the lowest ranked samples by LGC rank-

ing. This procedure can be explained by the class probability propagation among

the graph, so that the negative samples have the lowest probability belonging to

the labeled class. Since graph based methods explore the manifold structure of the

data, LGC ranking provides more accurate identification than other methods, such

as Naive Bayesian and Rocchio classifier. In order to decide the number of negative

samples selected, we use the spy sample technique first proposed in [33]. A few spy

samples from the positive labeled set are placed into the unlabeled set. The spy

samples provide a calibration so that the samples with the classification probability

significantly higher than spies are considered reliable negative.

8



LGC has one parameter α that controls the balance between graph energy and

labeled data fit. Usually the parameters of a learning algorithm are selected by

validation methods, such as cross validation. However, it can be proved that LGC

ranking is stable when α is smaller than a bound, which is determined by the

similarity matrix of the graph. We also show by extensive experiments that LGC

has higher accuracy when α is below the bound than when it is above the bound.

Thus, α can be chosen as any value below the bound.

The biggest problem with graph based algorithms is that they are unable to scale

up to large sample size, although they are effective in small size data. However,

for large size problems (e.g. data size>10,000) both storing the similarity matrix,

which is a Gram matrix, and solving the associated machine learning problem are

prohibitive. This limits usage of the graph-based algorithms in many applications

involving large data size, such as sensor networks, social networks, Internet text,

etc. In many cases the Gram matrix can be approximated by a sparse matrix,

and the sparse matrix computation algorithms can be used. In many other cases

the Gram matrix may be dense. In this case, may calculations such as the matrix

inversion in LDA, the quadratic programming in SVM, and the computation of the

eigendecomposition will take space complexity O(n2) and time complexity O(n3).

Thus, complexity may be prohibitive when the number of samples n is large.

Recently, many methods have been proposed to approximate the Gram matrix

using a low rank structure. For example, [1] used randomized methods to speed up

kernel PCA by replacing the kernel matrix (a Gram matrix) by a randomized kernel

which approximates the original one in expectation. [55] proposed to use uniform

sampling without replacement to choose a small set of columns, from which an

approximation to the Gram matrix is built. This method is the so called Nyström

approximation method, which derives its name from the Nyström method in integral
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equation theory. There have been various random sampling methods proposed for

Nyström approximation methods other than uniform sampling, such as [50], [17],

[55], [2].

All Nyström approximation methods based on random sampling have one com-

mon problem as they may lead to high variance in the approximation errors. Dif-

ferent sampling may lead to different approximation error, some of which may be

large. Since in some applications the approximation is run only once, there is no

guarantee that a good approximation can be achieved. To solve this problem, we

propose an iterative algorithm, BoostNyström. In each iteration, a small number

of columns are added into the column set. The added columns have high accuracy,

which guarantees a good approximation at each step. The sampled columns in the

current iteration are also used to update the sampling probability distribution in

the next iteration. BoostNyström has the advantage of reducing the variance in ap-

proximation performances by dividing the sampling into smaller subsets of columns

that have low approximation error.

BoostNystöm is based on a novel perspective on the Nyström approximation,

which states that a good Nyström approximation can be achieved when the space

spanned by the sampled columns has a large overlap with the ideal space, where

the ideal space is the one spanned by the eigenvectors of top eigenvalues of the

Gram matrix. This property guarantees that the columns added in each iterative

step which have good approximation constitute a column set with good approxi-

mation power. The algorithm to a large extent reduces the randomness often seen

in other random sampling Nyström methods, and provides a stable and accurate

approximation.

The details of Graph-OCL and experimental results are described in Chapter 3.

The details of BoostNyström and experimental results are described in Chapter 4.

10



Chapter 2

Supervised Learning of High Dimensional Data

2.1 Introduction

In this chapter, supervised learning on high dimensional data is discussed. Nowa-

days, there are many application domains where the data is of considerable dimen-

sions, such as geographic information system, computer vision, text documents,

etc. For example, in text document classification, each word corresponds to one

feature. A long text document can contain tens of thousands of different words,

which compose a long feature vector.

In this chapter, we will focus on one example of high dimensional data, namely,

DNA microarray data. DNA microarray measures mRNA levels of many genes

in the cells or tissues at once. The principle behind microarrays is hybridization

between two DNA strands. Single strands of complementary DNA for the genes of

interest are attached to a solid surface and arranged in an array. The mRNA of a

sample of interest, e.g. a tumor biospsy, is extracted and hybridized to the array.

The intensity value at each spot in the array is correlated to the abundance of its

RNA transcript in the sample. DNA microarrays are used to measure changes in ex-

pression levels, or to genotype or targeted resequencing. The output of a biological
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experiment using microarray is an intensity image, which represents the RNA tran-

script values of genes of interest. Usually each spot on the solid space corresponds

to many pixels in the intensity image. In order to obtain a single intensity value

for each spot, the corresponding pixels need to be first identified, which is called

segmentation, and then summarized, which is called quantification. These steps are

important in the process of microarray experiments and analysis. However, they

are out of the scope of this thesis. We will only discuss the algorithms applied to

the microarray gene expression data after segmentation and quantification.

DNA microarray technology allows researchers to analyze patterns of gene ex-

pression simultaneously recorded in a single experiment. Gene expression analysis

is important in many medical applications. For example, it is generally believed

that gene mutations can lead to cancer. Different gene expression patterns among

patients or different tissues can be used for diagnosis or prognosis in cancer re-

search. These data sets have a large number of gene expression values per sample

(several thousands to tens of thousands, even millions), and a relatively small num-

ber of samples (a few dozens), especially in the case of rare diseases, for which

gene expression data for only a few patients is available. This situation requires

improvements to traditional learning algorithms.

Traditional linear discriminant analysis (LDA) [21,42] cannot be applied to gene

expression data, because of the singularity of the within-class scatter matrix due

to the small sample size. Thus, for these data sets some form of feature selection

will always be needed. A number of solutions based on LDA have been proposed

to tackle this challenge. One solution is to assume a diagonal covariance matrix,

which essentially ignores potential correlation between different features. Examples

include diagonal linear discriminant analysis (DLDA) [13] or nearest shrunken cen-

troid (NSC) [52], as well as sequential DLDA (SeqDLDA) [39], a modified DLDA

12



technique that incorporates embedded feature selection. Alternative solutions use

regularization methods to impose a structure on the covariance matrix, e.g., in

shrunken centroid regularized discriminant analysis (SCRDA) [19], a diagonal reg-

ularization matrix is employed. But SCRDA has the same problem as DLDA in

that it does not perform well in data with correlations (as will be illustrated by our

experiments). While it would be possible to consider more complex classification

tools (e.g., SVM [53], neural networks [41] and random forests [12]), these tend to

not perform as well as simpler LDA-based approaches, e.g., SCRDA, when applied

to gene expression data [19]. One likely reason is that these more complex mod-

els cannot be accurately learned from limited data. Thus we have a bias-variance

trade-off problem: lower variance seen in simple classification methods compensates

for the additional bias they introduce [21].

In order to improve performance in the presence of feature correlation (while

staying within the general LDA framework), we focus on block diagonal linear dis-

criminant analysis (BDLDA), first proposed in [38]. BDLDA restricts the maximum

number of features to be selected in the model. However, even with limited num-

ber of features, reliably estimating all correlations is difficult with small sample

size. In order to reduce the parameters to be estimated while keeping important

correlations between features, BDLDA imposes a block diagonal structure on the

covariance matrix. A greedy algorithm is applied to find features to add into can-

didate models with different block diagonal structures. Cross validation is used to

select the best model among all candidate models. Unlike DLDA or NSC, BDLDA

performs classification with embedded feature selection, while considering corre-

lations between features. In [38], BDLDA was shown to outperform DLDA on

simulated data with sparse covariance structure (e.g., Toeplitz or block diagonal).
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While these results were promising, model selection using cross-validation made it

impractical for large datasets, e.g., gene expression data.

In this thesis, we improve feature selection in BDLDA by using an estimated

error rate to select the best model among all candidate models. The estimated error

rate is derived from LDA and can be obtained for each candidate block diagonal

covariance structure. Within BDLDA, direct computation of these error rates is

possible even when using a very small number of training samples, because the block

diagonal structure is limited to use only small blocks. This error rate metric allows

us to avoid cross validation for model selection, and enables BDLDA to be compu-

tationally practical even when working on large data sets. We apply BDLDA to real

gene expression data for the first time, with very competitive results [48]. Other

improvements with respect to the original BDLDA approach include a repeated fea-

ture subset selection (RFSS) technique and a prescreening procedure. With RFSS,

that is repeating model construction with previously selected features removed, the

algorithm chooses more discriminating features that are independent from previous

models. This is useful for gene expression data, because genes belonging to the same

pathway tend to have sparse correlations. The prescreening procedure eliminates

features that are not significantly different between two classes, which accelerates

model search and improves performance by removing noise. In Section 2.3, test re-

sults are presented, that show our improved version of BDLDA works particularly

well on simulated data with correlated features and outperforms the other three

algorithms in real data.

Though BDLDA has high classification accuracy as compared to some state-

of-art algorithms, it still can neglect a significant number of correlations in the

covariance matrix, because the assumed block is small. Taking into consideration
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both the algorithm complexity and feature correlations, we assume that the maxi-

mum block size is 3, because increasing the block size increases BDLDA complexity.

A better solution is to transform the covariance matrix so that more of its energy is

concentrated on its diagonal elements. For this purpose, we first need to identify the

correlated features and perform some form of transformation to decorrelate them.

Decorrelating makes it unnecessary to use larger blocks, but we cannot decorrelate

globally, so the idea is to perform some local decorrelation, so that smaller blocks

can be used.

A popular example of feature transformation and reduction is principal com-

ponent analysis (PCA) [25]. While PCA can exploit correlation between features

to achieve a more compact representation of the feature vectors (thus providing a

tool for feature selection), the resulting transformation is done independently of

the classification task. Thus, there is no guarantee that projecting samples onto

the highest magnitude principal components will lead to better classification per-

formance. Moreover, PCA is a global feature transformation (each projection may

be obtained as a linear combination of all components of a feature vector). Thus, if

a classifier is designed based on PCA data, it will no longer have an easy interpre-

tation in terms of a sparse set of genes, as would be desirable. Other approaches,

e.g., those based on wavelets, have been proposed to reduce the impact of noise on

classification and, unlike PCA, provide a local analysis [34]. However, wavelets are

unlikely to be useful for classification in a DNA context, where there is no reason

to expect that adjacent genes would need to have similar levels of expression.

As an alternative, we propose to use treelets as a preprocessing feature reduc-

tion tool. Treelets [31] have been proposed as a new adaptive multiscale basis for

sparse unordered data. Rather than performing PCA on the whole data (which, for

small training set means that only a few global eigenvalues will be identified), in
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treelets a tree based local (pair-wise) PCA is applied. Based on the correlation be-

tween pairs of features a series of Jacobi rotations [18] are selected and successively

applied. Each step in this process involves two features that have high correlation

and are diagonalized. This leads to a covariance matrix in which more energy is

concentrated on the diagonal than in the original covariance matrix. Thus, treelets

can be seen as a feature transformation tool that approximates the decorrelating

properties of PCA, but where tree-structured pair-wise processing makes it possible

to work with small sample sets.

A key advantage of treelets over PCA is that the feature transformation they

produce is local in nature. That is, one can identify (by tracing back the successive

pair-wise PCA operations) a sparse set of features (at most 2l features in a depth

l tree) that were transformed to obtain a given treelet coefficient. However, as

for PCA, high energy treelet coefficients (analogous to eigenvectors corresponding

to high magnitude eigenvalues) are not necessarily guaranteed to provide the best

classification performance. Thus, we propose to use treelet coefficients generated

from the data as an input to BDLDA [47].

A first advantage of applying BDLDA is that it can take advantage of the energy

compaction/denoising properties of treelets, so that feature selection in BDLDA is

more reliable. Second, and more important, since each treelet coefficient is obtained

by transforming a set of features in the original representation, the blocks are

effectively larger, since they operate on transformed features. This allows us to

take into consideration the correlation across a larger number of features, without

increasing significantly the BDLDA complexity. For publicly available two-class

cancer data, T-BDLDA outperforms state of the art techniques, including BDLDA

[48], SeqDLDA [39], NSC [52] and SCRDA [19].
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This chapter is organized as follows. Section 2.2 describes our proposed BDLDA

algorithm. Section 2.2.4 describes the treelets algorithm and its properties. Sec-

tion 2.2.5 introduces the algorithm combining BDLDA and treelets. Section 2.3

provides the experimental results of both BDLDA and TBDLDA. Section 2.4 con-

cludes the chapter.

2.2 BDLDA Algorithm Description

2.2.1 Model Selection Metric

We start by deriving the estimated error rate of LDA, which will be used as a

model selection metric in Section 2.2.2. LDA assumes that both class A and class

B have multivariate Gaussian distribution with means mA and mB and a common

covariance matrix K, fA(x) ∼ N(mA,K), fB(x) ∼ N(mB,K). The discriminant

function is

g(x) = wtx− b

 ≥ 0⇒ class A

< 0⇒ class B
(2.1)

where x is the feature vector of the sample to classify, w is a vector orthogonal

to the decision hyperplane, and b defines the decision boundary g(x) = 0.

The optimal w lies in the direction that maximizes the variance between/within

ratio JK(w), where

JK(w) =
(dtw)2

wtKw
(2.2)
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The solution to the optimization is then:

ŵ = arg max
w

JK(w) = K−1d d = mA −mB (2.3)

with b =
log πB
log πA

(2.4)

In practice, the mean vectors mA, mB, the covariance matrix K, and the

prior class probabilities πA, πB are usually replaced by the maximum likelihood

estimators m̂A, m̂B, K̂, π̂A and π̂B. The discriminant function then becomes:

JK̂(w) =
(d̂tw)2

wtK̂w
(2.5)

with a solution:

ŵ = arg max
w

JK̂(w) = K̂
−1
d̂ d̂ = m̂A − m̂B (2.6)

with b =
log π̂B
log π̂A

(2.7)

In the general LDA case, if the data set has more features than samples, K̂

is not invertible. In BDLDA, we restrict the feature size to be smaller than the

sample size, in order to make K̂ more likely to be invertible. Different models in

BDLDA represent the different size and structure of K̂ and d̂.

Given the training data, from which the estimated means and covariance matrix

are derived, the estimated probability of error [21] of a model in BDLDA is
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P̂e|T = π̂Aφ(−
1
2
d̂tK̂−1d̂+ ln( π̂A

π̂B
)√

d̂tK̂−1d̂
)

+π̂Bφ(−
1
2
d̂tK̂−1d̂− ln( π̂A

π̂B
)√

d̂tK̂−1d̂
) (2.8)

where φ is the cdf of the standard normal distribution. T denotes the training

data set. Both (2.5) and (2.8) are used as criteria in feature and model selection.

2.2.2 Model Construction and Feature Selection

There are numerous selections of features and covariance structures, such as a full

covariance matrix, a diagonal covariance matrix with certain selection of features,

or a block diagonal covariance matrix. Enumerating models with all possible se-

lections of features and structures of K̂ and d̂ is obviously impractical due to

computation and memory limitation. In [38], a block diagonal structure is imposed

on the covariance matrix, with the dimensions of both subblocks and the result-

ing covariance matrix kept small. An example of the resulting candidate models

is shown in Figure 2.1, where each arrow denotes adding a feature to the model

and forming a new model. A feature can be used to start a new subblock (solid

line in Figure 2.1) or it can be combined with the current subblock (dashed line in

Figure 2.1). The feature that generates the largest JK̂(w) in (2.5) among all can-

didate features is selected. For simplicity, it is assumed that the sizes of subblocks

are nonincreasing, e.g., in Figure 2.1, the block size on the top left of the covariance

matrix is larger than that on the bottom right. This is based on the assumption

that through exhaustive search for features, the features added first are considered

of better classification power than those selected later, and thus their correlations
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are considered more important. As a consequence, if small blocks are selected at

the start of the process, subsequent block sizes will be restricted to be small, thus

leading to complexity savings.

JK̂(w) in (2.5) is the maximized projected class mean divided by projected

variance in the feature space. JK̂(w) increases with the number of features and has

no upper limit. Such increase is sometimes due to increasing number of features

and does not necessarily improve performance. Thus using JK̂(w) by itself for

model selection could lead to undesirable results, with a large number of features

being chosen. In order to compare all models with different number of features, [38]

uses cross validation, an unbiased method, which does not make any assumptions

on the data. Despite its advantages, it is time consuming, making it impractical

to select a model in large data cases. We propose to use the estimated error rate

in (2.8) for each covariance matrix K̂ as a way to compare different candidate

structures. The covariance structure with smallest P̂e will be selected at each

step in the sequential search shown in Figure 2.1. Unlike JK̂(w) in (2.2), P̂e is

in the range of 0 to 1 for all models. If the data has a Gaussian distribution

and means and covariance matrix can be estimated, P̂e is a good measure of each

model’s performance. In Section 2.3, experiments on simulated data are used to

demonstrate this advantage. Moreover, in experiments on real gene expression data,

which is not strictly Gaussian distributed, the measure still generates better results

than other algorithms.

2.2.3 Algorithm Improvements

Repeated feature subset selection (RFSS) is applied to reduce the impact of

greedy search. RFSS repeats the model construction and feature selection N times.
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Figure 2.1: Sequential generation of candidate covariance matrix models for
BDLDA. Starting with an empty list, we add one feature at a time (namely, the one
that maximizes J (2.5)). A feature can be added as an independent block (solid
line), or combined with an existing block (dotted line). The best of all these models
is selected using P̂e.

At the start, a model with a predefined maximum number of features (MaxFeature

in Algorithm 1) is selected. Then the model construction and feature selection is

performed again, with the features selected during the first iteration removed from

the set of candidate features. This procedure is repeated N times, and each time

a feature selection iteration does not consider features already selected in previous

iterations. Then the N models are combined by vector concatenating N means and

block diagonally concatenating N covariance matrices as shown in Figure 2.2. The

feature sets in all N models are different and uncorrelated. The model construction

is performed N times or stops when there are not enough candidate features. This

improvement enables the algorithm to find more discriminating features without

being influenced by previously selected models. The complete algorithm is described

in Algorithm 1.
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Figure 2.2: Block concatenation procedure

Algorithm 1 Model construction and feature selection

S = ∅, T = all candidate features, M = ∅, F = 0, L = 0
1. Construct the first model (Model 1) by adding feature i,
i = arg maxi∈T

di
σi
S = S + {i}, T = T − {i}, M = M+ {Model 1}, F = 1,

L = 1
2. For models with feature size F, to create Model j+1, do either of the following

(1) Add a feature as an independent subblock. The new feature is selected by
i = arg maxi∈T J given in Eq. (2.2) S = S+{i}, T = T −{i},M =M+ {Model
j}, F = F + 1, L = 1.

(2) Add a feature to the last subblock if F < MaxGrow and F + 1 does not
exceed any previous subblocks. The new feature is selected by i = arg maxi∈T J
given in Eq. (2.2). S = S + {i}, T = T − {i},M =M+ {Model j}, F = F + 1,
L = L+ 1.
3. Repeat Step 2 until the MaxFeature is reached.
4. Select among M the model with minimum Pe given in Eq. (2.8)
5. Remove S and repeat steps 1-4 N times
6. Combine N selected models

S is the set of selected features. T is the set of candidate features. M is the set of
candidate models. F is the number of features in the the model. L is the number of
features in the last subblock. MaxGrow is the largest size of a subblock. MaxFeature
is the largest number of features in the models.

Prescreening is based on the observation that features with the same means

and variances are not discriminating in BDLDA. Some of them may correspond

to noise and interfere with classification. Removing these features can improve

performance and reduce computation time. A prescreening of all the features is
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applied before the model construction in Algorithm 1. The separation of two classes

on feature i is represented by | di
σi
|, with di = mAi−mBi and σ2

i = 1
Ks

(
∑

k∈ClassA(xki−

mAi)
2 +

∑
k∈ClassB(xki −mBi)

2) + c, where xki is the ith feature of sample k, Ks is

the total number of samples, mAi is the mean of feature i that belongs to class A

and similarly for mBi, and c is a regularization value.

Only features with | di
σi
| above a threshold will be used in Algorithm 1. In the

experiments, we use 1
3
maxi(| diσi |) as the threshold. To avoid the impact of outliers

in real data, instead of using the top ranking | di
σi
|, the average of 10 largest | di

σi
|

is used, that is, the threshold is one third of the average of 10 largest | di
σi
|. The

prescreening procedure can also be applied to other classification tools.

2.2.4 Treelets

Though BDLDA has high classification accuracy as compared to some state-of-

art algorithms, it can neglect useful correlations in the covariance matrix, because

we limit the block size to be not larger than 3. However increasing the block

size increases the complexity of BDLDA. As mentioned in the introduction, if the

covariance matrix is transformed to be diagonal by PCA, an ideal low dimensional

approximation in terms of variance can be achieved. However, this cannot be done

because of the large feature size.

For gene expression data analysis, many methods have been proposed to iden-

tify groups of highly correlated features and select a few representative features for

each group. Treelets [31] can be used to identify subsets of genes that exhibit cor-

relation in their expression patterns, but will replace each such localized group by

a linear combination that encodes the information from all features in that group.
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At each level of the tree, the two most correlated features, say feature α and fea-

ture β, are transformed and replaced by two transformed coefficients, representing

their projection into their principal component and the vector orthogonal to the

principal component respectively. The correlation between two features is defined

as the Pearson’s correlation, which is derived by dividing the covariance of the two

features by the product of their standard deviations. Treelets is an unsupervised

feature transformation measure that does not consider class information but can

successively exploit correlation between features The treelets algorithm is described

in Algorithm 2.

Algorithm 2 Treelets Algorithm

1. Compute the sample covariance and correlation matrix Σ̂
(0)

and M̂
(0)

from
original data. Initialize the set of indices δ = {1, 2, · · · , p}. Each index represents
a tree branch that can be combined into a higher level. Initially, δ contains every
original feature. Define B(0) as an identity matrix.
Repeat 2-5 for l = 1, · · · , L,
2. Find the two most similar features from δ according to the correlation matrix

M̂
(l−1)

. Let (α, β) = arg maxi,j∈δ M̂
(l−1)

, where i < j.
3. Perform a local PCA on (α, β). Find a Jacobi rotation matrix J(α, β, θl),

|θl| ≤ π/4 and Σ̂
(l)

αβ = Σ̂
(l)

βα = 0.

4. Update the following matrices Σ̂
(l)

= JT Σ̂
(l−1)

J , B(l) = B(l−1)J , x(l) =

JTx(l−1). Update M̂
(l)

accordingly.
5. Retain the principal component α in δ to represent the branch and remove β,
δ = δ\{β}.

At level l, an original sample x can be written as

x = B(l)x(l) (2.9)

where each row vector of B(l) is a basis at treelets level l. x(l) is the projection

of x onto those basis vectors. The objective is to reduce the amount of off diagonal

energy in the covariance matrix obtained from x(l), i.e., in the transformed space.
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Each feature in x(l) is a linear combination of several features in x. At a fixed level

L, x(L) is the sample to be be used as an input to BDLDA. Note that in general

x(L) will contain features that have not been modified, i.e., they are the same as in

x, while some features may be the result of applying a transformation to multiple

inputs in the original feature vector. For example, one feature in x(L) may contain

information of at most 2L features in x when an L-level treelet is used. In this case

B(l) would include a column with 2L non-zero values.

2.2.5 Algorithm Description

T-BDLDA combines treelets and BDLDA. First, we build a treelets basis matrix

B(L) at a certain level L using training data. Each training sample x is trans-

formed into x(L) as in (2.9). The x(L) are taken as inputs into BDLDA to build a

classification model. Each test sample y is also projected as in (2.9) onto the basis

B(L) obtained from training samples. The treelets coefficients of test samples y(L)

were used in testing in BDLDA.

Note that even if we use the same number of blocks of the same size as when ap-

plying BDLDA to original expression data, we would be essentially selecting more

actual features and thus larger effective blocks. The resulting improvements in

classification results could alternatively be attained by using more blocks with po-

tentially larger size in BDLDA without using the treelets transformation. However,

increasing the number and size of the blocks can be computationally expensive in

BDLDA. Thus T-BDLDA provides a method to effectively find more discriminating

features and their structure in affordable time.

The complete T-BDLDA algorithm is summarized in Algorithm 3
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Algorithm 3 Complete Algorithm of treelets and BDLDA

1. Threshold data by t-score.
2. Obtain treelets basis on training data at level L.
3. Transform both training and test data by treelets basis by (2.9).
Run BDLDA on treelets coefficients of training data .
4. Build candidate blocks of size MaxFeature by adding features according to
(2.2). Each subblock inside candidate blocks has maximum size MaxGrow.
5. Select the block using (2.8).
6. Remove previously selected blocks and repeat steps 4 and step 5 N times.
7. Combine N selected blocks.
8. Test the treelets coefficients of test samples by the selected BDLDA model.

L the level of treelets to extract coefficients. MaxGrow is the largest size of a subblock.
MaxFeature is the largest number of features in a block. N is the number of blocks.

2.3 Experimental Results

Both BDLDA and T-BDLDA are tested on both simulated data and real data.

The results are compared with SeqDLDA [39], NSC [52] and SCRDA [19]. The test

results (both error rates and standard deviation) shown in Table 2.1 and Table 2.2

are obtained by performing 10 fold cross validation 50 times. The error rates of

SCRDA in [19] are presented as a matrix according to two tuning parameters. The

smallest error rate among all parameter pairs is shown.

2.3.1 Simulated Data

Block diagonal covariance matrix The distributions of two classes areN(µA,K)

andN(µB,K) with total number of features P = 10000, and with µA = (000 · · · 00︸ ︷︷ ︸
10000

),

and µB = (0.5 · · · 0.5︸ ︷︷ ︸
200

00 · · · 00︸ ︷︷ ︸
9800

). The block diagonal structure of K is shown

in (2.10). Each subblock has an autoregressive structure, which is a symmetric

Toeplitz matrix with the first row set to (1 ρ · · · ρ98 ρ99). The subblock size is

100× 100 and there are a total of 100 subblocks. It is assumed the autocorrelation
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within each subblock is |ρ| = 0.9 and we set alternating signs for each subblock.

220 samples are generated. The average error rates and standard deviations are

shown in Table 2.1.

K =



Kρ 0 0
. . . . . . . . .

0 K−ρ 0 0
. . . . . .

0 0 Kρ 0
. . . . . .

. . . 0 0 K−ρ 0
. . .

. . . . . . . . . 0
. . . . . .

. . . . . . . . . . . . . . . . . .


10000×10000

(2.10)

Diagonal covariance matrix The distributions of two classes are N(µA,K)

and N(µB,K) with total number of features P = 10000, µA = (000 · · · 00︸ ︷︷ ︸
10000

), and

µB = (0.5 · · · 0.5︸ ︷︷ ︸
100

00 · · · 00︸ ︷︷ ︸
9900

). We assume that features are independent so that the

covariance can be written, K = IP , where IP is the P × P identity matrix. 220

samples are generated.

Toeplitz covariance matrix The distributions of two classes are N(µA,K)

and N(µB,K) with total number of features P = 1000. The difference of means

are assumed to be fading exponentially. µA = (000 · · · 00︸ ︷︷ ︸
1000

). µBj = e−γj, (j =

1, 2 · · · 1000). γ = 0.05. It is assumed that K is the Toeplitz matrix with the first

row (1 −1
2

2
5

0 · · · 0). 120 samples are generated.

2.3.2 Real Data

We test our algorithm on two-class cancer data, using two publicly available online

for colon cancer (62 samples, 2000 features) [15] and prostate cancer (102 samples,

6033 features) [14]. 10 fold cross validation is done 50 times on each data set.
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Table 2.1: Average Error Rate (Standard Deviation) for Simulated Data
Block

Diagonal
Diagonal Toeplitz

covariance covariance covariance
T-BDLDA <0.45% 3.41% 3.17%

(0%) (1.14%) (0.95%)
BDLDA 0.36% 3.57% 4.51%

(0.19%) (1.09%) (1.02%)
SeqDLDA 19.64% 2.57% 8.97%

(1.5%) 0.83% (1.71%)
NSC 18.15% 6.89% 10.82%

(1.34%) (1.12%) (1.74%)
SCRDA 9.45% 1.97% 10.2%

(1.23%) (0.62%) (1.37%)
L=5, MaxGrow=3, MaxFeature=20, N=5

Table 2.2: Average Error Rate (Standard Deviation) for Real Data
Colon Prostate
Cancer Cancer

T-BDLDA 9.84% 5.1%
(0.51%) (0.62%)

BDLDA 10.06% 5.21%
(1.15%) (0.85%)

SeqDLDA 12.06% 5.53%
(1.87%) (0.9%)

NSC 10.31% 7.65%
(1.02%) (0.42%)

SCRDA 11.41% 5.41%
(1.69%) (0.89%)

L=5, MaxGrow=3, MaxFeature=20, N=5
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2.3.3 Discussion

In simulated data with block diagonal covariance matrix and Toeplitz covariance

matrix, T-BDLDA performs the best, and BDLDA is the second best. In block

diagonal covariance matrix, the simulation error is 0 (<1/220 in Table 2.2). For

diagonal covariance matrix, our algorithms do not show much advantage over Se-

qDLDA and SCRDA, which are DLDA based methods. T-BDLDA outperforms

BDLDA in all simulated data. This demonstrates the advantage of using treelets

coefficients instead of raw data. The margin we observe in data with diagonal

covariance matrix may come from selecting more actual features involved in the

treelets coefficients in the selected blocks. The gain in the other two data sets with

correlations may come from the energy concentrating on diagonal terms, which is

beneficial for block diagonal structure in classification. In the two real data sets,

T-BDLDA has the lowest error rates. The promising results of our work on T-

BDLDA shows that it can be an competitive algorithm for classification of gene

expression data.

2.4 Conclusions

We have proposed and improved a supervised learning algorithm, BDLDA, for

high dimensional data, typically for RNA gene expression data. Though BDLDA

has superior classification accuracy compared with state-of-art algorithms, it still

misses a lot of information in the off-diagonal positions of the covariance matrix. To

better improve the classification performance, treelets is proposed as a preprocessing

step to be applied to gene expression data leading to a covariance matrix having

less off diagonal energy in covariance matrix. Then the treelets coefficients are

input into BDLDA. A block diagonal structure is imposed on the covariance matrix
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with predefined number of blocks and block size. RFSS and prescreening are used

to improve the algorithm. T-BDLDA outperforms BDLDA, SeqDLDA, NSC and

SCRDA in most simulated and both real data used in our tests. T-BDLDA is

promising to handle data with small number of training samples, a very large

number of features and an unknown correlation structure.
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Chapter 3

Graph Based One Class Learning

3.1 Introduction

In recent years, the graph Laplacian has become an important tool in manifold

related machine learning algorithms [5] [58] [63] [4] [62] [8]. In these algorithms,

data points are represented by graph nodes and similarity between data points

by edge weights. The goal is to infer labels on nodes for which no label data is

known. The algorithms can be viewed as estimating a classification function F

on the graph, where F needs to satisfy two criteria simultaneously: (1) it should

take a value close to that corresponding to the initial labels, and (2) it should be

smooth, i.e., neighboring nodes in the graph should have similar values. This can

be expressed in a regularization framework where the first term is a loss function

of the labeled data, and the second term is a regularizer of the graph structure and

the label function. The various manifold learning algorithms differ in the particular

choice of the loss function and the regularizer, but have in common some parameters

that control the balance between the two terms. However, only a limited amount of

work has been devoted to discussion of how these regularization parameters should

be chosen.
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Among the manifold learning algorithms, learning with local and global con-

sistency (LGC) [58] has a closed form solution. It has been widely used for semi-

supervised learning (SSL). A key aspect of LGC is to let every data point iteratively

spread its label information to its neighbors until a global stable state is achieved.

LGC can be explained from the perspective of lazy label propagation. Each row

in F is the probability of a data point belonging to each class. The probability

is propagated through the graph according to edge weights, while there remains a

certain probability of keeping the initial labels. The balance of label propagation

and initial label fit is controlled by a parameter, which we denote here as α. This

will be formally introduced in Section 3.2.

One application of LGC is classification, which is performed by examining each

row of the classification function at convergence. This framework leads to two

questions: 1. Is the algorithm sensitive to the choice of α? 2. How does the

ratio of labeled data in different classes affect the classification accuracy? We

show, in both simulated and real data, that classification results, to a large extent,

depend on the choice of α, especially when the labeled data are unbalanced. Thus,

in LGC classification, an optimal α has to be selected by validation. Validation

requires setting aside a separate validation data set, which is not a problem when

large amount of data is available. When the amount of data is limited, however,

validation has to be done using time consuming methods, such as cross validation

or boostrapping.

Another major application of LGC is the universal ranking problem [60]. The

LGC ranking problem has the same graph structure and label spreading process as

LGC classification. When the spreading process is repeated until convergence, the

samples are ranked according to a particular column j of F at convergence, which

corresponds to samples’ probability of belonging to class j. In other words, LGC
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ranks the samples by their class preference. In this thesis, we prove that it is possible

to select the parameter for LGC ranking without validation. Since validation either

requires extra number of samples, or much more time to run validation methods,

such as cross validation, it is desirable to select a parameter value that theoretically

guarantees a stable and optimal or suboptimal ranking. For a particular ranking

problem, there is a bound on the parameter α. If α is below the bound, the ranking

is theoretically stable and experimentally close to optimal. Thus we can choose any

α below the bound. Time consuming validation methods, such as cross validation

or bootstrapping are unnecessary in LGC ranking.

In this work, we define the pairwise ranking of two samples to be stable if the

ranking remains the same when α changes. We prove that the ranking is stable if α

is below a bound. The pairwise ranking of two samples, which is also the difference

between two rows of the classification function F at convergence, can be expressed

in terms of α and the entries of the similarity matrix. It is hard to decompose

α and the entries of the similarity matrix, so that the influence of changing α

on the ranking is unclear. When α is small enough, the pairwise ranking can be

approximated by a product of a function of α and a function of the entries of the

similarity matrix. By doing this, we have separated α and the similarity matrix,

which is independent of α. When α changes only below this bound, the pairwise

rankings do not change. In order for the approximations to hold, α needs to be

below a bound, which depends on the similarity matrix. In simulations of LGC

ranking on various data sets, including the two-moon simulated data and eight real

data sets, the ranking accuracy of smaller α is consistently higher than that of larger

α, and the standard deviation of accuracy is consistently lower. This demonstrates

that LGC ranking becomes more stable and accurate when α is below the bound.
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As an application of LGC ranking, we propose a one class learning algorithm,

which we call, Graph-OCL. One class learning is a type of binary classification in

which only one class has labeled data, so most of state-of-art supervised classifiers

do not apply. One example of one class learning is a situation where we have training

samples of research papers and we want to retrieve similar papers from the web.

We solve the one class learning problem in two steps. Step one is identification

of reliable negative samples. In this step, we use LGC ranking and select the

samples with highest ranking probability of belonging to negative class. Step two

is classification with the initially labeled data and the identified negative samples.

In this step, we use transductive SVM (TSVM) [23] as a classifier. We test Graph-

OCL on Newsgroup 20 data set. The proposed algorithm is demonstrated to be

more effective than Naive Bayesian (NB) and S-EM [33], an improved version of

NB.

This chapter is organized as follows. Section 3.2 provides the definitions and

algorithm description of LGC. Section 3.3 provides experiments on how the ratio

of labeled data in different classes and the choice of α influence LGC classification

accuracy. Section 3.4 provides theorems proving that ranking is stable if α is below

a bound. We also discuss how the bound is calculated. Section 3.5 provides an

application of LGC ranking to one class learning. Section 3.6 concludes the chapter.

3.2 Brief Overview of LGC

We first introduce LGC algorithm [58] [60], then explain the algorithm from the

perspective of label information propagation.
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3.2.1 LGC Algorithm

Consider a sample set X = {x1, · · · ,xl,xl+1, · · · ,xn} ⊂ Nm, where each sample is

a vector of features. Without loss of generality, let the first l samples xi (1 ≤ i ≤ l)

be labeled and the remaining ones xu (l + 1 ≤ u ≤ n) be unlabeled. We build

a graph, in which the nodes are labeled and unlabeled samples, and the affinity

matrix W quantifies the similarity between the nodes, in terms of distance in the

feature space.

Let F(t) be a n × c matrix, that corresponds to a classification of X at time

t(t = 0, 1, · · · ,+∞). c is the number of classes. Fij(t) represents the probability

that at time t, instance i has label j:

Fij(t) = P (instance i has label j, t) j = 1, 2, · · · , c (3.1)

Each sample xi can then be assigned a label yi = max{Fi1(t), Fi2(t), · · · , Fic(t)}

(
∑c

k=1 Fik(t) = 1, 0 ≤ Fik(t) ≤ 1, 1 ≤ k ≤ c).

At the start of the iteration, assume Fik(0) = 1 if the initial label of xi is k and

Fik(0) = 0 otherwise. Assume Fik(0) = 1/c if xi is unlabeled. With this, we can

define Y = F(0). F(t) represents the labeling matrix at each step of iteration while

Y represents the initial labels.

Construct matrix S = D−1W in which D is the diagonal degree matrix with its

(i, i)-entry equal to the sum of the i-th row of W. We then iterate

F(t+ 1) = αSF(t) + (1− α)Y (3.2)
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until convergence, where α is a predefined parameter with α ∈ (0, 1). [58] shows

that F(t) converges as follows. Since F(0) = Y and given (3.2), we have

F(t) = (αS)t−1Y + (1− α)
t−1∑
i=0

(αS)iY (3.3)

Since 0 < α < 1 and the eigenvalues of S are in [−1, 1],

lim
t→∞

(αS)t−1 = 0 and lim
t→∞

t−1∑
i=0

(αS)i = (I − αS)−1. (3.4)

Let F∗ denote the limit of the sequence F(t) as t → ∞. Then we can derive a

closed form expression:

F∗ = (1− α)(I− αS)−1Y (3.5)

If LGC is applied to a classification problem, for sample i, we then select class

k which has the maximum likelihood, i.e., maxk F
∗
ik, (1 ≤ k ≤ c).

The other application of LGC is ranking, in which the order of a series of

test samples is learned, and the order is consistent with the known ranking in

the training data. Usually the LGC ranking could be with respect to one of the

classes, e.g., class k. We rank the kth column of F∗, which is the relevance score

corresponding to the query points.

The LGC classification and ranking algorithm are described in Algorithm 4.

Algorithm 4 LGC classification/ranking

1. Form the similarity matrix W.
2. Construct matrix S = D−1W in which D is a diagonal matrix with its (i, i)-
entry equal to the sum of the i-th row of W.
3. Calculate F∗ = (1− α)(I− αS)−1Y.
4. (classification). Classify sample as class k which has maxk F

∗
ik.

4. (ranking). Rank the kth column of F∗.
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3.2.2 Interpretation of LGC

We interpret Algorithm 4 in terms of a lazy information transfer network. The

idea is similar to the lazy random walk introduced in [59], but has a probability

interpretation of the label functions.

Section 3.2.1 defines the initial state F(0) as Fik(0) = 1 if the initial label of

xi is k and Fik(0) = 0 otherwise, while if xi is unlabeled, we assume Fik(0) = 1/c.

Fik(0) = 1 means sample xi has probability 1 to belong to class k. For those

unlabeled, Fi1(0) = · · · = Fic(0) = 1/c represents our ignorance of its probability

at the start of the algorithm. The probability of belonging to c classes propagates

over time based on the lazy information transfer network. From (3.2),

Fij(t+ 1) = α
n∑
z=1

SizFzj(t) + (1− α)Yij (3.6)

S is a row stochastic matrix, which can be seen as the information transfer

probability matrix. We interpret Siz as the proportion of information that Fij(t+1)

obtains from Fzj(t) (1 ≤ z ≤ n and j = 1, 2, · · · , c). It is similar to the random

walk, because both interpretations of Siz represent the similarity between xi and

xz. However, in the random walk Siz is the probability of state change from xi

to xz, while in information transfer network, Siz is the probability of information

transfer from xz to xi.

This information transfer network is called lazy, because F(t) also depends on

the initial state Y. This means that at each iteration, each sample in the graph

has probability 1−α of retaining its initial label. With the probability α, a sample

changes label with the probability proportional to the weight of the link. We assume

that information transfer happens within each label and not across labels, which
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means that Fij(t) depends on Fzj(t − 1), where 1 ≤ z ≤ n, and Fij(t) does not

depend on Fzv(t− 1), where v 6= j.

F ∗ij (j = 1, 2, · · · , c) is the probability of sample xi having label j when the

algorithm converges. In LGC classification, we compare the probability of belonging

to each class, and choose the class that has the highest probability. In LGC ranking,

we sort the probability of samples according to the kth column of F, i.e., F ∗·k, which

represents each data’s relevance to the labeled data.

Sometimes, S is normalized as a symmetric matrix as D−
1
2 WD−

1
2 . The LGC

classification function F can be rewritten using the symmetric graph Laplacian

Ls = I − αD−
1
2 WD−

1
2 . Ls was used for the purpose of classification in [58].

However, D−
1
2 WD−

1
2 is not a stochastic matrix, so the sum of each row of F∗ is no

longer 1. Thus F does not have a probability interpretation corresponding to each

of its rows. Though we can still perform classification according to the sample’s

class preference in the corresponding row of F, ranking is difficult since we do not

have a general interpretation corresponding to each column of F. Thus, in the

following analysis and applications, S is defined as D−1W.

3.2.3 Choice of α

The classification function at convergence F∗ is the solution to the following opti-

mization function:

F∗ = arg min
F

1

2
(α

n∑
i,j=1

Sij ‖ Fi − Fj ‖2 −(1− α)
n∑
i=1

‖ Fi − Yi ‖2) (3.7)

Let Q(F) = 1
2
(α

∑n
i,j=1 Sij ‖ Fi − Fj ‖2 −(1 − α)

∑n
i=1 ‖ Fi − Yi ‖2), which is

the function we want to optimize. Q(F) can be written in the matrix form:
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Q(F) = α(FTF− FTSF) + (1− α)(F−Y)T (F−Y) (3.8)

Taking the derivative of Q(F) with respect to F and making it equal to 0, we

can derive the solution as F∗ = (1− α)(I− αS)−1Y.

α is the only parameter used in LGC. [61] discusses α’s impact on the ranking

when α ≈ 1. However, α’s impact on classification or ranking when α ∈ (0.1) has

not been fully studied so far. In (3.7), α controls the balance between the graph

energy (similar graph nodes should have similar labels) and initial label fit (F∗

should be close to Y). Consider two extreme cases, i.e., α = 1 and α = 0. α = 1

leads to F(t) = StF(0). The quantity limt→∞ S
t(i, j) is proportional to the degree

of the node, which means every row of limt→∞ St is the stationary distribution of

the information transfer network. Thus, through iteration, the initial labels cannot

propagate and are not considered as generating the final class probabilities.

The other extreme case is that of α = 0, which implies that the probability

distribution of labels does not change along time. Therefore, the first term αSF(t)

in the iteration function (3.2) represents propagating information along the data

structure, and the second term (1 − α)Y imposes a regularization term, so that

the classification conforms to the initial labels. However, it is not obvious how to

choose α in the range 0 < α < 1. In the following sections, we analyze α’s influence

on LGC classification and ranking.

3.3 LGC Classification

As mentioned in the introduction, when applied to classification, there are two

unsolved questions with respect to LGC: (1) Given the similarity matrix, is the

algorithm sensitive to the choice of α? (2) How does the ratio of labeled data among
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different classes affect the classification accuracy? We test the LGC classification

on two real data sets, the USPS digit recognition data and the Mnist data, in order

to empirically answer the two questions. Each data set contains 10 subsets, which

correspond to 10 digits. For each data set, we use one subset as positive data and

one other subset as negative data, and let α vary between 0 and 1 (0.1, 0.2, · · · , 0.9).

We use the RBF kernel as similarity matrix in both data sets.

Figures 3.1 and 3.2 show the classification accuracy of the subsets of the USPS

and the Mnist data, from which we have two observations.

(a) (b)

(c) (d)

Figure 3.1: Classification accuracy of subsets of USPS data. The ratio of labeled
data in positive class to negative class in each subgraph is 1:1 and 2:1. (a) USPS
Digit 4 and 7; (b) USPS Digit 0 and 1; (c) USPS Digit 9 and 5; (d) USPS Digit 8
and 2;
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(a) (b)

(c) (d)

Figure 3.2: The classification accuracy of subsets of Mnist data. The ratio of labeled
data in positive class to negative class in each subgraph is 1:1 and 4:1. (a) Mnist
Digit 4 and 7; (b) Mnist Digit 1 and 3; (c) Mnist Digit 9 and 5; (d) Mnist Digit 8
and 2;

Observation 1: The classification accuracy is sensitive to the ratio of labeled

data among different classes. The classification is obtained by propagating the

label information through time according to (3.6). In case of unbalanced labeled

data, which means the ratio of labeled data is far from 1 among different classes,

the information of the class with majority of labeled data propagates more label

information than the other class. Thus, the unlabeled data has a preference for the

class with more labeled data.
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Observation 2: α has an impact on the classification accuracy, and the impact

is greater when the labeled data is unbalanced. α controls the trade-off between

the graph energy and initial label consistency. In case of balanced labeled data, the

initial labels are consistent with graph structure, thus changing α does not change

the accuracy very much. However, when the labeled data is unbalanced, giving

more weight to the graph energy helps propagating label information according to

(3.6). More labeled information of the class with a higher number of labeled data is

propagated. This will reduce classification accuracy if a constant threshold is used.

The above observations show that LGC is sensitive to α, especially when labeled

data is unbalanced among classes. Thus, when LGC is applied to classification,

especially the labeled data in different classes are unbalanced, α must be carefully

chosen by using validation methods.

3.4 Analysis of LGC for the Ranking Problem

Usually unbalanced labeled data among different classes is not a problem in LGC

ranking, because the orders of probability functions of data points, rather than their

absolute values, are important, and there is no threshold to classify the data. [60]

and [45] have shown the promise of using LGC as a ranking algorithm if only one

class has initially labeled data. [45] also shows experimentally that the ranking is

insensitive to α when α is between 0.1 and 0.9, when used as first step in one class

learning.

In this section, we first present previous work, which shows that ranking based

on Laplacian matrix is sensitive to α, when α is close to 1. Then we present our

analysis of the general case 0 < α < 1 in LGC ranking.
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3.4.1 Analysis for the case α ≈ 1

Zhou et al. [61] show that the LGC ranking function (when defining S as S =

D−
1
2 WD−

1
2 ) is sensitive to α if α ≈ 1 by using Green’s function of a Laplace

operator. They also show that the ranking function is only influenced by the way

the graph is constructed in case of α close to 1. We prove that LGC ranking has a

similar property if α ≈ 1 when S is defined as a stochastic matrix S = D−1W.

When used in ranking, the constant (1−α) term in (3.5) can be dropped, then

the ranking function becomes F∗ = (I−αS)−1Y. Let Ls = I−S and β = 1−α
α

, then

F∗ = 1
α

(βI + Ls)
−1Y. Denote Gs = (βI + Ls)

−1. By eigenvector decomposition,

Gs =
n∑
k=1

1

λk + β
vkv

−1
k (3.9)

where λk is the kth eigenvalue of Ls, and |λ1| ≤ |λ2| ≤ · · · ≤ |λn|. By Perron-

Frobenius Theorem, |λk| ≤ 2, (1 ≤ k ≤ n). The eigendecomposition of Ls can be

written as Ls = VΛV−1, where vk is the eigenvector associated with λk, and the

kth columns of V. v−1k is the kth row of V−1. Since λ1 = 0, Gs can be written as:

Gs =
1

β
v1v

−1
1 +

n∑
k=2

1

λk + β
vkv

−1
k (3.10)

If β is small enough such that | 1
β
| � | 1

λi+β
|, (2 ≤ i ≤ n), the behavior of the

ranking function is determined by v1 alone, where

F∗ ≈ 1

β
v1v

−1
1 (3.11)

and

v1 = (1, 1, · · · , 1)T and v−11 = (
1

n
,

1

n
, · · · , 1

n
)T (3.12)
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This implies that for small β, the ranking function is only influenced by the size

of the graph, and does not depend on the initial label. This is consistent with our

analysis of the effect of α on the tradeoff of graph energy and initial label fit. It is

also worth noticing that each row in F∗ is approximately the same if α ≈ 1, which

means that there is no effective ranking.

It is still unclear how the ranking function is generally impacted by α, if α is

not close to 1. In the following, we discuss the general case of α, (0 < α < 1) and

its impact on the ranking function.

3.4.2 Analysis of LGC Ranking

3.4.2.1 Ranking Decomposition

To simplify the analysis, we assume the number of classes is c = 2. The analysis

can be extended to multiple classes. We also assume the queries (labeled data) are

in class 1, without loss of generality. We want to prove that the pairwise ranking

of two samples xi and xj is stable with α if α is lower than a bound. The pairwise

ranking can be represented as F∗i2 − F∗j2.

We start by showing that F∗i2 − F∗j2 is a function of entries of the normalized

similarity matrix S and the initial state Y.

Let K = (I− αS)−1 and M = I− αS. Remember that S = D−1W. F∗ can be

expressed as:

F∗ = (1− α)KY (3.13)

For sample xi, its corresponding entry in F∗ is F ∗i2. Since F ∗i1 +F ∗i2 = 1, ranking

F ∗i1 is equivalent to ranking F ∗i2. We consider only F ∗i2. Since we only consider the

difference of F ∗i2 and F ∗j2, 1− α can be omitted. Yi2 = 0, (1 ≤ i ≤ l) for the first l

labeled samples and Yi2 = 1
2
, (l + 1 ≤ i ≤ n) for rest of the data. For sample i:
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F ∗i2 =
n∑
z=1

KizYz2 =
1

2

n∑
z=l+1

Kiz (3.14)

Theorem 1. Kiz can be expressed as:

Kiz =
1

|M|
[

n∑
x=1,x 6=z

MjxM ij,xzU(j, x)](−1)i+z (3.15)

where M ij,xz is the determinant of M when rows i, j and columns x, z are crossed

out, and

U(j, x) =

 (−1)j+x−1 if x < z

(−1)j+x if x > z

(3.16)

Proof.

Kiz = (M−1)iz =
1

|M|
M iz(−1)i+z (3.17)

where M iz is the determinant of M when row i and column z are crossed out, and

M iz(−1)i+z is the matrix cofactor.

By Laplace’s formula, we express M iz along the jth row in terms of its minors.

Then M iz can be expressed as:

M iz =
n∑

x=1,x 6=z

MjxM ij,xz

 (−1)j+x−1 if x < z

(−1)j+x if x > z
(3.18)
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Plugging (3.18) into (3.17), we obtain (3.15). Similarly, if we express M jz along

the ith row in terms of its minors, a similar expression for Kjz can be derived.

Thus, Theorem 1 is proved.

Given the expression for Kiz in (3.15), The difference between Kiz and Kjz is:

Kjz −Kiz =



1
|M| [

∑n
x=1,x 6=zM ij,xz

(MixU(i, x)−MjxU(j, x))](−1)j+z

if j − i is even

1
|M| [

∑n
x=1,x 6=zM ij,xz

(MixU(i, x) +MjxU(j, x))](−1)j+z

if j − i is odd

(3.19)

Therefore, the difference of F ∗j2 and F ∗i2 is:

F ∗j2 − F ∗i2 =
1

2

n∑
z=l+1

(Kjz −Kiz)

=



∑n
z=l+1

1
2|M| [

∑n
x=1,x 6=zM ij,xz

(MixU(i, x)−MjxU(j, x))](−1)j+z

if j − i is even∑n
z=l+1

1
2|M| [

∑n
x=1,x 6=zM ij,xz

(MixU(i, x) +MjxU(j, x))](−1)j+z

if j − i is odd

(3.20)
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Thus, F ∗j2−F ∗i2 can be expressed as a function of entries in M and its cofactors.

Then in our analysis we separate the terms in (3.20) into two terms. First we

introduce the difference term:
MixU(i, x)−MjxU(j, x) j − i is even

or

MixU(i, x) +MjxU(j, x), j − i is odd

(3.21)

and separately we consider the cofactor term:
M ij,xz

|M| . Each of these terms are

analyzed separately.

3.4.2.2 Difference Term

Since M = I− αS, we can express Mix in terms of S.

 Mix = −αSix if i 6= x

Mix = 1− αSix if i = x
(3.22)

There are four cases of (3.21):

Case 1: i 6= x and j 6= x:



MixU(i, x)−MjxU(j, x)) = ±α(Sjx − Six),

j − i is even

or

MixU(i, x) +MjxU(j, x)) = ±α(Sjx + Six),

j − i is odd

(3.23)

The ± comes from U(i, x) and U(j, x).
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Case 2: i 6= x and j = x:



MixU(i, x)−MjxU(j, x)) = ±[α(Sjx − Six)− 1],

j − i is even

or

MixU(i, x) +MjxU(j, x)) = ±[1− α(Sjx + Six)],

j − i is odd

(3.24)

In case of small α ≈ 0,


MixU(i, x)−MjxU(j, x)) ≈ ±1, j − i is even

or

MixU(i, x) +MjxU(j, x)) ≈ ±1, j − i is odd

(3.25)

Case 3: i = x and j 6= x:



MixU(i, x)−MjxU(j, x)) = ±[α(Sjx − Six)− 1],

j − i is even

or

MixU(i, x) +MjxU(j, x)) = ±[1− α(Sjx + Six)],

j − i is odd

(3.26)

The approximation of case 3 is the same as in (3.25).

48



Case 4: i = x and j = x:



MixU(i, x)−MjxU(j, x)) = ±α(Sjx − Six),

j − i is even

or

MixU(i, x) +MjxU(j, x)) = ±[2− α(Sjx + Six)],

j − i is odd

(3.27)

In case of small α ≈ 0,



MixU(i, x)−MjxU(j, x)) = ±α(Sjx − Six),

j − i is even

or

MixU(i, x) +MjxU(j, x)) ≈ ±2,

j − i is odd

(3.28)

With the above approximations, we conclude that the difference term can be

either a constant value or a product of a term α and a term which is a function of

S.

3.4.2.3 Cofactor Term

We have defined Ls = I − S, β = 1−α
α

and M = α(βI + Ls). Since we are

only concerned about the sign of M, the constant parameter α is dropped. The

eigenvalue decomposition of M is M = V(Λ + βI)V−1, where the columns of V

are the eigenvectors of Ls, and the diagonal of Λ are the eigenvalues of Ls. V−1
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is the inverse of V. Since M is a symmetric matrix, V is invertible. Note that V,

V−1 and Λ do not depend on α. We can also write M as follows:

M =
n∑
k=1

(λk + β)vkv
−1
k (3.29)

where vk is the kth column of V, and v−1k is kth row of V−1. By Perron-

Frobenius Theorem, |λk| ≤ 2, (1 ≤ k ≤ n). If β is large enough (α is small enough),

M is approximated by:

M ≈
n∑
k=1

βvkv
−1
k (3.30)

Therefore, the determinant of M can be approximated by |M| ≈ |
∑n

k=1 βvkv
−1
k |.

Similarly, M ij,xz can be expressed as:

M ij,xz = |
n∑
k=1

(λk + β)vk(−ij)v
−1
k(−xz)| (3.31)

where vk(−ij) is kth column of V with ith and jth rows crossed out, and v−1k(−xz)

is kth row of V−1 with xth and zth columns crossed out. If β is large enough,

M ij,xz is approximated by:

M ij,xz = |
n∑
k=1

(λk + β)vk(−ij)v
−1
k(−xz)|

≈ |
n∑
k=1

βvk(−ij)v
−1
k(−xz)| (3.32)

Therefore, the cofactor term
M ij,xz

|M| can be approximated by:

M ij,xz

|M|
≈
|
∑n

k=1 vk(−ij)v
−1
k(−xz)|

|
∑n

k=1 vkv
−1
k |

(3.33)
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3.4.2.4 Approximation of Ranking

If we plug the approximation of both difference term and cofactor term into (3.19),

Kjz −Kiz can be approximated as follows.

Case 1: i 6= x and j 6= x. We plug (3.23) and (3.33) into (3.19):

Kjz −Kiz ≈



α(−1)j+z[
∑n

x=1,x 6=z
|
∑n

k=1 vk(−ij)v
−1
k(−xz)

|
|
∑n

k=1 vkv
−1
k |

(±(Sjx − Six))]

if j − i is even

α(−1)j+z[
∑n

x=1,x 6=z
|
∑n

k=1 vk(−ij)v
−1
k(−xz)

|
|
∑n

k=1 vkv
−1
k |

(±(Sjx + Six))]

if j − i is odd

(3.34)

Case 2: i 6= x and j = x. We plug (3.24) and (3.33) into (3.19):

Kjz −Kiz ≈



(−1)j+z[
∑n

x=1,x 6=z
|
∑n

k=1 vk(−ij)v
−1
k(−xz)

|
|
∑n

k=1 vkv
−1
k |

(±1)]

if j − i is even

(−1)j+z[
∑n

x=1,x 6=z
|
∑n

k=1 vk(−ij)v
−1
k(−xz)

|
|
∑n

k=1 vkv
−1
k |

(±1)]

if j − i is odd

(3.35)

Case 3: i = x and j 6= x. The approximation of case 3 is the same as in (3.35).

Case 4: i = x and j = x. We plug (3.27) and (3.33) into (3.19):

Kjz −Kiz ≈



α(−1)j+z[
∑n

x=1,x 6=z
|
∑n

k=1 vk(−ij)v
−1
k(−xz)

|
|
∑n

k=1 vkv
−1
k |

(±(Sjx − Six))]

if j − i is even

2(−1)j+z[
∑n

x=1,x 6=z
|
∑n

k=1 vk(−ij)v
−1
k(−xz)

|
|
∑n

k=1 vkv
−1
k |

(±1)]

if j − i is odd

(3.36)

51



The above equations show that the approximation of Kjz − Kiz is separated

into two parts. The first part is either α or a constant value. The second part is a

complex term which is a function of the terms in S. The complex term is indepen-

dent of α. Since F ∗j2 − F ∗i2 = 1
2

∑n
z=l+1(Kjz −Kiz), F

∗
j2 − F ∗i2 can be approximated

in a similar way, separated in to a term dependent on α (or a constant value) and

a function of the terms in S. Therefore, if α is small enough (below a bound), the

pairwise difference remains stable with changes of α (changes below the bound).

3.4.3 Choice of the Bound

To derive the approximated pairwise ranking, two approximations are used in the

cofactor term, in (3.30) and (3.32), and another two approximations are used in

the difference term, in (3.25) and (3.28).

In order for the approximation in (3.30) and (3.32) to hold, β must be large

enough (corresponding to small α). D−1S is a stochastic matrix. By the Perron-

Frobenius theorem, the absolute values of the eigenvalues λk, (1 ≤ k ≤ n) of Ls =

I − D−1S are bounded by 2. For (3.30) and (3.32) to hold, it is required β is

substantially greater than |λk|, (1 ≤ k ≤ n). For example choosing bound to be

α < 0.005 will be sufficiently good bound.

In order for the approximation in (3.25) and (3.28) to hold, we assume | α(Sjx−

Six) |< 0.01. In this case, α < 0.01
|Sjx−Six| . The bound depends on the values in the

similarity matrix. If the edge weights from a node x differ drastically, a smaller

bound on α is obtained.

In summary, the bound Bα is

Bα = min
i,j,x

(0.005,
0.01

| Sjx − Six |
) (3.37)
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3.4.4 Extension to Multi-class Ranking

If case of multi-class ranking c > 2, assume the labeled class is class 1. F ∗i1 and F ∗j1

are:

F ∗i1 =
l∑

z=1

Kiz +
1

c

n∑
z=l+1

Kiz

F ∗j1 =
l∑

z=1

Kjz +
1

c

n∑
z=l+1

Kjz (3.38)

Kjz −Kiz is the same as in (3.19). The difference of F ∗j1 and F ∗i1 the becomes:

F ∗j1 − F ∗i1 =
l∑

z=1

(Kjz −Kiz) +
1

c

n∑
z=l+1

(Kjz −Kiz) (3.39)

1
c

∑n
z=l+1(Kjz−Kiz) is the same as (3.20) except for a constant 1

c
.
∑l

z=1(Kjz−

Kiz) is

l∑
z=1

(Kjz −Kiz) =



∑l
z=1

(−1)j+z

|M| [
∑n

x=1,x 6=zM ij,xz

(MixU(i, x)−MjxU(j, x))]

if j − i is even∑l
z=1

(−1)j+z

|M| [
∑n

x=1,x 6=zM ij,xz

(MixU(i, x) +MjxU(j, x))]

if j − i is odd

(3.40)

The only difference between (3.40) and (3.20) is that the summation is from

1 to l. We can also decompose (3.40) into the product of a term dependent on

α (or a constant value) and a function of items in the similarity matrix as in
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(3.31),(3.33),(3.34). In multi-class case, the pairwise ranking is also stable with

small α.

3.4.5 Evaluation of α in LGC Ranking

If the data points are ranked by LGC, there are two ways to retrieve the data

according to the kth column of F∗: (a) Retrieve the top ranking data points which

correspond to the data points most relevant to the labeled data. (b) Retrieve the

bottom ranking data points which correspond to the data points most irrelevant to

the labeled data (i.e., most similar to classes other than the labeled one). In the

following experiments in order to test LGC ranking, we take the second view of

retrieving ranked data. Define NR as the number of samples retrieved that belong

to classes other than the labeled class. We use the following metric accuracy A to

measure the effectiveness of LGC ranking:

A =
NR

R
(3.41)

where R is the number of samples retrieved.

We first run LGC ranking on the two moon data. 20% of the left upper moon

are selected as labeled data. The RBF kernel is used in calculating the similarity

matrix. The bound Bα for two moon data is calculated by (3.37), and is found to

be Bα = 0.005.

Let α take values in the set 10−5, 10−4, 10−3, 10−2, 0.1, 0.2, . . . , 0.9. Then we

select R data points that are least relevant to the labeled data. In this experiment

with two moon data, R is equal to the number of labeled samples. If labeled data

belongs to class 1, then the data points least relevant to the labeled data are the ones

with the smallest F ∗i1 (highest F ∗i2). Figure 3.3 shows the R retrieved data points
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for α = 0.9, 0.5, 0.1, 10−2, 10−4, 10−5. The blue circles are unlabeled positive data

points and the green circles are labeled ones. The cyan triangles and black stars

are retrieved data points. The black stars represent the retrieved data points that

do not appear in the next subfigure. For example, the black stars in Figure 3.3(b)

are retrieved data points that are not retrieved in Figure 3.3(c).

It can be observed that when α changes from 0.9 to 0.01, some of the retrieved

data points change, as manifested by the black stars. The number of black stars

is decreasing as α is decreasing, which means that the pairwise rankings of data

points have fewer and fewer changes. When α is small, and changes from 0.1 to

10−5, there are no black stars and the retrieved data remain the same. In all cases

of α, A remains 1, which means the accuracy of retrieving data is not sensitive to

α. However, the retrieved data points are not the same when α is greater than

0.1, but remain unchanged when α is lower than 0.1. The experimental results

are consistent with the theoretical analysis that as long as α is small, the pairwise

rankings are stable as α changes.

We also test LGC ranking on the real data sets of USPS and Mnist. Each

experiment is performed on the two subsets of the data. One of the subsets is

denoted as positive and other is negative. 20% of the positive class are labeled. We

set R, the total number of retrieved nodes, as the total number of negative data.

A is a measure of how many true negative are retrieved. The accuracy A of LGC

ranking in USPS and Mnist data sets are shown in Table 3.1 and Table 3.2.

RBF kernel is also used in the similarity matrix of USPS and Mnist data sets.

The bound of α for the two data sets is Bα = 0.005. We calculate the average

retrieval accuracy of α > Bα and α < Bα and their standard deviations. They are

shown in Table 3.3 and Table 3.4.
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(a) Original Image (b) α = 0.9

(c) α = 0.5 (d) α = 0.2

(e) α = 0.1 (f) α = 0.01

(g) α = 0.0001 (h) α = 0.00001

Figure 3.3: Two Moons data and the identified negative data in the right lower moon.
The blue circles are unlabeled positive data points and the green circles are labeled ones.
The cyan triangles and black stars are retrieved data points. The black stars represent
the retrieved data points that do not appear in the next subfigure.
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We observe that the accuracy of α < Bα is consistently higher than α > Bα,

and the standard deviation of α < Bα is consistently lower than α > Bα in all data

sets. This is also consistent with the theoretical analysis.

Table 3.1: Accuracy of USPS with respect to α (%)
α A A A A

(Class 4 and 7) (Class 0 and 1) (Class 5 and 9) (Class 2 and 8)

0.9 94.00 91.27 97.45 98.36
0.7 93.00 93.55 96.91 98.55
0.5 91.73 93.64 96.91 98.91
0.3 96.00 92.18 96.91 98.73
0.1 96.36 90.09 97.00 98.55

0.01 94.91 95.36 98.27 98.91
10−3 95.55 95.82 97.27 98.45
10−4 97.00 93.09 98.45 99.81
10−5 95.55 97.82 97.82 99.18
10−6 95.55 95.55 97.82 99.27
10−7 95.82 97.18 97.91 99.45
10−8 95.73 96.64 98.00 99.00

3.4.6 Summary

As the solution to the LGC algorithm, F∗ is a function of parameter α, (0 < α < 1).

When LGC is applied to ranking, we have shown that the ranking of two data points

can be decomposed into two parts. By approximations of both parts, we conclude

that in case of small α, the pairwise ranking can be approximated by a product of

α and a function of the similarity matrix. Thus, LGC ranking is stable when α is

small. But notice that small α is only a sufficient condition that LGC ranking is

independent of α, which means that in some cases a larger α may be chosen and

also have little influence on LGC ranking.
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Table 3.2: Accuracy of Mnist with respect to α (%)
α A A A A

(Class 4 and 7) (Class 0 and 1) (Class 5 and 9) (Class 2 and 8)

0.9 97.49 100 97.54 97.67
0.7 97.81 100 97.43 97.86
0.5 98.02 100 97.64 98.15
0.3 98.02 100 97.54 97.67
0.1 97.91 100 97.64 98.05

0.01 98.23 100 96.71 96.69
10−3 97.91 100 97.64 97.57
10−4 98.02 100 97.33 98.35
10−5 98.12 100 97.74 98.05
10−6 98.23 100 97.33 98.35
10−7 98.12 100 97.64 97.86
10−8 98.12 100 97.43 97.76

Table 3.3: Average Accuracy and Standard Deviation of USPS > Bα and < Bα
(mean % (std))

α > Bα < Bα
A (Class 4 and 7) 94.33 (1.78) 95.86 (0.57)
A (Class 0 and 1) 92.69 (1.89) 96.02 (1.66)
A (Class 5 and 9) 97.24 (0.55) 97.88 (0.38)
A (Class 2 and 8) 98.67 (0.22) 99.26 (0.18)

Table 3.4: Average Accuracy and Standard Deviation of Mnist > Bα and < Bα
(mean % (std))

α > Bα < Bα
A (Class 4 and 7) 97.91 (0.25) 98.09 (0.11)
A (Class 0 and 1) 100 (0) 100 (0)
A (Class 5 and 9) 97.42 (0.35) 97.52 (0.18)
A (Class 2 and 8) 97.71 (0.49) 97.88 (0.28)

58



3.5 Application

In this section, we apply LGC ranking to binary one class learning. Normally, binary

supervised learning problems are based on training using both labeled positive and

negative data. One class learning is a kind of information retrieval using only

labeled positive data. The key feature of this problem is that there are no labeled

negative samples.

In recent years, there have been some algorithms proposed to solve the one class

learning problem in a two step strategy, namely,

Identification, i.e., identifying a number of reliable negative samples from the

unlabeled set.

Classification, i.e., building a classifier with the positive labeled samples and

the selected negative ones.

The two step strategy has the advantage that there are many available conven-

tional supervised learning tools. As long as the negative samples are accurately

identified, good classification can be achieved by a state-of-the-art classifier.

The S-EM technique [33], PEBL [56] and Roc-SVM [32] are all two-step algo-

rithms. S-EM uses Naive Bayesian, PEBL uses a positive feature set, and Roc-SVM

uses a Rocchio classifier to identify negative samples. Compared with the above

methods, the graph-based method can explore the connection between the sam-

ples through the paths in the graph, so the results take into account the geometric

structure of the data. For the second step, S-EM uses Expectation-Maximization

(EM) algorithm with Naive Bayesian (NB) classifier. PEBL and Roc-SVM both

use SVM.

We propose a new two step algorithm for one class learning, which we call Graph-

OCL [45]. The first step, identifying R reliable negative samples is based on LGC
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ranking. We first build a graph with each node as a sample vector and edge weight

as pairwise similarity. Then we select reliable negative samples by LGC ranking.

Based on our analysis of the LGC ranking in the previous sections, the ranking is

accurate and insensitive to the parameter α as long as α is below a certain bound

(α < Bα). LGC provides a simple approach to identify negative samples, since we

do not have to tune any parameters by time consuming validation methods. An

important issue in Identification is to determine the number of reliable negative

samples R. We employ the spy sample method introduced in [33] to determine R.

For classification, we use TSVM [23] to classify the data. As we are given the

unlabeled samples at the time of training and are only interested in the classification

of the observed data (no out-of-sample problem), we use TSVM instead of regular

SVM to build a classifier. The effectiveness of TSVM depends on the choice of kernel

function. We show that in order for the data representation to be consistent in two

steps, the similarity matrix used in the identification step should be a normalized

kernel matrix in TSVM. We first determine the kernel matrix used in TSVM and

then derive the similarity matrix from it.

We apply the complete algorithm to the 20 Newsgroup data and compare it

to the Naive Bayesian (NB) [35] and S-EM methods [33]. We test the algorithm

on several popular kernel functions (linear, RBF, polynomial, etc.). We found in

our experiments that linear kernel matrix, corresponding to the cosine similarity

matrix in Identification, has the best average classification accuracy. The improved

classification accuracy show the effectiveness of Graph-OCL.
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3.5.1 Identify Negative Samples

In binary one class learning, F(t), (t ≥ 0), F∗ and Y are all n×2 matrices. Assume

class 1 has labeled data, and class 2 does not have any labeled data. Yi1 = 1 and

Yi2 = 0 if xi is labeled. Yi1 = Yi2 = 1/2 if xi is unlabeled.

The approach for identifying negative samples by LGC ranking is shown in

Algorithm 5:

Algorithm 5 Identify negative samples

1. Form the similarity matrix W.
2. Construct matrix S = D−1W in which D is a diagonal matrix with its (i, i)-
element equal to the sum of the i-th row of W.
3. Calculate F∗ = (1− α)(I− αS)−1Y
4. Select R samples with hightest F ∗i2 as the reliable negative samples.

F ∗ij (j = 1, 2) is the probability of sample xi having label j after infinite time

from the initial state. The second column of F∗ is the probability of samples

belonging to the negative set given the labeled information. Graph-OCL chooses

R unlabeled samples with highest F ∗i2 as the most reliable negative samples.

3.5.2 Selecting the Number of Reliable Negative Samples

The number of negative samples R in Algorithm 5 is yet to be determined. We

modified the spy document technique in S-EM [33] to decide the number of reliable

negative samples. We first randomly select a subset SR of positive samples from the

labeled set and put them in the unlabeled set. Samples in SR acts as ’spies’. The

spy samples act similarly to the unknown positive samples. Hence, they allow the

algorithm to infer the behavior of the unknown positive samples in the mixed set.

We run Algorithm 4, then select those samples whose F ∗i2 is greater than the highest

F ∗i2 of the spy samples. This implies that the reliable negative samples should have

61



a probability of belonging to negative class higher than the positive spies. However,

if the spy samples happen to be close to the labeled ones in the feature space, this

method will lead to more than enough negative samples, sometimes introduce false

ones. So we restrict the number R to be no greater than the number of the positive

labeled ones, which is denoted as l.

In summary, we first select R unlabeled samples whose F ∗i2 are greater than the

highest F ∗i2 of the spy samples. If R is less than the number of positive labeled

samples, R reliable negative samples are kept. Otherwise, only the l samples with

the highest F ∗i2 values are kept as reliable negative.

In the experiments of both toy example and real data, we set the ratio of spy

samples in the labeled set to be 10%.

3.5.3 Classification by TSVM

Unlike S-EM, which uses NB based methods for both Identification and Classifica-

tion, we use different methods for two steps. As mentioned in Section 3.3, LGC is

not an accurate classifier, especially when the labeled data in positive and negative

classes are unbalanced. Since we cannot guarantee the balance of labeled data in

both classes, we use SVM based method, which is not so sensitive to the unbal-

ance problem. We use Transductive SVM (TSVM) as a classifier, which takes into

consideration of both labeled and unlabeled data during training.

Kernel Selection

Though we use different methods in Identification and Classification, these two

methods are not completely separate. They are related through the similarity

matrix in Identification and the kernel matrix of TSVM in Classification. The

62



choice of both matrices are important, because they reflect the structure of the

data.

The kernel function K(xi, xj) is the inner product of the higher dimensional

mapping of the original samples xi and xj. If no mapping to higher dimension is

performed, the kernel is the inner product of original vectors, which corresponds to

linear kernel.

In order to exploit the data structure in Identification and Classification in a

consistent way, we apply the same kernel to both steps. We use a normalized

kernel matrix Kn as the similarity matrix W when identifying negative samples,

and the original kernel matrix K in TSVM. The kernel matrix is transformed to a

normalized one as:

Kn(xi, xj) =
K(xi, xj)√

K(xi, xi)K(xj, xj)
(3.42)

In other words, this is the normalized inner product of sample data vectors. If

the similarity matrix is defined as the cosine similarity, the corresponding kernel in

TSVM is linear kernel. Defining either the similarity matrix or the kernel matrix

first automatically decides the other matrix. To show the effectiveness of the above

idea, we present the classification of using cosine similarity in Identification and

RBF and polynomial kernel in Classification. We show in Table (3.5) that linear

kernel provides the best classification results.

3.5.4 Graph-OCL Algorithm

The complete algorithm of Graph-OCL is described in Algorithm 6.
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Algorithm 6 Graph-OCL Algorithm

1. Select SR samples from the labeled positive set to form the spy samples and
move them to the unlabeled set.
2. Select a kernel matrix K for TSVM and derive the similarity matrix W from
K.
3. Run Algorithm 5 to determine R.
4. Run Algorithm 5 again and select R most reliable negative samples.
5. Run TSVM based on the labeled positive samples and selected negative sam-
ples.

3.5.5 Experimental Results

We test the algorithm on 20 Newsgroups [30]. This is a collection of approximately

20,000 newsgroup documents, partitioned (nearly) evenly across 20 different news-

groups, which are also categorized into 4 main categories, computer, recreation,

science and talk, as shown in Figure 3.4.

Figure 3.4: 20 Newsgroup Data Subjects

The first step in document classification is to transform the documents, which

are typically strings of characters into a representation suitable for learning algo-

rithm. We use vector space model as a representation of documents. Suppose D is

the corpus of documents. Each document d in D is represented as a feature vector

[w1, w2, · · · , wm], where m is the total number of words. Each distinct word corre-

sponds to a feature, with the number of times the word occurs in the document as

its value, i.e., wj corresponds to the number that word j occurs in the document.
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This leads to extremely long feature vectors. To avoid unnecessary words that are

not discriminative, we first remove the ’stop-words’ (like ’and’, ’or’, etc.). Then

words are considered as features if they occur at least 3 times in the training data.

For simplicity, we refer to m as the number of features after feature reduction.

Finally, we scale the feature vector by their TF-IDF.

Term frequency (tf) is a measure of the importance of word j within the par-

ticular document di.

tfij = nij/
∑
k

nik (3.43)

where nij is the number of occurrences of the considered word j in document di,

and the denominator is the sum of number of occurrences of all words in document

di.

The inverse document frequency (idf) is a measure of the general importance

of a word.

idfj = log
|D|

|d : word j ∈ d|
(3.44)

|D| is the total number of documents in the corpus. |d : word j ∈ d| is the number

of documents where word j appears.

tf -idfij = tfij × idfj (3.45)

With tf -idfij as feature, document di is represented as a vector with jth column

as tf -idfij. We build a weighted graph, in which each node represents a document.

The cosine similarity of two documents defines edge weight between two nodes.

Wij =
di · dj

‖ di ‖‖ dj ‖
(3.46)
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We choose different groups in Newsgroup 20 data as positive class, then using

various individual groups as unlabeled samples. For each experiment, we divide

the positive class into two subsets, labeled and unlabeled. In the experiments, we

set the labeled positive set to be 20% of the positive class and 10% of the labeled

positive set as spy documents. For TSVM, we use the SVMlight package [22]. The

bound Bα for the 20 Newsgroup data is 0.005, and α is set to be 0.001 in the

experiments.

We measure the algorithm by both classification accuracy and an information

retrieval measure F score, defined as: F = 2pr/(p + r), where p is the precision

and r is the recall. F score measures the performance of a system on a particular

class [44], and reflects an average effect of both precision and recall.

Table 3.5 presents the classification accuracy of using different kernels in TSVM

with corresponding similarity matrix in Identification. It shows that linear kernel

has the best performance in most data sets, so linear kernel is used in Graph-OCL

to compare with other algorithms. Table 3.6 shows that Graph-OCL has better

classification accuracy than NB and S-EM. Graph-OCL is also more stable, since

all accuracies are above 85%, but NB and S-EM have some accuracy lower than

80%. The F-score of Graph-OCL is much higher than NB and S-EM, which means

both precision and recall are good.

Table 3.5: Classification Accuracy of Documents with Different Kernels
kernel os-win/ graphic/ pol.guns/ hockey/
type wind.x hardmac pol.misc baseball

linear 89.1% 93.3% 90.7% 96.8%
RBF 88.5% 65.5% 59.4% 96.0%

polynomial 88.8% 93.1% 90.8% 96.3%
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Table 3.6: Classification Accuracy of Documents (Linear Kernel)
Positive Negative Graph- Graph- NB NB S-EM S-EM

OCL OCL F score Accuracy F score Accuracy

F score Accuracy
os-win wind.x 88.0% 89.1% 45.6% 79.9% 92.2% 95.8%

graphic hardmac 92.8% 93.3% 14.9% 73.6% 41.1% 78.5%
rel.misc pol.misc 87.0% 89.0% 30.8% 75.7% 65.4% 82.7%
hockey baseball 96.4% 96.8% 89.6% 95.4% 96.8% 98.4%

pol.guns pol.misc 90.0% 90.7% 48.3% 79.9% 75.4% 87.3%
politics rec 83.9% 86.2% 28.8% 72.6% 29.7% 73.1%

hardmac os-win 88.9% 90.1% 74.2% 88.2% 94.4% 96.8%
hardpc hardmac 83.6% 85.0% 52.8% 90.8% 82.7% 95.4%

average 88.8% 90.0% 48.1% 82.1% 72.2% 88.5%

3.6 Conclusions

We analyze the LGC algorithm for both classification and ranking. We propose

an information diffusion interpretation of LGC, then analyze the parameter α’s

impact on both classification and ranking. It is found that α has a large impact

on the classification results, especially when the labeled data in classes are unbal-

anced. For LGC ranking, we theoretically prove that the pairwise ranking remains

unchanged when α is smaller than a bound. In other words, α does not have to be

tuned by validation as long as it is small enough. We apply LGC ranking to one

class learning as a first step to identify negative samples, and propose a new one

class learning algorithm Graph-OCL. Experimental results have demonstrated the

effectiveness of both LGC ranking and Graph-OCL. However, graph-based meth-

ods have a scalability problem. For large size problems (e.g., data size>10,000)

both storing the similarity matrix and solving the associated linear systems are

prohibitive. Approximation methods are necessary to solve large scale graph-based

algorithms.
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Chapter 4

A Novel Adaptive Nyström Method

4.1 Introduction

Kernel methods play an important role in machine learning and have been used

successfully in algorithms such as support vector machines (SVMs) [11], kernel

principal component analysis (KPCA) [43] and manifold learning [40]. One example

is the use of the kernel matrix in the Graph-OCL algorithm introduced in Chapter 3.

A major challenge in applying kernel methods to modern learning comes from

the fact that these usually involve large data sets of tens of thousands to millions

of data points, leading to significant complexity in terms of both space (quadratic)

and time (usually cubic). A similar problem may occur in graph based algorithms in

which using the similarity matrix of the graph also involves significant complexity.

One solution to deal with such large data sets is to use an approximation of the

kernel matrix. The Nyström method [55] is an efficient technique for obtaining a

low-rank approximation of a large kernel matrix, using only a subset of its columns.

A key problem in the Nyström method, and its extensions, is that of determining

which subset of the columns is to be used. The complexity and quality of the

approximation depends heavily on the selected subset.
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While column selection based on random sampling with a uniform probability

distribution has been the most popular approach, a considerable amount of research

work has been conducted exploring other sampling methods. [3] proved that if the

number of independent sampled columns is equal to the rank of the kernel ma-

trix, a perfect reconstruction can be achieved. However, finding these independent

columns is difficult given the large data size. Our work develops a novel sampling

strategy taking as a starting point two recently proposed methods [46]. The first

approach selects columns iteratively using an adaptive sampling method, where at

each step probabilities associated to each column are updated based on the quality

of the intermediate approximations to the kernel matrix that are obtained [28]. A

second approach makes use of greedy sampling, finding the best rank-1 Nyström

approximation at each iteration and then adding the corresponding approximations

to obtain an aggregate one [16]. Both algorithms are iterative; they are based on

building intermediate approximations and then obtaining the final result using the

set of all the selected columns.

Our proposed work is motivated by a novel interpretation of the Nyström ap-

proximation method. Assume the data is a matrix, in which rows represent samples

and columns represent features. We show that sampling the columns of the kernel

matrix is equivalent to projecting the data onto the subspace spanned by the corre-

sponding columns. Based on this, a good Nyström approximation can be achieved

if the space spanned by the sampled columns has a large intersection with the space

spanned by the data mapped to the eigenvectors corresponding to the top eigenval-

ues of the kernel matrix. We verify this property using a simple experiment with a

randomly generated kernel matrix. We also note that if subsets of columns exhibit

this property, then it is likely that their union will also have the same property.

Obviously the property cannot be used in sampling columns since it would require
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knowing the top eigenvectors of the kernel matrix. However, as will be shown, it is

possible to make use of alternative metrics to quantify the suitability of a column

or a set of columns.

In this chapter, we proposed a novel technique for iterative, low complexity col-

umn selection. It extends the Ensemble Nyström approximation method [27] by

including greedy selection of columns and adaptive probability update. Unlike [16]

we do not perform a greedy column-by-column selection, which is inefficient and

requires quadratic complexity. Instead, we compare the approximation properties

of several subsets of columns, typically using the Frobenius error. The underlying

assumption is that the subsets with lower error will also provide better approxima-

tion. This approach is faster than column-wise selection, since a smaller number of

alternatives needs to be evaluated, i.e., the number of subsets is much smaller than

the number of columns. As in [16], the approach is greedy, that is, the best subset

is selected and will be included in the computation of the final estimate. However,

unlike [16], each iteration is based on random sampling based on estimated prob-

abilities for the remaining columns, which are obtained from previous iterations.

We adopt the name BoostNyström, because each iteration is used to update the

probability of the remaining columns. The adaptive probability update gives higher

probability to potentially good columns. Note that our adaptive probability esti-

mation differs from that of [28]. BoostNyström identifies potentially good columns

as those with low approximation error in the current iteration, and thus it does not

impose any requirement on the rank as is the case in [28].

In the final iterative step, Ensemble Nyström approximation is performed on

the set of columns selected through the iterations. Standard Ensemble Nyström

has high variance because of its use of randomly sampled columns. BoostNyström

reduces the high variance by incrementally adding a subset of columns with low
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approximation error at each iteration. We derive an error bound for BoostNyström,

which guarantees a better convergence rate than both the standard Nyström and

the Ensemble Nyström methods. Experimental results show the effectiveness of

BoostNyström.

4.2 Nyström Approximation

In many machine learning algorithms, we need a matrix, each item of which rep-

resents the pairwise relationship between the two samples. The matrix can be a

similarity matrix in graph based algorithms, a distance matrix or a kernel matrix

in some kernel based algorithms. The similarity matrix and the kernel matrix used

in Graph-OCL are two examples. As the number of samples grows, it is increas-

ing difficult to store and calculate this type of matrix. Nyström approximation

is a way to approximate the matrix by using only a few columns, such that the

computational and memory complexity can be greatly reduced.

4.2.1 Standard Nyström Method

Let K be a symmetric positive semidefinite (SPSD) matrix. Any kernel matrix,

inner product matrix or graph similarity matrix is a SPSD matrix, so we will discuss

the Nyström approximation in terms of a general SPSD matrix. The Nyström

approximation of K is obtained by sampling m � n columns of K. Let E denote

the n×m matrix consisting of these sampled columns. Let W be the m×m matrix

formed by the intersection of the m sampled columns with the corresponding m

rows of K. We write K and E in terms of their sampled submatrices as follows:
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K =

 W KT
21

K21 K22

 and E =

 W

K21

 (4.1)

The Nyström method generates a rank-k approximation K̃ of K for k ≤ m

defined by:

K̃ = EW+
k ET ≈ K (4.2)

where Wk is the best rank-k approximation of W for the Frobenius norm, and

W+
k denotes the pseudo-inverse of Wk. Note that W is also SPSD since K is SPSD.

W+
k can be derived from the singular value decomposition (SVD) of W. W =

ṼΣ̃ṼT , where Ṽ = [ṽ1, ṽ2, · · · , ṽm] is orthonormal and Σ̃ = diag(σ1, · · · , σm) is

a real diagonal matrix with σ1 ≥ · · · ≥ σm ≥ 0. For k ≤ rank(W), it is given by

W+
k =

∑k
i=1 σ

−1
i ṽiṽ

T
i where ṽi denotes the ith column of Ṽ. Since the running time

complexity of SVD is O(m3) and O(nmk) is required for multiplication with E, the

total complexity of the Nyström approximation computation is O(m3 + nmk).

4.2.2 Novel Perspective

Assume that a linear kernel is used (the same proof applies to other kernel types, as

any kernel matrix implicitly maps data vectors to a high-dimensional linear space.)

The kernel matrix is calculated as K = XTX, where X is a dim × n data matrix,

and dim is the number of features in each data vector. We simplify the Nyström

approximation by fixing k = m and assuming W is full rank. Then the Nyström

approximation of (4.2) based on a set S of m randomly sampled columns becomes:

K̃ = EW−1ET (4.3)
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Let Xm be the matrix containing the m sampled columns of X corresponding

to the columns sampled in K, then K̃ can be written as:

K̃ = XTXm(XT
mXm)−1XT

mX (4.4)

Since XT
mXm is also an SPSD matrix, it can be decomposed in terms of its

eigenvalues and eigenvectors:

XT
mXm = QΛQT (4.5)

where Q = [q1,q2, · · · ,qm] is orthonormal and qi(i = 1, 2, · · · ,m) is the i-

th eigenvector of XT
mXm. Λ is the diagonal matrix containing the eigenvalues

β1, β2, · · · , βm as diagonal elements and β1 ≥ β2 ≥ · · · ≥ βm. The approximated

kernel matrix K̃ can then be expressed as:

K̃ = XTXm(QΛQT )−1XT
mX

= XTXm(QΛ−
1
2 ) · (Λ−

1
2 QT )XT

mX (4.6)

where QΛ−
1
2 = [ 1√

β1
q1,

1√
β2

q2, · · · , 1√
βm

qm] are the eigenvectors normalized by

the square root of their corresponding eigenvalues.

XTXm is the original data mapped onto the m sampled columns in Xm. Then

XTXm(QΛ−
1
2 ) represents the mapped data XTXm expressed in terms of qi(i =

1, 2, · · · ,m) and normalized by 1√
βi

;
√
βi is the magnitude of Xm along the vector qi.

Thus, XTXm(QΛ−
1
2 ) maps columns of X onto the space, denoted by SPm, spanned

by the bases [ 1√
β1

Xmq1,
1√
β2

Xmq2, · · · , 1√
βm

Xmqm]. Define Um = Xm(QΛ−
1
2 ). The

ith column of Um is [ 1√
βi

Xmqi K̃ is the linear kernel of XTUm. Note that SPm
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is the same space spanned by the columns of Xm, and the columns of Um are

the orthonormalized bases of SPm. Thus, K̃ is the linear kernel of the original

data projected onto the space spanned by the sampled columns, and the projection

matrix is formed with the orthonormal bases obtained from the eigendecomposition

of XT
mXm.

On the other hand, the eigendecomposition of K is:

K = VΣVT (4.7)

where V = [v1,v2, · · · ,vn] contains the eigenvectors of K as columns, and the

diagonal values of Σ contain the eigenvalues λ1, λ2, · · · , λn and λ1 ≥ λ2 ≥ · · · ≥ λn.

Since XTXvi = λivi, (i = 1, 2, · · · , n), K can be written as:

K = XTX(
v1√
λ1
,

v2√
λ2
, · · · , vn√

λn
) ·

(
v1√
λ1
,

v2√
λ2
, · · · , vn√

λn
)TXTX

= XTX(VΣ−
1
2 ) · (Σ−

1
2 VT )XTX (4.8)

where (4.8) has the same structure as (4.6), and U = X(VΣ−
1
2 ) are the or-

thonormal bases of the n dimensional space. Both K and K̃ can be written in a

linear kernel form:

K = XTUUTX

K̃ = XTUmUT
mX (4.9)

The approximation error of K̃ is:
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‖ K̃−K ‖ = ‖ XT (UmUT
m −UUT )X ‖

= ‖ VΣ
1
2 UT (UmUT

m −

UUT )UΣ
1
2 VT ‖

= ‖ VΣ
1
2 (UTUmUT

mU− I)Σ
1
2 VT ‖

(4.10)

According to (4.10), a sampling scheme Um has 0 approximation error if UTUmUT
mU =

I. Sampling all columns of K certainly leads to zero error. However, when the rank

of Um is lower than the rank of X, it is impossible for UTUmUT
mU = I to hold.

We now describe how the corresponding error depends on properties of the chosen

columns.

UT
mU can be expressed as:

UT
mU = [UT

mU1,UT
mU2, · · · ,UT

mUn] (4.11)

where Ui is the ith column of U. For a given rank m, in order for (4.10) to be

small, UTUmUT
mU should be close to I. Since (UTUmUT

mU− I) is weighted by Σ

in (4.10), two properties would be desirable for UT
mU:

(a) The energy of UT
mU should be focused on the left part of the matrix. In other

words, ‖ UT
mUi ‖≥‖ UT

mUj ‖, (i ≤ j). Intuitively this means that the subspace

SPm has more intersection with subspaces spanned by {Xvi√
λi
}(1 ≤ i ≤ n), for large

λi.

(b) The rows of UT
mU are orthogonal, which means that vTi K̃vj = 0, (1 ≤ i, j ≤

n, i 6= j).
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In order to sample columns that satisfy Properties (a) and (b), we would need

to know the eigenvectors and eigenvalues of K in advance. However, this is not

feasible in the case of large data sizes. Instead, we use an alternative metric, the

approximation error on a validation set, to measure how good the approximate

kernel matrix is. A low approximation error is equivalent to having Properties (a)

and (b). In various iterative algorithms for column sampling, including [28], [16] and

our proposed BoostNyström, a subset of columns that are considered to provide

good approximation is selected at each iterative step. The final set of selected

columns is the union of the subsets at each iterative step. It is not obvious why

a union of good subsets would still have good approximation properties. However,

this can be verified based on Properties (a) and (b). Since a low approximation

error is equivalent to having Properties (a) and (b), if it is proved that Properties

(a) and (b) of a subset can be extended to its union, then the iterative algorithm

is justified.

Property (a) states that in order to have low approximation error, the subspace

spanned by the selected columns should have large overlap with the subspace ob-

tained from the eigenvectors corresponding to the top eigenvalues of K. A union of

subsets of columns can be considered as a sum of subspaces. A sum of subspaces

that have Property (a) certainly conforms to Property (a) too. This proves that

Property (a) can be extended to union of subsets.

However, Property (b) does not hold in general when extended to a union of

subsets. However, we can empirically prove that, as compared to Property (b),

Property (a) is a dominant factor in determining approximation error. We propose

a metric M to measure Property (a):

M =‖ (Xm(QΛ−
1
2 ))T ·X(VΣ−

1
2 ) ·Σ2 ‖F (4.12)
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We perform an experiment on a 20× 20 matrix X. Each item of X is randomly

generated from a uniform distribution in the interval [−10, 10]. Then we randomly

sample 3 columns and use them to compute a Nyström approximation. We repeat

the sampling process 10000 times. Among these 10000 approximations, we calculate

each approximation’s error ε and its M value. For two Nyström approximations i

and j, if εi < εj andMi >Mj, or εi > εj andMi <Mj, we say theM is effective

for the two approximations. In our experiment, we observe that over 95% of the

pairs are effective.

Thus, we have empirically shown that Property (a) is a dominant factor in de-

termining approximation error. Since Property (a) can be extended to a union of

subsets, the iterative procedure of selecting subsets of columns with low approxi-

mation errors and combining them is justified. In the next section, we introduce

BoostNyström based on the above result.

4.3 Proposed Method

We first introduce the Ensemble Nyström approximation method, which is used in

the final iteration of BoostNyström. We then introduce our proposed BoostNyström

algorithm.

4.3.1 Ensemble Nyström Method

The Ensemble Nyström algorithm [27] leads to an improved hypothesis by sampling

uniformly without replacement a set S of mp, (p > 1) columns from matrix K. S

is decomposed into p subsets S1, · · · , Sp. Each subset Sr, (r ∈ [1, p]) contains m

columns and is used to obtain a rank-k Nyström approximation K̃r. K̃r can be

written as K̃r = ErW
+
r ET

r , where Er and Wr denote the matrices formed by the
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columns of Sr. The general form of the approximation of K generated by the

ensemble Nyström algorithm is:

K̃ens =

p∑
r=1

µrK̃r (4.13)

The mixture weights µr can be defined in different ways. One choice is to

assign equal weight to each base approximation, µr = 1
p
, (1 ≤ r ≤ p). Another

choice is exponential weight method, which first measures the approximation error

of the rth base approximation, ε̂r, and then computes the mixture weight as µr =

exp(−ηε̂r)/Z, with Z =
∑p

j=1 µj.

4.3.2 BoostNyström Method

BoostNyström is an iterative algorithm, which extends the Ensemble Nyström

method by greedily selecting the best sampled subset and adaptively determining

the sampling distribution of the remaining columns in each iteration.

Let T be the total number of iterations. First, a set of sampled columns S is

generated through T iterations. Then the Ensemble Nyström method is applied to

S.

At iterative step t, m(p−t+1) columns are sampled according to the probability

distribution Pt(1 ≤ t ≤ T ). Initially P1 is a uniform distribution and a set of mp

columns are sampled. The set of columns is decomposed into mp
d

subsets of size d, on

which a standard Nyström method is performed. Then, the mp
d

subsets are sorted in

ascending order based on their approximation errors on the validation set V . The m

columns that contain the m/d subsets having the lowest approximation errors, are

added to S. The next m/d subsets which have the second lowest approximation

errors are given higher probability distribution in the next iteration. Then the
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probability of the m(p−1)
d

columns are normalized so that the probability sum is

equal to 1. At the second iterative step, we sample m fewer columns than the first

iteration, and repeat the same process until iteration T . Figure 4.1 illustrates how

S is generated through T iterations.

After T iterations, we run an Ensemble Nyström approximation using S, which

is decomposed into p subsets of size m. Exponential mixture weights are used in

the Ensemble Nyström approximation. Let µj, 1 ≤ j ≤ p be the mixture weight in

(4.13) at iteration T . Define η > 0 as a parameter to calculate the mixture weights.

In the algorithm, we set p = T .

The complete algorithm is described in Algorithm 7. The BoostNyström algo-

rithm uses two methods

update probability and build mixture weight, which are described in Algorithm 8 and

Algorithm 9 respectively.

Algorithm 7 BoostNyström

1. t = 1 and set the initial probability distribution P1 as uniform distribution.
2. Sample a set V of m columns as the validation set.
3. Sample a set of m(p − t + 1) columns using the probability distribution Pt

from matrix K without replacement.
4. The sampled columns are decomposed into m(p−t+1)

d
subsets

S1, S2, · · · , Sm(p−t+1)
d

. Each subset Sr(r = 1, 2, · · · , m(p−t+1)
d

) contains d

columns.
5. Obtain the rank-k Nyström approximation Kr on Sr, and calculate the ap-
proximation error εr of Kr on V .
6. Rank εr(r = 1, 2, · · · , m(p−t+1)

d
) (S(r) accordingly) in ascending order, and

S(r)(sorted1 ≤ r ≤ m
d

) into S.

7. If t < T , construct Pt+1 based on εr(r = 1, 2, · · · , m(p−t+1)
d

) by using Algo-
rithm 8;
8. If t = T , build an Ensemble Nyström approximation on samples S with each
subset of size m and mixture weights µj(j = 1, 2, · · · , p). Construct µj(j =
1, 2, · · · , p) by using Algorithm 9.
9. t = t+ 1. If t > T , then stop the iteration. Otherwise, go to Step 3.
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Algorithm 8 update probability

1. Assume ε(r), (r = 1, 2, · · · , m(p−t+1)
d

) are sorted in ascending order. Derive the

average approximation error εavg = d
m(p−t+1)

∑m(p−t+1)
d

r=1 ε(r).

2. Find m
d

subsets S(r), (r = 1, 2, · · · , m
d

) with smallest approximation errors and

calculate εmin = d
m

∑m
d
r=1 ε(r).

3. Calculate ratio = εavg/εmin. Multiply the probability distribution of the
subsets S(r), (r = m

d
+ 1, m

d
+ 2, · · · , 2m

d
) by this ratio.

4. Force the probability distribution of the subsets S(r), (r = 1, 2, · · · , m
d

) to be
0.
5. Normalize Pt+1 so that

∑n
i=1 Pt+1,i = 1.

Algorithm 9 build mixture weight

1. Calculate ε̂j, (j = 1, 2, · · · , p) as the approximation error of jth subset in S
on V .
2. Define µj = exp(−ηε̂j), (j = 1, 2, · · · , p).
3. Z =

∑p
j=1 µj, and normalize µj = µj/Z.

Figure 4.1: BoostNyström Algorithm

4.3.3 Complexity Analysis

The time complexity of performing a standard Nyström approximation on a size d

subset is O(d3 + nd2). Since there are at most mp
d

such subsets in each iteration,
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the total complexity of performing standard Nyström approximation is O(mpd2 +

nmpd). There are additional complexities including sorting the approximation

errors (Cs = O(mp
d

log(mp
d

))), updating the probability distribution (Cu = O(n))

and computing the Ensemble Nyström approximation at the final iterative step

(Cµ = O(pm3 + pm2n)). The time complexity of the iterations in BoostNyström

is O(T (mpd2 + nmpd + Cs + Cu) + Cµ). The dominant term is O(Tnmpd). Then

the total time complexity of BoostNyström is O(Tnmpd + pm2n). Since usually

Td � n and mp � n, the complexity BoostNyström is much smaller than the

O(n3) time complexity usually encountered in kernel methods.

Since in each iteration, computing the approximation errors of subsets Sr(r =

1, 2, · · · , m(p−t+1)
d

) are independent, they can be computed in parallel. Then the

time complexity of BoostNyström becomes O(Tnd2 + pm2n).

The space requirement is the same as that for doing a standard Nyström ap-

proximation on m columns. The complexity is O(nm + m2), which is linear with

data size.

4.3.4 Error Bound

To derive an error bound of BoostNyström, we consider a simplified model. Assume

that among the mp columns of S, there exist p̂ (1 ≤ p̂ < p) and ε̂ (ε̂ > 0), such that

‖ K − K̃r1 ‖< ε̂ <‖ K − K̃r2 ‖, (∀r1 and r2, 1 ≤ r1 ≤ p̂, p̂ + 1 ≤ r2 ≤ p). ε̂ is the

approximation error ‖ K−K̃ot ‖2, and K̃ot is the standard Nyström approximation

given m sampled columns Sot other than the mp columns in S. Given the adaptive

step in BoostNyström, which selects the best subsets of the sampled columns at

each iteration, with high probability, there exist sampled columns Sot that satisfy

the above condition.
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In the proof of the error bound for BoostNyström method, we need the general-

ization of McDiarmid’s concentration bound to sampling without replacement [29]

[10], and the error bounds of Ensemble Nyström method first introduced in [27].

The error bounds of Ensemble Nyström are denoted as Bens2 for the norm-2 error

bound, and BensF , the Frobenius error bound. We denote Kmax the maximum diago-

nal entry of K, Kmax = maxiKii, and dKmax the distance maxij
√
Kii +Kjj − 2Kij.

We define the selection matrix corresponding to a sample of mp columns as the

matrix L ∈ Rn×mp. Then Lij = 1 if the ith column of K is among those sampled,

and Lij = 0 otherwise.

Theorem Let S be a sample of pm columns decomposed into p subsets of size

m, S1, · · · , Sp at iteration T . For r ∈ [1, p], let K̃r denote the rank-k Nyström

approximation of K based on the sample Sr, and let K(k) denote the best rank-k

approximation of K. Assume there exist p̂, (1 ≤ p̂ < p) and ε̂, (ε̂ > 0), such that

‖ K− K̃r1 ‖< ε̂ <‖ K− K̃r2 ‖, 1 ≤ r1 ≤ p̂, p̂+ 1 ≤ r2 ≤ p. ε̂ is the approximation

error ‖ K − K̃ot ‖2, and K̃ot is a standard Nyström approximation given Sot, m

sampled columns other than the mp columns in S. Then, with probability at

least 1− δ, the following inequalities hold for any set of samples S of size mp and

Sot of size m that satisfy the above assumption and for any µ in the simplex ∆

(∆ = {µ ∈ Rp: µ ≥ 0
∧∑p

r=1 µr = 1}) and K̃boost =
∑p

r=1 µrK̃r:

‖ K− K̃boost ‖2< Bens2 (4.14)

‖ K− K̃boost ‖F< BensF (4.15)

Proof : We replace subset S1 with Sot, the subset of m sampled columns other

than S1, S2, · · · , Sp. By definition of K̃boost, the following holds:
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‖ K− K̃boost ‖2 = ‖
p∑
r=1

µr(K− K̃r) ‖2

≤
p∑
r=1

µr ‖ K− K̃r ‖2

< µ1 ‖ K− K̃ot ‖2

+

p∑
r=2

µr ‖ K− K̃r ‖2

≤ µ1(‖ K−K(k) ‖2

+2 ‖ XXT − ZotZ
T
ot ‖2)

+

p∑
r=2

µr(‖ K−K(k) ‖2

+2 ‖ XXT − ZrZ
T
r ‖2)

= ‖ K−K(k) ‖2 +

2 ‖ XXT − ZotZ
T
ot ‖2 +

p∑
r=2

2 ‖ XXT − ZrZ
T
r ‖2

(4.16)

where Zr =
√

n
m

XLr, and Lr is the selection matrix for Sr. Zot =
√

n
m

XLot,

and Lot is the selection matrix for Sot. Let S̄ denote the sampled set Sot, S2, · · · , Sp,

and let S ′ be a sampled set with one column different with S̄. Let φ(S̄) =‖ XXT −

ZotZ
T
ot ‖2 +

∑p
r=2 2 ‖ XXT − ZrZ

T
r ‖2. Then the following inequality holds:

| φ(S ′)− φ(S̄) |≤ 2n

m
µmaxd

K
maxK

1
2
max (4.17)

where µmax = maxpi=1 µi. The expectation of φ(S̄) is bounded by:
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E[φ(S̄)] ≤ n√
m
Kmax (4.18)

(4.17) and (4.18) are derived in the same way as in [27]. Plugging (4.17) and

(4.18) into the generalization of McDiarmid’s concentration bound, we derive the

upper bound for (4.16) as Bens2 . ‖ K − K̃boost ‖2 is strictly less than Bens2 . In the

same fashion, we obtain the Frobenius error bound ‖ K−K̃boost ‖F , which is strictly

less than BensF .

[27] shows that the error bound of Ensemble Nyström method is lower than the

normal Nyström approximation. We show that the error bound of BoostNyström

is strictly lower than that of Ensemble Nyström method. Thus, BoostNyström is

a better kernel matrix approximation tool as compared to state-of-art algorithms.

The superior performance is demonstrated experimentally in the following section.

4.4 Experiments

In this section, we present experimental results that illustrate the performance of

the BoostNyström method. We work with data sets listed in Table 4.1.

Throughout the experiments, we measure the accuracy of a low-rank approxi-

mation K̃ by calculating the relative error in the following quantity:

%error =
‖ K− K̃ ‖F
‖ K ‖F

× 100 (4.19)

For each data set, we set the number of sampled columns in standard Nyström

approximation to m = 0.03n, where n is the total number of data points. d is

shown in Figure 4.3. Rank k is set to be the rank of W in (4.1). The number of

approximations, p, was varied from 2 to 20, and T = p. We sampled an additional
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Table 4.1: Properties of data sets, n and dim are the number of data points and
features respectively.

Dataset Type of data n dim
MNIST-10K a Hand written 10000 784

digits
S. Ceravisiae b proteins 4728 16

Abalone c Physical 4177 8
measurements

Dexter c Documents 2000 20000
Isolet c Voice 6238 617
USPS d Hand written 7291 256

digits

a http://yann.lecun.com/exdb/mnist
b S.Ceravisiae is from [20]
c http://archive.ics.uci.edu/ml/index.html
d USPS is from [21]

set of m columns as validation set V , on which the approximation error of each

subset is derived, and V is fixed with varying values of p.

We run BoostNyström on each dataset with the sampled columns in Ensemble

Nyström approximation as initial samples. The average error (Frobenius error) of

BoostNyström is shown in Figure 4.3. It is compared to the following well-known

Nyström methods: (a) Standard Nyström approximation with uniform sampling

of m columns without replacement. (b) Ensemble Nyström approximation with

uniform sampling of mp columns without replacement. (c) K-means based Nyström

method [57]. (d) The adaptive sampling method in [28]. (e) The deterministic

method in [3]. The average errors of p approximations are reported for (a), (c) and

(d).

Figure 4.3 shows that in all data sets, BoostNyström with large p outperforms

all other algorithms except in Abalone data. In Abalone data, the K-means based

and the adaptive methods are better than BoostNyström. However, the K-means

based method is unstable, with good error rate in Abalone, but much worse than
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BoostNytröm in Isolet and S. Cerevisiae. The adaptive algorithm is unstable too,

with best error rate in Abalone, but poor performance in S. Cerevisiae and USPS.

We did not draw the error curve of K-means based method in Figure 4.3(b) and

Figure 4.3(e), nor the error curve of the deterministic method in Figure 4.3(f),

because they are so large that they make other curves undistinguishable. The error

rate of the deterministic method in USPS is 9.93%. We draw all curves for S.

Cerevisiae and Isolet data sets in Figure 4.2.

(a) Scerevisiae (b) Isolet

Figure 4.2: Percent error of Scerevisae, Isolet and USPS

4.5 Conclusions and Future Work

We propose a new perspective on the Nyström approximation. The new perspective

relates the quality of the Nyström approximation with the subspace spanned by

the sample columns. Based on the perspective, we propose BoostNyström, a novel

adaptive Nyström approximation method. The BoostNyström algorithm is justified

by our novel perspective and has an error bound guaranteed to be lower than that

of Ensemble Nyström method. The experimental results show the effectiveness of
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(a) Mnist (b) S. Cerevisiae (c) Abalone

(d) Dexter (e) Isolet (f) USPS

Figure 4.3: Percent error in Frobenius norm for base Nyström method, Ensem-
ble Nyström method, BoostNyström, K-means based Nyström approximation, the
adaptive Nyström approximation and the deterministic method

BoostNyström. In the future, BoostNyström can be applied to graph-based learning

algorithms, such as Graph-OCL.
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Chapter 5

General Conclusions

This dissertation has focused on three areas: (1) Supervised learning of high di-

mensional data. (2) Graph-based one class learning. (3) Nyström method for large

size data. Each of the three areas has extensive practical applications. We have

developed several state-of-art algorithms to solve each problem.

For supervised learning of high dimensional data, a novel algorithm BDLDA

is improved and applied to gene expression data. BDLDA achieves a balance of

bias-variance tradeoff, and has provided superior performance compared with other

classifiers. Treelets is then used to transform the data before BDLDA, as a step to

concentrate more energy near the diagonal positions of the covariance matrix, and

thus improve the performance of BDLDA.

For one class learning problem, we have used graph-based ranking method as

a first step (identifying outliers) in the algorithm. As far as we know, this is the

first time graph-based method has been used in one class learning. One important

advantage of our proposed algorithm is its selection of the constant parameter. This

frees us of time consuming model selection procedure, like cross validation. This

dissertation has provided theoretical proof supporting the parameter selection.
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The novel adaptive Nyström method is mainly proposed to solve the scalability

issue of the graph-based algorithms. We have proposed a new perspective on the

Nyström approximation. The new perspective relates the quality of the Nyström

approximation with the subspace spanned by the sampled columns. Based on the

perspective, we propose BoostNyström, a novel adaptive Nyström approximation

method. The BoostNyström algorithm is justified by our novel perspective. The

experimental results show the effectiveness of BoostNyström.

In the future, efforts could be taken to reduce the complexity of BoostNyström

to make it more practical in real use. BoostNyström method could be applied to

the graph-based one class learning algorithm to make it scalable to large sample

size.
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Chapter 6

Publications

Lingyan Sheng, Antonio Ortega, Roger Pique-Regi, Shahab Asgharzadeh, ”Treelets

as feature transformation tool for block diagonal linear discrimination” in Proceed-

ings of IEEE International Workshop on Genomic Signal Processing and Statistics

2009

Lingyan Sheng and Antonio Ortega, ”Graph-based partially supervised learning of

documents” in Proceedings of IEEE International Workshop on MACHINE LEARN-

ING FOR SIGNAL PROCESSING 2011

Lingyan Sheng and Antonio Ortega, ”Pixel prediction by context based regres-

sion” in Proceedings of IEEE International Conference on Acoustic, Speech and

Signal Processing 2012

Lingyan Sheng and Antonio Ortega, ”A Novel Adaptive Nyström Approximation”

in Proceedings of IEEE International Workshop on MACHINE LEARNING FOR

SIGNAL PROCESSING 2012
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Lingyan Sheng and Antonio Ortega, ”Analysis of Graph-based Ranking and Ap-

plication to One Class Learning”, under preparation of The IEEE Transactions on

Pattern Analysis and Machine Intelligence
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