
PARALLEL IMPLEMENTATIONS OF THE DISCRETE WAVELET

TRANSFORM

AND

HYPERSPECTRAL DATA COMPRESSION

ON

RECONFIGURABLE PLATFORMS

APPROACH, METHODOLOGY AND PRACTICAL CONSIDERATIONS

by

Nazeeh Aranki

A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the

Requirements for the Degree
DOCTOR OF PHILOSOPHY

(ELECTRICAL ENGINEERING)

August 2007

Copyright 2007 Nazeeh Aranki

 ii

Dedication

To My Mother

 iii

Acknowledgements

I would like to express my deep gratitude and thanks to my advisor, Dr. Antonio

Ortega, for his guidance, support and patience throughout the years I have been in

the Ph.D. program at the University of Southern California.

I would like to extend my gratitude to Dr. Sandeep Gupta and Dr. Aiichiro Nakano

for serving on my dissertation committee and for their guidance. I also would like

to thank Dr. Richard Leahy and Dr. Alexander Sawchuk for serving on my

qualifying exam committee.

I would like to thank my family and friends for their continued support. My special

thanks to my colleagues and friends at JPL especially Raphael Some for his insight

and inspiration, Jeff Namkung and my colleagues in the data compression group at

JPL, Hua Xie, Aaron Kiely and Matt Klimesh, for their insight and enjoyable

collaboration. I would like to thank my colleagues and former students in the

group at USC, especially Wenqing Jiang.

This research was funded in part by the NASA-JPL Interplanetary Directorate

(IND), the Remote Exploration and Experimentation Program (REE), and the

Center for Integrated Space Microsystems (CISM).

 iv

Table of Contents

Dedication ii

Acknowledgements iii

List of Tables vii

List of Figures viii

Abstract xii

Chapter 1: Introduction 1
1.1 Motivation and Background 1
1.2 FPGA Parallel Implementation of the 2D Discrete Wavelet Transform 4

1.2.1 Parallel DWT Architectures 4
1.2.2 Implementation Methodology for FPGA-Based Design of DWT

Parallel System 7
1.3 Hyperspectral Data Compression 8

1.3.1 Overview 8
1.3.2 3D Coding for Hyperspectral Images 9

1.4 Scalable Embedded Hyperspectral Data Compression on Reconfigurable
Platforms 14
1.4.1 System Design and Practical Considerations 14
1.4.2 Implementation Methodology 16

1.5 Outline and Contributions of this Thesis 16

Chapter 2: Hyperspectral Data Compression: System Overview 20
2.1 Introduction 20
2.2 Hyperspectral Data: An Overview 22
2.3 Three Dimensional Coding 27

2.3.1 3D Wavelet coding 28
2.3.2 Compression Results 30

2.4 Hyperspectral Data Compression on Reconfigurable Platforms 33
2.4.1 FPGA Implementation of a Scalable Embedded Hyperspectral Data

Compression Architecture 34
2.5 Conclusions 35

 v

Chapter 3: Parallel FPGA Implementations of the 2D Discrete Wavelet
Transform 36

3.1 Introduction 36
3.2 Lifting Factorization and 2D DWT Architectures for Hardware

Implementations 39
3.2.1 Lifting Factorization 40
3.2.2 Existing Architectures for FPGA based parallel implementation of

the 2D DWT 41
3.2.3 Proposed Parallel Architectures for the 2D DWT 42

3.3 FPGA Implementation Methodology 45
3.3.1 Lifting Factorization Considerations 47
3.3.2 2D DWT Filter Design 47
3.3.3 Image Partioniong and Design Scalability 48
3.3.4 Memory Bandwidth Considerations and Storage Calculations 50
3.3.5 Management of Memory and Boundary Data 52
3.3.6 Resource Utilization and Architectural Trade-offs 55
3.3.7 Applying the Methodology under Different Platform Constraints 59

3.4 FPGA Implementation Example - (9,7) DWT 60
3.4.1 Parallel 2D DWT System 69
3.4.2 System Architecture 69
3.4.3 DWT Line Processor Architecture 73
3.4.4 Implementations and Performance 77

3.5 Conclusions 79

Chapter 4: Three Dimensional DWT coding for On-Board Hyperspectral
Data Compression in Space Applications 81

4.1 Introduction 81
4.2 Three Dimensional Coding 84

4.2.1 Compression Strategy 84
4.2.2 From 2D to 3D Wavelet Coding 85
4.2.2.1 From ICER-2D Image compression to ICER-3D-HW 86
4.2.2.2 Bit Plane Encoding for 3D data sets 87
4.2.2.3 Spectral Ringing Artifacts in 3D DWT Coding 92
4.2.3 From Software to Hardware – FPGA Implementation

Considerations 98
4.2.3.1 Dynamic Range Expansion for DWT Data 99
4.2.3.2 Context Modeler Design for HW Implementation 102
4.2.3.3 Mitigation of Spectral Ringing Artifact in HW 102

4.3 Experimental Results 103
4.3.1 Lossless Compression 103
4.3.2 Lossy Compression 105
4.3.3 Results from Mitigation Techniques of the Spectral Ringing

 Artifacts 107
4.4 Applications and Metrics 109

4.4.1 Region-of-Interest coding for 3D data sets 109

 vi

4.4.2 Classifications and Signature Extractions 115
4.5 Conclusions 118

Chapter 5: Hyperspectral Data Compression on Reconfigurable
Platforms 119

5.1 Introduction 119
5.2 Implementation Methodology for a Scalable Embedded Hyperspectral Data

Compression Architecture 122
5.2.1 Software Profiling and HW/SW Partitioning 125
5.2.2 Dynamic Range Expansion for DWT Transformed Data 126
5.2.3 Three Dimensional DWT Hardware Architecture 127
5.2.4 On-Chip Storage Calculations for the 3D DWT 128
5.2.5 Bit-Plane Encoding and Memory Bandwidth Considerations 132

5.3 ICER-3D-HW Implementation and Performance 132
5.3.1 Implementation of the 3D (2,6) DWT 133
5.3.2 Implementation of Context Modeler and Entropy Coder 134
5.3.3 Data Flow and Memory Management 137
5.3.4 FPGA Prototype and Performance 138

5.4 Conclusions 141

Chapter 6: Conclusion and future work 142

Bibliography 145

Appendices 154
Appendix A: An Alternative Approach to Hyperspectral Data Compression 154

A.1 2D DWT Compression with Prediction 155
A.2 Quantization and Entropy Coding 156
A.3 Experimental Results 158

 vii

List of Tables

Table 2.1: Hyperspectral Instruments and their Specifications 27

Table 3.1: FPGA Parallel DWT Implementations Trade-offs (for NxN image) 58

Table 3.2: Comparisons to other DWT FPGA Architectures (for NxN image) 58

Table 3.3: Resources Utilization for the Overlap-State Implementation 78

Table 3.4: Resources Utilization and Throughput Comparisons to other

Optimized Methods 79

Table 4.1: Approximate Dynamic Range Expansion following 1, 2 and 3

filtering 101

Table 4.2: Lossless compression results (bits/sample) for calibrated 1997

AVIRIS data sets 104

Table 4.3: Improvement for lossless coding comparing virtual and actual

scaling 114

Table 5.1: ICER-3D-HW on Virtex II Pro XC2VP70 FPGA - Resources

Utilization 140

 viii

List of Figures

Figure 1.1: Scalable parallel based system for the 2D discrete wavelet transform 6

Figure 1.2: 3D Hyperspectral Compressor Block Diagram 12

Figure 1.3: System on Chip FPGA Hyperspectral Data Compressor 15

Figure 2.1: AVIRIS Concept and Data 25

Figure 2.2: AVIRIS hyperspectral data “cubes” 25

Figure 2.3: Hyperspectral Scan Geometry for AIRS 26

Figure 2.4: Correlations in AIRS Simulated Data. (a) Scan Line 1 (b) Scan

Line 50 27

Figure 2.5: 3D wavelet decomposition for an AVIRIS data set covering

Cuprite, NV site 29

Figure 2.6: Lossless Results - Average rate in bits/pixel – ICER (2D): 6.61,

USES (3D): 5.80, ICER-3D-HW: 5.63, “fast lossless”: 5.10 31

Figure 2.7: Achievable lossy compression for ICER (2D) and ICER-3D-HW 32

Figure 2.8: Lossy Compression with ICER (2D) and ICER-3D-HW 32

Figure 2.9: FPGA Hardware Development System 35

Figure 3.1: 1D Wavelet decomposition showing cascaded levels of filter banks 40

Figure 3.2: Overlapping 43

Figure 3.3: Overlap-Save 44

Figure 3.4: Overlap-State technique. 45

Figure 3.5: Implementation Methodology Flow Chart 46

 ix

Figure 3.6: Options for 2D image partioning 49

Figure 3.7: DWT Unit Block Diagram 52

Figure 3.8: Pipeline and data flow for boundary states 55

Figure 3.9: Design tree for an example with different platform constraints 60

Figure 3.10: Flow chart for the Overlap-State DWT algorithm 62

Figure 3.11: Overlap-state implementation of the (9,7) DWT and memory

management 65

Figure 3.12: “Vegas” – Original 512x512 image 66

Figure 3.13: Two-level DWT transformed stripes for “Vegas” image from the

4 processing units 66

Figure 3.14: Final Subbands for 3-level DWT transformed “Vegas” image 67

Figure 3.15: DWT – Parallel Implementations – Performance 68

Figure 3.16: DWT – Parallel implementations – Partitioning effects 68

Figure 3.17: Master processor with system and host communication busses. 72

Figure 3.18: DWT line processor with inter processor communication bus. 75

Figure 3.19: DWT filtering with lifting flow graph for the (9,7) DWT 76

Figure 3.20: Pipelined Arithmetic Unit (PAU) for the (9,7) DWT 76

Figure 3.21: FPGA Parallel Implementations Performance for the (9,7) 2D

DWT 78

Figure 4.1: Integer based DWT is applied to all three dimensions of the image

cube 85

Figure 4.2: ICER 2D Image Compression 86

Figure 4.3: Progression of categories of a pixel as its magnitude bits and sign

are encoded 91

 x

Figure 4.4: 3D Mallat DWT Decomposition 94

Figure 4.5: Sample Planes from Subband Cubes from 3 Different DWT Stages 94

Figure 4.6: Histograms of DWT coefficient values in 4 subbands planes from

AVIRIS Cuprite scene. All planes are from the first level LLH
subband (planes 50 to 53) showing a non zero mean. 95

Figure 4.7: Spectral Ringing: Original image (right) and reconstructed from

0.0625 bits/pixel/band compressed AVIRIS image 95

Figure 4.8: Lossless Results with uncalibrated AVIRIS Data - Tests using 512

line scenes from uncalibrated (raw) AVIRIS data sets(Original data
12bits/sample) 105

Figure 4.9: Comparison of Lossy Compression between ICER-2D and

ICER-3D-HW 106

Figure 4.10: Comparison of Lossy Compression between a baseline approach

and ICER-3D 106

Figure 4.11: Rate-distortion performance and baseline ICER-3D-HW for the

Cuprite scene. (A) Mean subtraction (B) Additional DWT
decompositions. 108

Figure 4.12: Comparison of detail region using different compressors at

0.0625 bits/pixel/band. (A) Mean subtraction (B) Additional DWT
decompositions 109

Figure 4.13: Region of Interest (ROI) Hyperspectral Data Compression 113

Figure 4.14: Virtual Scaling for ROI-ICER-3D 114

Figure 4.15: Example of ROI-ICER-3D compression of hyperspectral data set 115

Figure 4.16: Performance comparisons on AVIRIS test image ROI-ICER-3D

vs. (non-ROI) ICER-3D 115

Figure 4.17: Example of Spectral line – Original and Reconstructed after

Compression 116

Figure 4.18: Example of lossy ICER-3D-HW performance in classification 117

 xi

Figure 5.1: Implementation Methodology Flow Chart for the SoC FPGA
implementation 124

Figure 5.2: ICER-3D-HW Compressor-Block Diagram 125

Figure 5.3: Software Profiling of ICER-3D-HW 126

Figure 5.4: Block Diagram of the 3D DWT 128

Figure 5.5: Three Dimensional DWT Hardware Platform 129

Figure 5.6: Bit-Plane Formatting and Storage 135

Figure 5.7: Context Modeler -FPGA Design - Pipeline and Data Flow 136

Figure 5.8: Parallel Design for the Context Modeler and Entropy Coder 137

Figure 5.9: Hyperspectral Compressor – Data Flow 138

Figure 5.10: System on Chip FPGA implementation Hyperspectral Data

Compressor 140

Figure 6.1: Fault Tolerant FPGA based Compression System 144

Figure A.1: Spectral data is arranged as 2D images (spectral bands), integer

DWT applied to 2D images followed by inter-band prediction 154

Figure A.2: 2D wavelet decomposition with spectral predictive coding.

(a) Three consecutive spectral bands of AVIRIS Cuprite scene.
(b) The resulting residual image 156

Figure A.3: Lossless compression - Comparison of 2D DWT with prediction

compressor to 3D and 2D DWT compressors 158

Figure A.4: Lossless Results – Comparisons of 2D DWT with prediction

compressor to fast lossless, 3D DWT, and JPEG-LS lossless
compressors 159

Figure A.5: Lossy compression – Comparisons of 2D DWT with prediction

compressor to 3D and 2D DWT compressors 159

 xii

Abstract

This work was motivated by the need to dramatically reduce communication data

rates for space based hyperspectral imagers. Key issues are compression

effectiveness, suitability for scientific processing of retrieved data, and efficiency

in terms of throughput, power and mass. We address the problem in three stages:

first, development of a Field Programmable Gate Array (FPGA) hardware

implementation of the parallel Discrete Wavelet Transform (DWT); second,

development of a hyperspectral compression algorithm based on the wavelet

transform and suitable for spacecraft on-board implementation; and third,

development of an FPGA-based hyperspectral data compression “system on a

chip” (SoC).

In developing our hardware implementation of the parallel DWT, our contributions

are: a structured methodology for moving the 2D DWT, and similar algorithms,

into reconfigurable hardware such as an FPGA; a specific representation for the

DWT that provides an architecture suitable for efficient hardware implementation;

and a data transfer method that provides seamless handling of boundary and

transitional states associated with parallel implementations. The resultant new

 xiii

implementation produced significantly improved performance over previous

methods.

In developing our hyperspectral data compression algorithm, our contributions

are: a DWT based algorithm, capable of both lossy and lossless compression, that

can be tailored to accommodate any scientific instrument, and that is suitable for

on-board hardware implementation; algorithm components that are efficiently

designed for three dimensional data, for implementation in hardware, and that

achieve results comparable to or exceeding previous optimized algorithms at a

lower computational cost; the discovery of, and development of mitigation

techniques for, a new artifact-producing phenomenon encountered when using the

3D DWT for compression; and a new technique for region-of-interest

compression of hyperspectral data that uses “virtual scaling” which satisfies low

memory requirements and provides better compression effectiveness.

In developing our FPGA-based SoC, our contributions are: development of a

scalable embedded implementation for the 3D DWT hyperspectral data

compression; a novel priority-based data formatting and localization technique for

bit-plane encoding that provides substantial improvements in throughput

efficiency compared to standard techniques; and extension of the wavelet

 xiv

transform methodology developed in the first part to hybrid Hardware/Software

SoC implementations.

 1

Chapter 1

Chapter 1: Introduction

1.1 Motivation and Background

Our motivation to investigate compression techniques for hyperspectral data derives

from two primary factors: first, the limited bandwidth available to spacecraft

communication channels, combined with the extremely high data rates of modern

hyperspectral imagers, has become a severe limitation to current and planned space

missions; and second, the severe limitations in power and mass budgets for

spacecraft subsystems, combined with the high data rates of hyperspectral

instruments, requires extremely low power, highly efficient implementations of any

required functions. The current state-of-the-practice in NASA space missions is

either limited lossless compression, or no compression, of hyperspectral imagery.

For example, the deep space Cassini mission [28] uses the lossless Rice chip

(Universal Source Encoder for Space (USES)) [107], while the earth orbiting

EO1[41] and Atmospheric Infrared Sounder (AIRS) [19] missions have no on-board

data compression. Upcoming NASA hyperspectral instruments, whether deep space

or Earth orbiting, such as FLORA [17] and the Plant Physiology and Functional

Types (PPFT) [45], will be capable of returning an unprecedented amount of science

data, but will require effective compression techniques to realize their full potential.

 2

The need to deploy an efficient algorithm that that can be progressive, lossless and/or

lossy, and that meets a broad range of application needs and bandwidth

requirements, motivated our decision to select the discrete wavelet transform as the

basis for our algorithm. In addition, the Consultative Committee for Space Data

Systems (CCSDS) recently recommended the use of DWT based compression in

future space missions [52]. Furthermore, hyperspectral data exhibits high

correlations in the spectral domain as well as in the spatial domain, which makes

three dimensional DWT based coding a suitable candidate for data decorrelation.

Speed, power, mass and real-time processing constraints prevent many missions

from performing compression in software. The computationally intensive nature of a

3D DWT based algorithm strongly implies that any practical solution requires a

parallel hardware approach. As discussed in the next paragraph, the cost of

development and fabrication, ability to adapt operational parameters and to tune the

system for any specific instrument and mission require an FPGA based

implementation of any such hyperspectral compressor.

The need for a fast hardware DWT that allows flexibility in customizing the wavelet

transform with regard to the filters being used and the structure of the wavelet

decomposition, motivated us to target Field Programmable Gate Arrays (FPGAs).

FPGAs offer a suitable platform (cost effective and highly flexible) for such an

 3

implementation; they provide reconfigurable, evolvable, remotely repairable and

upgradeable system elements. FPGA-based systems represent a new paradigm in the

industry – a shift away from individual custom ASIC solutions for each application,

to a single hardware assembly (FPGA) that can be reconfigured to accommodate

multiple applications and multiple modes of operation. This also provides many

advantages over ASIC designs in terms of flexibility of field upgrades, reliability and

fault tolerance via reconfiguration to repair and work around in-field failures. Future

commercial and space applications can benefit from this flexibility to enable remote

repairability and upgradeability.

We first start with the hardware implementation of the 2D DWT. As a result of

extensive research in recent years, DWT-based transform coding techniques are

central to many modern image and video encoding algorithms. Examples include;

JPEG2000 image codec, CREW image compression, AWARE’s MotionWavelets

and motion-compensated 3D DWT for video encoding [57][24][83][91].

Consequently, efficient software and hardware based transform coding system

designs and implementations are a high priority objective at academic, commercial

and government research centers. However, while the wavelet transform offers a

wide variety of useful features, it is computation intensive. Our aim in this part of the

research was to develop efficient 2D DWT FPGA implementations, and a general

methodology for parallel implementations of the wavelet transform that can be

 4

extended to other DWT filters and to similar DSP problems. Then we developed a

hyperspectral data compression algorithm based on the 3D wavelet transform and

tailored for efficient FPGA hardware implementations. Lastly, we extended our

FPGA implementation methodology to a hybrid hardware/software “system on a

chip” (SoC) FPGA-based implementation for the hyperspectral data compression

system.

This thesis investigates the following three topics related to practical system designs

based on the discrete wavelet transform as a tool for signal processing and data

compression.

1.2 FPGA Parallel Implementation of the 2D Discrete

Wavelet Transform

We investigated an FPGA block-based parallel implementation which utilizes

various overlapping technique, and developed a methodology for such

implementations.

1.2.1 Parallel DWT Architectures

The 1D DWT decomposition can be implemented as a pyramidal recursive filtering

operation, also known as the Mallat decomposition [78]. The process for the 2D

DWT decomposition for each level is implemented with a cascaded combination of

two 1-D wavelet transforms where the data is row transformed first and then column

 5

transformed. To save computations, lifting factorization was introduced to

implement the DWT [94]. The lifting algorithm models the DWT as a finite state

machine (FSM), which takes advantage of filterbank factorizations such as lattice

factorizations [104][105] and uses Daubechies and Sweldens “lifting" scheme [36].

The finite state machine updates (or transforms) each raw input sample (initial state)

progressively, via intermediate states, into a wavelet coefficient (final state). It has

been shown that lifting-factorization based DWT algorithm can be twice as fast

when compared to the pyramidal algorithm [36], and that motivated us to base our

parallel implementations on the lifting algorithm.

Since DWT is not a block based transform, problems of speed and artifacts arise near

the block boundaries. Overlapping techniques can handle the block boundaries with

minimum storage requirements and inter-block communication overhead. Our goal

was to achieve efficient performance under practical considerations and real world

constraints in: on-chip storage, external memory bandwidth, target hardware

platform, power and mass. In our implementations, we consider three different

architectures: i) overlapping – which overlaps boundaries of image blocks and

transforms each block independently, ii) the overlap-save technique– which saves

the boundary information and exchanges them between blocks at the transform level,

and iii) the Overlap-State technique [53][54][55]- which saves the states of the

partially transformed boundaries for a one time exchange between blocks at the end

 6

of the transform operation (fully detailed in Chapter 3). For the overlap-state

implementation, a new data transfer method that utilized an efficient DMA was

designed and implemented, and a new architecture for the parallel DWT, in which

transitional boundary data (i.e. states) are stored on-chip and passed to the DWT

kernels in a seamless manner that minimizes the overhead usually associated with

parallel implementations. Figure 1.1 shows a high level block diagram of our FPGA

parallel DWT system.

Our final implementations demonstrated improved performance by a factor of 1.4 to

3 over previously reported methods.

Figure 1.1: Scalable parallel based system for the 2D discrete wavelet transform

 RAM

Global
Controller

DWT line
Processor n

DWT line
Processor 2

DWT line
Processor 1

Host Bus

System Bus

FPGA
 BB11

BB22 ..
..

BBnn

Image

 7

1.2.2 Implementation Methodology for FPGA-Based Design

of DWT Parallel System

Our goal was to design an efficient scalable FPGA implementation for the 2D DWT

that utilizes parallel architectures with no blocking artifacts and that is based on

lifting factorization to ensure lower computational cost. Our methodology identifies

the design steps, the problems, the limitations and the design issues associated with

each step of the implementation. It then leads the designer through a series of

analyses and decisions that produce an efficient design. Practical considerations

appear in the form of constraints that may force, or heavily weigh, a specific design

choice.

Our methodology starts by identifying a specific lifting factorization for the DWT

that provides architectures that are efficient for hardware implementations by

maximizing the number of shift and addition operations, while minimizing the

number of multiplications. It then proceeds to identify an architecture for the DWT

filter kernel design that maximizes the 2D processing performance. Available on-

chip memory storage and external memory bandwidth determine the range of parallel

architecture choices and the degree of design scalability. Finally, consideration of

throughput, resources utilization and power determine the final design. Our

methodology was used to develop the system implementation described in Chapter 3.

 8

1.3 Hyperspectral Data Compression

1.3.1 Overview

Hyperspectral images are sequences of spatial images, generated by imaging

spectrometers or sounders, which record the spectral intensities of the light reflected

by the observed area. Because of their three dimensional nature, (two spatial and one

spectral), hyperspectral images are often referred to as data cubes. They have a wide

variety of Earth remote sensing uses in the study of oceans, atmosphere, and land

[41][106]. Hyperspectral imagers are also used in deep-space missions to map the

surface minerals and chemical features of planets and their moons [29].

Hyperspectral imaging spectrometers and sounders have a large number of channels

ranging from several hundred as in JPL’s Airborne Visible/Infrared Imaging

Spectrometer (AVIRIS) [106], which contains 224 spectral bands, to thousands as in

the case of AIRS [19], which has 2378 infrared channels. These instruments can

generate high data rates that cannot be sustained with existing communication links.

Efficient on-board compression is needed to reduce bandwidth and storage

requirements. In this thesis, we investigate a low-complexity wavelet based approach

for three dimensional coding of hyperspectral data cubes suitable for on-board

processing and for hardware implementation on reconfigurable platforms. While

many hyperspectral applications can tolerate low bit rate lossy data compression,

applications such as studies of the atmosphere and of planet surfaces require high

accuracy, for retrieval of temperature and humidity profiles, identifications of

 9

atmospheric anomalies and planet surface details (for example, in search of water or

life). A lossless or virtually-lossless approach is required to address such

applications. Our overall goal is to meet the requirements of various instruments and

their applications with a highly efficient compression system that can be both

lossless and lossy.

Our compression strategy utilizes a general-purpose methodology for hyperspectral

data compression that maximizes compression by fully exploiting spectral (inter-

band) correlations as well as spatial correlations, subject to practical considerations

and constraints. The algorithm must be: applicable to different spectral resolutions;

capable of lossless and lossy compression; low-complexity and suitable for on-board

hardware implementation; progressive and suitable for push-broom type instruments

and their data formats (hyperspectral data is most often collected in the form of a

band interleaved by pixel (BIP) or sometimes in a band interleaved by line (BIL)

manner).

1.3.2 3D Coding for Hyperspectral Images

Conventional image compression techniques aim to remove spatial redundancies.

Hyperspectral data cubes have large spectral (inter-band) correlations as well as

spatial correlations. An efficient compression strategy for hyperspectral data would

seek to maximally exploit both spectral and spatial correlations. For lossless

compression, effective prediction approaches were proposed such as DPCM [4].

 10

Hybrid schemes were proposed to solve the lossy problem. Here, spectral

redundancies are removed through spectral transformation techniques such as

principal component analysis (PCA) by selecting the dominant spectral bands and

then applying 2D compression such as DCT or DWT [89][25]. At the system level a

single scalable algorithm that provides lossless and lossy compression is often

preferable to the implementation of multiple algorithms. Our goal was to develop

such an algorithm.

Due to its inherent efficiency in data compression, we decided to investigate the

discrete wavelet transform as the bases of our 3D coding scheme. Figure 1.2 shows a

block diagram of the 3D coding method. Our investigation focused on utilizing and

extending compression algorithms that have proven their effectiveness in

compressing 2D images, and in addition, can be easily implemented in FPGA

hardware. The three dimensional DWT-based algorithm we developed was adapted

from the JPL’s 2D image compression, ICER [62], hence the name ICER-3D [63].

ICER-3D is a progressive compression algorithm which: (i) is lossy and lossless; (ii)

is line-based, operating in scan-mode to minimize storage requirements; and (iii)

accommodates pushbroom imaging sensors making it readily portable to on-board

hardware implementations. 3D DWT based coding has recently been proposed by

research efforts such as 3DSPIHT [40], 3D SPECK [95], and the proposed 3D

JPEG2000 3D [58]. Our compression efficiency, as will be shown in Chapter 4, is

 11

comparable to the efficiency of these algorithms, but our approach is distinguished

by its lower complexity post 3D DWT encoding, which makes it suitable for

spacecraft on-board deployment and for efficient hardware implementation.

Following the wavelet decomposition, the means of the low frequency subband

planes are subtracted in preparation for the post transform coding. A context

modeling scheme and an entropy coder were ported from the ICER image

compressor and extended to accommodate three dimensional data sets. Each DWT

coefficient is converted to sign-magnitude form. Bit planes of subbands are

compressed one at a time and compressed bit planes of different subband cubes are

interleaved, with the goal of having earlier bit planes yield larger improvements in

reconstructed image quality per compressed bit. Subband bit planes are compressed

in order of decreasing priority value according to the simple priority assignment

scheme described in Chapter 4. At each step of the algorithm design, hardware

implementation issues were addressed and designs were generated that reduced the

complexity of the hardware implementation and increased throughput while

maintaining high compression efficiency. The specific hardware oriented

implementation of the algorithm will be referred to as ICER-3D-HW.

 12

Figure 1.2: 3D Hyperspectral Compressor Block Diagram

Issues arising from extending a 2D DWT compression approach to 3D DWT were

encountered and addressed. For example, when a 3D DWT is used for decorrelation,

"ringing" artifacts in the spectral dimension can cause the spatially low-pass filtered

subbands to have large biases in the individual spatial planes. Specifically, spatial

planes of spatially low-pass subbands contain significant biases that vary from plane

to plane. This problem is unique to multi and hyperspectral data; an analogous

artifact does not generally arise in 2D images. This phenomenon hurts the rate-

distortion performance at moderate to low bit rates (~1 bit/pixel/band and below),

and occasionally introduces disturbing artifacts into the reconstructed images. We

analyzed the “spectral ringing” problem and proposed mitigation schemes. The

simplest scheme, which was adopted for the hardware implementation, subtracts the

mean values from spatial planes of spatially low-pass filtered subbands prior to

encoding, thus compensating for the fact that such spatial planes often have mean

values that are far from zero. The resulting data are better suited for compression by

Hyperspectral
Data Cube

Compressed
Data Stream

Interleaved
Entropy
Coder

Context
Modeler

3D
Wavelet
Transfor

3D DWT of data cube

 13

methods that are effective for subbands of 2D images such as the ones we are using

in the main algorithm. Compression effectiveness was improved by about 10% after

applying the mean subtraction scheme.

Region-of-Interest (ROI) for hyperspectral data was also addressed and a scheme for

“virtual scaling” of high priority data was designed which provides better

compression performance and has low memory requirements (suitable for future

hardware implementation).

Lossless compression performance of ICER-3D-HW benchmarked on AVIRIS 1997

data sets [20] shows excellent results when compared to all 2D approaches.

Improved (or comparable) results are obtained when compared to other 3D

approaches. ICER-3D-HW, however is outperformed by the JPL developed, “fast

lossless” compressor [71], which was designed and optimized for performing only

lossless compression. AVIRIS data sets were losslessly compressed, on average,

from 16 bpp down to 5.63 with ICER-3D-HW and down to 5.10 with “fast lossless”.

Lossy compression comparisons show significant gains in compression efficiency

over other state-of-the-art 2D techniques, and comparable results to other optimized

3D algorithms. We show gains of at least 40% compression efficiency over the ICER

2D image compressor.

 14

1.4 Scalable Embedded Hyperspectral Data Compression on

Reconfigurable Platforms

1.4.1 System Design and Practical Considerations

The 3D DWT compression algorithm, ICER-3D-HW, described in the previous

section, is computationally intensive, causing real-time processing difficulties (data

rates for some instruments can go to 100s of Gbits/sec). High speed processors are

power hungry and do not fit in NASA’s vision of next generation spacecraft.

Dedicated hardware solutions are highly desirable - offloading the main processor,

while providing a power efficient solution at the same time. We investigated an

efficient scalable parallel implementation on an FPGA platform. We designed

cascaded line-based wavelet transform modules, which allow the wavelet transform

in the 3D DWT case to be computed as the lines of the image data cube arrive rather

than waiting for an entire frame of data, thus efficiently accommodating pushbroom

sensors. The other key modules of the hardware compressor, the context modeler and

the interleaved entropy coder, were designed for efficient throughput performance,

utilizing a priority–based data formatting and localization technique that transposes

bit-planes after the 3D DWT decompositions and stores them in memory locations

that are readily available for the priority indexed bit-plane encoding discussed in

Chapter 4. This formatting scheme accelerates encoding by a factor of more than

10:1 over standard techniques.

 15

The implementation targets state-of-art FPGAs, such as Xilinx Virtex II pro. These

FPGAs provide on-chip, hard-wired PPC 405 processor cores [113], allowing them

to be used to form an embedded platform for SoC implementations. Such platforms

allow efficient partitioning of the algorithm into software and hardware modules so

as to take full advantage of the available hardware resources. In our system, the on-

chip processor was used to implement the system global controller to manage the

overall operation of the compression system and internal and external data transfers.

Figure 1.3 illustrates the final hyperspectral compressor. The parallel hardware

compression system is capable of acceleration of up to two orders of magnitude vs. a

software implementation running on current state-of-the-art processors.

FPGA Hyperspectral Compressor System Architecture

Image
Block

Multi-Memory / Multi-Port Interface
and Memory Controllers

Context
Modeler

Bank 2 Bank 3 Bank 4

32 32

Data Bus

Control

Image
Block

Image
Block

Tier 1
CoderTier 1 LogicTier 1

CoderDWT
Modules

32

32

Bank 1

32

Image
Block

Context
ModelerContext

Modeler

Entropy
CoderEntropy

CoderEntropy
Coder

32 Softw
are on PPC

Hardware

Ex
te

rn
al

 M
em

or
y

PPC 405
Processor

(Global Controller)

Arbiter/
Bridge32

Processor
Memory
DATA

Processor
Memory

INSTRUCT

Internal M
em

ory

Control
Control

FPGA Hyperspectral Compressor System Architecture

Image
Block
Image
Block

Multi-Memory / Multi-Port Interface
and Memory Controllers

Context
Modeler

Bank 2 Bank 3 Bank 4

32 32

Data Bus

Control

Image
Block
Image
Block

Image
Block
Image
Block

Tier 1
CoderTier 1 LogicTier 1

CoderDWT
Modules

Tier 1
CoderTier 1 LogicTier 1 LogicTier 1

CoderDWT
Modules

3232

3232

Bank 1

32

Image
Block
Image
Block

Context
ModelerContext

Modeler

Entropy
CoderEntropy

CoderEntropy
Coder

32

Entropy
CoderEntropy

CoderEntropy
Coder

32 Softw
are on PPC

Hardware

Ex
te

rn
al

 M
em

or
y

PPC 405
Processor

(Global Controller)

PPC 405
Processor

(Global Controller)

Arbiter/
Bridge
Arbiter/
Bridge3232

Processor
Memory
DATA

Processor
Memory
DATA

Processor
Memory

INSTRUCT

Processor
Memory

INSTRUCT

Internal M
em

ory

Control
Control

Figure 1.3: System on Chip FPGA Hyperspectral Data Compressor

 16

1.4.2 Implementation Methodology

We extended the 2D DWT methodology developed in the first part of this thesis to

hybrid Hardware/Software SoC FPGA implementations

In addition to the steps that address the practical considerations, constraints,

limitations and design choices listed for the 2D DWT methodology, our SoC

methodology addresses the issue of SW/HW partitioning of algorithm modules.

Partitioning is done after performing software profiling to identify the most

appropriate candidates for hardware acceleration. Dynamic range expansion studies

for the DWT are also performed in the context of 3D processing and long pixel depth

data. Finally, scalability issues were addressed, and trade-off studies for speed,

hardware resources utilization and power were performed to complete the design.

1.5 Outline and Contributions of this Thesis

The main contributions of this research are:

• A methodology for FPGA based parallel architectures and implementations

of the Discrete Wavelet Transform. We investigated and analyzed parallel

and efficient hardware implementations targeting state-of-the-art FPGAs.

We addressed practical considerations and various design choices and

 17

decisions at all design stages to achieve efficient DWT implementations

subject to a given set of constraints and limitations.

• A specific lifting representation for the DWT that provides architectures

suitable for efficient hardware implementation.

• A novel data transfer method that provides seamless handling of boundary

and transitional states associated with parallel implementations.

• A Low-complexity algorithm for hyperspectral data compression suitable

for hardware implementation. We investigated the problem of on-board

hyperspectral data compression for space based systems and adapted a 2D

DWT based algorithm to 3D data sets to provide both lossy and lossless

compression. We addressed issues arising from extension of 2D DWT to

3D DWT as well as hardware implementation considerations.

• Discovery of and development of mitigation techniques for, the spectral

ringing artifacts phenomenon encountered when using the 3D DWT for

compression.

• Region-of-interest compression for hyperspectral data using “virtual

scaling” that results in low memory requirements and improved

compression effectiveness.

 18

• A methodology for scalable embedded FPGA based implementation of

complex 3D compression systems. We extended the wavelet transform

methodology developed in the first part to hybrid Hardware/Software SoC

FPGA implementations We addressed issues of SW/HW partitioning of

algorithm modules, dynamic range expansion for the DWT, scalability of

design, and trade-offs to meet practical considerations and constraints.

• A scalable embedded implementation of 3D DWT based hyperspectral data

compression – a single chip solution to hyperspectral data compression.

• A novel priority-based data formatting and localization technique for bit-

plane encoding providing more than 10x in throughput efficiency compared

to standard techniques.

This thesis is organized as follows:

Chapter 2 provides an overview of hyperspectral data and the hyperspectral data

compression system and its characteristics.

Chapter 3 addresses in detail the parallel implementation methodology of the 2D

parallel DWT. We provide detailed descriptions of the methodology, practical

constraints, design parameters selection, analysis and trade-offs among three

overlapping FPGA parallel implementations. Analysis, simulations and

 19

implementations for the (9,7) DWT are also presented along with comparisons to

other DWT architectures and implementations.

Chapter 4 addresses the problem of hyperspectral data compression. Compression

approach and strategy are presented. Detailed description of a three dimensional

DWT coding algorithm suitable for hardware implementation, ICER-3D-HW, is

presented. Description of individual compression modules is provided. Compression

results and comparisons to current state-of-the-art approaches are also detailed.

Chapter 5 addresses the implementation of the hyperspectral compressor on a

reconfigurable platform. A detailed design approach and methodology are presented.

A detailed FPGA implementation of the ICER-3D-HW is described along with

performance analysis and description of the hardware resources and their utilization.

Chapter 6 completes the thesis with summary, conclusions and potential future work.

 20

Chapter 2

Chapter 2: Hyperspectral Data Compression: System Overview

2.1 Introduction

Hyperspectral images are three dimensional data sets (two spatial and one spectral)

that consist of hundreds of narrowly spaced spectral bands. These bands are

generated by hyperspectral imaging spectrometers or sounders and comprise the

reflectance, at different wavelengths, of the region being viewed by the scanning

instrument. They are powerful tools for many applications, such as detection and

identification of land surface and atmosphere constituents, studies of soil and

monitoring agriculture, surveillance, studies of the environment and the ozone, and

weather prediction [106][41][19]. They are also used in deep-space missions to map

surface minerals and chemical features of planets and their moons. For instance,

Cassini’s Visible and Infrared Mapping Spectrometer Subsystem (VIMS) gathers

hyperspectral images of Saturn, its rings and its moons [29]. FLORA and PPFT are

proposed Earth orbiting instruments that will provide global, high spatial resolution

measurements of ecosystem disturbances, vegetation composition, and productivity,

including interactive responses to climate variability and land-use change

[18][27][80].

 21

Recent breakthroughs in hyperspectral imaging and sounding technologies (such as

IR detector arrays and cryocooler technology), have resulted in far more spectral

channels and higher spectral resolution than earlier generations. For example, High

Resolution Imaging Spectrometer (HIRIS) [46] has 192 channels, AVIRIS [106] has

224 spectral bands and AIRS [19] has 2378 IR channels and is often referred to as

ultraspectral.

Hyperspectral imaging instruments are capable of producing enormous volumes of

data that quickly overwhelm the space communication downlinks and require

massive on-board storage capabilities. Effective on-board techniques for

compressing such data sets are essential to overcome downlink limitation and make

efficient use of on-board storage.

In this chapter we present an overview of a wavelet based compression system for

three dimensional coding of hyperspectral data cubes suitable for on-board

processing and its hardware implementation on reconfigurable platforms. Many

hyperspectral applications such as classification and content retrieval may tolerate

low bit rate lossy compression, but studies of the atmosphere and planet surfaces

require high accuracy for retrieval of temperature and humidity profiles and planet

surface details. To address the need of both types of applications, our algorithm was

 22

designed to be progressive and capable of lossy and lossless compression to meet

data rates requirements and address scientific needs.

This chapter is organized as follows. Section 2.2 provides an overview of

hyperspectral data. Section 2.3 gives an overview of the 3D compression algorithm

and its compression results. Section 2.4 describes a scalable embedded hardware

implementation of the compression system, and finally section 2.5 concludes this

chapter with a summary and conclusions.

2.2 Hyperspectral Data: An Overview

Determining the composition of, and inferring the processes active on, the Earth and

other planetary surfaces, by counting photons (energy) at the top of the atmosphere

(or from space), is a challenging problem. Spectroscopy provides a framework based

in physics to achieve this remote measurement objective in the context of the

interaction of photons with matter. The physics, chemistry and biology of

spectroscopy are validated through more than 100 years of laboratory, astronomical

and other observational research and applications [106][27]. Spectral sensor

instruments acquire data at different wavelengths. Imaging spectrometers provide the

spectral data for each pixel in an image, quantified into discrete levels of brightness.

An example of this type of instrument is hyperspectral imaging sensors. These

sensors acquire data in a vast number of narrow and contiguous spectral bands, thus

 23

the use of the term hyperspectral. Examples of hyperspectral data utilized in this

research are gathered mostly by AVIRIS, but a few examples use data sets from

Hyperion and AIRS instruments.

AVIRIS is an airborne hyperspectral imaging instrument that has been providing

valuable information about Earth since the late eighties. The AVIRIS concept [106]

is illustrated in Figure 2.1. It consists of 224 spectral bands, with each pixel having

12 bits of precision. It has a spectral range of 3 nm to 2.5 µm, covering the visible

and near infrared regions. The pixel size and swath width of the AVIRIS data depend

on the altitude from which the data is collected. When collected by the ER-2 (20km

above the ground) each pixel produced by the instrument covers an area

approximately 20 meters diameter on the ground. When collected by the Twin Otter

(4km above the ground), each ground pixel is 4m square. The images obtained from

AVIRIS can have a size of up to several Gbytes. They have spatial lines of 614

pixels extended over the region of interest. The sets analyzed in this chapter were

divided into images of approximately 130Mbytes for ease of handing (512 spatial

lines of 614 pixels each, across 224 spectral channels). An example of an image cube

generated from AVIRIS is shown in Figure 2.2. The Hyperion spectrometer is space-

borne as part of the Earth Orbiting 1 mission (EO1) [41]. It consists of 242 spectral

bands ranging from 0.4 - 2.5 µm, with each pixel having 12 bits of precision. After

elimination of unusable bands (due to either noise or poor sensor pointing), we

 24

analyzed images of 220 spectral bands. Hyperion complements AVIRIS and

addresses a broad range of issues and world-wide sites, from agriculture in Australia,

to glaciers in Antarctica, to grasslands, minerals and forests in the Americas [23].

The AIRS instrument [19] is aboard NASA’s Aqua spacecraft that was launched in

2002. It employs a 49.5 degree cross-track scanning with a 1.1 degree instantaneous

field of view (see Figure 2.3) to provide twice daily coverage of essentially the entire

globe. The AIRS data consists of 2378 infrared channels in the 3.74 to 15.4 µm

region of the spectrum divided into three contiguous sets of bands. Data is gathered

as scanlines containing 90 cross-track footprints per scan line, where a footprint

consists of 2378 pixels of infrared data covering the same surface region. The

objective of AIRS is to provide improved global temperature and humidity profiles

to meet NASA’s global change research objectives and the National Oceanic and

Atmospheric Administration’s (NOAA) operational weather prediction requirements.

 25

Figure 2.1: AVIRIS Concept and Data

(a) (b)

Figure 2.2: AVIRIS hyperspectral data “cubes”

 26

SCAN�
MOTION

90 FOOTPRINTS

DIRECTION OF FLIGHT

IMAS�
INSTRUMENT

49.5
49.5

 90 SCAN LINES�
�

X

y
λ

MULTISPECTRAL�
IMAGE DECK

Figure 2.3: Hyperspectral Scan Geometry for AIRS

Data sets were analyzed for spatial and spectral correlations to guide the

compression algorithm development. It was observed that the data sets do indeed

exhibit high spectral redundancies/correlations in addition to spatial correlations. To

analyze these spectral redundancies, normalized correlations within a single footprint

of data across a vector of all spectral bands were calculated. Figure 2.4 shows plots

of these correlations for footprints in two different scan lines of AIRS simulated

data. Table 2.1 lists different characteristics of the analyzed data sets, as well as their

average correlations.

Hyperspectral
Image cube

Footprints Scanlines

AIRS
Sounder

 27

(a)

(b)

Figure 2.4: Correlations in AIRS Simulated Data. (a) Scan Line 1 (b) Scan Line 50

Table 2.1: Hyperspectral Instruments and their Specifications
Instrument No. of

Spectral
Channels

Bits
per

pixel

Wavelength
Range (nm)

Spectral
Resolution

Spatial
Resolution

Average
Spectral

Correlations
AVIRIS 224 12-

16
370 - 2500 9.8 nm 2 to 20 m 0.89

Hyperion 242 (220
useable)

12 400 - 2500 10 nm 30 m 0.85

AIRS 2378 16 3740 -
15400

3.5-12 nm 15 Km 0.91

2.3 Three Dimensional Coding

The Space-born state-of-the-practice in compression, is to use the Rice encoder (i.e.

CCSDS USES chip [107]). The Rice encoder provides lossless compression at

generally accepted performance levels. The performance of the Rice encoder,

however, is insufficient for high volume data transmission over most communication

 28

downlinks (e.g. it was used in the Cassini mission, which was tailored to meet the

capabilities of the Rice encoder by reducing the collected data volume). Most

missions to date (such as in EO1, AVIRIS, AIRS instruments) have avoided even

lossless compression or used 2D DWT/DCT coding for spatial bands, such that

spectral redundancy is not exploited. Modulated Lapped Transform (MLT) [50] and

PCA techniques are used mostly in department of defense (DoD) and NOAA

applications for context retrieval. These techniques are lossy and hence do not meet

data fidelity required by most NASA scientists. Hence, our objective was to

investigate and develop hyperspectral data compression methods capable of lossless

and lossy compression and suitable for on-board deployment (i.e. hardware

implementation) that will significantly reduce the data volume necessary to meet

science objectives in future deep-space and earth orbiting missions.

2.3.1 3D Wavelet coding

Since the wavelet transform has shown great results for compression of images, a

discrete wavelet transform approach was chosen to meet our compression objectives.

Wavelet based compression is also recommended by the CCSDS committee [52] and

is currently used in the ICER compression software on-board the Mars Exploration

Rovers (MER) [64][65]. Our 3D compressor extends an efficient 2D image

compression algorithm, namely the ICER image compressor, to adapt to 3D

hyperspectral data sets. It is progressive, and based on the reversible integer discrete

 29

wavelet transform, making it capable of lossless and lossy compression in a single

algorithm.

A block diagram of the compression process was shown in Figure 1.2. It should be

noted that some of the individual components of our algorithm have been used for

multispectral and hyperspectral image compression by other researches. The

selective combination of our algorithm steps, our enhancement techniques, as well as

the low-complexity and suitability for hardware implementations, provide our

novelty. Our compressor starts by extending the 2D DWT decomposition to 3D

DWT, then it adapts the ICER bit-plane encoding scheme to 3D subband cubes by

using a priority scheme tailored to 3D data and applying a 2D context modeler to

subband cubes plans followed by an interleaved entropy coder [63]. It was tailored

for hardware implementation by employing design choices that simplify the

computation complexity, enhance the hardware throughput and /or minimize the

needed hardware resources. We will refer to this compressor as ICER-3D-HW.

Figure 2.5: 3D wavelet decomposition for an AVIRIS data set covering Cuprite, NV site

 30

The DWT component of the algorithm provides options for selecting among several

popular DWT filters such as (5,3), (9,7), (2,10), (2,6), (5,11), and (13,7) [62][63][1].

Most of the experiments presented in this thesis are based on the performance of the

(2,6) DWT due to its suitability for hardware implementations, as will be detailed in

the following chapters. An example of a three level 3D DWT decomposition is

shown in Figure 2.5.

2.3.2 Compression Results

The results shown in Figure 2.6 indicate that ICER-3D-HW achieves more effective

lossless compression than simple two-dimensional approaches or the USES (Rice

chip) compressor when used in its multispectral mode. ICER-3D-HW compression

efficiency is also comparable to most 3D algorithms we benchmarked as will be

shown in Chapter 4. It is outperformed, however, by the JPL fast lossless compressor

of [71], which was designed as a lossless only compressor. However, it is reasonable

to use ICER-3D-HW for lossless compression in an application where it is also

required to perform lossy compression. Figure 2.6 shows results for AVIRIS 1997

calibrated data (16 bits) [20] compared to ICER [62], USES in multispectral

prediction mode [107], and “fast lossless”.

 31

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

1 6 11 16 21 26 31 36

data set index

ra
te

 (b
its

/s
am

pl
e

ICER (2D)
ICER-3D-HW
USES

"fast lossless"

Figure 2.6: Lossless Results - Average rate in bits/pixel – ICER (2D): 6.61, USES (3D): 5.80,
ICER-3D-HW: 5.63, “fast lossless”: 5.10

Figure 2.7 shows the improved rate-distortion performance of ICER-3D-HW in

comparison to the ICER 2D image compressor for a typical AVRIS image. To show

this improved performance visually, Figure 2.8 displays details from false-color

images produced from the reconstructed AVIRIS scenes after compression at 0.25

bits/sample. In chapter 4, we show more results and comparisons between ICER-3D-

HW and other existing lossless and lossy 3D approaches.

 32

10

100

1000

10000

0 0.5 1 1.5 2 2.5 3

rate (bits/pixel/band)

M
S
E
 d

is
to

rt
io

n

2D

ICER-3D-HW
10

100

1000

10000

0 0.5 1 1.5 2 2.5 3

rate (bits/pixel/band)

M
S
E
 d

is
to

rt
io

n

2D

ICER-3D-HW

Figure 2.7: Achievable lossy compression for ICER (2D) and ICER-3D-HW

original (false color) ICER-3D-HW
reconstructed (0.25
bits/sample/band)

ICER (2D)
reconstructed

original ICER-3D-HW
reconstructed

Figure 2.8: Lossy Compression with ICER (2D) and ICER-3D-HW

 33

2.4 Hyperspectral Data Compression on Reconfigurable

Platforms

Effective compression techniques tend to be computationally intensive and ICER-

3D-HW is no exception. On-board deployment of such algorithms require high

speed processors that can provide higher throughput but are power hungry.

Dedicated hardware solutions are highly desirable for their high throughput and

power efficiency.

Traditional VLSI implementations are power and area efficient, but they lack

flexibility for post-launch modifications and repair, are not scalable, and cannot be

configured to efficiently match specific mission needs and requirements. An efficient

embedded and scalable architecture for the ICER-3D-HW compressor was

developed and implemented. The implementation targets state-of-art FPGAs, such as

Xilinx Virtex II pro, and can be easily extended to future Virtex generations such as

Virtex IV and Virtex V families. These FPGAs provide design options with on-chip

hard-wired PPC 405 processor cores [113] to form an embedded platform or a

System on a Chip. Efficient partitioning of the algorithm into software and hardware

modules was performed to take full advantage of the available reconfigurable

hardware resources and the on-chip processors. While many researchers have

addressed system implementations with SoC FPGAs, our implementation is unique

 34

in addressing as complex and data intensive a system as is found in hyperspectral

data compression.

2.4.1 FPGA Implementation of a Scalable Embedded

Hyperspectral Data Compression Architecture

We implemented the algorithm as a hybrid Hardware/Software SoC FPGA. Our SoC

methodology addresses the issue of SW/HW partioning of algorithm modules by

allocating these functions after performing software profiling to identify appropriate

candidates for hardware acceleration. Dynamic range expansion analysis was also

performed to identify and select a suitable choice of a DWT filter pair for hardware

implementation. Details of the SoC FPGA implementation are provided in Chapter 5.

The Implementation was coded in VHDL and ported to a prototype board targeting

the Xilinx Virtex II Pro XC2VP70 chip. The hardware development system is shown

in Figure 2.9. The throughput of the system was up to 1 sample/clock cycle when

two copies of each of the three main hardware modules were running in parallel to

perform lossless compression (lossy compression can run faster since not all bit

planes need to be compressed). For the current clock speed of 50 MHz, this

throughput is close to 2 orders of magnitude faster than the software code, which has

a throughput of 610 Ksamples/sec on a Pentium Centrino 1.6MHz processor.

 35

Device utilization shows that the implementation occupies less than 61% of FPGA

resources with 2 copies of each module running in parallel. Power consumption for

this implementation is 7.5 Watts. The final hardware implementation block diagram

was shown in Figure 1-3.

Figure 2.9: FPGA Hardware Development System

2.5 Conclusions

In this chapter we presented an overview of hyperspectral data and a novel low-

complexity 3D compression system for hyperspectal images and sounders. Our

system is based on the reversible DWT transforms, which is progressive and suitable

for space based instruments that require both lossless and lossy data compression.

We presented compression results for test images from AVIRIS data sets. We also

presented an embedded and scalable implementation for the ICER-3D-HW

compression algorithm on an SoC FPGA. The approach uses a co-design platform

(SW/HW) with architecture-dependent enhancements to improve throughput, power

and device utilization.

 36

Chapter 3

Chapter 3: Parallel FPGA Implementations of the 2D Discrete Wavelet
Transform

3.1 Introduction

Recently, there has been a tremendous increase in the application of wavelets in

many scientific disciplines. Typical applications of wavelets include signal and

image processing [3][103][79], numerical analysis [22], biomedicine [92], satellite

imagery and data compression [102][52][62]. While the wavelet transform offers a

wide variety of useful features, it is computation intensive. Furthermore, in contrast

to other transforms, such as Fourier transform or discrete cosine transform, it is not

block based, which makes it difficult to implement in a parallel representation.

Several VLSI and FPGA architectural solutions for the discrete wavelet transform

[48] have been proposed in order to meet the real time requirements in many

applications. These solutions include parallel filter architectures, linear array

architectures, multigrid architectures [108][31], and 2D block based architectures

[61]. Most of these implementations are special purpose parallel processors

developed for specific wavelet filters and/or wavelet decomposition trees that

implement high level abstraction of the standard pyramid algorithm. In addition,

 37

some are complex designs requiring extensive user control. Knowles [75][76]

proposed systolic-array-based architectures without multipliers for the 1-D and 2D

DWT, but these architectures are not suitable for all wavelets. Vishwanath et al [109]

proposed a systolic-parallel architecture for the 2D DWT based on the recursive

pyramid algorithm, but due to the approximations involved these architectures

cannot be used when exact reconstruction is required. Reza and Turney [86]

proposed a sequential implementation of the polyphase representation of the DWT

suitable for the Xilinx Virtex FPGAs. Yong-Hong et al [115] presented a parallel

architecture that can compute low pass and high pass DWT coefficients in the same

clock cycle. King-Ch et al [70] implemented the operator correlation algorithm of the

2D DWT. However, these FPGA implementations are aimed at specific filterbanks,

do not support block-based transform, or do not handle block boundaries efficiently.

There is a clear need for a fast hardware DWT that allows flexibility in customizing

the wavelet transform with regard to the filters being used and the structure of the

wavelet decomposition. In many image processing applications, including

compression, denoising and enhancement, it is critical to compute the 2D wavelet

transform in real-time. Field programmable gate arrays (FPGAs) offer a suitable

platform (cost effective and highly flexible) for such an implementation.

 38

FPGA-based systems represent a new paradigm in the industry – a shift away from a

full custom ASIC solutions for each application, to a single hardware assembly

(FPGA) that can be reconfigured to accommodate multiple applications. This

approach also provides many advantages over ASIC designs in terms of flexibility of

field upgrades, reliability and fault tolerance via reconfiguration to repair and work

around failures. In addition, it provides faster and cheaper design cycles. Future

commercial and space applications can benefit from this flexibility to enable remote

repairability and upgradeability.

In this chapter, we propose a methodology for an FPGA block-based parallel

implementation which utilizes overlapping techniques based on the lifting

factorization. Our proposed methodology produces architectures that are simple,

modular, and cascadable for computation of the 2D data streams. The novelty of our

work is that, in addition to improved performance over existing architectures, we

provide flexibility to accommodate various DWT transforms; and we demonstrate

that in addition to memory size reduction, as inherently provided by the lifting

approach, we can also reduce external memory I/O access and hence the

communication overhead induced by the parallel computation. Our proposed

architectures can be implemented on any generic FPGA with external RAM memory

banks, but perform best if implemented on FPGAs with adequate internal RAM

 39

which can be used for on-chip storage of intermediate results, voiding most of the

time consumed in external memory access operation.

The chapter is organized as follows. A review of both the lifting factorization for the

discrete wavelet transform and the overlapping techniques is presented in section 3.2,

along with examples of existing architectures. Our implementation methodology is

introduced in section 2.3. An example of an FPGA implementation is provided in

section 2.4 followed by the conclusions in section 2.5.

3.2 Lifting Factorization and 2D DWT Architectures for

Hardware Implementations

The DWT, as represented by the Mallat style [78] multilevel octave-band

decomposition system, which uses a two-channel wavelet filterbank, is very

computation intensive. This decomposition can be implemented as a pyramidal

recursive filtering operation using the corresponding filter banks as shown in Figure

3.1. We will refer to it as the standard algorithm. The process for the 2D DWT

decomposition for each level is implemented with a cascaded combination of two 1-

D wavelet transforms. The standard algorithm is constrained by large latency, a high

computational cost and the requirement for a large buffer size to store intermediate

results, which makes it impractical for real time applications with memory

 40

constraints. An alternative representation, requiring fewer computations, is the lifting

algorithm [94], which will be the basis of our implementations in this chapter.

Figure 3.1: 1D Wavelet decomposition showing cascaded levels of filter banks

3.2.1 Lifting Factorization

The basic idea for the lifting algorithm is to model the DWT as a finite state machine

(FSM), which progressively updates (or transforms) each raw input sample (initial

state), via intermediate states, into a wavelet coefficient (final state). Daubechies and

Sweldens [36] have shown that any FIR wavelet filters pair can be represented as a

synthesis polyphase matrix, Ps(z), which can be factored into a cascaded set of

elementary matrices (upper triangular and lower triangular ones) leading to a

factorization in the form:

)1.3(
/10
0

1)(
01

10
)(1

)(
1

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
∏ ⎥

⎦

⎤
⎢
⎣

⎡
=

= K
K

zt
zs

zP
i

m

i

i
s

for which the corresponding analysis polyphase matrix Pa(z) is:

)2.3(
10

)(1
1)(
01

0
0/1

)(
1

⎥
⎦

⎤
⎢
⎣

⎡
∏ ⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

=

zs
ztK

K
zP i

mi i
a

 41

where si(z); ti(z) are Laurent polynomials and m < L/2 (L is the filter length) is

determined by the specific factorization form. It has been shown that such a lifting-

factorization based DWT algorithm is, asymptotically for long filters, twice as fast

the standard algorithm [36][6].

From a computational point of view [94], there is no big difference among these

elementary matrices, each of which essentially updates the input data samples using

linear convolutions, allowing in-place calculations The filtering operation can then

be seen as an FSM as shown in the following equation, where each elementary

matrix ei(z) updates the FSM state Xi(z) to the next higher level Xi+1(z).

()3.3)()()()()()()(

)()(

)(

)(

0

2

2

1

012

44444 344444 21

444 3444 21

4434421
L

zXzY

zX

zX

m

m zXzezezezXzPzY

=

==

3.2.2 Existing Architectures for FPGA based parallel

implementation of the 2D DWT

Several 2D DWT architectures for parallel implementations were proposed recently,

as wavelets gained popularity. Most of these architectures concentrate on saving

hardware resources, memory and computations. For example the 1D folded

architecture by Chakrabati et al [32] reuses the same logic for both row and column

transforms. While it achieves lower hardware resources, it requires high memory

 42

bandwidth. For an NxN image, 2N2 read and write operations are needed for the 1st

level DWT decomposition. The Partitioned DWT architectures by Ritter et al [87],

partitions DWT into small 2D Blocks to achieve lower memory bandwidth and low

on-chip storage, but it produces block artifacts along the boundaries between

partitions. The recursive pyramid algorithm by Vishwanath et. al. [109], takes

advantage of different clock rates at different DWT levels to intermix the next level

computations with current calculations. It requires a large on-chip memory and

complex scheduling for interleaving the DWT levels. The Generic 2D biorthogonal

DWT by Benkrid et al [21], uses separate architectures to calculate each DWT level.

It achieves full utilization of memory bandwidth – one write and one read per pixel,

but with massive on-chip storage requirements. The Modified folded architectures for

SPHIT image compression by Fry and Hauck [43], uses the same filter assembly for

both rows and columns with pixels read from one memory port, transposed for the

column transform, and written to another memory port. It achieves a DWT runtime

of ¾ N2 cycles for an NxN image, but it assumes 64-bit wide memory ports to allow

filtering of 4 rows at a time of 16 bit pixels, which may not be practical for all

systems.

3.2.3 Proposed Parallel Architectures for the 2D DWT

The standard DWT algorithm operates on the whole image in a sequential manner.

An improved implementation would partition the image into several blocks and

 43

operate on each block independently and in a parallel manner, and then would merge

the results to complete the DWT. While this architecture still requires the same

intensive computations of the recursive filtering operation and the same memory

requirements, the computation can be sped-up if one uses a multi-processor system

or identical parallel hardware implementations of the filtering blocks that can operate

on multiple image blocks simultaneously. A known disadvantage of such an

approach is that it requires data exchanges between neighboring blocks at each

decomposition level of the discrete wavelet transform, and hence an additional

overhead due to inter-processor communications.

We consider three parallel implementations based on the lifting factorization of the

DWT. The standard overlapping algorithm shown in Figure 3.2 eliminates the

blocking artifacts and imposes relatively simple control complexity, but has high

computational cost and requires high on-chip buffering of data. For an NxN image,

using DWT filters of length less than or equal to L, and partitioned into S Blocks,

the number of additional filtering operations for a 1 level 2D DWT decomposition

vs. a non-overlapped approach is: 2N*L*(S-1).

1 2 3

Figure 3.2: Overlapping

 44

The overlap-save algorithm is shown in Figure 3.3. It requires saving the boundary

data sets and exchanging them at every level of the DWT decomposition. It achieves

lower computational cost but requires higher communication overhead at each level

of DWT decomposition.

1

5

32Level 1

4Level 2

6Level 3

Block 1 Block 2111

555

3332Level 1 22Level 1

4Level 2 44Level 2

6Level 3 6Level 3 66Level 3

Block 1 Block 2

Figure 3.3: Overlap-Save

The overlap-state [53][54][55] algorithm is a block-based parallel implementation

that uses the FSM lifting model. Raw input samples are updated progressively as

long as there are enough neighboring samples present in the same block as shown in

Figure 3.4. Data samples near block boundaries can only be updated to intermediate

states due to lack of sufficient neighboring samples. Rather than communicating raw

data samples before the start of the decomposition at each level, these partially

updated boundary samples, which form the state information, are collected at each

level and exchanged at the conclusion of the independent transform of each block. A

post processing operation is then initiated to complete the transform for boundary

samples. Using this technique, the DWT can be computed correctly, thus eliminating

 45

blocking effects, while the inter-block communication overhead is significantly

reduced.

Figure 3.4: Overlap-State technique.

3.3 FPGA Implementation Methodology

Our methodology is depicted in the flow chart shown in Figure 3.5. While quite a

few steps in the methodology can be considered generic in terms of the hardware

design process, there are a few highlighted steps that require non-standard

considerations involving design choices required to meet practical constraints. We

will address each of the highlighted steps in the following sections.

 46

Figure 3.5: Implementation Methodology Flow Chart

 47

3.3.1 Lifting Factorization Considerations

The lifting factorization of equations (3.1) and (3.2) is not unique, but can be

optimized to provide architectures that are efficient for hardware implementation by

maximizing the shift and addition operation and minimizing multiplications. The

lifting factorization can then be expressed as follows:

)4.3(
/10
0

1)(
01

10
)(1

1)2(
01

10
)2(1)(

1

1
∏ ⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
∏ ⎥

⎦

⎤
⎢
⎣

⎡
=

−

==

N

n n

n
j

i

M

Ni

j
i

K
K

zt
zs

zt
zszP

Where j is an integer and N < M.

In addition, in 2D implementations, the multiplications by constants K and 1/K in the

last matrix can be combined after both row and column filtering are complete into

operations of K2 and 1/K2

3.3.2 2D DWT Filter Design

The filter design methodology has to decide among different well known architecture

choices, such as folded architecture and cascaded architectures reviewed in section

3.2.2 [32][21][43]

For the folded architecture, for example, the external memory bandwidth is high but

it does not require significant hardware resources or on-chip storage. For an image of

 48

NxN pixels and DWT filters of maximum length of Fl, and a 1 level DWT

decomposition, it requires memory bandwidth of 4N2 (writes and reads).

For the cascaded row-column pipelined architecture, when a desired number of rows

are completed (typically, equal to the maximum length of the DWT filters), the

column operation can begin. This requires additional internal storage for Fl N pixels.

For a 1 level DWT decomposition, the total memory bandwidth required is

approximately 2N2 + ½ FlN (internal memory access cost is typically less than ½ that

of the external access). This bandwidth is much less than the 4N2 required for the

folded case since the maximum filter length, Fl, is small relative to image width N

(typically Fl is less than 13 compared to 512 or more for N).

In most design cases, the performance bottleneck is the memory I/O access (i.e.

bandwidth). To maximize performance of the implementation in 2D processing

context, the preferred choice will be the cascaded architecture.

3.3.3 Image Partioniong and Design Scalability

Block-based implementations may lead to complex boundary post processing, and

complex house keeping. Figure 3.6 shows options to partition the images into blocks

or stripes.

 49

B1
B2
B3
B4

B1

B4

B2

B3

B1
B2
B3
B4

B1
B2
B3
B4

B1

B4

B2

B3

B1

B4

B2

B3

Figure 3.6: Options for 2D image partioning

For block-based parallel partioning, the boundary post processing latency for 1 level

DWT latency is FlN filtering operations, which leads to complex control, as the

exchange of boundary data is needed along both adjacent vertical and horizontal

boundaries [56].

For stripe-based parallel partioning, the boundary post processing latency for a 1

level DWT is ½ FlN filtering operations. Additionally, this approach leads to simpler

control, as management of boundary data exchanges is required only along the

adjacent vertical boundaries.

Since speed and lower design complexity is our goal, we choose the stripe parallel

implementation. Available on-chip memory storage and external memory bandwidth

determine degree of design scalability (i.e. the number or stripes and number of

DWT processing elements).

 50

3.3.4 Memory Bandwidth Considerations and Storage

Calculations

For a DWT filter pair and an image of N x N pixels, denoting:

Fl - length of the longest filter

J - DWT decomposition levels

S - Number of DWT line processors (blocks/stripes)

Consider the stripe-parallel design shown in Figure 3.6. After the completion of 1

level DWT decomposition, the number of transitional boundary states generated at

the first boundary of B1 and B2 is:

from B1:

⎡ ⎤)5.3(*2
1

1 NFm lB =

and from B2

⎣ ⎦)6.3(*2
1

2 NFm lB =

where memory is measured here in number of pixels, ⎡ ⎤ and ⎣ ⎦ are the ceiling

and the floor operators to accommodate odd length DWT filters at the stripe

boundaries. This results from the absence of image data along the boundaries of B1

and B2 required to complete the filtering operations. After the completion of 2

decomposition levels additional transitional boundary states are generated at the

same boundary:

 51

from B1:

⎡ ⎤)7.3(** 2
1

2
1

1 NFm lB =

and from B2

⎣ ⎦)8.3(** 2
1

2
1

2 NFm lB =

Hence the memory required to hold transitional boundary states for each boundary

is:

)9.3(
2
1*

1

0
1

iJ

i
l NFm ∑ ⎟

⎠
⎞

⎜
⎝
⎛=

−

=

and the total needed memory for all the boundary data is:

)10.3()1(*
2
1*

1

0
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑ ⎟

⎠
⎞

⎜
⎝
⎛=

−

=
SNFm

iJ

i
ltotal

To minimize external memory I/O bandwidth, the decision was made earlier to use

the cascaded architecture, i.e., pipeline row and column filtering. Assuming a FIFO

buffer length of N (image width), the memory required for row buffering is:

for one block

)11.3(* NFm lFIFO =

and total needed memory for FIFO buffers is

)12.3(** SNFm ltotalFIFO =−

 52

For example: for an image of 512x512 pixels, a 3 level (9,7) DWT decomposition

with a partition size of 4 stripes, the total required on-chip RAM (BRAM) measured

in pixels is: 9*(512+256+128)*4 + 9*512*4 = 42K bytes

Actual required BRAM may need to be 84K bytes to account for dynamic expansion

in DWT domain.

3.3.5 Management of Memory and Boundary Data

The main remaining issue, once the previous design choices are made, is to design an

efficient memory management scheme to avoid excessive post boundary processing

I/O cost.

Main Main
MemoryMemory

Global Global
Controller/SchedulerController/Scheduler

DMADMA

Image Image

Line Line

BuffersBuffers

DWT DWT
Row Row

KernelKernel

DWT DWT
Column Column
KernelKernel

Partially Partially
Computed Computed
Boundary Boundary

DataData

ss
ww
ii
tt
cc
hh

ss
ww
ii
tt
cc
hh

Buffers Address Buffers Address
ControllerController

Boundary Boundary
Data from Data from
Next BlockNext Block

Boundary Boundary
Data to Data to

Previous Previous
BlockBlock

Main Main
MemoryMemory

Global Global
Controller/SchedulerController/Scheduler

DMADMA

Image Image

Line Line

BuffersBuffers

DWT DWT
Row Row

KernelKernel

DWT DWT
Column Column
KernelKernel

Partially Partially
Computed Computed
Boundary Boundary

DataData

ss
ww
ii
tt
cc
hh

ss
ww
ii
tt
cc
hh

Buffers Address Buffers Address
ControllerController

Boundary Boundary
Data from Data from
Next BlockNext Block

Boundary Boundary
Data to Data to

Previous Previous
BlockBlock

Figure 3.7: DWT Unit Block Diagram

 53

A data transfer method that utilizes an efficient DMA was designed and

implemented. Figure 3.7 shows a block diagram of one 2D DWT module. The

module consists of a shared global controller, DWT row and column kernels, line

and boundary data buffers and a DMA. We designed a custom DMA engine to

handle data transfer from main external memory, from partially computed boundary

data buffers and from neighboring processing units. It contains the following

parameters for 1D linear addressing: starting address, intra row/column count, intra

row/column step, intra row/column jump, pixel count, boundary data starting address

and boundary data jump address for data from adjacent processing unit. This DMA

design allows interleaving the DWT computations between adjacent processing

elements, allowing the process to be completed in a seamless manner to the DWT

kernels and hence minimizing the overhead usually associated with parallel

implementations. Look-up tables are used to pre-store specific design parameters for

a DWT implementation. These addresses are passed to the DMA by the global

controller, which is shared by all DWT processing units.

The computation of the DWT is conducted in the following manner. The original

image data is stored in main memory (off-chip) and loaded to the line buffers line by

line through the DMA. Row transformed lines are completed and stored in-place in

the line buffers. The DWT column kernel operates on the row transformed data once

an adequate number of rows are completed (this depends on the lengths of the DWT

 54

filters). All operations are completed in a pipelined manner. Completed DWT data is

written back to the main memory through the DMA. Transitional (partially

computed) boundary states are stored in boundary data buffers (on-chip) and fetched

later to augment image data lines and/or boundary data from the neighboring stripe

and then passed to the DWT kernels. Once all the DWT decomposition levels are

computed, each DWT processing unit passes its upper transitional boundary data to

the next top neighboring unit and receives lower transitional boundary data from the

next lower unit to start the merge process to complete the DWT decomposition at the

stripes boundaries. All processing units complete, in parallel, all the partially

computed DWT coefficients (except for the last unit) starting with the column

transformation of the first level decomposition and moving on the subsequent DWT

decomposition levels. At each stage, transitional data (or states) is passed to the

appropriate locations in the DWT kernels pipeline, and computations proceed in the

same manner that was used for the initial DWT computations until all the DWT

levels are completed.. Figure 3.8 below shows the pipeline and flow of boundary

data (states) for a two adjacent DWT processing units. Boundary states as shown are

from unit B2 are merged with those from unit B1 at B1 to complete the DWT

computations.

 55

Figure 3.8: Pipeline and data flow for boundary states

3.3.6 Resource Utilization and Architectural Trade-offs

The final step of the methodology is to complete the trade-off analysis to select the

appropriate architectural design approach given the practical constraints. For

example, considering the three overlapping architectures introduced in section 3.2.3,

and a platform that allows a separate external memory bank for each partition stripe.

For highest throughput performance, the best choice is the overlap-state architecture,

which achieves a performance of ½N2 (in run time cycles) and requires the following

internal memory for data buffering and transitional data storage:

 56

)13.3().1(*
2
1***

1

0
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑ ⎟

⎠
⎞

⎜
⎝
⎛+

−

=
SNFSNF

iJ

i
ll

where Fl, N, S and J are filter length, image width, number of partition stripes and

number of DWT levels respectively. Memory is measured here in pixels.

This scheme also requires a relatively low external memory bandwidth of:

)14.3(
2
1*2 2

1

0

2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑ ⎟

⎠
⎞

⎜
⎝
⎛−

=

i
J

i
N

S

which is effectively one read and one write operation per pixel for each 2D DWT

computation performed in a stripe.

For systems where the overlap choice is not possible due to low internal memory

availability, the overlap-save architecture is the next best choice. It achieves a

performance of (½N2+½NSFl), requires total storage for buffering input and

boundary data of:

)15.3()1(**** −+ SNFSNF ll

and requires the same low external memory bandwidth of equation 3.14

Finally, for systems with very low on-chip storage that must deal with large images

(i.e. 1024x1024 or larger), the conventional overlapping architecture is the best

choice. It achieves a performance of (½N2+NSFl) and requires a relatively low

storage for buffering input of:

 57

)16.3(** SNFl

This scheme, however, requires a relatively high external memory bandwidth of:

)17.3()1(*
2
1*

2
1*2 1

0

21

0

2 −
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑ ⎟

⎠
⎞

⎜
⎝
⎛+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑ ⎟

⎠
⎞

⎜
⎝
⎛ −

=

−

=
SNFN

S

iJ

i
l

iJ

i

Table 3.1 shows the trade-offs under consideration among the three parallel

implementations, overlapping, overlap-save and overlap-state. Table 3.2 compares

the overlap-state implementation to the 5 architectures we reviewed in section 3.2.2.

As can be seen, the 1D folded architecture requires no internal memory storage, but

performs the worst at 2N2 and requires large memory bandwidth. The modified

folded architecture takes advantage of a wide memory bus to achieve low effective

memory bandwidth and a performance of 3/4N2. Our overlap-state architecture

outperforms all the architectures with performance of ½N2 and a low effective

memory bandwidth (about ½ of that for the 1D folded), given the platform

assumptions and storage considerations.

 58

Table 3.1: FPGA Parallel DWT Implementations Trade-offs (for NxN image)

Additional Block RAM
(see above)

Plus special DMAs
(~10% resources)

Additional scratch pad
memory

Plus control
(~4% resources)

None Additional
Hardware
Resources

Faster (10%)
½ (N2) + ½ (NSFl)

None

FPGA
2D Overlap-Save

Fastest (15%)
½ (N2)

Slowest
½ (N2) + (NSFl)

Performance

Line FIFOsInternal
memory
required

External
Memory I/O

BW

None½ Longest Filter LengthOverlapping
Rows

FPGA
2D Overlap-State

FPGA
2D OverlappingArchitecture

Additional Block RAM
(see above)

Plus special DMAs
(~10% resources)

Additional scratch pad
memory

Plus control
(~4% resources)

None Additional
Hardware
Resources

Faster (10%)
½ (N2) + ½ (NSFl)

None

FPGA
2D Overlap-Save

Fastest (15%)
½ (N2)

Slowest
½ (N2) + (NSFl)

Performance

Line FIFOsInternal
memory
required

External
Memory I/O

BW

None½ Longest Filter LengthOverlapping
Rows

FPGA
2D Overlap-State

FPGA
2D OverlappingArchitecture

PixelsSNF
iJ

i
l)1(

2
11

0
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑ ⎟

⎠
⎞

⎜
⎝
⎛−

=

)1(
2
11

0
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑ ⎟

⎠
⎞

⎜
⎝
⎛−

=
SNF

iJ

i
l

PixelsSNFl)1(−PixelsSNFl

+∑ ⎟
⎠
⎞

⎜
⎝
⎛−

=

iJ

i
N

S

21

0

2

2
12

iJ

i
N

S

21

0

2

2
12

∑ ⎟
⎠
⎞

⎜
⎝
⎛−

=

iJ

i
N

S

21

0

2

2
12

∑ ⎟
⎠
⎞

⎜
⎝
⎛−

=

+NSFl
+NSFl

Table 3.2: Comparisons to other DWT FPGA Architectures (for NxN image)

1/2 N2 ¾ N2N23/2N23/2 N22N2Performance
(run time
cycles)

None

2 N2

High

Generic
2D

Intermix of
DWT
Levels

calculations

High

Recursive

None

Moderate

Partioned
DWT

Transpose
row DWT

coefficients

None

High

Modified
Folded

Boundary post
processing

(complex DMAs)

None Additional
Complexity

+NoneInternal
memory
required

External
Memory

Bandwidth

HighLowHW Logic
Resources

Overlap-State1D
FoldedArchitecture

1/2 N2 ¾ N2N23/2N23/2 N22N2Performance
(run time
cycles)

None

2 N2

High

Generic
2D

Intermix of
DWT
Levels

calculations

High

Recursive

None

Moderate

Partioned
DWT

Transpose
row DWT

coefficients

None

High

Modified
Folded

Boundary post
processing

(complex DMAs)

None Additional
Complexity

+NoneInternal
memory
required

External
Memory

Bandwidth

HighLowHW Logic
Resources

Overlap-State1D
FoldedArchitecture

)1(*
2
11

0
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑ ⎟

⎠
⎞

⎜
⎝
⎛−

=
SNF

iJ

i
l

NFl
NSFl

iJ

i

N
21

0

2

2
14∑

−

=
⎟
⎠
⎞

⎜
⎝
⎛

iJ

i

N
21

0

2

2
12∑

−

=
⎟
⎠
⎞

⎜
⎝
⎛

iJ

i

N
21

0

2

2
1∑

−

=
⎟
⎠
⎞

⎜
⎝
⎛iJ

i

N
21

0

2

2
12∑

−

=
⎟
⎠
⎞

⎜
⎝
⎛

iJ

i
N

S

21

0

2

2
12

∑ ⎟
⎠
⎞

⎜
⎝
⎛−

=

iJ

i

N
21

0

2

2
1∑

−

=
⎟
⎠
⎞

⎜
⎝
⎛

iJ

i

N
21

0

2

2
1∑

−

=
⎟
⎠
⎞

⎜
⎝
⎛

 59

3.3.7 Applying the Methodology under Different Platform

Constraints

In the preceding sections, several assumptions were made regarding platform

constraints and available memory resources. These assumptions led us to the

overlapping cascaded architectures. We now consider whether our methodology

would still be applicable if we had a different platform and different constraints.

Consider an example where we have low on-chip memory but high external memory

bandwidth such as would be the case for accesses of 64 bits or four 16 bit pixels. The

folded architecture in this case will be the desired choice due to limited on chip

resources to store row or column transformed data. The high memory bandwidth

compensates for the large number of external I/O operations. When making the

choice for the image partioning, neither the block based nor the stripe based

partioning takes full advantage of the high memory bandwidth available. A four-line

based approach would utilize the 64 bit bus efficiently. However, to take advantage

again of this 4-line based architecture, the row transformed DWT data needs to be

transposed prior to writing it back to memory to be readily available for the column

transform operations. This requires an additional hardware module to perform the

transpose operations. The tree shown in Figure 3.9 identifies the most efficient

design choices at each stage given the platform constraints. The resultant architecture

in this case is very similar to the modified folded one chosen by Fry and Hauck [43]

 60

for the DWT implementation of the SPIHT image compression mentioned earlier in

section 3.2.2.

FoldedFolded Cascaded Cascaded ……....

DWTDWT

Partioning & Memory BWPartioning & Memory BW
11
2 2
3 3
44

Transpose DWT Transpose DWT
DataData

Figure 3.9: Design tree for an example with different platform constraints

3.4 FPGA Implementation Example - (9,7) DWT

The three overlapping algorithms presented in the previous section were

implemented for the popular floating point Daubechies (9,7) DWT. While all these

parallel architectures can be generalized to any wavelet filters pair, we selected the

(9,7) filter pair for our initial evaluation due to its popularity and its use for lossy

compression in the JPEG2000 standard [57].

 61

The lifting factorization of the (9,7) filters yields [2]:

[] [] [] []()
[] [] [] []()
[] [] [] []()
[] [] [] []()

[] []
[] []ndnd

nsns
ndndnsns

nsnsndnd
ndndnsns

nsnsndnd

o

o

21

20

22312

11212

1111

0001

1
1

1
1

β
β

α
α
α
α

=
=

−++=
+++=

−+−=
++−=

where

.0103

210

/1,812893.0,443506.0
,882911.0,052980.0,586134.1

βββα
ααα

≈≈≈
≈≈≈

A stripe-partitioning scheme was used to allocate input data sequence uniformly onto

different processing units. Since, in this method, no segmentation is done in the row

direction, the data to be exchanged, and the state information, will only appear along

the vertical boundaries of each block.

 (3.18)

 62

Initialization and
Memory Allocation

Set Length for Next
Level DWT

Set Length for Next
Level DWT

Read Image Data & Partition
(Split Phase)

For Levels 1 to J

For Processor 1 to n

For Processor 1 to n-1

For Levels 1 to J

Calculate Lifting DWT For
All Rows in Each Stripe

Calculate Lifting DWT For
All Columns in Each Stripe

Store Boundary States For
Merge Operations

no

no

no

yes

Write data to file

P1
P2
P3

Pn

Level ++
Level = J?

Processor++
Processor = n?

Processor++
Procesor =n-1?

Level++
Level= J?

Transfer State Information & Complete Lifting
DWT for all Transitional Data in Columns

Calculate Lifting DWT for Uncompleted Rows

Level > 1

 Figure 3.10: Flow chart for the Overlap-State DWT algorithm

 63

The flow chart shown in Figure 3.10 details the implementation for the parallel

overlap-state algorithm, since it is the most complex of the three parallel algorithms.

The raw image is partitioned into n uniform stripes and allocated to n processor

units. Each unit Pi computes its own allocated data up to the required wavelet

decomposition level; we will refer to this stage as the split stage. During the first

decomposition level, row transformations are completed first for all lines in a data

stripe and stored back into their respective memory buffer locations. Columns are

transformed in a similar manner. Once the column transformation is completed for a

stripe, data along the stripe boundaries are now in transitional states. The state

information for all the stripes other than the first stripe P1, is stored in the allocated

locations for each stripe. The state information will be communicated, during the

merge operation, from a stripe to its upper neighbor (i.e., unit Pi sends its data to unit

Pi-1). At this stage, we proceed to the next decomposition level in each stripe. The

procedure is repeated until all decomposition levels are completed for all the units.

The output from this stage consists of two parts: (1) completely transformed

coefficients and (2) the state information (partially updated boundary samples).

During the next stage, the merge stage, a one-way communication is initiated,

wherein the state information is transferred from each processing unit to its top

neighbor. For each stripe, the state information from the neighboring block is then

combined together with its own corresponding state information to complete the

 64

DWT transform. The first step is to combine state information from unit Pi with that

from unit Pi-1. Partial DWT computations are performed to complete level 1

decomposition (columns only) and the results are stored in their relative locations in

Pi-1 buffer to be ready for level 2 row transformation (note that level 2 row

transformation needs completed data from level 1 decomposition). At level 2, we

start with the uncompleted rows from the split stage that were awaiting completion

of level 1 decomposition for the columns. Data is combined now from (i) level 2

state information from unit Pi, (ii) row transformed data just completed for level 2

from unit Pi, (iii) state information from unit Pi-1. As in level 1, partial DWT

computations are performed to complete level 2, and the results are stored in their

relative memory locations buffer in Pi-1. to be ready for level 3 row transformation.

The procedure is repeated until all DWT levels are merged and completed.

A graphical description of the (9,7) overlap-state 2D DWT decomposition and its

memory buffer management are illustrated in the example shown in Figure 3.11 In

this example an image of 512x512 is split into 4 equal stripes of 512x128 each. After

the merge operation for one level DWT decomposition, the transformed data appears

distributed in stripes of length 132, 128, 128, and 124 for P1, P2, P3, and P4

respectively. The P1 unit receives state information data from P2. The DWT

transformation is completed and stored in P1 buffer extending its contributing length

to the transformed image to 132 pixels. Stripe P2 and P3 send and receive data from

 65

their neighboring stripes which results in a net of unchanged contributing length.

However, P4 sends its state data to P3 resulting in a smaller contributing length of

124 pixels. Similarly, a 2 level DWT yields the results shown in Figure 3.11 bottom

left. The contribution to the computation of the transformed image from each

stripe/processor is shown in Figure 3.11 bottom right.

Figure 3.11: Overlap-state implementation of the (9,7) DWT and memory management

Our software simulations were evaluated with images from the Signal and Image

Processing Institute image database at the University of Southern California. Results

presented in this section were collected using the Vegas image of size 512x512

shown in Figure 3.12. Results can be also be extended to color images. The results of

P1

512x512
LL

P1

P3

P2

P4

⇒

LH
HL HH
LL LH
HL HH
LL LH
HL HH
LL LH
HL HH

132

128

128

124

1 Level DWT

P1

P3

P2

P4

2 Level DWT

132

128

128

124

128

P2

P3

P4

35
35

32
32

32
32

29
29

⇒

35
32
32
29

P1 66

P2 64

P3 64

P4 62

Reconstructed DWT
Image

P1
P2
P3
P4

 66

a 2 level DWT decomposition completed by each processing unit and the final 3

level DWT image are also shown in Figures 3.13 and 3.14 respectively.

Figure 3.12: “Vegas” – Original 512x512 image

Figure 3.13: Two-level DWT transformed stripes for “Vegas” image from the 4 processing units

 67

Figure 3.14: Final Subbands for 3-level DWT transformed “Vegas” image

We evaluated the performance for the three parallel implementations in terms of

memory I/O bandwidth and total number of multiplies and accumulates (MACs).

Our results show that the overlap-state and overlap-save has a much lower memory

bandwidth than the overlapping algorithm. Also, as shown in Figure 3.15 the

overlap-state algorithm provides significantly better performance when compared to

the other two implementations. We also studied the effects of scaling of the overlap-

state algorithm. Partitions of 2, 4, 8 and 16 blocks were simulated for the 512x512

test image. It can be seen from Figure 3.16 that performance scales well as the

number of partitions increases.

In conclusion, our simulations demonstrate that the overlap-state technique has

moderate on-chip storage requirements, has better performance, minimizes the inter-

block communications and hence memory I/O operations, and is fully scalable.

 68

Figure 3.15: DWT – Parallel Implementations – Performance

Figure 3.16: DWT – Parallel implementations – Partitioning effects

 69

3.4.1 Parallel 2D DWT System

This section describes the architecture of a parallel 2D-DWT system designed for

low-power, real-time image encoding and decoding [7]. Based on a highly parallel,

SIMD (Single-Instruction/Multi-Data)-like architecture, the parallel 2D DWT system

incorporates multiple processors operating in parallel to achieve high processing

throughput. The parallel 2D DWT architecture exploits the unique properties of the

overlapping algorithms, especially the overlap-state, enabling a highly memory-

efficient and scalable design, and is particularly well suited for FPGA

implementation. The parallel 2D DWT design supports dynamic in-situ system

reconfiguration for efficient performance under various operating parameters and

hardware resources. .

3.4.2 System Architecture

The parallel 2D DWT system comprises a master processor (or global controller) and

an array of slave coprocessors operating in a SIMD-like configuration, as shown in

Figure 3.17. The master processor can be a hard or soft core micro processor or a

custom designed hardware unit and it will be referred to as the global controller

(GB). The coprocessors will be referred to as DWT line processors (DLPs). The

number of coprocessors can be scaled depending on system performance

requirements and available hardware resources.

 70

The GB manages the overall operation of the 2D DWT system. The GB primary

tasks include executing the top-level control and processing functions of the

overlapping algorithms, as well as scheduling, supervising, and monitoring the

processing activities of the DLP coprocessors and managing internal data transfer

between the DLPs and external data transfer between the 2D DWT system and

external memory and an external host. The GB also provides a host bus interface to

an external host processor and I/O devices attached to the host bus. The GB initiates

and supervises all DLPs processing activities by dispatching commands to the DLPs.

The DLPs are special-function processing units optimized to perform high-speed

computation of the 1D-DWT. The DLPs can perform their processing in parallel,

independently of other DLPs. The 2D DWT system can operate in either a

synchronous or non-synchronous mode. In the synchronous mode, the GB instructs

the DLPs to perform identical processing tasks in locked step. In the non-

synchronous mode, the DLPs processing is staggered. As instructed by the GB, a

DLP begins processing as soon as data is received. At the same time, the GB

continues with downloading of data to other DLPs. The non-synchronous mode

provides a higher level of concurrency, but requires more complex scheduling and

control logic to ensure processing and data coherency.

The GB communicates with the DLPs via a high-speed system bus and initiates all

system bus activities, which include reading from and writing to the DLPs local

 71

registers and memories. The system bus consists of a data bus, an address bus, and a

set of control signals. The data bus is a bi-directional bus which can be driven by the

GB or DLPs. The address bus is only driven by the GB to address DLPs registers or

local memories during a read or write operation. The DLPs appear on the system

bus as "memory-mapped" devices. Hence, each DLP is assigned a unique, fixed and

equal size address space. In addition, a global address space is also defined to

globally address the DLPs. Commands or write data addressed to a location in the

global address space are written into all corresponding locations of the DLPs.

The GB also performs various top-level processing tasks including: (1)

system/global data initialization, (2) image boundary handling, (3) boundary data

initialization control, (4) row and column transform control, (5) boundary data

transfer control, and (5) decomposition level control. The GB issues commands to

the DLPs to perform various low-level DWT processing tasks including (1) data line

extension, (2) boundary data initialization, and (3) row/column 1D-DWT.

The GB's basic processing flow is as follows: The GB partitions the input data

stream from external I/O into data blocks and commands DMAs in each DLP for

image line access and performing partial buffering of the input data if necessary. In

the non-synchronous mode, once a complete block has been downloaded to a DLPs

local memory, the GB instructs the DLP to perform the 2D DWT on interior block

 72

data. The GB then continues to download the next data block to another DLP for

processing, and so on. In the synchronous mode, the GB holds off DLP processing

until data blocks are downloaded to all DLPs. When the 2D DWT on the interior

block data is completed, the GB instructs the DLPs to merge the boundary data (by

utilizing the DLPs DMAs) to complete the 2D DWT of the entire data blocks.

Finally, the GB reads and outputs the transformed data from a DLP local block

memory to the host processor. The GB communicates with a host processor via the

host interface. The host interface supports high speed I/O data transfer to host

processor through the host processor bus. It also supports DMA data transfer to

external I/O devices attached to the host bus.

Host Bus

System Bus

RISC

µProcessor

Core

Local

Memory

DLP

Interface

Host

Interface

Interrupt

Control

Figure 3.17: Master processor with system and host communication busses.

Master
Processor
/Global

Controller
(GB)

 73

The GB communicates with the DLPs via the DLP interface unit. The local memory

stores the parallel control and sequencing firmware, system parameters, user

application configuration data, and provides partial buffering of external I/O data.

The GB issues commands to DLPs to initiate DLP processing by writing to the DLP

command registers. The commands include (1) reads and writes to the DLP local

memories and registers, (2) initiation of 1D-DWT processing, and (3) DLP reset.

3.4.3 DWT Line Processor Architecture

The DWT line processor (DLP) is a special-function coprocessor designed for high-

speed computation of the 2D DWT. The DLP performs 2D DWT on a data block as

a sequence of row and column 1D DWTs. The row/column 1D DWT is performed

in three basic processing steps: (1) boundary extension, (2) boundary initialization,

and (3) DWT filtering with lifting.

The DLP comprises a controller, a set of local registers, a local memory, a DMA

unit, a pipelined arithmetic unit (PAU), and a GB interface. The DLP controller

performs various control and sequencing operations. Based on a multiple state-

machine design, the controller is optimized for high processing concurrency and low

latency. It decodes GB commands from the GB interface and generates the required

sequence of control signals to perform the various DWT processing functions. The

DLPs local registers include control, status, and data registers which can be read or

written by the GB. The local memory mainly stores the input data block. After a

 74

1D-DWT is performed, the input data block is replaced with the output processed

data. The memory also provides a line buffer for the 1D DWT processing. The

DMA unit facilitates the transfer of data with the GB and with neighboring DLPs

during boundary data merge operation. The DMA unit provides separate input and

output data ports for two neighboring DLPs. The ports contain internal buffers to

allow parallel data transfer between DLPs.

The DLP communicates with the GB over the system bus via the GB interface unit

and appears as a "memory-mapped" device on the bus. The GB interface latches and

buffers the address, data, and control signals on system bus during an active bus

cycle. The address is decoded to determine if the current bus cycle is a local memory

or register access. The SMP interface generates all the required handshake signaling

as well as requests to perform the 2D-DWT boundary merge when operating in

pipelined mode.

The PAU is a fixed-point arithmetic accelerator designed to perform the numeric

intensive 1D-DWT filtering operation using the in-place lifting technique. The PAU

is based on a pipeline design and incorporates a set of multiplier-accumulator units

(MACs) and data shift registers. The PAU pipeline cycle consists of loading two

input data samples and reading out two output samples. The PAU operation starts by

shifting in two input samples into the input registers of the first MAC unit in two

 75

clock cycles. However, data in the input registers of the remaining MACs are shifted

in the first clock cycle. Additional clock cycles are used to perform the MAC

operation. Two output samples from the last MAC unit are then read out to complete

the pipeline cycle

System

Bus

Data_In

Local

Memory

DLP

Control
PAU

SMP

Interface

Memory

Control & I/F

Local

Registers

Data_Out

Figure 3.18: DWT line processor with inter processor communication bus.

The length of DWT filter determines the number of MAC units and consequently the

PAU pipeline latency. Internal data registers are provided in the PAU for storing the

DWT filter coefficients. The shift register unit provides one- and two-clock cycle

delayed data to the next pipelined stage in the PAU. The MAC, designed for high

speed and low latency, consists of an array multiplier and an accumulator with fast

carry-chain logic for high speed performance.

 GB
Interface

 76

To onTo on--board memoryboard memory

if boundary transitional dataif boundary transitional data

To onTo on--board memoryboard memory

if boundary transitional dataif boundary transitional data

Figure 3.19: DWT filtering with lifting flow graph for the (9,7) DWT

MACC

SR

SR

SR

δ

MACC

SR

SR

SR

β

MACC

SR

SR

SR

γ

MACC

SR

SR

SR

α

Data

Out

Data

In

Coeff.

MACC

mult

Data

Out acc
Out

In1

In2

In3

Figure 3.20: Pipelined Arithmetic Unit (PAU) for the (9,7) DWT

 77

3.4.4 Implementations and Performance

The three parallel implementations for the (9,7) DWT, overlapping, state-save and

overlap-state, were coded in VHDL and ported to the Xilinx Virtex II Pro

(XC2VP70) field programmable gate array (FPGA) using a commercial board from

the Dini Group. Evaluations were made with images of size 512x512 pixels and

system clock frequency of 100 MHz. The FPGA utilization was ~43% (for 4 DWT

parallel processors in the case of the overlap-save). Table 3.3 shows comparisons of

the resource utilization for various number of parallel DWT modules. Performance

benchmarks show more than 2 orders of magnitude acceleration over the c-code

implementation and more than 3 times speed-up as compared to the parallel

implementation of the standard algorithm, as can be seen in Figure 3.21. Further

performance improvements are possible with additional parallel DWT modules.

Table 3.4 shows that our implementation has throughput improvements of 1.4 to 3

times over other optimized implementations such as UCI’s “software pipelines”

[116], modified folded for SPIHT [43], and commercial IP such as Amphion [5] and

Cast [59]), but with higher resources utilization.

 78

Table 3.3: Resources Utilization for the Overlap-State Implementation

109 (33%)56 (17%)26 (8%)Number of
BRAMS

34 (10%)

11729 (18%)

7499 (11%)

7267 (22%)

Two parallel DWT
Modules

67 (20%)16 (5%)Number of
18x18

Multipliers

22912 (35%)5455 (8%)Number of 4
input LUTs

14650 (22%)3488 (5%)Number of Slice
Flip Flops

14196 (43%)3380 (10% of total
available slices)

Number of
Slices

Four parallel DWT
Modules

One DWT Module

109 (33%)56 (17%)26 (8%)Number of
BRAMS

34 (10%)

11729 (18%)

7499 (11%)

7267 (22%)

Two parallel DWT
Modules

67 (20%)16 (5%)Number of
18x18

Multipliers

22912 (35%)5455 (8%)Number of 4
input LUTs

14650 (22%)3488 (5%)Number of Slice
Flip Flops

14196 (43%)3380 (10% of total
available slices)

Number of
Slices

Four parallel DWT
Modules

One DWT Module

Performance of Different Parallel Algorithms on FPGA Vs. Software

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6

DWT Level

Lo
g

of
 T

im
e

(m
se

c)

Software
Standard Algorithm
Overlapping
Overlap-Save
Overlap-State

Figure 3.21: FPGA Parallel Implementations Performance for the (9,7) 2D DWT

 79

Table 3.4: Resources Utilization and Throughput Comparisons to other Optimized Methods

1024x1024512x5121024x1024128x128256x256Image Size

55555DWT Trans.
Level

55

-

3784

Virtex E-8

Amphion

9

51

2227

Virtex II
2V500

Cast Inc.
(LB-2D)

98

98

986

Virtex II
2V500

UCI
“Software-
pipelined”

138100Performance
(Msamples/sec)

75

(62% of chip
resources)

Virtex-E

Modified
Folded for

SPIHT

100Clock
Frequency

(MHz)

14196 (43% of chip
resources)

Number of
Slices

Virtex II Pro
XC2VP70

Device

Our Overlap-state
(Four parallel Modules)Architecture

1024x1024512x5121024x1024128x128256x256Image Size

55555DWT Trans.
Level

55

-

3784

Virtex E-8

Amphion

9

51

2227

Virtex II
2V500

Cast Inc.
(LB-2D)

98

98

986

Virtex II
2V500

UCI
“Software-
pipelined”

138100Performance
(Msamples/sec)

75

(62% of chip
resources)

Virtex-E

Modified
Folded for

SPIHT

100Clock
Frequency

(MHz)

14196 (43% of chip
resources)

Number of
Slices

Virtex II Pro
XC2VP70

Device

Our Overlap-state
(Four parallel Modules)Architecture

3.5 Conclusions

We presented, in this chapter, a methodology for parallel implementation of the

lifting DWT on FPGAs. We investigated and analyzed parallel and efficient

hardware implementations targeting state-of-the-art FPGAs. We addressed practical

considerations and various design choices and decisions at all design stages to

achieve an efficient DWT implementation, subject to a given set of constraints and

limitations. We presented a specific lifting representation for the DWT that provides

architectures suitable for efficient hardware implementation, and a novel data

transfer method that provides seamless handling of boundary and transitional states

associated with parallel implementations.

 80

We demonstrated our methodology with an implementation example for the (9,7)

DWT, and also showed that it can be extended to operate under different platforms

and constraints. We analyzed the implementations parameters to provide the best

performance subject to practical considerations and platform constraints. We

provided trade-off analysis for various implementations and comparisons to other

existing implementations.

 81

Chapter 4

Chapter 4: Three Dimensional DWT coding for On-Board Hyperspectral
Data Compression in Space Applications

4.1 Introduction

Imaging spectrometers or hyperspectral sensors are becoming increasingly common

in deep space and Earth orbiting missions. Spatial and spectral resolutions of such

instruments are on the rise to seek better data quality and improve the scientific or

strategic value of the gathered information. The main limiting challenges to such

new instruments are the available transmission bandwidth and on-board storage

capacity. This makes compression of much greater value and a crucial part of the

acquisition system.

Several approaches to hyperspectral data compression have been proposed in the

literature. They include transform techniques based, in general, on a hybrid

combination of two transforms. Typically they use KLT or Principal Component

Transform to decorelate the spectral bands, and either DCT or DWT to spatially

compress the selected high energy principal components [89][25]. Another example

is based on the Modulated Lapped Transform (MLT), proposed by H. Hou [50],

followed by DWT. Factorization methods were also proposed which include

principal components, Gram Schmidt, stochastic modeling of the atmosphere, and

 82

convex factorization [47][49][93]. These techniques are generally for content

retrieval, are only used for lossy compression, and are often overly complex for on-

board hardware implementation. Prediction based techniques such as differential

pulse code modulation (DPCM) in both spectral and spatial domains are common

[26][85]. All these techniques are mostly either lossy or lossless only and are non-

progressive.

Recently, researchers proposed 3D DWT transform based coding such as 3DSPIHT

(Set Partitioning in Hierarchical Trees) [40], 3DSPECK (Set Partitioned Embedded

bloCK) [95] and 3D Tarp Coding (modified 3D DWT coding) [110]. While these

techniques produce good compression results compared to 2D based algorithms, they

may not meet future mission requirements due to their need for relatively complex

post transform processing, which may not be suitable for on-board hardware

deployment (due to speed and power impact). Locally Optimal Partitioned Vector

Quantization (LPVQ) [84][88], recently proposed by Motta and Rizzo, has excellent

lossy and lossless compression effectiveness, but its adaptive features are also

computationally intensive, making them impractical for on-board spacecraft

deployment.

In this chapter we investigate a wavelet based approach for three dimensional coding

of hyperspectral data cubes suitable for on-board processing and hardware

 83

implementation on reconfigurable platforms. Ideally, hyperspectral data compression

should be lossless, to preserve the scientific data value. However, lossless

compression may be limited in terms of achievable compression ratios due to noise

inherent in such high-resolution sensors. Hence, a lossless/virtually lossless approach

is adopted to address such applications. We adapt the 3D data sets to an efficient 2D

wavelet based image compression, the ICER image compressor [62], by extending

the wavelet decomposition to three dimensions and extending the bit-plane encoding

scheme to operate with 3D data. The computationally intensive nature of

compression-effective algorithms makes them impractical for software on-board

deployment. Hence, our motivation throughout this research was suitability for

hardware on-board implementation, which guided our design choices at every step of

the algorithm development.

This chapter is organized as follows. Section 4.2 details our compression strategy,

algorithm description, issues related to adaptation of 2D image compression to 3D

data sets and issues encountered in porting the design to FPGA hardware platforms.

In section 4.3 we present our experimental compression results for AVIRIS data sets.

Section 4.4 covers extensions and applications related to hyperspectral data

compression and section 4.5 concludes this chapter with a summary and conclusions.

 84

4.2 Three Dimensional Coding

4.2.1 Compression Strategy

Our strategy was to develop a general-purpose methodology for hyperspectral data

compression that efficiently exploits spectral (inter-band) correlations as well as

spatial correlations. To addresses requirements of various instruments – i.e.

lossless/lossy compression, progressive compression, real-time constraints and low

memory utilization. In order for it to be considered for space missions insertion, it

needs to be low-complexity and suitable for on-board hardware implementation (low

power and mass impact). In addition, the compressed bit stream should be suitable

for progressive browsing, target detection and classification, and extendedable to

accommodate region-of-interest (ROI) compression. Suitability for push-broom type

sensors is also important since hyperspectral data is mostly collected in band

interleaved by pixel (BIP), or sometimes in band interleaved by line (BIL) formats.

Finally, the strategy should address various applications’ distortion metrics -

objective metrics, in terms of mean squared error (MSE) or peak signal to noise ratio

(PSNR), and subjective metrics, in terms of visualization, signature extraction, or

classification. To pursue these goals we started our investigation by adapting 2D

compression-effective algorithms, such as 2D discrete wavelet transform (DWT)

based algorithms, to 3D hyperspectral data.

 85

4.2.2 From 2D to 3D Wavelet Coding

The chosen algorithm, based on the reversible integer DWT, leads to a progressive

encoder capable of lossless and lossy compression in a single system. Our approach

relied on extending an efficient 2D image compression algorithm, namely the JPL

ICER [62] image compressor, to 3D data sets. This required extending the 2D

wavelet decomposition to 3D decomposition as shown in Figure 4.1 below. The

resultant subband cubes required a major modification of post DWT transform

coding, such as the bit-plane coding, which will be described in the following

sections. A block diagram of the compression process is shown in Figure 1.4. We

used a line based DWT scheme, operating in scan-mode, to accommodate

pushbroom sensors. It should also be noted that low-complexity and portability to

FPGA hardware implementation was a major driver at every step of the algorithm

design.

Figure 4.1: Integer based DWT is applied to all three dimensions of the image cube

Input
Image

h

g

2

2

2

2

2

2

2

2
2

2

2

2

2

2
h

h

h

g

g

g

g

g

h

h

x direction y direction z direction

h

g

Smooth
Component

Detailed
Components

Image Cube

LLL HLL

LLH HLH

HHH

LHL HHL

 86

4.2.2.1 From ICER-2D Image compression to ICER-3D-HW

The ICER [62] image compressor was developed at JPL to meet the requirements of

the Mars Exploration Rover mission (MER). It is currently deployed on the Spirit

and Opportunity rovers and continues to be used to send most of their images to

Earth from Mars [64][65]. We extended the ICER algorithm to hyperspectral data by

expanding the discrete wavelet decomposition to three dimensions and adapting its

bit-plane encoding scheme, which uses a context modeler similar to the EBCOT

coder in JPEG2000 [98], followed by an interleaved entropy coder. The ICER 2D

image compressor block diagram is shown below in Figure 4.2.

CompressedCompressed

Bit StreamBit Stream

2D DWT
Transform

DWT
Coefficients
Conversion

Encoder

coderError
Containment
Segmentation Context

Modeling
Bit-Plane
Encoding

2D DWT transform
Both lossless and lossy

ImageImage

CompressedCompressed

Bit StreamBit Stream

2D DWT
Transform

DWT
Coefficients
Conversion

Encoder

coderError
Containment
Segmentation Context

Modeling
Bit-Plane
Encoding

2D DWT transform
Both lossless and lossy

2D DWT transform
Both lossless and lossy

ImageImage

Figure 4.2: ICER 2D Image Compression

 87

4.2.2.2 Bit Plane Encoding for 3D data sets

The extension of ICER-2D bit-plane encoding to 3D decompositions was done in the

following manner. After the wavelet decomposition, each subband cube is assigned

an index, with indices numbered starting from 0. The index assignment is used to

determine the order in which different subband bit planes are compressed. Let L and

H denote number of stages of high-pass and low-pass filtering used to form a

subband, indices are assigned by sorting the subbands according to the following

subband-ordering scheme [63]:

(1) A subband with a larger value of L − H has a higher index. This has the effect of

giving higher indices to subbands with higher priority bit planes as will be seen

below.

(2) For two subbands with the same value of L − H, if one of them has fewer

coefficients, then it is given a higher index (equivalently, subbands formed through a

larger number of wavelet-filtering operations, i.e., larger value of L + H, are given a

higher index.).

(3) If the two subbands are equivalent in the preceding considerations, then a higher

index is given to a subband that is low-pass in the vertical direction.

(4) If the two subbands are equivalent in the preceding considerations, then a higher

index is given to a subband that is low-pass in the horizontal direction.

 88

Bit-plane priority assignments:

For each subband we can determine a weight that indicates the approximate relative

effect, per coefficient of the subband, on mean squared error (MSE) distortion in the

reconstructed image [63]. These weights determine the relative priorities of subband

bit planes. The weight is expressed in terms of the number of stages of high-pass and

low-pass filtering operations, H and L, used to form a subband. For example, let’s

consider the front top right green subband cube shown earlier in Figure 2.5. To form

this subband cube, we apply low-pass filtering in all dimensions (horizontal, vertical

and spectral) twice, then high-pass filtering in horizontal direction followed by high-

pass filtering in both the vertical and spectral dimensions. Thus H = 1 and L = 8 for

this subband. The weight w assigned to bit plane b of a subband depends on H and L:

)1.4()2()2.(2
2 HLbHLb −+−

==ω

Bit planes in a subband are indexed starting with b = 0 for the least significant bit.

This weight scheme is a 3D extension of the weight scheme used in ICER [62] for

the 2D case. Any monotonic function of the weight in equation (4.1) can be used to

determine the relative importance of subband bit planes, so rather than keeping track

of real-valued weights given by equation (4.1), we define integer “priority” values p

of subband bit planes, given by:

)2.4(32)(log3 2 +−+=+= HLbp ω

This definition produces a minimum priority value of 0, since H ≤ 3 and L ≥ 0 for all

 89

subbands. As an example, if H = 2 and L = 6 for a subband cube, bit plane b of this

subband is assigned priority value p= 2b + 7. Thus, all bit planes of this subband

have odd priority value, with minimum value of 7. Take another subband, H = 2 and

L = 1. Bit plane b of this subband has priority p = 2b +2. For this subband all bit

planes have even priority value, with a minimum value of 2. Since L and H are fixed

for a given subband, all of the bit planes in a subband have even-valued priority, or

all have odd-valued priority.

Mean subtraction and Sign-Magnitude Coding:

The mean of each low frequency subband plane is subtracted (similar to the case in

ICER 2D, but extended to cover planes of the low frequency subband cube) in

preparation for the next stage of coding. Each DWT coefficient is converted to sign-

magnitude form. Magnitude bit planes of subbands are compressed one at a time;

when the first ‘1’ magnitude bit of a coefficient is encoded, the sign bit is encoded

immediately afterwards. Compressed bit planes of different subbands planes are

interleaved, with the goal of having earlier bit planes yield larger improvements in

reconstructed image quality per compressed bit. Subband bit planes are compressed

in order of decreasing priority value according to the simple priority assignment

scheme described earlier. Bit planes having the same priority value (which are from

 90

different subbands) are compressed in order of decreasing subband index, using the

ad hoc index assignment scheme described earlier, which aims to improve

compression performance while maintaining low-complexity [63].

Context Modeler and Entropy Coder:

Driven by the low-complexity requirements, the context modeler designed for the 3D

coding algorithm (which will be referred to as ICER-3D-HW, since this is the

version that was ported to hardware), is similar to the one deployed by ICER 2D, but

works on planes of the subband cubes. Before encoding a bit, the encoder calculates

an estimate of the probability that the bit is a zero. This probability-of-zero estimate

relies only on previously encoded information from the same plane. The bit and its

probability-of-zero estimate are sent to the entropy coder, which compresses the

sequence of bits it receives. For entropy coding, ICER-3D-HW uses an interleaved

entropy coder; the same as that used by ICER and described in [62]. Probability

estimates are computed using a technique known as context modeling. With this

technique, a bit to be encoded is first classified into one of several contexts based on

the values of previously encoded bits. The intent is to define contexts that divide bits

with different probability-of-zero statistics into different classes, for which separate

statistics are gathered. The compressor can then estimate these probabilities-of-zero

reasonably well from the bits it encounters in the contexts. The simple adaptive

 91

procedure used by ICER, and described in [62], to estimate probabilities, was also

extended to 3D data sets.

ICER-3D-HW employs a two-dimensional context model relying on eight (spatial)

neighbors in a subband plane. Coding of a subband bit plane proceeds from one

spatial plane to the next, and in raster scan order within a spatial plane. Pixels are

assigned categories 0 through 3 as shown in Figure 4.3 and bits are classified into

one of 17 contexts (this is derived from the EBCOT encoder and JPEG2000)

[98][57].

Figure 4.3: Progression of categories of a pixel as its magnitude bits and sign are encoded

For each bit bi in a pixel of a subband, the context modeler produces an estimate pi

of the probability that bi = 0. The entropy coder uses theses estimates to produce an

encoded bit stream. The design choice for an entropy coder can ideally be an

 92

adaptable binary coder (arithmetic coding), or a low-complexity approximation to it.

The interleaved entropy coder of ICER was adopted here due to some speed

advantages. The coder compresses a binary source with a bit-wise adaptive

probability estimate by interleaving the output of several different variable-to-

variable length binary source codes. Later optimization of algorithm resulted in a 3D

context modeler and a new ICER-3D compressor described in [63], but it has not

been modified yet for hardware implementation and is not discussed here.

ICER-3D-HW, inherits, from ICER, a segmentation scheme for error containment

that encodes segments of the subband planes, rather than the whole plane, to allow

partial reconstruction of the decoded image when an encoded packet is lost. The

segmentation scheme is scalable to allow different levels of error containment.

Details of this segmentation scheme are described in [62][63].

4.2.2.3 Spectral Ringing Artifacts in 3D DWT Coding

3D DWT Limitations

A straightforward extension of wavelet-based two-dimensional image compression

to hyperspectral image compression, based on a three dimensional wavelet

decomposition, results in compression-ineffective coding of some subbands and can

lead to reconstructed spectral bands with systematic biases. Thus, using a wavelet

transform for spectral decorrelation of hyperspectral data does not account for

systematic differences in signal level in different spectral bands. In addition, the

 93

spectral dependencies are not limited to the small spectral neighborhood exploited by

the wavelet transform and this will require further modification to the decomposition

or the coding scheme.

The “Spectral Ringing” Problem

When the Mallat decomposition shown in Figure 4.4 is used as 3D DWT for

decorrelation, "ringing" artifacts in the spectral dimension can cause the spatially

low-pass subbands to have large biases in the individual spatial planes that

manifesting themselves as systematic biases in some reconstructed spectral bands.

Specifically, spatial planes of spatially low-pass subbands contain significant biases

that vary from plane to plane [66][72][73]. These biases appear in the spatially low-

pass subband as can be seen in 4.5. This problem is somewhat unique to

multispectral and hyperspectral data; an analogous artifact does not generally arise in

images. The encoding scheme adapted from ICER [62] assumes that, except for the

low-pass subband cube, the means of subband planes of all DWT subband cubes are

zero. Histogram analysis for planes from the spatially low-pass subband cubes shows

that often the means are not zero, as can be seen in Figure 4.6. This phenomenon

hurts the rate-distortion performance at moderate to low bit rates (~1 bit/pixel/band

and below) and occasionally introduces disturbing artifacts into the reconstructed

images. Figure 4.7 shows an example of these artifacts.

 94

Figure 4.4: 3D Mallat DWT Decomposition

Figure 4.5: Sample Planes from Subband Cubes from 3 Different DWT Stages

 95

Figure 4.6: Histograms of DWT coefficient values in 4 subbands planes from AVIRIS Cuprite
scene. All planes are from the first level LLH subband (planes 50 to 53) showing a non zero

mean.

Figure 4.7: Spectral Ringing: Original image (right) and reconstructed from 0.0625
bits/pixel/band compressed AVIRIS image

 96

Mitigation of Spectral Band Signal Level Variations

Two methods were developed for mitigating the spectral ringing effects described

above. Compression results illustrating the benefits of these methods are presented in

section 4.3.3. The two methods are as follows:

Mean Subtraction.

The basic idea of this method is simply to subtract the mean values from spatial

planes of spatially low-pass subbands prior to encoding, thus compensating for the

fact that such spatial planes often have mean values that are far from zero. The

resulting data are better suited for compression by methods that are effective for

subbands of 2D images such as the ones used for ICER [62] and described earlier in

this chapter.

Additional DWT Decompositions

An alternative approach to mitigate this problem is to perform additional DWT

decompositions. Not only is the low-pass subband further decomposed, but spatially

low-passed, spectrally high-pass subbands are also further spatially decomposed.

These two methods can be combined, i.e., we can perform the modified

decomposition and then subtract the mean values from spatial planes of the spatially

low-pass subbands. In the context of ICER-3D-HW, the mean subtraction method is

 97

easy to implement as follows. After the 3D wavelet decomposition is performed,

mean values are computed for, and subtracted from, each spatial plane of each error-

containment segment of each spatially low-pass subband cube. The resulting data is

converted to sign-magnitude form and compressed as in the baseline ICER-3D-HW.

The mean values are encoded in the compressed bit-stream and added back to the

data at the appropriate decompression step. The overhead incurred by encoding the

mean values is only a few bits per spectral band per segment, which is negligible

because of the huge size of hyperspectral data sets. Note that it is important to

subtract the means after all stages of subband decomposition; otherwise if two

adjacent error-containment segments have significantly different means, a sharp edge

would appear after subtracting the means, artificially increasing high-frequency

signal content in further stages of spatial decomposition.

Other researchers have also used modifications to the Mallat decomposition for

hyperspectral image compression. For example, in 3D tarp coding and 3D SPIHT

[110] [96] the wavelet decomposition used is equivalent to a 2D Mallat

decomposition in the spatial domain followed by a 1-D Mallat decomposition in the

spectral dimension. The resulting overall decomposition has further decomposed

subbands compared to our modified decomposition with the same number of stages.

Because all of the transform steps of our modified decomposition are included in the

decomposition of [110][96], the latter enables a similar advantage in compression

 98

effectiveness. Alternatives to the Mallat 3D wavelet decompositions have also been

used for compression of 3D medical data sets [114], and video coding [69][101].

4.2.3 From Software to Hardware – FPGA Implementation

Considerations

In general, when moving an algorithm from software to hardware, major

modifications are needed to tailor the algorithm to a hardware platform, in our case

the FPGA platform, in order to take full advantage of the high performance of the

target hardware platform. These changes include precision analysis, simpler

architectures for coding and schemes that minimize I/O operations. Keeping these

issues in mind in the design phase of the algorithm makes this transition simpler.

Since the ICER-3D-HW is lossless and lossy, precision and fixed point analysis are

not needed due to the fact that our hyperspectral sensory data and our DWT filters

are integer-valued. However, dynamic range expansion in the DWT may occur after

several filtering operations for certain filters, resulting in excessive memory

requirements or the need to quantize the DWT coefficients and make the algorithm

lossy. The next section will describe the analysis and design choices used to

overcome this issue. Other issues we consider for migration from software to

hardware are the choices for the context modeler and mitigation techniques for the

spectral ringing artifacts in 3D DWT.

 99

4.2.3.1 Dynamic Range Expansion for DWT Data

In general, the range of possible output values from a reversible DWT can be larger

than the range of input values [81]; such an increase can be seen as a dynamic range

expansion. The amount of dynamic range expansion can increase with the number of

filtering operations. Dynamic range expansion can be an issue because storage of

wavelet-transformed samples may require binary words that are larger than those

used for the original samples. In particular, one must pay attention to the degree of

dynamic range expansion if the wavelet decomposition is performed in-place, i.e.,

when memory locations originally used to store image samples are subsequently

used to store DWT coefficients, as is the case in most hardware implementations of

the DWT.

For the filters used in ICER and ICER-3D-HW, low-pass filtering does not expand

the dynamic range, but high-pass filtering does. The dynamic range expansion

following a single one dimensional high-pass filtering operation can be described

[62] by the approximation

)3.4(.)(minmaxminmax axxhh −≈−

Here Xmax and Xmin denote the maximum and minimum possible values input to the

DWT, and hmax, hmin denote the maximum and minimum possible values output

from the (one dimensional) high-pass filtering operation. As noted in [62],

 100

minmax hh −≈ . The constant a is equal to the sum of the absolute values of the filter

taps for the linear filter that approximates the particular high-pass filter. Thus, each

additional stage of high-pass filtering results in dynamic range expansion by a (filter-

dependent) factor a, or log2 a bits. Under the decomposition structure used by ICER-

3D-HW, each subband is produced using at most one high-pass filtering operation in

each of the three dimensions (x, y, or λ), so the worst-case dynamic range expansion

comes from three high-pass filtering operations. Table 4.1 shows the dynamic range

expansion resulting from up to three high-pass filtering operations for the filters used

by ICER-3D-HW.

The last column of Table 4.1 can be used to determine the binary word sizes required

to accommodate dynamic range expansion for a given source bit depth, or

conversely, determine the restriction on source bit depth for a given storage word

size. For example, 16-bit words are sufficient to store the coefficients produced by

applying a 3D decomposition, using the (2,6) DWT filter pair (filter A) on 12-bit

data (such as uncalibrated AVIRIS data). But the other filter choices may produce

DWT coefficients that cannot be stored in 16-bit words following 3D wavelet

decomposition.

However, if such a filter pair is not used and expansion does occur for the transform

coefficients, there are some techniques that may be used to relax the requirements,

 101

with minor costs. For example, quantization of DWT output could be performed at

intermediate stages of the decomposition to reduce the dynamic range as needed.

This method sacrifices the ability to perform lossless compression, and it may

slightly decrease compression effectiveness at high rates, but it may be quite

practical when lossless or near-lossless compression is not needed. For all examples

presented in this chapter, as well as for the hardware implementation presented in the

next chapter, wavelet transforms are performed using filter A, which is the integer

(2,6) DWT filter pair described in [62], [1] and [90].

Table 4.1: Approximate Dynamic Range Expansion following 1, 2 and 3 filtering

Filter

One High-Pass

Filtering Operation

a log2 a bits

Two High-Pass

Filtering Operation

a2 log2 a2 bits

Three High-Pass

Filtering Operation

a3 log2 a3 bits

A 5/2 1.32 25/4 2.64 125/8 3.97
B 11/4 1.46 121/16 2.92 1331/64 4.38
C 25/8 1.64 625/64 3.29 15625/512 4.93
D 41/16 1.36 1681/256 2.72 68921/4096 4.07
E 47/16 1.55 2209/256 3.11 103823/4096 4.66
F 51/16 1.67 2601/256 3.34 132651/4096 5.02
Q 11/4 1.46 1/16 2.92 1331/64 4.38

The aforementioned analysis can also be used to aid filter designers in the selection

of filter coefficients that are hardware and memory friendly when used for

compression or analysis of data. As mentioned earlier, low-pass filters do not cause

dynamic range expansion and no constraints need be applied here. For high pass

filters, if the maximum desired dynamic range expansion is B (in our case B = 4), the

 102

sum of the absolute values of the filter coefficients must satisfy the following

equation:

)4.4()||(log
1

0
2 Bh Jn

i ≤∑
−

Where hi is a coefficient of a high pass filter of length n, and J is the maximum

number of levels in the DWT decomposition.

4.2.3.2 Context Modeler Design for HW Implementation

While a 3D context modeler that covers the third dimension of the subband cubes

has noticeably better compression-effectiveness than a 2D context modeler (as was

shown by JPL researchers [63]), the increased computation complexity and data I/O

makes it impractical for hardware implementation without major modifications.

ICER-3D-HW employs the two-dimensional context model described in Section

4.2.2.2, relying on eight (spatial) neighbors in a subband plane and operating on one

subband plane at a time.

4.2.3.3 Mitigation of Spectral Ringing Artifact in HW

Seeking the low-complexity solution for the FPGA hardware implementation, the

mean subtraction method described in Section 4.2.2.3 was selected for the hardware

implementation described in the next chapter. The alternative approach to mitigate

 103

this problem, i.e., the use of additional DWT decompositions, is far more complex

and produces minor improvements in comparison to the mean subtraction method (as

will be shown in the next section). The hardware design complexity and the

additional resources (and thus, higher mass and power) required, are not justifiable

for our applications.

4.3 Experimental Results

In this section we present our compression results for both lossless and lossy

hyperspectral data compression performed on various AVIRIS data sets. We show

comparisons to other 3D coding methods and state-of-the-art 2D coding algorithms.

We also show results demonstrating the effects of techniques to mitigate the spectral

ringing artifacts discussed earlier in this chapter.

4.3.1 Lossless Compression

Tests were performed using available AVIRIS data sets (calibrated and

uncalibrated). Data sets were divided into image cubes of 512 lines x 614 pixels

each. These calibrated data sets represent 1997 scenes from Moffett Field

(vegetation, urban, water), Cuprite (geological features), Jasper Ridge (vegetation),

Lunar Lake (calibration), and Low Altitude (high spatial resolution) [20]. Table 4.2

shows the lossless compression performance of ICER-3D-HW on these five

calibrated AVIRIS radiance data sets. For comparison, Table 4.2 also shows results

 104

for the “fast lossless” compressor from [71], the Rice compressor used in the

Universal Source Encoder for Space (USES) chip using the multispectral predictor

option mentioned in [52], ICER-2D applied independently to individual spatial

planes, JPEG-LS image compressor [111], JPEG2000, and locally optimal

partitioned vector quantization (LPVQ) [84]. 3DSPIHT, 3DSPECK [97] and

JPEG2000 multi-component [58] results are available and shown here for scene 1 of

the Jasper Ridge 1997 reflectance scene. The results of Tables 4.2 indicate that

ICER-3D-HW provides more effective lossless compression than simple two-

dimensional approaches, the USES multispectral compressor and all 2D approaches.

But ICER-3D-HW is outperformed by the simpler fast lossless compressor of [71],

which was designed to be a lossless compression only, and LPVQ which is highly

complex due to its data dependent adaptive nature.

Table 4.2: Lossless compression results (bits/sample) for calibrated 1997 AVIRIS data sets

ICER-3D- fast Rice/USES ICER JPEG-LS JPEG LPVQ 3D- 3D- JPEG2K
Dataset HW lossless multil (2D) (2D) 2K SPECK SPIHT Multi
Cuprite 5.80 4.95 6.04 6.95 7.24 8.37 5.28 * * *

Jasper Ridge 6.12 5.04 6.17 7.60 7.78 8.96 5.42 * * *
Low Altitude 6.35 5.34 6.47 7.36 7.66 8.89 5.76 * * *
Lunar Lake 5.72 4.97 5.99 6.79 6.97 8.16 5.25 * * *
Moffett Field 5.96 5.07 6.13 7.22 7.46 8.79 5.51 * * *

Jasper Scene1 6.81 6.07 6.63 8.42 * 8.59 * 6.70 6.72 6.9
(Reflectance)

Average 6.13 5.24 6.24 7.39 7.42 8.63 5.44

Figure 4.8 shows results for uncalibrated (raw) data compressed by ICER and

ICER-3D-HW. The table shows that higher compression-effectiveness can be

achieved on raw data as compared to encoding calibrated data. This indicates that

calibrated data has additional artifacts that the algorithm does not adapt to. On-board

 105

compression will operate on raw sensory data coming from the spectrometer; hence

further investigation of performance on calibrated data is not needed.

2.80

3.20

3.60

4.00

4.40

4.80

0 2 4 6 8 10 12 14 16 18 20

data set index

ra
te

 (b
its

/p
ix

el
/b

an
d)

ICER-3D-HW
ICER (2D)

ICER-3D-HW
(Average 3.71 bits/sample)

ICER (2D)
(Average 4.48 bits/sample)

2.80

3.20

3.60

4.00

4.40

4.80

0 2 4 6 8 10 12 14 16 18 20

data set index

ra
te

 (b
its

/p
ix

el
/b

an
d)

ICER-3D-HW
ICER (2D)

ICER-3D-HW
(Average 3.71 bits/sample)

ICER (2D)
(Average 4.48 bits/sample)

Figure 4.8: Lossless Results with uncalibrated AVIRIS Data - Tests using 512 line scenes from
uncalibrated (raw) AVIRIS data sets(Original data 12bits/sample)

4.3.2 Lossy Compression

Figure 4.8 shows the rate-distortion performance comparison of ICER-3D-HW and

ICER-2D for the AVIRIS ‘97 Cuprite scene. In both cases, compression was

performed using three stages of wavelet decomposition. ICER-2D results were

obtained by applying ICER independently to individual bands. ICER-3D-HW results

were obtained by the 3D extension of ICER described earlier; specifically, using a

3D Mallat decomposition combined with spatial context models. Figure 4.9 shows a

comparison between ICER-3D-HW and a baseline 3D DWT approach that uses

 106

DWT coefficients quantization and entropy coding. The figure demonstrates the

effectiveness of the context modeling approach used in ICER-3D-HW.

10

100

1000

10000

0 0.5 1 1.5 2 2.5 3

rate (bits/pixel/band)

M
S
E
 d

is
to

rt
io

n

2D

ICER-3D-HW
10

100

1000

10000

0 0.5 1 1.5 2 2.5 3

rate (bits/pixel/band)

M
S
E
 d

is
to

rt
io

n

2D

ICER-3D-HW

Figure 4.9: Comparison of Lossy Compression between ICER-2D and ICER-3D-HW

Baseline 3D DWT

ICER-3D HW

Baseline 3D DWT

ICER-3D HW

Figure 4.10: Comparison of Lossy Compression between a baseline approach and ICER-3D

 107

4.3.3 Results from Mitigation Techniques of the Spectral

Ringing Artifacts

The methods described earlier for the mitigation of the spectral ringing artifacts

provide a noticeable improvement in rate-distortion performance compared to the

baseline approach, especially at moderate to low bit rates (roughly 1 bit/pixel/band

and below). In Figure 4.11 we compare the rate-distortion performance of these

methods to the baseline approach. Results shown are for a 512 line radiance data

scene of Cuprite, Arizona. The points shown on the curves were produced by

compressing all bit planes up to a specific level of significance. It can be seen that

mean subtraction and the modified decomposition provide very similar rate-

distortion performance, and give roughly a 10% improvement in rate compared to

the baseline method at 1 bit/pixel/band. When the number of wavelet decompositions

is small, the rate-distortion performance of modified decomposition alone is slightly

worse than using mean subtraction or the combination of the two methods.

 108

AVIRIS Cuprite 2001 data set; 512x614x224 bandsAVIRIS Cuprite 2001 data set; 512x614x224 bands

Figure 4.11: Rate-distortion performance and baseline ICER-3D-HW for the Cuprite scene.

(A) Mean subtraction (B) Additional DWT decompositions.

Overall, the use of either method from Section 4, with ICER-3D-HW, provides a

moderate subjective image quality improvement consistent with the improvement in

mean squared error (MSE) distortion [72][73]. In some cases, however, the

improvement is more dramatic, especially with regard to reduction of bias in

reconstructed images when compressed at low bit rates. This is illustrated in the

false-color images of Figures 4.12. Band 176 was deliberately chosen because its

reconstruction exhibits a noticeable bias when using the baseline ICER-3D-HW on

these scenes. This bias can be seen as an apparent overall color change under the

baseline ICER-3D-HW and, to a somewhat lesser degree, under mean subtraction.

The mean subtraction method was incorporated into ICER-3D-HW and ported to the

FPGA implementation as detailed in the next chapter.

 109

originaloriginal

ICER (2D) old (3D) ICER-3D (A) -HW ICER-3D (B) originalICER (2D)ICER (2D) old (3D)old (3D) ICER-3D (A) -HWICER-3D (A) -HW ICER-3D (B)ICER-3D (B) originaloriginal

Figure 4.12: Comparison of detail region using different compressors at 0.0625 bits/pixel/band.
(A) Mean subtraction (B) Additional DWT decompositions

4.4 Applications and Metrics

4.4.1 Region-of-Interest coding for 3D data sets

Typically, spacecraft imagers and remote sensors have the capability to collect far

more data than can be transmitted to earth. Remote sensing image users are usually

interested in only partial regions of the image sequence. That is to say, certain

regions are more important than other regions. On-board processing algorithms can

 110

recognize relevant features in the collected data, and hence it is unnecessary to treat

all image pixels equally. Insignicant regions should be highly compressed or

assigned to zero bit to minimize the total number of bits, thereby reducing

transmission time and cost without losing the analysis quality of the image sequence.

The available bandwidth can then be reallocated by spending more bits in the regions

of interest (ROIs), which speeds up and facilitates browsing of large datasets for

remote sensing applications.

Several algorithms have been proposed for ROI image compression. Progressive data

compression algorithms such as wavelet-based image compression can be used for

this purpose. During progressive compression, the image data is parsed into

hierarchical data segments that yield continual but diminishing improvement of

fidelity with each segment. The JPEG2000 image coding standard defines two kinds

of region of interest (ROI) compression methods; the general scaling based method

and the maximum shift method [99]. The two methods reduce compression

efficiency by increasing the dynamic range (or number of bit planes) of wavelet

coefficients, and they do not have the special protection for the ROI against the bit

errors in communication, Fukuma et al [44] proposed to use a wavelet transform

composed of two wavelet filter sets with different tap lengths, the shorter-length set

to code an ROI of an image and to the longer-length one for the remainder of the

image. While such an approach results in improved overall compression efficiency it

 111

adds an additional level of complexity to the system. Ding et al [37][38] introduced

an approach based on Wyner-Ziv theorem (source coding with side information). In

such approach, the reconstructed low quality ROI image is treated as side

information and can be utilized by a turbo decoder to decode the high quality ROI.

While it improves the compression efficiency as well as efficiently protecting the

ROI against bit errors, it is not progressive.

Our interest in this development is in schemes for progressive compression that

produce data segments specially tailored to “regions of interest” (ROIs) identified in

the images. Our approach, as a natural follow through to the ICER-3D development,

extends ICER-ROI [39], the 2 dimensional region-of-interest version of the ICER

image compressor, to hyperspectral data. It will be called ROI-ICER-3D. It uses the

same priority map for all spectral bands (this was extended later by other JPL

researchers to assign separate maps for each spectral band or group of bands).

ROI-ICER-3D takes as input both the raw image data and a data prioritization map.

A data prioritization map (or priority map, for short) is an assignment of a priority

number to each pixel of an image. In our implementation, a priority number is an

integer, with higher numbers indicating higher priority. A difference of some number

b between two priority numbers indicates that the higher priority pixel should be

reconstructed to roughly b more bits of precision than the lower priority pixel. The

 112

priority map is generated by identifying and classifying features of the source image

that are of interest to the end-users of the data. A priority map might be based on

information contained entirely within the image being compressed, or it might be

based on additional information, e.g., from recognizing changes from an earlier

acquisition of the same scene. To be most effective, the classification and

prioritization algorithms should be tailored to the specific objectives of the collected

data. Foe example, a geologist analyzing hyperspectral images would most likely

consider any image areas corresponding to cloud cover useless, whereas a

meteorologist may be of the opposite opinion. Both scientists would probably give

low priority to image areas corresponding to visible ocean surface, but an

oceanographer may think otherwise.

The hyperspectral dataset and priority map are transformed using a wavelet

transform. Priorities are accommodated by left-shifting (scaling by powers of 2)

wavelet-transformed pixels according to their corresponding priorities. Output

compressed data form a progressively coded “chain”. The chain consists of

successive bit planes of priority-scaled levels of wavelet decomposition. Truncation

of chains at different points determines the compression rate-distortion tradeoff. Due

to the 12 to 16 bit nature of hyperspectral data and its DWT transform, a scheme of

virtual shifting was designed to avoid expansion of memory requirements.

 113

Dataset
Classifier &
Prioritizer

ROI Data
Compressor

ROI
Decompressor

Hyperspectral
Datasets

Priority
Maps

Compressed
Data Stream

Compressed
Priority
Maps

Reconstructed
Data sets

Hyperspectral
Datasets

Dataset
Classifier &
Prioritizer

ROI Data
Compressor

ROI
Decompressor

Hyperspectral
Datasets

Priority
Maps

Compressed
Data Stream

Compressed
Priority
Maps

Reconstructed
Data sets

Hyperspectral
Datasets

Figure 4.13: Region of Interest (ROI) Hyperspectral Data Compression

“Virtual” ROI scaling rather than actual ROI scaling in ROI-ICER-3D avoids

expansion of dynamic range due to actual scaling, reduces memory requirements and

improves compression performance. As shown in Figure 4.4, assigning an ROI

priority scale of 2 (i.e. left shift high priority pixels by 2) adds two bit planes to the

data, b8 and b9, when the old actual scaling scheme is used. The grey shaded zeros

represent the extra bits that will be scanned during the bit plane encoding, affecting

compression effectiveness as well requiring as much as twice the memory needed to

hold the scaled data. In “virtual scaling”, no new bit planes are introduced, the

algorithm reads the priority map to determine if a pixel has a higher priority and

scans first the bit planes of the high priority pixels skipping all the ones with lower

or no priority assignment. The scanning method shown on the right of Figure 4.4

scans in its first path the b7 bits of pixels 3 and 4, and then proceeds to scan b6 bits of

the same pixels. b7 bits of the rest of the pixels get scanned in the third bit plane pass.

 114

In addition, scanning of pixels 3 and 4 is shifted by 2, eliminating the need to scan

zeros for the lower bit planes as was the case for the actual scaling.

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 sign
0 1 0 1 1 0 1 1 0 0 +
1 0 0 1 0 1 0 0 0 0 Š
0 0 1 0 1 0 0 1 0 0 +
0 0 1 0 0 0 1 1 0 1 +
0 0 0 0 0 0 1 0 1 0 Š
0 0 1 0 0 1 0 1 0 0 Š
0 0 0 0 1 0 0 0 0 0 +
0 0 0 0 0 0 0 1 0 0 Š

b0 b1 b2 b3 b4 b5 b6 b7 sign
0 1 0 1 1 0 1 1 +
1 0 0 1 0 1 0 0 Š
0 0 1 0 1 0 0 1 +
1 0 0 0 1 1 0 1 +
0 0 0 0 1 0 1 0 Š
0 0 1 0 0 1 0 1 Š
0 0 0 0 1 0 0 0 +
0 0 0 0 0 0 0 1 Š

ROI
scale

0
0
0
2
2
0
0
0

Extra bits introduced by actual scaling

first bit plane pass third passsecond pass

Actual
scaling

Virtual
scaling

Virtual scaling eliminates memory waste due to increased dynamic range

0

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 sign
0 1 0 1 1 0 1 1 0 0 +
1 0 0 1 0 1 0 0 0 0 Š
0 0 1 0 1 0 0 1 0 0 +
0 0 1 0 0 0 1 1 0 1 +
0 0 0 0 0 0 1 0 1 0 Š
0 0 1 0 0 1 0 1 0 0 Š
0 0 0 0 1 0 0 0 0 0 +
0 0 0 0 0 0 0 1 0 0 Š

b0 b1 b2 b3 b4 b5 b6 b7 sign
0 1 0 1 1 0 1 1 +
1 0 0 1 0 1 0 0 Š
0 0 1 0 1 0 0 1 +
1 0 0 0 1 1 0 1 +
0 0 0 0 1 0 1 0 Š
0 0 1 0 0 1 0 1 Š
0 0 0 0 1 0 0 0 +
0 0 0 0 0 0 0 1 Š

ROI
scale

0
0
0
2
2
0
0
0

Extra bits introduced by actual scaling

first bit plane pass third passsecond pass

Actual
scaling

Virtual
scaling

Virtual scaling eliminates memory waste due to increased dynamic range

0

Figure 4.14: Virtual Scaling for ROI-ICER-3D

The benefits of “virtual scaling”, which required major software redesign, are

reduction of memory requirements (more desirable for hardware implementations as

well as software) and enhancement of compression effectiveness. Table 4.3

demonstrates the compression performance improvements due to eliminating the

extra bits introduced by actual scaling.

Table 4.3: Improvement for lossless coding comparing virtual and actual scaling
ROI scaling factor Actual scaling Virtual scaling

(bit planes) Rate (bits/pixel/band) Rate (bits/pixel/band)
0 5.00 5.00
1 5.30 5.07
2 5.56 5.10
3 5.79 5.11
4 6.02 5.10

 115

Figures 4.15 and 4.16 show an example of compression using ROI-ICER-3D and the

associated rate distortion curves for an AVIRIS image [8].

ROI-ICER-3D original

region-
of-

interest ICER-3D ROI-ICER-3D original

region-
of-

interest ICER-3D

Figure 4.15: Example of ROI-ICER-3D compression of hyperspectral data set

MSE inside ROIMSE inside ROI MSE for entire datasetMSE for entire dataset
ROI scaling =
2 bit planes

Figure 4.16: Performance comparisons on AVIRIS test image ROI-ICER-3D vs. (non-ROI)
ICER-3D

4.4.2 Classifications and Signature Extractions

In many hyperspectral applications, classification and signature extraction are the

end result. Classification accuracy for image cubes reconstructed after being

compressed with ICER-3D-HW was tested on AVIRIS data sets and demonstrated

completely successful classification down to .4bits/pixel (with minimum of 10

 116

classes). An example of a signature extraction before and after compression is shown

in Figure 4.17.

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200

spectral band

sa
m

p
le

 v
a
lu

e

ICER-3D 0.3bits/sample

Original

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200

spectral band

sa
m

p
le

 v
a
lu

e

ICER-3D 0.3bits/sample

Original

Figure 4.17: Example of Spectral line – Original and Reconstructed after Compression

We also tested the classification accuracy with an EO1 Hyperion test image. The

classification algorithm separates the data into four classes: ice, water, land, and

snow, and uses the support vector machine (SVM) pixel based classifier [30][35].

Figures 4.18 demonstrates compression down to 0.01bit/pixel with ICER-3D-HW,

without significant degradation in classification accuracy.

 117

Example
EO-1

image

Example
EO-1

image

Manually
labelled
regions

ice

water

land

snow

Manually
labelled
regions

Manually
labelled
regions

ice

water

land

snow

Figure 4.18: Example of lossy ICER-3D-HW performance in classification

 118

4.5 Conclusions

In this chapter we presented a compression-effective, low-complexity 3D

compression approach for hyperspectral imagers and sounders, suitable for on-board

hardware implementation. Our approach is based on the reversible DWT transform,

and extends a state-of-the-art 2D image compressor, ICER, to 3D data sets. We

presented implementations based on the progressive 3D DWT. We looked into issues

related to extending a 2D DWT approach to 3D DWT and porting the design to

hardware. We also looked into 3D DWT limitations, such as the “spectral ringing

artifacts” and provided a practical solution to mitigate the problem and provide better

compression results at low bit rates. We presented an algorithm for region of interest

(ROI) hyperspectral data compression that utilizes “virtual scaling” which has lower

storage requirements and provides better compression effectiveness than standard

scaling techniques. We presented compression results of test images from AVIRIS

and compared them to other state-of-the art compression techniques. Metrics in

terms of MSE and classification accuracy were addressed and test results were

provided.

 119

Chapter 5

Chapter 5: Hyperspectral Data Compression on Reconfigurable Platforms

5.1 Introduction

Current NASA hyperspectral instruments either avoid compression or make use of

only limited lossless image compression techniques during transmission. For

example, the current state-of-the-practice is to use the Universal Source Encoder for

Space (USES) chip [52]. USES implements the standard lossless CCSDS, which is

based on the Rice algorithm, and has a multispectral mode, extending its operation to

3D data sets. The USES chip performance, as was shown in Chapter 4, has low

compression effectiveness as compared to other existing techniques and lacks the

flexibility be efficiently tailored to specific instruments needs. The main reasons for

such practice by NASA are: the limited downlink bandwidth, the need to reduce the

risk of corrupting the data-stream needed for accurate science processing, and the

lack of a viable on-board platform to perform significant image processing and

compression. Future instruments with more sensors and much larger number of

spectral bands will collect enormous volumes of data that will far outstrip the current

ability to transmit it back to Earth (data rates for some instruments can go to several

hundreds of Gbits/sec [17][45][42]). This gives rise to the need for efficient on-board

 120

hyperspectral data compression. Software solutions have limited throughput

performance and are power hungry. Dedicated hardware solutions are highly

desirable, taking load off the main processor while providing a power efficient

solution at the same time. VLSI implementations are power and area efficient, but

they lack flexibility for post-launch modifications and repair, they are not scalable

and cannot be configured to efficiently match specific mission needs and

requirements. FPGAs are programmable and offer a low cost and flexible solution

compared to traditional ASICs.

While the benefits of FPGAs in general are significant, as was briefly discussed

earlier in this thesis, the new capabilities of recent FPGAs offer an important new

opportunity for achieving high performance. For example, the Xilinx Virtex II Pro,

[113] with embedded Power PC processors, can operate at clock speeds up to 300

MHz, has multiple high performance serial interconnects and an extensive array of

reconfigurable logic.

Fry and Hauck presented an FPGA implementation of the 2D SPIHT for

hyperspectral data compression [43]. The implementation, due to its 2D nature, does

not take advantage of the spectral correlations in the data. While SPIHT offers

options for lossless compression by using reversible integer filters, this specific

FPGA implementation was designed for lossy data compression and it targets a

 121

prototype board with 3 FPGAs, one for the DWT and two for bit plane and entropy

encoders, which results in high power and mass. An enhanced version of the 2D

SPIHT algorithm, which uses band ordering and spectral predictive coding, was

presented by Miguel et. al. [82] as a candidate for FPGA implementation. Miguel’s

implementation uses the 2D SPIHT FPGA compressor developed by Fry and Hauck

as the base implementation, and extends it for the band ordering and prediction to be

implemented in a separate, fourth, FPGA. While this proposed implementation yields

improved compression efficiency due the interband prediction scheme, it comes at

high power and mass.

As is the case for most efficient compressors, software implementation of the ICER-

3D-HW compressor, described in the previous chapter, suffers from real-time

processing difficulties. In this chapter we present an efficient embedded and scalable

architecture for the ICER-3D-HW compressor, which we prototyped and

implemented in the Xilinx Virtex II pro FPGA platform. The implementation takes

advantage of the FPGA embedded PowerPC core and the on-chip bus architecture.

Such platforms allow efficient partitioning of the algorithm into software and

hardware modules to take full advantage of the available hardware resources and

provide a system on a chip (SoC) solution for the hyperspectral data compression

problem. Contrary to the two implementations of SPIHT mentioned earlier, our

 122

implementation aimed for a single chip solution that can be readily ported to any

instrument hardware platform.

In this chapter, we also present a methodology for a scalable embedded FPGA based

implementation for a complex 3D compression system. We extended the wavelet

transform methodology presented in Chapter 3 to hybrid Hardware/Software SoC

FPGA implementations, addressing issues of SW/HW partitioning of algorithm

modules, scalability of design, and trade-offs to meet practical considerations

constraints.

This rest of this chapter is organized as follows. Section 5.2 details our system

implementation methodology. Section 5.3 describes the ICER-3D-HW SoC FPGA

implementation details and performance. Section 5.4 presents our summary and

conclusions.

5.2 Implementation Methodology for a Scalable Embedded

Hyperspectral Data Compression Architecture

Our methodology is depicted in the flow chart shown in Figure 5.1. We extend the

2D wavelet transform methodology developed in the first part of this thesis to hybrid

Hardware/Software SoC FPGA implementations. As in the case of the 2D DWT

methodology, several steps can be considered generic in terms of hardware design.

 123

In addition to the steps that address the limitations and design choices listed for the

2D DWT methodology, our SoC methodology addresses the issue of SW/HW

portioning of algorithm modules through a process of performing software profiling

to identify appropriate candidates for hardware acceleration. Dynamic range

expansion studies for the DWT are also performed to identify and select a suitable

choice for the DWT filter pair. Finally, scalability of design, and trade-offs to meet

practical considerations constraints, are performed to complete the design

 124

Wavelet filters factorization

Building blocks design – I/O, control, scheduler etc

Image cube partition/scalability considerations

On-chip storage considerations

Building blocks design – context modeler & entropy coder

Bit-plane encoding and memory bandwidth considerations

Critical path identification

Trade-offs: Performance, Resources Utilization, Power

Final implementation

Building blocks design – 3D DWT Filter design

DWT dynamic range expansion considerations

Software profiling – HW/SW partioning

Figure 5.1: Implementation Methodology Flow Chart for the SoC FPGA implementation

 125

5.2.1 Software Profiling and HW/SW Partitioning

The ICER-3D-HW c-code was profiled for software estimation and subsequent

HW/SW portioning. Figure 5.2 shows that the system can be partitioned into 4 main

blocks: 3D DWT, segmentation and conversion module, context modeler, and

entropy coder. From Figure 5.3 it is apparent that the most time consuming blocks

are the 3D DWT and the context modeler. Therefore the 3D DWT and the context

modeler modules are the primary candidates for hardware implementation due to

their computational complexity, while the other blocks can reside in software on the

PPC processor. For a scalable design that may have more than one module

performing the DWT and the context modeling, a hardware implementation of the

entropy coder may be needed to maintain the desired throughput.

Hyperspectral Data Compression Algorithm (ICER-3D) – Block Diagram

Compressed
Data Stream

3D
DWT

Transform
Module

Context
Modeler

Interleaved
Entropy
Coding
Module

Hyperspectral
Image Cube

Segmentation
and DWT

Conversion

Figure 5.2: ICER-3D-HW Compressor-Block Diagram

Our approach for the full implementation was incremental. Initial candidate modules,

such as the 3D DWT, will be implemented on the FPGA fabric as individual cores

(IP cores or intellectual property), while the rest of the modules will run on the

PowerPC. The PPC will also act as the global controller, managing the overall

 126

operation of the compression system, including executing the top-level control and

processing functions as well as scheduling, supervising and monitoring the

processing activities and managing internal and external data transfers. New

hardware modules were added in the form of hardware cores attached to the system

bus, with the corresponding functionalities removed from the PPC software tasks.

10.77% 36.2%

2.73%50.33%

3D DWT

Segmentation
& Conversion
Context
Modeler
Entropy
Coder

Figure 5.3: Software Profiling of ICER-3D-HW

5.2.2 Dynamic Range Expansion for DWT Transformed

Data

While dynamic range expansion analysis was detailed in Chapter 4, such analysis is

listed here as part of the implementation methodology since it plays an important

part in matching the design to the available hardware resources.

 127

Dynamic range analysis expansion, as detailed in section 4.2.3.1, showed that 16-bit

words are sufficient to store the coefficients produced by applying a 3D DWT

decomposition, using filter A (the (2,6) DWT filter pair) [63] to 12-bit data (such as

uncalibrated AVIRIS data). However, other filter choices in ICER-3D-HW software

may produce DWT coefficients that cannot be stored in 16-bit words following 3D

wavelet decomposition. Hence, the DWT filters we used in this hardware

implementation were the (2,6) filter pair.

5.2.3 Three Dimensional DWT Hardware Architecture

Similar to the 2D DWT implementations, the filter design methodology has to

choose among different well known architectures or produce a custom architecture to

match the given constraints. While the cascaded architecture was the ideal choice for

the 2D case, the massive buffering requirements for a 3D DWT cascaded design

makes the choice impractical.

For an image cube of width W, length of L lines, and λ spectral bands, and DWT

filters of length less than or equal to Fl , the cascaded 3D pipelined architecture for a

pushbroom sensor (BIP or BIL data format), require internal storage of (measured in

pixels to store row-column DWT transformed planes) :

)1.5(** λWFl

 128

For AVIRIS data sets of dimensions 224x614x512, and the (2,6) DWT filter pair, we

need 1.65 Mbytes of storage for each DWT processing unit. A typical large FPGA

usually has about 1M Byte of on-chip RAM (BRAM). Hence, the practical choice is

a hybrid design comprising a two phase architecture. As shown in Figure 5.4, phase

1 consists of a cascaded row-column DWT decomposition, followed by a folded

architecture for the 3rd dimension DWT in phase 2.

Figure 5.4: Block Diagram of the 3D DWT

5.2.4 On-Chip Storage Calculations for the 3D DWT

For a DWT filter pair and an image cube of N x L x λ pixels, and denoting

Fl – the length of the longest filter

 129

J - DWT decomposition levels

S - Number of DWT line modules

DWT System Block Diagram

Image cube
RAM

B1B1

B2B2
....

BnBn Split and
Merge

Processor nProcessor 2
DWT line

RAM

Split and Merge
Processor

DWT line
Processor n

DWT line
Processor 2

DWT line
Processor 1

Host Bus

FPGA
Global
Controller

System Bus

L1
L2

Ln

Figure 5.5: Three Dimensional DWT Hardware Platform

Consider the stripe-parallel design shown in Figure 5.5. After the completion of 1

level DWT decomposition, the number of transitional boundary states generated at

the first boundary of stripe 1 and stripe 2 is:

from stripe 1:

⎡ ⎤)2.5(**2
1

1 λNFm lB =

and from stripe 2

⎣ ⎦)3.5(**2
1

2 λNFm lB =

 130

where memory is measured here in number of pixels, ⎡ ⎤ and ⎣ ⎦ are the ceiling

and the floor operators to accommodate odd length DWT filters at the stripe

boundaries. This results from the absence of image data along the boundaries of B1

and B2 required to complete the filtering operations. After the completion of 2

decomposition levels additional transitional boundary states are generated at the

same boundary:

from stripe 1:

⎡ ⎤)4.5(*** 2
1

2
1

1 λNFm lB =

and from stripe 2

⎣ ⎦)5.5(*** 2
1

2
1

2 λNFm lB =

Hence the memory required to hold transitional boundary states for each boundary

is:

)6.5(
2
1**

1

0
1

iJ

i
l NFm ∑ ⎟

⎠
⎞

⎜
⎝
⎛=

−

=
λ

and the total memory (measured in pixels) required to hold transitional boundary

states for the overlap-state algorithm for all the boundary data is:

)7.5()1(*
2
1**

1

0
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑ ⎟

⎠
⎞

⎜
⎝
⎛=

−

=
SNFm

iJ

i
ltotal λ

For the overlap-save algorithm, we only save boundary states once and exchange at

every level of DWT decomposition, hence the internal memory required is:

 131

)8.5(.)1(*** −= SNFm ltotal λ

For a typical AVIRIS image, of dimensions 614x512x224, J=3, Fl=6, and S=4, we

need about 8.5Mbytes of internal memory for the overlap-state, and about 4.8

Mbytes for the overlap-save, making both techniques impractical.

The practical design choice for this implementation is the straightforward

overlapping architecture, which requires no internal storage for boundary states, even

though it requires additional DWT computations when compared to other

architectures.

For the cascaded DWT design of phase 1 shown earlier, the first 2 DWT dimensions,

the analysis for the storage requirements is the same as that detailed in section 3.3.4,

yielding the following buffering storage requirements:

)9.5(** SNFm ltotalFIFO =−

For the same typical AVIRIS image used for the earlier illustration, the total required

on-chip RAM (BRAM) for phase 1 measured in pixels is: 6*614*3 = 22Kbytes

(note that there is no need to account for dynamic expansion in DWT domain since

we used the (2,6) filter pair).

 132

5.2.5 Bit-Plane Encoding and Memory Bandwidth

Considerations

The context modeler and entropy coder operate on bit planes of segments of the 3D

DWT transform (as was detailed in section 4.2.2.2) [63]. This implies a memory

bandwidth of 16 read and write operations to compute the contexts and encode one

single pixel. This problem is similar to what researchers encountered in

implementing the JPEG2000 EBCOT encoder. Several approaches based on massive

buffering of bit planes were proposed [77][33][34] and one could choose to

implement such a choice for the design of our context modeler. An alternative

approach, however, is to utilize a priority and encoding scheme to format the bit

planes post the 3D DWT transform and store them in external memory (RAM),

transposed and localized, readily available for the context modeler and entropy coder

stage, as will be explained in section 5.3.2.

5.3 ICER-3D-HW Implementation and Performance

We applied our methodology to the ICER-3D-HW hyperspectral compression

algorithm to produce the implementation detailed in this section.

 133

5.3.1 Implementation of the 3D (2,6) DWT

The FPGA implementation of ICER-3D-HW reflects the Mallat decomposition of

the 3D DWT, modified to compute the mean subtraction of spatially low-pass

filtered subbands as detailed in section 4.2.2.3 to mitigate the spectral ringing

artifacts. The first module designed and implemented was the 3D DWT. In addition

to performing the 3D DWT, the last stage of this module calculates and subtracts the

means of low pass filtered subbands prior to writing their data to the external

memory, and hence saves computational costs. We designed cascaded line-based

wavelet transform modules, which allow the wavelet transform in the 3D DWT case

to be computed as the lines of the image data cube arrive, rather than waiting for an

entire frame of data, thus accommodating pushbroom sensors. The parallel DWT

modules operate on slices of the image cube using the overlapping scheme detailed

in section 3.2.3. Figure 5.5 illustrates the parallel DWT system. The 3D DWT

implementation provided 16:1 speed-up versus software and increased to 30:1 with

two modules of the DWT running in parallel, as benchmarked on our FPGA

prototype board.

 134

5.3.2 Implementation of Context Modeler and Entropy

Coder

The context modeler and the interleaved entropy coder were designed for throughput

performance, with the design of priority–based data formatting and localization

techniques that transpose bit-planes post the 3D DWT decompositions, and store

them in memory in contiguous form, to be readily available for the context modeler

and the indexed bit-plane encoding. At the completion of the 3D DWT transform,

and according to the band indexing and the bit plan priority encoding scheme

detailed in section 4.2.2.2, bit planes are read across blocks of 16 DWT coefficients

and transposed in-place. The transposed data is written to external memory in a

contiguous fashion in preparation for the context modeler stage. For example, in

Figure 5.6, for the DWT segment planes shown, I and J, let segment I have a higher

index than segment J, and bn denote bit plan n. Let the bit plane priority values be

sorted from higher to lower as Ibn, Ibn-1, Jbn, …., Ibn-2, Jbn-1,Jbn-2, … . The formatting

scheme transposes the bit planes and stores them in external memory in the order of

the priority values as shown. This design accelerates the encoding scheme by a factor

of more than 10:1.

 135

1

0

0

1

0

0

1

0

1

1

0

0

1

0

1

0

0

0

1

1

1

1

1

1

1

0

0

1

1

0

1

0

0

1

x

0

0

x

1

1

x

0

0

x

1 0 0 1

1

0

1

0

0

1

1

1

1

0

1

1

x x x x

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

x x x x

x x x x

DWT
Segment I

DWT
Segment J

Pixel 1

Pixel 2

Pixel 3

Pixel 4

Pixel 1

Pixel 2

Pixel 3

Pixel 4

bn bn-1 bn-2

bn bn-1 bn-2

External MemoryFPGA

Figure 5.6: Bit-Plane Formatting and Storage

The context modeler itself was designed to be a pipeline that computes contexts of

multiple bits of the same bit plane from different pixels. If the required compressed

quota is reached, the context modeler (and entropy coder), conclude the encoding

process. The entropy coder utilizes look-up tables stored in on-chip BRAM. Speed-

up of more than 10X was obtained vs. software implementation for this module. The

 136

design is scalable and allows the use of multiple versions of the module

simultaneously. Figure 5.7 shows the design and data flow for the context modeler.

Determine edges

Determine Coordinates

Read pixels
into FPGA

Correct pixel square

Categorize

Determine significance

Lookup context

BRAM 2BRAM 1 BRAM 3

NW N NE

SW S SE
W C E

NW N NE

SW S SE
W C E

CM
15

CM
14

CM
13

CM
12

CM
11

CM
10

CM
9

CM
8

CM
7

CM
6

CM
5

CM
4

CM
3

CM
2

CM
1

CM
sign

NW N NE
SW S SE
W C E

NW N NE
SW S SE
W C E

External DDR

Figure 5.7: Context Modeler -FPGA Design - Pipeline and Data Flow

The diagram in Figure 5.8 illustrates the parallel architecture of the coding modules

and the data flow. Bit planes are read from different segment blocks residing in

RAM. Their contexts are computed independently and fed through to entropy coding

 137

modules to generate encoded bit planes. The compressed bit planes are interleaved

and written back to RAM. The modules are stand-alone units that utilize an efficient

DMA to access the external DDR memory. Modules can also operate in parallel on

different segments of the wavelet-transformed image.

FIFOs FIFOs

Compressed
bitstream

interleaving

External RAM

context modeling entropy coding

context modelersegment 1 entropy coder

segment 1 segment 2 segment n

bit
planes

context modelersegment 2 entropy coder

context modelersegment n entropy coder

Compressed
hyperspectral

data

FIFOs FIFOs

Compressed
bitstream

interleaving

External RAM

context modeling entropy coding

context modelersegment 1 entropy coder

segment 1 segment 2 segment n

bit
planes

context modelersegment 2 entropy coder

context modelersegment n entropy coder

Compressed
hyperspectral

data

Figure 5.8: Parallel Design for the Context Modeler and Entropy Coder

5.3.3 Data Flow and Memory Management

Figure 5.9 shows the system data flow and the external memory bandwidth. Output

of the 1st dimension DWT is pipelined into the 2nd dimension, eliminating external

memory access.

Means computations and DWT coefficients conversion are performed as part of step

3. Segment blocks of DWT coefficients are formatted according to the priority

scheme described earlier for faster memory access by the context modeler and

 138

entropy coder. This provides a total memory bandwidth of no more than 6 total read

and write operations per pixel.

External DDR RAMExternal DDR RAM

Hyperspectral
Data Cube

DWT 2nd

Dimension
Transform

Compressed
bit stream

transformed
data lines

Step 1 Step 2 Step 3

Step 5 Step 6

DWT 1st

Dimension
Transform

DWT 3rd

Dimension
Transform

Interleaved
Entropy
Coder

Context
Modeler
Context
Modeler

Step 4

Bit-Plane
Formatting
Bit-Plane

Formatting

converted
DWT values

Figure 5.9: Hyperspectral Compressor – Data Flow

5.3.4 FPGA Prototype and Performance

The implementation of ICER-3D-HW was designed by applying the methodology

described earlier [9][10][11]. It was then coded in VHDL and ported to a DINI

Group PCI prototype board targeting the Xilinx Virtex II Pro XC2VP70 chip. The

final SoC architecture is shown in Figure 5.10. The hardware development system

was shown in Figure 2.9. With one copy of each module, we obtained a throughput

of 4.5 Msample/sec for lossless compression running at a clock speed of 50 MHz

(lossy compression performance is slightly faster since not all bit planes need to be

compressed). When the implementation was scaled up to two copies of each of the

 139

three main modules, 3D DWT, context modeler and entropy coder, running in

parallel, the throughput increased to 8 Msample/sec. This throughput is more than an

order of magnitude faster than the software code, which runs at about 610

Ksamples/sec on a Pentium Centrino 1.6MHz processor. A slow memory interface

specific to the prototype board resulted in a substantial reduction of memory

bandwidth. Simulations with an improved memory interface design show

substantially increased throughput to 1 sample/clock cycle (i.e. 50 Msample/sec for

the current 50 Mhz clock design), resulting in 2 orders of magnitude speed-up vs. the

software implementation. The device utilization of table 5.1 shows that the full

implementation of the compressor occupies less than 61% of FPGA resources with 2

copies of each module running in parallel. Power consumption for this

implementation is 6.5 Watts with one copy and increases to 7.5 Watts with two

copies of each of the hardware modules.

 140

FPGA Hyperspectral Compressor System Architecture

Image
Block

Multi-Memory / Multi-Port Interface
and Memory Controllers

Context
Modeler

Bank 2 Bank 3 Bank 4

32 32

Data Bus

Control

Image
Block

Image
Block

Tier 1
CoderTier 1 LogicTier 1

CoderDWT
Modules

32

32

Bank 1

32

Image
Block

Context
ModelerContext

Modeler

Entropy
CoderEntropy

CoderEntropy
Coder

32 Softw
are on PPC

Hardware

Ex
te

rn
al

 M
em

or
y

PPC 405
Processor

(Global Controller)

Arbiter/
Bridge32

Processor
Memory
DATA

Processor
Memory

INSTRUCT

Internal M
em

ory

Control
Control

FPGA Hyperspectral Compressor System Architecture

Image
Block
Image
Block

Multi-Memory / Multi-Port Interface
and Memory Controllers

Context
Modeler

Bank 2 Bank 3 Bank 4

32 32

Data Bus

Control

Image
Block
Image
Block

Image
Block
Image
Block

Tier 1
CoderTier 1 LogicTier 1

CoderDWT
Modules

Tier 1
CoderTier 1 LogicTier 1 LogicTier 1

CoderDWT
Modules

3232

3232

Bank 1

32

Image
Block
Image
Block

Context
ModelerContext

Modeler

Entropy
CoderEntropy

CoderEntropy
Coder

32

Entropy
CoderEntropy

CoderEntropy
Coder

32 Softw
are on PPC

Hardware

Ex
te

rn
al

 M
em

or
y

PPC 405
Processor

(Global Controller)

PPC 405
Processor

(Global Controller)

Arbiter/
Bridge
Arbiter/
Bridge3232

Processor
Memory
DATA

Processor
Memory
DATA

Processor
Memory

INSTRUCT

Processor
Memory

INSTRUCT

Internal M
em

ory

Control
Control

Figure 5.10: System on Chip FPGA implementation Hyperspectral Data Compressor

Table 5.1: ICER-3D-HW on Virtex II Pro XC2VP70 FPGA - Resources Utilization

158 (48%)106 (32%)26 (7%)Number of
BRAMS

32 (10%)

17505 (26%)

16032 (24%)

13411 (41%)

Full System with Two
3D DWT Modules

48 (15%)16 (4%)Number of
18x18

Multipliers

26257 (40%)8183 (12%)Number of 4
input LUTs

24048 (36%)5232 (7%)Number of Slice
Flip Flops

20117 (61%)5070 (15% of available
resources)

Number of
Slices

Full System with
2 Copies of Each

Module

One 3D DWT
Module

158 (48%)106 (32%)26 (7%)Number of
BRAMS

32 (10%)

17505 (26%)

16032 (24%)

13411 (41%)

Full System with Two
3D DWT Modules

48 (15%)16 (4%)Number of
18x18

Multipliers

26257 (40%)8183 (12%)Number of 4
input LUTs

24048 (36%)5232 (7%)Number of Slice
Flip Flops

20117 (61%)5070 (15% of available
resources)

Number of
Slices

Full System with
2 Copies of Each

Module

One 3D DWT
Module

 141

5.4 Conclusions

In this chapter we presented an embedded and scalable implementation for the

ICER-3D-HW compression algorithm in FPGAs. The approach uses a co-design

platform (SW/HW) with architecture-dependent enhancements to improve

performance. We addressed challenges in this design related to the intensive I/O of

the algorithm, the 3D nature of the data and its volume. Solutions to these challenges

were proposed by choosing efficient DWT architectures and a novel bit-plane

priority-based data formatting and localization technique that provided more than

10x in throughput efficiency compared to standard techniques. Finally, we presented

an extension to our FPGA implementation methodology described in Chapter 3 to a

system on a chip (SoC) FPGA-based implementations.

 142

Chapter 6

Chapter 6: Conclusion and future work

We presented, in this thesis, a methodology for parallel implementation of the lifting

DWT on FPGAs, and investigated and analyzed parallel and efficient hardware

implementations targeting state-of-the-art FPGAs. We addressed practical

considerations and various design choices and decisions at all design stages to

achieve an efficient DWT implementation, subject to a given set of constraints and

limitations. We presented a novel data transfer method that provides seamless

handling of boundary and transitional states associated with parallel

implementations, and demonstrated our methodology with an implementation

example for the (9,7) DWT.

We presented an efficient low-complexity 3D on-board compression approach for

hyperspectal images and sounders. We presented implementations based on the

progressive 3D DWT. We addressed issues related to adapting an efficient 2D DWT

approach to 3D DWT and porting the design to hardware implementations. We

looked into 3D DWT limitations, such as the “spectral ringing artifacts” and

provided practical solution to mitigate the problem and provide better compression

results at low bit rates. We also presented an extension of the algorithm for region of

interest (ROI) hyperspectral data compression, which utilized a “virtual scaling”

 143

approach to improve compression efficiency and reduce memory requirements. We

provided results and comparisons to other state-of-the art compression techniques.

We presented an embedded and scalable SoC implementation for the ICER-3D-HW

compression algorithm on FPGAs. We addressed challenges related to the intensive

I/O of the algorithm and the 3D nature of the data and its volume, and provided

solutions to speed up the design. We extended our FPGA implementation

methodology to a system on a chip (SoC) FPGA-based implementations.

Future work will concentrate on insertion of this new technology, especially the

FPGA SoC implementation of the ICER-3D-HW, into future space-borne

instruments. Missions such as FLORA and PPFT [17][45] are including compression

in their initial concept designs and are good candidates to use our final product. Fault

tolerant designs for the FPGA system may be required by such missions and will be

investigated. Issues related to transient faults arising from single event upsets (SEUs)

and mitigation techniques for FPGA based designs will be addressed. Figure 6.1

illustrates a proposed fault tolerant block diagram of the FPGA SoC compression

system for future space missions. The green shaded areas in the figure indicate fault

tolerant hardware, and ABFT is algorithm based fault tolerance [51][60][16].

 144

Figure 6.1: Fault Tolerant FPGA based Compression System

The new ICER-3D algorithm uses an optimized spectral context modeler for three

dimensional data and produces better compression efficiency than ICER-3D-HW.

Future work will also migrate the new spectral context models to the hardware

platform and extend the implementation to include region of interest compression,

i.e. ROI-ICER-3D.

 145

Chapter 7: Bibliography

[1] M. Adams and F. Kossentini, “Reversible Integer-to-Integer Wavelet Transforms for

Image Compression: Performance Evaluation and Analysis,” IEEE Transactions on
Image Processing, vol. 9, no. 7, pp. 1010–1024, June 2000.

[2] M. Adams and R. Ward, “ Wavelet Transform in the JPEG-2000 Standard”,
Proceedings of IEEE Pacific Rim Conference on Communications, Computers and
Signal Processing, Victoria, BC, Canada, Aug. 2001, vol. 1, pp. 160-163.

[3] N. Akansu and R. A. Haddad, “Muinresolution Signal Decomposition", Transforms,
Subbands and Wavelets, New York, Academic, 1992.

[4] B. Aiazzi, L. Alparone, A. Barducci, S. Baronti and I. Pippi. “Information-Theoretic
Assessment of Sampled Hyperspectral Imagers”, IEEE Transactions on Geoscience
and Remote Sensing vol. 39, No. 7, 2001.

[5] Amphion, CS6210 Discrete Wavelet Transform.

[6] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using the
wavelet transform", IEEE Trans. Image Proc. 1, pp. 205-220, Dec. 1992.

[7] N. Aranki, A. Moopen, and R. Tawel, “Parallel FPGA Implementation of the Split and
Merge Discrete Wavelet Transform,” Proc. of 12th International Conf., FPL2002, pp
740-749, Montpellier, France, Sep., 2002.

[8] N. Aranki, M. Klimesh, H. Xie, S. Dolinar, “Region-of-Interest (ROI) Compression of
Hyperspectral Data”, JPL’s Interplanetary Network Directorate, Annual Review
Report, Sep., 2004.

[9] N. Aranki, A. Kiely, M. Klimesh, H. Xie, “Advanced Hyperspectral Data
Compression,” Proc. 2005 AVIRIS Earth Science and Applications Workshop,
Pasadena, CA, May 24-27, 2005.

[10] N. Aranki, R. Some, J. Namkung, and C. Villalpando, “Hyperspectral Data
Compression on Reconfigurable Platforms for Space”, to be submitted to Military and
Aerospace FPGA and Applications (MAFA), to be held in Florida, Nov. 2007.

[11] N. Aranki, J. Namkung, C. Villalpando, A. Kiely, M. Klimesh, H. Xie “Hyperspectral
Data Compression on Reconfigurable Platforms”, NASA Tech Briefs, 2007.

[12] N. Aranki, J. Namkung, C. Villalpando, “Hyperspectral Data Compression: FPGA
Platform Development”, JPL’s Interplanetary Network Directorate, Annual Review
Report, Oct. 18, 2005.

 146

[13] N. Aranki, J. Namkung, C. Villalpando, “Hyperspectral Data Compression: FPGA
Development”, JPL’s Interplanetary Network Directorate, Annual Review Report, Sep.
17, 2004.

[14] N. Aranki, J. Namkung “Hyperspectral Data Compression: Algorithm and Hardware
Development”, JPL’s Interplanetary Network Directorate, Annual Review Report, Sep.
10-12, 2003.

[15] N. Aranki, W. Jiang and A. Ortega, “FPGA-Based Parallel Implementation for the
Lifting Discrete Wavelet Transform”, Parallel and Distributed Methods for Image
Processing IV - SPIE's 45th Annual Meeting, San Diego, CA, July 2000.

[16] N. Aranki and R. Some, “Algorithm Based Fault Tolerance For FPGAs”, NASA Tech
Briefs, 2006.

[17] G. Asner, S. Ungar, R. Green, and R. Knox, “FLORA: Leaping from AVIRIS to high-
fidelity spaceborne imaging spectroscopy,” Proc. 2005 AVIRIS Earth Science and
Applications Workshop, Pasadena, CA, May 24-27, 2005.

[18] G. Asner, “Airborne imaging spectroscopy across diverse ecosystems: The Carnegie
program in Hawaii. Proc. 2005 AVIRIS Earth Science and Applications Workshop,
Pasadena, CA, May 24-27, 2005.

[19] H. Aumann and L. Strow, “AIRS, the first hyperspectral infrared sounder for
operational weather forecasting,” in Proceedings of IEEE Aerospace Conference New
York, 2001, pp. 1683-1692.

[20] AVIRIS Free Data Website: http://aviris.jpl.nasa.gov/html/aviris.freedata.html

[21] A. Benkrid, D. Crookes, K. Benkrid, “Design and Implementation of Generic 2-D
Biorthogonal Discrete Wavelet Transform on and FPGA,” IEEE Symposium on Field
Programmable Custom Computing Machines, pp 1 – 9, April 2001.

[22] G. Beylkin, R. R. Coifman and V. Rokhlin, “Wavelets in Numerical Analysis” in
Wavelets and Their Applications, New York, Jones and Bartlett, 1992, pp.181-210.

[23] W. Bicknell, C. Digenis, S. Forman and D. Lencioni, "EO-1 Advanced Land Imager,"
SPIE Conference on Earth Observing Systems IV, Denver, Colorado, Proc. SPIE, Vol.
3750, pp. 80-88, July 1999.

[24] M. Boliek, M. Gormish, E. Schwartz and A. Keith, “Next Generation Image
Compression And Manipulation Using CREW”, Proceedings of International
Conference on Image Processing, Vol 3, Oct 1997, pp. 567-570.

 147

[25] N. Bradley, and C. Brislawn, “SPECTRUM analysis of multispectral imagery in
conjunction with wavelet/KLT data compression”, IEEE, 1993 Conf. Record of The
Twenty-Seventh Asilomar Conference on Signals, Systems and Computers, Vol. 1,
1993, pp. 26-30

[26] B. Brower and A. Lan, and J. McCabe “Hyperspectral Lossless Compression,” Proc.
SPIE, 3753 1999, pp.247-257.

[27] K. Carlson, and G. Asner. 2005. Spaceborne imaging spectroscopy of tropical forest
properties in Hawaii. Proc. 2005 AVIRIS Earth Science and Applications Workshop,
Pasadena, CA, May 24-27, 2005.

[28] Cassini-Huygens Website: http://saturn.jpl.nasa.gov/home/index.cfm.

[29] Cassini VIMS Website: http://wwwvims.lpl.arizona.edu.

[30] R. Castano, D. Mazzoni, N. Tang, R. Greeley, T. Doggett, B. Cichy, S. Chien, and, A.
Davies, “Onboard Classifiers for Science Event Detection on a Remote Sensing
Spacecraft”, Proceedings of the 12th ACM SIGKDD international conf. on Knowledge
discovery and data mining, pp. 845 – 851, Philadelphia, PA, 2006.

[31] C. Chakrabarti, M. Vishwanath and R. M. Owens, "Architectures for wavelet
transforms" in Proc. IEEE VLSI Signal Processing Workshop, 1993, pp.507-515.

[32] C. Chakrabarti, M. Vishwanath, “Efficient Realization of the Discrete and Continuous
Wavelet Transforms: From Single Chip Implementations to Mappings in SIMD Array
Computers,” IEEE Transactions on Signal Processing, Vol. 43, pp 759 – 771, March
1995.

[33] K. Chen, C. Lian, H. Chen and L. Chen, “Analysis and architecture design of EBCOT
in JPEG2000”, Proceedings, IEEE International ISCAS-01, Vol.1, May 2001 pp 765-
768.

[34] J. Chiang, Y. Lin and C. Hsieh, “Efficient pass-parallel architecture for EBCOT in
JPEG2000”, Proceedings, IEEE International ISCAS-02, Vol.1, May 2002 pp 773-776.

[35] C. Cortez and V. Vapnik, “Support vector networks”, Machine Learning, Vol. 20, pp.
273 – 279, 1995.

[36] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into lifting steps", J.
Fourier Anal. Appl. 4 (3), pp. 247-269, 1998.

[37] D. Ding, Q. Dai, F. Yang and Y. Yin,“A new region-of-interest image compression
method based on Wyner-Ziv coding”, Proceedings of the SPIE, Volume 5960, pp. 849-
856, 2005.

 148

[38] G. Ding, Q. Dai, F. Yang and W. Xu, “Distributed source coding theorem based region
of interest image compression method”, Electronics Letters, Vol 41, Issue 22, 27 Oct.
2005, pp. 1215– 1217

[39] S. Dolinar, A, Ortega, R. Manduchi et al., “Region of Interest Data Compression with
Prioritized Buffer Management (III),” Proceedings of NASA Earth Science
Technology Conference 2003, College Park, MD, June 2003.

[40] P. Dragotti, G. Poggi, and A. Ragozini, “Compression of Multispectral Images by
Three-Dimensional SPIHT Algorithm”, IEEE Transactions on Geoscience and Remote
Sensing, vol.38, No. 1, pp. 416-428, Jan. 2000.

[41] EO1/ Hyperian Website: http://eo1.gsfc.nasa.gov/Technology/Hyperion.html

[42] EOS Data and Information System (EOSDIS) Website: http://terra.nasa.gov/Brochure/
Sect_5-1.html

[43] T. Fry, S. Hauck, "SPIHT Image Compression on FPGAs", IEEE Transactions on
Circuits and Systems for Video Technology., Vol. 15, No. 9, Sep. 2005, pp 1138-
1147.

[44] S. Fukuma,, T. Tanaka and M. Nawate, “Switching Wavelet Transform for ROI Image
Coding”, IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences 2005, Vol. E88-A, No. 7, pp. 1995-2006.

[45] R. Green, G. Asner, and F. Muller-Karger, “The Plant Physiology and Functional Type
NASA Mission - Concept Study”, AVIRIS Annual JPL Airborne Earth Science
Workshop. Pasadena, CA, May 2007.

[46] A. Goetz and M. Herring, “The high resolution imaging spectrometer (HIRIS) for
EOS”, EEE Transactions on Geoscience and Remote Sensing (ISSN 0196-2892), vol.
27, March 1989, p. 136-144.

[47] M. Goldberg, L. Zhou, and W. Wolf, “Applications of Principal Component Analysis
(PCA) to AIRS Data”, Proceedings of SPIE, Vol. 5655 January 2005, pp. 479-488

[48] A. Grzeszczak, Mandal, M.K., S. Panchanathan, S. and T. Yeap, “VLSI
implementation of discrete wavelet transform” IEEE Transactions on VLSI Systems,
Volume 4, Dec. 1996, pp 421 –433

[49] J. Gruninger, R. L. Sundberg, M. J. Fox, R. Levine, W. F. Mundkowsky, M. S.
Salisbury and A. H. Ratcliff, “Automated Optimal Channel Selection for Spectral
Imaging Sensors”, Proceedings SPIE 4381, Algorithms for Multi-spectral and Hyper-
spectral Imagery VII,[4381-07], Orlando April 2001.

[50] S. Hou, “Modern Techniques in Sounder Data Compression”, The Aerospace
Corporation, May 2003

 149

[51] K. Huang and J. Abraham, “Algorithm-based fault tolerance for matrix operations,”
IEEE Trans. Comput., vol. 33, no. 6, pp. 518-528, 1984.

[52] “Image Data Compression”, Recommendation for Space Data Systems Standard, The
Consultative Committee for Space Data Systems(CCSDS), Blue Book, Issue 1. Nov.
2005 (CCSDS 122.0-B-1).

[53] W. Jiang and A. Ortega, "Efficient Discrete Wavelet Transform Architectures Based on
Filterbank Factorizations" in Intl. Conf. on Image Processing, Kobe, Japan, Oct. 1999.

[54] W. Jiang and A. Ortega, "Parallel Architecture for the Discrete Wavelet Transform
based on the Lifting Factorization" in Proc of SPIE in Parallel and Distributed Methods
for Image Processing III, Denver, CO., USA, July 1999

[55] W. Jiang, “ Contribution to transform coding system implementation”, Ph.D. Thesis,
USC, May 2000.

[56] W. Jiang and A. Ortega, “Discrete Wavelet Transform System – Architecture Design
Using Filter Bankc”, USC Special Report, May 1999

[57] JPEG2000 Image Coding System, ISO/IEC FCD15444-1, March 2000.

[58] JPEG2000 3D (Part 10 – JP3D): http://www.jpeg.org/jpeg2000/j2kpart10.html

[59] JPEG2000 Encoder Core, Cast Inc., Oct. 2002

[60] J. Jou and J. Abraham, “Fault-tolerance matrix arithmetic and signal processing on
highly computing structures,” Proc. IEEE, vol.74, no.5, pp, 732-741, 1984

[61] Y. Kang, "Low-power design of wavelet processors" in Proc. SPIE, vol.2308, 1993,
pp.1800-1806.

[62] A. Kiely and M. Klimesh, “The ICER Progressive Wavelet Image Compressor”, IPN
progress report, JPL, Nov. 2003.

[63] A. Kiely, H. Xie, M. Klimesh, N. Aranki, “ICER-3D: A progressive wavelet-based
compressor for hyperspectral images,” IPN Progress Report, vol. 42-163, November
15, 2005.

[64] A. Kiely, M. Klimesh, “Preliminary Image Compression Results from the Mars
Exploration Rovers,” IPN Progress Report, vol. 42-156, February 15, 2004, pp. 1–8.

[65] A. Kiely, M. Klimesh, and J. Maki, “ICER on Mars: Wavelet-Based Image
Compression for the Mars Exploration Rovers,” IND Technology and Science News,
Issue 15, to appear, 2002.

 150

[66] A. Kiely, N. Aranki, M. Klimesh, H. Xie, “Hyperspectral Data Compression:
Algorithm and Software Development”, JPL’s Interplanetary Network Directorate,
Annual Review Report, Sep, 2004.

[67] A. Kiely, M. Klimesh, N. Aranki, H. Xie, “A progressive 3D wavelet-based
compressor for hyperspectral images”, NASA Tech Briefs, 2007.

[68] A. Kiely, H. Xie, M. Klimesh, N. Aranki, “Hyperspectral Data Compression (ICER-
3D): Enhanced Context Modeler”, JPL’s Interplanetary Network Directorate, Annual
Review Report, Oct. 18, 2005.

[69] B.-J. Kim, Z. Xiong, and W. A. Pearlman, “Low bit-rate scalable video coding with 3-
D set partitioning in hierarchical trees (3-D SPIHT),” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 10, no. 8, pp. 1374–1387, December 2000.

[70] H. King-Ch, H Yu-Jung, T. Trieu-Kien, and W. Chia-Ming, “FPGA implementation
for 2D discrete wavelet transform”, Electronics Letters, 1998 Vol. 34, pp 639 –640.

[71] M. Klimesh, “Low-Complexity Lossless Compression of Hyperspectral Imagery via
Adaptive Filtering,” The Interplanetary Network Progress Report, vol. 42-163, Jet
Propulsion Laboratory, Pasadena, California, pp. 1–10, November 15, 2005

[72] M. Klimesh, A. Kiely, H. Xie, N. Aranki, “Spectral Ringing Artifacts in Hyperspectral
Image Data Compression,” Book chapter in “Hyperspectral Data Compression”, G.
Motta, F. Rizzo, J. Storer, editors, Springer, October 2005.

[73] M. Klimesh, A. Kiely, H. Xie, N. Aranki, “Spectral Ringing Artifacts in Hyperspectral
Image Data Compression,” IPN Progress Report, vol. 42-160, pp. 1–17, February 15,
2006.

[74] M. Klimesh, A. Kiely, N. Aranki, H. Xie “Techniques for Improving the Effectiveness
of 3D Wavelet-Based Compression of Hyperspectral Images”, NASA Tech Briefs,
2007.

[75] G. Knowels, “VLSI architecture for the discrete wavelet transform”, Electron. Lett.,
1990, Vol 26, pp.1184-1185.

[76] A. Lewis and G. Knowels, “VLSI architecture for 2D Daubechies wavelet transform
without multipliers”, Electron. Lett., 1991, Vol 27, pp. 17l-173.

[77] Y. Long, C. Zhang and F. Kurdahi, “A high-performance parallel mode EBCOT
encoder architecture design for JPEG2000”, Proceedings, IEEE International SOC
Conference, Sep. 2004, pp 213- 216.

[78] S. Mallat, “A theory for multiresolution signal decomposition: The wavelet
representation", IEEE Trans. on Patt. Anal. and Mach. Intell.11 (7), pp. 674-693, 1989.

 151

[79] S. Mallat, "Multifrequncy channel decompositions of images and wavelet models,"
IEEE Trans. Acoust., Speech, and Signal Processing, vol.37, pp.2091-2110, Dec.1989.

[80] R. Martin, G. Asner. 2005. New insight to carbon and nutrient cycles from airborne
imaging spectroscopy. Proc. 2005 AVIRIS Earth Science and Applications Workshop,
Pasadena, CA, May 24-27, 2005.

[81] B. Masschelein, B. Vanhoof, L. Nachtergaele, J. Bormans, and I. Bolsens,
“Implementation Driven Selection of Wavelet Filters for Still Image Coding Based on
Bitrange Expansion,” IEEE International Workshop on Multimedia Signal Processing,
Copenhagen, Denmark, pp. 371–376, September 13–15, 1999.

[82] A. Miguel, A. Askew, A. Chang, S. Hauck, R. Ladner, and E. Riskin, "Reduced
Complexity Wavelet-Based Predictive Coding of Hyperspectral Images for FPGA
Implementation", Data Compression Conference, Snowbird, UT, March 2004, pp.
469-478.

[83] MotionWavelets Website: http://www.aware.com/imaging/motionwavelets.htm.

[84] G. Motta, F. Rizzo, and J. Storer, “Compression of Hyperspectral Imagery”, Data
Compression Conference, Snowbird, UT, March 2003, pp. 333-342.

[85] A. Rao, and S. Bhargava, “Multispectral Data Compression using Bidirectional
Interband Prediction”, IEEE Trans. On Geoscience and Remote Sensing, 34 (2):385-
396, March 1996.

[86] A. Reza, R. Turney, “FPGA implementation of 2d wavelet transform”, Signals,
Systems, and Computers, Conference Record of the Thirty-Third Asilomar , 1999, Vol.
1, pp 584 –588.

[87] J. Ritter, P. Molitor, “A Pipelined Architecture for Partitioned DWT Based Lossy
Image Compression using FPGAs,” ACM/SIGDA Ninth International Symposium on
Field Programmable Gate Arrays, pp 201 – 206, February 2001.

[88] F. Rizzo and B. Carpentieri, “High Performance Compression of Hyperspectral
Imagery with Reduced Search Complexity in the Compressed Domain”, Data
Compression Conference, Snowbird, UT, March 2004, pp. 479-488.

[89] J. Saghri, A. Tescher, and J. Reagan, “Practical Transform coding of Multispectral
Imagery”, IEEE Signal Processing Magazine, Jan. 1995, pp. 32-43.

[90] A. Said and W. Pearlman, “A New, Fast, and Efficient Image Codec Based on Set
Partitioning in Hierarchical Trees,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 6, no. 3, pp. 243–250, June 1993.

 152

[91] A. Secker and D. Taubman, “Motion-compensated highly scalable video compression
using an adaptive 3D wavelet transform based on lifting”, Proc. of International
Conference on Image Processing, Vol 2, Oct 2001, pp.1029-1032.

[92] L. Senhadji, G. Carrault, and J. J. Bellanger, "Interictal EEG spike detection: A new
framework based on wavelet transform," in Proc. IEEE-SP mt. Symp. Time-Frequency
Time-Scale Anal, pp. 548-55I, Philadelphia, PA, Oct 1994.

[93] A. Stocker and A. Shaum, “Application of Stochastic Mixing Models to Hyperspectral
Detection Problems”, Proceedings SPIE 3071, Algorithms for Multispectral and
Hyperspectral Imagery III,47-60, 1997.

[94] W. Sweldens, “The lifting scheme: A new philosophy in biorthogonal wavelet
constructions" in Wavelet Applications in Signal and Image Processing III, A. F. Laine
and M. Unser, eds., pp. 68-79, Proc. SPIE 2569, 1995.

[95] X. Tang, W. Pearlman and J. W. Modestino, “Hyperspectral Image Compression Using
Three-Dimensional Wavelet Coding”, SPIE/IS&T Electronic Imaging 2003,
Proceedings of SPIE Vol. 5022, Jan. 2003.

[96] X. Tang, S. Cho, and W. A. Pearlman, “3D set partitioning coding methods in
hyperspectral image compression,” in Proc. 2003 International Conference on Image
Processing, vol. II, 14–17 Sept. 2003, pp. II–239–II–242.

[97] X. Tang and W. Pearlman, “Three-Dimensional Wavelet-Based Compression of
Hyperspectral Images”, Book chapter in “Hyperspectral Data Compression”, G. Motta,
F. Rizzo, J. Storer, editors, Springer, October 2005.

[98] D. Taubman, “High Performance Scalable Image Compression with EBCOT,” IEEE
Transactions on Image Processing, vol. 9, no. 7, pp. 1158–1170, July 2000.

[99] D. Taubman and M. Marcellin, “JPEG2000: Image Compression Fundamentals,
Standards and Practice,” Kluwer Academic Publishers, 2002.

[100] R. Tawel and N. Aranki, “IMAS – Multispectral Image Coding”, Technical Report, Jet
Propulsion Laboratory , Pasadena, CA, Jan. 1998.

[101] J. Tham, S. Ranganath, and A. Kassim, “Highly scalable wavelet-based video codec for
very low bit-rate environment,” IEEE Journal on Selected Areas in Communications,
vol. 16, no. 1, pp. 12–27, January 1998.

[102] A. Uhl, “A parallel approach for compressing satellite data with wavelets and wavelet
packets using PVM," in Workshop Paragraph '94, RISC - Linz Report Series No. 94-
17, 1994.

[103] M. Unser, "Texture classification and segmentation using wavelet frames." IEEE
Trans. Image Processing. vol.4. pp. 1549-1560, Nov. 1995.

 153

[104] P. P. Vaidyanathan and P.-Q. Hoang, “Lattice structures for optimal design and robust
implementation of two-channel perfect-reconstruction QMF banks," IEEE Trans.
Acoust., Speech, Signal Processing 36, pp. 81-94, Jan. 1988.

[105] P. P. Vaidyanathan, “Multirate digital filters, filter banks, polyphase networks, and
applications: A tutorial", Proceedings of The IEEE 78 , pp. 56-93, Jan. 1990.

[106] G. Vane, et. al., “The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)”,
Remote Sens. Environ. 44, pp 127-143, 1993.

[107] J. Venbrux, J. Gambles, D. Wiseman, G. Zweigle, W. H. Miller, and P.-S. Yeh, “A
VLSI Chip Set Development for Lossless Data Compression,” Ninth AIAA Computing
in Aerospace Conference, San Diego, California, October 19–21, 1993.

[108] M. Vishwanath, “Discrete wavelet transform in VLSI”, in Proc. IEEE Int. Conf. Appl.
Specfic Array Processors, 1992, pp. 218-229.

[109] M. Vishwanath, M. Michael, R.M., and M.J. Irwin, “VLSI architecture for the discrete
wavelet transform”, IEEE Trans. Circuits Syst. -II Anal Dig. Signal Process., 1995,
Vol. 42, pp.305-316.

[110] Y. Wang, J. Rucker, and J. Fowler, “Three-dimensional tarp coding for the
compression of hyperspectral images,” IEEE Geoscience and Remote Sensing Letters,
vol. 1, no. 2, pp. 136–140, April 2004.

[111] M. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I Lossless Image
Compression Algorithm: Principles and Standardization into JPEG-LS,” IEEE
Transactions on Image Processing, vol. 9, no. 8, pp. 1309–1324, August 2000.

[112] H. Xie, A. Kiely, M. Klimesh, N. Aranki, “Context Modeler for Compression of
Wavelet-Transformed Hyperspectral Data”, NASA Tech Briefs, 2007

[113] Xilinx Virtex II and Virtex II pro data books, 2006.

[114] Z. Xiong, X. Wu, S. Cheng, and J. Hua, “Lossy-to-lossless compression of medical
volumetric data using three-dimensional integer wavelet transforms,” IEEE
Transactions on Medical Imaging, vol. 22, no. 3, pp. 459–470, March 2003.

[115] K. Youn-Hong, J. Kyong-il, and R. Kang-Hyeon, “FPGA implementation of subband
image encoder using discrete wavelet transform”, TENCON 99. Proceedings of the
IEEE Region 10 Conference, 1999, Vol. 2, pp 1335 -1338.

[116] C. Zhang, Y. Long, S. Oum and F. Kurdahi, “ Software-Pipelines 2D Discrete Wavelet
Transform with VLSI Hierarchical Implementation”, Proceedings, IEEE Inter.
Conference on Robotics, Intelligent Systems and Signal Processing, Vol. 1, pp 148-
153, Oct. 2003.

 154

Chapter 8: Appendices

Appendix A: An Alternative Approach to Hyperspectral Data

Compression

An approach with lower complexity than ICER-3D-HW is to use a 2D DWT

decomposition in the spatial dimension and predictive coding among spectral bands

(see Figure A.1), which provides a less computationally intensive approach. Most

predictive techniques (such as DPCM)[4][26][85]) operate on both spatial and

spectral dimensions and are not scalable. The DWT produces coding gains by

exploiting data correlations in the spatial dimension. Prediction in the wavelet

domain provides a good lossless/virtually lossless approach that allows for faster

adaptation of the local statistics between DWT transformed spectral bands. It

requires less computation than another 1D wavelet transform, scalable, however, the

algorithm is not progressive.

Figure A.1: Spectral data is arranged as 2D images (spectral bands), integer DWT applied to 2D
images followed by inter-band prediction

B1 B2

j

i

λ

B3Image Cube

 155

Our alternative algorithm applies first a 2D wavelet decomposition to each spectral

band (spatial domain), then exploits spectral correlations through interband

predictive coding. Quantization (if lossy) and entropy coding are applied to the error

(difference) images to complete the compression process.

Users aiming for lower complexity and high bit rates may choose the 2D DWT along

with spectral prediction, while users looking for a progressive lossy/lossless

compression may choose the 3D DWT algorithm, ICER-3D-HW.

A.1 2D DWT Compression with Prediction

We investigated various prediction schemes. Prediction depth of more than 2 or three

planes in the wavelet transform domain did not produce better results and came at a

high computational cost. The following 3 adaptive predictors were designed for this

part of the algorithm

Predicted value X :

() ()
()
()3.

2.

1.

2,,1,,,,

2,,1,,

1,,1,,1,,

AdXcXbXaX

AcXbXaX

AXXaXX

jijiji

jiji

jijiji

−−

−−

−−−

−++=

++=

−+=

λλλ

λλ

λλλ

where i and j are the special coordinates of a pixel, λ is the spectral band being

predicted, and the coefficients a, b, c, and d are computed with least square

 156

minimization. Representative samples of calibrated ’97 AVIRIS data downloaded

from the AVIRIS website were used for training [20]. On-board adaptive training is

also possible, but comes at a higher computational cost. A practical solution can

update the coefficients less frequently.

The residual r is given by:

()4.,, AXXr ji −= λ

Figure A.2 shows an example of 3 consecutive spectral bands of an AVIRIS data set

and the resulting residual image using the first predictor

(a) (b)

Figure A.2: 2D wavelet decomposition with spectral predictive coding. (a) Three consecutive
spectral bands of AVIRIS Cuprite scene. (b) The resulting residual image

A.2 Quantization and Entropy Coding

While bit plane encoding with prioritized DWT sub-bands might be the ideal

approach for post transform processing, our first baseline approach was to use scalar

quantizers (when lossy compression is required) and entropy encoding to minimize

algorithm complexity.

 157

Quantization aims to reduce data entropy by decreasing the data precision. A

quantization scheme maps a large number of input values into a smaller set of output

values. This implies that some information is lost during the quantization process. A

quantization strategy design must balance the compression achievement and

information loss. One of the criteria for optimal quantization is minimizing the mean

square error (MSE) given a quantization scale. Our wavelet coefficients were

compressed using a uniform scalar quantizer and the Lloyd-Max optimal scalar

quantization scheme. Residual errors resulting from the 2D DWT with spectral

prediction scheme were quantized with a uniform quantizer operating on each sub-

band error separately. Sub-band blocks resulting from the 3D DWT decomposition

consist of two types of data, the high energy LLL block, which preserves most of the

energy; and the other high-resolution data blocks, which contain the sharp edge

information. Small quantization scale was used for the LLL block and a relatively

large scale for the other blocks.

The last step in the compression process is the entropy coding. Huffman coding is a

variable length scheme that is a minimum redundancy coding. It assigns fewer bits to

the values with a higher frequency of occurrence and more bits to the values with a

lesser frequency of occurrence. Based on the occurrence frequency of each

quantization level, a hierarchical binary coding tree structure brings by sequentially

 158

finding the lowest two frequencies as tree branches and adding each low frequency

pair as a new node for the next level. Since each data block is quantized into

different numbers of quantization levels, the coding process was performed for each

data block separately resulting in a separate code book for each sub-band.

A.3 Experimental Results

Our algorithm was tested using the (2,6) DWT transform with AVIRIS ‘97 data sets.

Figures A.3, A.4 and A.5 demonstrate the lossless and lossy results accomplished

with this approach and in comparison to 2D DWT compression and a baseline 3D

DWT using the same type of encoding. The spectral prediction used in these runs is

based on the simple predictor shown in equation (A.1).

Lossless CompressionLossless Compression

Figure A.3: Lossless compression - Comparison of 2D DWT with prediction compressor to 3D

and 2D DWT compressors

 159

Figure A.4: Lossless Results – Comparisons of 2D DWT with prediction compressor to fast
lossless, 3D DWT, and JPEG-LS lossless compressors

Lossy Compression
AVIRIS Cuprite ‘96 data set

Lossy Compression
AVIRIS Cuprite ‘96 data set

Figure A.5: Lossy compression – Comparisons of 2D DWT with prediction compressor to 3D

and 2D DWT compressors

 160

As can be seen from these results, the proposed DWT with prediction algorithm is

not optimal for all types of hyperspectral data, but produced good results with low

computational complexity. Enhanced prediction scheme, bit-plane encoding, and

entropy coding can be pursued with further research and can be expected to improve

the compression performance.

