Compression Algorithms for Distributed Classification with
Applications to Distributed Speech Recognition

by

Naveen Srinivasamurthy

A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the
Requirements for the Degree
DOCTOR OF PHILOSOPHY
(Electrical Engineering)

August 2006

Copyright 2006 Naveen Srinivasamurthy



Dedication

To my parents for their support throughout my studies.

To Vaishali, without your encouragement this would not have been possible.

i



Acknowledgments

Although words do not do justice to their contributions, I would like to thank the following
people for making this work possible.

Firstly my advisors, Prof. Antonio Ortega and Prof. Shrikant Narayanan, whose
continual support and guidance fueled my research over the years. I am thankful for the
privilege of working with them and I am most grateful for their guidance, patience and
advise during my doctoral research.

I would also like to thank, Prof. Boris Rozovsky for being on my dissertation commit-
tee, and to Prof. Keith Chugg and Prof. Keith Jenkins for serving on my Qualification
exam committee.

Thanks to all my friends and colleagues, in particular, Raghavendra Singh, Hua Xie,
Phoom Sagetong, Abhinav Sethy, Shadi Ganjavi, David Comas, Durai Thriupathi, Robert
Wilson, Sang-Yong Lee, Hyukjune Chung, Sankar Ananthakrishnan, Doney Joseph, Bal-
tasar Beferull-Lozano, Krisda Lengwehasatit, Panayiotis Georgiou and Jose Gimeno.
They made my life at USC a wonderful experience. I would also like to thank Prof.
Abeer Alwan and Qifeng Zhu for a fruitful collaboration.

I would like to thank my mother, for letting me pursue my ambitions. I would also
like to thank my brother for his support. Finally, I express immense gratitude to Vaishali

iii



Umredkar, whose support and encouragement made it possible for me start, stay the
course and complete my Ph.D. Also, I have to mention Ameya, whose innocence helped

me maintain a cheerful outlook at all times.

v



Contents

Dedication ii
Acknowledgments iii
List Of Tables viii
List Of Figures xi
Abstract xvii
1 Introduction 1
1.1 Motivation . . . . . . . . .. 1
1.2 Distributed Speech Recognition . . . . . . . ... .. ... ... ...... 7
1.3 Scalable Compression for Classification . . . . . . . ... .. ... ..... 11
1.4 Classifier-Encoder Dimension Mismatch . . . . .. ... ... .. ..... 13
1.5 Distortion Metric for Classification . . . . . . ... ... ... ....... 15
1.6 Outline and contributions of this proposal . . . . . ... ... ... .... 16

2 Distributed Speech Recognition: Speech Encoding and Scalability 20
2.1 Introduction . . . . . . . . . ... 20
2.1.1 Recognition Performance . . .. ... ... ... ... ....... 21

2.1.2  System Operation . . . . .. .. .. .. ... ... 22

2.1.3 Encoder Variability . . . . .. .. .. ... oo 25

2.2 Compression of MFCCs . . . . . .. .. .. . . 27
2.3 Scalable Predictive Encoding . . . . . . .. ... o 0oL 31
2.3.1 Consistency Criteria for Independent DPCM Loops . . . ... .. 33

2.3.2 Context Dependent Entropy Coding . . . . . ... .. ... .... 34

2.3.3 Packetization . . .. ... ... ... ... 35

2.4 Scalable DSR System . . . .. ... ... o 36
2.4.1 Scalable Recognition . . . . . .. .. ... ... L. 36

2.4.2 DTW-HMM Recognizer example for Isolated Word Recognition . . 37

2.4.3 Spoken Names Recognition . . . .. ... ... ... ... ..... 43

2.4.4 A two-stage continuous speech recognition . . . . . .. ... .. .. 45

2.4.5 Scalable system operation . . . . . ... ... oL 47

2451 Userdelay . . ... .. .. ... .. .. ... .. 48



2.4.5.2 Client and Sever bandwidth . . . . . .. ... ... ... 48

2.4.5.3 Sever complexity . . . . . .. ... L oL 48

2.5 Model Adaptation . . . . . ... ... 49
2.6 Experimental setup . . . . . .. . .. ... ... 51
2.6.1 Experimental conditions . . . . . . ... ... Lo 51
2.6.2 Isolated digits and alphabet recognizer . . . . . . . . . ... .. .. 52
2.6.3 Spoken names recognizer . . . . . . ... ..o 53
2.6.4 Continuous speech recognizer for the HUB-4 broadcast news task . 54
2.6.5 Model Adaptation . . .. .. .. ... o 54

2.7 Results. . . . . . . e 56
2.71 MFCCencoder . . . . . . . . . . .. . . it 56
2.7.2 Scalable DSR system . . . . . . . ... ... ... ... 58
2.7.2.1 Isolated digits recognition . . . . . . . .. ... ... ... 58

2.7.3 Spoken Names Recognition . . . . . . ... ... ... ... ..., 64
2.7.3.1 Variable-rate DSR encoder . . . . ... ... ... ..., 64

2.7.3.2 Scalable DSR encoder . . . . .. ... ... ... ..... 65

2.7.4 Continuous Speech Recognition . . . . . . .. ... ... ... ... 67
2.7.5  Model Transformation . . . . .. ... ... ... ... ....... 71
2.7.5.1 Adaptation with a Single Model . . . . . ... ... ... 71

2.7.5.2  Encoder Optimized for Recognition . . . ... ... ... 74

2.7.5.3 Effect of Adaptation Data . . . .. ... ... ...... 75

2.8 Conclusions . . . . . . . . .. 76

Joint Compression-Classification with Quantizer/Classifier Dimension

Mismatch 79
3.1 Imtroduction . . . . . . . . . . . ... 79
3.2 Joint Product VQ design using classification information . . . . . . . . .. 83
3.2.1 Previouswork. . . . . . ... 83
3.2.2 Parametricdesign . . . . .. ..o Lo 85
3.2.3 Empirical design . . . . . ... o 90
3.2.3.1 Bin assignment example during product VQ design . . . 93

3.2.3.2 Empirical product VQ design . . . . . .. ... ... ... 94

3.3 Experiments and Results. . . . . . .. .. ... ... ... ... ...... 96
3.4 Conclusions . . . . . . . . . e 105

Performance Improvements in Fast Table-Lookup Encoding for Image

Compression Applications 107
4.1 Introduction and Motivation . . . . . . . ... ... ... ... ... .... 107
4.2 Previous work . . . . . ... 112
4.2.1 Pre-processing for fast encoding . . . . . .. .. ... 112
4.2.2 Structured VQs . . . . . . .. 113
4.2.2.1 Hierarchical VQ . . . . . . . .. ... .. ... .. ... . 114

4.2.2.2  Weighted Transform Hierarchical VQ . . ... ... ... 114

4.2.2.3 Entropy constrained product VQ . . . . . . .. ... ... 115

4.3 Joint Product Encoder Design . . . . . . . . ... ... 0oL 116

vi



4.4 Applications . . . . . . ... e e 119

4.5 Conclusions . . . . . . . .. . 127

5 Minimum Mutual Information Loss Encoder 129
5.1 Introduction . . . . . . . . . . . ... 129
5.2 Relation between mutual information and P, . . . .. .. ... ... ... 132
5.2.1 Fano’s inequality . . . . . . . .. ... ... Lo 133

5.2.2 Relating P, to loss in mutual information . . . .. ... ... ... 133

5.3 Information Bottleneck Method . . . . . . . . .. ... ... ... ..... 135
5.4 Minimum Mutual Information Loss Encoder . . . . . . . . ... ... ... 137
5.4.1 MMIL Encoder: Quantizer Design . . . . . ... ... ... .... 140

5.4.2 MMIL Encoder: Rate-Allocation . . . .. ... ... ........ 142

5.5 Experiments and Results. . . . . .. .. ... .. ... ... ... ... 144
5.6 Conclusions . . . . . . . . . e 148

6 Future Work 149
6.1 Successively Refinable Predictive Encoding . . . . . . . ... ... .. .. 149
6.1.1 Methods of scalable encoding . . . . . ... ... ... ... .... 150

6.2 Predicting Rate Requirement for Classification Tasks . . . . . . .. .. .. 153
6.3 Optimal Transformation for Minimizing Mutual Information Loss . . . . . 156
6.4 Application Specific Distributed Source Coding . . . . . . ... ... ... 160
Reference List 163

vil



List Of Tables

21

2.2

2.3

2.4

2.5

2.6

2.7

Threshold used during dictionary lookup is a function of the recognized
phone sequence length. Shorter phone sequences are assigned a lower
threshold and vice-versa. The thresholds were chosen by experiments on
the training data. . . . . . . . ... L L

Comparative results for the digits database for different encoding techniques 57

Comparative results for the alphabets database for different encoding tech-
NIQUES . .« . e e e e e e e e

Average CPU time (in seconds, on a sun workstation) required to recognize
a utterance from the digit database, and time required to encode it. The
times shown for ECSQ and USQ also include the time for entropy coding,
as well as the time required to compute the MFCCs (also included in speech
recognition). The encoding and recognition times can be expected to be
much higher for a portable device. . . . . .. ... ... ... .......

Absolute percentage increase in WER for the proposed encoder and Au-
rora. Observe that even when the proposed encoder operates at 3600 b/s
it is superior to Aurora. . . . . . .. ..

Transmission times for scalable and non-scalable codec on an 8800 b/s
transmission link. The recognizer is assumed to operate in real-time. Hence
time required for recognition is equal to the length of the name utterance.
The user latency is the sum of the transmission and recognition time.
Reduction in user latency for the proposed scalable encoder is shown in
the last row. Around 11% user latency reduction is possible. Each packet
is assumed to have 40 bytes of RTP/UDP/IP headers. If RoHC (Robust
Header Compression) were used the header size could be reduced to 5 bytes.

Word error rate (in percentage) for supervised MLLR adaptation. String
error rate (in percentage) is shown in brackets. The improvements in
MLLR are decrease (in percentage) in word error rate with respect to
clean model results. . . ... ..o

67

viii



2.8

2.9

2.10

3.1

4.1

4.2

4.3

4.4

Degradation (in percentage) in word error rate before and after adaptation
for the different coding schemes. The degradation is with respect to using
matched models for each compression scheme. . . ... ... ... ....

Word error rate (in percentage) for supervised MAP adaptation. String
error rate (in percentage) is shown in brackets. The improvement for MAP
is decrease (in percentage) in word error rate with respect to clean model
results. . . .. L

Degradation (in percentage) in word error rate before and after adaptation
for the different coding schemes. The degradation is with respect to us-
ing clean speech for testing. Uncompressed speech requires 128 kbps and
uncompressed MFCCs require 38.4 kbps. . . . . . .. . ... ... ....

CPU time (in seconds, on a Sun workstation) required to encode 32000 4
dimensional vectors. Bayes VQ has a codebook of size 64. Proposed low
dimension encoder has codebooks of size 8 in both sub-dimensions. The
difference in time can be expected to be much higher for larger dimension
VECTOTS. . . . . L e e e e

PSNR and encoding time for VQ¢s, VQpqe [6], HVQ, codewords refinement
HVQ (CR-HVQ) and codewords refinement joint encoder HVQ (CR-JE-
HVQ). The PSNR of CR-HVQ and CR-JE-HVQ is better than that of
HVQ, however the encoding time is significantly lesser than VQ

PSNR and encoding time for VQy¢s, VQpge [6], WTHVQ, codewords re-
finement WITHVQ (CR-WTHVQ) and codewords refinement joint encoder
WTHVQ (CR-JE-WTHVQ). The PSNR of CR-WTHVQ and CR-JE-
WTHVQ is better than that of WTHVQ, however the encoding time is
significantly lesser than WITV Qs . . . . . . . .. ... ... ...

PSNR and encoding time for ECVQys, ECV Qpge [6], ECHVQ, code-
words refinement ECHVQ (CR-ECHVQ) and codewords refinement joint
encoder ECHVQ (CR-JE-ECHVQ). The PSNR of CR-ECHVQ and CR-
JE-ECHVQ is better than that of ECHVQ, however the encoding time is
significantly lesser than ECV Qs . . . . . . . ... .. ... ...

Memory requirement for the lookup tables. For small VQ codebook size
the memory required by CR-HVQ is lesser than CR-JE-HVQ, however for
large VQ codebook size savings in memory can be achieved. . . . . . . . .

123

X



5.1 In the different quantization techniques, we varied the design algorithm,
the rate-allocation technique and the encoding scheme. Here MSE refers
to mean square error distortion and MI refers to our proposed mutual
information loss distortion. Note that we progressively increase the amount
of role MI plays in the quantizer operation, by first using it only for rate-
allocation, then for both rate-allocation and quantizer design and finally
for all three operations. . . . . . .. .. .. ... ... L.



List Of Figures

1.1

1.2

1.3

14

1.5

21

2.2

2.3

Distributed estimation system, the client should encodes x such that the
parameter () estimation capability of the server is not degraded. . . . . .

A typical speech recognition consists of a feature extractor the output of
which is used by a pattern recognizer to make the recognition decision. . .

A distributed speech recognizer. The client extracts the features encodes
and transmits it to the server which decodes it and uses for recognition.

A client-server based speech recognition system using a conventional speech
encoder to compress the data. Note that unlike a DSR system the feature
extraction is done at the server. . . . . . . . . ... ... L.

The optimal Bayes classifier for a mixture of two sources with means
[2.0,0.5] and [—2.0,—0.5]. Notice that zp has greater discrimination power
than z;. By using only ag we can be almost sure that it belongs to class
1, however for b which lies close to the classification boundary both com-
ponents are required. . . . . . ... Lo

Scalable recognition system. The top figure shows the conventional DSR
system. The number of clients that the server can handle is limited by
the server computational capabilities and the server bandwidth. The bot-
tom figure shows the proposed scalable system wherein the computational
requirements as well as the bandwidth at the server are reduced. In the
scalable system the enhancement data is requested by the server only if
the low complexity recognizer cannot make the recognition decision.

A remote speech recognition system. Several clients communicate with
a single server. The clients could use different compression schemes to
encode the speech data. The models at the server are adapted to ensure

23

that the adapted models are more likely to have produced the observed data. 26

A layered DPCM scheme where the top DPCM loops encodes the quanti-
zation error of the bottom DPCM loop. . . . . .. . ... ... ... ...

xi



24

2.5

2.6

2.7

2.8

2.9

2.10

2.11

The proposed layered DPCM scheme, where two independent DPCM loops
are maintained. The quantized prediction error is used by the fine DPCM
quantizer to find the valid bins. The entropy coder uses the predictions
from both loops to determine the context. . . . . . .. ... ... ..... 32

Overlapping shifted quantizers. Using information from the coarse repro-
duction the number of potential bins for @ is reduced. Only the bins
of @Q; which overlap the region R. are valid. The valid bins of Q; are
highlighted. . . . . . . . . . . 33

Observe that the average number of models increases with threshold and
the probability of word error monotonically decreases with threshold. At
threshold of 2.4 the probability of word error becomes zero but the average
number of models is reduced from 10 to 8, i.e, a 20% reduction in HMM
running time with no difference in recognition performance. In general it
is not required to use a threshold as high as 2.4, a smaller value between
1.2 to 1.8 will suffice, because utterances very difficult to distinguish by
DTW are most likely to be in error for the HMM also. . . . . . ... ... 39

The different scalable recognizer schemes used. In System A we use a
DTW as the first recognizer and a HMM as the final level recognizer. In
System B we use two levels of DTW as the first recognizer and a HMM as
the second recognizer. . . . . . . .. ..o 40

A two stage approach using dictionary lookup for the names recognition
task. When a Levenshtein distance threshold of 2 is used, although the
recognized phone sequence is closer to Glen than Green, the dictionary
lookup will ensure that Green is in the final lattice used for rescoring. . . 42

A two stage multi-pass continuous speech recognizer. The low complexity
early-pass recognizer is used to constrain the search space of a latter-pass
more complex recognizer by generating a word lattice. . . . . .. ... .. 46

Recognition performance of the different encoders for alphabet database.
Numbers next to the points indicate the number of coefficients retained.
The scalability of the encoders can be seen by the Bitrate/ WER tradeoff.
Recognition performance with MELP was 24.85% and with FS-10 was
25.69%. The recognition performance with unquantized MFCCs was 17.34%. 59

Same information as in Figure 2.10 except that the database is the digit
database. WER with MELP was 1.15% and with FS-10 was 4.75%. The
recognition performance with unquantized MFCCs was 0.21%. . . .. .. 59

xii



2.12

2.13

2.14

2.15

2.16

217

2.18

2.19

2.20

Recognition results with techniques based on scalar quantization [19] on
the alphabet database and linear prediction and vector quantization [51]
on the digit database. . . . . . . .. ... L 60

Recognition performance for the scalable recognition schemes. The coarse
bitrate is 0.72 kbps. The fine bitrate (Ry) is indicated in the figure. The
baseline WER of 0.24% is shown as a dotted line. . . . . ... ... ... 60

The time required for the scalable recognition schemes. The baseline com-
putational time of 28 sec is shown as a dotted line. Notice the compu-
tational scalability wherein reduced complexity can be achieved at the
expense of WER. . . . . . . ... 61

Names recognition results when CI models are used in the lattice recog-
nizer. Notice that there is small degradation in performance when the
bitrate is above 2500 b/s. However it is apparent that with the proposed
variable-rate encoder we can trade-off recognition performance and bitrate. 62

Names recognition results when CD models are used in the lattice recog-
nizer. Notice that there is small degradation in performance when the
bitrate is above 2500 b/s. However it is apparent that with the proposed
variable-rate encoder we can trade-off recognition performance and bitrate. 63

Results of the names recognition when the proposed scalable DSR encoder
is used at the client. The results are shown for different base layer rates. . 63

Results of the names recognition when the proposed scalable DSR encoder
is used at the client. The results are shown for different base layer rates.
When the base layer rate is 2580 b/s and the enhancement layer rate is
2000 b/s the recognition result for CD models is the same as that obtained
with a variable-rate encoder at a bitrate of 4040 b/s. However since the
base layer rate is lower than the full rate of the variable-rate encoder, the
recognition latency experienced by the user is reduced. . . . . . .. .. .. 64

Recognition results of the multi-pass DSR for the HUB-4 broadcast news
task. Observe that with a base layer rate of 2470 b/s and an enhancement
layer of 3230 b/s we achieve the same recognition performance as with
uncompressed data. Also the recognition performance versus bitrate trade-
off is clear from the results. . . . . . . ... ... ... ... ........ 68

Comparison of trade-off between distortion and percentage WER versus
bitrate. Distortion scale is shown on the left y-axis and percentage WER
scale is shown on the right y-axis. The correlation between distortion and
recognition performance is clearly illustrated. . . . . . ... ... .. ... 68

xiii



2.21 Effect of adaptation data on string error rate and word error rate for clean

3.1

3.2

3.3

3.4

3.5

3.6

and encoded data. . . . . . ... .

Distributed classification system. The dimension of the classifier is greater
than the dimension of the encoders/decoders. The goal of the encoders is

to quantize the data so that it has least effect on classification performance. 80

Even though the vectors z! and 22 have the same value in one dimension,
they belong to different classes as they significantly differ in the other
dimension. . . . . . ... e e

Ilustration of the empirical algorithm (only one of the K! bins is shown).
Bin b} is assigned to the quantization value Q} so that the joint cost of
distortion and average misclassification is minimized. The width of the

bin is A and its mid-point is cjl-. In the example shown there are 13

source vectors in the bin b}. The diamond points (r¥ and rfﬂ) are the
2 dimensional reproductions points got by associating the reproduction
points Q} and Q} 41 in the 1% dimension with every reproduction point in
the 274 dimension. The class of the reproductions points and the source
vectors is determined by the region they fall into, i.e., the points below the
classification line belong to class 0 and those above belong to class 1.

The setup of the Case (i) example. The input consists of a 2 dimensional
vector, each dimension is quantized independently using scalar quantiza-
tion, and the quantized outputs are used for classification by the 2 dimen-
sional Bayes classifier. For Case (ii) the scalar quantizers are replaced by
2 dimensional VQs and the 2 dimensional classifier is replaced with a 4
dimensional Bayes classifier. For Case (iii) the 2 dimensional classifier is
replaced with an 8 dimensional Bayes classifier. . . . . . . ... ... ...

Quantization bins when the proposed algorithm is used to design the Scalar
Quantizers. The means of the two classes are represented by diamond
points. The diagonal line is the Bayes classifier boundary. . . . . . . . ..

Quantization bins when the only distortion is minimized to design the
scalar quantizers. The means of the two classes are represented by diamond
points. The diagonal line is the Bayes classifier boundary. . . . . . . . ..

92

Xiv



3.7

3.8

3.9

3.10

3.11

4.1

4.2

Trade-off between percentage reduction in misclassification and reduction
in SNR for scalar quantizers designed for each dimension of a 2 dimensional
Gaussian mixture vector (Case(i)). The top curve represents the pdf based
design and the other two curves represent the empirical designs. Empirical
design 1 corresponds to the case when high rate scalar quantizers are used
to partition the training set, and empirical design 2 corresponds to the
case when high rate Lloyd-Max scalar quantizers are used to partition the
training set. The number of bins in empirical design 2 is lesser than the
number of bins in empirical design 1, so the complexity of the design is
lesser for empirical design 2. The percentage misclassification when the
scalar quantizers are designed only to minimize distortion is 3.40%. So the
reductions in misclassification are significant. . . . . ... ... ... ...

Trade-off between percentage reduction in misclassification and reduction
in SNR for two 2 dimensional VQs designed for a 4 dimensional Gaussian
mixture vector (Case(ii)). The percentage misclassification when the VQs
are designed only to minimize distortion is 9.64% . . . . . ... .. .. ..

Percentage misclassification vs SNR for two 2 dimensional VQs and Bayes
VQ designed for a 4 dimensional Gaussian mixture vector (Case(ii)). For
both curves the points with maximum SNR correspond to the case when
only distortion is minimized. . . . . . . . ... ... oL

Trade-off between percentage reduction in misclassification and reduction
in SNR for 2 Scalar Quantizers designed for a 2 dimensional 8 source
Gaussian mixture vector (Case(iii)). The percentage misclassification when
the scalar quantizers are designed only to minimize distortion is 13.99%

The optimal Bayes classifier (solid black line) and the quantization bins
(thin horizontal and vertical lines) for Case(iii), i.e., a mixture of 8 sources.
The stars represent the means of the 8 sources. Observe that the quanti-
zations bins approximate the Euclidean partition of the classifier. . . . . .

Overlap between product regions and Voronoi regions of the higher di-
mension VQ. Observe that the shaded region intersects multiple Voronoi

regions, while the solid region is fully contained in a single Voronoi region.

The top path represents the conventional full search VQ encoding scheme.
The bottom path shows the conceptual encoding scheme where the PVQ
quantized data is encoded by the full search VQ. Since in this case the full
search VQ is operating on quantized data it can be replaced with a table
lookup. . . . .o

103

108

p.q%



4.3

5.1

5.2

5.3

5.4

6.1

6.2

6.3

6.4

The HVQ encoding operation can be looked as a classification problem.
The V Qs is the classifier and L — 1 stage HVQ is the encoder. The goal
is to ensure that for vectors in a training set the same index is given by
the above two methods. . . . . . ... ... .. ... ... ... ... ...

Probability of class given data for a two class problem. The means are -1
and 1 for the two classes and both classes have standard deviation 2. . . .

The mixture of eight 2D Gaussian sources used to evaluate our proposed
techniques. Misclassification was 27.4% even when unquantized features
were used, indicating significant overlap between the different sources.

The results obtained by the different quantization schemes. Observe that as
MI is increasingly used in the quantizer, the rate-classification performance
always becomes better. . . . . . . .. ... L

WER in spoken names recognition task. Significant performance improve-
ments is achieved at all bitrates by the MI rate-allocation compared to
the heuristic rate-allocation. At 3920 bps, the MI rate-allocation scheme
results in only a 0.31% increase in WER when compared to using unquan-
tized MFCCs. . . . . . . . e e

A refinable scalable predictive encoding scheme. Subsequent DPCM loops
encode the quantization error of the previous DPCM loop. . . . . . . . ..

A morphable scalable predictive encoding scheme. Each layer is encoded
using independent DPCM loops. The quantized prediction error of previ-
ous DPCM loops is used by the subsequent DPCM quantizer and entropy
coder. . . . .o e e e

Encoder employing an invertible transform. The transform coefficients are
independently quantized. The final decoded vector is obtained by inverse
transforming the quantized coefficients. . . . . ... ... ... ... ...

Distributed encoding of two statistically dependent sources. X and Y are
independently encoded but jointly decoded at a central decoder. . . . . .

131

144

Xvi



Abstract

With the wide proliferation of mobile devices coupled with the explosion of new mul-
timedia applications, there is a need for adopting a client-server architecture to enable
clients with low complexity/memory to support complex multimedia applications. In
these client-server systems compression is vital to minimize the communication channel
bandwidth requirements by compressing the transmitted data. Traditionally, compres-
sion techniques have been designed to minimize perceptual distortion, i.e., the compressed
data was intended to be heard/viewed by humans. However, recently there has been an
emergence of applications in which the compressed data is processed by an algorithm.
Examples include distributed estimation or classification. In these applications, for best
system performance, rather than minimizing perceptual distortion, the compression algo-
rithm should be optimized to have the least effect on the estimation/classification capa-
bility of the processing algorithm. In this work novel compression techniques optimized

for classification are proposed.

The first application considered is remote speech recognition, where the speech recog-
nizer uses compressed data to recognize the spoken utterance. For this application, a
scalable encoder designed to maximize recognition performance is proposed. The scalable

xvil



encoder is shown to have superior rate-recognition performance compared to conven-
tional speech encoders. Additionally, a scalable recognition system capable of trading off
recognition performance for reduced complexity is also proposed. These are useful in dis-
tributed speech recognition systems where several clients are accessing a single server and
efficient server design becomes important to both reduce the computational complexity

and the bandwidth requirement at the server.

The second application considered is distributed classification, where the classifier
operates on the compressed and transmitted data to make the class decision. A novel
algorithm is proposed which is shown to significant reduce the misclassification penalty
with a small sacrifice in distortion performance. The generality of this algorithm is
demonstrated by extending it to improve the performance of table-lookup encoders. It
is shown that by designing product vector quantizers (PVQ) to approximate a higher
dimension vector quantizer (VQ), a significant improvement in PSNR, performance over
conventional PVQ design is possible while not increasing the encoding time significantly

over conventional table-lookup encoding.

Finally, a new distortion metric, mutual information (MI) loss, is proposed for de-
signing quantizers in distributed classification applications. It is shown that the MI loss
optimized quantizers are able to provide significant improvements in classification perfor-
mance when compared to mean square error optimized quantizers. Empirical quantizer
design and rate allocation algorithms are provided to optimize quantizers for minimizing
MI loss. Additionally, it is shown that the MI loss metric can be used to design quan-
tizers operating on low dimension vectors. This is a vital requirement in classification
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systems employing high dimension classifiers as it enables design of optimal and practical

minimum MI loss quantizers implementable on low complexity /memory clients.
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Chapter 1

Introduction

1.1 Motivation

The past few decades have seen networking expand from small local area networks (LANS)
connecting computers in a university or a research lab to form a global network connecting
computers across the entire world. Recent advances in wireless technology have enabled
this expansion to include mobile devices into this global network. This combination of
portable computing with portable communications is changing the way we think about
information processing [69]. LANs were originally deployed for data transfer and remote
access. However in the past decade there are an increasing number of applications which
are targeting delivery of information and multimedia data content. People want to be
able to transmit and receive information independent of computing platform, commu-
nication device, and communication bandwidth (a concept sometimes called nomadic
computing [30]).

This diversity of computing devices and high user expectation has resulted in new
signal processing challenges. Multimedia applications (e.g., speech recognition and video

1



streaming) are beginning to enter our everyday life. Although processor speeds are in-
creasing and memory sizes are decreasing, there still is a wide disparity between the

computational /memory capabilities of a mobile device and a desktop computer.

While the aforementioned multimedia applications can be supported for users em-
ploying desktops, mobile devices are severely challenged to support them. A feasible
approach to enable the mobile devices to support these complex multimedia applications
is to adopt a distributed processing paradigm. The mobile devices, although unable to
support the multimedia applications locally, can draw upon distributed resources hosted
on more powerful networked servers to provide multimedia services to the users. In
general, transmission tends to require more power than processing. So, while communi-
cating between the mobile device and the remote server it is essential to use compression
in order to maximize the battery life of the mobile device and minimize the bandwidth

requirements.

Several compression schemes have been developed for multimedia data. Some of these
are FS-10 (CELP), GSM, MELP, AMR, EVRC and the ITU G72x series for voice; mp3,
AAC for audio; JPEG-2000, JPEG and GIF for image; and MPEG, H.26x for video.
These conventional compression schemes have concentrated on efficient representation
(and possibly transmission) of the source data. However, these schemes have been devel-
oped with the assumption that the final target is a human who either views or hears the
encoded data. Thus the primary objective of these compression schemes is to achieve the
best perceptual quality.

However, new multimedia applications, such as, distributed speech recognition
(DSR) [19, 51, 65, 21, 63, 8, 74|, content retrieval from an image database [70], or sensor
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networks [32, 13|, fundamentally differ in that the acquired data is not seen/heard by

humans but needs to be processed by algorithms [41].

Unlike before, minimizing perceptual distortion may not be the most efficient criteria
in these applications. To ensure better system performance it will be beneficial to tailor
the compression scheme to the specific application. To motivate this concept consider the
communication system shown in Figure 1.1. The client acquires the data x, encodes it
and transmits it to a remote server. The server decodes the received data and estimates
a parameter 6 from the decoded data. Since the main (or only) objective of the server
is to estimate 6, the compression scheme need mot reliably reproduce z at the server
(for many applications, e.g. DSR, the server is not required to generate a reproduction
of the original data). Instead the compression scheme should be optimized such that
the server can reliably reproduce the parameter 6. Of course if the client had sufficient
computational power and higher domain knowledge then it would likely be more efficient

to estimate 6 at the client and transmit it losslessly to the server [24].

In this thesis we consider the cases when the client acquiring the data has limited
computational and memory resources. Hence, it will not be possible to implement the
complex parameter estimator at the client. This is a reasonable assumption because
with increasing proliferation of wireless connectivity, there is a widespread use of wireless
devices with limited computational capabilities. These clients while able to support
some processing, will in general be unable to implement complex algorithms requiring
significant processing and large memory requirements. Also, part of the application
specific knowledge will generally only be available at a centralized location (e.g., complete

database might be unknown or might be too large to be stored at the client).



For optimality, the estimator at the server should be modified to take into account the
fact that the data it is receiving has been compressed. This might be possible in certain
applications. However, in general the same estimator will have to work in conjunction
with several different compression schemes, and designing a separate estimator for every
possible compression scheme will not be either efficient or practical. So, in most of what
follows, we assume that the compression scheme works in conjunction with a fixed remote

estimator.

X .
— 5] Encodkr L.| Decoder] .| EStlmla;or/ . 0
Classifier

Client Server

Figure 1.1: Distributed estimation system, the client should encodes x such that the
parameter (#) estimation capability of the server is not degraded.

Consider for example a distributed speech recognition system, where speech is ac-
quired at a (possibly mobile) client (e.g., a PDA or a cell phone) and transmitted to a
remote speech recognizer for recognition. While a simple recognizer can be implemented
on the client, considering the varying ambient environment at the client and the need
to support a large vocabulary continuous speech recognition (LVCSR) it is desirable to
implement a complex recognizer capable of handling these requirements. While the client
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cannot host such a complex recognizer!, it is possible to implement the recognizer at the
server (unlike the client it is assumed that the server is not a mobile device and is hosted
on a computer with sufficient computational and memory resources). The straightfor-
ward method of communication between the client and the server is to use a standard
speech encoder to encode the raw speech. However since the speech will primarily be
used for recognition (and not playback, see [12, 49] for methods of reconstructing intelli-
gent speech from features used for recognition), optimizing the compression algorithm to
minimize recognition errors rather than perceptual distortion is more meaningful. Also,
it is desirable to use a single speech recognizer to handle both compressed (different com-
pression schemes could be used) and uncompressed data (the uncompressed speech could
be from land-line telephones). This will enable easy design/maintainance/upgrading of
the system. This requirement makes it unattractive to use a speech recognizer optimized

for a specific compression scheme.

Similarly when a sensor network is considered, the individual sensors acquire data
about a target or environment. To maximize the life of the sensor network (minimize
battery power consumption) the sensors do not communicate with each other. Instead
the sensors transmit the acquired data to a central node. The central node fuses the
received sensor inputs to estimate the required target parameter (e.g., target tracking,
target identification, [32] or source localization [13]), or acquire information about the

environment (e.g. factory, habitat, etc). The objective of the compression scheme at each

"'With the current advances in integrated circuits technology it is conceivable that complex recognizers
can be implemented in the clients in the future. However advances in automatic speech recognition
(ASR) technology for e.g., migration from “directed speech” speech recognition to natural language speech
recognition [46] will imply that the computation/memory requirements for speech recognition will also
continue to increase.



sensor should be to ensure that compression does not degrade the parameter estimation
capability of the central node, rather than to ensure good reconstruction of the sensor

outputs at the central node.

Even when computational resources at the client are not constrained, there are appli-
cations where distributed processing is preferable. In network based applications it is not
practical to distribute the database to every client in cases such as a speech recognizer
based call center (e.g., United airlines flight information, E*TRADE telephone invest-
ing, Pizza Hut ordering system) or voice portals (Audiopoint, HeyAnita to name a few)
where customers dial in to request information. In these examples the database used
for information retrieval is constantly changing and it is preferable to maintain this at a
centralized location. In addition distribution of the database might not be possible for

security reasons, e.g., remote speaker recognition, banking or trading applications.

The main goal of the compression schemes should be to retain the information most
relevant for estimation/classification while discarding the redundant information. Un-
like conventional compression schemes which aim to minimize distortion at a given bi-
trate the requirement on the new compression schemes is a trade-off between estima-
tion/classification performance, bitrate and (possibly) complexity. Ideally the compres-
sion schemes should be designed such that the performance of the estimator/classifier
monotonically increases with bitrate. In addition it is also desirable to have a trade-
off between performance and complexity. Extra processing at the client should improve
the server performance and/or reduce server complexity. Under heavy load conditions
the server should be able to achieve reasonable performance using reduced complexity
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methods, with these methods possibly requiring fewer bits to be transmitted from the

client.

1.2 Distributed Speech Recognition

A block diagram of a speech recognizer is shown in Figure 1.2.

Speech Features

Feature Pattern
Extractor Recognizer

Recognition
decision

Speech Recognizer

Figure 1.2: A typical speech recognition consists of a feature extractor the output of

which is used by a pattern recognizer to make the recognition decision.

It consists of two parts

e A feature extractor (typically, Mel frequency cepstral coefficients (MFCC)) and

e A pattern recognizer (typically, hidden Markov models (HMM)).

Most of the computational complexity of the speech recognizer is in the pattern recognizer,

while the low complexity feature extractor can be implemented even on simple mobile

devices. By moving the feature extractor onto the client we get a distributed speech

recognizer (DSR) (where now the recognition computation is distributed between the
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Figure 1.3: A distributed speech recognizer. The client extracts the features encodes and
transmits it to the server which decodes it and uses for recognition.
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Figure 1.4: A client-server based speech recognition system using a conventional speech
encoder to compress the data. Note that unlike a DSR system the feature extraction is
done at the server.



client and the server). This is shown in Figure 1.3. There are several potential advantages
of using this architecture over the more straightforward method (Figure 1.4) which uses

a conventional speech encoder at the client, namely,

Improved recognition performance

Robustness to noise

Scalability (see Section 1.3)

Distribution of computation between server and client

Error protected lossless channel for communication

The advantages of using a network based speech recognizer over using a local speech

recognizer in the client are

Complex acoustic models can be used

Complex language models can be used

Multi-modal recognition can be implemented

Easy integration with spoken dialog applications is possible

e Easier maintenance of the system is possible by having a centralized system

Increased security (database stored at central server)

Compression is vital to minimize the bandwidth requirement between the client and
the server. DSR speech encoders operate directly on the features used for recognition.
The advantage of operating directly on the features is that only the information relevant
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to the speech recognizer needs to be encoded, unlike in conventional speech encoders
which operate on the entire speech waveform. For example, speech recognition in cars
has to overcome noise generated by the vehicle, the radio and (talking by) other occupants
of the car. In addition, the recognition system must also deal with channel errors. Part
of the difficulty in the conventional (non-DSR) system is that the server has to handle
both the environment noise and the channel noise. By using powerful feature level noise
compensation techniques [48, 72| at the client we can minimize the effect of environment
errors and transmit reliable features to the server which now only will have to deal with
the channel impairments. This will ensure that effects of noise are mitigated as soon as

they are encountered.

Additionally, operating directly on the features allows the compression techniques to
make use of the importance of the features for speech recognition. Furthermore, DSR
speech encoders are able to achieve better rate-performance trade-off when compared to
conventional speech encoders. Finally, the DSR approach eliminates the need of a speech
channel in remote speech recognition and enables the use of an error-protected lossless

data channel instead. This results in better robustness to channel errors.

It should be noted that the complexity of the front end processing is comparable to
the complexity of a conventional speech encoders, so the computational burden at the
client is not adversely affected by moving the front end processing onto the client.
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1.3 Scalable Compression for Classification

To motivate the necessity for scalable compression for classification, consider the example
of a 2 dimension classifier shown in Figure 1.5. The probability distribution function
(pdf) of class 1is fi(xp,z1) = N(2.0,1) * N(0.5,1) and the pdf of class 2 is fa(x,z1) =
N(—=2.0,1) * N(—0.5,1). In the figure, the diagonal line represents the optimal Bayes
classifier (for equal variance Gaussians, this is the line perpendicular to the line joining
the means of the 2 classes) which is the optimal classifier achieving minimum probability

of misclassification.

It is apparent that for classification the dimension x( has better discrimination power
than dimension x;. For example, if we were to use only g, the optimal classification
boundary would be the y-axis while using only x; implies that the z-axis is the optimal
classification boundary. The increase in the probability of error over the optimal Bayes
classifier when only one dimension is used is obviously more when we use only x; than

when we use only zg.

This unequal discrimination power can be exploited to design a trivial scalable clas-
sification system. At first we send only xg, i.e., the more important (for classification)
coefficient and based on the partial classification result at the server we can, if required,
request for x; from the client. Consider the vector a, we observe that by looking only
at agp we can say that it is highly likely that a belongs to class 1 and hence there is no
necessity for requesting a;. However, for vector b the class uncertainty is more. Hence
we request by in order to make the final classification decision using the entire vector.
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This concept of scalability enables us to use a coarse resolution version of the data in
making our initial class decision. For vectors that are “easy” to classify the initial decision
is highly accurate, however for “difficult” vectors the initial decision can be refined by

using more data to get more accurate results.
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Figure 1.5: The optimal Bayes classifier for a mixture of two sources with means [2.0, 0.5]
and [—2.0, —0.5]. Notice that x( has greater discrimination power than ;. By using only
aog we can be almost sure that it belongs to class 1, however for b which lies close to the
classification boundary both components are required.

To take full advantage of a scalable classification system, the encoder should be lay-
ered [63]. With a non-layered encoder if the current performance is not acceptable a
completely new bitstream (at a higher rate) has to be transmitted from the client. How-
ever, a layered encoder has the property that to achieve full resolution only incremental
bits (lo