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Abstract 
 
 
This work was motivated by the need to dramatically reduce communication data 

rates for space based hyperspectral imagers. Key issues are compression 

effectiveness, suitability for scientific processing of retrieved data, and efficiency 

in terms of throughput, power and mass. We address the problem in three stages: 

first, development of a Field Programmable Gate Array (FPGA) hardware 

implementation of the parallel Discrete Wavelet Transform (DWT); second, 

development of a hyperspectral compression algorithm based on the wavelet 

transform and suitable for spacecraft on-board implementation; and third, 

development of an FPGA-based hyperspectral data compression “system on a 

chip” (SoC).   

 

In developing our hardware implementation of the parallel DWT, our contributions 

are: a structured methodology for moving the 2D DWT, and similar algorithms, 

into reconfigurable hardware such as an FPGA; a specific representation for the 

DWT that provides an architecture suitable for efficient hardware implementation; 

and a data transfer method that provides seamless handling of boundary and 

transitional states associated with parallel implementations. The resultant new 
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implementation produced significantly improved performance over previous 

methods. 

 

In developing our  hyperspectral data compression algorithm, our contributions 

are: a DWT based algorithm, capable of both lossy and lossless compression, that 

can be tailored to accommodate any scientific instrument, and that is suitable for 

on-board hardware implementation;  algorithm components that are efficiently 

designed for three dimensional data, for implementation in hardware, and that 

achieve results comparable to or exceeding previous optimized algorithms at a 

lower computational cost; the discovery of, and development of mitigation 

techniques for, a new artifact-producing phenomenon encountered when using the 

3D DWT for compression;  and a new technique for region-of-interest 

compression of hyperspectral data that uses “virtual scaling” which satisfies low 

memory requirements and provides better compression effectiveness. 

 

In developing our FPGA-based SoC, our contributions are:  development of a 

scalable embedded implementation for the 3D DWT hyperspectral data 

compression; a novel priority-based data formatting and localization technique for 

bit-plane encoding that provides substantial improvements in throughput 

efficiency compared to standard techniques; and extension of the wavelet 
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transform methodology developed in the first part to hybrid Hardware/Software 

SoC implementations. 
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Chapter 1  
 

Chapter 1: Introduction 

 

1.1 Motivation and Background 

Our motivation to investigate compression techniques for hyperspectral data derives 

from two primary factors: first, the limited bandwidth available to spacecraft 

communication channels, combined with the extremely high data rates of modern 

hyperspectral imagers, has become a severe limitation to current and planned space 

missions; and second, the severe limitations in power and mass budgets for 

spacecraft subsystems, combined with the high data rates of hyperspectral 

instruments, requires extremely low power, highly efficient implementations of any 

required functions. The current state-of-the-practice in NASA space missions is 

either limited lossless compression, or no compression, of hyperspectral imagery. 

For example, the deep space Cassini mission [28] uses the lossless Rice chip 

(Universal Source Encoder for Space (USES)) [107], while the earth orbiting 

EO1[41] and Atmospheric Infrared Sounder (AIRS) [19] missions have no on-board 

data compression. Upcoming NASA hyperspectral instruments, whether deep space 

or Earth orbiting, such as FLORA [17] and the Plant Physiology and Functional 

Types (PPFT) [45], will be capable of returning an unprecedented amount of science 

data, but will require effective compression techniques to realize their full potential.  
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The need to deploy an efficient algorithm that that can be progressive, lossless and/or 

lossy, and that meets a broad range of application needs and bandwidth 

requirements, motivated our decision to select the discrete wavelet transform as the 

basis for our algorithm. In addition, the Consultative Committee for Space Data 

Systems (CCSDS) recently recommended the use of DWT based compression in 

future space missions [52]. Furthermore, hyperspectral data exhibits high 

correlations in the spectral domain as well as in the spatial domain, which makes 

three dimensional DWT based coding a suitable candidate for data decorrelation. 

Speed, power, mass and real-time processing constraints prevent many missions 

from performing compression in software. The computationally intensive nature of a 

3D DWT based algorithm strongly implies that any practical solution requires a 

parallel hardware approach. As discussed in the next paragraph, the cost of 

development and fabrication, ability to adapt operational parameters and to tune the 

system for any specific instrument and mission require an FPGA based 

implementation of any such hyperspectral compressor.  

 

The need for a fast hardware DWT that allows flexibility in customizing the wavelet 

transform with regard to the filters being used and the structure of the wavelet 

decomposition, motivated us to target Field Programmable Gate Arrays (FPGAs). 

FPGAs offer a suitable platform (cost effective and highly flexible) for such an 
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implementation; they provide reconfigurable, evolvable, remotely repairable and 

upgradeable system elements. FPGA-based systems represent a new paradigm in the 

industry – a shift away from individual custom ASIC solutions for each application, 

to a single hardware assembly (FPGA) that can be reconfigured to accommodate 

multiple applications and multiple modes of operation. This also provides many 

advantages over ASIC designs in terms of flexibility of field upgrades, reliability and 

fault tolerance via reconfiguration to repair and work around in-field failures. Future 

commercial and space applications can benefit from this flexibility to enable remote 

repairability and upgradeability.  

 

We first start with the hardware implementation of the 2D DWT. As a result of 

extensive research in recent years, DWT-based transform coding techniques are 

central to many modern image and video encoding algorithms. Examples include; 

JPEG2000 image codec, CREW image compression, AWARE’s MotionWavelets 

and motion-compensated 3D DWT for video encoding [57][24][83][91]. 

Consequently, efficient software and hardware based transform coding system 

designs and implementations are a high priority objective at academic, commercial 

and government research centers. However, while the wavelet transform offers a 

wide variety of useful features, it is computation intensive. Our aim in this part of the 

research was to develop efficient 2D DWT FPGA implementations, and a general 

methodology for parallel implementations of the wavelet transform that can be 
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extended to other DWT filters and to similar DSP problems. Then we developed a 

hyperspectral data compression algorithm based on the 3D wavelet transform and 

tailored for efficient FPGA hardware implementations. Lastly, we extended our 

FPGA implementation methodology to a hybrid hardware/software “system on a 

chip” (SoC) FPGA-based implementation for the hyperspectral data compression 

system.  

 

This thesis investigates the following three topics related to practical system designs 

based on the discrete wavelet transform as a tool for signal processing and data 

compression. 

1.2 FPGA Parallel Implementation of the 2D Discrete 

Wavelet Transform 

We investigated an FPGA block-based parallel implementation which utilizes 

various overlapping technique, and developed a methodology for such 

implementations. 

1.2.1 Parallel DWT Architectures 

The 1D DWT decomposition can be implemented as a pyramidal recursive filtering 

operation, also known as the Mallat decomposition [78]. The process for the 2D 

DWT decomposition for each level is implemented with a cascaded combination of 

two 1-D wavelet transforms where the data is row transformed first and then column 
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transformed. To save computations, lifting factorization was introduced to 

implement the DWT [94]. The lifting algorithm models the DWT as a finite state 

machine (FSM), which takes advantage of  filterbank factorizations such as lattice 

factorizations [104][105] and uses Daubechies and Sweldens “lifting" scheme [36]. 

The finite state machine updates (or transforms) each raw input sample (initial state) 

progressively, via intermediate states, into a wavelet coefficient (final state).  It has 

been shown that lifting-factorization based DWT algorithm can be twice as fast 

when compared to the pyramidal algorithm [36], and that motivated us to base our 

parallel implementations on the lifting algorithm. 

 

Since DWT is not a block based transform, problems of speed and artifacts arise near 

the block boundaries. Overlapping techniques can handle the block boundaries with 

minimum storage requirements and inter-block communication overhead. Our goal 

was to achieve efficient performance under practical considerations and real world 

constraints in: on-chip storage, external memory bandwidth, target hardware 

platform, power and mass. In our implementations, we consider three different 

architectures: i) overlapping – which overlaps boundaries of image blocks and 

transforms each block independently, ii) the overlap-save technique– which saves  

the boundary information and exchanges them between blocks at the transform level, 

and iii) the Overlap-State technique [53][54][55]- which saves the states of the 

partially transformed boundaries for a one time exchange between blocks at the end 
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of the transform operation (fully detailed in Chapter 3). For the overlap-state 

implementation, a new data transfer method that utilized an efficient DMA was 

designed and implemented, and a new architecture for the parallel DWT, in which 

transitional boundary data (i.e. states) are stored on-chip and passed to the DWT 

kernels in a seamless manner that minimizes the overhead usually associated with 

parallel implementations. Figure 1.1 shows a high level block diagram of our FPGA 

parallel DWT system. 

 

Our final implementations demonstrated improved performance by a factor of 1.4 to 

3 over previously reported methods. 

 

Figure 1.1: Scalable parallel based system for the 2D discrete wavelet transform  
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1.2.2 Implementation Methodology for FPGA-Based Design 

of DWT Parallel System 

Our goal was to design an efficient scalable FPGA implementation for the 2D DWT 

that utilizes parallel architectures with no blocking artifacts and that is based on 

lifting factorization to ensure lower computational cost. Our methodology identifies 

the design steps, the problems, the limitations and the design issues associated with 

each step of the implementation. It then leads the designer through a series of 

analyses and decisions that produce an efficient design. Practical considerations 

appear in the form of constraints that may force, or heavily weigh, a specific design 

choice.   

 

Our methodology starts by identifying a specific lifting factorization for the DWT 

that provides architectures that are efficient for hardware implementations by 

maximizing the number of shift and addition operations, while minimizing the 

number of multiplications. It then proceeds to identify an architecture for the DWT 

filter kernel design that maximizes the 2D processing performance. Available on-

chip memory storage and external memory bandwidth determine the range of parallel 

architecture choices and the degree of design scalability. Finally, consideration of 

throughput, resources utilization and power determine the final design. Our 

methodology was used to develop the system implementation described in Chapter 3.  
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1.3 Hyperspectral Data Compression 

1.3.1 Overview 

Hyperspectral images are sequences of spatial images, generated by imaging 

spectrometers or sounders, which record the spectral intensities of the light reflected 

by the observed area. Because of their three dimensional nature, (two spatial and one 

spectral), hyperspectral images are often referred to as data cubes.  They have a wide 

variety of Earth remote sensing uses in the study of oceans, atmosphere, and land 

[41][106]. Hyperspectral imagers are also used in deep-space missions to map the 

surface minerals and chemical features of planets and their moons [29]. 

Hyperspectral imaging spectrometers and sounders have a large number of channels 

ranging from several hundred as in JPL’s Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS) [106], which contains 224 spectral bands, to thousands as in 

the case of AIRS [19], which has 2378 infrared channels.  These instruments can 

generate high data rates that cannot be sustained with existing communication links. 

Efficient on-board compression is needed to reduce bandwidth and storage 

requirements. In this thesis, we investigate a low-complexity wavelet based approach 

for three dimensional coding of hyperspectral data cubes suitable for on-board 

processing and for hardware implementation on reconfigurable platforms. While 

many hyperspectral applications can tolerate low bit rate lossy data compression, 

applications such as studies of the atmosphere and of planet surfaces require high 

accuracy, for retrieval of temperature and humidity profiles, identifications of 
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atmospheric anomalies and planet surface details (for example, in search of water or 

life). A lossless or virtually-lossless approach is required to address such 

applications. Our overall goal is to meet the requirements of various instruments and 

their applications with a highly efficient compression system that can be both 

lossless and lossy.  

 

Our compression strategy utilizes a general-purpose methodology for hyperspectral 

data compression that maximizes compression by fully exploiting spectral (inter-

band) correlations as well as spatial correlations, subject to practical considerations 

and constraints.  The algorithm must be: applicable to different spectral resolutions; 

capable of lossless and lossy compression; low-complexity and suitable for on-board 

hardware implementation; progressive and suitable for push-broom type instruments 

and their data formats (hyperspectral data is most often collected in the form of a 

band interleaved by pixel (BIP) or sometimes in a  band interleaved by line (BIL) 

manner).  

1.3.2 3D Coding for Hyperspectral Images 

Conventional image compression techniques aim to remove spatial redundancies. 

Hyperspectral data cubes have large spectral (inter-band) correlations as well as 

spatial correlations. An efficient compression strategy for hyperspectral data would 

seek to maximally exploit both spectral and spatial correlations. For lossless 

compression, effective prediction approaches were proposed such as DPCM [4]. 
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Hybrid schemes were proposed to solve the lossy problem. Here, spectral 

redundancies are removed through spectral transformation techniques such as 

principal component analysis (PCA) by selecting the dominant spectral bands and 

then applying 2D compression such as DCT or DWT [89][25]. At the system level a 

single scalable algorithm that provides lossless and lossy compression is often 

preferable to the implementation of multiple algorithms.  Our goal was to develop 

such an algorithm. 

 

Due to its inherent efficiency in data compression, we decided to investigate the 

discrete wavelet transform as the bases of our 3D coding scheme. Figure 1.2 shows a 

block diagram of the 3D coding method. Our investigation focused on utilizing and 

extending compression algorithms that have proven their effectiveness in 

compressing 2D images, and in addition, can be easily implemented in FPGA 

hardware. The three dimensional DWT-based algorithm we developed was adapted 

from the JPL’s 2D image compression, ICER [62], hence the name ICER-3D [63]. 

ICER-3D is a progressive compression algorithm which: (i) is lossy and lossless; (ii) 

is line-based, operating in scan-mode to minimize storage requirements; and (iii) 

accommodates pushbroom imaging sensors making it readily portable to on-board 

hardware implementations. 3D DWT based coding has recently been proposed by 

research efforts such as 3DSPIHT [40], 3D SPECK [95], and the proposed 3D 

JPEG2000 3D [58]. Our compression efficiency, as will be shown in Chapter 4, is 
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comparable to the efficiency of these algorithms, but our approach is distinguished 

by its lower complexity post 3D DWT encoding, which makes it suitable for 

spacecraft on-board deployment and for efficient hardware implementation. 

 

Following the wavelet decomposition, the means of the low frequency subband 

planes are subtracted in preparation for the post transform coding. A context 

modeling scheme and an entropy coder were ported from the ICER image 

compressor and extended to accommodate three dimensional data sets. Each DWT 

coefficient is converted to sign-magnitude form. Bit planes of subbands are 

compressed one at a time and compressed bit planes of different subband cubes are 

interleaved, with the goal of having earlier bit planes yield larger improvements in 

reconstructed image quality per compressed bit. Subband bit planes are compressed 

in order of decreasing priority value according to the simple priority assignment 

scheme described in Chapter 4. At each step of the algorithm design, hardware 

implementation issues were addressed and designs were generated that reduced the 

complexity of the hardware implementation and increased throughput while 

maintaining high compression efficiency. The specific hardware oriented 

implementation of the algorithm will be referred to as ICER-3D-HW. 
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Figure 1.2: 3D Hyperspectral Compressor Block Diagram 
 
 

Issues arising from extending a 2D DWT compression approach to 3D DWT were 

encountered and addressed. For example, when a 3D DWT is used for decorrelation, 

"ringing" artifacts in the spectral dimension can cause the spatially low-pass filtered 

subbands to have large biases in the individual spatial planes. Specifically, spatial 
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to plane. This problem is unique to multi and hyperspectral data; an analogous 

artifact does not generally arise in 2D images. This phenomenon hurts the rate-
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encoding, thus compensating for the fact that such spatial planes often have mean 

values that are far from zero. The resulting data are better suited for compression by 

Hyperspectral 
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Data Stream 
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Entropy 
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methods that are effective for subbands of 2D images such as the ones we are using 

in the main algorithm. Compression effectiveness was improved by about 10% after 

applying the mean subtraction scheme.   

 

Region-of-Interest (ROI) for hyperspectral data was also addressed and a scheme for 

“virtual scaling” of high priority data was designed which provides better 

compression performance and has low memory requirements (suitable for future 

hardware implementation). 

 

Lossless compression performance of ICER-3D-HW benchmarked on AVIRIS 1997 

data sets [20] shows excellent results when compared to all 2D approaches. 

Improved (or comparable) results are obtained when compared to other 3D 

approaches. ICER-3D-HW, however is outperformed by the JPL developed, “fast 

lossless” compressor [71], which was designed and optimized for performing only 

lossless compression. AVIRIS data sets were losslessly compressed, on average, 

from 16 bpp down to 5.63 with ICER-3D-HW and down to 5.10 with “fast lossless”. 

Lossy compression comparisons show significant gains in compression efficiency 

over other state-of-the-art 2D techniques, and comparable results to other optimized 

3D algorithms. We show gains of at least 40% compression efficiency over the ICER 

2D image compressor.  
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1.4 Scalable Embedded Hyperspectral Data Compression on 

Reconfigurable Platforms 

1.4.1 System Design and Practical Considerations 

The 3D DWT compression algorithm, ICER-3D-HW, described in the previous 

section, is computationally intensive, causing real-time processing difficulties (data 

rates for some instruments can go to 100s of Gbits/sec). High speed processors are 

power hungry and do not fit in NASA’s vision of next generation spacecraft. 

Dedicated hardware solutions are highly desirable - offloading the main processor, 

while providing a power efficient solution at the same time. We investigated an 

efficient scalable parallel implementation on an FPGA platform. We designed 

cascaded line-based wavelet transform modules, which allow the wavelet transform 

in the 3D DWT case to be computed as the lines of the image data cube arrive rather 

than waiting for an entire frame of data, thus efficiently accommodating pushbroom 

sensors. The other key modules of the hardware compressor, the context modeler and 

the interleaved entropy coder, were designed for efficient throughput performance, 

utilizing a priority–based data formatting and localization technique that transposes 

bit-planes after the 3D DWT decompositions and stores them in memory locations 

that are readily available for the priority indexed bit-plane encoding discussed in 

Chapter 4. This formatting scheme accelerates encoding by a factor of more than 

10:1 over standard techniques. 
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The implementation targets state-of-art FPGAs, such as Xilinx Virtex II pro. These 

FPGAs provide on-chip, hard-wired PPC 405 processor cores [113], allowing them 

to be used to form an embedded platform for SoC implementations. Such platforms 

allow efficient partitioning of the algorithm into software and hardware modules so 

as to take full advantage of the available hardware resources. In our system, the on-

chip processor was used to implement the system global controller to manage the 

overall operation of the compression system and internal and external data transfers. 

Figure 1.3 illustrates the final hyperspectral compressor. The parallel hardware 

compression system is capable of acceleration of up to two orders of magnitude vs. a 

software implementation running on current state-of-the-art processors. 
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Figure 1.3: System on Chip FPGA Hyperspectral Data Compressor 
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1.4.2 Implementation Methodology 

We extended the 2D DWT methodology developed in the first part of this thesis to 

hybrid Hardware/Software SoC FPGA implementations  

 

In addition to the steps that address the practical considerations, constraints, 

limitations and design choices listed for the 2D DWT methodology, our SoC 

methodology addresses the issue of SW/HW partitioning of algorithm modules. 

Partitioning is done after performing software profiling to identify the most 

appropriate candidates for hardware acceleration.  Dynamic range expansion studies 

for the DWT are also performed in the context of 3D processing and long pixel depth 

data. Finally, scalability issues were addressed, and trade-off studies for speed, 

hardware resources utilization and power were performed to complete the design. 

 

1.5 Outline and Contributions of this Thesis 

The main contributions of this research are: 

• A methodology for FPGA based parallel architectures and implementations 

of the Discrete Wavelet Transform. We investigated and analyzed parallel 

and efficient hardware implementations targeting state-of-the-art FPGAs. 

We addressed practical considerations and various design choices and 



 17

decisions at all design stages to achieve efficient DWT implementations 

subject to a given set of constraints and limitations.  

• A specific lifting representation for the DWT that provides architectures 

suitable for efficient hardware implementation.  

• A novel data transfer method that provides seamless handling of boundary 

and transitional states associated with parallel implementations.  

 

• A Low-complexity algorithm for hyperspectral data compression suitable 

for hardware implementation. We investigated the problem of on-board 

hyperspectral data compression for space based systems and adapted a 2D 

DWT based algorithm to 3D data sets to provide both lossy and lossless 

compression. We addressed issues arising from extension of 2D DWT to 

3D DWT as well as hardware implementation considerations.  

• Discovery of and development of mitigation techniques for, the spectral 

ringing artifacts phenomenon encountered when using the 3D DWT for 

compression. 

• Region-of-interest compression for hyperspectral data using “virtual 

scaling” that results in low memory requirements and improved 

compression effectiveness.  
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• A methodology for scalable embedded FPGA based implementation of 

complex 3D compression systems. We extended the wavelet transform 

methodology developed in the first part to hybrid Hardware/Software SoC 

FPGA implementations We addressed issues of SW/HW partitioning of 

algorithm modules, dynamic range expansion for the DWT, scalability of 

design, and trade-offs to meet practical considerations and constraints.  

• A scalable embedded implementation of 3D DWT based hyperspectral data 

compression – a single chip solution to hyperspectral data compression. 

• A novel priority-based data formatting and localization technique for bit-

plane encoding providing more than 10x in throughput efficiency compared 

to standard techniques. 

 

 

This thesis is organized as follows: 

Chapter 2 provides an overview of hyperspectral data and the hyperspectral data 

compression system and its characteristics.  

Chapter 3 addresses in detail the parallel implementation methodology of the 2D 

parallel DWT. We provide detailed descriptions of the methodology, practical 

constraints, design parameters selection, analysis and trade-offs among three 

overlapping FPGA parallel implementations. Analysis, simulations and 
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implementations for the (9,7) DWT are also presented along with comparisons to 

other DWT architectures and implementations.  

Chapter 4 addresses the problem of hyperspectral data compression. Compression 

approach and strategy are presented. Detailed description of a three dimensional 

DWT coding algorithm suitable for hardware implementation, ICER-3D-HW, is 

presented. Description of individual compression modules is provided. Compression 

results and comparisons to current state-of-the-art approaches are also detailed.  

Chapter 5 addresses the implementation of the hyperspectral compressor on a 

reconfigurable platform. A detailed design approach and methodology are presented. 

A detailed FPGA implementation of the ICER-3D-HW is described along with 

performance analysis and description of the hardware resources and their utilization. 

Chapter 6 completes the thesis with summary, conclusions and potential future work. 
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Chapter 2 
 

Chapter 2: Hyperspectral Data Compression: System Overview 

 

2.1 Introduction 

Hyperspectral images are three dimensional data sets (two spatial and one spectral) 

that consist of hundreds of narrowly spaced spectral bands. These bands are 

generated by hyperspectral imaging spectrometers or sounders and comprise the 

reflectance, at different wavelengths, of the region being viewed by the scanning 

instrument. They are powerful tools for many applications, such as detection and 

identification of land surface and atmosphere constituents, studies of soil and 

monitoring agriculture, surveillance, studies of the environment and the ozone, and 

weather prediction [106][41][19]. They are also used in deep-space missions to map 

surface minerals and chemical features of planets and their moons. For instance, 

Cassini’s Visible and Infrared Mapping Spectrometer Subsystem (VIMS) gathers 

hyperspectral images of Saturn, its rings and its moons [29].  FLORA and PPFT are 

proposed Earth orbiting instruments that will provide global, high spatial resolution 

measurements of ecosystem disturbances, vegetation composition, and productivity, 

including interactive responses to climate variability and land-use change 

[18][27][80]. 
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Recent breakthroughs in hyperspectral imaging and sounding technologies (such as 

IR detector arrays and cryocooler technology), have resulted in far more spectral 

channels and higher spectral resolution than earlier generations. For example, High 

Resolution Imaging Spectrometer (HIRIS) [46] has 192 channels, AVIRIS [106] has 

224 spectral bands and AIRS [19] has 2378 IR channels and is often referred to as 

ultraspectral.  

 

Hyperspectral imaging instruments are capable of producing enormous volumes of 

data that quickly overwhelm the space communication downlinks and require 

massive on-board storage capabilities. Effective on-board techniques for 

compressing such data sets are essential to overcome downlink limitation and make 

efficient use of on-board storage. 

 

In this chapter we present an overview of a wavelet based compression system for 

three dimensional coding of hyperspectral data cubes suitable for on-board 

processing and its hardware implementation on reconfigurable platforms. Many 

hyperspectral applications such as classification and content retrieval may tolerate 

low bit rate lossy compression, but studies of the atmosphere and planet surfaces 

require high accuracy for retrieval of temperature and humidity profiles and planet 

surface details. To address the need of both types of applications, our algorithm was 



 22

designed to be progressive and capable of lossy and lossless compression to meet 

data rates requirements and address scientific needs.  

 

This chapter is organized as follows. Section 2.2 provides an overview of 

hyperspectral data. Section 2.3 gives an overview of the 3D compression algorithm 

and its compression results. Section 2.4 describes a scalable embedded hardware 

implementation of the compression system, and finally section 2.5 concludes this 

chapter with a summary and conclusions. 

 

2.2 Hyperspectral Data: An Overview 

 
Determining the composition of, and inferring the processes active on, the Earth and 

other planetary surfaces, by counting photons (energy) at the top of the atmosphere 

(or from space), is a challenging problem. Spectroscopy provides a framework based 

in physics to achieve this remote measurement objective in the context of the 

interaction of photons with matter. The physics, chemistry and biology of 

spectroscopy are validated through more than 100 years of laboratory, astronomical 

and other observational research and applications [106][27]. Spectral sensor 

instruments acquire data at different wavelengths. Imaging spectrometers provide the 

spectral data for each pixel in an image, quantified into discrete levels of brightness. 

An example of this type of instrument is hyperspectral imaging sensors. These 

sensors acquire data in a vast number of narrow and contiguous spectral bands, thus 
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the use of the term hyperspectral. Examples of hyperspectral data utilized in this 

research are gathered mostly by AVIRIS, but a few examples use data sets from 

Hyperion and AIRS instruments. 

 

AVIRIS is an airborne hyperspectral imaging instrument that has been providing 

valuable information about Earth since the late eighties. The AVIRIS concept [106] 

is illustrated in Figure 2.1. It consists of 224 spectral bands, with each pixel having 

12 bits of precision. It has a spectral range of 3 nm to 2.5 µm, covering the visible 

and near infrared regions. The pixel size and swath width of the AVIRIS data depend 

on the altitude from which the data is collected. When collected by the ER-2 (20km 

above the ground) each pixel produced by the instrument covers an area 

approximately 20 meters diameter on the ground. When collected by the Twin Otter 

(4km above the ground), each ground pixel is 4m square. The images obtained from 

AVIRIS can have a size of up to several Gbytes. They have spatial lines of 614 

pixels extended over the region of interest. The sets analyzed in this chapter were 

divided into images of approximately 130Mbytes for ease of handing (512 spatial 

lines of 614 pixels each, across 224 spectral channels). An example of an image cube 

generated from AVIRIS is shown in Figure 2.2. The Hyperion spectrometer is space-

borne as part of the Earth Orbiting 1 mission (EO1) [41]. It consists of 242 spectral 

bands ranging from 0.4 - 2.5 µm, with each pixel having 12 bits of precision. After 

elimination of unusable bands (due to either noise or poor sensor pointing), we 
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analyzed images of 220 spectral bands. Hyperion complements AVIRIS and 

addresses a broad range of issues and world-wide sites, from agriculture in Australia, 

to glaciers in Antarctica, to grasslands, minerals and forests in the Americas [23]. 

The AIRS instrument [19] is aboard NASA’s Aqua spacecraft that was launched in 

2002. It employs a 49.5 degree cross-track scanning with a 1.1 degree instantaneous 

field of view (see Figure 2.3) to provide twice daily coverage of essentially the entire 

globe. The AIRS data consists of 2378 infrared channels in the 3.74 to 15.4 µm 

region of the spectrum divided into three contiguous sets of bands. Data is gathered 

as scanlines containing 90 cross-track footprints per scan line, where a footprint 

consists of 2378 pixels of infrared data covering the same surface region. The 

objective of AIRS is to provide improved global temperature and humidity profiles 

to meet NASA’s global change research objectives and the National Oceanic and 

Atmospheric Administration’s (NOAA) operational weather prediction requirements.  
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Figure 2.1: AVIRIS Concept and Data 
 

 

 

 
(a)    (b) 

Figure 2.2: AVIRIS hyperspectral data “cubes” 
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Figure 2.3: Hyperspectral Scan Geometry for AIRS 

 

Data sets were analyzed for spatial and spectral correlations to guide the 

compression algorithm development.  It was observed that the data sets do indeed 

exhibit high spectral redundancies/correlations in addition to spatial correlations. To 

analyze these spectral redundancies, normalized correlations within a single footprint 

of data across a vector of all spectral bands were calculated. Figure 2.4 shows plots 

of these correlations for footprints in two different scan lines of AIRS simulated 

data. Table 2.1 lists different characteristics of the analyzed data sets, as well as their 

average correlations.  
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(a) 

 
(b) 

Figure 2.4: Correlations in AIRS Simulated Data. (a) Scan Line 1 (b) Scan Line 50 
 
 

Table 2.1: Hyperspectral Instruments and their Specifications 
Instrument No. of 

Spectral 
Channels 

Bits 
per 

pixel

Wavelength
Range (nm)

Spectral 
Resolution

 

Spatial 
Resolution 

Average 
Spectral 

Correlations
AVIRIS 224 12-

16 
370 - 2500 9.8 nm 2 to 20 m 0.89 

Hyperion 242 (220 
useable) 

12 400 - 2500 10 nm  30 m 0.85 

AIRS 2378 16 3740 - 
15400 

3.5-12 nm 15 Km 0.91 

 

2.3 Three Dimensional Coding 

 
The Space-born state-of-the-practice in compression, is to use the Rice encoder (i.e. 

CCSDS USES chip [107]). The Rice encoder provides lossless compression at 

generally accepted performance levels. The performance of the Rice encoder, 

however, is insufficient for high volume data transmission over most communication 



 28

downlinks (e.g. it was used in the Cassini mission, which was tailored to meet the 

capabilities of the Rice encoder by reducing the collected data volume). Most 

missions to date (such as in EO1, AVIRIS, AIRS instruments) have avoided even 

lossless compression or used 2D DWT/DCT coding for spatial bands, such that 

spectral redundancy is not exploited. Modulated Lapped Transform (MLT) [50] and 

PCA techniques are used mostly in department of defense (DoD) and NOAA 

applications for context retrieval. These techniques are lossy and hence do not meet 

data fidelity required by most NASA scientists. Hence, our objective was to 

investigate and develop hyperspectral data compression methods capable of lossless 

and lossy compression and suitable for on-board deployment (i.e. hardware 

implementation) that will significantly reduce the data volume necessary to meet 

science objectives in future deep-space and earth orbiting missions. 

2.3.1 3D Wavelet coding 

Since the wavelet transform has shown great results for compression of images, a 

discrete wavelet transform approach was chosen to meet our compression objectives. 

Wavelet based compression is also recommended by the CCSDS committee [52] and 

is currently used in the ICER compression software on-board the Mars Exploration 

Rovers (MER) [64][65]. Our 3D compressor extends an efficient 2D image 

compression algorithm, namely the ICER image compressor, to adapt to 3D 

hyperspectral data sets. It is progressive, and based on the reversible integer discrete 



 29

wavelet transform, making it capable of lossless and lossy compression in a single 

algorithm.   

 

A block diagram of the compression process was shown in Figure 1.2. It should be 

noted that some of the individual components of our algorithm have been used for 

multispectral and hyperspectral image compression by other researches. The 

selective combination of our algorithm steps, our enhancement techniques, as well as 

the low-complexity and suitability for hardware implementations, provide our 

novelty. Our compressor starts by extending the 2D DWT decomposition to 3D 

DWT, then it adapts the ICER bit-plane encoding scheme to 3D subband cubes by 

using a priority scheme tailored to 3D data and applying a 2D context modeler to 

subband cubes plans followed by an interleaved entropy coder [63]. It was tailored 

for hardware implementation by employing design choices that simplify the 

computation complexity, enhance the hardware throughput and /or minimize the 

needed hardware resources. We will refer to this compressor as ICER-3D-HW. 

 

 
Figure 2.5: 3D wavelet decomposition for an AVIRIS data set covering Cuprite, NV site  
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The DWT component of the algorithm provides options for selecting among several 

popular DWT filters such as (5,3), (9,7), (2,10), (2,6), (5,11), and (13,7) [62][63][1]. 

Most of the experiments presented in this thesis are based on the performance of the 

(2,6) DWT due to its suitability for hardware implementations, as will be detailed in 

the following chapters. An example of a three level 3D DWT decomposition is 

shown in Figure 2.5.  

 

2.3.2 Compression Results 

The results shown in Figure 2.6 indicate that ICER-3D-HW achieves more effective 

lossless compression than simple two-dimensional approaches or the USES (Rice 

chip) compressor when used in its multispectral mode. ICER-3D-HW compression 

efficiency is also comparable to most 3D algorithms we benchmarked as will be 

shown in Chapter 4. It is outperformed, however, by the JPL fast lossless compressor 

of [71], which was designed as a lossless only compressor. However, it is reasonable 

to use ICER-3D-HW for lossless compression in an application where it is also 

required to perform lossy compression. Figure 2.6 shows results for AVIRIS 1997 

calibrated data (16 bits) [20] compared to ICER [62], USES in multispectral 

prediction mode [107], and “fast lossless”. 
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Figure 2.6: Lossless Results - Average rate in bits/pixel – ICER (2D): 6.61, USES (3D): 5.80, 
ICER-3D-HW: 5.63, “fast lossless”: 5.10 

 
 

Figure 2.7 shows the improved rate-distortion performance of ICER-3D-HW in 

comparison to the ICER 2D image compressor for a typical AVRIS image. To show 

this improved performance visually, Figure 2.8 displays details from false-color 

images produced from the reconstructed AVIRIS scenes after compression at 0.25 

bits/sample. In chapter 4, we show more results and comparisons between ICER-3D-

HW and other existing lossless and lossy 3D approaches. 
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Figure 2.7: Achievable lossy compression for ICER (2D) and ICER-3D-HW 
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Figure 2.8: Lossy Compression with ICER (2D) and ICER-3D-HW 
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2.4 Hyperspectral Data Compression on Reconfigurable 

Platforms 

 

Effective compression techniques tend to be computationally intensive and ICER-

3D-HW is no exception.  On-board deployment of such algorithms require high 

speed processors that can provide higher throughput but are power hungry. 

Dedicated hardware solutions are highly desirable for their high throughput and 

power efficiency. 

 

Traditional VLSI implementations are power and area efficient, but they lack 

flexibility for post-launch modifications and repair, are not scalable, and cannot be 

configured to efficiently match specific mission needs and requirements. An efficient 

embedded and scalable architecture for the ICER-3D-HW compressor was 

developed and implemented. The implementation targets state-of-art FPGAs, such as 

Xilinx Virtex II pro, and can be easily extended to future Virtex generations such as 

Virtex IV and Virtex V families. These FPGAs provide design options with on-chip 

hard-wired PPC 405 processor cores [113] to form an embedded platform or a 

System on a Chip. Efficient partitioning of the algorithm into software and hardware 

modules was performed to take full advantage of the available reconfigurable 

hardware resources and the on-chip processors. While many researchers have 

addressed system implementations with SoC FPGAs, our implementation is unique 
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in addressing as complex and data intensive a system as is found in hyperspectral 

data compression. 

 

2.4.1 FPGA Implementation of a Scalable Embedded 

Hyperspectral Data Compression Architecture  

 

We implemented the algorithm as a hybrid Hardware/Software SoC FPGA. Our SoC 

methodology addresses the issue of SW/HW partioning of algorithm modules by 

allocating these functions after performing software profiling to identify appropriate 

candidates for hardware acceleration. Dynamic range expansion analysis was also 

performed to identify and select a suitable choice of a DWT filter pair for hardware 

implementation. Details of the SoC FPGA implementation are provided in Chapter 5. 

 

The Implementation was coded in VHDL and ported to a prototype board targeting 

the Xilinx Virtex II Pro XC2VP70 chip. The hardware development system is shown 

in Figure 2.9. The throughput of the system was up to 1 sample/clock cycle when 

two copies of each of the three main hardware modules were running in parallel to 

perform lossless compression (lossy compression can run faster since not all bit 

planes need to be compressed). For the current clock speed of 50 MHz, this 

throughput is close to 2 orders of magnitude faster than the software code, which has 

a throughput of 610 Ksamples/sec on a Pentium Centrino 1.6MHz processor.    
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Device utilization shows that the implementation occupies less than 61% of FPGA 

resources with 2 copies of each module running in parallel. Power consumption for 

this implementation is 7.5 Watts. The final hardware implementation block diagram 

was shown in Figure 1-3. 

 

 

Figure 2.9: FPGA Hardware Development System 
 

2.5 Conclusions   

In this chapter we presented an overview of hyperspectral data and a novel low-

complexity 3D compression system for hyperspectal images and sounders. Our 

system is based on the reversible DWT transforms, which is progressive and suitable 

for space based instruments that require both lossless and lossy data compression. 

We presented compression results for test images from AVIRIS data sets. We also 

presented an embedded and scalable implementation for the ICER-3D-HW 

compression algorithm on an SoC FPGA. The approach uses a co-design platform 

(SW/HW) with architecture-dependent enhancements to improve throughput, power 

and device utilization. 
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Chapter 3 
 

Chapter 3: Parallel FPGA Implementations of the 2D Discrete Wavelet 
Transform 

 

3.1 Introduction 

 
Recently, there has been a tremendous increase in the application of wavelets in 

many scientific disciplines. Typical applications of wavelets include signal and 

image processing [3][103][79], numerical analysis [22], biomedicine [92], satellite 

imagery and data compression [102][52][62]. While the wavelet transform offers a 

wide variety of useful features, it is computation intensive. Furthermore, in contrast 

to other transforms, such as Fourier transform or discrete cosine transform, it is not 

block based, which makes it difficult to implement in a parallel representation. 

Several VLSI and FPGA architectural solutions for the discrete wavelet transform 

[48] have been proposed in order to meet the real time requirements in many 

applications. These solutions include parallel filter architectures, linear array 

architectures, multigrid architectures [108][31], and 2D block based architectures 

[61]. Most of these implementations are special purpose parallel processors 

developed for specific wavelet filters and/or wavelet decomposition trees that 

implement high level abstraction of the standard pyramid algorithm. In addition, 
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some are complex designs requiring extensive user control. Knowles [75][76] 

proposed systolic-array-based architectures without multipliers for the 1-D and 2D 

DWT, but these architectures are not suitable for all wavelets. Vishwanath et al [109] 

proposed a systolic-parallel architecture for the 2D DWT based on the recursive 

pyramid algorithm, but due to the approximations involved these architectures 

cannot be used when exact reconstruction is required. Reza and Turney [86] 

proposed a sequential implementation of the polyphase representation of the DWT 

suitable for the Xilinx Virtex FPGAs. Yong-Hong et al [115] presented a parallel 

architecture that can compute low pass and high pass DWT coefficients in the same 

clock cycle. King-Ch et al [70] implemented the operator correlation algorithm of the 

2D DWT. However, these FPGA implementations are aimed at specific filterbanks, 

do not support block-based transform, or do not handle block boundaries efficiently. 

 

There is a clear need for a fast hardware DWT that allows flexibility in customizing 

the wavelet transform with regard to the filters being used and the structure of the 

wavelet decomposition. In many image processing applications, including 

compression, denoising and enhancement, it is critical to compute the 2D wavelet 

transform in real-time. Field programmable gate arrays (FPGAs) offer a suitable 

platform (cost effective and highly flexible) for such an implementation.  
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FPGA-based systems represent a new paradigm in the industry – a shift away from a 

full custom ASIC solutions for each application, to a single hardware assembly 

(FPGA) that can be reconfigured to accommodate multiple applications. This 

approach also provides many advantages over ASIC designs in terms of flexibility of 

field upgrades, reliability and fault tolerance via reconfiguration to repair and work 

around failures. In addition, it provides faster and cheaper design cycles. Future 

commercial and space applications can benefit from this flexibility to enable remote 

repairability and upgradeability.  

 

In this chapter, we propose a methodology for an FPGA block-based parallel 

implementation which utilizes overlapping techniques based on the lifting 

factorization. Our proposed methodology produces architectures that are simple, 

modular, and cascadable for computation of the 2D data streams. The novelty of our 

work is that, in addition to improved performance over existing architectures, we 

provide flexibility to accommodate various DWT transforms; and we demonstrate 

that in addition to memory size reduction, as inherently provided by the lifting 

approach, we can also reduce external memory I/O access and hence the 

communication overhead induced by the parallel computation. Our proposed 

architectures can be implemented on any generic FPGA with external RAM memory 

banks, but perform best if implemented on FPGAs with adequate internal RAM 
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which can be used for on-chip storage of intermediate results, voiding most of the 

time consumed in external memory access operation.  

 

The chapter is organized as follows. A review of both the lifting factorization for the 

discrete wavelet transform and the overlapping techniques is presented in section 3.2, 

along with examples of existing architectures. Our implementation methodology is 

introduced in section 2.3. An example of an FPGA implementation is provided in 

section 2.4 followed by the conclusions in section 2.5.  

3.2 Lifting Factorization and 2D DWT Architectures for 

Hardware Implementations 

 
The DWT, as represented by the Mallat style [78] multilevel octave-band 

decomposition system, which uses a two-channel wavelet filterbank, is very 

computation intensive. This decomposition can be implemented as a pyramidal 

recursive filtering operation using the corresponding filter banks as shown in Figure 

3.1. We will refer to it as the standard algorithm. The process for the 2D DWT 

decomposition for each level is implemented with a cascaded combination of two 1-

D wavelet transforms. The standard algorithm is constrained by large latency, a high 

computational cost and the requirement for a large buffer size to store intermediate 

results, which makes it impractical for real time applications with memory 
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constraints. An alternative representation, requiring fewer computations, is the lifting 

algorithm [94], which will be the basis of our implementations in this chapter. 

 

Figure 3.1: 1D Wavelet decomposition showing cascaded levels of filter banks 

3.2.1 Lifting Factorization 

The basic idea for the lifting algorithm is to model the DWT as a finite state machine 

(FSM), which progressively updates (or transforms) each raw input sample (initial 

state), via intermediate states, into a wavelet coefficient (final state). Daubechies and 

Sweldens [36] have shown that any FIR wavelet filters pair can be represented as a 

synthesis polyphase matrix, Ps(z), which can be factored into a cascaded set of 

elementary matrices (upper triangular and lower triangular ones) leading to a 

factorization  in the form: 
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for which the corresponding analysis polyphase matrix Pa(z) is: 
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where si(z); ti(z) are Laurent polynomials and m < L/2 (L is the filter length) is 

determined by the specific factorization form. It has been shown that such a lifting-

factorization based DWT algorithm is, asymptotically for long filters, twice as fast 

the standard algorithm [36][6]. 

 

From a computational point of view [94], there is no big difference among these 

elementary matrices, each of which essentially updates the input data samples using 

linear convolutions, allowing in-place calculations The filtering operation can then 

be seen as an FSM as shown in the following equation, where each elementary 

matrix ei(z) updates the FSM state Xi(z) to the next higher level Xi+1(z).   
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3.2.2 Existing Architectures for FPGA based parallel 

implementation of the 2D DWT 

Several 2D DWT architectures for parallel implementations were proposed recently, 

as wavelets gained popularity. Most of these architectures concentrate on saving 

hardware resources, memory and computations. For example the 1D folded 

architecture by Chakrabati et al [32] reuses the same logic for both row and column 

transforms. While it achieves lower hardware resources, it requires high memory 
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bandwidth. For an NxN image, 2N2 read and write operations are needed for the 1st 

level DWT decomposition. The Partitioned DWT architectures by Ritter et al [87], 

partitions DWT into small 2D Blocks to achieve lower memory bandwidth and low 

on-chip storage, but it produces block artifacts along the boundaries between 

partitions. The recursive pyramid algorithm by Vishwanath et. al. [109], takes 

advantage of different clock rates at different DWT levels to intermix the next level 

computations with current calculations. It requires a large on-chip memory and 

complex scheduling for interleaving the DWT levels. The Generic 2D biorthogonal 

DWT by Benkrid et al [21], uses separate architectures to calculate each DWT level. 

It achieves full utilization of memory bandwidth – one write and one read per pixel, 

but with massive on-chip storage requirements. The Modified folded architectures for 

SPHIT image compression by Fry and Hauck [43], uses the same filter assembly for 

both rows and columns with pixels read from one memory port, transposed for the 

column transform, and written to another memory port. It achieves a DWT runtime 

of ¾ N2 cycles for an NxN image, but it assumes 64-bit wide memory ports to allow 

filtering of 4 rows at a time of 16 bit pixels, which may not be practical for all 

systems.  

3.2.3 Proposed Parallel Architectures for the 2D DWT 

 
The standard DWT algorithm operates on the whole image in a sequential manner. 

An improved implementation would partition the image into several blocks and 



 43

operate on each block independently and in a parallel manner, and then would merge 

the results to complete the DWT. While this architecture still requires the same 

intensive computations of the recursive filtering operation and the same memory 

requirements, the computation can be sped-up if one uses a multi-processor system 

or identical parallel hardware implementations of the filtering blocks that can operate 

on multiple image blocks simultaneously. A known disadvantage of such an 

approach is that it requires data exchanges between neighboring blocks at each 

decomposition level of the discrete wavelet transform, and hence an additional 

overhead due to inter-processor communications. 

 

We consider three parallel implementations based on the lifting factorization of the 

DWT. The standard overlapping algorithm shown in Figure 3.2 eliminates the 

blocking artifacts and imposes relatively simple control complexity, but has high 

computational cost and requires high on-chip buffering of data. For an NxN image, 

using DWT filters of length  less than or equal to L, and partitioned into S Blocks, 

the number of additional filtering operations for a 1 level 2D DWT decomposition 

vs. a non-overlapped approach is: 2N*L*(S-1). 

1 2 3

 

Figure 3.2: Overlapping 
 



 44

The overlap-save algorithm is shown in Figure 3.3. It requires saving the boundary 

data sets and exchanging them at every level of the DWT decomposition. It achieves 

lower computational cost but requires higher communication overhead at each level 

of DWT decomposition. 
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Figure 3.3: Overlap-Save 
 

The overlap-state [53][54][55] algorithm is a block-based parallel implementation 

that uses the FSM lifting model. Raw input samples are updated progressively as 

long as there are enough neighboring samples present in the same block as shown in 

Figure 3.4. Data samples near block boundaries can only be updated to intermediate 

states due to lack of sufficient neighboring samples. Rather than communicating raw 

data samples before the start of the decomposition at each level, these partially 

updated boundary samples, which form the state information, are collected at each 

level and exchanged at the conclusion of the independent transform of each block. A 

post processing operation is then initiated to complete the transform for boundary 

samples. Using this technique, the DWT can be computed correctly, thus eliminating 
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blocking effects, while the inter-block communication overhead is significantly 

reduced.  

 
Figure 3.4: Overlap-State technique. 

 
 

3.3 FPGA Implementation Methodology 

Our methodology is depicted in the flow chart shown in Figure 3.5. While quite a 

few steps in the methodology can be considered generic in terms of the hardware 

design process, there are a few highlighted steps that require non-standard 

considerations involving design choices required to meet practical constraints. We 

will address each of the highlighted steps in the following sections.  
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Figure 3.5: Implementation Methodology Flow Chart 
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3.3.1 Lifting Factorization Considerations 

The lifting factorization of equations (3.1) and (3.2) is not unique, but can be 

optimized to provide architectures that are efficient for hardware implementation by 

maximizing the shift and addition operation and minimizing multiplications. The 

lifting factorization can then be expressed as follows:  
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Where j is an integer and N < M. 

In addition, in 2D implementations, the multiplications by constants K and 1/K in the 

last matrix can be combined after both row and column filtering are complete into 

operations of K2 and 1/K2 

3.3.2  2D DWT Filter Design 

The filter design methodology has to decide among different well known architecture 

choices, such as folded architecture and cascaded architectures reviewed in section 

3.2.2 [32][21][43]  

 

For the folded architecture, for example, the external memory bandwidth is high but 

it does not require significant hardware resources or on-chip storage. For an image of 
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NxN pixels and DWT filters of maximum length of Fl, and a 1 level DWT 

decomposition, it requires memory bandwidth of 4N2 (writes and reads). 

 

For the cascaded row-column pipelined architecture, when a desired number of rows 

are completed (typically, equal to the maximum length of the DWT filters), the 

column operation can begin. This requires additional internal storage for Fl N pixels.  

For a 1 level DWT decomposition, the total memory bandwidth required is 

approximately 2N2 + ½ FlN (internal memory access cost is typically less than ½ that 

of the external access). This bandwidth is much less than the 4N2 required for the 

folded case since the maximum filter length, Fl, is small relative to image width N 

(typically Fl is less than 13 compared to 512 or more for N).  

 

In most design cases, the performance bottleneck is the memory I/O access (i.e. 

bandwidth). To maximize performance of the implementation in 2D processing 

context, the preferred choice will be the cascaded architecture. 

 

3.3.3 Image Partioniong and Design Scalability  

Block-based implementations may lead to complex boundary post processing, and 

complex house keeping. Figure 3.6 shows options to partition the images into blocks 

or stripes.  
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Figure 3.6: Options for 2D image partioning 
 
For block-based parallel partioning, the boundary post processing latency for 1 level 

DWT latency is FlN filtering operations, which leads to complex control, as the 

exchange of boundary data is needed along both adjacent vertical and horizontal 

boundaries [56]. 

 

For stripe-based parallel partioning, the boundary post processing latency for a 1 

level DWT is ½ FlN filtering operations. Additionally, this approach leads to simpler 

control, as management of boundary data exchanges is required only along the 

adjacent vertical boundaries.  

 

Since speed and lower design complexity is our goal, we choose the stripe parallel 

implementation. Available on-chip memory storage and external memory bandwidth 

determine degree of design scalability (i.e. the number or stripes and number of 

DWT processing elements).  



 50

3.3.4 Memory Bandwidth Considerations and Storage 

Calculations 

For a DWT filter pair and an image of N x N pixels, denoting: 

Fl - length of the longest filter 

J   - DWT decomposition levels 

S  - Number of DWT line processors (blocks/stripes) 

Consider the stripe-parallel design shown in Figure 3.6. After the completion of 1 

level DWT decomposition, the number of transitional boundary states generated at 

the first boundary of B1 and B2 is: 

from B1: 

⎡ ⎤ )5.3(*2
1

1 NFm lB =  

and from B2 

⎣ ⎦ )6.3(*2
1

2 NFm lB =  

where memory is measured here in number of pixels, ⎡ ⎤  and ⎣ ⎦  are the ceiling 

and the floor operators to accommodate odd length DWT filters at the stripe 

boundaries. This results from the absence of image data along the boundaries of B1 

and B2 required to complete the filtering operations. After the completion of 2 

decomposition levels additional transitional boundary states are generated at the 

same boundary: 
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from B1: 
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To minimize external memory I/O bandwidth, the decision was made earlier to use 

the cascaded architecture, i.e., pipeline row and column filtering. Assuming a FIFO 

buffer length of N (image width), the memory required for row buffering is: 

for one block 

)11.3(* NFm lFIFO =  

and total needed memory for FIFO buffers is  

 )12.3(** SNFm ltotalFIFO =−  
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For example: for an image of 512x512 pixels, a 3 level (9,7) DWT decomposition 

with a partition size of 4 stripes, the total required on-chip RAM (BRAM) measured 

in pixels is:     9*(512+256+128)*4 + 9*512*4 = 42K bytes  

Actual required BRAM may need to be 84K bytes to account for dynamic expansion 

in DWT domain.  

3.3.5 Management of Memory and Boundary Data  

The main remaining issue, once the previous design choices are made, is to design an 

efficient memory management scheme to avoid excessive post boundary processing 

I/O cost.  
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Figure 3.7: DWT Unit Block Diagram 
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A data transfer method that utilizes an efficient DMA was designed and 

implemented. Figure 3.7 shows a block diagram of one 2D DWT module. The 

module consists of a shared global controller, DWT row and column kernels, line 

and boundary data buffers and a DMA. We designed a custom DMA engine to 

handle data transfer from main external memory, from partially computed boundary 

data buffers and from neighboring processing units. It contains the following 

parameters for 1D linear addressing: starting address, intra row/column count, intra 

row/column step, intra row/column jump, pixel count, boundary data starting address 

and boundary data jump address for data from adjacent processing unit. This DMA 

design allows interleaving the DWT computations between adjacent processing 

elements, allowing the process to be completed in a seamless manner to the DWT 

kernels and hence minimizing the overhead usually associated with parallel 

implementations. Look-up tables are used to pre-store specific design parameters for 

a DWT implementation. These addresses are passed to the DMA by the global 

controller, which is shared by all DWT processing units.   

 

The computation of the DWT is conducted in the following manner. The original 

image data is stored in main memory (off-chip) and loaded to the line buffers line by 

line through the DMA. Row transformed lines are completed and stored in-place in 

the line buffers. The DWT column kernel operates on the row transformed data once 

an adequate number of rows are completed (this depends on the lengths of the DWT 
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filters). All operations are completed in a pipelined manner. Completed DWT data is 

written back to the main memory through the DMA. Transitional (partially 

computed) boundary states are stored in boundary data buffers (on-chip) and fetched 

later to augment image data lines and/or boundary data from the neighboring stripe 

and then passed to the DWT kernels. Once all the DWT decomposition levels are 

computed, each DWT processing unit passes its upper transitional boundary data to 

the next top neighboring unit and receives lower transitional boundary data from the 

next lower unit to start the merge process to complete the DWT decomposition at the 

stripes boundaries. All processing units complete, in parallel, all the partially 

computed DWT coefficients (except for the last unit) starting with the column 

transformation of the first level decomposition and moving on the subsequent DWT 

decomposition levels. At each stage, transitional data (or states) is passed to the 

appropriate locations in the DWT kernels pipeline, and computations proceed in the 

same manner that was used for the initial DWT computations until all the DWT 

levels are completed..  Figure 3.8 below shows the pipeline and flow of boundary 

data (states) for a two adjacent DWT processing units. Boundary states as shown are 

from unit B2 are merged with those from unit B1 at B1 to complete the DWT 

computations.  
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Figure 3.8: Pipeline and data flow for boundary states 
 

3.3.6 Resource Utilization and Architectural Trade-offs 

The final step of the methodology is to complete the trade-off analysis to select the 

appropriate architectural design approach given the practical constraints. For 

example, considering the three overlapping architectures introduced in section 3.2.3, 

and a platform that allows a separate external memory bank for each partition stripe. 

For highest throughput performance, the best choice is the overlap-state architecture, 

which achieves a performance of ½N2 (in run time cycles) and requires the following 

internal memory for data buffering and transitional data storage:  
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where Fl, N, S and J are filter length, image width, number of partition stripes and 

number of DWT levels respectively. Memory is measured here in pixels. 

This scheme  also requires a relatively low external memory bandwidth of: 
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which is effectively one read and one write operation per pixel for each 2D DWT 

computation performed in a stripe. 

For systems where the overlap choice is not possible due to low internal memory 

availability, the overlap-save architecture is the next best choice. It achieves a 

performance of (½N2+½NSFl), requires total storage for buffering input and 

boundary data of: 

)15.3()1(**** −+ SNFSNF ll  

and requires the same low external memory bandwidth of equation 3.14 

 

Finally, for systems with very low on-chip storage that must deal with large images 

(i.e. 1024x1024 or larger), the conventional overlapping architecture is the best 

choice. It achieves a performance of (½N2+NSFl) and requires a relatively low 

storage for buffering input of: 
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This scheme, however, requires a relatively high external memory bandwidth of: 
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Table 3.1 shows the trade-offs under consideration among the three parallel 

implementations, overlapping, overlap-save and overlap-state. Table 3.2 compares 

the overlap-state implementation to the 5 architectures we reviewed in section 3.2.2. 

As can be seen, the 1D folded architecture requires no internal memory storage, but 

performs the worst at 2N2 and requires large memory bandwidth. The modified 

folded architecture takes advantage of a wide memory bus to achieve low effective 

memory bandwidth and a performance of 3/4N2. Our overlap-state architecture 

outperforms all the architectures with performance of ½N2 and a low effective 

memory bandwidth (about ½ of that for the 1D folded), given the platform 

assumptions and storage considerations. 

 

 

 

 

 

 

 



 58

 

Table 3.1: FPGA Parallel DWT Implementations Trade-offs (for NxN image) 
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Table 3.2: Comparisons to other DWT FPGA Architectures (for NxN image) 
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3.3.7 Applying the Methodology under Different Platform 

Constraints 

In the preceding sections, several assumptions were made regarding platform 

constraints and available memory resources. These assumptions led us to the 

overlapping cascaded architectures. We now consider whether our methodology 

would still be applicable if we had a different platform and different constraints. 

 
Consider an example where we have low on-chip memory but high external memory 

bandwidth such as would be the case for accesses of 64 bits or four 16 bit pixels. The 

folded architecture in this case will be the desired choice due to limited on chip 

resources to store row or column transformed data. The high memory bandwidth 

compensates for the large number of external I/O operations. When making the 

choice for the image partioning, neither the block based nor the stripe based 

partioning takes full advantage of the high memory bandwidth available. A four-line 

based approach would utilize the 64 bit bus efficiently. However, to take advantage 

again of this 4-line based architecture, the row transformed DWT data needs to be 

transposed prior to writing it back to memory to be readily available for the column 

transform operations. This requires an additional hardware module to perform the 

transpose operations. The tree shown in Figure 3.9 identifies the most efficient 

design choices at each stage given the platform constraints. The resultant architecture 

in this case is very similar to the modified folded one chosen by Fry and Hauck [43]  
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for the DWT implementation of the SPIHT image compression mentioned earlier in 

section 3.2.2. 

FoldedFolded Cascaded   Cascaded   ……....

DWTDWT

Partioning & Memory BWPartioning & Memory BW
11
2 2 
3 3 
44

Transpose DWT Transpose DWT 
DataData  

Figure 3.9: Design tree for an example with different platform constraints 
 

 

3.4 FPGA Implementation Example - (9,7) DWT 

The three overlapping algorithms presented in the previous section were 

implemented for the popular floating point Daubechies (9,7) DWT. While all these 

parallel architectures can be generalized to any wavelet filters pair, we selected the 

(9,7) filter pair for our initial evaluation due to its popularity and its use for lossy 

compression in the JPEG2000 standard [57].  
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The lifting factorization of the (9,7) filters yields [2]: 
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A stripe-partitioning scheme was used to allocate input data sequence uniformly onto 

different processing units. Since, in this method, no segmentation is done in the row 

direction, the data to be exchanged, and the state information, will only appear along 

the vertical boundaries of each block.  

        (3.18) 



 62

Initialization and
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 Figure 3.10: Flow chart for the Overlap-State DWT algorithm 
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The flow chart shown in Figure 3.10 details the implementation for the parallel 

overlap-state algorithm, since it is the most complex of the three parallel algorithms. 

The raw image is partitioned into n uniform stripes and allocated to n processor 

units. Each unit Pi computes its own allocated data up to the required wavelet 

decomposition level; we will refer to this stage as the split stage. During the first 

decomposition level, row transformations are completed first for all lines in a data 

stripe and stored back into their respective memory buffer locations. Columns are 

transformed in a similar manner. Once the column transformation is completed for a 

stripe, data along the stripe boundaries are now in transitional states. The state 

information for all the stripes other than the first stripe P1, is stored in the allocated 

locations for each stripe. The state information will be communicated, during the 

merge operation, from a stripe to its upper neighbor (i.e., unit Pi sends its data to unit 

Pi-1). At this stage, we proceed to the next decomposition level in each stripe. The 

procedure is repeated until all decomposition levels are completed for all the units. 

 

The output from this stage consists of two parts: (1) completely transformed 

coefficients and (2) the state information (partially updated boundary samples). 

During the next stage, the merge stage, a one-way communication is initiated, 

wherein the state information is transferred from each processing unit to its top 

neighbor. For each stripe, the state information from the neighboring block is then 

combined together with its own corresponding state information to complete the 
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DWT transform. The first step is to combine state information from unit Pi with that 

from unit Pi-1. Partial DWT computations are performed to complete level 1 

decomposition (columns only) and the results are stored in their relative locations in 

Pi-1 buffer to be ready for level 2 row transformation (note that level 2 row 

transformation needs completed data from level 1 decomposition). At level 2, we 

start with the uncompleted rows from the split stage that were awaiting completion 

of level 1 decomposition for the columns. Data is combined now from (i) level 2 

state information from unit Pi, (ii) row transformed data just completed for level 2 

from unit Pi, (iii) state information from unit Pi-1. As in level 1, partial DWT 

computations are performed to complete level 2, and the results are stored in their 

relative memory locations buffer in Pi-1. to be ready for level 3 row transformation. 

The procedure is repeated until all DWT levels are merged and completed. 

 

A graphical description of the (9,7) overlap-state 2D DWT decomposition and its 

memory buffer management are illustrated in the example shown in Figure 3.11 In 

this example an image of 512x512 is split into 4 equal stripes of 512x128 each. After 

the merge operation for one level DWT decomposition, the transformed data appears 

distributed in stripes of length 132, 128, 128, and 124 for P1, P2, P3, and P4 

respectively. The P1 unit receives state information data from P2. The DWT 

transformation is completed and stored in P1 buffer extending its contributing length 

to the transformed image to 132 pixels. Stripe P2 and P3 send and receive data from 
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their neighboring stripes which results in a net of unchanged contributing length. 

However, P4 sends its state data to P3 resulting in a smaller contributing length of 

124 pixels. Similarly, a 2 level DWT yields the results shown in Figure 3.11 bottom 

left. The contribution to the computation of the transformed image from each 

stripe/processor is shown in Figure 3.11 bottom right. 

 

Figure 3.11: Overlap-state implementation of the (9,7) DWT and memory management 
 
 

Our software simulations were evaluated with images from the Signal and Image 

Processing Institute image database at the University of Southern California. Results 

presented in this section were collected using the Vegas image of size 512x512 

shown in Figure 3.12. Results can be also be extended to color images. The results of 
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a 2 level DWT decomposition completed by each processing unit and the final 3 

level DWT image are also shown in Figures 3.13 and 3.14 respectively. 

 
Figure 3.12: “Vegas” – Original 512x512 image 

 
 

 
Figure 3.13: Two-level DWT transformed stripes for “Vegas” image from the 4 processing units  
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Figure 3.14: Final Subbands for 3-level DWT transformed “Vegas” image 

 

We evaluated the performance for the three parallel implementations in terms of 

memory I/O bandwidth and total number of multiplies and accumulates (MACs). 

Our results show that the overlap-state and overlap-save has a much lower memory 

bandwidth than the overlapping algorithm. Also, as shown in Figure 3.15 the 

overlap-state algorithm provides significantly better performance when compared to 

the other two implementations. We also studied the effects of scaling of the overlap-

state algorithm. Partitions of 2, 4, 8 and 16 blocks were simulated for the 512x512 

test image. It can be seen from Figure 3.16 that performance scales well as the 

number of partitions increases. 

In conclusion, our simulations demonstrate that the overlap-state technique has 

moderate on-chip storage requirements, has better performance, minimizes the inter-

block communications and hence memory I/O operations, and is fully scalable. 
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Figure 3.15: DWT – Parallel Implementations – Performance 
 
 

 

Figure 3.16: DWT – Parallel implementations – Partitioning effects 
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3.4.1 Parallel 2D DWT System 

This section describes the architecture of a parallel 2D-DWT system designed for 

low-power, real-time image encoding and decoding [7].  Based on a highly parallel, 

SIMD (Single-Instruction/Multi-Data)-like architecture, the parallel 2D DWT system 

incorporates multiple processors operating in parallel to achieve high processing 

throughput.  The parallel 2D DWT architecture exploits the unique properties of the 

overlapping algorithms, especially the overlap-state, enabling a highly memory-

efficient and scalable design, and is particularly well suited for FPGA 

implementation.  The parallel 2D DWT design supports dynamic in-situ system 

reconfiguration for efficient performance under various operating parameters and 

hardware resources. .   

3.4.2 System Architecture 

The parallel 2D DWT system comprises a master processor (or global controller) and 

an array of slave coprocessors operating in a SIMD-like configuration, as shown in 

Figure 3.17.  The master processor can be a hard or soft core micro processor or a 

custom designed hardware unit and it will be referred to as the global controller 

(GB). The coprocessors will be referred to as DWT line processors (DLPs).  The 

number of coprocessors can be scaled depending on system performance 

requirements and available hardware resources.   
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The GB manages the overall operation of the 2D DWT system. The GB primary 

tasks include executing the top-level control and processing functions of the 

overlapping algorithms, as well as scheduling, supervising, and monitoring the 

processing activities of the DLP coprocessors and managing internal data transfer 

between the DLPs and external data transfer between the 2D DWT system and 

external memory and an external host. The GB also provides a host bus interface to 

an external host processor and I/O devices attached to the host bus.  The GB initiates 

and supervises all DLPs processing activities by dispatching commands to the DLPs.  

The DLPs are special-function processing units optimized to perform high-speed 

computation of the 1D-DWT.  The DLPs can perform their processing in parallel, 

independently of other DLPs.  The 2D DWT system can operate in either a 

synchronous or non-synchronous mode.  In the synchronous mode, the GB instructs 

the DLPs to perform identical processing tasks in locked step.  In the non-

synchronous mode, the DLPs processing is staggered.  As instructed by the GB, a 

DLP begins processing as soon as data is received.  At the same time, the GB 

continues with downloading of data to other DLPs.  The non-synchronous mode 

provides a higher level of concurrency, but requires more complex scheduling and 

control logic to ensure processing and data coherency. 

 

The GB communicates with the DLPs via a high-speed system bus and initiates all 

system bus activities, which include reading from and writing to the DLPs local 
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registers and memories.  The system bus consists of a data bus, an address bus, and a 

set of control signals.  The data bus is a bi-directional bus which can be driven by the 

GB or DLPs. The address bus is only driven by the GB to address DLPs registers or 

local memories during a read or write operation.  The DLPs appear on the system 

bus as "memory-mapped" devices.  Hence, each DLP is assigned a unique, fixed and 

equal size address space.  In addition, a global address space is also defined to 

globally address the DLPs.  Commands or write data addressed to a location in the 

global address space are written into all corresponding locations of the DLPs. 

 

The GB also performs various top-level processing tasks including: (1) 

system/global data initialization, (2) image boundary handling, (3) boundary data 

initialization control, (4) row and column transform control, (5) boundary data 

transfer control, and (5) decomposition level control.  The GB issues commands to 

the DLPs to perform various low-level DWT processing tasks including (1) data line 

extension, (2) boundary data initialization, and (3) row/column 1D-DWT. 

 

The GB's basic processing flow is as follows: The GB partitions the input data 

stream from external I/O into data blocks and commands DMAs in each DLP for 

image line access and performing partial buffering of the input data if necessary.  In 

the non-synchronous mode, once a complete block has been downloaded to a DLPs 

local memory, the GB instructs the DLP to perform the 2D DWT on interior block 
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data.  The GB then continues to download the next data block to another DLP for 

processing, and so on.  In the synchronous mode, the GB holds off DLP processing 

until data blocks are downloaded to all DLPs.  When the 2D DWT on the interior 

block data is completed, the GB instructs the DLPs to merge the boundary data (by 

utilizing the DLPs DMAs) to complete the 2D DWT of the entire data blocks.  

Finally, the GB reads and outputs the transformed data from a DLP local block 

memory to the host processor. The GB communicates with a host processor via the 

host interface.  The host interface supports high speed I/O data transfer to host 

processor through the host processor bus.  It also supports DMA data transfer to 

external I/O devices attached to the host bus.  

Host Bus
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RISC 

µProcessor 
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Local 

Memory

DLP 

Interface

Host

Interface

Interrupt 

Control

 
Figure 3.17: Master processor with system and host communication busses. 
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The GB communicates with the DLPs via the DLP interface unit.  The local memory 

stores the parallel control and sequencing firmware, system parameters, user 

application configuration data, and provides partial buffering of external I/O data. 

The GB issues commands to DLPs to initiate DLP processing by writing to the DLP 

command registers.  The commands include (1) reads and writes to the DLP local 

memories and registers, (2) initiation of 1D-DWT processing, and (3) DLP reset.   

3.4.3 DWT Line Processor Architecture 

The DWT line processor (DLP) is a special-function coprocessor designed for high-

speed computation of the 2D DWT.  The DLP performs 2D DWT on a data block as 

a sequence of row and column 1D DWTs.  The row/column 1D DWT is performed 

in three basic processing steps: (1) boundary extension, (2) boundary initialization, 

and (3) DWT filtering with lifting. 

 

The DLP comprises a controller, a set of local registers, a local memory, a DMA 

unit, a pipelined arithmetic unit (PAU), and a GB interface.  The DLP controller 

performs various control and sequencing operations.  Based on a multiple state-

machine design, the controller is optimized for high processing concurrency and low 

latency.  It decodes GB commands from the GB interface and generates the required 

sequence of control signals to perform the various DWT processing functions.  The 

DLPs local registers include control, status, and data registers which can be read or 

written by the GB.  The local memory mainly stores the input data block.  After a 
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1D-DWT is performed, the input data block is replaced with the output processed 

data.  The memory also provides a line buffer for the 1D DWT processing.  The 

DMA unit facilitates the transfer of data with the GB and with neighboring DLPs 

during boundary data merge operation.  The DMA unit provides separate input and 

output data ports for two neighboring DLPs. The ports contain internal buffers to 

allow parallel data transfer between DLPs.   

 

The DLP communicates with the GB over the system bus via the GB interface unit 

and appears as a "memory-mapped" device on the bus.  The GB interface latches and 

buffers the address, data, and control signals on system bus during an active bus 

cycle. The address is decoded to determine if the current bus cycle is a local memory 

or register access. The SMP interface generates all the required handshake signaling 

as well as requests to perform the 2D-DWT boundary merge when operating in 

pipelined mode. 

 

The PAU is a fixed-point arithmetic accelerator designed to perform the numeric 

intensive 1D-DWT filtering operation using the in-place lifting technique.  The PAU 

is based on a pipeline design and incorporates a set of multiplier-accumulator units 

(MACs) and data shift registers.  The PAU pipeline cycle consists of loading two 

input data samples and reading out two output samples.  The PAU operation starts by 

shifting in two input samples into the input registers of the first MAC unit in two 
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clock cycles.  However, data in the input registers of the remaining MACs are shifted 

in the first clock cycle. Additional clock cycles are used to perform the MAC 

operation.  Two output samples from the last MAC unit are then read out to complete 

the pipeline cycle 

System 
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Figure 3.18: DWT line processor with inter processor communication bus. 

 

The length of DWT filter determines the number of MAC units and consequently the 

PAU pipeline latency.  Internal data registers are provided in the PAU for storing the 

DWT filter coefficients. The shift register unit provides one- and two-clock cycle 

delayed data to the next pipelined stage in the PAU.  The MAC, designed for high 

speed and low latency, consists of an array multiplier and an accumulator with fast 

carry-chain logic for high speed performance. 

 GB 
Interface 
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Figure 3.19: DWT filtering with lifting flow graph for the (9,7) DWT 
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Figure 3.20: Pipelined Arithmetic Unit (PAU) for the (9,7) DWT 
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3.4.4 Implementations and Performance 

The three parallel implementations for the (9,7) DWT, overlapping, state-save and 

overlap-state, were coded in VHDL and ported to the Xilinx Virtex II Pro 

(XC2VP70) field programmable gate array (FPGA) using a commercial board from 

the Dini Group. Evaluations were made with images of size 512x512 pixels and 

system clock frequency of 100 MHz. The FPGA utilization was ~43% (for 4 DWT 

parallel processors in the case of the overlap-save). Table 3.3 shows comparisons of 

the resource utilization for various number of parallel DWT modules. Performance 

benchmarks show more than 2 orders of magnitude acceleration over the c-code 

implementation and more than 3 times speed-up as compared to the parallel 

implementation of the standard algorithm, as can be seen in Figure 3.21. Further 

performance improvements are possible with additional parallel DWT modules. 

Table 3.4 shows that our implementation has throughput improvements of 1.4 to 3 

times over other optimized implementations such as UCI’s “software pipelines” 

[116], modified folded for SPIHT [43], and commercial IP such as Amphion [5] and 

Cast [59]), but with higher resources utilization. 
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Table 3.3: Resources Utilization for the Overlap-State Implementation 

109 (33%)56 (17%)26 (8%)Number of 
BRAMS

34 (10%)

11729 (18%)

7499 (11%)

7267 (22%)

Two parallel DWT 
Modules

67 (20%)16 (5%)Number of 
18x18 

Multipliers

22912 (35%)5455 (8%)Number of 4 
input LUTs

14650 (22%)3488 (5%)Number of Slice 
Flip Flops

14196 (43%)3380 (10% of total 
available slices)

Number of 
Slices

Four parallel DWT 
Modules

One DWT Module

109 (33%)56 (17%)26 (8%)Number of 
BRAMS

34 (10%)

11729 (18%)

7499 (11%)

7267 (22%)

Two parallel DWT 
Modules

67 (20%)16 (5%)Number of 
18x18 

Multipliers

22912 (35%)5455 (8%)Number of 4 
input LUTs

14650 (22%)3488 (5%)Number of Slice 
Flip Flops

14196 (43%)3380 (10% of total 
available slices)

Number of 
Slices

Four parallel DWT 
Modules

One DWT Module

 
 
 
 

 

Performance of Different Parallel Algorithms on FPGA Vs. Software

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6

DWT Level

Lo
g 

of
 T

im
e 

(m
se

c)

Software
Standard Algorithm
Overlapping
Overlap-Save
Overlap-State

 
Figure 3.21: FPGA Parallel Implementations Performance for the (9,7) 2D DWT  
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Table 3.4: Resources Utilization and Throughput Comparisons to other Optimized Methods 
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3.5 Conclusions 

We presented, in this chapter, a methodology for parallel implementation of the 

lifting DWT on FPGAs. We investigated and analyzed parallel and efficient 

hardware implementations targeting state-of-the-art FPGAs. We addressed practical 

considerations and various design choices and decisions at all design stages to 

achieve an efficient DWT implementation, subject to a given set of constraints and 

limitations. We presented a specific lifting representation for the DWT that provides 

architectures suitable for efficient hardware implementation, and a novel data 

transfer method that provides seamless handling of boundary and transitional states 

associated with parallel implementations.  
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We demonstrated our methodology with an implementation example for the (9,7) 

DWT, and also showed that it can be extended to operate under different platforms 

and constraints. We analyzed the implementations parameters to provide the best 

performance subject to practical considerations and platform constraints. We 

provided trade-off analysis for various implementations and comparisons to other 

existing implementations. 
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Chapter 4 
 

Chapter 4: Three Dimensional DWT coding for On-Board Hyperspectral 
Data Compression in Space Applications 

 

4.1 Introduction 

Imaging spectrometers or hyperspectral sensors are becoming increasingly common 

in deep space and Earth orbiting missions. Spatial and spectral resolutions of such 

instruments are on the rise to seek better data quality and improve the scientific or 

strategic value of the gathered information. The main limiting challenges to such 

new instruments are the available transmission bandwidth and on-board storage 

capacity. This makes compression of much greater value and a crucial part of the 

acquisition system.  

 

Several approaches to hyperspectral data compression have been proposed in the 

literature. They include transform techniques based, in general, on a hybrid 

combination of two transforms. Typically they use KLT or Principal Component 

Transform to decorelate the spectral bands, and either DCT or DWT to spatially 

compress the selected high energy principal components [89][25]. Another example 

is based on the Modulated Lapped Transform (MLT), proposed by H. Hou [50], 

followed by DWT. Factorization methods were also proposed which include 

principal components, Gram Schmidt, stochastic modeling of the atmosphere, and 
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convex factorization [47][49][93]. These techniques are generally for content 

retrieval, are only used for lossy compression, and are often overly complex for on-

board hardware implementation. Prediction based techniques such as differential 

pulse code modulation (DPCM) in both spectral and spatial domains are common 

[26][85]. All these techniques are mostly either lossy or lossless only and are non-

progressive.   

 

Recently, researchers proposed 3D DWT transform based coding such as  3DSPIHT 

(Set Partitioning in Hierarchical Trees) [40], 3DSPECK (Set Partitioned Embedded 

bloCK) [95] and 3D Tarp Coding (modified 3D DWT coding) [110]. While these 

techniques produce good compression results compared to 2D based algorithms, they 

may not meet future mission requirements due to their need for relatively complex 

post transform processing, which may not be suitable for on-board hardware 

deployment ( due to speed and power impact). Locally Optimal Partitioned Vector 

Quantization (LPVQ) [84][88], recently proposed by Motta and Rizzo, has excellent 

lossy and lossless compression effectiveness, but its adaptive features are also 

computationally intensive, making them impractical for on-board spacecraft 

deployment. 

 

In this chapter we investigate a wavelet based approach for three dimensional coding 

of hyperspectral data cubes suitable for on-board processing and hardware 
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implementation on reconfigurable platforms. Ideally, hyperspectral data compression 

should be lossless, to preserve the scientific data value. However, lossless 

compression may be limited in terms of achievable compression ratios due to noise 

inherent in such high-resolution sensors. Hence, a lossless/virtually lossless approach 

is adopted to address such applications. We adapt the 3D data sets to an efficient 2D 

wavelet based image compression, the ICER image compressor [62], by extending 

the wavelet decomposition to three dimensions and extending the bit-plane encoding 

scheme to operate with 3D data. The computationally intensive nature of 

compression-effective algorithms makes them impractical for software on-board 

deployment. Hence, our motivation throughout this research was suitability for 

hardware on-board implementation, which guided our design choices at every step of 

the algorithm development.  

 

This chapter is organized as follows. Section 4.2 details our compression strategy, 

algorithm description, issues related to adaptation of 2D image compression to 3D 

data sets and issues encountered in porting the design to FPGA hardware platforms. 

In section 4.3 we present our experimental compression results for AVIRIS data sets.  

Section 4.4 covers extensions and applications related to hyperspectral data 

compression and section 4.5 concludes this chapter with a summary and conclusions. 
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4.2 Three Dimensional Coding 

4.2.1 Compression Strategy 

 
Our strategy was to develop a general-purpose methodology for hyperspectral data 

compression that efficiently exploits spectral (inter-band) correlations as well as 

spatial correlations. To addresses requirements of various instruments – i.e. 

lossless/lossy compression, progressive compression, real-time constraints and low 

memory utilization. In order for it to be considered for space missions insertion, it 

needs to be low-complexity and suitable for on-board hardware implementation (low 

power and mass impact).  In addition, the compressed bit stream should be suitable 

for progressive browsing, target detection and classification, and extendedable to 

accommodate region-of-interest (ROI) compression. Suitability for push-broom type 

sensors is also important since hyperspectral data is mostly collected in band 

interleaved by pixel (BIP), or sometimes in band interleaved by line (BIL) formats. 

Finally, the strategy should address various applications’ distortion metrics - 

objective metrics, in terms of mean squared error (MSE) or peak signal to noise ratio 

(PSNR), and subjective metrics, in terms of visualization, signature extraction, or 

classification. To pursue these goals we started our investigation by adapting 2D 

compression-effective algorithms, such as 2D discrete wavelet transform (DWT) 

based algorithms, to 3D hyperspectral data. 
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4.2.2 From 2D to 3D Wavelet Coding  

The chosen algorithm, based on the reversible integer DWT, leads to a progressive 

encoder capable of lossless and lossy compression in a single system. Our approach 

relied on extending an efficient 2D image compression algorithm, namely the JPL 

ICER [62] image compressor, to 3D data sets. This required extending the 2D 

wavelet decomposition to 3D decomposition as shown in Figure 4.1 below. The 

resultant subband cubes required a major modification of post DWT transform 

coding, such as the bit-plane coding, which will be described in the following 

sections. A block diagram of the compression process is shown in Figure 1.4. We 

used a line based DWT scheme, operating in scan-mode, to accommodate 

pushbroom sensors. It should also be noted that low-complexity and portability to 

FPGA hardware implementation was a major driver at every step of the algorithm 

design. 

 

 

Figure 4.1: Integer based DWT is applied to all three dimensions of the image cube 
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4.2.2.1 From ICER-2D Image compression to ICER-3D-HW 

The ICER [62] image compressor was developed at JPL to meet the requirements of 

the Mars Exploration Rover mission (MER). It is currently deployed on the Spirit 

and Opportunity rovers and continues to be used to send most of their images to 

Earth from Mars [64][65]. We extended the ICER algorithm to hyperspectral data by 

expanding the discrete wavelet decomposition to three dimensions and adapting its 

bit-plane encoding scheme, which uses a context modeler similar to the EBCOT 

coder in JPEG2000 [98], followed by an interleaved entropy coder. The ICER 2D 

image compressor block diagram is shown below in Figure 4.2. 
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Figure 4.2: ICER 2D Image Compression  
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4.2.2.2 Bit Plane Encoding for 3D data sets 

The extension of ICER-2D bit-plane encoding to 3D decompositions was done in the 

following manner. After the wavelet decomposition, each subband cube is assigned 

an index, with indices numbered starting from 0.  The index assignment is used to 

determine the order in which different subband bit planes are compressed. Let L and 

H denote number of stages of high-pass and low-pass filtering used to form a 

subband, indices are assigned by sorting the subbands according to the following 

subband-ordering scheme [63]: 

 

(1) A subband with a larger value of L − H has a higher index. This has the effect of 

giving higher indices to subbands with higher priority bit planes as will be seen 

below.  

(2) For two subbands with the same value of L − H, if one of them has fewer 

coefficients, then it is given a higher index (equivalently, subbands formed through a 

larger number of wavelet-filtering operations, i.e., larger value of L + H, are given a 

higher index.). 

(3) If the two subbands are equivalent in the preceding considerations, then a higher 

index is given to a subband that is low-pass in the vertical direction. 

(4) If the two subbands are equivalent in the preceding considerations, then a higher 

index is given to a subband that is low-pass in the horizontal direction. 
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Bit-plane priority assignments: 

For each subband we can determine a weight that indicates the approximate relative 

effect, per coefficient of the subband, on mean squared error (MSE) distortion in the 

reconstructed image [63]. These weights determine the relative priorities of subband 

bit planes. The weight is expressed in terms of the number of stages of high-pass and 

low-pass filtering operations, H and L, used to form a subband. For example, let’s 

consider the front top right green subband cube shown earlier in Figure 2.5. To form 

this subband cube, we apply low-pass filtering in all dimensions (horizontal, vertical 

and spectral) twice, then high-pass filtering in horizontal direction followed by high-

pass filtering in both the vertical and spectral dimensions. Thus H = 1 and L = 8 for 

this subband. The weight w assigned to bit plane b of a subband depends on H and L: 

)1.4()2()2.(2
2 HLbHLb −+−

==ω  

Bit planes in a subband are indexed starting with b = 0 for the least significant bit. 

This weight scheme is a 3D extension of the weight scheme used in ICER [62] for 

the 2D case. Any monotonic function of the weight in equation (4.1) can be used to 

determine the relative importance of subband bit planes, so rather than keeping track 

of real-valued weights given by equation (4.1), we define integer “priority” values p 

of subband bit planes, given by: 

)2.4(32)(log3 2 +−+=+= HLbp ω  

This definition produces a minimum priority value of 0, since H ≤ 3 and L ≥ 0 for all 
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subbands. As an example, if H = 2 and L = 6 for a subband cube, bit plane b of this 

subband is assigned priority value p= 2b + 7.   Thus, all bit planes of this subband 

have odd priority value, with minimum value of 7. Take another subband, H = 2 and 

L = 1. Bit plane b of this subband has priority p = 2b +2. For this subband all bit 

planes have even priority value, with a minimum value of 2. Since L and H are fixed 

for a given subband, all of the bit planes in a subband have even-valued priority, or 

all have odd-valued priority.  

 

 

 

Mean subtraction and Sign-Magnitude Coding: 

The mean of each low frequency subband plane is subtracted (similar to the case in 

ICER 2D, but extended to cover planes of the low frequency subband cube) in 

preparation for the next stage of coding. Each DWT coefficient is converted to sign-

magnitude form. Magnitude bit planes of subbands are compressed one at a time; 

when the first ‘1’ magnitude bit of a coefficient is encoded, the sign bit is encoded 

immediately afterwards. Compressed bit planes of different subbands planes are 

interleaved, with the goal of having earlier bit planes yield larger improvements in 

reconstructed image quality per compressed bit. Subband bit planes are compressed 

in order of decreasing priority value according to the simple priority assignment 

scheme described earlier. Bit planes having the same priority value (which are from 
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different subbands) are compressed in order of decreasing subband index, using the 

ad hoc index assignment scheme described earlier, which aims to improve 

compression performance while maintaining low-complexity [63].  

 

Context Modeler and Entropy Coder: 

Driven by the low-complexity requirements, the context modeler designed for the 3D 

coding algorithm (which will be referred to as ICER-3D-HW, since this is the 

version that was ported to hardware), is similar to the one deployed by ICER 2D, but 

works on planes of the subband cubes. Before encoding a bit, the encoder calculates 

an estimate of the probability that the bit is a zero. This probability-of-zero estimate 

relies only on previously encoded information from the same plane. The bit and its 

probability-of-zero estimate are sent to the entropy coder, which compresses the 

sequence of bits it receives. For entropy coding, ICER-3D-HW uses an interleaved 

entropy coder; the same as that used by ICER and described in [62]. Probability 

estimates are computed using a technique known as context modeling. With this 

technique, a bit to be encoded is first classified into one of several contexts based on 

the values of previously encoded bits. The intent is to define contexts that divide bits 

with different probability-of-zero statistics into different classes, for which separate 

statistics are gathered. The compressor can then estimate these probabilities-of-zero 

reasonably well from the bits it encounters in the contexts. The simple adaptive 
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procedure used by ICER, and described in [62], to estimate probabilities, was also 

extended to 3D data sets.  

 

ICER-3D-HW employs a two-dimensional context model relying on eight (spatial) 

neighbors in a subband plane. Coding of a subband bit plane proceeds from one 

spatial plane to the next, and in raster scan order within a spatial plane. Pixels are 

assigned categories 0 through 3 as shown in Figure 4.3 and bits are classified into 

one of 17 contexts (this is derived from the EBCOT encoder and JPEG2000) 

[98][57].  

 

Figure 4.3: Progression of categories of a pixel as its magnitude bits and sign are encoded 
 

 

For each bit bi in a pixel of a subband, the context modeler produces an estimate pi 

of the probability that bi = 0. The entropy coder uses theses estimates to produce an 

encoded bit stream. The design choice for an entropy coder can ideally be an 
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adaptable binary coder (arithmetic coding), or a low-complexity approximation to it. 

The interleaved entropy coder of ICER was adopted here due to some speed 

advantages. The coder compresses a binary source with a bit-wise adaptive 

probability estimate by interleaving the output of several different variable-to-

variable length binary source codes. Later optimization of algorithm resulted in a 3D 

context modeler and a new ICER-3D compressor described in [63], but it has not 

been modified yet for hardware implementation and is not discussed here. 

ICER-3D-HW, inherits, from ICER, a segmentation scheme for error containment 

that encodes segments of the subband planes, rather than the whole plane, to allow 

partial reconstruction of the decoded image when an encoded packet is lost. The 

segmentation scheme is scalable to allow different levels of error containment. 

Details of this segmentation scheme are described in [62][63].  

 

4.2.2.3 Spectral Ringing Artifacts in 3D DWT Coding 

3D DWT Limitations 

A straightforward extension of wavelet-based two-dimensional image compression 

to hyperspectral image compression, based on a three dimensional wavelet 

decomposition, results in compression-ineffective coding of some subbands and can 

lead to reconstructed spectral bands with systematic biases. Thus, using a wavelet 

transform for spectral decorrelation of hyperspectral data does not account for 

systematic differences in signal level in different spectral bands. In addition, the 
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spectral dependencies are not limited to the small spectral neighborhood exploited by 

the wavelet transform and this will require further modification to the decomposition 

or the coding scheme. 

 

The “Spectral Ringing” Problem 

When the Mallat decomposition shown in Figure 4.4 is used as 3D DWT for 

decorrelation, "ringing" artifacts in the spectral dimension can cause the spatially 

low-pass subbands to have large biases in the individual spatial planes that 

manifesting themselves as systematic biases in some reconstructed spectral bands. 

Specifically, spatial planes of spatially low-pass subbands contain significant biases 

that vary from plane to plane [66][72][73]. These biases appear in the spatially low-

pass subband as can be seen in 4.5. This problem is somewhat unique to 

multispectral and hyperspectral data; an analogous artifact does not generally arise in 

images. The encoding scheme adapted from ICER [62] assumes that, except for the 

low-pass subband cube, the means of subband planes of all DWT subband cubes are 

zero. Histogram analysis for planes from the spatially low-pass subband cubes shows 

that often the means are not zero, as can be seen in Figure 4.6. This phenomenon 

hurts the rate-distortion performance at moderate to low bit rates (~1 bit/pixel/band 

and below) and occasionally introduces disturbing artifacts into the reconstructed 

images. Figure 4.7 shows an example of these artifacts.  
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Figure 4.4: 3D Mallat DWT Decomposition 
 
 

 

Figure 4.5: Sample Planes from Subband Cubes from 3 Different DWT Stages 
 



 95

 

Figure 4.6: Histograms of DWT coefficient values in 4 subbands planes from AVIRIS Cuprite 
scene. All planes are from the first level LLH subband (planes 50 to 53) showing a non zero 

mean. 
 
 

                      

Figure 4.7: Spectral Ringing: Original image (right) and reconstructed from 0.0625 
bits/pixel/band compressed AVIRIS image 
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Mitigation of Spectral Band Signal Level Variations 

Two methods were developed for mitigating the spectral ringing effects described 

above. Compression results illustrating the benefits of these methods are presented in 

section 4.3.3. The two methods are as follows: 

 

Mean Subtraction.  

The basic idea of this method is simply to subtract the mean values from spatial 

planes of spatially low-pass subbands prior to encoding, thus compensating for the 

fact that such spatial planes often have mean values that are far from zero. The 

resulting data are better suited for compression by methods that are effective for 

subbands of 2D images such as the ones used for ICER [62] and described earlier in 

this chapter.  

 

Additional DWT Decompositions 

An alternative approach to mitigate this problem is to perform additional DWT 

decompositions. Not only is the low-pass subband further decomposed, but spatially 

low-passed, spectrally high-pass subbands are also further spatially decomposed.  

 

These two methods can be combined, i.e., we can perform the modified 

decomposition and then subtract the mean values from spatial planes of the spatially 

low-pass subbands. In the context of ICER-3D-HW, the mean subtraction method is 
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easy to implement as follows. After the 3D wavelet decomposition is performed, 

mean values are computed for, and subtracted from, each spatial plane of each error-

containment segment of each spatially low-pass subband cube. The resulting data is 

converted to sign-magnitude form and compressed as in the baseline ICER-3D-HW. 

The mean values are encoded in the compressed bit-stream and added back to the 

data at the appropriate decompression step. The overhead incurred by encoding the 

mean values is only a few bits per spectral band per segment, which is negligible 

because of the huge size of hyperspectral data sets. Note that it is important to 

subtract the means after all stages of subband decomposition; otherwise if two 

adjacent error-containment segments have significantly different means, a sharp edge 

would appear after subtracting the means, artificially increasing high-frequency 

signal content in further stages of spatial decomposition. 

 

Other researchers have also used modifications to the Mallat decomposition for 

hyperspectral image compression. For example, in 3D tarp coding and 3D SPIHT 

[110] [96] the wavelet decomposition used is equivalent to a 2D Mallat 

decomposition in the spatial domain followed by a 1-D Mallat decomposition in the 

spectral dimension. The resulting overall decomposition has further decomposed 

subbands compared to our modified decomposition with the same number of stages. 

Because all of the transform steps of our modified decomposition are included in the 

decomposition of [110][96], the latter enables a similar advantage in compression 
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effectiveness. Alternatives to the Mallat 3D wavelet decompositions have also been 

used for compression of 3D medical data sets [114], and video coding [69][101]. 

 

4.2.3 From Software to Hardware – FPGA Implementation 

Considerations 

In general, when moving an algorithm from software to hardware, major 

modifications are needed to tailor the algorithm to a hardware platform, in our case 

the FPGA platform, in order to take full advantage of the high performance of the 

target hardware platform. These changes include precision analysis, simpler 

architectures for coding and schemes that minimize I/O operations. Keeping these 

issues in mind in the design phase of the algorithm makes this transition simpler. 

Since the ICER-3D-HW is lossless and lossy, precision and fixed point analysis are 

not needed due to the fact that our hyperspectral sensory data and our DWT filters 

are integer-valued. However, dynamic range expansion in the DWT may occur after 

several filtering operations for certain filters, resulting in excessive memory 

requirements or the need to quantize the DWT coefficients and make the algorithm 

lossy.  The next section will describe the analysis and design choices used to 

overcome this issue. Other issues we consider for migration from software to 

hardware are the choices for the context modeler and mitigation techniques for the 

spectral ringing artifacts in 3D DWT. 
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4.2.3.1 Dynamic Range Expansion for DWT Data 

In general, the range of possible output values from a reversible DWT can be larger 

than the range of input values [81]; such an increase can be seen as a dynamic range 

expansion. The amount of dynamic range expansion can increase with the number of 

filtering operations. Dynamic range expansion can be an issue because storage of 

wavelet-transformed samples may require binary words that are larger than those 

used for the original samples. In particular, one must pay attention to the degree of 

dynamic range expansion if the wavelet decomposition is performed in-place, i.e., 

when memory locations originally used to store image samples are subsequently 

used to store DWT coefficients, as is the case in most hardware implementations of 

the DWT.  

 

For the filters used in ICER and ICER-3D-HW, low-pass filtering does not expand 

the dynamic range, but high-pass filtering does. The dynamic range expansion 

following a single one dimensional high-pass filtering operation can be described 

[62] by the approximation 

)3.4(.)( minmaxminmax axxhh −≈−  

 

Here Xmax and Xmin denote the maximum and minimum possible values input to the 

DWT, and hmax, hmin denote the maximum and minimum possible values output 

from the (one dimensional) high-pass filtering operation. As noted in [62], 
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minmax hh −≈ . The constant a is equal to the sum of the absolute values of the filter 

taps for the linear filter that approximates the particular high-pass filter. Thus, each 

additional stage of high-pass filtering results in dynamic range expansion by a (filter-

dependent) factor a, or log2 a bits. Under the decomposition structure used by ICER-

3D-HW, each subband is produced using at most one high-pass filtering operation in 

each of the three dimensions (x, y, or λ), so the worst-case dynamic range expansion 

comes from three high-pass filtering operations. Table 4.1 shows the dynamic range 

expansion resulting from up to three high-pass filtering operations for the filters used 

by ICER-3D-HW. 

 

The last column of Table 4.1 can be used to determine the binary word sizes required 

to accommodate dynamic range expansion for a given source bit depth, or 

conversely, determine the restriction on source bit depth for a given storage word 

size. For example, 16-bit words are sufficient to store the coefficients produced by 

applying a 3D decomposition, using the (2,6) DWT filter pair (filter A) on 12-bit 

data (such as uncalibrated AVIRIS data). But the other filter choices may produce 

DWT coefficients that cannot be stored in 16-bit words following 3D wavelet 

decomposition. 

 

However, if such a filter pair is not used and expansion does occur for the transform 

coefficients, there are some techniques that may be used to relax the requirements, 
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with minor costs. For example, quantization of DWT output could be performed at 

intermediate stages of the decomposition to reduce the dynamic range as needed. 

This method sacrifices the ability to perform lossless compression, and it may 

slightly decrease compression effectiveness at high rates, but it may be quite 

practical when lossless or near-lossless compression is not needed. For all examples 

presented in this chapter, as well as for the hardware implementation presented in the 

next chapter, wavelet transforms are performed using filter A, which is the integer 

(2,6) DWT filter pair described in [62], [1] and [90].   

 

Table 4.1: Approximate Dynamic Range Expansion following 1, 2 and 3 filtering 
 

Filter 

One High-Pass  

Filtering Operation 

a     log2 a bits

Two High-Pass  

Filtering Operation 

a2   log2 a2 bits

Three High-Pass  

Filtering Operation 

a3   log2 a3 bits

A 5/2   1.32 25/4  2.64 125/8  3.97 
B 11/4  1.46 121/16  2.92 1331/64 4.38 
C 25/8  1.64 625/64  3.29 15625/512 4.93 
D 41/16  1.36 1681/256 2.72 68921/4096 4.07 
E 47/16  1.55 2209/256 3.11 103823/4096 4.66 
F 51/16  1.67 2601/256 3.34 132651/4096 5.02 
Q 11/4  1.46 1/16  2.92 1331/64 4.38 

 

The aforementioned analysis can also be used to aid filter designers in the selection 

of filter coefficients that are hardware and memory friendly when used for 

compression or analysis of data. As mentioned earlier, low-pass filters do not cause 

dynamic range expansion and no constraints need be applied here. For high pass 

filters, if the maximum desired dynamic range expansion is B (in our case B = 4), the 
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sum of the absolute values of the filter coefficients must satisfy the following 

equation: 

)4.4()||(log
1

0
2 Bh Jn

i ≤∑
−

 

Where hi is a coefficient of a high pass filter of length n, and J is the maximum 

number of levels in the DWT decomposition. 

 

4.2.3.2 Context Modeler Design for HW Implementation 

While a 3D context modeler that covers the third dimension of the subband cubes 

has noticeably better compression-effectiveness than a 2D context modeler (as was 

shown by JPL researchers [63]), the increased computation complexity and data I/O 

makes it impractical for hardware implementation without major modifications. 

ICER-3D-HW employs the two-dimensional context model described in Section 

4.2.2.2, relying on eight (spatial) neighbors in a subband plane and operating on one 

subband plane at a time.  

 

4.2.3.3 Mitigation of Spectral Ringing Artifact in HW 

Seeking the low-complexity solution for the FPGA hardware implementation, the 

mean subtraction method described in Section 4.2.2.3 was selected for the hardware 

implementation described in the next chapter. The alternative approach to mitigate 



 103

this problem, i.e., the use of additional DWT decompositions, is far more complex 

and produces minor improvements in comparison to the mean subtraction method (as 

will be shown in the next section). The hardware design complexity and the 

additional resources (and thus, higher mass and power) required, are not justifiable 

for our applications. 

 

4.3 Experimental Results 

In this section we present our compression results for both lossless and lossy 

hyperspectral data compression performed on various AVIRIS data sets. We show 

comparisons to other 3D coding methods and state-of-the-art 2D coding algorithms. 

We also show results demonstrating the effects of techniques to mitigate the spectral 

ringing artifacts discussed earlier in this chapter. 

4.3.1 Lossless Compression 

Tests were performed using available AVIRIS data sets (calibrated and 

uncalibrated). Data sets were divided into image cubes of 512 lines x 614 pixels 

each. These calibrated data sets represent 1997 scenes from Moffett Field 

(vegetation, urban, water), Cuprite (geological features), Jasper Ridge (vegetation), 

Lunar Lake (calibration), and Low Altitude (high spatial resolution) [20]. Table 4.2 

shows the lossless compression performance of ICER-3D-HW on these five 

calibrated AVIRIS radiance data sets. For comparison, Table 4.2 also shows results 
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for the “fast lossless” compressor from [71], the Rice compressor used in the 

Universal Source Encoder for Space (USES) chip using the multispectral predictor 

option mentioned in [52], ICER-2D applied independently to individual spatial 

planes, JPEG-LS image compressor [111], JPEG2000, and locally optimal 

partitioned vector quantization (LPVQ) [84]. 3DSPIHT, 3DSPECK [97] and 

JPEG2000 multi-component [58] results are available and shown here for scene 1 of 

the Jasper Ridge 1997 reflectance scene.  The results of Tables 4.2 indicate that 

ICER-3D-HW provides more effective lossless compression than simple two-

dimensional approaches, the USES multispectral compressor and all 2D approaches. 

But ICER-3D-HW is outperformed by the simpler fast lossless compressor of [71], 

which was designed to be a lossless compression only, and LPVQ which is highly 

complex due to its data dependent adaptive nature.  

 
Table 4.2: Lossless compression results (bits/sample) for calibrated 1997 AVIRIS data sets 

ICER-3D- fast Rice/USES ICER JPEG-LS JPEG LPVQ 3D- 3D- JPEG2K
Dataset HW lossless multil (2D) (2D) 2K SPECK SPIHT Multi
Cuprite 5.80 4.95 6.04 6.95 7.24 8.37 5.28 * * *

Jasper Ridge 6.12 5.04 6.17 7.60 7.78 8.96 5.42 * * *
Low Altitude 6.35 5.34 6.47 7.36 7.66 8.89 5.76 * * *
Lunar Lake 5.72 4.97 5.99 6.79 6.97 8.16 5.25 * * *
Moffett Field 5.96 5.07 6.13 7.22 7.46 8.79 5.51 * * *

Jasper Scene1 6.81 6.07 6.63 8.42 * 8.59 * 6.70 6.72 6.9
(Reflectance)

Average 6.13 5.24 6.24 7.39 7.42 8.63 5.44  
 

Figure 4.8  shows results for uncalibrated (raw) data compressed by ICER and 

ICER-3D-HW. The table shows that higher compression-effectiveness can be 

achieved on raw data as compared to encoding calibrated data. This indicates that 

calibrated data has additional artifacts that the algorithm does not adapt to. On-board 
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compression will operate on raw sensory data coming from the spectrometer; hence 

further investigation of performance on calibrated data is not needed. 
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Figure 4.8: Lossless Results with uncalibrated AVIRIS Data - Tests using 512 line scenes from 
uncalibrated (raw) AVIRIS data sets(Original data 12bits/sample) 

4.3.2 Lossy Compression 

Figure 4.8 shows the rate-distortion performance comparison of ICER-3D-HW and 

ICER-2D for the AVIRIS ‘97 Cuprite scene. In both cases, compression was 

performed using three stages of wavelet decomposition.  ICER-2D results were 

obtained by applying ICER independently to individual bands. ICER-3D-HW results 

were obtained by the 3D extension of ICER described earlier; specifically, using a 

3D Mallat decomposition combined with spatial context models. Figure 4.9 shows a 

comparison between ICER-3D-HW and a baseline 3D DWT approach that uses 
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DWT coefficients quantization and entropy coding. The figure demonstrates the 

effectiveness of the context modeling approach used in ICER-3D-HW.  
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Figure 4.9: Comparison of Lossy Compression between ICER-2D and ICER-3D-HW 

Baseline 3D DWT
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Figure 4.10: Comparison of Lossy Compression between a baseline approach and ICER-3D 
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4.3.3 Results from Mitigation Techniques of the Spectral 

Ringing Artifacts  

The methods described earlier for the mitigation of the spectral ringing artifacts 

provide a noticeable improvement in rate-distortion performance compared to the 

baseline approach, especially at moderate to low bit rates (roughly 1 bit/pixel/band 

and below). In Figure 4.11 we compare the rate-distortion performance of these 

methods to the baseline approach. Results shown are for a 512 line radiance data 

scene of Cuprite, Arizona. The points shown on the curves were produced by 

compressing all bit planes up to a specific level of significance. It can be seen that 

mean subtraction and the modified decomposition provide very similar rate-

distortion performance, and give roughly a 10% improvement in rate compared to 

the baseline method at 1 bit/pixel/band. When the number of wavelet decompositions 

is small, the rate-distortion performance of modified decomposition alone is slightly 

worse than using mean subtraction or the combination of the two methods. 
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AVIRIS Cuprite 2001 data set; 512x614x224 bandsAVIRIS Cuprite 2001 data set; 512x614x224 bands

 
Figure 4.11: Rate-distortion performance and baseline ICER-3D-HW for the Cuprite scene.   

(A) Mean subtraction (B) Additional DWT decompositions. 
 

Overall, the use of either method from Section 4, with ICER-3D-HW, provides a 

moderate subjective image quality improvement consistent with the improvement in 

mean squared error (MSE) distortion [72][73]. In some cases, however, the 

improvement is more dramatic, especially with regard to reduction of bias in 

reconstructed images when compressed at low bit rates. This is illustrated in the 

false-color images of Figures 4.12.  Band 176 was deliberately chosen because its 

reconstruction exhibits a noticeable bias when using the baseline ICER-3D-HW on 

these scenes. This bias can be seen as an apparent overall color change under the 

baseline ICER-3D-HW and, to a somewhat lesser degree, under mean subtraction. 

The mean subtraction method was incorporated into ICER-3D-HW and ported to the 

FPGA implementation as detailed in the next chapter. 
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Figure 4.12: Comparison of detail region using different compressors at 0.0625 bits/pixel/band. 
(A) Mean subtraction (B) Additional DWT decompositions 

 
 

4.4 Applications and Metrics 

4.4.1 Region-of-Interest coding for 3D data sets 

Typically, spacecraft imagers and remote sensors have the capability to collect far 

more data than can be transmitted to earth. Remote sensing image users are usually 

interested in only partial regions of the image sequence. That is to say, certain 

regions are more important than other regions. On-board processing algorithms can 
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recognize relevant features in the collected data, and hence it is unnecessary to treat 

all image pixels equally. Insignicant regions should be highly compressed or 

assigned to zero bit to minimize the total number of bits, thereby reducing 

transmission time and cost without losing the analysis quality of the image sequence. 

The available bandwidth can then be reallocated by spending more bits in the regions 

of interest (ROIs), which speeds up and facilitates browsing of large datasets for 

remote sensing applications. 

 

Several algorithms have been proposed for ROI image compression. Progressive data 

compression algorithms such as wavelet-based image compression can be used for 

this purpose. During progressive compression, the image data is parsed into 

hierarchical data segments that yield continual but diminishing improvement of 

fidelity with each segment. The JPEG2000 image coding standard defines two kinds 

of region of interest (ROI) compression methods; the general scaling based method 

and the maximum shift method [99]. The two methods reduce compression 

efficiency by increasing the dynamic range (or number of bit planes) of wavelet 

coefficients, and they do not have the special protection for the ROI against the bit 

errors in  communication, Fukuma et al [44] proposed to use a wavelet transform 

composed of two wavelet filter sets with different tap lengths, the shorter-length set 

to code an ROI of an image and to the longer-length one for the remainder of the 

image. While such an approach results in improved overall compression efficiency it 
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adds an additional level of complexity to the system. Ding et al [37][38] introduced 

an approach based on Wyner-Ziv theorem (source coding with side information). In 

such approach, the reconstructed low quality ROI image is treated as side 

information and can be utilized by a turbo decoder to decode the high quality ROI. 

While it improves the compression efficiency as well as efficiently protecting the 

ROI against bit errors, it is not progressive. 

 

Our interest in this development is in schemes for progressive compression that 

produce data segments specially tailored to “regions of interest” (ROIs) identified in 

the images. Our approach, as a natural follow through to the ICER-3D development, 

extends ICER-ROI [39], the 2 dimensional region-of-interest version of the ICER 

image compressor, to hyperspectral data. It will be called ROI-ICER-3D. It uses the 

same priority map for all spectral bands (this was extended later by other JPL 

researchers to assign separate maps for each spectral band or group of bands). 

 

ROI-ICER-3D takes as input both the raw image data and a data prioritization map. 

A data prioritization map (or priority map, for short) is an assignment of a priority 

number to each pixel of an image. In our implementation, a priority number is an 

integer, with higher numbers indicating higher priority. A difference of some number 

b between two priority numbers indicates that the higher priority pixel should be 

reconstructed to roughly b more bits of precision than the lower priority pixel. The 
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priority map is generated by identifying and classifying features of the source image 

that are of interest to the end-users of the data. A priority map might be based on 

information contained entirely within the image being compressed, or it might be 

based on additional information, e.g., from recognizing changes from an earlier 

acquisition of the same scene. To be most effective, the classification and 

prioritization algorithms should be tailored to the specific objectives of the collected 

data. Foe example, a geologist analyzing hyperspectral images would most likely 

consider any image areas corresponding to cloud cover useless, whereas a 

meteorologist may be of the opposite opinion. Both scientists would probably give 

low priority to image areas corresponding to visible ocean surface, but an 

oceanographer may think otherwise.  

 

The hyperspectral dataset and priority map are transformed using a wavelet 

transform. Priorities are accommodated by left-shifting (scaling by powers of 2) 

wavelet-transformed pixels according to their corresponding priorities. Output 

compressed data form a progressively coded “chain”. The chain consists of 

successive bit planes of priority-scaled levels of wavelet decomposition. Truncation 

of chains at different points determines the compression rate-distortion tradeoff. Due 

to the 12 to 16 bit nature of hyperspectral data and its DWT transform, a scheme of 

virtual shifting was designed to avoid expansion of memory requirements. 
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Figure 4.13: Region of Interest (ROI) Hyperspectral Data Compression 
 

“Virtual” ROI scaling rather than actual ROI scaling in ROI-ICER-3D avoids 

expansion of dynamic range due to actual scaling, reduces memory requirements and 

improves compression performance. As shown in Figure 4.4, assigning an ROI 

priority scale of 2 (i.e. left shift high priority pixels by 2) adds two bit planes to the 

data, b8 and b9, when the old actual scaling scheme is used. The grey shaded zeros 

represent the extra bits that will be scanned during the bit plane encoding, affecting 

compression effectiveness as well requiring as much as twice the memory needed to 

hold the scaled data. In “virtual scaling”, no new bit planes are introduced, the 

algorithm reads the priority map to determine if a pixel has a higher priority and 

scans first the bit planes of the high priority pixels skipping all the ones with lower 

or no priority assignment. The scanning method shown on the right of Figure 4.4 

scans in its first path the b7 bits of pixels 3 and 4, and then proceeds to scan b6 bits of 

the same pixels. b7 bits of the rest of the pixels get scanned in the third bit plane pass. 
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In addition, scanning of pixels 3 and 4 is shifted by 2, eliminating the need to scan 

zeros for the lower bit planes as was the case for the actual scaling.  
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Figure 4.14: Virtual Scaling for ROI-ICER-3D 
 

The benefits of “virtual scaling”, which required major software redesign, are 

reduction of memory requirements (more desirable for hardware implementations as 

well as software) and enhancement of compression effectiveness. Table 4.3 

demonstrates the compression performance improvements due to eliminating the 

extra bits introduced by actual scaling. 

Table 4.3:  Improvement for lossless coding comparing virtual and actual scaling 
ROI scaling factor Actual scaling Virtual scaling

(bit planes) Rate (bits/pixel/band) Rate (bits/pixel/band)
0 5.00 5.00
1 5.30 5.07
2 5.56 5.10
3 5.79 5.11
4 6.02 5.10
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Figures 4.15 and 4.16 show an example of compression using ROI-ICER-3D and the 

associated rate distortion curves for an AVIRIS image [8]. 
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Figure 4.15: Example of ROI-ICER-3D compression of hyperspectral data set 
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Figure 4.16: Performance comparisons on AVIRIS test image ROI-ICER-3D vs. (non-ROI) 
ICER-3D 

 

4.4.2 Classifications and Signature Extractions 

In many hyperspectral applications, classification and signature extraction are the 

end result. Classification accuracy for image cubes reconstructed after being 

compressed with ICER-3D-HW was tested on AVIRIS data sets and demonstrated 

completely successful classification down to .4bits/pixel (with minimum of 10 
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classes). An example of a signature extraction before and after compression is shown 

in Figure 4.17.  
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Figure 4.17: Example of Spectral line – Original and Reconstructed after Compression 
 

We also tested the classification accuracy with an EO1 Hyperion test image. The 

classification algorithm separates the data into four classes: ice, water, land, and 

snow, and uses the support vector machine (SVM) pixel based classifier [30][35]. 

Figures 4.18 demonstrates compression down to 0.01bit/pixel with ICER-3D-HW, 

without significant degradation in classification accuracy. 
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Figure 4.18: Example of lossy ICER-3D-HW performance  in classification 
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4.5 Conclusions   

In this chapter we presented a compression-effective, low-complexity 3D 

compression approach for hyperspectral imagers and sounders, suitable for on-board 

hardware implementation. Our approach is based on the reversible DWT transform, 

and extends a state-of-the-art 2D image compressor, ICER, to 3D data sets. We 

presented implementations based on the progressive 3D DWT. We looked into issues 

related to extending a 2D DWT approach to 3D DWT and porting the design to 

hardware. We also looked into 3D DWT limitations, such as the “spectral ringing 

artifacts” and provided a practical solution to mitigate the problem and provide better 

compression results at low bit rates. We presented an algorithm for region of interest 

(ROI) hyperspectral data compression that utilizes “virtual scaling” which has lower 

storage requirements and provides better compression effectiveness than standard 

scaling techniques. We presented compression results of test images from AVIRIS 

and compared them to other state-of-the art compression techniques. Metrics in 

terms of MSE and classification accuracy were addressed and test results were 

provided. 
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Chapter 5 
 

Chapter 5: Hyperspectral Data Compression on Reconfigurable Platforms 

 

5.1 Introduction 

 

Current NASA hyperspectral instruments either avoid compression or make use of 

only limited lossless image compression techniques during transmission. For 

example, the current state-of-the-practice is to use the Universal Source Encoder for 

Space (USES) chip [52]. USES implements the standard lossless CCSDS, which is 

based on the Rice algorithm, and has a multispectral mode, extending its operation to 

3D data sets. The USES chip performance, as was shown in Chapter 4, has low 

compression effectiveness as compared to other existing techniques and lacks the 

flexibility be efficiently tailored to specific instruments needs. The main reasons for 

such practice by NASA are: the limited downlink bandwidth, the need to reduce the 

risk of corrupting the data-stream needed for accurate science processing, and the 

lack of a viable on-board platform to perform significant image processing and 

compression. Future instruments with more sensors and much larger number of 

spectral bands will collect enormous volumes of data that will far outstrip the current 

ability to transmit it back to Earth (data rates for some instruments can go to several 

hundreds of Gbits/sec [17][45][42]). This gives rise to the need for efficient on-board 
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hyperspectral data compression. Software solutions have limited throughput 

performance and are power hungry. Dedicated hardware solutions are highly 

desirable, taking load off the main processor while providing a power efficient 

solution at the same time. VLSI implementations are power and area efficient, but 

they lack flexibility for post-launch modifications and repair, they are not scalable 

and cannot be configured to efficiently match specific mission needs and 

requirements. FPGAs are programmable and offer a low cost and flexible solution 

compared to traditional ASICs.  

 

While the benefits of FPGAs in general are significant, as was briefly discussed 

earlier in this thesis, the new capabilities of recent FPGAs offer an important new 

opportunity for achieving high performance. For example, the Xilinx Virtex II Pro, 

[113] with embedded Power PC processors, can operate at clock speeds up to 300 

MHz, has multiple high performance serial interconnects and an extensive array of 

reconfigurable logic.  

 

Fry and Hauck presented an FPGA implementation of the 2D SPIHT for 

hyperspectral data compression [43]. The implementation, due to its 2D nature, does 

not take advantage of the spectral correlations in the data. While SPIHT offers 

options for lossless compression by using reversible integer filters, this specific 

FPGA implementation was designed for lossy data compression and it targets a 
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prototype board with 3 FPGAs, one for the DWT and two for bit plane and entropy 

encoders, which results in high power and mass. An enhanced version of the 2D 

SPIHT algorithm, which uses band ordering and spectral predictive coding, was 

presented by Miguel et. al. [82] as a candidate for FPGA implementation. Miguel’s 

implementation uses the 2D SPIHT FPGA compressor developed by Fry and Hauck 

as the base implementation, and extends it for the band ordering and prediction to be 

implemented in a separate, fourth, FPGA. While this proposed implementation yields 

improved compression efficiency due the interband prediction scheme, it comes at 

high power and mass.  

 

As is the case for most efficient compressors, software implementation of the ICER-

3D-HW compressor, described in the previous chapter, suffers from real-time 

processing difficulties. In this chapter we present an efficient embedded and scalable 

architecture for the ICER-3D-HW compressor, which we prototyped and 

implemented in the Xilinx Virtex II pro FPGA platform. The implementation takes 

advantage of the FPGA embedded PowerPC core and the on-chip bus architecture. 

Such platforms allow efficient partitioning of the algorithm into software and 

hardware modules to take full advantage of the available hardware resources and 

provide a system on a chip (SoC) solution for the hyperspectral data compression 

problem. Contrary to the two implementations of SPIHT mentioned earlier, our 
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implementation aimed for a single chip solution that can be readily ported to any 

instrument hardware platform. 

 

In this chapter, we also present a methodology for a scalable embedded FPGA based 

implementation for a complex 3D compression system. We extended the wavelet 

transform methodology presented in Chapter 3 to hybrid Hardware/Software SoC 

FPGA implementations, addressing issues of SW/HW partitioning of algorithm 

modules, scalability of design, and trade-offs to meet practical considerations 

constraints.  

 

This rest of this chapter is organized as follows. Section 5.2 details our system 

implementation methodology. Section 5.3 describes the ICER-3D-HW SoC FPGA 

implementation details and performance. Section 5.4 presents our summary and 

conclusions.  

 

5.2 Implementation Methodology for a Scalable Embedded 

Hyperspectral Data Compression Architecture  

Our methodology is depicted in the flow chart shown in Figure 5.1. We extend the 

2D wavelet transform methodology developed in the first part of this thesis to hybrid 

Hardware/Software SoC FPGA implementations. As in the case of the 2D DWT 

methodology, several steps can be considered generic in terms of hardware design. 



 123

In addition to the steps that address the limitations and design choices listed for the 

2D DWT methodology, our SoC methodology addresses the issue of SW/HW 

portioning of algorithm modules through a process of performing software profiling 

to identify appropriate candidates for hardware acceleration. Dynamic range 

expansion studies for the DWT are also performed to identify and select a suitable 

choice for the DWT filter pair. Finally, scalability of design, and trade-offs to meet 

practical considerations constraints, are performed to complete the design 
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Figure 5.1: Implementation Methodology Flow Chart for the SoC FPGA implementation 



 125

5.2.1 Software Profiling and HW/SW Partitioning 

The ICER-3D-HW c-code was profiled for software estimation and subsequent 

HW/SW portioning. Figure 5.2 shows that the system can be partitioned into 4 main 

blocks: 3D DWT, segmentation and conversion module, context modeler, and 

entropy coder. From Figure 5.3 it is apparent that the most time consuming blocks 

are the 3D DWT and the context modeler. Therefore the 3D DWT and the context 

modeler modules are the primary candidates for hardware implementation due to 

their computational complexity, while the other blocks can reside in software on the 

PPC processor. For a scalable design that may have more than one module 

performing the DWT and the context modeling, a hardware implementation of the 

entropy coder may be needed to maintain the desired throughput.  

Hyperspectral Data Compression Algorithm (ICER-3D) – Block Diagram 

Compressed 
Data Stream

3D
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Segmentation 
and  DWT 

Conversion

 

Figure 5.2: ICER-3D-HW Compressor-Block Diagram 
 

Our approach for the full implementation was incremental. Initial candidate modules, 

such as the 3D DWT, will be implemented on the FPGA fabric as individual cores 

(IP cores or intellectual property), while the rest of the modules will run on the 

PowerPC. The PPC will also act as the global controller, managing the overall 
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operation of the compression system, including executing the top-level control and 

processing functions as well as scheduling, supervising and monitoring the 

processing activities and managing internal and external data transfers.  New 

hardware modules were added in the form of hardware cores attached to the system 

bus, with the corresponding functionalities removed from the PPC software tasks. 
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Figure 5.3: Software Profiling of ICER-3D-HW  
 

5.2.2 Dynamic Range Expansion for DWT Transformed 

Data  

While dynamic range expansion analysis was detailed in Chapter 4, such analysis is 

listed here as part of the implementation methodology since it plays an important 

part in matching the design to the available hardware resources.  
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Dynamic range analysis expansion, as detailed in section 4.2.3.1, showed that 16-bit 

words are sufficient to store the coefficients produced by applying a 3D DWT 

decomposition, using filter A  (the (2,6) DWT filter pair) [63] to 12-bit data (such as 

uncalibrated AVIRIS data). However, other filter choices in ICER-3D-HW software 

may produce DWT coefficients that cannot be stored in 16-bit words following 3D 

wavelet decomposition. Hence, the DWT filters we used in this hardware 

implementation were the (2,6) filter pair. 

 

5.2.3 Three Dimensional DWT Hardware Architecture   

Similar to the 2D DWT implementations, the filter design methodology has to 

choose among different well known architectures or produce a custom architecture to 

match the given constraints. While the cascaded architecture was the ideal choice for 

the 2D case, the massive buffering requirements for a 3D DWT cascaded design 

makes the choice impractical. 

 

For an image cube of width W, length of L lines, and λ spectral bands, and DWT 

filters of length less than or equal to Fl , the cascaded 3D pipelined architecture for a 

pushbroom sensor (BIP or BIL data format), require internal storage of (measured in 

pixels to store row-column DWT transformed planes)  : 

)1.5(** λWFl  
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For AVIRIS data sets of dimensions 224x614x512, and the (2,6) DWT filter pair, we 

need 1.65 Mbytes of storage for each DWT processing unit. A typical large FPGA 

usually has about 1M Byte of on-chip RAM (BRAM). Hence, the practical choice is 

a hybrid design comprising a two phase architecture. As shown in Figure 5.4, phase 

1 consists of a cascaded row-column DWT decomposition, followed by a folded 

architecture for the 3rd dimension DWT in phase 2.  

 

 

Figure 5.4: Block Diagram of the 3D DWT 
 

5.2.4  On-Chip Storage Calculations for the 3D DWT 

For a DWT filter pair and an image cube of N x L x λ pixels, and denoting 

Fl – the length of the longest filter  
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J   - DWT decomposition levels  

S  - Number of DWT line modules  
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Figure 5.5: Three Dimensional DWT Hardware Platform 
 

Consider the stripe-parallel design shown in Figure 5.5. After the completion of 1 

level DWT decomposition, the number of transitional boundary states generated at 

the first boundary of stripe 1 and stripe 2 is: 

from stripe 1: 

⎡ ⎤ )2.5(**2
1

1 λNFm lB =  

 

 

and from stripe 2 

⎣ ⎦ )3.5(**2
1

2 λNFm lB =  
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where memory is measured here in number of pixels, ⎡ ⎤  and ⎣ ⎦  are the ceiling 

and the floor operators to accommodate odd length DWT filters at the stripe 

boundaries. This results from the absence of image data along the boundaries of B1 

and B2 required to complete the filtering operations. After the completion of 2 

decomposition levels additional transitional boundary states are generated at the 

same boundary: 

from stripe 1: 

⎡ ⎤ )4.5(*** 2
1

2
1

1 λNFm lB =  

and from stripe 2 

⎣ ⎦ )5.5(*** 2
1

2
1

2 λNFm lB =  

Hence the memory required to hold transitional boundary states for each boundary 

is: 
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and the total memory (measured in pixels) required to hold transitional boundary 

states for the overlap-state algorithm for all the boundary data is: 
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For the overlap-save algorithm, we only save boundary states once and exchange at 

every level of DWT decomposition, hence the internal memory required is: 
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)8.5(.)1(*** −= SNFm ltotal λ  

For a typical AVIRIS image, of dimensions 614x512x224, J=3, Fl=6, and S=4, we 

need about 8.5Mbytes of internal memory for the overlap-state, and about 4.8 

Mbytes for the overlap-save, making both techniques impractical. 

The practical design choice for this implementation is the straightforward 

overlapping architecture, which requires no internal storage for boundary states, even 

though it requires additional DWT computations when compared to other 

architectures.  

 

For the cascaded DWT design of phase 1 shown earlier, the first 2 DWT dimensions, 

the analysis for the storage requirements is the same as that detailed in section 3.3.4, 

yielding the following buffering storage requirements: 

)9.5(** SNFm ltotalFIFO =−  

For the same typical AVIRIS image used for the earlier illustration, the total required 

on-chip RAM (BRAM) for phase 1 measured in pixels is: 6*614*3 = 22Kbytes  

(note that there is no need to account for dynamic expansion in DWT domain since 

we used the (2,6) filter pair).  
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5.2.5 Bit-Plane Encoding and Memory Bandwidth 

Considerations 

The context modeler and entropy coder operate on bit planes of segments of the 3D 

DWT transform (as was detailed in section 4.2.2.2) [63]. This implies a memory 

bandwidth of 16 read and write operations to compute the contexts and encode one 

single pixel. This problem is similar to what researchers encountered in 

implementing the JPEG2000 EBCOT encoder. Several approaches based on massive 

buffering of bit planes were proposed [77][33][34] and one could choose  to 

implement such a choice for the design of  our context modeler. An alternative 

approach, however, is to utilize a priority and encoding scheme to format the bit 

planes post the 3D DWT transform and store them in external memory (RAM), 

transposed and localized, readily available for the context modeler and entropy coder 

stage, as will be explained in section 5.3.2. 

 

5.3 ICER-3D-HW Implementation and Performance 

We applied our methodology to the ICER-3D-HW hyperspectral compression 

algorithm to produce the implementation detailed in this section. 
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5.3.1 Implementation of the 3D (2,6) DWT 

The FPGA implementation of ICER-3D-HW reflects the Mallat decomposition of 

the 3D DWT, modified to compute the mean subtraction of spatially low-pass 

filtered subbands as detailed in section 4.2.2.3 to mitigate the spectral ringing 

artifacts. The first module designed and implemented was the 3D DWT. In addition 

to performing the 3D DWT, the last stage of this module calculates and subtracts the 

means of low pass filtered subbands prior to writing their data to the external 

memory, and hence saves computational costs. We designed cascaded line-based 

wavelet transform modules, which allow the wavelet transform in the 3D DWT case 

to be computed as the lines of the image data cube arrive, rather than waiting for an 

entire frame of data, thus accommodating pushbroom sensors. The parallel DWT 

modules operate on slices of the image cube using the overlapping scheme detailed 

in section 3.2.3. Figure 5.5 illustrates the parallel DWT system. The 3D DWT 

implementation provided 16:1 speed-up versus software and increased to 30:1 with 

two modules of the DWT running in parallel, as benchmarked on our FPGA 

prototype board. 
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5.3.2 Implementation of Context Modeler and Entropy 

Coder 

The context modeler and the interleaved entropy coder were designed for throughput 

performance, with the design of priority–based data formatting and localization 

techniques that transpose bit-planes post the 3D DWT decompositions, and store 

them in memory in contiguous form, to be readily available for the context modeler 

and the indexed bit-plane encoding.  At the completion of the 3D DWT transform, 

and according to the band indexing and the bit plan priority encoding scheme 

detailed in section 4.2.2.2, bit planes are read across blocks of 16 DWT coefficients 

and transposed in-place. The transposed data is written to external memory in a 

contiguous fashion in preparation for the context modeler stage. For example, in 

Figure 5.6, for the DWT segment planes shown, I and J, let segment I have a higher 

index than segment J, and bn denote bit plan n. Let the bit plane priority values be 

sorted from higher to lower as Ibn, Ibn-1, Jbn, …., Ibn-2, Jbn-1,Jbn-2, … . The formatting 

scheme transposes the bit planes and stores them in external memory in the order of 

the priority values as shown. This design accelerates the encoding scheme by a factor 

of more than 10:1.  
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Figure 5.6: Bit-Plane Formatting and Storage 
 

The context modeler itself was designed to be a pipeline that computes contexts of 

multiple bits of the same bit plane from different pixels. If the required compressed 

quota is reached, the context modeler (and entropy coder), conclude the encoding 

process. The entropy coder utilizes look-up tables stored in on-chip BRAM. Speed-

up of more than 10X was obtained vs. software implementation for this module. The 
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design is scalable and allows the use of multiple versions of the module 

simultaneously. Figure 5.7 shows the design and data flow for the context modeler. 
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Figure 5.7: Context Modeler -FPGA Design - Pipeline and Data Flow 

 

The diagram in Figure 5.8 illustrates the parallel architecture of the coding modules 

and the data flow. Bit planes are read from different segment blocks residing in 

RAM. Their contexts are computed independently and fed through to entropy coding 
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modules to generate encoded bit planes. The compressed bit planes are interleaved 

and written back to RAM. The modules are stand-alone units that utilize an efficient 

DMA to access the external DDR memory. Modules can also operate in parallel on 

different segments of the wavelet-transformed image. 
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Figure 5.8: Parallel Design for the Context Modeler and Entropy Coder 
 

5.3.3 Data Flow and Memory Management 

Figure 5.9 shows the system data flow and the external memory bandwidth. Output 

of the 1st dimension DWT is pipelined into the 2nd dimension, eliminating external 

memory access. 

Means computations and DWT coefficients conversion are performed as part of step 

3. Segment blocks of DWT coefficients are formatted according to the priority 

scheme described earlier for faster memory access by the context modeler and 
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entropy coder. This provides a total memory bandwidth of no more than 6 total read 

and write operations per pixel. 
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Figure 5.9: Hyperspectral Compressor – Data Flow 
 

5.3.4 FPGA Prototype and Performance 

The implementation of  ICER-3D-HW was designed by applying the methodology 

described earlier [9][10][11]. It was then coded in VHDL and ported to a DINI 

Group PCI prototype board targeting the Xilinx Virtex II Pro XC2VP70 chip. The 

final SoC architecture is shown in Figure 5.10. The hardware development system 

was shown in Figure 2.9. With one copy of each module, we obtained a throughput 

of 4.5 Msample/sec for lossless compression running at a clock speed of 50 MHz 

(lossy compression performance is slightly faster since not all bit planes need to be 

compressed). When the implementation was scaled up to two copies of each of the 
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three main modules, 3D DWT, context modeler and entropy coder, running in 

parallel, the throughput increased to 8 Msample/sec. This throughput is more than an 

order of magnitude faster than the software code,  which runs at about 610 

Ksamples/sec on a Pentium Centrino 1.6MHz processor. A slow memory interface 

specific to the prototype board resulted in a substantial reduction of memory 

bandwidth. Simulations with an improved memory interface design show 

substantially increased throughput to 1 sample/clock cycle (i.e. 50 Msample/sec for 

the current 50 Mhz clock design), resulting in 2 orders of magnitude speed-up vs. the 

software implementation. The device utilization of table 5.1 shows that the full 

implementation of the compressor occupies less than 61% of FPGA resources with 2 

copies of each module running in parallel. Power consumption for this 

implementation is 6.5 Watts with one copy and increases to 7.5 Watts with two 

copies of each of the hardware modules.   
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Figure 5.10: System on Chip FPGA implementation Hyperspectral Data Compressor 
 
 

Table 5.1:  ICER-3D-HW on Virtex II Pro XC2VP70 FPGA - Resources Utilization 
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5.4 Conclusions 

In this chapter we presented an embedded and scalable implementation for the 

ICER-3D-HW compression algorithm in FPGAs. The approach uses a co-design 

platform (SW/HW) with architecture-dependent enhancements to improve 

performance. We addressed challenges in this design related to the intensive I/O of 

the algorithm, the 3D nature of the data and its volume. Solutions to these challenges 

were proposed by choosing efficient DWT architectures and a novel bit-plane 

priority-based data formatting and localization technique that provided more than 

10x in throughput efficiency compared to standard techniques. Finally, we presented 

an extension to our FPGA implementation methodology described in Chapter 3 to a 

system on a chip (SoC) FPGA-based implementations. 
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Chapter 6 

Chapter 6: Conclusion and future work 

 

We presented, in this thesis, a methodology for parallel implementation of the lifting 

DWT on FPGAs, and investigated and analyzed parallel and efficient hardware 

implementations targeting state-of-the-art FPGAs. We addressed practical 

considerations and various design choices and decisions at all design stages to 

achieve an efficient DWT implementation, subject to a given set of constraints and 

limitations. We presented a novel data transfer method that provides seamless 

handling of boundary and transitional states associated with parallel 

implementations, and demonstrated our methodology with an implementation 

example for the (9,7) DWT.  

 

We presented an efficient low-complexity 3D on-board compression approach for 

hyperspectal images and sounders. We presented implementations based on the 

progressive 3D DWT. We addressed issues related to adapting an efficient 2D DWT 

approach to 3D DWT and porting the design to hardware implementations. We 

looked into 3D DWT limitations, such as the “spectral ringing artifacts” and 

provided practical solution to mitigate the problem and provide better compression 

results at low bit rates. We also presented an extension of the algorithm for region of 

interest (ROI) hyperspectral data compression, which utilized a “virtual scaling” 
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approach to improve compression efficiency and reduce memory requirements. We 

provided results and comparisons to other state-of-the art compression techniques. 

 

We presented an embedded and scalable SoC implementation for the ICER-3D-HW 

compression algorithm on FPGAs. We addressed challenges related to the intensive 

I/O of the algorithm and the 3D nature of the data and its volume, and provided 

solutions to speed up the design. We extended our FPGA implementation 

methodology to a system on a chip (SoC) FPGA-based implementations. 

 

Future work will concentrate on insertion of this new technology, especially the 

FPGA SoC implementation of the ICER-3D-HW, into future space-borne 

instruments. Missions such as FLORA and PPFT [17][45] are including compression 

in their initial concept designs and are good candidates to use our final product. Fault 

tolerant designs for the FPGA system may be required by such missions and will be 

investigated. Issues related to transient faults arising from single event upsets (SEUs) 

and mitigation techniques for FPGA based designs will be addressed. Figure 6.1 

illustrates a proposed fault tolerant block diagram of the FPGA SoC compression 

system for future space missions. The green shaded areas in the figure indicate fault 

tolerant hardware,  and ABFT is algorithm based fault tolerance [51][60][16]. 
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Figure 6.1: Fault Tolerant FPGA based Compression System 
 

The new ICER-3D algorithm uses an optimized spectral context modeler for three 

dimensional data and produces better compression efficiency than ICER-3D-HW. 

Future work will also migrate the new spectral context models to the hardware 

platform and extend the implementation to include region of interest compression, 

i.e. ROI-ICER-3D. 
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Chapter 8: Appendices 

 

Appendix A: An Alternative Approach to Hyperspectral Data 

Compression 

An approach with lower complexity than ICER-3D-HW is to use a 2D DWT 

decomposition in the spatial dimension and predictive coding among spectral bands 

(see Figure A.1), which provides a less computationally intensive approach. Most 

predictive techniques (such as DPCM)[4][26][85]) operate on both spatial and 

spectral dimensions and are not scalable. The DWT produces coding gains by 

exploiting data correlations in the spatial dimension. Prediction in the wavelet 

domain provides a good lossless/virtually lossless approach that allows for faster 

adaptation of the local statistics between DWT transformed spectral bands. It 

requires less computation than another 1D wavelet transform, scalable,  however, the 

algorithm is not progressive.  

 

Figure A.1: Spectral data is arranged as 2D images (spectral bands), integer DWT applied to 2D 
images followed by inter-band prediction 
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Our alternative algorithm applies first a 2D wavelet decomposition to each spectral 

band (spatial domain), then exploits spectral correlations through interband 

predictive coding. Quantization (if lossy) and entropy coding are applied to the error 

(difference) images to complete the compression process. 

 

Users aiming for lower complexity and high bit rates may choose the 2D DWT along 

with spectral prediction, while users looking for a progressive lossy/lossless 

compression may choose the 3D DWT algorithm, ICER-3D-HW.  

 

A.1   2D DWT Compression with Prediction 

We investigated various prediction schemes. Prediction depth of more than 2 or three 

planes in the wavelet transform domain did not produce better results and came at a 

high computational cost. The following 3 adaptive  predictors were designed for this 

part of the algorithm 
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where i and j are the special coordinates of a pixel, λ  is the spectral band being 

predicted, and the coefficients a, b, c, and d are computed with least square 
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minimization. Representative samples of calibrated ’97 AVIRIS data downloaded 

from the AVIRIS website were used for training [20]. On-board adaptive training is 

also possible, but comes at a higher computational cost. A practical solution can 

update the coefficients less frequently. 

The residual r  is given by: 

( )4.,, AXXr ji −= λ  

Figure A.2 shows an example of 3 consecutive spectral bands of an AVIRIS data set 

and the resulting residual image using the first predictor 

 

 
(a)                                                         (b) 

Figure A.2: 2D wavelet decomposition with spectral predictive coding. (a) Three consecutive 
spectral bands of AVIRIS Cuprite scene. (b) The resulting residual image 

 
 

A.2   Quantization and Entropy Coding 

While bit plane encoding with prioritized DWT sub-bands might be the ideal 

approach for post transform processing, our first baseline approach was to use scalar 

quantizers (when lossy compression is required) and entropy encoding to minimize 

algorithm complexity.  
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Quantization aims to reduce data entropy by decreasing the data precision.  A 

quantization scheme maps a large number of input values into a smaller set of output 

values. This implies that some information is lost during the quantization process. A 

quantization strategy design must balance the compression achievement and 

information loss. One of the criteria for optimal quantization is minimizing the mean 

square error (MSE) given a quantization scale. Our wavelet coefficients were 

compressed using a uniform scalar quantizer and the Lloyd-Max optimal scalar 

quantization scheme. Residual errors resulting from the 2D DWT with spectral 

prediction scheme were quantized with a uniform quantizer operating on each sub-

band error separately. Sub-band blocks resulting from the 3D DWT decomposition 

consist of two types of data, the high energy LLL block, which preserves most of the 

energy; and the other high-resolution data blocks, which contain the sharp edge 

information. Small quantization scale was used for the LLL block and a relatively 

large scale for the other blocks.  

 

The last step in the compression process is the entropy coding. Huffman coding is a 

variable length scheme that is a minimum redundancy coding. It assigns fewer bits to 

the values with a higher frequency of occurrence and more bits to the values with a 

lesser frequency of occurrence. Based on the occurrence frequency of each 

quantization level, a hierarchical binary coding tree structure brings by sequentially 



 158

finding the lowest two frequencies as tree branches and adding each low frequency 

pair as a new node for the next level. Since each data block is quantized into 

different numbers of quantization levels, the coding process was performed for each 

data block separately resulting in a  separate code book for each sub-band. 

 

A.3  Experimental Results 

 
Our algorithm was tested using the (2,6) DWT transform with AVIRIS ‘97 data sets. 

Figures A.3, A.4 and A.5 demonstrate the lossless and lossy results accomplished 

with this approach and in comparison to 2D DWT compression and a baseline 3D 

DWT using the same type of encoding. The spectral prediction used in these runs is 

based on the simple predictor shown in equation (A.1). 

Lossless CompressionLossless Compression

 
Figure A.3: Lossless compression - Comparison of 2D DWT with prediction compressor to  3D 

and 2D DWT compressors 
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Figure A.4: Lossless Results – Comparisons of 2D DWT with prediction compressor to  fast 
lossless, 3D DWT,  and JPEG-LS lossless compressors 

 
 

Lossy Compression
AVIRIS Cuprite ‘96 data set

Lossy Compression
AVIRIS Cuprite ‘96 data set

 
 
Figure A.5:  Lossy compression  – Comparisons of 2D DWT with prediction compressor to 3D 

and 2D DWT compressors  
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As can be seen from these results, the proposed DWT with prediction algorithm is 

not optimal for all types of hyperspectral data, but produced good results with low 

computational complexity. Enhanced prediction scheme, bit-plane encoding, and 

entropy coding can be pursued with further research and can be expected to improve 

the compression performance. 


