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Abstract

Many video compression schemes (e.g., the recent H.264/AVC standard) and volumetric

image coding algorithms are based on a closed-loop prediction (CLP) framework. While

CLP based schemes can achieve state-of-the-art coding efficiency, they are inadequate

in addressing some important emerging applications such as wireless video, multiview

video, etc, which have new requirements including low complexity encoding, robustness

to transmission error, flexible decoding, among others. In this research we investigate

new video and image compression algorithms based on distributed source coding (DSC),

and we demonstrate the proposed algorithms can overcome some of the deficiencies in

CLP based systems while achieving competitive coding performance.

The first part of this thesis discusses our work to explore DSC principles for designing

hyperspectral imagery compression algorithms, with an eye toward an efficient and par-

allel encoder implementation with modest memory requirement. Using DSC tools allows

encoding to proceed in “open loop”, and this facilitates parallel compression of spec-

tral bands in multi-processors configurations. We demonstrate that our proposed DSC

techniques can be adaptively combined with set partitioning of wavelet coefficients to

exploit spatial and spectral correlation. Our latest results show the proposed algorithm
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can achieve a comparable coding efficiency to a simple 3D wavelet codec developed at

NASA-JPL.

The second part of this thesis investigates DSC based coding algorithms to address the

flexible decoding problem in video applications. In these, the encoder needs to compress a

current frame under uncertainty on the predictor available at decoder. Flexible decoding

is relevant in a number of applications including multiview video, frame-by-frame forward

and backward video playback, robust video transmission, etc. The proposed algorithm

incorporates novel macroblock mode switching and significance coding within the DSC

framework. This, combined with a judicious exploitation of correlation statistics, allows

us to outperform other competing solutions.

The third part of this thesis proposes solution to address the correlation estimation

problem in DSC, which is an important subject for practical DSC applications. We

formulate the rate-constrained correlation estimation problem in a DSC framework, and

propose information exchange strategies that minimize the rate penalty due to inaccurate

estimation. We also propose a novel model-based method for correlation estimation in the

context of DSC. We demonstrate that the model-based estimation can achieve accurate

estimation with minimal computational and data exchange requirements.
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Chapter 1

Introduction

1.1 Motivation

In the past decade, both academia and industry have devoted substantial research and

standardization efforts to the development of multimedia compression algorithms. Some

well-known examples are the MPEG video coding standards developed by ISO/IEC and

the H.26X video coding standards developed by the ITU. Digital video and image com-

pression have become central technologies in a variety of applications, including consumer

electronics (e.g., DVD, digital still camera), the Internet (e.g., JPEG-compressed pictures,

streaming video), distance learning, surveillance and security, and remote sensing.

Conventionally, video compression standards (e.g., the recent H.264/AVC standard)

and many volumetric image coding algorithms are based on a closed-loop prediction (CLP)

framework [80, 82]. In CLP systems, encoder would compute the difference between the

input source and a predictor available at both the encoder and decoder, and communicate

this difference, or prediction residue, to the decoder (Figure 1.1). Compression schemes

based on CLP have demonstrated state-of-the-art coding performance.
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Figure 1.1: Compression using CLP. Encoder computes the difference between the input
source X and the predictor Y and communicates the difference (prediction residue) to
the decoder.

CLP based algorithms, however, could be inadequate to address the requirements

of several important emerging applications. For example, CLP schemes are vulnerable

to transmission error, and it is non-trivial to communicate CLP compressed data over

lossy channels as occurred in wireless video applications [66, 75, 87]. Moreover, CLP

systems may lack the decoding flexibility required by some emerging applications such as

multiview video [35, 70]. Furthermore, CLP coding algorithms are inherently sequential,

and it is difficult to achieve parallel encoding of slices in the cases of volumetric image

compression [51].

It is the purpose of this research to investigate novel video and image compression

algorithms to address the aforementioned issues in conventional compression framework

based on CLP. Specifically, we propose hyperspectral image and video compression al-

gorithms based on distributed source coding (DSC). We demonstrate the proposed DSC

based algorithms can overcome some of the deficiencies in conventional schemes, and

achieve competitive compression efficiency. One of the central problems in DSC is to

estimate, during encoding, the correlation information between the input and the predic-

tor (side information) available only at the decoder [30, 85]. Therefore, we also propose

different correlation estimation strategies based on sampling techniques.
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Hyperspectral imagery is usually highly correlated, in some cases within each spec-

tral band, but in particular across neighboring frequency bands [38, 51]. In Chapter 2

we propose to use DSC to exploit this correlation with an eye to a parallel encoding

implementation with modest memory requirement [8, 14, 67]. We apply DSC principles

to hyperspectral images by encoding individual spectral bands under the assumption

that these bands are correlated. As will be discussed, using DSC tools allows the en-

coder to operate in “open loop” without requiring having access to decoded versions of

(spectrally) neighboring bands, and this facilitates parallel encoding of spectral bands in

multi-processor architectures. We first compute the parameters of a linear predictor to

estimate the current spectral band from a neighboring one, and estimate the correlation

between these two bands (after prediction). Then a wavelet transform is applied and a

bit-plane representation is used for the resulting wavelet coefficients. We observe that

in typical hyperspectral images, bit-planes of same frequency and significance located

in neighboring spectral bands are correlated. We exploit this correlation by using low-

density parity-check (LDPC) based Slepian-Wolf codes [43,46]. The code rates are chosen

based on the estimated correlation. We demonstrate that set partitioning of wavelet coef-

ficients, such as that introduced in the popular SPIHT algorithm, can be combined with

our proposed DSC techniques so that coefficient significance information is sent indepen-

dently for all spectral bands, while sign and refinement bits can be coded using adaptive

combinations of DSC and zerotree coding. Our latest results suggest that coding effi-

ciency comparable to that of a simple 3D wavelet codec developed at NASA-JPL can be

achieved by our proposed algorithm.

3



In Chapter 3 we investigate compression techniques to support flexible video decod-

ing [10–12, 16]. In these, encoders generate a single compressed bit-stream that can be

decoded in several different ways, so that users or decoders can choose among several

available decoding paths. Flexible decoding has several advantages, including improved

accessibility of the compressed data for emerging applications (e.g., multiview video) and

enhanced robustness for video communication. Flexible decoding, however, makes it dif-

ficult for compression algorithms to exploit temporal redundancy: when the decoder can

choose among different decoding paths, the encoder no longer knows deterministically

which previously reconstructed frames will be available for decoding the current frame.

Therefore, to support flexible decoding, encoders need to operate under uncertainty on

the decoder predictor status. We propose to address flexible decoding based on DSC.

The main advantage of a DSC approach to flexible decoding is that the information com-

municated from the encoder to the decoder (namely, the parity bits) is independent of

a specific predictor. By “decoupling” the compressed information from the predictor,

we will demonstrate that, theoretically and experimentally, DSC can lead to a solution

that compares favorably to, in terms of coding efficiency, one based on conventional CLP

approach, where multiple prediction residues are sent, one for each possible predictor

available at the decoder. The main novelties of the proposed algorithm are that it incor-

porates different macroblock modes and significance coding within the DSC framework.

This, combined with a judicious exploitation of correlation statistics, allows us to achieve

competitive coding performance. Experimental results using multiview video coding and

forward/backward video playback suggest the proposed DSC-based solution can outper-

form flexible decoding techniques based on CLP coding.
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Central to practical DSC applications is the correlation information between the input

and side information, which usually has to be estimated at the encoder in order to deter-

mine the encoding rate [30,85]. Coding efficiency depends strongly on the accuracy of this

correlation estimation. While error in estimation is inevitable, the impact of estimation

error on compression efficiency has not been sufficiently studied for the DSC problem. In

Chapter 4, we study correlation estimation subject to rate and complexity constraints,

and its impact on coding efficiency in a DSC framework for practical distributed image

and video applications [9, 15]. We focus, in particular, on applications where binary cor-

relation models are exploited for Slepian-Wolf coding and sampling techniques are used

to estimate the correlation, while extension to other correlation models will also be briefly

discussed. In the first part of Chapter 4 we investigate the compression of binary data.

We first propose a model to characterize the relationship between the number of samples

used in estimation and the coding rate penalty, in the case of encoding of a single binary

source. The model is then extended to scenarios where multiple binary sources are com-

pressed, and based on the model we propose an algorithm to determine the number of

samples allocated to different sources so that the overall rate penalty can be minimized,

subject to a constraint on the total number of samples. The second part of Chapter 4

studies compression of continuous-valued data. We propose a model-based estimation

for the particular but important situations where binary bit-planes are extracted from a

continuous-valued input source, and each bit-plane is compressed using DSC. The pro-

posed model-based method first estimates the source and correlation noise models using

continuous-valued samples, and then uses the models to derive the bit-plane statistics

analytically. We also extend the model-based estimation to the cases when bit-planes
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are extracted based on the significance of the data, similar to those commonly used in

wavelet-based applications. Experimental results demonstrate the effectiveness of the

proposed algorithms.

The rest of this chapter gives a brief review of related topics and summarizes the

contributions of this thesis.

1.2 Distributed Source Coding

DSC addresses the problem of compression of correlated sources that are not co-located.

The information-theoretic foundations of DSC were laid out in the 1970s in the pioneering

works of Slepian and Wolf [63], and Wyner and Ziv [84]. Driven by its potential to some

emerging applications (sensors network, wireless video, etc), DSC has attracted much

attention recently.

In this section we briefly review some information-theoretic results of DSC most rele-

vant to our applications. We also discuss the basic ideas of constructive DSC algorithms,

and properties of DSC essential to practical applications.

1.2.1 Slepian-Wolf Theorem

Here we illustrate a particular case of the Slepian-Wolf theorem which is most relevant to

practical DSC applications, often referred as (lossless) source coding with decoder side-

information. Consider the set-up in Figure 1.1, where we try to losslessly compress an

i.i.d. random source Xn = {X1, X2, ..., Xn} with another correlated i.i.d. random source

Y n = {Y1, Y2, ..., Yn} available at both the encoder and decoder. That is, {Xi, Yi}n
i=1 i.i.d.

∼ p(x, y), and X and Y are discrete random variables. In this case, we can use CLP (e.g.,
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Figure 1.2: Slepian-Wolf theorem.

DPCM) to compress Xn, i.e., we use Y n to predict Xn and then encode the prediction

residue. The theoretical lower bound of the lossless encoding rate is H(X|Y ).

In distributed source coding, instead, we consider the situation where Y n is available

only at the decoder (Figure 1.2). This situation appears to pose a more difficult coding

problem than that of Figure 1.1. However, Slepian and Wolf [63] have shown that the-

oretically we can achieve the same lower bound as in the previous case, i.e., H(X|Y ),

even the actual realization of Y n that will be available at the decoder is not known dur-

ing encoding. The Slepian-Wolf theorem thus suggests that efficient encoding is indeed

possible even when the encoder does not have precise knowledge of the side-information

Y n available at the decoder.

1.2.2 Constructive Coding Algorithm

The Slepian-Wolf theorem states that, theoretically, the best achievable rates are the same

with or without Y n at the encoder. However, practically, how can we compress Xn when

Y n is available only at the decoder, and achieve the same performance as when Y n is

available at both the encoder and decoder? Most constructive algorithms for Slepian-Wolf

coding are based on channel coding [1, 27, 43, 56, 57, 83]. We will first illustrate the idea
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with an example using cosets, and then describe the mechanism to perform Slepian-Wolf

coding with error correcting codes.

1.2.2.1 Coset Example

Consider an example when we try to represent a discrete random variable X distributed

uniformly in [0,255]. In this case intra coding would require 8 bits to represent X. Suppose

there is another correlated random variable Y available, and the correlation between X

and Y is such that Y −X is distributed uniformly in [-4,4). We can exploit this correlation

to reduce the bit-rate to represent X. If Y is available at both encoder and decoder, we

can use CLP to communicate X, i.e., we encode the residue Y − X. Since Y − X is

distributed uniformly in [-4,4), only 3 bits are required to represent X.

In situations when Y is not available at the encoder we can convey X using the

following algorithm (Figure 1.3) [85]. We partition the space of all reconstruction levels

into different groups or cosets. In this particular example, we partition the space into 8

cosets: {A, B,C, ..., G,H}, and each coset includes several reconstruction levels separated

by the same distance. As will be discussed, the number of cosets is determined by the

correlation between X and Y . To communicate X, we transmit the label of the coset

which X belongs to (C in Figure 1.3), which would require 3 bits (since there are 8

cosets). At the decoder, we receive the coset label and observe the side-information Y .

The coset label suggests X can be any one of the members in the coset. To disambiguate

this information, we select the one coset member that is closest to Y and declare it as

the reconstructed value for X. By doing so, one can check that we can always recover X
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(i) X distributes uniformly in [0,255].  Intra coding requires 8 bits to encode X.   

X=2 

… 

(ii) To encode X using DSC, we partition the input space into cosets: {A,B,C,…,G, H}. 

X=2 

… 

(iii) Encoder conveys X by sending the label of the coset which X belongs to (i.e., C). 

… 
            C                                             C  

Y 

(iv) Decoder selects the member closest to Y and declares it as the reconstructed value for X. 

Encoder: 

Decoder: X ^ 

Figure 1.3: An example using coset to illustrate the main ideas of constructive DSC
algorithms.

exactly as long as X and Y obey the correlation structure. Therefore, we can communicate

X using 3 bits, same as CLP, with Y available only at the decoder.

1.2.2.2 Main Ideas and General Steps

As illustrated by the coset example, the main ideas of DSC are that the encoder sends

ambiguous information to achieve rate savings, and the decoder would disambiguate the

information using the side information. In the coset example, the ambiguous information

is the coset label representing a group of reconstruction levels. As long as the members

are sufficiently apart within the coset, we would be able to recover the original value
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by selecting the member which is identified by the coset label and is closest to the side

information.

The general coding steps of DSC can be summarized as follows:

1. Partitioning the input space into cosets;

2. Members in the coset are separated by some minimum distance;

3. Encoder sends the coset label to decoder;

4. Decoder selects the coset member closest to the side-information, and declares it as

the reconstructed value.

1.2.2.3 Practical Algorithms Using Error Correcting Codes

Practical coding algorithms employing error correcting codes follow the same basic ideas

and general steps discussed above [28, 58, 85]. For example, to encode an n-bit binary

vector X with a linear (n, k) binary error correcting code defined by the parity matrix H,

we compute S = XHT, where the (n − k)-bit S is the syndrome. The syndrome would

serve the same function as the coset label in the coset example. From coding theory, of

all the 2n possible X, 2k of them will have the same syndrome, thus we can partition the

input space of X into 2(n−k) cosets according to the syndrome (Figure 1.4). Moreover,

the minimum Hamming distance between members is the same for each coset.

To communicate X, we would send the syndrome of the coset which X belongs to.

At the decoder, we receive the syndrome and observe the side-information Y. To disam-

biguate the information, we select the one closest to Y in the coset (Figure 1.4). Here
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Space of n-bits vector: 

C 

C C 

C 

C C 

(ii) Encoder sends the syndrome of the coset which X belongs to. 

(iii) Decoder selects the member closest to Y. 

Figure 1.4: Practical coding algorithms using error correcting codes.

we achieve compression by sending the (n− k)-bit S instead of the original n-bit source

X, and the encoding rate is n−k
n , which should be no less than the Slepian-Wolf limit.

Note that in order to achieve performance close to the Slepian-Wolf limit, error cor-

rection code based algorithms would need to use very large block lengths, e.g., n is of the

order of 105 [85]. These may not be suitable for practical image and video applications,

where correlation between symbols is non-stationary and may vary significantly between

small blocks. Recent work has proposed to address distributed compression based on

arithmetic coding, which may achieve good coding performance with much smaller block

sizes, e.g., n is of the order of 103 [29].
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1.2.3 Properties of Distributed Source Coding

In this section we will highlight some of the properties of DSC that are most useful for

some emerging applications.

1.2.3.1 Encoding Requiring Correlation Information Only

The most notable property of DSC is that encoding requires, in addition to the input

source itself, only the correlation information between the source and its side-information.

In particular, the exact realization of the side-information is not needed during encoding,

as illustrated by the coset example. This property makes DSC useful for application

scenarios where encoders do not have access to the predictors. An example of this sce-

nario could be compression of sensor data [55, 85]. Consider a dense sensor field where

individual sensors acquire and transmit information to a central node for processing.

Since the information could be highly correlated, the sensors may opt to coordinate with

their neighbors and remove the redundancy in the collected information before sending

it to the central node, so that lower transmission rates can be achieved. However, the

conventional CLP approach would incur substantial local communication between the

neighboring sensors, since the exact value of a predictor (Y ) available at one node needs

to be communicated to a neighboring node in order to encode X. Using DSC, communi-

cation between sensors could be avoided if the correlation information is available at the

sensors, leading to significant reduction in energy consumption. Practically, correlation

information may need to be estimated, and some aspects of this correlation estimation

are studied in this research [9, 15] (Chapter 4).
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Another example of a scenario where predictors could be inaccessible during encoding

is low complexity video encoding. Conventional video coding standards (e.g. MPEG,

H.26x) follow the CLP approach, and to encode a block in the current frame, encoder

would use motion estimation to find the optimal predictor block in the previous recon-

structed frames. The prediction residue is then computed, compressed and communicated

to the decoder. Motion estimation is a well-established technique to exploit the temporal

correlation between neighboring frames to achieve high compression ratio, but it incurs

substantial computational complexity, leading to asymmetric coding frameworks where

encoders are more complex than decoders. This poses challenges to some emerging ap-

plications such as video sensor networks or mobile video, where encoders need to operate

under power constraints and low complexity encoding would be more suitable. In con-

trast to CLP, DSC requires only correlation information during encoding, and if encoder

could acquire such information with minimal computation, low complexity encoding can

be achieved [4, 28,59].

It should be noted that the coding efficiency of DSC depends strongly on the ac-

curacy of the correlation information, and decoding error may occur if the correlation

is not known accurately. We illustrate this with the coset example discussed in Sec-

tion 1.2.2.1. Recall in this example the “correct” correlation between the source and the

side-information is 4 > Y −X ≥ −4. Suppose the encoder has obtained inaccurate cor-

relation information between the input data, say, 2 > Y −X ≥ −2, i.e., encoder thought

X and Y were more correlated. Based on the inaccurate correlation information, the

encoder determines the Slepian-Wolf limit, H(X|Y ), to be 2 bits, and uses four cosets to

communicate X (Figure 1.5). Following the same coding steps, decoder would receive the

13



 

X=2 

A    B   C   D    A    B   C   D   … 

            C                    C          …                            

0 1 2 … 255 
… 

P(X,Y): 4 > Y-X ≥ -4 
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… 

(ii) Encoder uses only four cosets {A,B,C,D} to convey X. 
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… 

(iii) Encoder conveys X by sending the label of the coset which X belongs to (i.e., C). 

… 
            C                    C          …                       

Y 

(iv) Decoder selects the member closest to Y and makes decoding error. 

Encoder: 

Decoder: X ^ 

Figure 1.5: Decoding error due to inaccurate correlation information.

coset label, and to disambiguate this coset information decoder would select the member

closest to Y and declare it as the reconstructed value of X. However, in this case, the

reconstructed value could be different from the original one, as illustrated in Figure 1.5,

and decoding error could occur. Therefore, in DSC, if the encoder over-estimates the cor-

relation a decoding error can occur. On the other hand, if the encoder under-estimates

the correlation, we can still reconstruct X correctly at decoder, but we suffer a penalty

in terms of coding performance.
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1.2.3.2 Systems Robust to Uncertainty on Predictor

Another property of DSC is that DSC systems tend to be more robust to error in the

predictor, or to uncertainty on the predictor. As illustrated in the coset example, in

DSC, the compressed information (i.e., coset label or symdrome) is computed based on

the correlation information, instead of directly from the predictor as in CLP. Therefore,

DSC is an approach to exploit the correlation without using the predictor directly in

the encoding. By “de-coupling” the predictor from the encoding process and from the

compressed information, DSC systems can be robust to errors on or uncertainties about

the predictor. For example, it is possible to reconstruct the source exactly even when

the side-information is corrupted by errors. This can be illustrated by the coset example

(Figure 1.6). Recall that at the decoder we would select the member closest to the side-

information Y as the reconstructed value for X. Suppose Y is corrupted by noise N . If

the noise power is less than some limit, we can still reconstruct X exactly as illustrated in

Figure 1.6. This property can be exploited in a DSC based video communication system,

where X would be the current frame and Y would be the reference frame [60, 62, 78].

In this case even there is transmission error in the reference frame, it is still possible

to reconstruct the current frame exactly and prevent any error propagation. This is in

contrast to CLP systems such as MPEG/H.26x video coding schemes, where error would

propagate until a video frame (or block) is intra-coded. Note that DSC exploits inter-

symbol correlation (between X and Y ) when encoding X, and thus could achieve better

coding efficiency than intra-coding of X.
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Figure 1.6: Robustness property of DSC.

1.3 Hyperspectral Imagery

In Chapter 2 we propose DSC-based compression algorithms for hyperspectral imagery.

We first briefly review the basics of hyperspectral image compression in this section.

Hyperspectral images consist of hundreds of spatial images each being acquired at a

particular frequency (spectral band) (Figure 1.7). Therefore, in hyperspectral data sets,

the pixel values along the spectral direction depict the spectra of the captured objects,

and this spectral information can be used in classification applications, e.g., identification

of surface materials. The raw data size of hyperspectral images is non-trivial. For exam-

ple, the images captured by AVIRIS (Airborne Visible/Infrared Imaging Spectrometer,

operated by NASA) include 224 spectral bands, and a single hyperspectral image could

contain up to 140 Mbytes of raw data [40]. Therefore, efficient compression is necessary

for practical hyperspectral imagery applications. In addition, hyperspectral images are

usually captured by satellites or spacecrafts that use embedded processors with limited re-

sources, so encoding complexity is an important issue in hyperspectral image compression.

Furthermore, due to the large amount of raw data, high speed encoding is desirable, and

one approach to speed up encoding could be to perform parallel compression on several

processors. This will be one of the topics investigated in this research.
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Figure 1.7: Hyperspectral image.

1.3.1 Review of Hyperspectral Imagery Compression Approaches

In a hyperspectral dataset many spectral bands are highly correlated. This is shown

in Figure 1.8, where image mean-square residuals after simple alignment are shown for

two different views on a site. Neighboring bands tend to be correlated and the degree

of correlation varies relatively slowly over a broad range of spectral regions. Thus, ex-

ploiting inter-band correlation using, for example, inter-band prediction followed by 2D

compression [51] or 3D wavelet decompositions [69], has proven to be a popular approach

to compress hyperspectral images1.

1.3.1.1 Inter-band Prediction Approaches

In inter-band prediction approaches, a band is predicted using previously encoded bands

and the resulting prediction residuals are encoded using standard image coding techniques

(transformation followed by quantization and entropy coding). Since, typically, the pre-

diction residue has a much lower energy than the original band, encoding the residue

1As will be illustrated later, it is easy to modify an algorithm that exploits cross-band correlation
so that it operates independently in each frame when correlation is low, as is the case in some spectral
regions in Fig. 1.8.
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Figure 1.8: Mean square residuals after simple image alignment and subtraction.

usually requires fewer bits than encoding the original band. Inter-band prediction ap-

proaches are analogous to the standard MPEG/H.26x compression algorithms for video,

but motion estimation/compensation are not necessary since co-located pixels in different

spectral bands represent the same ground object (at different frequencies).

Inter-band prediction approaches can achieve high compression ratio with moderate

memory requirements. However, there are several drawbacks. First of all, inter-band

prediction methods need to generate exact copies of the decoded bands at the encoder, so

encoders need to perform decoding as well, and decoding complexity could be significant,

e.g., comparable to encoding complexity. [51] has proposed using only full bit-planes to

form the predictors at the encoder and decoder. This could avoid bit-plane decoding at

the encoder. However, since this approach does not utilize fractional bit-plane informa-

tion in reconstruction, the predictors in general have worse qualities compared to that

of conventional inter-band prediction methods, leading to degradation in coding perfor-

mance. Second, inter-band predictive methods are inherently serial, since each band is

encoded based on a predictor obtained from previously decoded bands. Therefore, it is
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difficult to scale up the processing speed of an inter-band predictive encoder to handle

the high data rate generated by hyperspectral imaging instruments. Furthermore, it is

difficult to achieve efficient rate scalability. This is because bit-rate scaling by on-the-fly

truncation of the bit-stream during transmission may lead to a different reconstruction

at the decoder, resulting in drifting.

1.3.1.2 3D Wavelet Approaches

3D wavelet methods, including 3D-SPECK, 3D-SPIHT [69], or 3D-ICER [38, 39] devel-

oped by NASA Jet Propulsion Laboratory, provide alternatives to predictive techniques.

3D wavelet methods can also exploit inter-band correlation by performing filtering across

spectral bands, with the expectation that most of the signal energy will be concentrated

in low pass subbands (corresponding to low spatial and “cross band” frequencies).

As an example to illustrate 3D wavelet approaches, in 3D-ICER [38, 39], a modified

3D Mallat decomposition is first applied to the image cube. Then mean values are

subtracted from the spatial planes of the spatially low-pass sub-bands to account for the

“systematic difference” in different image bands [39]. Then bit-plane coding is applied

to the transform coefficients, with each coefficient bit adaptively entropy-coded based on

its estimated probability-of-zero statistics. The probability is estimated by classifying

the current bit to be encoded into one of several contexts according to the significance

status of the current coefficient and its spectral neighbors. A different probability model

is associated to each context.
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While 3D wavelet methods can achieve good compression efficiency with excellent

scalability, a main disadvantage is that they lead to complex memory management is-

sues. A naive implementation would consist of loading several spectral bands in memory

so as to perform cross-band filtering, leading to expensive memory requirements. More

sophisticated approaches are possible, e.g., loading simultaneously only subbands corre-

sponding to a given spatial frequency in various spectral bands, but these approaches

have the drawback of requiring numerous iterations of memory access.

1.4 Contributions of This Research

In this research we propose novel image and video coding algorithms based on DSC in

order to address some of the deficiencies in conventional compression framework. We

also address the correlation estimation problem in practical DSC applications. The main

contributions of this research include the following:

1. Wavelet-based Slepian-Wolf coding for hyperspectral imagery [8, 14,67].

• We exploit the DSC principle to design hyperspectral imagery compression

with an eye to an efficient parallel encoder implementation. We combine

set partitioning of wavelet coefficients with our proposed DSC techniques to

achieve competitive coding performance. Our proposed system can achieve

a comparable coding efficiency to a simple 3D wavelet codec developed at

NASA-JPL.

• We propose adaptive coding strategies that optimally combine DSC with intra

coding for wavelet-based DSC applications. Experimental results demonstrate
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that these adaptive strategies can lead to up to 4dB improvement compared

with a non-adaptive system.

2. Flexible video decoding [10–13,16].

• We investigate compression techniques to support flexible video decoding based

on DSC. The proposed algorithm incorporates different macroblock modes and

significance coding within the DSC framework, and combined with a judicious

exploitation of correlation statistics the proposed algorithm can outperform

flexible decoding techniques based on conventional CLP coding.

• We study the information-theoretical achievable rate bound for the flexible

decoding problem under predictor uncertainty.

3. Sampling-based correlation estimation for DSC [9, 15,17].

• Within the DSC framework, we propose models to characterize the relationship

between the number of samples used in estimation and the coding rate penalty.

• In compression of multiple binary sources and under constraints on the total

number of samples, we propose an algorithm to determine the number of sam-

ples allocated to different sources so that the minimum overall rate penalty

can be achieved.

• We propose model-based estimation for distributed coding of continuous valued

input sources. Experimental results, including some based on real image data,

demonstrate the effectiveness of the proposed algorithms.
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The rest of the thesis is organized as follows. We discuss hyperspectral image compression

in Chapter 2. Chapter 3 discusses how to address flexible decoding based on DSC.

Chapter 4 studies the correlation estimation problem in DSC. Finally, Chapter 5 concludes

the research and discusses future work.
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Chapter 2

Efficient Wavelet-based Predictive Slepian-Wolf Coding for

Hyperspectral Imagery

2.1 Introduction

2.1.1 Motivation

In this chapter we propose novel compression algorithms for hyperspectral imagery that

facilitate parallel and low complexity encoding, while achieving competitive compression

performance. Our proposed techniques use wavelet-based encoding to enable lossy to loss-

less, scalable encoding of the spectral bands. This is combined with distributed source

coding techniques [63], which are used to exploit the inter-band correlation. As discussed

in Chapter 1.2, Slepian and Wolf [63] proved that two correlated sources can be optimally

encoded even if the encoder only has access to the two sources separately. This counter-

intuitive result permits in principle significant complexity and communication overhead

reductions in parallel encoding configurations, while preserving the ability to optimally

compress the data (approaching the same performance as conventional schemes based

on predictive framework) by exploiting the redundancy in the correlated spatial images
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at adjacent spectral bands. These advantages are particularly important for hyperspec-

tral imagery compression, where low complexity, high speed encoding is most needed.

Other applications of Slepian-Wolf coding include data aggregation in sensor networks

(e.g., [55, 85]) and video coding (e.g., [28, 59]). In the video coding applications, the

correlated sources are successive video frames. In this work, correlated sources will be

successive bands of hyperspectral imagery.

2.1.2 Our Contributions and Related Works

Our proposed scheme, set-partitioning in hierarchical trees with Slepian-Wolf coding (SW-

SPIHT), is an extension of the well-known SPIHT algorithm [61]. SW-SPIHT first uses an

iterative set-partitioning algorithm to extract bit-planes. Bit-planes at the same bit posi-

tion in neighboring bands are shown to be correlated. Once the first spectral band, which

is encoded independently, is available to the joint decoder, bit-planes can be extracted

from it and successive bit-planes at corresponding subbands and significance levels from

the second spectral band can be decoded. All bit-planes other than those from the first

spectral band are encoded independently using an LDPC based Slepian-Wolf code [43,45]

and jointly decoded by a sum-product decoding algorithm. As an example of coding

performance, for the NASA AVIRIS hyperspectral images data set, at medium to high

quality, our baseline SW-SPIHT can achieve up to 5dB gain compared to 2D-SPIHT

on individual bands, while an adaptive SW-SPIHT codec to be discussed in Section 2.6

can achieve up to 8dB gain compared to 2D-SPIHT and a comparable performance as a

simple 3D wavelet system developed at NASA-JPL [8].
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Note that when all bit-planes are encoded SW-SPIHT can also provide lossless com-

pression. In many hyperspectral imaging applications preserving the spectral signature is

important (e.g., the spectral signature may be used for classification and preserving clas-

sification rates becomes important [69]). SW-SPIHT provides flexibility in the choice of

operating points, so that the rate can be selected in order to preserve the spectral signa-

ture. A detailed analysis is presented in Sec. 2.5.3, which demonstrates that SW-SPIHT

can provide a more uniform distortion profile across bands than 3D wavelet techniques.

This is shown to be advantageous in terms of preserving the spectral signature.

To the best of our knowledge we were the first to propose the application of DSC

techniques in the context of hyperspectral imagery [14,67], while applying DSC for lossless

hyperspectral image compression was also proposed in [6, 47]. Another key novelty of

our work is that we combine (i) DSC techniques operating on binary data and (ii) bit-

plane successive refinement encoding based on set partitioning, a technique that has

been broadly used in wavelet-based image coding. These two techniques achieve good

coding efficiency by exploiting different characteristics of the input data, namely, spatial

and frequency localization of wavelet coefficient energy (set partitioning) and correlation

across spectral bands (DSC). We show that by combining these techniques, so that DSC is

applied when it provides the most gain, a better performance is achieved than if DSC were

applied directly to “raw” bit-planes (i.e. complete bit-planes, rather than set-partitioned

ones). More specifically, our proposed codec relies on standard set-partitioning techniques

to signal the location of “significant” wavelet coefficients, while using DSC to encode signs

and refinement bits.
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Note that DSC techniques require the encoder to have information about the correla-

tion between the source being encoded and side information available at the decoder. In

our application, the side information, i.e., neighboring bands, is actually available at the

encoder and thus correlation can be estimated exactly. However, to estimate this corre-

lation accurately may involve a significant overhead, in terms of memory and complexity

at the encoder. Thus, another important novelty in our work is that we take into account

the cost involved in estimating inter-band correlation. In this chapter we discuss a direct

approach to estimate correlation and demonstrate that this results in minimal losses in

compression performance. In Chapter 4 we will discuss a model-based estimation, and

illustrate how the model-based approach could facilitate parallel compression of spectral

bands. The proposed hyperspectral image coding algorithm has potential advantages

when compared with competing techniques that exploit cross-band correlation, such as

inter-band predictive methods and 3D wavelet techniques.

In inter-band prediction approaches [51], a band is predicted using previously en-

coded bands and the resulting prediction residuals are encoded using standard image

coding techniques. As discussed in Chapter 1.3.1, there are several drawbacks of inter-

band prediction approaches, namely (i) high encoding complexity due to the requirement

of replicating decoder reconstruction, (ii) inherently sequential encoding, and (iii) difficult

to achieve rate scalability. Our proposed DSC based algorithms can, however, address

these shortcomings. First, DSC requires only access to correlation statistics, and these

statistics can be reliably estimated with low complexity from uncoded data, as will be

shown. Second, a DSC approach has the potential to enable parallel encoding with mul-

tiple processors. Specifically, once the inter-band correlations have been estimated, each
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processor can in principle proceed independently. While correlation estimation requires

data exchange across bands, this process could be much simpler than encoding/decoding,

as we will discuss in more detail. This inherent parallelism can facilitate hardware im-

plementations and greatly increases the on-board encoding speed. Third, our proposed

algorithms facilitate scalability. We apply DSC to bit-planes extracted from wavelet coef-

ficient data. A given bit-plane in a given subband depends only on the same bit-plane in

a neighboring spectral band. Thus, once hyperspectral data has been encoded, efficient

rate scalability can be achieved by decoding all spectral bands up to the same bit-plane

resolution level. Note that the rate scalability problem in hyperspectral imaging is anal-

ogous to that in video compression scenarios, for which DSC techniques have also been

proposed recently [76,77].

3D wavelet methods provide alternatives to predictive techniques. As discussed in

Chapter 1.3.1, some drawbacks of 3D wavelet methods are that they lead to expensive

memory requirements or complex memory management issues. In contrast, our proposed

DSC-based algorithms only require storing in memory a single spectral band at a time,

once correlation statistics are estimated. These lower memory requirements could po-

tentially lead to lower power consumption at the encoder, since a substantial amount of

off-chip memory access would be avoided. This is particularly important because off-chip

memory accesses often consume up to one order of magnitude higher power than on-chip

data accesses [54].

This chapter is organized as follows. We first present an overview of the proposed

system in Section 2.2, the baseline codec in Section 2.3, and our prediction and estimation

model in Section 2.4. Implementation and experimental results for the baseline codec are
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described in Section 2.5. Section 2.6 discusses the adaptive codec. Section 2.7 presents the

experimental results for the adaptive hyperspectral image codec. Section 2.8 concludes

this chapter.

2.2 System Overview

Figure 2.1 shows an overview of the proposed encoding system. The proposed encoder

consists of multiple processors, and each processor compresses one entire spatial image

at a time, using the algorithms to be discussed in detail in Section 2.3. As discussed

in Section 1.2, with a DSC approach encoding needs only the correlation information to

exploit inter-band redundancy. In particular, if this correlation information is available,

each encoding thread compressing one spatial image would be able to proceed in paral-

lel, and parallel encoding of hyperspectral dataset can be achieved. Therefore, one key

question is how to estimate the correlation information efficiently during encoding. It is,

however, nontrivial to estimate this correlation information, for the following reasons:

• The spatial images of different spectral bands are resided at different processors,

and the communication bandwidth between the processors could be limited;

• Data exchanges between the processors may impact parallel processing, as the pro-

cessors may have to remain idle to wait for the data.

To address these constraints, in Sections 2.4 and 4.4 we will propose several techniques

to achieve accurate estimation of correlation with small amounts of inter-processors com-

munication overhead and minimal dependencies of different encoding threads.
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Figure 2.1: The proposed parallel encoding system. Each processor compresses one spatial
image at a time.

2.3 Codec Architecture

Consider two hyperspectral bands, X and Y , and denote X̂ the reconstruction of band X

at the decoder, which will be used to produce the side-information to decode Y 1. This

side information, X̂ ′, is generated by linear prediction X̂ ′ = αX̂ + β, where α and β will

be estimated at the encoder.

Let us assume first that the correlation statistics are known to both the encoder and

the decoder. In particular, assume that for every set of binary data to be encoded (e.g.,

a bit-plane or part of a bit-plane extracted from Y ), we have access to the “crossover

probabilities”, i.e., the probabilities that two bits in corresponding bit-plane positions

of X̂ ′ and Y , respectively, are not equal. These crossover probabilities will tend to be

different at each level of significance (i.e., crossover probability will tend to increase from

MSB to LSB bit-planes). Section 2.4 will present techniques to estimate efficiently both

1Note that, as will be discussed later, decoding is possible with many reconstructions of X at the
decoder; as coarser versions of X are used, the reconstruction of Y will be correspondingly coarser.
This facilitates rate scalability, i.e., multiple operating points can be achieved with a single embedded
bitstream.
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crossover probabilities and prediction parameters from input data; these techniques re-

quire processing a small fraction of pixels in spectral bands X and Y so that computation

overhead is kept low.

In our work we use SPIHT [61], a well known wavelet-based image coding algorithm,

as a starting point. Similar ideas could be applied to other image coding algorithms

that achieve successive refinement of information by representing data in bit-planes. In

each pass, SPIHT uses a significance test on wavelet coefficients to partition them into

two sets: the significant set and the insignificant set. Bits corresponding to significance

information are entropy coded and output by the encoder; they allow the decoder to

update the list of coefficients in the significant set.

A block diagram of our proposed system is shown in Figure 2.2. Band X is en-

coded and decoded independently (i.e., without information from any other band) using

a wavelet transform and SPIHT coding. The reconstructed band X̂ will then be used

to form side-information to decode Y . As for band Y , the first step is again a wavelet

transform T (f, n) where f is the filter used in the transform and n is the number of

transformation levels. Then SW-SPIHT successively updates the set of significant wavelet

coefficients of Y at each pass. As shown in Figure 2.3, at the end of each iteration, a

sign bit-plane, a refinement bit-plane and corresponding significance bits are generated.

Sign bits and refinement bits are encoded using an LDPC-based Slepian-Wolf code and

corresponding syndrome bits are output to the bitstream. However, significance bits are

encoded independently using intra coding (in particular, zero tree coding in our imple-

mentation), i.e., exactly as they would have been coded in a standard SPIHT approach.

30



Joint Decoding

Source(Y)

Source(X)

T(f, n)

T(f, n)

SW-SPIHT(m)

SPIHT(m)

X

Remote Site

T   (f, n)-1

b   b  = SPA(s  , b  )SPIHT   (m)-1

s  = H b

Y

T   (f, n,  b  )

Independent Decoding

-1

Remote Site

x x

y y

yy

y

Filtering

T(f, n)

Figure 2.2: Block diagram of SW-SPIHT.

Significance

Sign

Refinement
LDPC

LDPC

Set
Partitioning

B
I
T
S
T
R
E
A
M

Syndrome

Syndrome

Pass

Y

Figure 2.3: Bit-plane coding in SW-SPIHT.

In Section 2.6 we will analyze the conditions when intra coding of the significance infor-

mation could be more efficient than exploiting the inter-band correlation, and propose an

adaptive combination of the techniques.

In what follows, bw, bw
i , and bw

i (l) denote a bit-plane, the i-th bit-plane and the

l-th bit of the i-th bit-plane of image W , respectively. Also in what follows, unless

otherwise stated, bit-planes are sets of sign bits and refinement bits as generated after
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set partitioning at a given level of significance. This is illustrated by Figure 2.3. The

encoder comprises the following steps (see Figure 2.4).

E-1. Estimation of predictor coefficients α and β using a subset of information in X and

Y ;

E-2. Application of the prediction coefficients to obtain wavelet transform coefficients of

X ′;

E-3. Computation of wavelet transform of Y ;

E-4. At each iteration, set partitioning of the wavelet coefficients of Y to extract bit-

planes by
i (1 ≤ i ≤ m);

E-5. Application of the significance tree of Y to the wavelet coefficients of X ′ to extract

bit-planes bx
i (1 ≤ i ≤ m);

E-6. Computation of p̂i, estimated crossover probability of the bit-plane pair (bx
i , by

i )

(1 ≤ i ≤ m) of X ′ and Y respectively;

E-7. Determination of the Slepian-Wolf coding rate based on the estimated crossover

probability;

E-8. Generation of parity-check matrix for by
i (1 ≤ i ≤ m).

The compressed bitstream generated for Y includes, for each coding pass, the correspond-

ing significance map and the syndromes generated for sign and refinement bit-planes.

Note that in this algorithm it is not necessary to have access to an encoded version of X.
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Figure 2.4: Encoding using proposed system.

Also, we will discuss in Section 2.4 how prediction coefficients and crossover probabilities

can be estimated with low complexity.

At the decoder, the reconstructed X̂ ′ is transformed using T (f, n), i.e., the same

wavelet transformation used on Y at the encoder. Then the significance tree of Y (not X)

is used to parse the wavelet coefficients of X̂ ′ in order to extract the bit-planes to be used

as side information. Note that the significance tree is sent to the decoder directly (i.e.,

coded in “intra” mode) and thus will be available without requiring any side information.

This is an important aspect of our algorithm because we have chosen to partition Y into

sets before applying Slepian-Wolf coding techniques to some of the data. Thus, in order to

produce the “right” side information for decoding we must apply the same set partitioning

to X̂ ′. The LDPC sum-product algorithm (SPA) is used to decode the bit-planes of Y

given syndrome bits and side-information bit-planes from X̂ ′.

When all bit-planes are decoded and coefficients have been refined to a desired quality

level, the decoder applies the inverse wavelet transform T−1(f, n) to reconstruct Ŷ , an

estimate of Y . Since Slepian-Wolf coding is used to code these bit-planes, they can be
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transmitted with no or negligible information loss, as long as the correlation model is

correct. Information loss would only occur if some of the crossover probabilities were un-

derestimated. Note also that simple quality scalability can be achieved with our scheme;

since any bit-plane in Y is encoded based on a single bit-plane in X, we can scale the

rate by stopping the bit-plane refinement at the same level of significance in both X and

Y . SW-SPIHT can also provide lossless compression for hyperspectral imagery when all

bit-planes are coded, provided that an integer-to-integer wavelet transform [7] is used.

Note that the least significant bit-planes tend to be uncorrelated from image to image

and also have near maximum entropy; thus, in lossless applications, these bit-planes can

be sent uncoded.

Crossover probabilities are used by the encoder to determine the compression rate.

This rate determines which parity-check matrix should be used for a given bit-plane.

In SW-SPIHT, irregular Gallager codes are used. A table is built offline that associates

different crossover probabilities with random seeds for proper parity-check matrices. Once

the crossover probability between a bit-plane and its corresponding side-information bit-

plane is obtained, a proper parity-check matrix can be selected at run-time. To make

sure the same parity-check matrix is used at the decoder, the random seed used by the

encoder to generate the parity-check matrix is sent to the decoder. To match the exact

bit-plane width, column puncturing and splitting is used on the parity-check matrix.

In summary our decoder comprises the following steps:

D-1. Application of prediction coefficients to obtain X̂ ′ = αX̂ + β;

D-2. Transformation of X̂ ′ using the same wavelet transform used for Y at the encoder;
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D-3. Application of the significance tree of Y to the wavelet coefficients of X̂ ′ to extract

m bit-planes bx
i (1 ≤ i ≤ m);

D-4. Computation of a priori probability Pr(by
i (j) = 0|bx

i (j)) for bx
i (j) = 0 or 1. using

SPA.

Note that our proposed technique can be also extended to support multiple sources

of side information. For example, if we consider encoding each bit-plane of the current

band, n, which we denote Xn, using the corresponding bit-planes in the two previous

bands, n− 1 and n− 2, denoted Xn−1 and Xn−2, respectively, we could in theory achieve

an encoding rate close to H(Xn|Xn−1Xn−2), and this would be smaller than that of using

only single side information, H(Xn|Xn−i), i = 1, 2. This would require a minimal increase

in complexity at the encoder (due to computation of additional prediction coefficients and

crossover probabilities) but would lead an increase in decoder complexity. We tested this

approach for the datasets considered in this chapter, and observed that the gains may

not justify the additional complexity at the decoder except lossless or near lossless coding

operation. For most bit-planes, using band n− 1 alone as side information already leads

to significant compression gains, and a relative small conditional entropy, H(Xn|Xn−1).

In our observation, the additional compression gain when using Xn−2 as additional side

information, i.e., H(Xn|Xn−1) −H(Xn|Xn−1Xn−2), tends to be relatively small. As an

example, Figure 2.5 shows H(Xn|Xn−1) and H(Xn|Xn−1Xn−2) at different bit-planes of

typical spectral bands. As shown in the figure, the reduction in coding rate achievable

when using multiple bands as side information is only around 0.01 bits/sample in the more

significant bit-planes, which for many lossy compression applications would not justify the
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Figure 2.5: Example of conditional entropy of different bit-planes.

additional complexity at the decoder. As for the less significant bit-planes, the reduction

in conditional entropy when using multiple bands as side information is larger (up to 0.05

bits/sample), so that in lossless or near-lossless scenarios multiple side information may

be useful. Given that we are not focusing specifically in the near-lossless or lossless case,

the rest of this chapter describes our design and experimental results based on a single

band used as side information.

2.4 Estimating the Correlation and Encoder Complexity

Comparison

The performance of DSC techniques depends strongly on the estimation of correlation

and prediction parameters. In our system, we need to estimate two sets of parameters,

namely, (i) the linear prediction coefficients, α and β, and (ii) the bit-plane crossover

probabilities. In this section, we demonstrate that accurate estimation of correlation
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parameters can be achieved using techniques involving a limited number of data trans-

fers and computations. Because this estimation is accurate and requires low complexity,

our proposed DSC techniques compare favorably with inter-band predictive approaches,

which usually involve a substantial amount of data transfer (e.g., if a whole spectral band

is predicted using another spectral band, then all pixels in the predictor image need to

be fetched in order to generate a prediction residue). Reduction in the amount of data

transfer is particularly important for applications operating in embedded environments,

such as hyperspectral imagery compression in satellites. In these applications the encoder

may only have enough internal memory to accommodate the current spectral band (since

the application programs and operating systems may have occupied significant portions

of the internal memory). In order to perform prediction, the system would need to fetch

the relevant information from neighboring bands, which is likely to be stored in external

memory. Such external memory accesses usually lead to substantial power consumption

and delay. For example, while some sophisticated CPU/DSPs can handle multiple arith-

metic operations in a single cycle, accessing external memory data may incur latency of

the order of tens of cycles [64]. So it is desirable to reduce the total amount of data

exchanged, which translates into reduction in overall system complexity.

In what follows we present low complexity techniques in estimating prediction coeffi-

cients and correlation. We also compare the encoder complexity of the proposed system

with two competing techniques, namely those based on inter-band prediction and 3D

wavelets.
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2.4.1 Estimation of Predictor Coefficients and Correlation

The encoder can determine a rough level of correlation after it estimates α and β by

computing an estimate of the residual energy after prediction. If this energy is above a

certain threshold, the spectral band can be coded in intra mode (i.e., independently of

other bands); with the coding mode reverting to DSC mode when the residual energy

goes under the threshold. For example, Band 162 in Figure 1.8 can be coded in intra

mode. Note that in real data sets we have considered, a majority of bands can be coded

using DSC (e.g., 95% of bands in the Cuprite data set we use in our experiments).

2.4.1.1 Estimation of Predictor Coefficients

As discussed earlier, we use a linear predictor X ′ = αX + β to generate side-information

for Y . The least-squares technique can be used to calculate α and β. In order to reduce

the complexity (and data exchange requirements) of this process, we first down-sample

the spectral bands and use only pixels in the down-sampled bands for estimation. As

shown in Figure 2.6, with only 0.32% of pixels, the resulting predictor can achieve a

prediction mean square error (MSE) within 0.05 of that of the optimal predictor (i.e., that

computed using all pixels in X and Y ). By using only a small fraction of data we reduce

data exchange and computation in the least-squares calculation, without compromising

the performance of the predictor (or its impact on the crossover probability estimation).

The overhead due to downsampling the data is usually negligible, as downsampling

can be accomplished by incrementing the access position in data memory by a constant,

and nowadays many CPU/DSPs have build-in hardware to support this operation and

incur negligible overhead.
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Figure 2.6: MSE under first-order linear predictor for a typical spectral band.

2.4.1.2 Estimation of Crossover Probability

We now consider estimation of the crossover probabilities at the encoder. These are

needed to select an appropriate Slepian-Wolf coding rate at the encoder and to initialize

the SPA at the decoder. In this section we first discuss a direct approach for correlation

estimation, while in Chapter 4 we will discuss another model-based estimation. To achieve

low cost estimation we propose that only a small portion of bit-plane data (generated by

set partitioning) be exchanged between spectral bands. Note that, since set partitioning

tends to “scramble” the ordering of coefficients, estimates of crossover probability after

set partitioning are in general reliable2. We use the upper bound of the 95% statistical

2Specifically, set partitioning orders the transform coefficients according to the bit levels they become
significant and the zero trees they belong to [61].
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confidence interval as our estimate. Specifically, the upper bound of the (1− ω)× 100%

confidence interval for a population proportion is given by [50]

p̂i =
si

ni
+ zω/2

√
pi(1− pi)/ni (2.1)

≈ si

ni
+ zω/2

√
si

ni

(
1− si

ni

)
/ni (2.2)

Here p̂i is the estimate of the crossover probability of bit-plane pair (bx
i , by

i ), ni is the

number of samples exchanged in estimating pi, si is the number of exchanged samples

for which crossover occurs, and zω/2 is a constant that depends on the chosen confidence

interval, e.g., zω/2 = 1.96 when we use a 95% confidence interval. Note that we choose

the upper bound as the estimator to minimize the risk of decoding failure, at the expense

of some encoding rate penalty. Statistically, with this estimation, we are (1− ω)× 100%

confident that the true crossover probability pi is within si
ni
± zω/2

√
pi(1− pi)/ni. Hence

the estimation error, 4pi = p̂i − pi, is bounded by 0 ≤ 4pi ≤ 2zω/2

√
pi(1− pi)/ni with

probability 1− ω. In addition, it can be shown that (refer to Appendix A for details):

Pr(4pi < 0) = ω/2 (2.3)

Pr
(
4pi > 2zω/2

√
pi(1− pi)/ni

)
= ω/2, (2.4)

which allows us to bound in a systematic way the probability of decoding error and

the probability of incurring a large encoding rate penalty. Since the estimation process

consists of simply counting occurrences of crossovers in small portions of two bit-planes,

the overall estimation overhead is small.
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Figure 2.7: Example of estimation of crossover probability. Note that for all bit-planes it
is possible to achieve an accurate estimate using a small percentage of data in a bit-plane.

As an example of the accuracy of crossover probability estimation using this low com-

plexity technique, Figure 2.7 shows a typical estimation result using different percentages

of data from a bit-plane. As an example, with 5% of bits exchanged the crossover prob-

ability estimate is within 0.003 of the actual crossover probability. Since we choose the

compression rate to leave a margin of about 0.05 bits over the Slepian-Wolf limit (as esti-

mated by H(p̂i), since we assume the source model as in [43]), this estimation accuracy is

sufficient. In addition, we also test this technique in our coding performance experiments

(details in Section 2.5). There we use around 10% of data in a bit-plane for correlation

estimation and our experimental results show that the estimates are accurate enough that

no decoding errors occur.

2.4.2 Encoder Complexity Comparison

In this section we compare the encoder complexity of our proposed scheme to that of

inter-band prediction and 3D wavelet approaches.
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2.4.2.1 Comparison with Inter-band Prediction

Inter-band prediction approaches need to generate exact copies of the decoded bands

at the encoder, so that the encoder needs to perform decoding as well. To encode the

current band Y using neighboring band X for prediction, the inter-band encoder requires

following steps (Figure 2.8):

I-1. Estimation of predictor coefficients α∗ and β∗ (in this case approximate techniques

could also be used as long as the chosen parameters are communicated to the

decoder);

I-2. Application of the prediction coefficients to obtain X̂ ′ = α∗X̂ + β∗;

I-3. Computation of Y − X̂ ′ to generate the residue;

I-4. Transformation of residue using the wavelet transform;

I-5. Set partitioning on the wavelet coefficients of residue. Output bitstream;

I-6. Inverse set partitioning;

I-7. Inverse transformation;

I-8. Adding X̂ ′ to the output of inverse transformation to generate Ŷ .

Comparing the encoding steps of our proposed scheme (Figure 2.4) with inter-band

prediction approach (Figure 2.8), we can make the following observations:

(i) Both schemes need to compute the wavelet transform and perform bit-plane encoding

of the current band Y (Steps (E-3) and (E-4) in Figure 2.4, Steps (I-4) and (I-5) in

Figure 2.8).
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Figure 2.8: Encoding using inter-band prediction.

(ii) The inter-band prediction approach has to perform an inverse wavelet transform

(I-7). In our proposed scheme, we need wavelet coefficients of the linear predictor

X ′ for correlation estimation. However, forward transformation is not necessary

here since wavelet coefficients of X have been computed during the compression of

previous band, and we can compute wavelet coefficients of X ′ simply by

T (X ′) = T (αX + β) = αT (X) + βT (1) (2.5)

where T denotes wavelet transformation, and 1 is a vector of ones. We pre-compute

βT (1) and use it for all the coefficients in a spectral band. Therefore, computing

T (X ′) in our proposed algorithm requires one multiplication and one addition per

coefficient as suggested by (2.5), and this amount of computation is in general less

than that of inverse transform (I-7) in inter-band prediction approach.
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(iii) In the inter-band approach, encoder needs to perform bit-plane decoding (I-6) 3. In

our proposed system we apply the significance tree of Y to the wavelet coefficients

of X ′ to extract bit-planes (E-5), for crossover probability estimation. Note that

in (E-5) we merely extract coefficients according to the significance tree of Y, and

no significance test on partition is required, so this is similar to (I-6) in terms of

complexity. We would like to emphasize that the complexity of our system can

be further reduced by avoiding bit-plane extraction, since there are low complexity

alternatives for correlation estimation, as will be discussed in Chapter 4.

(iv) The inter-band prediction approach requires subtracting the predictor from the cur-

rent band to compute the residue (I-3), and then adding back the predictor to the

reconstructed residue (I-8). Since the subtraction/addition has to be performed on

every pixel, the complexity here is of the order of the amount of data in one band.

On the other hand, our proposed scheme needs only a small portion of data to

estimate crossover probabilities (E-6). Also the complexity of generating syndrome

(E-8) is linear (since the parity check matrix is sparse), and is of the order of the

number of bit-planes we need to encode, which is usually small since in many lossy

compression applications only high significant bit-planes are transmitted.

Based on the above comparisons, we conclude that our scheme requires lower encoding

complexity than inter-band prediction approaches.

3 [51] has proposed using only full bit-planes to form the predictor. This could avoid bit-plane decoding
at the encoder, but leads to performance degradation. In the general case when one wants to truncate
at the middle of bit-plane, some decoding of the significance information or bookkeeping are necessary to
determine the order of the wavelet coefficients.

44



2.4.2.2 Comparison with 3D Wavelet Approaches

3D wavelet approaches operate on multiple spectral bands at the same time. This usually

incurs substantial external memory access overheads in storing intermediate results. For

example, using 3D wavelet approaches, 3D wavelet coefficients need to be computed first,

followed by set-partitioning of the 3D wavelet coefficients. Since the internal memory may

not be able to accommodate several bands of 3D wavelet transform coefficients, they need

to be transferred back-and-forth between external and internal memory. In contrast, our

proposed scheme operates on each single spectral band independently once the inter-band

correlation has been estimated, and wavelet transformation and bit-plane encoding of a

single spectral band could be in general completed entirely in internal memory without

incurring external memory access for storing intermediate data4. Hence the data access

overheads in our scheme are much smaller than those involved in a 3D wavelet approach.

2.5 Experimental Results of Baseline Codec

We have implemented SW-SPIHT and applied it to the 16-bit hyperspectral images. Our

C program implementations of the set partitioning and bit extraction algorithms are

derived based on a MATLAB implementation of 2D-SPIHT [73]. The SPA we used for

SW-SPIHT is based on the algorithm in Section III-A of [46], and is modified according

to [68] for Slepian-Wolf decoding.

4As an example, storing the transform coefficients of a single 512 × 512×16-bit spectral band would
need 512×512×24-bit buffer memory, or 768K bytes. Note that transform coefficients have larger dynamic
ranges than the original pixel data.
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In our experiments we use data sets originally comprising 224 spectral bands, each of

size 614 × 512 pixels. Due to constraints of the implementation of our codecs (e.g., our

implementation of wavelet transform can handle only power-of-two dimension data), in

the experiments we compress 512×512 pixels in each band, and in total 192 bands starting

from band number 33. Experimental results use SNR and PSNR for the comparison on

individual frames and multiband SNR (MSNR) and multiband peak SNR (MPSNR) for

the whole spectrum. These quantities are defined as follows:

MSE = E[(x− x̂)2] (2.6)

SNR = 10 log10

(
E[x2]
MSE

)
(2.7)

PSNR = 10 log10

(
(65535)2

MSE

)
(2.8)

(2.9)

where, E(.) is the expectation operator over pixels from an image band. x is the 16-bit

value of a source pixel and x̂ is the 16-bit value of reconstructed pixel of x. Also,

MSNR = 10 log10

(
E[x2]
MSE

)
(2.10)

MPSNR = 10 log10

(
(65535)2

MSE

)
(2.11)

where, now E(.) is the expectation operator over pixels from all spectral bands. The

rates for individual image band are measured in bits per pixel (bpp) and those for the

whole spectrum are in bits per pixel per band (bpppb).
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The outline of this experimental study is given as follows: First, we provide a com-

parison in terms of rate-distortion performance between SW-SPIHT and predictive 3D-

SPIHT. Second, we compare SW-SPIHT with predictive 2D-SPIHT. In these experiments,

we use different scenes and sites from the NASA AVIRIS data set including Cuprite Ra-

diance (SC01), Moffet Field Radiance (SC03) and Lunar Lake Reflectance (SC02).

In order to describe these alternative codecs and our implementations of them, we

need following notations:

1. A denotes a general image band.

2. Bi denotes the i-th image band from the spectrum.

3. 1 is the vector with all 1 elements. The dimension is set as the number of pixels

used by the least squares predictor.

4. V (A) is the function to vectorize a fixed number of pixels from image band A.

5. For the predictor image bands A and source image band Bi, α(A,Bi) is the predic-

tion slope coefficient and β(A,Bi) is the prediction intercept coefficient.

6. B′
i(A) denotes the band after regression using least squares prediction, and the

design matrix is given by X = (1, V (A)). Recall that the least squares coefficients

are given as follows:

(β, α)τ = (XτX)−1 XV (Bi)

where, τ is the transpose operator.

7. Regression residuals of the least squares predictor of the i-th frame can be computed

as Bi −B′
i.

47



Cuprite Radiance (Scene SC01)

60

65

70

75

80

85

90

95

100

0.1 1 10

Bitrate (bits/pixel/band)

M
P

S
N

R
 (

d
B

)

Predictive SPIHT-3D

SW-SPIHT

 

Figure 2.9: Rate-distortion curves of SW-SPIHT and predictive 3D-SPIHT - Cuprite.

2.5.1 Rate-Distortion Comparison with 3D Wavelet Approaches

Before presenting the rate-distortion comparison of SW-SPIHT with a predictive variant

of 3D-SPIHT, we briefly describe these codecs and how we implemented them.

We modify 3D-SPIHT to adjust the bands taking into account their correlation. Thus,

instead of operating on the original bands, (B1, B2, . . ., ) we apply the wavelet transform

and encoding to a new set of bands, (B′
1, B′

2, . . ., ), obtained as follows:

1. B′
1 = B1.

2. For all i > 1, B′
i = α(Bi, B

′
i−1)Bi + β(Bi, B

′
i−1), and α(Bi, B

′
i−1) and β(Bi, B

′
i−1)

are directly encoded into the bitstream.

We use this predictive 3D-SPIHT approach so as to better “align” all spectral bands, so

that wavelet transform can better exploit the inter-band correlation.

Figures 2.9 to 2.11 provide coding performance comparisons for the radiance data

from the Cuprite and Moffet Field sites, and the reflectance data from the Lunar Lake
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Figure 2.10: Rate-distortion curves of SW-SPIHT and predictive 3D-SPIHT - Moffet
Field.

Lunar Lake Reflectance (Scene SC02)
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Figure 2.11: Rate-distortion curves of SW-SPIHT and predictive 3D-SPIHT - Lunar
Lake.
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site (log scale is used for the rate to facilitate the comparison at low bit-rates). To obtain

the results of our predictive 3D-SPIHT, we first align the spectral bands as discussed

in the previous paragraph and compress B′
1, B′

2, . . . with an implementation of 3D-

SPIHT available in the public domain [23, 24]. It can be seen that SW-SPIHT performs

competitively, with some gain over 3D-SPIHT at most rate regions. In addition SW-

SPIHT has moderate memory requirements for encoding. It should be noted that the

performance of 3D-SPIHT can be improved by applying entropy coding (e.g., arithmetic

coding) on the output bits. Similarly, we can improve SW-SPIHT by applying entropy

coding on the significance bits information. Also note that results for 3D-SPIHT without

prediction (not included here) are close to predictive 3D-SPIHT with a marginal loss at

low bit-rates.

It is well known that wavelet set-partitioning based codecs can precisely control the

bit-rate. In other words, the SNR can be kept at a required level when the bit-rate

is allowed to change. However this only holds for global SNR, and not necessarily for

different parts of the encoded stream. In the case of 3D-SPIHT, the SNR of individual

spectral bands can actually fluctuate significantly for a given target global SNR (variations

of up to 5dB are possible, see Fig. 2.12 for an example). Another salient feature of SW-

SPIHT is that it allows targeting individual band SNRs, so that fluctuations across bands

can be kept very small (e.g., within 1 dB). Note that these variations are undesirable,

as they could destroy the spectral signatures that are of primary interest in analysis of

hyperspectral imagery. Refer to Section 2.5.3 for an example of how SW-SPIHT is better

at preserving these spectral signatures.
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Lunar Lake Reflectance (Scene SC02)
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Figure 2.12: Inter-band SNR fluctuation under 3D-SPIHT.

2.5.2 Rate-Distortion Comparison with 2D Wavelet Approaches

We have also compared SW-SPIHT with two other 2D wavelet based codecs. The first is

the standard 2D-SPIHT codec that operates independently on all spectral bands, without

cross-band prediction. The second is the predictive 2D-SPIHT codec, which operates as

follows:

1. The first image band B1 is encoded as is.

2. B̂i−1, reconstruction of image band Bi−1, is used to obtain a predictor for Bi, B′
i.

3. 2D-SPIHT codec is applied to Bi − B′
i for all i > 1; if the residual energy is above

a certain threshold then Bi is encoded directly.

4. Prediction coefficients α(B̂i−1, Bi) and β(B̂i−1, Bi) are sent as overhead.

Note that the predictor used in predictive 2D-SPIHT is the preceding image band, and

this is different from the predictor used in the predictive 3D-SPIHT codec. The 2D-

SPIHT we used to compress the images (in the intra-band codec) or the residues (in the
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Figure 2.13: Rate-distortion curves of SW-SPIHT and predictive 2D-SPIHT - Cuprite.

predictive codec) is the same MATLAB implementation from which our SW-SPIHT was

derived [73].

Figures 2.13 to 2.15 provide comparisons based on the radiance data from the Cuprite

and Moffet Field sites, and the reflectance data from the Lunar Lake site. For Cuprite,

SW-SPIHT achieves some gain at middle range bit-rates, but suffers marginal loss at

high bit-rates. The coding performance of predictive 2D-SPIHT improves at high bit-

rates thanks to the better quality reconstruction used as predictor. For Moffet Field

and Lunar Lake sites, SW-SPIHT achieves marginal gain consistently, demonstrating

competitive rate-distortion performance 5.

5Note that there are several significant differences between our system and predictive 2D-SPIHT. Our
scheme applies set-partitioning to the transform coefficients of the original band and DSC is used to further
compress the sign/refinement bits after set-partitioning. In contrast, predictive 2D-SPIHT applies the
wavelet transform to the prediction residue and then uses set-partitioning as the only “entropy coding”
tool (i.e., sign/refinement bits are not compressed; this is true for 3D-SPIHT as well). Since, typically,
the prediction residue has much smaller energy than the original band, set-partitioning on the residue
can lead to fewer bits required to represent the significance tree, as well as fewer refinement and sign
bits, as compared to set-partitioning on the original band. This gain is more significant at low rates.
Moreover, while our proposed algorithms ignore the noise symbols dependency (we model the correlation
noise as a simple i.i.d. source), predictive 2D-SPIHT exploits the spatial correlation that might remain in
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Figure 2.14: Rate-distortion curves of SW-SPIHT and predictive 2D-SPIHT - Moffet
Field.

Lunar Lake Reflectance (Scene SC02)
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Figure 2.15: Rate-distortion curves of SW-SPIHT and predictive 2D-SPIHT - Lunar
Lake.
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Cuprite Radiance (Scene SC01)
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Figure 2.16: Rate-distortion curves of SW-SPIHT and SPIHT (Site: Cuprite, View:
SC01, Band: 40).

Figures 2.16 to 2.18 compare the performance of SPIHT and SW-SPIHT on individual

image bands. We selected three pairs of bands from different spectral regions where the

levels of correlations are different, as also shown in Figure 1.8. We did not select bands

in spectral regions where the predictor sees large surges in mean square residuals, since

these bands have low correlation and intra-coding is used instead. As shown in the figures,

SW-SPIHT outperforms SPIHT significantly, with up to 5dB gain in some rate regions.

There are some variations in the PSNR gain due to variations of the energy among these

images and correlations between images in these pairs.

the residue, leading to some additional coding gain. Note that some advanced 3D wavelet methods (e.g.,
3D-ICER developed in NASA-JPL [38]) also utilize this noise symbols dependency through modified 3D
decomposition to improve performance.
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Figure 2.17: Rate-distortion curves of SW-SPIHT and SPIHT (Site: Cuprite, View:
SC01, Band: 133).
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Figure 2.18: Rate-distortion curves of SW-SPIHT and SPIHT (Site: Cuprite, View:
SC01, Band: 190).
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Lunar Lake Reflectance (Scene SC02)
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Figure 2.19: Classification performance (Site: Lunar Lake, View: SC02).

2.5.3 Preservation of Spectral Signature

As mentioned earlier, SW-SPIHT allows encoding with very consistent quality across

bands, a property that cannot be guaranteed with 3D-SPIHT. To illustrate the potential

advantages of of SW-SPIHT in terms of signature preservation, we have also assessed its

performance in a remote sensing classification application. We tested our system with the

Spectral Angle Mapper algorithm (SAM) [18], which is a well-known algorithm designed

to measure the similarity between the unknown test spectra and the reference spectra.

Similar to the set-up in [69], we assume the classification results of the original image

are correct, and measure the number of pixels of the reconstructed image which have the

same classification results as the original image pixels. Figure 2.19 provides a comparison

in terms of classification performance. As shown in the figure our proposed approach

outperforms 3D-SPIHT in general. This is because our approach can keep the variation

of SNR small across bands. As a result, spectral signatures can be better preserved.
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2.6 Adaptive Coding Strategy

In Section 2.3 we have discussed a compression algorithm that applies DSC to sign and

refinement bits, and intra coding to significance information. We now discuss a cod-

ing scheme which adaptively applies DSC or intra coding to bit-plane data according to

bit-plane statistics and correlation, with the algorithm discussed in Section 2.3 being a

particular case when switching does not occur, as will be discussed. Experiment results

suggest the adaptive coding strategy can lead to considerable improvements to the hy-

perspectral image system. To justify the adaptive coding strategy, we first analyze the

coding gains of intra coding/DSC tools under different bits extraction scenarios. Fig-

ure 2.20 each column corresponds to a wavelet coefficient, and we extract and encode

the bits bit-plane by bit-plane starting from the most significant bit-plane. As is usually

done in wavelet image compression, we extract a sign bit only when the corresponding

coefficient becomes significant. The extracted sign bits can be encoded by DSC or intra

coding (e.g., arithmetic coding). As will be discussed in detail in the next section, it is

generally more efficient to encode sign bits using DSC.
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Figure 2.20: Bit extraction.
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Figure 2.21: Coding configurations.

The magnitude bits can be extracted in two different ways. We can extract and en-

code all the magnitude bits of the same significance level (i.e., a raw bit-plane) in one

single pass. Alternatively, we can partition the magnitude bits into significance maps and

refinement bits, and encode them separately using DSC or intra coding (zerotree coding

in our case). Therefore, it is possible to compress the magnitude bits using several dif-

ferent coding configurations, each representing a possible combination of DSC and intra

coding under different bit extraction scenarios (Figure 2.21). Our goal is to select and

appropriately combine some of these configurations so that the optimal overall coding

performance can be achieved. In what follows we will first quickly dismiss several config-

urations and then examine the remaining ones in more detail. As will be discussed, the

optimal coding strategy involves judicious application of configurations (a) and (e) de-

pending on bit significance levels and wavelet subbands, leading to the proposed adaptive

coding scheme.
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In Figure 2.21, both configurations (b) and (d) utilize only intra coding. However,

(d) has been found to be more efficient, as it exploits the differences in the zero-th

order statistics of the significance maps and refinement bits. In addition, there exist

efficient methods to jointly encode the bits and convey the overhead for classifying the

bits (e.g., set-partitioning in SPIHT). Therefore, we eliminate (b). We also eliminate (c)

and (f) as both utilize DSC to encode significance maps, which could potentially result

in a vulnerable system. This is because significance maps carry important structural

information about the positions of significance and refinement bits. While a single error

in the significance maps could lead to incorrect decoding of all the remaining bits, DSC

usually has a small but non-zero probability of decoding failure. This is true in particular

in our application, where it is infeasible to adopt the feedback architecture proposed in

the literature [28] due to long delay.

In the following sections, we discuss sign bits compression by DSC or intra coding,

and magnitude bits compression using configurations (a), (d) and (e). Note that the

difference between (d) and (e) is in terms of compression of refinement bits and will be

discussed in Section 2.6.1, while the differences between (a) and (e) are in the extraction

and compression of significance bits, which will be discussed in Section 2.6.2.

2.6.1 Refinement/Sign Bits Compression

It is well known that the refinement bits of wavelet coefficients are almost random (i.e.,

marginal probability of the bits is close to 0.5), and this can be shown by inspecting the

distributions of the wavelet coefficients. Wavelet coefficients can be modeled by Laplacian

distribution. Figure 2.22(a) shows how to estimate, from the p.d.f. of Xi (coefficients in
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the ith subband), the probability that a refinement bit being zero and the probability that

a refinement bit being one. As shown in the figure, the probabilities are almost the same,

and hence intra coding cannot achieve much compression for refinement bits in general.

Similarly, when a coefficient becomes significant, the probabilities of the coefficient being

positive and being negative are almost the same (Figure 2.22(b)). Therefore, sign bits

are almost random, with marginal probability close to 0.5, and intra coding in general

cannot achieve much compression for sign bits as well6.
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(a) Refinement bit.
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(b) Sign bit.

Figure 2.22: Probability that a refinement/sign bit being zero or one.

On the other hand, the source Xi and SI Yi are correlated (Yi are ith wavelet sub-

band coefficients of the previous spectral band after linear prediction), and samples of

(Xi, Yi) concentrate mostly near the diagonal in a scatter plot. Therefore, it is possible to

compress refinement/sign bits by exploiting inter-band correlation. For refinement bits,

the events of crossover correspond to the regions Aj in the sample space of Xi and Yi in

Figure 2.23(a). Usually there are only a few samples that occur inside the off-diagonal

6Note that some wavelet-based image codecs, e.g., JPEG 2000, assign different probability models to
refinement and sign bits depending on some information of the neighboring coefficients, and achieve some
rate reduction through these conditional codings [71].
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crossover regions. Therefore, the crossover probability is usually small, and substantial

compression of refinements bits can be achieved by DSC 7.
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Figure 2.23: Events of refinement/sign bits crossover.

Similarly, for the sign bits, the crossover events correspond to the regions Aj in the

sample space of Xi and Yi in Figure 2.23(b). The probability of sign crossover is usually

small, except for the lowest significance levels (small l), when the crossover regions are

near the origin (Aj starts at |Xi| = 2l) and there are more samples occurring inside the

sign crossover regions.

Therefore, in our system, we compress sign and refinement bits with DSC to exploit

inter-band correlation. This eliminates configuration (d) for magnitude bits compression,

and only (a) and (e) are left for further evaluation.

7Under some assumptions, the theoretical compression rate of DSC for binary source is given by H(p),
where p ≤ 0.5 is the crossover probability between the source and SI [43]. Therefore, the compression
efficiency of DSC increases as the crossover probability becomes smaller.
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2.6.2 Significance Maps Compression and Raw Bitplane Coding

The significance map is biased toward zero in general. This can be verified from the dis-

tribution of the coefficients (Figure 2.24(a)). Therefore, intra coding can lead to effective

compression for significance maps. However, the bias would decrease for the lower signifi-

cance levels (when l is small) as shown in Figure 2.24(b). Accordingly, intra coding would

become less efficient when coding the least significant bit-planes. In addition, the bias

would decrease as the variance of the coefficients increases (see Figure 2.24(b); a more

rigorous mathematical justification will be given later). Therefore, for low-pass subbands

and higher level of decomposition subbands, intra coding may not be very efficient.
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Figure 2.24: Bias in significance maps.

Alternatively, instead of partitioning into significance and refinement bits, we can

extract the magnitude bits as raw bit-planes and apply DSC to exploit inter-band cor-

relation. For raw bit-plane, the events of bit crossover correspond to the regions Aj in

Figure 2.25(a). The probability of raw bit crossover is usually small, as there are only a

few samples (Xi, Yi) that occur inside Aj . Therefore, DSC can achieve compression. On

the other hand, when the significance level l is small, the area of each crossover region de-

creases (Aj are square regions with length 2l), and they become more evenly distributed
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over the sample space (Figure 2.25(b)). As a result, more samples would occur within the

crossover regions, and DSC would also become less efficient as we encode least significant

bit-planes. 
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Figure 2.25: Raw bit-planes crossover.

To summarize, both intra coding of significance information and inter-band coding of

raw bit-planes can potentially achieve considerable compression for magnitude bits, and

configurations (a) and (e) are promising candidates. However, it is unclear which one we

should use in different situations to achieve the optimal coding performance. Therefore,

we propose modeling techniques to precisely analyze their performance for different source

characteristics and correlation levels.

2.6.3 Modeling

The modeling techniques estimate the number of coded bits for configurations (a) and (e).

Recall in configuration (a) we encode the entire raw bit-plane using DSC, whereas in (e) we

partition the bits into refinement bits and significance maps and encode them separately

using DSC and intra coding respectively (Figure 2.21). To determine the optimal coding

strategy, we estimate and compare the number of coded bits at each significance level l
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and for each wavelet subband i. The estimated number of coded bits for configuration

(a) is given by:

Ni × (H(praw(l, i)) + m), (2.12)

where Ni is the number of uncoded raw bits at a given significance level in wavelet subband

i (hence Ni is equal to the number of coefficients in subband i), and praw(l, i) is the

estimated crossover probability of the raw bit-plane at significance level l for coefficients

in wavelet subband i. H(praw(l, i)) is the theoretical compression rate using DSC, and

we add a margin m to account for the performance of practical systems. The estimates

for praw(l, i) can be derived by integrating the joint p.d.f. fXiYi(x, y) over the crossover

regions Aj as shown in Figure 2.25. Details will be provided in Chapter 4.4, where

we discuss how to estimate crossover probabilities for the purpose of determining the

encoding rate.

The estimated number of coded bits for configuration (e) is given by:

Nref (l, i)× (H(pref (l, i)) + m) + Nsignif (l, i)× γ(l, i), (2.13)

where Nref (l, i) and Nsignif (l, i) are the number of uncoded refinement bits and signifi-

cance map bits at significance level l in subband i respectively, pref (l, i) is the estimate for

refinement bits crossover probability, and γ(l, i) is the compression ratio achieved by intra

coding. H(pref (l, i)) + m is the compression ratio achieved by a practical DSC scheme,

and we can estimate pref (l, i) as in Chapter 4. We model the significance map bits as

an i.i.d. binary source and estimate γ(l, i) by H(p0(l, i)), where p0(l, i) is the probability

that significance map bits being zero. Assume the wavelet coefficients in subband i are
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Laplacian distributed with parameter βi, i.e, fXi(x) = 1
2βie

−βi|x|, following from the def-

initions of refinement bits and significance maps, Nref (l, i), Nsignif (l, i) and p0(l, i) can

be estimated by

Nref (l, i) = Ni exp(−βi2l+1) (2.14)

Nsignif (l, i) = Ni(1− exp(−βi2l+1)) (2.15)

p0(l, i) =
1− exp(−βi2l)

1− exp(−βi2l+1)
(2.16)

We found that H(p0(l, i)) is a good estimate for the compression efficiency of zerotree

coding.

2.6.4 Adaptive Coding Scheme

We compare (2.12) and (2.13) to determine the optimal coding configuration at each

significance level and for each wavelet subband. Figure 2.26 shows the number of coded

bits for different significance levels for coding configurations (a) and (e) in two wavelet

subbands. The numbers are estimated using (2.12) and (2.13). As shown in the figures,

at the most significant levels, both schemes can achieve substantial compression, but by

compressing the significance map using intra coding it is possible to achieve better coding

gain. On the other hand, in the middle significance levels, coding the entire raw bit-plane

with DSC can achieve better results. As for the least significant bit-planes, both schemes

cannot achieve much compression, as the bits there are equally likely and do not have

much correlation with the corresponding SI.
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Based on these modeling results, we propose an adaptive coding scheme: when coding

the most significant bit-planes at the beginning, we partition the magnitude bits into

refinement bits and significance maps, and apply DSC and intra coding (zerotree coding)

respectively (i.e., configuration (e)). Later, in the middle significance levels, we switch to

compress the entire raw bit-planes using DSC (i.e., configuration (a)) (Figure 2.27). We

use (2.12) and (2.13) to determine the significance level at which configurations switch-

ing should occur. Note that for different subbands, switching could occur at different

significance levels. Switching would occur earlier (at a higher significance level) for high

decomposition level subbands as intra coding is less efficient there 8. Intuitively, in high

decomposition level subbands, coefficients would become significant earlier, and zerotree

coding would become inefficient as much partitioning would be needed.

2.7 Experimental Results of Adaptive Codec

This section presents the experimental results of the adaptive DSC-based hyperspectral

image codec. We use (2.12) and (2.13) to determine the significance level at which config-

urations switching occurs for each subband. We compare with the non-adaptive scheme

in Section 2.3 [67], which uses zerotree coding for significance maps for all significance

levels (i.e. configuration (e) only). We use the NASA AVIRIS image data-sets in the ex-

periment [38]. The original image consists of 224 spectral bands, and each spectral band

8Recall p0(l, i) is the probability that significance map bits being zero. We can rewrite (2.16) as
p0(l, i) = 1−τ

1−τ2 , with τ = exp(−βi2
l), hence 0 ≤ τ ≤ 1. It can be shown that p0(l, i) decreases mono-

tonically with increasing τ , with p0(l, i) = 1 when τ = 0 and limτ→1 p0(l, i) = 0.5. According, intra
coding would become less efficient for significance maps when τ is large, i.e., when l is small (at the least
significance levels) and when βi is small (when coefficients distributions have large variances, in low-pass
subbands and high decomposition level subbands).
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consists of 614 × 512 16-bits pixels. In the experiment, we compress 512× 512 pixels in

each band. Figures 2.28 and 2.29 show some of the results in compressing images Cuprite

(radiance data) and Lunar (reflectance data). Here MPSNR = 10 log10(655352/MSE),

where MSE is the mean squared error between all the original and reconstructed bands.

As shown in the figures, the adaptive coding scheme can provide considerable and con-

sistent improvements in all cases, with up to 4dB gain at some bit-rates.

We also compare the DSC-based systems with several 3D wavelet systems (3D ICER)

developed by NASA-JPL [38]. As shown in Figure 2.28, the DSC-based system with

adaptive coding is comparable to a simple 3D wavelet system (FY04 3D ICER) in terms

of coding efficiency. The simple 3D wavelet system uses the standard dyadic wavelet

decomposition and a context-adaptive entropy coding scheme to compress coefficients

bits. However, there still is a performance gap when comparing the DSC-based systems

to a more recent and sophisticated version of 3D wavelet (Latest 3D ICER). The more

recent 3D wavelet developed in NASA-JPL exploits the spatial correlation remained in

the correlation noise [38]. This could be one direction to improve the DSC-based systems,

which currently use a simple i.i.d. model for correlation noise and ignore the dependency

between correlation noise symbols. We also compare the DSC-based systems with 2D

SPIHT, and the DSC-based systems can achieve 8dB gains at some bit-rates.

2.8 Conclusions

In this chapter, we have demonstrated a viable approach for compression of hyperspec-

tral imagery. A novel scheme called SW-SPIHT is proposed. Our scheme can facilitate
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parallel encoding with modest memory requirement. As for coding performance, we have

compared our scheme with several existing techniques. Experimental results show that

our scheme can achieve competitive coding efficiency. In particular, our scheme is com-

parable to a simple 3-D wavelet codec developed by NASA-JPL in terms of compression

performance. Furthermore, our scheme can preserve spectral signatures and obtain good

classification performance.
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Figure 2.26: Modeling results.
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Chapter 3

Flexible Video Decoding: A Distributed Source Coding

Approach

3.1 Introduction

3.1.1 Motivation

In this chapter we investigate video compression algorithms to support flexible decod-

ing for a number of emerging applications [11]. Flexibility in this context means that

video frames can be decoded in several different orders, while still exploiting redundancy

between successively decoded frames (e.g., temporal or cross-view redundancy)1. The

decoding order is decided only at the time of decoding, so that a choice among several

available decoding paths can be made depending on the users’ preferences or the operat-

ing conditions. We focus on coding tools to generate a single compressed bit-stream that

can be decoded in several different ways, i.e., we assume it is not possible to request at

decoding time (via feedback) coded data matching the chosen decoding order.

1A trivial approach to enable flexible decoding would be to encode every frame independently, as an
Intra frame.
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Flexible decoding can be useful for several applications. Notably, it improves the

accessibility of the compressed data, which is important for several emerging applications

and for some novel imagery datasets [53]. For example, some multiview video applications

such as free viewpoint TV [35,70] aim to enable users to play back different views and to

switch between different views during playback. In order to facilitate these free viewpoint

switchings, it is desirable for the compressed multiview video data to be decodable in sev-

eral different orders, corresponding to different view switching scenarios [10] (Figure 3.1).

As another example, new video applications which support forward and backward frame-

by-frame playback can benefit from compression schemes that allow both forward and

backward decoding [16] (Figure 3.2).

Moreover, flexible decoding can be used to achieve more robust video communications,

in applications where some reference frames may be corrupted during transmission. If a

compression scheme can support multiple decoding paths the decoder would be able to

recover the current frame using any of several possible error-free references (Figure 3.3)

[79].

3.1.2 Flexible Decoding: Challenges

State-of-the-art video coding algorithms exploit redundancy between neighboring frames

to achieve compression [82]. Flexible decoding makes it difficult to exploit this kind

of interframe redundancy because decoders can choose different decoding paths, each

leading to a different set of previously decoded frames. Thus at the time of encoding

there will be uncertainty about which frames can be used to predict the current frame

(as there is no guarantee that those same frames will be available at decoding time).
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Figure 3.1: Multiview video applications - viewpoint switching may require a compression
scheme to support several different decoding orders: (a) users stay in the same view during
playback; (b), (c) users switch between adjacent views during playback.
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Figure 3.3: Robust video transmission using multiple decoding paths.
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For example, in multiview video applications, depending on whether the user continues

requesting the same view as in Figure 3.1(a), or switches views as in Figure 3.1(b) or

Figure 3.1(c), either the previous reconstructed frame of the same view (Y1) or that of

another view (Y0 or Y2) would be available as predictor for decoding the current frame

X. However, since it is up to the users to choose among different decoding paths, the

encoder would not know exactly which reconstructed frames will be available for decoding

X. Similarly, in a forward/backward video playback application, either the “past” or the

“future” reconstructed frame will be available at the decoder to serve as the predictor,

depending on whether the data is being played back in the forward or backward direction

(Figure 3.2). Since users can choose to play back in either direction, the encoder would not

know which reconstructed frame will be available at the decoder. Similar scenarios can

also arise in low delay video communication, where decoder feedback could be infeasible.

In these cases the encoder may not have any information regarding which reference frames

have arrived at the decoder error-free and would be available for decoding the current

frame (Figure 3.3). In short, flexible decoding, while desirable, results in uncertainty on

the predictor status at decoder.

Figure 3.4 depicts the general formulation of the flexible decoding problem. When

compressing an input source X (the current video frame), the encoder has access to a

number of correlated sources Y0, Y1, ..., YN−1 (previously decoded video frames) to serve

as predictors for encoding X. Here each Yk is associated with a possible decoding path.

However, of these predictor candidates, only one will be available at the decoder de-

pending on the decoding path it takes. Crucially, since the encoder does not have any

information regarding the chosen decoding path, it does not know which Yk will be used
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Figure 3.4: Problem formulation for flexible decoding. Either one of the candidate pre-
dictors Y0, Y1, ..., YN−1 will be present at the decoder, but encoder does not know which
one.

at the decoder. Our goal is to investigate coding algorithms such that the encoder can

operate under this kind of uncertainty about predictor status at the decoder.

In order to support flexible decoding within a conventional closed-loop prediction

(CLP) framework, e.g., motion-compensated predictive (MCP) video coding systems such

as MPEG or H.26X, the encoder may send all the possible prediction residues {Zi; i = 0

to N − 1} to the decoder, where Zi = X − Yi (following the notations in Figure 3.4),

so that X can be recovered no matter which Yi is available at the decoder. Each Zi

would correspond to a P-frame in these video coding standards. Note that it is indeed

necessary for the encoder to communicate all the N possible prediction residues to the

decoder. This is because, in CLP, a prediction residue would be “tied” to a specific

predictor. For example, if Yk is the available predictor at the decoder, then we can only

use Zk during the decoding process to recover X without causing significant mismatch.

Therefore, in the cases of predictor uncertainty, the encoder would need to send multiple

prediction residues. Thus there are two potential issues with the CLP approach. First,

coding performance is degraded because multiple prediction residues are included in the

bitstream. Specifically, the overhead to support flexible decoding tends to increase with

the number of candidate predictors (or the number of possible decoding paths). Second,
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this approach may cause drifting. This is because, in practical video compression systems,

the encoder would send the quantized versions of Zi, Ẑi, to the decoder. Therefore, the

reconstructed sources X̂i = Ẑi + Yi would be slightly different when different Yi are used

as predictors. Drifting may occur when X̂i is used as reference for decoding future frames.

The H.264 video compression standard has defined SP- and SI-frames to support

functionalities such as random access or error recovery that were originally supported by

I-frames [37]. Essentially SP-frames follow the CLP coding approach we just discussed,

but with modifications such that X̂i can be identically reconstructed from different Yi’s

using its corresponding Zi (here Zi corresponds to a primary or secondary SP-frame).

This is achieved by using a different prediction loop from that in conventional P-frames

(e.g., SP-frames compute the prediction residue w.r.t. the quantized reconstruction in

the transform domain, whereas P-frames would compute it w.r.t. the original image in

the pixel domain [37]). However, this causes some penalty in coding performance, and

the compression efficiency of SP-frames is in general worse than that of P-frames [37].

To support flexible decoding, different SP-frames bits (each corresponding to a different

Yi) need to be generated and sent to the decoder, similar to CLP coding, and therefore,

H.264 SP-frames would incur a comparable amount of overhead as that in CLP coding.

It should be noted that most H.264 SP-frame applications assume the availability of

feedback from the decoder (e.g., Zhou et al. [87]), so that the encoder does know which

predictor is available at the decoder and transmits only one of the Zi. In short, H.264

SP-frames could be inefficient to support flexible decoding when there is no feedback.
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3.1.3 Our Contributions and Related Work

In this chapter, we propose to apply distributed source coding (DSC) [28,56,63,84,85] to

address the flexible decoding problem, where the encoder has access to all predictors, Yk,

which will play the role of side information (SI) at the decoder, but there is uncertainty

as to which one will be used for decoding. One of the main challenges for DSC-based

applications has proven to be achieving competitive compression efficiency [28]. To ad-

dress this challenge, our proposed algorithm incorporates novel macroblock modes and

significance coding into the DSC framework. This, along with careful exploitation of

correlation statistics, allows us to achieve significant performance improvements. Using

multiview video and forward/backward video playback as examples, we demonstrate that

the proposed algorithm can outperform, in terms of coding efficiency, techniques based on

CLP coding such as those as discussed above. Moreover, the proposed algorithm incurs

only a small amount of drifting. In particular, DSC-coded macroblocks lead to the same

reconstruction no matter which predictor candidate Yk is used.

DSC has been studied extensively for enabling low-complexity video encoding, e.g.,

Puri and Ramchandran [59], Aaron et al. [4]. However, there are significant differences be-

tween low-complexity encoding and flexible decoding, as summarized in Table 3.1, which

will lead us to a different solution. DSC has also been proposed to provide random access

in compression of image-based rendering data/light fields in Jagmohan et al. [36] and

Aaron et al. [2], and of multiview video data in Guo et al. [32]. This prior work, however,

assumes that the encoder has knowledge of predictor status at decoder, notably through

using feedback, while in our case the encoder needs to operate with unknown predictor

78



status. Recent work by Wang et al. [79] has proposed a DSC-based approach to address

the problem of robust video transmission by allowing a video block to be decoded using

more than one predictor blocks. While the general philosophy is similar to ours, different

assumptions are made. In particular, this work assumes the encoder knows the proba-

bility that each predictor will be used, as determined by the packet erasure probability

(whereas we assume all predictors are equally-likely to be used). This information is

exploited to reduce the coding rate. In addition, the specific tools used are different from

those proposed here. Recent work by Naman and Taubman [52] has proposed to enhance

decoding flexibility and accessibility using intra coding and conditional replenishment.

Some information theoretic aspect of flexible decoding has also been studied indepen-

dently by the recent work of Draper and Martinian [22], which we will briefly discuss.

However, there is no practical coding algorithm proposed in this work. Reverse playback

of video specifically focusing on MPEG coding algorithms was discussed in Wee and Va-

sudev [81], Lin et al. [42] and Fu et al. [25]. Our previous work Cheung et al. [16] has

also proposed to apply DSC to enable forward/backward video playback. The proposed

algorithm in the present chapter is, however, considerably different and significantly more

efficient. Among the key improvements are the introduction of macroblock modes and

significance coding, a different approach to exploit the correlation between source and

side-information, a different way to partition the input symbols and estimate the source

bit’s conditional probability, and a minimum MSE dequantization.

This chapter is organized as follows. In Section 3.2 we discuss how DSC can address

flexible decoding. A comparison of theoretically achievable performances is provided in

Section 3.3. In Section 3.4 we present the proposed compression algorithm. Section 3.5
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Table 3.1: Comparison of DSC-based low-complexity encoding and flexible decoding.

DSC-based low complex-
ity video encoding [4, 59]

DSC-based flexible video
decoding

Key objective Low complexity video encod-
ing for mobile video, video
sensors, etc.

Generate a single bitstream
to support multiple decoding
paths for forward and back-
ward video playback, multi-
view video, video transmis-
sion, etc.

Encoding com-
plexity

Most target applications re-
quire low complexity, real-
time encoding.

Not primary issue. Most tar-
get applications may use off-
line encoding.

Encoder access
to the side in-
formation

SI not accessible by encoder
due to complexity constraint.

Encoder has access to all the
SI candidates. However, the
exact one to be used at de-
coder is unknown to encoder.

discusses briefly some application scenarios. Section 3.6 presents the experimental results

and Section 3.7 concludes the work.

3.2 Flexible Decoding Based on DSC: Intuition

In conventional CLP coding, the encoder computes a prediction residual Z = X − Y ,

between source X and predictor Y , and communicates Z to the decoder (Figure 3.5(a)).

DSC approaches the same compression problem taking a “virtual communication channel”

perspective [28, 85]. Specifically, X is viewed as an input to a channel with correlation

noise Z, and Y as the output of the channel (Figure 3.5(b)). Therefore, to recover X from

Y , encoder would send parity information to the decoder. That is, in DSC, the encoder

would communicate X using parity information. Significantly, the parity information is

independent of a specific Y being observed: the parity information is computed entirely
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from X taking into account the statistics of Z 2. In particular, what matters in the

DSC approach is, analogous to data communication, the amount of parity information

corresponding to the statistics of Z. Thus the decoder will be able to recover X as long

as a sufficient amount of parity information has been communicated. In short, in DSC,

the information communicated from encoder to decoder is independent of a specific Y ,

in contrast to CLP, where the encoder would communicate to the decoder the prediction

residue, which is tied to a specific Y .

To understand how DSC can tackle flexible decoding with N predictor candidates, con-

sider N virtual channels, each corresponding to a predictor candidate Yi (Figure 3.5(c)).

Each channel is characterized by the correlation noise Zi = X−Yi. In order to recover X

from any of these channels, the encoder would need to send an amount of parity sufficient

for all the channels. In particular, the encoder would need to transmit enough parity

information to allow decoding of the worst-case Zi. Doing so, X can be recovered no

matter which Yi is available at the decoder. Note that the encoder only needs to know

the statistics of all the Zi to determine the amount of parity information, and this is feasi-

ble since X and all Yi are accessible at encoder in our problem formulation. In particular,

the encoder does not need to know which Yi is actually present at decoder. Since parity

information is independent of a specific Yi, the same parity information generated based

on the worst case Zi can be used to communicate X no matter which Yi is available at

the decoder.

2As will be discussed in Section 3.4, we encode the bit-plane representation of X using DSC, and parity
information is computed by XOR-ing a subset of bits in the bit-planes of X.
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Figure 3.5: Compression of input source X: (a) CLP coding; (b) DSC from the virtual
channel perspective; (c) DSC approach to the flexible decoding problem.

3.3 Theoretical Performance

In this section we compare the theoretical performance of CLP and DSC in a flexible

decoding scenario. We consider the compression of a discrete i.i.d. scalar source X under

the scenario depicted in Figure 3.4. The predictor candidates Yi, i = 0 to N − 1 are

discrete i.i.d. scalar sources such that X = Yi + Zi, Yi⊥Zi, where Zi are the discrete

i.i.d. scalar prediction residues. As previously discussed, in CLP the overhead to address

flexible decoding increases with the number of predictors N , while in DSC the overhead

depends mainly on the worst-case correlation noise. Specifically, in the CLP approach, all

the residues {Zi; i = 0 to N−1} would have to be sent to the decoder, which theoretically

would require an information rate

RCLP =
N−1∑

i=0

H(Zi). (3.1)

On the other hand, in the DSC approach, the information rate required to communi-

cate X with Yi at the decoder is H(X|Yi), and using X = Yi + Zi and Yi⊥Zi, we have
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H(X|Yi) = H(Zi). Under the scenario of side-information uncertainty, we would need to

communicate X at a rate3

RDSC = max
i

H(X|Yi) = max
i

H(Zi). (3.2)

It is clear that the encoder needs to communicate at least maxi H(X|Yi) bits so that

X can be recovered for whichever Yi available at decoder. To show that maxi H(X|Yi) is

indeed achievable, we use the source networks approach proposed by Csiszar and Korner

[20, 21]. A source network is a graphical abstraction of a multiterminal source coding

problem involving information sources, encoders and destinations located at its vertices.

Each encoder operates on the input messages from the sources connected to it, and

the resulting codeword is made available to all destinations connected to the encoder

through noiseless communication channels. Each destination must be able to reproduce

accurately the messages from certain specified sources based on the received codewords. In

particular, the source networks in Csiszar and Korner [21] focus on (i) discrete memoryless

sources, (ii) graphs in which no edge joins two sources or two encoders or two destinations,

and (iii) graphs in which the destinations are required to reproduce the messages of

the specified sources with small probability of error (i.e., lossless data compression).

Figure 3.6(a) shows an example of source network representing the Slepian-Wolf problem.

For certain subclass of source network, Csiszar and Korner [21] derived the exponential

error bounds which are tight in a neighborhood of the boundary of the achievable rate

region. In addition, these bounds were shown to be universally attainable, i.e., they are

3To be more precise, RCLP and RDSC are the best (minimum) achievable rates.
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attainable by encoders and decoders not depending on the source statistics. Subsequently,

Csiszar [20] further showed that the error exponents can be attained universally using

linear codes.

To model the predictor uncertainty in flexible decoding, we use N source networks

each corresponding to a different predictor candidate as depicted in Figure 3.6(b). Fol-

lowing from the result in Csiszar and Korner [20, 21] that the Slepian-Wolf’s achievable

rate region is universally attainable, the same codes can be used to communicate X in

any of these source networks at an achievable rate H(X|Yi). Therefore, at a rate of

maxi H(X|Yi), the codes can be used to communicate X regardless of which Yi is avail-

able at the decoder. From (3.1) and (3.2), we have RCLP ≥ RDSC . Therefore, the DSC

approach can potentially achieve better coding performance. Figures 3.7 and 3.8 depict

for some empirical data H(X) (i.e., intra coding),
∑

i H(Zi) (i.e., RCLP ) and maxi H(Zi)

(i.e., RDSC) in different applications and show how these quantities could vary with the

number of predictors.

Note that some theoretical aspect of flexible video decoding was also studied by Draper

and Martinian [22]. In particular, (3.2) was independently proved in [22], using a different

approach based on some extension of the random binning arguments. [22] also discussed

the improved achievable error exponents compared to those of conventional Slepian-Wolf

problem.
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Figure 3.6: Source networks: (a) Source network of Slepian-Wolf [21, 63]. Csiszar and
Korner [20, 21] suggest an achievable rate H(X|Y ) for communicating X is universally
attainable. (b) Source networks of flexible decoding with predictor uncertainty. The
same universal codes can be used to communicate X in any of these networks at a rate
H(X|Yi).

3.4 Proposed Algorithms

Figure 3.9 depicts the proposed video encoding algorithms to address flexible decoding

based on DSC [11]. These are described next.

3.4.1 Motion Estimation and Macroblock Classification

Each macroblock (MB) M in the current frame first undergoes standard motion esti-

mation (and disparity estimation in the case of multiview video application) w.r.t. each

candidate reference frame fi, and the corresponding motion information (one per refer-

ence frame, fi) is included in the bitstream, i.e., the encoder sends N motion vectors to

the decoder. Denote Ai the best motion-compensated predictor for M obtained in fi.

If the difference between M and Ai is sufficiently small, M may be classified to be in

skip mode w.r.t. fi (Figure 3.9). In that case, since the encoder can skip some prediction

residues and the encoder does not need to communicate all N residues, the overhead of
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Figure 3.7: Theoretical performances of intra coding, CLP and DSC in a flexible decoding
scenario: Multiview video coding as in Figure 3.1. (a) Previously reconstructed frames of
neighboring views are used as predictor candidates following the depicted order; (b) En-
tropy of the quantized DCT coefficients (as an estimate of the encoding rate) vs. number
of predictor candidates. The results are the average of 30 frames using Akko&Kayo view
28-th. (c) Entropy of each frame in the case of three predictor candidates. Note that we
assume the sources (i.e., quantized DCT coefficients of images, X, or that of residues,
Zi) consist of independent elements and estimate the coding performances by H(X) and
H(Zi), whereas in practice there could be some correlation exist between the elements
and that could be exploited to reduce coding rates.
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scenario: Robust video transmission as in Figure 3.3. (a) Past reconstructed frames are
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DCT coefficients (as an estimate of the encoding rate) vs. number of predictor candidates.
The results are the average of 30 frames using Coastguard. (c) Entropy of each frame in
the case of three predictor candidates. Note that we assume the sources (i.e., quantized
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including multiple prediction residues using CLP could be small. Specifically, in our cur-

rent implementation, each macroblock M can be in either skip mode or a non-skip mode.

A macroblock will be encoded using the skip mode when, out of all of the N residue

blocks between M and Ai, 0 ≤ i ≤ N−1, at least one of the residue blocks is a zero block

after quantization (i.e., all the quantized transform coefficients in the block are zero).

In skip mode M is encoded using conventional CLP coding (similar to standard H.26X

algorithms) w.r.t. the candidate reference frames which do not have skipping. However,

majority of the macroblocks will be classified into the non-skip mode and be encoded

using DSC following the steps discussed in the next section.

Note that choosing between CLP and DSC for a given macroblock can be achieved

using rate-distortion (RD) based mode selection (as in H.264): The RD costs of CLP and

DSC are computed and the one achieving the minimum RD cost is selected. Such RD op-

timized mode decision algorithm can achieve a better coding performance, at the expense

of requiring higher encoding complexity. In our comparison with H.263 (Section 3.6) we

did not use this RD optimized mode decision. As will be discussed, we implemented our

proposed algorithms mainly based on H.263 coding tools.
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Figure 3.9: Proposed encoding algorithm to encode an macroblock M of the current
frame.
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3.4.2 Direct Coefficient Coding (DCC)

For those macroblocks M to be encoded with DSC, we first apply standard 8 × 8 DCT

to the pixel data to obtain the vector of transform coefficients. Denote X the DCT

coefficient. We then quantize X to obtain the quantization index W (Figure 3.10). This

is similar to intra-frame coding in standard H.26X algorithms. Denote Yi the DCT

coefficient in Ai corresponding to W (recall Ai is the best motion-compensated predictor

from each fi). We compress W by exploiting its correlation with the worst case Yi, so that

it can be recovered with any Yi that may be present at the decoder. Specifically, based on

a correlation model between W and Yi (to be discussed in Section 3.4.5), the encoder can

estimate the coding rates needed to communicate W when Yi is available at the decoder.

Then the encoder communicates W by sending an amount of parity information equal to

the maximum of these estimated coding rates. Since both W and Yi are available at the

encoder in our problem, the correlation model can be readily estimated.

The quantized values of the K lowest frequency DCT coefficients (along a zig-zag

scan order) are encoded with a direct coefficient coding (DCC), and for the rest we use
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a significant coefficient coding (SCC). In DCC, we form the k-th frequency coefficient

vector by grouping together the k-th (0 ≤ k ≤ K − 1) frequency quantized coefficients,

Wk, from all the 8×8 blocks in a frame (except those in skip modes). Then each of these

vectors is converted into a raw bit-plane representation, and the bit-planes are passed to

a Slepian-Wolf (SW) coder, where inter-frame correlation is exploited to compress the

bit-planes losslessly. Note that DCC would lead to Lk bitplanes for the k-th frequency

coefficients vector, where Lk = dlog2(max |Wk|+ 1)e.

3.4.3 Significant Coefficient Coding (SCC)

The quantized values of the k-th highest frequency coefficients, k ≥ K, are encoded

using SCC. Specifically, we first use a significance bit s to signal if the quantized value

of a coefficient is zero (s = 0) or not (s = 1), so that distributed coding is used to

communicate only the value of non-zero coefficients. The significance bits of all the k-th

frequency coefficients in the frame (one for each 8× 8 block, except those in skip modes)

are grouped together to form a significance bit-plane to be compressed by the SW coder.

On the other hand, the non-zero coefficients are grouped together to form coefficient

vectors where all the DCT frequencies are combined, as we found that the correlation

statistics of non-zero coefficients are similar at different frequencies.

SCC is introduced as an alternative to DCC to reduce the number of source bits to

be handled in SW coding. Specifically, assume DCC leads to Lk bitplanes for the k-th

frequency coefficient vector. Therefore, each k-th frequency coefficient contributes Lk

source bits in DCC, regardless of whether the coefficient is zero or not. On the other

hand, with SCC, a zero coefficient contributes one source bit (significance bit), while a
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non-zero coefficient contributes approximately 1 + Lk bits. If pk is the probability that

the k-th frequency coefficient will be zero, then the expected number of source bits using

SCC is

1× pk + (1 + Lk)× (1− pk), (3.3)

and SCC can lead to rate savings (compared with DCC) if the expected number of bits

using SCC, i.e., (3.3), is less than that of DCC, i.e., Lk, or equivalently if

pk >
1
Lk

(3.4)

holds. Therefore, SCC can achieve rate savings when coefficients are likely to be zero.

In the experiment, we use K = 3 (where SCC starts) determined using (3.4) and some

statistics of the video sequences.

3.4.4 Bit-plane Compression

Bit-planes extracted from the K coefficient vectors produced in DCC along with those

produced in SCC are compressed by a SW coder, starting from the most significant bit-

planes. Denote a bit in the bit-plane at l-th level of significance by a binary r.v. b(l),

where l = 0 corresponding to the least significant level. That is, b(l) is the l-th significant

bit in the quantization index W . A binary r.v. b(l) is to be compressed using Yi and

decoded bits b(l + 1), b(l + 2), ... as side information. Specifically, this is performed by a

low density parity check (LDPC) based SW encoder, which computes the syndrome bits

from the original bit-planes and sends them to the decoder [43].
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3.4.5 Model and Conditional Probability Estimation

SW decoding needs the conditional probability p(b(l)|Yi, b(l + 1), b(l + 2), ...) estimated

from SI to aid recovering b(l). The probability can be estimated as follows. The encoder

estimates the conditional p.d.f. fX|Yi
(x|yi) for each coefficient vector and for each can-

didate predictor. Assuming a system model X = Yi + Zi, and under the assumption of

independence of Yi and Zi, we have

fX|Yi
(x|yi) = fZi(x− yi) (3.5)

We assume Zi is Laplacian distributed, i.e., fZi(zi) = 1
2αie

−αi|zi|, and estimate the model

parameters αi at the encoder using maximum likelihood estimation (MLE) and send

them to the decoder. Note that in the flexible decoding problem, the encoder can access

all the candidate SIs. Therefore, the model parameters can be readily estimated. This

is not the case in typical DSC applications, where there are constraints on accessing

side-information at the encoder making model estimation a non-trivial problem [15].

Given all the model parameters αi, the decoder can estimate the conditional probabil-

ity for any particular Yi available at decoder using the following procedure (Figure 3.11).

Denote W̃ the numerical value of the concatenation of the sequence of the decoded bits

b(l + 1), b(l + 2), ..., i.e., W̃ = b(l + 1)× 20 + b(l + 2)× 21 + .... Given the decoded bits,

the quantization index W can range only from W̃ × 2l+1 to W̃ × 2l+1 + 2l+1 − 1. When
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W ∈ [Wr,Ws], b(l) = 0, and when W ∈ [Wt,Wu], b(l) = 1, where Wr,Ws,Wt,Wu are

given by (in the cases when W̃ ≥ 0):

Wr = W̃ × 2l+1;

Ws = W̃ × 2l+1 + 2l − 1;

Wt = W̃ × 2l+1 + 2l;

Wu = W̃ × 2l+1 + 2l+1 − 1. (3.6)

Equations for W̃ < 0 are similar. Therefore, the decoder can estimate the probabilities

that b(l) will be zero and one by integrating fX|Yi
(x|yi) over the intervals [Xr, Xs] and

[Xt, Xu] respectively, where [Xr, Xs] is the inverse quantization mapping of [Wr, Ws], and

[Xt, Xu] is that of [Wt,Wu].

Note that each Yi exhibits different levels of correlation with respect to b(l). There-

fore, the l-th significant bitplane comprised of bit b(l) and extracted from the current

video frame would require a different number of syndrome bits to be recovered, when a

different candidate reference frame fi is available at the decoder. Denote Ri this number

of syndrome bits. To ensure that the l-th significant bitplane can be recovered with any

of the candidate decoder reference fi, the encoder could send R = max Ri syndrome bits

to the decoder. By doing so, each bit-plane and hence bit b(l) can be exactly recovered

no matter which candidate reference is available at the decoder. Therefore, W can be

losslessly recovered and X reconstructed to the same value when any of the Yi is used as

predictor. This eliminates drifting in DSC-coded macroblocks.
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3.5 Application Scenarios

While the main objective of the present chapter is to propose coding techniques to facil-

itate flexible decoding, we will briefly discuss in this section some application scenarios

that can benefit from the coding structures enabled by the proposed tools. One of these

scenarios could be storage type applications, where the video data is pre-encoded, and

the entire bitstream is made available to users through some storage media, e.g., DVD. In

these applications, the proposed coding techniques can lead to new coding structures that

would require less decoding complexity, i.e., a smaller number of computations and less

amount of memory buffering. As an example, for multiview video applications, where

conventionally an individual view could be encoded independently (i.e., simulcast) or

multiple views could be compressed jointly, viewpoint switching would require recon-

struction of several additional video frames (predictor frames) which the users did not

request (Figure 3.12). In other words, the decoder would have to decode some extra

frames that would not be displayed. The proposed techniques can, on the other hand,

reduce this extra decoding overhead, since they could lead to coding structures where the
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current frame can be recovered using any one of the several predictor candidate frames,

and no additional processing would be needed as long as some of these candidates were

previously requested by the users and hence are already decoded.

Another application scenario that can benefit from the proposed coding techniques

could be client-server video streaming applications, where the server would send to the

client (decoder) only part of the bitstream needed for decoding the video frames requested

by users. In this case, the proposed techniques can reduce, in addition to decoding

complexity, the amount of information sent to the client. This is possible because some

of the predictor candidates may have been previously requested by the users and have

already been communicated to the client. Therefore, the current frame can be decoded

without requesting extra information. Note that in client-server applications a DSC

based approach to flexible decoding could lead to a smaller total amount of pre-encoded

data stored in the server, while a CLP based approach may result in less data being

transmitted to the client, since in this case the client could inform the server about the

predictor status and only the prediction residue matching the available predictor would

need to communicated to the client.

3.6 Experimental Results and Discussion

3.6.1 Viewpoint Switching in Multiview Video Coding

This section presents the experimental results. We first discuss our experiments on multi-

view video coding (MVC). Here we generate compressed multiview bit-streams that allow
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Figure 3.12: Different coding structures in multiview video application. Shaded video
frames are those that needed to be decoded to enable the depicted decoding path. (a)
Simulcast; (b) New coding structure enabled by the proposed tools, where “S” denotes
those video frames that can be decoded using any one of the predictor candidates. Note
that in simulcast, decoder needs to decode some extra video frames that users did not
request, e.g., the first three frames in the v-th view in the depicted example. In client-
server applications, bitstream corresponding to these extra frames is also needed to be
sent to the client.
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switching from the adjacent views as in Figure 3.1. Therefore, there are three predic-

tor candidates. We compare the coding performance using the following algorithms to

generate the bit-stream: (i) intra coding using H.263 I-frames; (ii) CLP approach with

each of the three residues encoded using H.263 P-frames; (iii) proposed DSC-based algo-

rithm, with H.263 half-pel motion estimation and quantization. Since we implement all

the schemes using the same (H.263) coding tools (e.g., half-pixel accuracy motion estima-

tion) the comparison is fair. We compare the schemes using MVC sequences Akko&Kayo

and Ballroom, which are in 320× 240 and encoded at 30fps and 25fps respectively. Fig-

ures 3.13 and 3.14 show the comparison results. As shown in the figures, the proposed

algorithm outperforms CLP and intra coding, with about 1dB gain in the medium/high

picture quality range (33-36dB). We also compare the approaches in terms of drifting

by simulating a scenario where viewpoint switching from the (v − 1)-th view to the v-th

view occurs at frame number 2. Figure 3.15 compares the PSNR of the reconstructed

frames within the GOP with that of the non-switching case, where the v-th view is being

played back throughout the GOP. As shown in the figure, while CLP (using P-frame)

may cause considerable amount of drifting, the proposed algorithm is almost drift-free,

since the quantized coefficients in DSC coded macroblock are identically reconstructed.

We also evaluate how the coding performance of the proposed system scales with the

number of predictor candidates. In this experiment, the temporally and spatially adjacent

reconstructed frames are used as predictor candidates following the order depicted in

Figure 3.16. As shown in Figure 3.17, the bit-rate of the DSC-based solution increases at

a much slower rate compared with that of its CLP counterpart. This is because, with the

DSC approach, an additional predictor candidate would cause a bit-rate increase (when
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coding a bit-plane) only if it has the worst correlation among all the predictor candidates

(w.r.t. that bit-plane).
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Figure 3.13: Simulation results of multiview video coding: Akko&Kayo. The results are
the average of the first 30 frames (at the switching points) from 3 different views (views
27th-29th) arbitrarily chosen from all the available views.

3.6.2 Forward/Backward Video Playback

We then discuss our experiments on forward/backward playback application, where there

are two predictor candidates (Figure 3.2). We compare our proposed algorithm with a

CLP approach where both forward predicted H.263 P-frames and backward predicted

H.263 P-frames are included. As discussed, such approach may incur drifting, since in

general the reconstructed forward and backward predicted P-frames are not identical. We

compare the schemes using sequences Coastguard and Stefan, which have considerable

amounts of motion and picture details. As shown in Figures 3.18 and 3.19, the proposed

algorithm outperforms CLP and intra coding. We also show the results of “normal”

H.263 inter-frame coding (i.e., including only forward prediction residue) with the same
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Figure 3.14: Simulation results of multiview video coding: Ballroom. The results are
the average of the first 30 frames (at the switching points) from 3 different views (views
3rd-5th) arbitrarily chosen from all the available views.

GOP sizes. Note that inter-frame coding cannot support flexible decoding. The results

are shown here for reference only.

We also compare the various approaches in terms of drifting with the following exper-

iment: in forward decoding, a backward predicted frame is used for frame number 1 and

as a reference for decoding the following frame. This is similar to what would happen

when decoding direction switches from backward to forward. As shown in the results in

Figure 3.20, the proposed algorithm incurs a negligible amount of drifting.

3.7 Conclusions and Future Work

We have proposed a video compression algorithm to support flexible decoding, based

on DSC. The proposed algorithm integrates macroblock mode and significance coding

to improve coding performance. Simulation results using MVC and forward/backward

video playback demonstrate the proposed DSC-based algorithm can outperform the CLP
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Figure 3.15: Drifting experiment using Akko&Kayo view 28th: (a) CLP; (b) DSC. GOP
size is 30 frames. Note that with DSC, the PSNR are almost the same in the switching
and non-switching cases.
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Figure 3.16: Scaling experiment: in this experiment, the temporally and spatially adja-
cent reconstructed frames are used as predictor candidates following the depicted order.

approach, while incurring only a negligible amount of drifting. Future work includes

investigating improved model estimation methods.
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sults are reported for the average of the first 30 frames. Note that H.263 inter-frame
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Figure 3.20: Drifting experiment using Stefan sequence: (a) CLP; (b) DSC. The figure
shows the PSNR of the reconstructed frames in the first GOP. Note that with DSC, the
PSNR are almost the same in the switching and non-switching cases.
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Chapter 4

Correlation Estimation for Distributed Source Coding

Under Rate and Complexity Constraints Using

Sampling-based Techniques

4.1 Introduction

4.1.1 Motivation

Distributed source coding (DSC) [19, 63, 84] studies independent encoding and joint de-

coding of correlated sources, for which a correlation model is known at the encoder.

Central to DSC is the information about existing correlation between the source and

the side-information (SI) available at the decoder. Specifically, correlation information

refers to the joint p.d.f. between the source and the SI. This correlation information

plays several important roles in practical distributed source coding applications. First,

many applications require correlation information at the encoder to determine the en-

coding rate. Essentially, the encoders use the correlation information to determine the

number of cosets for partitioning the input space, so that error-free decoding can be
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achieved [56, 59]. Second, for many practical Slepian-Wolf coding schemes that employ

channel coding and iterative decoding, correlation information is required to initialize the

decoding algorithms by providing likelihood estimates for the source bits [43]. Third, cor-

relation information could be used at the decoder to determine the optimal reconstruction

given the output of the Slepian-Wolf decoder and side information [56]. In this chapter

we focus on estimating the correlation for the purpose of determining the encoding rate.

The results may, however, be useful for the other two cases as well.

4.1.2 Correlation Information Models in Practical DSC Applications

At the heart of practical DSC applications is a lossless Slepian-Wolf (SW) codec, which

plays a role similar to that of entropy codecs in conventional image/video compression.

More precisely, the Slepian-Wolf encoder compresses a discrete i.i.d. source, which could

be losslessly recovered at the decoder with the aid of the correlated side-information (SI)

provided that enough compressed bits have been sent. Details on SW coding can be found

in [28, 58, 85]. The problem to be investigated in this chapter is that of determining the

amount of information communicated to the decoder, i.e., the encoding rate. From [63], an

ideal rate to achieve a vanishing probability of decoding error is the conditional entropy

of the input source given the SI 1. The conditional entropy, in turn, depends on the

correlation information between the source and SI. Thus rate allocation in DSC can

be performed by solving the associated correlation estimation problem. Various types

of correlation models (e.g., binary valued p.m.f. or continuous valued p.d.f.) may be

1Practical SW coders would add a small margin to this ideal rate to account for using finite-length
input blocks in SW coding.
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exploited to compress the data depending on the specific SW coding algorithms and

applications. We illustrate some of them below.

• SW coding with binary correlation model. These are cases where some form

of binary valued joint p.m.f. is used to relate the source and SI (which are not

necessarily binary) for SW coding. As an example, Figure 4.1(a) depicts SW cod-

ing with a binary correlation structure similar to that used in [14, 47, 72], etc. The

continuous valued i.i.d. source X is mapped via scalar-quantization (or rounding)

to a discrete source X̃. Then X̃ is mapped to a bit-plane representation, and each

extracted bit-plane bX̃(l), l = 0 . . . L − 1, is compressed independently by the

SW encoder. Here bX̃(0) denotes the least significant bit-plane (LSB). The SW

decoder recovers bX̃(l) with bit-plane bỸ (l) extracted from the quantized version of

the correlated source Y as side information. By exploiting the joint binary p.m.f.

p(bX̃(l), bỸ (l)), each extracted bit-plane can be compressed to a rate as low as

H(bX̃(l)|bỸ (l)). To determine this encoding rate, one can estimate the joint bi-

nary p.m.f. p(bX̃(l), bỸ (l)), and derive the conditional entropy from the estimated

p.m.f. Note that independent compression of each bit-plane facilitates efficient rate

scalability, which is highly desirable in some imagery applications. For some appli-

cations it is also sufficient to achieve satisfactory coding performance by exploiting

the correlation between corresponding bit-planes.

• SW coding with continuous correlation model. These are cases where a

continuous valued joint p.d.f. is exploited for SW coding. Figure 4.1(b) illustrates

an example similar to that proposed in [59]. The continuous i.i.d. source X is
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first scalar-quantized, and the quantized input X̃ is directly compressed by the SW

encoder. The decoder uses Y to recover X̃. By exploiting the joint p.d.f. p(X,Y ),

the SW encoder can compress X̃ to a rate as low as H(X̃|Y ). The encoder may

determine this encoding rate from p(X, Y ).

4.1.3 Correlation Estimation in Distributed Source Coding

While both the underlying theory and the recently proposed code construction algo-

rithms [1, 5, 27, 43, 44, 56] assume correlation information to be available exactly at the

encoder, in many practical DSC applications, the correlation information may not be

available beforehand, and one would need to estimate it during the encoding process [59] 2.

The accuracy of this correlation estimation has a direct impact on the performance of

DSC-based systems. While under-estimating the correlation may result in a penalty in

coding efficiency, over-estimation can cause decoding error: in this case candidate de-

coded values within a given coset would be too close to each other, so that it is no longer

possible to guarantee that they can be disambiguated without error by using the SI,

leading to degradation in reconstruction quality.

Estimating the correlation information at the encoder is a non-trivial problem due to

the computational and communication constraints imposed by the target applications,

i.e., often, correlation estimation in DSC has to be performed under rate and complexity

constraints. For example, when DSC is applied to compress wireless sensor measurements,

it is important to limit the amount of data exchanged between nodes during correlation

2Note that in some cases, lack of an accurate correlation model is acceptable if there exists feedback
from decoders to encoders [1], but this leads to an increase in overall delay.
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Figure 4.1: (a) An example of Slepian-Wolf coding exploiting binary correlation. Boxes
“Q” and “Q−1” denote quantization and inverse quantization respectively. Boxes “B” and
“B−1” denote binarization and the inverse respectively. (b) An example of Slepian-Wolf
coding exploiting continuous correlation.
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estimation, in order to minimize the communication cost. Similarly, in applications such

as video coding, source data needed to estimate the correlation is present at the encoder,

but it is desirable to limit the computation resources devoted to this estimation [3, 59].

4.1.4 Our Contributions and Related Work

In this work we study correlation estimation strategies subject to rate and complexity

constraints, and their impact on coding efficiency in a DSC framework. Our proposed

algorithms are based on the observation that for many DSC applications side informa-

tion is actually available at the encoder, but the encoder may not make use of this side

information because of the associated communication or computational cost. As an ex-

ample, in low complexity distributed video coding (DVC) [1, 49, 59], past frames that

will be used as side information are available at the encoder, but the computation cost

involved in performing motion estimation may be significant. Other examples can be

found in distributed multiview image/video compression [31,34,88], wireless sensor data

compression [55, 68, 85], etc. Focusing on these applications, we propose sampling-based

algorithms to estimate the correlation information. Sampling is a well-established con-

cept in statistics to infer the properties of a population from a small amount of individual

observations [50]. To see how sampling applies to DSC consider these two examples:

• When compressing distributed sensors measurements, X, a node can request sam-

ples, Y , from the neighboring node in order to estimate the correlation p(X,Y ).

The number of samples exchanged should be small, however, to keep the commu-

nications overhead low.
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Figure 4.2: Apply sampling to distributed video coding: when encoding the current frame,
we randomly sample n macroblocks of the current frame to undergo motion estimation,
with n being much smaller than the total number of macroblocks. By doing so, we
would obtain n pairs of samples (X, Y ), where X is the current macroblock and Y is the
corresponding motion-compensated predictor. From these n sample pairs the encoding
rate can be estimated. Note that here the sampling cost associated with each data sample
is not primarily due to data exchange but the computation in motion search.

• In some DVC applications, the encoding rate depends on the joint p.d.f. between

blocks in current frame (X) and the corresponding motion-compensated predictor

blocks (Y ) from reference frame [3, 11, 59]. Encoder can employ a sampling-based

algorithm, where only a small portion of current frame’s blocks would undergo mo-

tion estimation, so that the joint p.d.f. can be estimated from sample pairs (X,Y ),

formed with a given current block and the corresponding predictor (Figure 4.2).

Since motion search is required to acquire a sample pair (X, Y ) each sampling op-

eration would require some computational cost. Therefore, the proportion of blocks

undergoing motion estimation should be small.

Sampling, however, leads to estimation errors and will have an impact on coding efficiency.

Analyzing this impact is a key focus of our work. Since DSC applications may exploit

various types of correlation models, it is difficult to address all of them. Therefore, we

focus on one particular model in this chapter and briefly discuss how to analyze other

models. Specifically, focusing on situations where a binary correlation is estimated for
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SW coding (as discussed in Section 4.1.2) and correlation is estimated via sampling, this

chapter makes the following contributions:

• Rate penalty analysis in compression of a single binary source. We analyze

how estimation error in sampling impacts the coding performance of a DSC system

when encoding a single binary source. We derive an expression to quantify how the

number of samples relates to the increase in the encoding rate due to estimation

error, taking into account that over-estimation can lead to significant increases in

distortion in DSC applications (due to decoding error).

• Rate penalty analysis and sample allocation in compression of multiple

binary sources. We then extend the rate penalty analysis to systems with multiple

binary input sources, where each of them is compressed independently using SW

coding with its corresponding side-information. Based on the analysis, we propose

an algorithm to determine sampling rates to assign to each binary source so that the

overall penalty in coding performance (due to estimation error) can be minimized,

subject to a constraint on the total number of samples.

• Model-based estimation in compression of a continuous source. We then

study encoding of a continuous input source. We consider scenarios where bit-planes

are extracted from a continuous input source and each bit-plane is compressed via

SW coding, e.g., as in [3, 14, 48, 86]. We propose a model-based method where the

continuous-valued joint p.d.f. of the source and SI is first estimated via sampling

of continuous valued inputs, and then the bit-plane level (binary) correlation is

derived from the estimated model. This is in contrast to a direct approach where
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the bit-plane correlation is estimated through exchanging binary samples from the

extracted bit-planes. We demonstrate that the model-based method can achieve

better estimation accuracy than the direct approach provided that the continuous-

valued model is sufficiently accurate.

• Model-based estimation for structured bit-planes. We also describe how

model-based estimation can be extended to the cases where bit-planes are extracted

from continuous input data using more sophisticated methods. For example, in

wavelet-based applications, bit-planes are separated into different “sub-bit-planes”

depending on the magnitude (significance) of the transform coefficients. A concrete

example of this, which we consider in this chapter, is that of bit-planes generated by

set-partitioning as in SPIHT [61]. This type of bit-plane generation improves coding

efficiency, but complicates the model-based correlation estimation process, as will

be shown. Using a practical system as an example, we demonstrate that model-

based estimation can lead to an additional advantage of efficient implementation in

these types of DSC applications.

While this chapter focuses on cases where a binary correlation is used for SW coding,

some of the proposed ideas may be extended to other types of correlation (details in

Section 4.7).

Several methods have been proposed for correlation estimation problems in DSC. In

DVC, low-complexity schemes to classify macroblocks into different correlation classes

have been proposed [59], while other methods use a feedback channel to convey correla-

tion information to the encoder [4]. For robust video transmission, recursive algorithms
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have been proposed to estimate the correlation between the noise-free and noise-corrupted

reconstructions [26, 78]. In our prior work, correlation estimation was performed by di-

rect bit-plane comparisons between the source and an approximation of the decoder

side-information [67]. This chapter proposes, however, several novel sampling-based cor-

relation estimation algorithms applicable to a range of DSC applications, and presents

the performance analysis.

A general approach for model-based estimation for DSC was first proposed in our work

in [15]. The work focused on the simple cases where bit-planes are generated directly from

the the binary representation of the sources. A recent work [33] has proposed a similar

idea to show the advantage of Gray code representations, but does not discuss the exact

algorithm to estimate the correlation.

This chapter is organized as follows. In Section 4.2 we present the rate penalty

analysis. In Section 4.3 we propose the sample allocation algorithm to minimize the overall

rate penalty. In Section 4.4 we propose the model-based estimation, and in Section 4.5 we

extend the model-based estimation to cases where bit-planes are extracted based on the

significance of the data. Section 4.6 presents experiments with real image compression

applications. Section 4.7 discusses how to extend the rate penalty analysis to other

correlation models. Finally, Section 4.8 concludes the work.

4.2 Single Binary Source: Rate Penalty Analysis

In this section we analyze how estimation error in sampling affects the compression per-

formance of a DSC system in the case of a single binary source. Specifically, given that
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n samples are used to estimate the correlation, we derive the corresponding increase in

coding rate due to estimation error. As discussed, in most DSC systems there is a com-

munication or computational cost associated with each acquired sample. Therefore, our

results represent the trade-off between communication/computational cost and coding

efficiency.

4.2.1 Problem Definition

We focus on the cases where a binary correlation is exploited in SW coding. Consider

compressing a binary source bX with another binary SI bY available at the decoder.

We assume {bX , bY } i.i.d. ∼ p(bX , bY ). To simplify the analysis, we assume (i) bX is

equiprobable, i.e., Pr[bX = 0] = 0.5, and (ii) the correlation is symmetric, i.e., Pr[bY =

1|bX = 0] = Pr[bY = 0|bX = 1] = p, where 0 ≤ p ≤ 0.5 is the crossover probability for

the sources. With these assumptions, the lower bound in the lossless encoding rate of bX

with bY available at the decoder is [19,63]

H(bX |bY ) = H(p). (4.1)

Therefore, encoder can estimate the lossless compression rate of bX by estimating p

through n random samples pairs {bX , bY }. Define the estimation error (4p)(n) = p̂(n)−p,

where p̂(n) is some estimation of p 3. When 4p is negative, this could lead to a decoding

error. This is because the crossover probability is under-estimated and so the number of

cosets chosen for encoding may be too small. Instead, when 4p ≥ 0, correct decoding

3Note the dependency of p̂ (and other quantities) on n. Precisely, the p.d.f. of p̂ is a function of n, as
will be discussed.
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and lossless recovery of bX can be guaranteed theoretically, but there will be a penalty in

compression efficiency. This difference in behavior (decoding error vs. coding penalty) will

lead us to propose a biased estimator such that4p ≥ 0 with high probability (discussed in

the next section). On average, the coding penalty, in bits/sample, is given by (assuming

no decoding error):

(4H)(n) = H(p̂(n))−H(p). (4.2)

As will be discussed, 4H is indeed a random variable, since we randomly choose samples

of bX and bY for estimating H(p̂). Our focus is to derive the probability density of

(4H)(n).

4.2.2 Correlation Estimation

For encoding bX we need to estimate p̂ by acquiring n random samples of bY . In differ-

ent DSC applications, encoder may obtain the samples in different ways. For example,

in a sensor application, the encoder of bX may request samples of bY from a spatially-

separated sensor node. In distributed video coding, the encoder may perform motion

estimation to generate samples of bY . Common to most of the applications is that com-

munication/computational costs will be incurred in acquiring the samples. Therefore, it

is desirable to keep n small.

By inspecting the n pairs {bX , bY } now available at the encoder, an estimate of p

can be computed to determine the encoding rate for bX . A naive estimate for p is S(n)
n ,

where S(n) is the number of inspected samples such that bX 6= bY . Since S is essentially

114



the summation of n i.i.d. Bernoulli random variables with success probability p, S is a

binomially distributed r.v. with mean np and variance np(1−p). Therefore, for sufficiently

large n,

S(n)
n

∼ N(p, σ2) , σ =
√

p(1− p)/n. (4.3)

As a consequence, if we use S
n as the estimator there is 50% probability of under-estimation

of p. Therefore, we opt to use a biased estimator given by

p̂(n) =
S(n)

n
+ zω/2σ. (4.4)

That is, we bias S
n by a factor proportional to σ. By choosing the constant zω/2 we can

control precisely the probability of under-estimation of p, e.g., if zω/2 = 1.64, Pr[p̂ < p] =

ω/2 = 0.05. We choose this biased estimator to minimize the risk of decoding failure, at

the expense of some encoding rate penalty.

4.2.3 Rate Penalty Analysis

Using (4.4) as the estimator, we analyze how n relates to the p.d.f. of 4H. From (4.4),

(4p)(n) = p̂(n)− p

=
S(n)

n
+ zω/2σ − p ∼ N(zω/2σ, σ2). (4.5)
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Expanding H(.) at p by a Taylor series and using the definition of 4H in (4.2),

(4H)(n) = H ′(p)4p +
H ′′(p)(4p)2

2!
+ ...

≈ H ′(p)(4p)(n). (4.6)

The approximation holds when 4p is sufficiently small. The p.d.f. of 4H can then be

derived as:

(4H)(n) ∼ N(H ′(p)zω/2σ, (H ′(p))2σ2), (4.7)

where H ′(p) = ln(1
p − 1) and σ is given by (4.3). (4.7) relates n to the density of 4H.

Using (4.7), one can readily compute some statistics for 4H, e.g., E[(4H)(n)]. Note

that these statistics are functions of n.

In practice, since p is unknown, σ is unknown when computing the estimator (4.4).

A good rule of thumb is to approximate the estimator using [50]

p̂(n) ≈ S

n
+ zω/2

√
S

n
(1− S

n
)/n, (4.8)

i.e., S
n is used to approximate p in computing the estimator. The approximation would

be valid when n · S
n ≥ 4 and n(1− S

n ) ≥ 4, as a rule of thumb [50].

4.2.4 Experiment

In this section we assess the accuracy of the rate penalty model proposed in (4.7). Specif-

ically, we perform sampling experiments and measure 4H, and compare the empirical
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distribution of 4H with (4.7). Video data is used for the experiments. As the binary

input source (bX), we use the raw bit-planes extracted from all (quantized) DCT coeffi-

cients of a given frequency in the current frame, while as SI (bY ) we use the raw bit-planes

of same significance extracted from the corresponding (quantized) DCT coefficients of the

motion-compensated predictors in the reference frame4. Therefore, the dimension of the

source, M , is equal to the number of DCT blocks in a frame. We then sample n (< M)

pairs of {bX , bY } randomly, and an estimation p̂ is then computed according to (4.8) from

the chosen pairs. With p̂, a single 4H can then be obtained using (4.2). The sampling

experiment is repeated NE times, each time with different pairs of {bX , bY } sampled and

a different 4H obtained. We compare the empirical p.d.f. of 4H (with NE data) with

the model in (4.7) using Kolmogorov-Smirnov (K-S) tests [50]. Table 4.1 shows the re-

sulting K-S statistics at different sampling rates for some bit-planes extracted from the

DC coefficients quantized at QP = 24 (H.263 quantization) in the 2nd frame of Mobile

(720× 576, 30 fps), with zω/2 = 1.64 and NE = 100. In particular, for the range of n and

p where n · p ≥ 4, K-S tests approve the hypothesis that the empirical 4H follows the

model in (4.7). This results indicate that our proposed model can adequately characterize

the distribution of the rate penalty for practical problems with sufficiently large n ·p, e.g.,

n ·p ≥ 4. Note that a sampling size of 128 corresponds to about 2% of data for a 720×576

video. Additional results using different data lead to similar conclusions.

4Note that it is common for DVC systems to exploit correlation between the DCT coefficients in the
current frame and the corresponding coefficients in the motion-compensated predictors in the reference
frame, e.g., [3, 11].
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Table 4.1: Kolmogorov-Smirnov (K-S) tests statistics for4H: Mobile DC, QP=24. Num-
bers in parenthesis indicate cases that K-S statistics are larger than the 1% significance
cutoff value, 0.1608, and therefore do not pass K-S tests. Those are cases when n · p ≥ 4
does not hold. Note that bit position 6 corresponds to a more significant bit-plane.

Bit Position 6 5 4 3
p = 0.0228 p = 0.0529 p = 0.0961 p = 0.2002
H(p) = 0.1571 H(p) = 0.2987 H(p) = 0.4566 H(p) = 0.7222

n = 96 (0.1912) 0.1470 0.1310 0.1510
n = 128 0.1580 0.1401 0.1266 0.1358
n = 256 0.1458 0.1343 0.1073 0.1080
n = 512 0.1459 0.1219 0.0943 0.0957

4.3 Multiple Binary Sources: Rate Penalty Analysis and

Sample Allocation

In this section we study compression of multiple binary input sources. The multiple

sources scenario can arise in different applications. One example is the compression of

multiple streams of sensor measurements captured in different nodes. Another important

example is the compression of a continuous input source, where the source is first mapped

to a bit-plane representation and then each bit-plane is compressed using DSC, so that

the problem becomes one of compression of multiple binary sources. From (4.7), in the

single source case the rate penalty due to estimation error depends on both sampling, i.e.,

n, and the characteristics of the source, i.e., p. In a system with multiple input sources

each with a different p, we now investigate the optimal sample allocation to each source

such that the overall rate penalty can be minimized, subject to the constraint on the total

number of sample allocated to the system.
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4.3.1 Problem Definition

Consider the compression of L binary sources bX(l), l = 0 to L− 1. Each binary source

is independently encoded using SW coding with its respective SI bY (l) available at the

decoder. We shall follow the assumptions in Section 4.2, i.e., {bX(l), bY (l)} i.i.d. ∼

p(bX(l), bY (l)), with Pr[bX(l) = 0] = 0.5 and crossover probability Pr[bX(l) 6= bY (l)] =

pl. Let Kl be the number of binary values to be encoded for source bX(l). We follow the

correlation estimation procedure in Section 4.2, where encoding bX(l) requires observing

nl (≤ Kl) random samples of bY (l) in order to compute the biased estimator p̂l(nl)

according to (4.4) (or (4.8) in practice), so that the encoding rate for bX(l) can be

determined. The encoding of bX(l) would suffer a rate penalty (4Hl)(nl) = H(p̂l(nl))−

H(pl). In particular, following the discussion in Section 4.2 and using (4.7), 4Hl would

be normally distributed:

(4Hl)(nl) ∼ N(H ′(pl)zω/2σl, (H ′(pl))2σl
2), (4.9)

where H ′(pl) = ln( 1
pl
− 1) and σl =

√
pl(1− pl)/nl. On average, the coding penalty of

the whole system, in bits/sample, is given by:

4H =
1

KT

L−1∑

l=0

Kl4Hl. (4.10)

where KT =
∑L−1

l=0 Kl. Note that in this section 4H refers to the average coding penalty

of the entire system with L sources. Since the samplings are performed independently on
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each source, 4Hl are independent r.v., and therefore 4H is normally distributed with

expectation and variance given by:

E[4H] =
1

KT

L−1∑

l=0

KlH
′(pl)zω/2σl, (4.11)

V AR[4H] =
L−1∑

l=0

(
Kl

KT

)2

(H ′(pl))2σl
2. (4.12)

The total number of samples is limited to be nT , i.e.,
∑L−1

l=0 nl = nT , under the as-

sumption that we would like to have nT ¿ KT , because each sample would incur a

communication/computational cost.

Our main goal is to minimize E[4H] subject to a given nT . Note that E[4H] is a

function of (i) p = {pl}, correlation of different sources, (ii) nT , total number of samples

used to estimate correlation, and (iii) n = {nl}, allocation of samples to different sources.

In the following sections:

1. we derive an optimal sample allocation strategy, i.e., given p = {pl}, nT , we find

the optimal n = {nl} to minimize the rate penalty E[4H];

2. given the optimal sample allocation, we study how E[4H] changes with nT .

As will be discussed in the next section, the optimal sample allocation requires knowl-

edge of {pl}, which obviously is not known a priori. Several strategies will therefore be

described to apply our results in practice.
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4.3.2 Optimal Sample Allocation Strategy

In this section we seek to find the optimal number of samples to allocate to different

sources, {n∗l }, so as to minimize E[4H]. To find {n∗l }, we solve the following constrained

optimization problem:

min{nl:
PL−1

l=0 nl=nT ;nl≤Kl}E[4H], (4.13)

where E[4H] is given by (4.11). Applying the Lagrangian optimization method and

Kuhn-Tucker conditions to deal with the inequalities constraints, we obtain (details in

Appendix B):

n∗l =





γ(Klαl)2/3, if γ < Kl
1/3

αl
2/3 ,

Kl, if γ ≥ Kl
1/3

αl
2/3 ,

(4.14)

where αl is a constant that depends on zω/2 and pl:

αl = ln(
1
pl
− 1)zω/2

√
pl(1− pl), (4.15)

and γ is chosen so that
∑L−1

l=0 n∗l = nT . This result gives rise to a sample allocation

scheme analogous to the “water-filling” results in information theory [19]. We allocate

equal weighted number of samples to each source, until for some sources the number of

samples is equal to the number of source inputs. The weighting factor (Klαl)2/3 is a

constant that depends only on the specific characteristics of the lth source (length and

crossover probability).

In situations where nl < Kl can be guaranteed for all sources (e.g., when nT is

small enough such that nT < Kl is true for all l), (4.14) can be simplified to: n∗l =
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Figure 4.3: Encoding rate function H(.). The same4pl would have a larger impact to the
estimated rate if the true pl is small. The optimal sample allocation takes into account
this characteristic.

nT
(Klαl)

2
3PL−1

l=0 (Klαl)
2
3
. In the important case when raw bit-planes are extracted from a continu-

ous valued source and compressed independently by SW coding, similar to the example

in Figure 4.1(a), Kl would be the same, and {n∗l } reduces to

n∗l = nT
α

2
3
l∑L−1

l=0 α
2
3
l

. (4.16)

The intuition behind the optimal sample allocation can be understood by inspecting the

rate function H(.). For the same estimation error (4pl)(nl) = p̂l(nl) − pl, the impact

to the encoding rate will tend to be larger when the true pl is small (Figure 4.3). Since

different sources have different pl, we should allocate the samples accordingly and use

more samples for those sources with small pl, so as to minimize the overall rate penalty.

This is reflected in (4.14) and (4.15).

Since we have chosen to use the same zω/2 in all sources, we have the same probabilities

of over-estimation for all sources. In some applications it may be more appropriate to

choose different target failure probabilities for different sources, e.g., in the cases when

the sources are bit-planes extracted from a continuous valued source, MSB bit-planes are
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more important and should have smaller failure probabilities. This can be incorporated

in the sample allocation by using different zω/2 for different sources in (4.11).

Note that the optimal sample allocation depends on the crossover probabilities {pl}.

However, {pl} is obviously not known initially. In practical applications, the results of

optimal sample allocation can be applied in the following ways:

• In many applications, we may have some a priori knowledge of {pl}. For example,

in hyperspectral image compression [14], where bit-planes of spectral bands are

extracted and compressed, {pl} of neighboring spectral bands are usually similar.

Therefore, we can use some approximations of {pl} in the optimal sample allocation

equations to determine the sample assignment. We will present experimental results

in Section 4.6 to demonstrate that this can be a viable method. Note that using the

a priori knowledge directly to select the encoding rate may cause decoding error, if

this a priori knowledge leads to over-estimating the correlation. Instead, by using

the a priori knowledge to determine the sample allocation and (4.8) as the estimator

to select the coding rate we are guaranteed that p̂l is larger than pl with probability

(1−ω/2), and we can bound decoding error systematically. Also this is more robust

in cases where the a priori knowledge may not be a good approximation to the true

{pl}.

• We can also use an iterative approach similar to [41]. Essentially, we would allocate

samples in batches of same size. For the first batch, we allocate the same number

of samples to all bit-planes and obtain some initial estimates for {pl}. For the

subsequent batches, we allocate the number of samples according to the current
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estimates and the optimal sample allocation strategy. In this approach, we can also

use any available a priori knowledge to initialize the scheme.

4.3.3 Rate Penalty Analysis - Multiple Sources

Having an expression for E[4H] as a function of nT allows the encoder to select appropri-

ate values for nT , given that increasing nT leads to additional overhead but also reduces

the rate increase due to inaccurate estimation. We focus on the cases when nl < Kl,

where closed form equations can be derived. The equations relating E[4H] to nT can be

obtained from (4.11) and (4.14):

E[4H] =
β√
nT

, (4.17)

where β = 1
KT

[∑L−1
l=0 (Klαl)2/3

]3/2
. Note that β is a constant for a given system. There-

fore, the average rate penalty is inversely proportional to the squared root of the amount

of sampling overhead.

4.3.4 Experiments

In this section we assess the benefits of of using the optimal sample allocation when

compressing i.i.d. sources. We randomly generate L pairs of binary correlated sources

{bX(l), bY (l)} each with crossover probability pl and dimension Kl. Then nT samples

are used to estimate the correlation. The number of samples allocated to each source is

determined according to the following schemes:
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• Optimal allocation. We use (4.14) to determine nl, the number of samples allocated

to the l-th source.

• Even allocation. We allocate the same number of samples to each source, i.e.,

nl = nT /L.

Note that in this section we use the true crossover probabilities to determine the optimal

allocation, while similar comparison using some a priori information to determine the

optimal allocation in practical scenarios will be discussed in Section 4.6. The schemes are

compared based on the average (overall) rate penalty after NE sampling experiments. We

compute the reduction in the average rate penalty (in bits) as: E[4H]even − E[4H]opt,

where E[4H]opt is the average rate penalty using the optimal sample allocation, and

E[4H]even is that of using the even sample allocation. Since there are many possible com-

binations of {pl}, as an example we choose {pl} of the form {p+kδp}, k = ±1,±2, ..., p =

0.25. Therefore, a large δp corresponds to more substantial variation (standard deviation)

in {pl}. Figure 4.4 depicts the comparison results and shows that over 0.07 bits reduction

in rate penalty can be achieved in the case of considerable variation in {pl}, with this

extra number of bits representing a 11.7% rate increase. In practical applications diverse

crossover probabilities are indeed common (e.g., see [14] or data in Section 4.2.4).

4.4 Continuous Input Source: Model-based Estimation

In this section we investigate correlation estimation methods in the particular but impor-

tant cases when bit-planes are extracted from a continuous input source and each bit-plane

125



 

0

0.02

0.04

0.06

0.08

0.1

0.04 0.06 0.08 0.1 0.12 0.14

A
ve

ra
g

e 
ra

te
 p

en
al

ty
 r

ed
u

ct
io

n
 

(b
it

s)

0.20% of total

1.56% of total �
p 

Figure 4.4: Reduction in rate penalty (bits) using the optimal sample allocation, with
L = 4, Kl = 16384, nT = 128 or 1024 (i.e., 0.20% or 1.56% of total respectively),
NE = 100, and p = 0.25.

is compressed via SW coding. This situation arises in several proposed distributed im-

age and video coding algorithms (e.g., [3, 14, 48, 86]). Often, in these applications, some

a priori statistical model knowledge of the continuous-valued input source is available.

For example, wavelet and DCT transform coefficients are typically considered to be well

modeled by Laplacian distributions [65]. In the following we propose a model-based es-

timation method, where the continuous-valued joint p.d.f. of the source and SI is first

estimated via sampling of continuous valued inputs5, and then the bit-plane level (bi-

nary) correlation is derived from the estimated model. This is in contrast to the direct

approach studied in Sections 4.2 and 4.3, where the bit-plane correlation is estimated

through exchanging binary samples from the extracted bit-planes. We shall demonstrate

the model-based method can achieve better estimation accuracy than the direct approach

provided that the continuous-valued model is sufficiently accurate.

5In practice, the continuous valued inputs are rounded so that the samples can be represented with a
finite number of bits.
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4.4.1 General Approach

We shall focus on the setting of Figure 4.1(a), where binary correlation is exploited for

compression of a continuous input X using continuous side-information Y . Assume X

and Y are drawn i.i.d. from fXY (x, y). We assume Y = X +Z, where Z is the correlation

noise independent of X. Our proposed model-based approach starts by estimating the

p.d.f.’s fX(x) and fZ(z). This can be done by choosing appropriate models for the data

samples and then estimating the model parameters using one of the standard parameter

estimation techniques, e.g., maximum likelihood estimation (MLE).

Once we have estimated fX(x) and fZ(z) we can derive the bit-plane statistics as

follows. Suppose we extract raw bit-planes from the binary representations of X and Y ,

and are interested in estimating pl, the crossover probability between the bit-planes of X

and Y at significance level l. Figure 4.5(a) depicts the events (shaded regions Ai) that

lead to the occurrence of crossover between X and Y at significance level l. For example,

consider l = 2 (i.e., the 2nd bit-plane), when X takes the values from 8 (= 01000b) to

11 (= 01011b), crossover occurs when Y takes the values from 4 (= 00100b) to 7 (=

00111b) (region A4 in Figure 4.5(a)), or 12 (= 01100b) to 15 (= 01111b) (region A5 in

Figure 4.5(a)), ..., etc. Specifically, Ai is a subset of R2 defined as

Ai = { (x, y) | 2c · 2l ≤ |x| < (2c + 1) · 2l, (2d + 1) · 2l ≤ |y| < (2d + 2) · 2l; or

(2g + 1) · 2l ≤ |x| < (2g + 2) · 2l, 2h · 2l ≤ |y| < (2h + 1) · 2l},(4.18)
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for some c, d, g, h ∈ Z+. Hence we can estimate the crossover probability at bit-plane l

by

p̂l =
∑

i

∫ ∫

Ai

fXY (x, y)dxdy

=
∑

i

∫ ∫

Ai

fX(x)fY |X(y|x)dxdy (4.19)

Assuming that Y = X + Z and that X, Z are independent, fY |X(y|x) can be found to

be equal to

fY |X(y|x) = fZ(y − x) (4.20)

and the integral in (4.19) can be readily evaluated for a variety of densities. In practice

we only need to sum over a few regions, Ai, where the integrals are non-zero. Note that

when l is small (i.e., least significant bit-planes) the crossover probability is close to 0.5,

since in such cases Ai are small and evenly distributed throughout the sample space, and

hence for most models (4.19) will give p̂l close to 0.5.

In Section 4.5, we will discuss how to extend model-based estimation to the cases when

bit-planes are extracted using more sophisticated methods, in particular those being used

in wavelet-based applications.

4.4.2 Experiments

We now compare the accuracy of direct estimation and model-based estimation. We

generate i.i.d. Laplacian sources X and Z of dimension M with model parameters β and

α respectively, i.e., fX(x) = 1
2βe−β|x|, fZ(z) = 1

2αe−α|z|. Then the crossover probability
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Figure 4.5: (a) Crossover probability estimation for raw bit-planes. Ai are the events that
lead to occurrence of crossover between X and Y at significance level l. (b) Refinement
bit-plane crossover probability estimation: probability of crossover and Xi is already sig-
nificant. (c) Sign bit-plane crossover probability estimation: probability of sign crossover
and Xi becomes significant.
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pl of X and Y (= X + Z) at significance level l, 0 ≤ l ≤ L − 1, is estimated using the

following approaches:

• Direct estimation with even sample allocation. This is similar to the estimation

method in Section 4.2, where n binary samples of the l-th bit-planes are exchanged.

Since there are L bit-planes in total, the total amount of exchanged data is L · n

bits.

• Direct estimation with optimal allocation. This is similar to the aforementioned

approach except that the optimal sample allocation (4.14) is used to distribute the

L · n binary samples among bit-planes.

• Model-based estimation. Here n L-bits random samples of Y are sent to the encoder

of X, where the model parameters β and α are estimated from the n samples of X

and Z(= Y −X) respectively, using MLE [50]. Then the estimate of pl, 0 ≤ l ≤ L−1,

can be derived analytically from β̂ and α̂ using (4.19). Therefore, the model-based

approach also incurs L · n bits to estimate the crossover probabilities of all the

bit-planes.

Note that in the direct approach we do not include offset in the estimator, i.e., the

estimator is S(n)
n following the notations in Section 4.2. Therefore, it is fair to compare

with (4.19). Practical applications may choose to bias both the direct and model-based

estimators as in (4.8) (in model-based estimation we would replace S
n by that calculated

in (4.19)). The approaches are compared based on the deviation of the estimates from the

true (empirical) crossover probability: |p̂l − pl|/pl. The deviation is measured for different

bit-planes using different percentage of exchanged samples, n
M , with β = 0.3, α = 2.5,
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M = 6480. These parameters are similar to those observed in the video data used in

the experiments in Section 4.2.4, i.e., X and Y are the quantized DCT coefficients in a

current frame and the corresponding quantized coefficients in the motion-compensated

predictors in the reference frame, respectively. Figure 4.6 depicts the comparison results,

where the deviations are obtained by averaging over NE = 1000 experiments. As shown

in the figure, the model-based estimation can achieve considerable improvements in the

estimation accuracy, especially when only a small number of samples are used or crossover

probability is small. Note that model-based estimation utilizes the information that the

bits to be encoded have been extracted from continuous-valued data following certain

distributions, and therefore would tend to perform better than direct estimation, which

does not use such information. However, model-based estimation is applicable only to bit-

planes extracted from continuous sources, and obviously its performance depends on how

accurately the continuous-valued data can be modeled. Additional experiments assessing

the performance in terms of coding rate and distortion using a real application will be

presented in Section 4.6.

4.5 Model-based Estimation on Structured Bit-planes

In this section we discuss how to extend the model-based estimation to the cases when

bit-planes are extracted using more sophisticated methods. For example, in the cases

when X and Y are wavelet transform coefficients6, bit-planes are usually partitioned

depending on the magnitude of the transform coefficients to improve coding efficiency, as

6A concrete application scenario can be X and Y are collocated wavelet transform coefficients of two
correlated images.
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(a) The 1st bit-plane.
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(b) The 2nd bit-plane.
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(c) The 3rd bit-plane.

Figure 4.6: Comparing estimation accuracy between the direct approaches and the model-
based approach.
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in the set-partitioning algorithm used in SPIHT [61]. Specifically, in these “significance

coding” techniques, the encoder first signals the significance of each of the components at

a given bit-plane. After a component becomes significant, sign information is conveyed

and then further refinement bits are transmitted. While different wavelet systems may use

different techniques to encode the bits (e.g., context coding can be used as in JPEG2000

or alternatively zerotree coding can be used as in SPIHT to represent significance maps),

the definitions of the (uncoded) sign/refinement bits and significance maps are largely the

same, so the techniques we propose in the context of SPIHT in this section would also be

applicable to other wavelet-based compression schemes that use bit-plane encoding. We

shall consider systems where SW coding is applied to compress the sign/refinement bit-

planes7, and propose extension of model-based approach to estimate the corresponding

crossover probabilities, so that encoding rate can be determined. The extended approach

can also be applied to facilitate adaptive combinations of SW/entropy coding to improve

coding performance [8].

In what follows we will first discuss how to extend model-based approach to estimate

crossover probabilities of sign/refinement bit-planes. Since significance coding is usually

used in wavelet-based applications (e.g., [61,71]), we will also discuss how to address some

of the issues when applying model-based estimation in wavelet-based DSC applications.

7Since significance map carries structural information, a single decoding error in the significance map
would cause decoding failure of all the subsequent bits, and therefore SW coding may not be suitable for
compressing significance map.
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4.5.1 Model-based Estimation for Refinement/Sign Bit-planes

Given an input source Xi to be compressed using side information Yi (= Xi + Zi), and

following the same assumptions in Section 4.4.1, our goal is to estimate the crossover prob-

ability of the refinement and sign bit-planes of significance level l, denoted as pref (l, i) and

psgn(l, i) respectively8. Following from the definition of refinement bits, the refinement

bit-plane of significance level l includes only coefficients that are already significant [61],

i.e., |Xi| >= 2l+1. Therefore, the crossover probability of the l-th refinement bit-plane

for source Xi is

pref (l, i) =
Pr(R ∩ |Xi| >= 2l+1)

Pr(|Xi| >= 2l+1)
(4.21)

where R denotes the event of crossover in magnitude bits, i.e., R =
⋃

Ai, with Ai defined

in (4.18). Following the discussion in Section 4.4.1, we can calculate Pr(R ∩ |Xi| ≥ 2l+1)

by integrating the joint p.d.f. of Xi and Yi, fXiYi , over the shaded regions in Figure 4.5(b),

similar to (4.19). Moreover, fXiYi can be factorized as in (4.20). Hence pref (l, i) can be

readily calculated after estimating models for fXi(x) and fZi(z). In practice, we only

need to integrate a few regions where fXiYi is non-zero.

The crossover probability of sign bit-planes can be derived in a similar fashion. The

difference here is we need to integrate different regions in the sample space of Xi and Yi.

The l-th sign bit-plane includes only the sign bits of the coefficients that become significant

8We introduce the subscript i in this section to facilitate the discussion of wavelet-based applications in
the next section. Specifically, in Section 4.5.2, Xi will be used to denote the wavelet transform coefficient
in the i-th subband. We use separate models for different subbands in order to take into account different
statistics in different subbands (e.g., variances tend to decrease when going from high level subbands to
low level subbands).
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at significance level l [61], i.e., 2l+1 > |Xi| ≥ 2l. Hence the crossover probability of the

l-th sign bit-plane in the source Xi is

psgn(l, i) =
Pr(S ∩ 2l+1 > |Xi| ≥ 2l)

Pr(2l+1 > |Xi| ≥ 2l)
(4.22)

where S denotes the event of crossover in sign bits, i.e.,

S = { (xi, yi) | xi > 0, yi < 0} ∪ { (xi, yi) | xi < 0, yi > 0}. (4.23)

Pr(S ∩ 2l+1 > |Xi| ≥ 2l) can be calculated by integrating the joint p.d.f. of Xi and Yi

over the shaded regions in Figure 4.5(c), similar to (4.19), and factoring the p.d.f. as in

(4.20). However, estimation of fXi(x) and fZi(z) is usually not necessary, since this has

already be done in refinement crossover estimation.

4.5.2 Model-based Estimation for Wavelet-based Applications

Since significance coding is used mostly for wavelet-based compressions, in this section we

will discuss the particular scenarios of applying model-based estimation for wavelet-based

DSC applications. We denote X the wavelet transform coefficients of the input data, with

the i-th subband denoted Xi, 0 ≤ i ≤ NB−1, where NB is the total number of subbands.

A main issue to extend model-based approach to wavelet-based applications is that in

some subbands there may not be enough coefficients to obtain reliable estimates of the

model parameters (e.g., high level subbands in the case of dyadic decomposition). We

will discuss how to address the issue in the following.
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4.5.2.1 Estimation with Adequate Samples

Following the discussion in Section 4.5.1, to estimate the crossover probabilities of sign or

refinement bit-planes, we need to estimate the models fXi(x) and fZi(z). Experimental

results on real image data suggest a single model fZ(z) can be used for all Zi without

any noticeable impact on coding performance. Estimation of fZ(z) (at the encoder of

X) involves samples of Y and therefore is subject to communication/computational con-

straints, and only a small amount of samples Z (= Y − X) should be used to estimate

fZ(z) (as illustrated in the experiments in Section 4.6). On the other hand, estimation

of fXi(x) involves samples of Xi and results are affected by the number of coefficients in

the i-th subband, Ni. Since some subbands may not have enough coefficients to obtain

reliable estimate of fXi(x), we partition the set of subbands {i | 0 ≤ i ≤ NB − 1} into L

and H, where L denotes the subset of subbands (low level subbands) which have enough

coefficients for reliable estimation of the models, and H denotes the set of remaining sub-

bands (high level subbands). The partition of all subbands into L and H is determined by

Ni. In particular, if Laplacian model fXi(x) = 1
2βie

−βi|x| is chosen of Xi, and MLE is used

to estimate βi, then the MLE estimator β̂i has a percentage deviation D = (β̂i − βi)/βi.

It can be shown that D ∼ N(0, 1/Ni), i.e., it depends on Ni only. Therefore, we can

select a threshold to apply to Ni in order to classify a subband into L or H according to

a desired distribution of D.

Estimation of pref (l, i) and psgn(l, i), where i ∈ L, can be performed using the algo-

rithms discussed in Section 4.5.1, with models fXi(x) and fZ(z) estimated from transform

coefficients samples using standard methods, e.g. MLE. Alternatively, the correlation
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noise model fZ(z) can be estimated from statistics in the raw data domain (e.g. pixel

data) calculated using raw domain samples, and this can lead to some implementation

advantage as transformation of the side-information is no longer required. For example, if

Laplacian model fZ(z) = 1
2αe−α|z| is chosen for Z, then we can estimate α by calculating

the standard deviation of Z, σZ , using raw domain samples, and using the relationship

between standard deviation and model parameter in Laplacian distribution, α =
√

2/σZ .

This is viable since the variance of the correlation noise would be the same in the raw and

transform domains if orthogonal filters are used. For some bi-orthogonal filters, e.g. 9/7,

the variance of the correlation noise in the raw data domain would also be very close to

that in the transform domain [74], and we can estimate α using similar procedures. For

other bi-orthogonal filters, e.g. 5/3, the raw domain variance would need to be properly

normalized, following the discussions in [74], so that α can be accurately estimated.

4.5.2.2 Estimation without Adequate Samples

Subbands in H do not have enough coefficients to estimate fXi(x) reliably. Instead, we use

the empirical p.m.f. Pr(Xi = x) of subbands in H along with the correlation noise fZ(z)

to estimate sign/refinement crossover probabilities. Specifically, we derive the average

crossover probability for the refinement bits consisting of i-th subband coefficients, i ∈ H,

by

pref (l, i) =
∑

Pr(U(l, x))Pr(Xi = x) (4.24)

where U(l, x) denotes the events of l-th refinement bits crossover when Xi = x, and the

summation is taken over all the possible values of Xi where Pr(Xi = x) is non-zero. We
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can determine Pr(Xi = x) empirically during encoding by binning the coefficients in the

i-th subband. To determine Pr(U(l, x)), we assume Yi = x + Z (note that here x is a

constant instead of a random variable), and U(l, x) is a subset of the sample space of Z

and can be found to be equal to

U(l, x) =





{z | −x + (2k)2l ≤ z ≤ −x + (2k + 1)2l , or

−x− (2k + 1)2l ≤ z ≤ −x− (2k)2l}, if
⌊ |x|

2l

⌋
is odd,

{z | −x + (2k + 1)2l ≤ z ≤ −x + (2k + 2)2l , or

−x− (2k + 2)2l ≤ z ≤ −x− (2k + 1)2l}, if
⌊ |x|

2l

⌋
is even,

(4.25)

where k ∈ Z+. Therefore, Pr(U(l, x)) can be derived by summing the integrals of fZ(z)

over the shaded regions as depicted in Figure 4.7. In practice we only need to sum over

a few regions where the integrals are non-zero (e.g., around Z = 0, if Z is Laplacian

distributed). Note that computing Pr(Xi = x) by binning the coefficients may not incur

much complexity as the subbands in H have only a small number of coefficients.

Similarly, we can derive psgn(l, i), i ∈ H, by

psgn(l, i) =
∑

Pr(V (l, x))Pr(Xi = x) (4.26)

with V (l, x) denotes the event of the l-th sign bits crossover when Xi = x. It can be

shown that Pr(V (l, x)) =
∫ −|x|
−∞ fZ(z)dz when fZ(z) is symmetric. Note that we use

(4.21) and (4.22) to estimate the crossover probabilities when there are enough samples

in a subband to allow reliable estimation of fXi(x), and (4.24) and (4.26) when there are
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Figure 4.7: Pr(U(l, x)) when (a) b |x|
2l c is odd ; (b)b |x|

2l c is even.

insufficient samples in a subband and empirical p.m.f. Pr(Xi = x) is used to characterize

the data.

4.6 Hyperspectral Image Compression Experiments

In this section we describe several additional experiments on the proposed algorithms

using real image compression applications. In particular, the DSC-based hyperspectral

image compression proposed in Chapter 2 is used as the test-bed9 to assess the perfor-

mance of the sample allocation strategy proposed in Section 4.3 and the model-based

estimation proposed in Sections 4.4 and 4.5. We briefly review the system first, and

present the experiment details and results in the following sections.

9We choose the hyperspectral image applications for experiments mainly because of the availability of
the system.
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4.6.1 DSC-based Hyperspectral Image Compression

Figure 4.8 depicts the encoding algorithm of the DSC-based hyperspectral image com-

pression as proposed in Chapter 2 [8, 67]. To compress the current spectral band Bi,

the sign and magnitude bits of the wavelet transform coefficients are extracted using an

algorithm similar to the standard SPIHT [61], with modifications such that at some sig-

nificance levels the magnitude bits are extracted as raw bit-planes (instead of separating

them into significance and refinement bit-planes) in order to improve coding performance.

Details of the bit-plane extraction strategy can be found in [8], while here our focus is to

investigate efficient algorithms to estimate the correlation between extracted bit-planes

and their corresponding SI.

Slepian-Wolf coding is employed to compress sign/refinement/raw bit-planes, using as

side information the sign/refinement/raw bit-planes of same significance extracted from

aB̂i−1 + b, where B̂i−1 is the previous adjacent reconstructed band available only at the

decoder, and a and b are some linear prediction coefficients. Significance maps of Bi

are intra-coded by zerotree coding. To determine the coding rate, the original previous

band Bi−1 is used to approximate B̂i−1 at the encoder. This is viable since these appli-

cations focus on high fidelity. In particular, sign/refinement/raw bit-planes are explicitly

extracted from the wavelet transform coefficients of aBi−1 + b, and the crossover proba-

bilities are estimated by exchanging small subsets of bits and using the direct estimation

approach discussed in Section 4.2. The amount of information exchanged needs to be

kept small so that the algorithm can be used in parallel encoding scenarios, where each
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band is assigned to a different processor, and the processors are connected by low band-

width data buses. In order to ensure that the source and SI bit-planes are formed with

the wavelet coefficients at the same locations, we need to apply the significance tree of Bi

when extracting bit-planes from Bi−1 [67]. Note that the extracted sign/refinement/raw

bit-planes from Bi−1 are solely used for correlation estimation.
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Figure 4.8: The DSC-based hyperspectral image compression with direct correlation es-
timation.

4.6.2 Sample Allocation Experiments

Given that nT binary samples can be used to estimate the crossover probabilities when

compressing Bi, we compare two strategies to determine how to allocate the samples to

different bit-planes:

• Adaptive sample allocation. We use (4.14), i.e., the optimal sample allocation, to

decide the numbers of samples allocated to different bit-planes. However, since
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Figure 4.9: DSC-based hyperspectral image compression with model-based estimation.

the crossover probabilities of Bi are unknown, we use as a priori information the

crossover probabilities of Bi−1 in (4.14) (which have been estimated during the

compression of Bi−1). When compressing the first DSC-coded band, since a priori

information is not available we allocate the same number of samples to each bit-

plane.

• Even sample allocation. We allocate the same number of samples to each bit-planes

for all the bands.

The NASA AVIRIS image data-sets [38] are used in the experiment. The original

image consists of 224 spectral bands, and each spectral band consists of 614×512 16-bits

pixels. In the experiment, we compress 512 × 512 pixels in each band. Figures 4.10(a)

and 4.10(b) depict the RD performances of the system under different sample allocation

strategies. Here MPSNR = 10 log10(655352/MSE), where MSE is the mean squared error
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between all the original and reconstructed bands. Also shown in the figures are the RD

performances when the exact crossover probabilities are used to determine the coding

rate. As shown in the figures, in the situations with small number of samples exchanged

(e.g., 0.25% of total), the adaptive sample allocation can reduce the rate penalty by about

1dB, as compared to the even sample allocation. Note that the adaptive sample allocation

requires negligible overhead: it simply uses (4.14) to determine a more efficient sample

allocation across bit-planes based on any available a priori information.

4.6.3 Model-based Estimation Experiments

Model-based estimation can be applied to the hyperspectral image system following the

algorithms outlined in Sections 4.4 and 4.5, with X and Y being the transform coefficients

of Bi and aBi−1+b respectively. As discussed, continuous-valued source samples are used

to estimate the models in model-based estimation, so bit-plane extraction from SI is no

longer necessary. In addition, the correlation noise model can be estimated in the pixel

domain in this case following the discussion in Section 4.5.2. Therefore, the model-based

estimation can result in a more efficient system as depicted in Figure 4.9. Here the core

compression module is the same as that in the original system (with direct estimation)

in Figure 4.8, while the correlation estimation algorithm is modified following the model-

based approach, leading to the following implementation advantages in this application:

• First, the model-based system requires less computation. This is evident when

comparing Figures 4.8 and 4.9: Wavelet transform on and bit-planes extraction
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Figure 4.10: Sample allocation experiments - (a) Lunar (reflectance data), (b) Moffet
(radiance data), using 0.25% total sample. An adaptive sample allocation scheme using
the proposed optimal sample allocation strategy in Section 4.3 with a priori information
from previous encoded band is compared with the even sample allocation. Here “Exact”
denote the cases when the exact correlation information is used to determine the coding
rate, i.e., no rate penalty.
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from SI as in the original system10 are no longer required, while model estimation

(using MLE) and calculating the crossover probability estimates (using analytical

equations) require only small amounts of computation in the model-based system.

• Moreover, in parallel encoding scenarios, the model-based system requires less data

traffic between processors. This is also evident when comparing Figures 4.8 and 4.9:

In the model-based system, encoder of Bi only needs to request pixel domain sam-

ples from encoder of Bi−1 at the beginning of processing to compute the linear

prediction coefficients and correlation noise model, whereas in the original system

additional traffic is incurred for exchanging significance tree and SI bit-planes.

• Furthermore, the model-based system can achieve better parallel encoding, as there

are only small amounts of dependency between encoders of different bands at the

beginning of processing, and processors can proceed without further synchronization

(See timing diagrams in Figures 4.8 and 4.9).

The performance of model-based estimation is assessed by comparing with the original

system, where SI bit-planes are explicitly extracted and exact crossover probabilities are

used to estimate the encoding rate, i.e., there is no rate penalty. In the model-based

approach, samples of Bi−1 are obtained by downsampling the image by factors of four

and eight horizontally and vertically respectively. Therefore, 3.125% of image data are

used to estimate the correlation noise model. To prevent decoding error due to under-

estimating the crossover probability, we allow a larger margin to determine the encoding

10It may be possible to avoid wavelet transform of SI by storing and re-using the coefficients during
the compression of Bi−1. But this would significantly increase the memory requirements. And bit-plane
extraction from SI is always required if generating SI bit-planes explicitly, since the SI sign/refinement
bits need to extracted based on the significance tree of Bi.
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rate, at the expense of coding efficiency. Specifically, a 0.15-bit margin is added to the

estimated Slepian-Wolf bound, so that there is no decoding error occurred in the testing

data-sets. Figures 4.11 depicts the RD performance. As shown in the figures, model-

based estimation incurs only small degradation in coding efficiency. In most cases, the

difference is less than 0.5dB when compared to the direct estimation with exact crossover

probabilities used to determine the coding rate.

4.7 Extensions to Other Correlation Models

While in the previous sections we focused on binary correlation, in this section we give

examples of how some of the proposed ideas can be extended for several other correlation

models, where non-equiprobable inputs are considered or previously (higher significance)

decoded bitplanes are used as side information for decoding.

4.7.1 Rate Penalty Model for Non-equiprobable Input

In Section 4.2 we presented a model for rate penalty (4H)(n) for equiprobable inputs,

and experiment results in Section 4.2.4 suggest the model is sufficiently accurate for real-

world data, which are in general non-equiprobable. Nevertheless, more accurate (but more

complicated) penalty models can be obtained by relaxing the equiprobable assumption.

We follow the notations in Section 4.2, and assume (i) Pr[bX = 0] = θ, and (ii) the

correlation is symmetric, i.e., Pr[bY = 1|bX = 0] = Pr[bY = 0|bX = 1] = p. It can be
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Figure 4.11: Coding efficiency comparison: (a) Cuprite (radiance data); (b) Lunar (re-
flectance data). The model-based system is compared with the original system, which
uses all samples in direct estimation and exact crossover probabilities to determine the
encoding rate, i.e. no rate penalty. Coding performances of several other wavelet systems
are also presented for reference.
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shown that Pr[bX 6= bY ] = p, and the lower bound in the lossless encoding rate of bX is

a function of p and θ

H(bX |bY ) = g(p, θ) = πH(
(1− p)θ

π
) + (1− π)H(

pθ

1− π
), (4.27)

where

π = Pr[bY = 0] = θ + p− 2θp. (4.28)

We follow the approach of Section 4.2, where the p.d.f. of the estimation error is first

derived, and then the rate penalty is determined from the relationship between estimation

error and rate penalty. In particular, following the estimation procedures in Section 4.2.2,

the estimation error (4p)(n) is given by (4.5). Note that only a subset of bY ’s are available

when encoding bX and thus Pr[bX 6= bY ] cannot be found exactly. On the other hand,

since all bX ’s are available at the encoder there is no estimation error for θ. Therefore,

the rate penalty can be approximated by:

(4H)(n) ≈ ∂g(p, θ)
∂p

(4p)(n)

∼ N(
∂g(p, θ)

∂p
zω/2σ, (

∂g(p, θ)
∂p

)2σ2), (4.29)

where

∂g(p, θ)
∂p

= (1− 2θ)(H(
(1− p)θ

π
)−H(

pθ

1− π
)) +

θ(θ − 1)
π

ln(
p(1− θ)
(1− p)θ

) +

θ(1− θ)
1− π

ln(
(1− p)(1− θ)

pθ
), (4.30)
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and n is the number of samples of bY used in the estimation. One can verify (4.29)

simplifies to (4.7) when θ = 0.5. Note that one can use (4.29) to derive the penalty model

for multiple non-equiprobable binary sources and determine the corresponding optimum

bit allocation following the discussion in Section 4.3.

4.7.2 Model-based Estimation with Previously Decoded Bit-planes as

Side-information

We now discuss how to extend model-based estimation to the cases when the previously

decoded bit-planes are used as SI. Specifically, we consider the cases when bit-planes are

extracted from a continuous input source, and each bit-plane bX(l) is compressed with

both the previously decoded bit-planes of the same source bX(l+1), ..., bX(l+m) and that

of the correlated source bY (l), bY (l + 1), ..., bY (l + m) as SI (Figure 4.12(a)). We assume

bit-planes are communicated to the decoder starting from the MSB, while the reverse

order can be addressed similarly. For encoding bX(l) we need to estimate the coding rate

H(bX(l)|bX(l + 1), ..., bX(l + m), bY (l), bY (l + 1), ..., bY (l + m)). (4.31)

We follow the same general approach as discussed in Section 4.4. To determine (4.31),

we need the joint p.d.f. between the input and all the SI:

p(bX(l), bX(l + 1), ..., bX(l + m), bY (l), bY (l + 1), ..., bY (l + m)), (4.32)

which has 2(2m+2)−1 free parameters. It may seem complicated to estimate the joint p.d.f.

However, it turns out the model-based estimation for (4.32) exhibits regular structure,
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which greatly simplifies the estimation process. In addition, some video data suggests

further improvement could be negligible with m > 1 in practical applications [10, 11]

(Figure 4.13).

We denote γi,j the joint probability when the binary representation of i is bX(l +

m)...bX(l + 1)bX(l) and that of j is bY (l + m)...bY (l + 1)bY (l) (Figure 4.12(b)), i.e.,

γi,j = p(〈bX(l + m)...bX(l + 1)bX(l)〉 = i, 〈bY (l + m)...bY (l + 1)bY (l)〉 = j),

and 〈b(l + m)...b(l + 1)b(l)〉 denotes the numerical value of the concatenation of the se-

quence of the bits b(l + m), ..., b(l + 1), b(l), i.e.,
∑m

i=0 b(l + i)× 2i. It can be shown that

by tracing the binary representations of X and Y the events leading to the occurrence of

〈bX(l + m)...bX(l + 1)bX(l)〉 = i and 〈bY (l + m)...bY (l + 1)bY (l)〉 = j correspond to the

region Ai,j in the sample space of X and Y in Figure 4.14. Therefore,

γi,j =
∫ ∫

Ai,j

fXY (x, y)dxdy (4.33)

where

Ai,j = { (x, y) | c · 2l+m+1 + i · 2l ≤ |x| ≤ c · 2l+m+1 + i · 2l + 2l − 1,

d · 2l+m+1 + j · 2l ≤ |y| ≤ d · 2l+m+1 + j · 2l + 2l − 1, c, d ∈ Z+}.(4.34)

(4.33) can be readily computed by factorizing fXY and estimating fX and fZ as discussed

in Section 4.4. In practice, we only need to sum over a few regions where the integrals

of fXY are practically non-zero. Note that we can extend this to estimate the encoding
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Figure 4.12: (a) Encoding of bit-plane bX(l) with both the previously decoded bit-planes
bX(l + 1), ..., bX(l + m) and that of the correlated source bY (l), bY (l + 1), ..., bY (l + m) as
SI. (b) Joint p.d.f. between the input and all the SI.

rate for structured bit-planes (i.e., sign/refinement bit-planes) following the discussion in

Section 4.5.

4.7.3 Model-based Estimation with Continuous Side Information in

Joint Decoding

In this section we consider situations where each bit-plane bX(l) is compressed with both

the previously decoded bit-planes of the same source bX(l + 1), ..., bX(l + m) and the
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Figure 4.13: Entropy/conditional entropy of the video bit-planes data used in the experi-
ment in Section 4.2.4, i.e., X and Y are the quantized DCT coefficients in a current frame
and the corresponding quantized coefficients in the motion-compensated predictors in the
reference frame, respectively, using the 2nd AC coefficients of Mobile (720× 576, 30 fps),
at QP= 12: (a) Without SI, i.e., intra coding (“No SI”); (b) Using only the corresponding
bit-plane as SI, i.e., m = 0 (“SI: Corr. bit-plane”); (c), (d), (e): Using corresponding and
one, two or three previously decoded bit-planes as SI, i.e., m = 1, 2 or 3 respectively. The
results suggest further improvements with m > 1 could be negligible.
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continuous SI Y available to be used in joint decoding11. For encoding bX(l) we need to

estimate the coding rate

H(bX(l)|bX(l + 1), ..., bX(l + m), Y ). (4.35)

To determine (4.35), we need the joint p.d.f.:

p(bX(l), bX(l + 1), ..., bX(l + m), Y ). (4.36)

We denote p(〈bX(l + m)...bX(l + 1)bX(l)〉 = i, Y = y) by γi(y). Following the discussion

in Section 4.7.2 it can be shown that

γi(y) =
∫

Ai

fX,Y (x, y)dx (4.37)

where Ai are subsets of X (Figure 4.15):

Ai = { x | c · 2l+m+1 + i · 2l ≤ |x| ≤ c · 2l+m+1 + i · 2l + 2l − 1, c ∈ Z+}. (4.38)

4.8 Conclusions

In this paper, we have investigated correlation estimation for distributed image and video

applications under rate and complexity constraints. Focusing on the situations when

11Note that while this model is commonly used in distributed video applications (e.g., [3]), many lossy
image compression applications may not communicate the LSB bit-planes and therefore a full resolution
version of Y would not be available to be used for joint decoding.
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correspond to regions Ai, subset of X.

sampling techniques are employed to estimate the correlation, we first analyzed how the

number of samples relates to the p.d.f. of the rate penalty when compressing a binary

input source. The rate penalty was found to be normally distributed with parameters

depending on the number of samples and the crossover probability between the source

and SI. We then extended the analysis to the cases when multiple binary input sources

are to be compressed and proposed a strategy to allocate samples to the sources such

that the overall rate penalty can be minimized. Furthermore, We proposed a model-based

estimation for the particular but important situations when bit-planes are extracted from

a continuous-valued input source, and discussed extensions to the cases when bit-planes

are extracted based on the significance of the data for wavelet-based DSC applications.

Experiment results including real image compression demonstrated model-based approach

can achieve accurate estimation. In addition, the model-based estimation might lead to

some implementation advantages.
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Chapter 5

Conclusions and Future Work

We have proposed in this thesis new video and image coding algorithms based on DSC

to address some of the issues in conventional compression framework.

First, we discuss a wavelet-based hyperspectral image compression algorithm that

combines set partitioning with our proposed DSC techniques to achieve competitive cod-

ing performance. DSC tools allow encoding to proceed in “open loop”, and this facilitates

parallel compression of spectral bands in multi-processors architectures. We also discuss

a coding strategy that adaptively applies DSC or intra coding to bit-planes according to

the statistics of the data, to maximize the coding gain. Experimental results suggest our

scheme is comparable to a simple 3-D wavelet codec developed by NASA-JPL in terms

of compression performance.

Moreover, we propose to address flexible video decoding using a DSC approach. With

DSC, the overhead to support flexible decoding depends on the worst case correlation

noise rather than the number of possible decoding paths. As a result, DSC can lead

to a solution that compares favorably to conventional approaches. Experimental results
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using multiview video coding and forward/backward video playback demonstrate the

improvement.

Furthermore, we study the correlation estimation problem in DSC. We propose a

model to characterize the coding rate penalty due to estimation error, and based on the

model we propose a sample allocation algorithm to minimize the overall rate penalty in

the multiple sources scenarios. We also propose a model-based estimation for distributed

coding of continuous-valued input sources. We demonstrate the effectiveness of the pro-

posed algorithms by experimental results including some based on real image data.

Some related future research topics could be

• Peer-to-peer multicast streaming based on DSC. Conventional compression tools

may lack the robustness to address peer-to-peer (P2P) multicast video streaming.

In P2P networks, peer nodes serving the video data may disconnect at any time.

Moreover, individual peer nodes may support different and time-varying upstream

data rates. Conventional compression algorithms fail to cope with these operating

conditions since they are vulnerable to data loss and delay variation. In Chapter 3,

we demonstrate that with our proposed algorithms it is possible to generate a single

compressed bitstream that can be decoded in several different ways under different

operating conditions. This enhanced adaptability can, in principle, greatly facilitate

P2P multicast streaming.

• Application-specific hyperspectral image compression. Existing hyperspectral im-

age compression algorithms are mostly optimized for rate-distortion. However, one
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of the main applications of hyperspectral image data is to identify the ground ob-

jects. Therefore, it is important to investigate new hyperspectral image compression

techniques that optimally preserve the spectral signatures at a given rate, so as to

achieve the best classification performance.
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Appendix A

Derivation of Bounds on the Estimation Error

Here we justify the bounds on the estimation error in Section 2.4.1.2. We let the crossover

probability estimator be the upper bound of the (1−ω)× 100% confidence interval for a

population proportion, i.e.,

p̂i =
si

ni
+ zω/2

√
pi(1− pi)/ni ≈ si

ni
+ zω/2

√
si

ni

(
1− si

ni

)
/ni

Let m = zω/2

√
pi(1− pi)/ni. By the definition of confidence interval, we have

Pr

(
si

ni
−m ≤ pi ≤ si

ni
+ m

)
= 1− ω

Equivalently,

Pr

(
pi −m ≤ si

ni
≤ pi + m

)
= 1− ω
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By this and the fact that si
ni can be approximated by a Normal density with mean pi and

variance pi(1− pi)/ni, we have

Pr

(
si

ni
< pi −m

)
= ω/2

Pr

(
si

ni
+ m− pi < 0

)
= ω/2

Pr (p̂i − pi < 0) = ω/2

and

Pr

(
si

ni
> pi + m

)
= ω/2

Pr

(
si

ni
+ m− pi > 2m

)
= ω/2

Pr (p̂i − pi > 2m) = ω/2

From these equations, the probability of decoding error and probability of large en-

coding rate penalty can be estimated.
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Appendix B

Derivation of Optimal Sample Allocation

Here we give the detail of the derivation of the optimal sample allocation given in (4.14).

We consider

min{nl:
PL−1

l=0 nl=nT ;nl≤Kl}E[4H], (B.1)

where E[4H] = 1
KT

∑L−1
l=0 Klαln

−1/2
l and αl = ln( 1

pl
−1)zω/2

√
pl(1− pl). Using Lagrange

multipliers, we construct

J(n) =
1

KT

L−1∑

l=0

Klαln
−1/2
l + λ

L−1∑

l=0

nl. (B.2)

Differentiate (B.2) and set to zero,

∂J

∂nl
=

−1
2KT

Klαln
−3/2
l + λ = 0, (B.3)

or

n∗l = (Klαl)2/3(
1

2λKT
)2/3 = (Klαl)2/3γ. (B.4)
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This is true as long as n∗l < Kl. Otherwise, we need to use the Kuhn-Tucker conditions

to find n∗l :

∂J

∂nl





= 0, if n∗l < Kl,

≤ 0, if n∗l = Kl.

(B.5)

Solving (B.5) we obtain the results in (4.14).
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