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1.1 Digital communication systems and compression

Advances in the speed and degree of integration of digital circuits have led to a steady

increase in the popularity of digital communications. Originally devoted to the trans-

mission of data, which has relatively lax timing requirements, digital communication

systems are increasingly used for transmission of real time signals as well, for which

there typically exists some constraint on the delay between encoding and decoding.

Digital technology has been widely used in telephone networks for years, (though nor-

mally within the network rather than in the subscriber loop) and the introduction
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of the compact disc (CD) has shown that digital technologies can also spawn very

successful consumer products. More recently, motivated by the advantages of digital

technology for reliable transmission and e�cient storage, and by decreasing costs

of available Very Large Scale Integration (VLSI) technology, digital transmission of

images and video has become increasingly popular.

E�ciency of transmission and storage make it very important to use compression

of the digitized signals, that is, to use a procedure to reduce the amount of information

needed to reproduce the signal at the decoder. While, arguably, transmission and

storage capacities will be available more cheaply in the future (through improvements

in �ber optic communications and high speed digital switching), it is also true that the

increase in demand for digital communication will still make it necessary to compress

the signals to be transmitted. Additionally, the continuing decline in the prices of

memory and the circuitry required for compression will make it even cheaper to use

increasingly complex algorithms for compression.

Thus, since both storage and transmission resources tend to be scarce, an e�cient

digital communications system must resort to some sort of compression scheme. In

this thesis we will consider several issues concerning compression for images and

video. We will concentrate on lossy compression, i.e. where the decoded signal is an

approximation to the original signal fed into the encoder. While lossy compression

would obviously be unacceptable for data communication, signal transmission is dif-

ferent in that judiciously administered \losses" to the input signal may be acceptable.

In this context, acceptable losses are those that a user would not be able to detect

(in the case of low compression systems) or those the user would not object to, even

if they are perceptible (for lower quality, higher compression systems.)

The interest in compression for both images and video has been shown in interna-

tional standardization e�orts, such as JPEG [112] for image compression and H.261
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[61] MPEG-1 [58] and MPEG-2 for video compression at di�erent target rates. As

the availability of standards has permitted a�ordable hardware compression it has

also multiplied the number of applications for which digital image and video are pro-

posed. Computers equipped with JPEG compression are becoming commonplace,

digital transmission of video is already used in videophone and videconference ap-

plications [61], it will soon become reality in satellite broadcast and has also been

selected as the delivery mechanism for future High De�nition TV (HDTV) systems.

To study the performance of image and video compression techniques one has thus

to consider two parameters: the achieved degree of compression and the degradation

in the perceived quality due to the lossy scheme. Since image and video may be used

in a real time communication environment, we also consider throughout this thesis

the role of delay in judging the performance of such systems, taking into account the

end-to-end transmission delays as well as the encoding delays.

1.2 Performance of image and video encoders

Consider a generic communications system (refer to Fig. 1-1) composed of �ve el-

ements, a signal source, an encoder, a communication channel, a decoder and a

display or output device. The signal source generates at �xed intervals one block

or vector chosen among a (continuous or discrete) set S of possible blocks (these

blocks are groups of samples of the analog signal that is being transmitted). Call

X1; � � � ;Xi; � � � ;XN the blocks in the sequence, where Xi will typically denote the

current block. As blocks, depending on the application, we consider anything from

single samples up to video frames. Also, in some cases, the numbering of the blocks

will correspond to the temporal ordering (e.g. consecutive frames in a video sequence)

while in other cases all the blocks may be available simultaneously and the number-

ing would correspond to some other ordering (e.g. spatial ordering of the blocks in
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a block{based image coding scheme). The encoder maps each of the source blocks

Xi into a reproduction block X̂i chosen from a �nite codebook C � S and transmits

the index corresponding to the chosen codeword to the receiver through the com-

munication channel. The decoder maps the index to the reproduction codeword X̂i,

which is then presented in the display or output device. Note that we use the terms

codebook and index, commonly employed in the vector quantization (VQ) literature,

as a conceptual tool, without implying that the encoding procedures or the codebook

design are necessarily similar to those used in VQ.
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Figure 1-1: Block diagram of a generic communications system. The source outputs
blocks that are encoded and transmitted. Note that the diagram depicts an encoder

formed by a transform (T), quantizer (Q) and entropy coder (E), as well as an output

bu�er. However this is not the only con�guration we will consider.

A good way of studying the performance of such a system is to resort to a rate-

distortion (R-D) framework [99, 8, 24]. The encoder uses a certain rate, or number

of bits, to transmit each of the blocks in C while the channel can transmit only a

limited number of bits per unit time. For the given channel rate constraints, we can
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determine the performance by measuring the distortion between the original block

produced by the source and the corresponding output block at the receiver end. Such

a distortion should be linked to how acceptable to the end user the decoded signal

is. Then we can concentrate on the problem of minimizing the distortion achieved at

a certain rate. We will look in more detail at the exact optimization framework and

the cost functions in Section 1.4.

Let us now consider a generic encoder in more detail. The encoder is uniquely

determined by two elements: the codebook (including both the available reproduc-

tion blocks in C and the corresponding codewords) and the encoding rule (which

determines what codeword should be assigned to a given input block). Typically, the

codebook is designed �rst, and optimized based upon either models, or, more likely,

a training source, that are assumed to be representative of the expected sources. Al-

though a fully adaptive scheme would potentially update the codebook as the source

changes [39, 40, 17] most systems operate with a �xed pre-designed codebook and

rely on the encoding rule to provide all the adaptivity.

1.2.1 Codebook design

We now explain some basic ideas regarding typical codebook design. Our aim will be

to review some of the more basic principles to outline the assumptions and trade-o�s

that are required to implement practical codebooks. Since in the rest of this thesis

(except Chapter 6) we will assume a generic codebook, this section does not intend

to be exhaustive. Detailed treatments of codebook design techniques can be found

in [39, 50].
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1.2.1.1 Scalar quantization and entropy coding

The simplest case is that of scalar quantization, where each of the samples generated

by the input source is quantized separately. Then the set of input blocks S will be

some subset of R, the set of real numbers. The codebook design problem consists

in selecting a �nite number, say L, of values ri 2 R to be used as reproduction

levels, as well as the corresponding codewords to be transmitted, ci. The encoding

algorithm will be such that X̂i = rj, where rj is the reproduction level closest to Xi.

Under the assumption of a stationary source with known statistics well known design

techniques can be used to determine the ri; ci pairs. For instance, the Lloyd-Max

quantizer design technique provides optimal, i.e. distortion minimizing, ri's for �xed

length ci's (see Chapter 6 and [39, 50]). The model can be either explicit, through

knowledge of the probability density function (pdf) of the source, or implicit, through

the choice of a speci�c training sequence or set of blocks as being characteristic of

the source.

If S is a �nite set (as is the case for example with image pixels) then one can use

entropy coding techniques to minimize the expected average number of bits needed

to encode the source without distortion, i.e. where X̂i = Xi. This would be an

example of lossless compression. Calling s1; : : : ; sK the elements of S, assume their

probabilities p(s1); � � � ; p(sK) are known. Then the �rst order entropy of the source

in bits is:

H = �
KX

k=1

p(sk) log2(p(sk)): (1.1)

The entropy dictates a lower bound in the number of bits per input sample needed

to transmit sequences generated by the source assuming that the source follows the

model and that the blocks are to be coded individually. Well known techniques such

as Hu�man and arithmetic coding can provide performance close to the entropy. Note

that given a continuous set S and a set of reproduction levels ri one can measure the
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expected probability of each of the ri's and then use entropy coding to determine the

ci's. The resulting ci's will have variable length.

The main point is to note that both scalar quantizer and entropy coder design

rely on having available a model of the input source. In cases where the source is

known to be non-stationary one can resort to techniques that adapt the codebook to

the changing statistics. See Chapter 6 for a review of adaptive codebook techniques

for both lossless and lossy compression.

1.2.1.2 Vector quantization

When we choose blocks Xi which contain n samples, i.e. for S a subset of Rn, we are

considering the more general Vector Quantization (VQ) codebook design problem.

Similar principles, although without as simple an optimization procedure, can be

de�ned for vector quantization schemes. See [39] for an excellent review of VQ

techniques.

Note that, as the dimensions of the vector increase, it becomes increasingly un-

realistic to obtain explicit models of the source, and therefore VQ techniques rely

on training sequences to design the codebooks. Obviously the codebook obtained

through training will do a good job of representing the blocks within the training set.

However it is by no means clear what constitutes a \good" training set, as measured

by how well the generated codebook performs for blocks outside the training set.

Also, increasing the dimensions of the vector increases the complexity of both the

codebook design and the encoding procedure.

For the above reasons VQ schemes of interest typically rely on relatively small

values of n. Given the complexity of generating a codebook, typical schemes maintain

a �xed one, though recent work has also explored di�erent strategies for updating

the codebook on the y while encoding the source [40, 17, 14, 15, 23, 39].
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1.2.1.3 Codebook design for image and video sources

For image and video applications, it would be possible, at least conceptually, to

consider images or frames as being \blocks" in the sense introduced above, so that a

codebook would be composed of full image size codewords, i.e. each of the codewords

would have the size of an image (see [69] for an example where this model is used as an

analysis tool). Even though all image coding schemes e�ectively do map each image

into one among a discrete, albeit huge, set of possible codewords, it would be clearly

impractical to use such an idea, due to the complexity of both to the codebook design

and the encoding algorithm. Thus all practical image/video coding algorithms rely

on the \divide and conquer" approach to make the codebook design and the encoding

algorithm realizable. Discrete cosine transform (DCT) based coding [68] VQ [39] are

examples of algorithms that decompose the input signal into sub-blocks, which are

independently quantized (sub-block size codebooks can then be designed). Similarly,

subband and wavelet coders produce several sets of samples (each of the bands) which

can then be quantized independently.

We now briey outline a typical codebook design technique for a linear transform

DCT-based coder. An image is �rst decomposed into blocks on which the DCT

is computed. Then the resulting set of coe�cients (in the \transform domain") is

quantized. While there is no theoretical justi�cation to encoding independently the

transform coe�cients (or the subbands), in practice this approach is used under the

generally correct assumption that after decorrelation, achieved by using the DCT, the

gain to be expected by using vector quantization would be limited. Therefore one can

treat the set of all coe�cients corresponding to the same frequency as a single source,

for which a quantizer has to be designed. The problem of determining how coarsely

to quantize each of the coe�cients is again one where models are typically used.

For instance, in the case of DCT methods, one estimates the variance of each of the



9

coe�cients based on an image or set of images, then bit allocation techniques are used

to determine the coarseness of quantization to apply to each of the coe�cients [50].

This results in a set of factors (usually denoted quantization matrix) which specify

the relative coarseness of quantization for each of the coe�cients. For simplicity of

implementation uniform quantizers are normally used and then codewords for each

of the possible quantized values are found in order to minimize the entropy, using

variations of Hu�man coding. Also, it should be pointed out that inter-coe�cient

correlation is exploited to some extent by using techniques such as zig-zag scanning

and run-length coding [112]. Examples of this design technique can be found in

[1, 112, 58].

Furthermore, to make the design of these systems more versatile an additional

parameter, sometimes called quantization parameter or QP is also available. This

parameter determines the coarseness of the quantization for a given block (as the

MQUANT parameter in MPEG) or for all the blocks in an image (as in JPEG).

While the quantization matrix determines the relative coarseness of quantization for

each of the coe�cients, the QP parameter scales the quantizer steps equally for all the

coe�cients in a block, while preserving the relative degrees of coarseness determined

by the quantization matrix. Thus, if QP can be changed on block by block basis, it

allows the encoder to assign di�erent levels of quantization coarseness to each block.

Typically, increasing QP results in higher compression at the cost of higher distortion.

This parameter enables using the same coding scheme to achieve several operational

R-D operating points for any given block and would be equivalent to having a set

of M codebooks fC1; : : : ; CMg each corresponding to a given QP (the role of the QP

is thus analogous to that of the gain in gain shape VQ schemes[39]). Therefore to

transmit the codeword corresponding to a given input block it will be necessary to

�rst communicate to the decoder which codebook was selected and then transmit the
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index of the appropriate codeword. Thus the QP value can be seen as an overhead

information.

For convenience we have been referring to codebooks for blocks even when consid-

ering transform coding schemes, thus ignoring the exact quantization process which

entails computation of the transform and then quantization of the coe�cients. Ob-

viously both the codebook design and the mapping procedure are not arbitrary and

the techniques used are speci�c to the transform coding environment.

Design for subband coders [114, 52] resorts to similar techniques where quantizers

are designed a priori and trained on some representative set of images. Similar

training approaches have also been used for wavelet based coding schemes [4]. Only

more recent work [59, 100] has achieved a higher degree of adaptivity by exploiting

dependencies between bands while not requiring training [100].

Finally we should note that choosing the codelengths for the di�erent vectors in

block-based motion compensated video coding also resorts to training. In this case,

a �rst phase in the design process determines which vectors turn out to be more

\popular" and the relative frequencies of occurrence are then used to compute an

entropy code for the vectors.

1.2.2 Encoding algorithms and adaptivity

Note that a common thread through all of the abovementioned schemes is to operate

on smaller coding units (blocks in DCT and VQ, bands in subband and wavelet cod-

ing, vectors in motion compensation) and de�ne a codebook for such units. The main

motivations for this approach are the reduced complexity of small-block approaches,

as well as the di�culty of achieving good models for larger blocksizes. In most cases

the codebook does not change after the design stage. Assume now that the codebook

is �xed and our aim is to achieve some adaptivity.
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We will consider two cases according to whether the encoder chooses the codeword

corresponding to a block from a single codebook or from one among several possi-

ble codebooks. The latter is the most attractive alternative to implement adaptive

encoding algorithms, but good results can be obtained using the former approach as

well. As an example, so-called thresholding algorithms perform an adaptive encoding

within a single codebook. For instance in [89, 88] thresholding is used to remove, in

a R-D optimal way, coe�cients after having quantized all the image using a single

QP. Thus, for the codebook determined by QP, codewords are transmitted which are

not necessarily the nearest, for our distortion measure, to the source block. A similar

approach has been proposed to improve the performance of a wavelet{based encoder

in [118].

Obviously, the simplest encoding algorithm is that which maps each of the input

blocks into a codeword regardless of the context. In other words, each block symbol

will be considered independently of the others and will be mapped to the nearest

codeword (in terms of the distortion measure that is used). If several codebooks

are used then the choices of codebook will also be made independently, so that for

instance one could use the same Ci for all blocks in the source or choose a Ci for each

block based on some other factor, e.g. the bu�er fullness in a typical bu�er control

scheme. This approach has the advantage of not requiring encoding delay. In the

example of DCT-based coding this solution would call for �xing one QP for all blocks

in the image so that they can all be coded independently (this is the case in JPEG,

for instance).

Roughly speaking, we can de�ne adaptivity as the ability to change the choice

of codeword for a given block depending on the context. More formally, if Xi is the

current block and X�

i = f(Xi) is the codeword nearest to it within the codebook

(in the sense of the distortion measure that has been selected), then an adaptive
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encoding algorithm selects X̂i, which might be di�erent from X�

i . We will denote

R(X̂i) and D(X̂i), the rate and distortion, respectively for the given codeword X̂i,

where R(X̂i) includes any possible overhead needed to specify the choice of codebook

Cj . Adaptivity can be summarized by writing the encoding algorithm for block i as

X̂i = f(X̂1; : : : ; X̂i�1;X1; : : : ;Xi�1;Xi; : : : ;XN ): (1.2)

If we had

X̂i = f(X̂1; : : : ; X̂i�1;Xi): (1.3)

we would be considering backward adaptation. In some cases, if multiple codebooks

are used, the information of which codebook is to be used would not necessarily have

to be sent as overhead, since both encoder and decoder have access to the information

needed to adapt the encoding rule (except for Xi). A predictive scheme would be an

example of this type of adaptation, since past quantized blocks are used to predict

the current one and the predictor de�nes the codebook to be used. In the context

of rate control, memoryless schemes (where the bu�er state is fedback to choose the

next codebook) would not require overhead, while schemes where the incoming block

Xi is analyzed before the decision would require overhead.

Conversely, if the encoding rule was such that

X̂i = f(Xi; : : : ;Xi+D): (1.4)

we would have an example of forward adaptation. Again, if multiple codebooks are

used, the encoder will have to rely on sending its choice of codebook to the decoder,

since the decision will be based on information available only at the encoder. Note

that in this example the encoding delay would be D blocks, since the encoder has to

know the next D blocks in order to quantize block i.
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Adaptivity has advantages, which will be described in what follows, but also in-

creases the complexity of the encoders and/or decoders. Forward adaptation calls for

an encoder more complex than the decoder, but requires that overhead information

be sent. For example, the encoder in an JPEG scheme can specify di�erent quanti-

zation tables (and thus di�erent codebooks) for di�erent images but would have to

�rst optimize the table for a given image and then transmit it along with the image

data to the decoder. Conversely, backward adaptation may not require overhead in-

formation to be sent but resorts to similar complexity in encoder and decoder, which

may not be desirable in some applications. It is also less robust to channel errors,

since future blocks will be coded based on past decoded ones and these may have

been corrupted by transmission errors.

1.3 Adaptivity, bit allocation and delay constraints

We have thus far explained how adaptivity could be achieved via either update of

the codebook or through the encoding algorithm. We now motivate why adaptivity

is desirable in the �rst place. Parts of this thesis will be devoted to considering the

case where a discrete set of codebooks is �xed (Chapters 2, 3, 4). Another chapter

will deal with an adaptation scheme that acts upon a set of images (Chapter 5) and

we will �nally show a novel example of backward adaptive quantization (Chapter 6).

We now list some of the main motivations to set up adaptive quantization schemes.

Our goal is to present situations where using the more complex encoding rules of (1.3)

and 1.4) can be advantageous.

Rate constraints. A typical situation calls for compressing a set of blocks (e.g.

an image) using a rate close to some target rate budget. In such cases, choosing X̂i

for each of the blocks of the source is a bit allocation problem where the resulting
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decoded quality should be maximized for the given rate. Fixed quantization basically

would assign the same relevance to all types of blocks. Because some blocks can

withstand higher objective error without a�ecting the perceptual quality, it may be

wise to reduce their rate allocation (i.e. operate with a poorer quality codebook) and

use those bits for other blocks. Therefore, achieving a globally good performance

under a rate constraint involves considering all blocks and thus being adaptive (see

Chapter 2).

Bu�er constraints. When transmitting the variable size codeword indices through

a constant rate channel where the encoder and decoder are attached to synchronous

source and display devices, the rate will have to be adjusted so that excessive end to

end delay does not cause loss of information. Equivalently, maintaining a constant

end to end delay can be seen as having �nite bu�ers at the encoder and decoder as

in Fig. 1-1. This is a special case of the previous global rate constraint where now

local constraints on the rate have to be enforced as well. The problem of rate control

is thus also one of adaptive encoding where, as will be seen, a short encoding delay

may be su�cient to obtain good performance (see Chapter 2).

Memory in the encoder (dependent allocation). If we are generating predic-

tors with some of the previously quantized blocks (e.g. DPCM, Motion-compensated

DCT, etc) then achieving optimality would require adaptivity. Indeed, making a

quantization choice for the current block as in (1.3) may turn out to be suboptimal

in the long run since the current block is used as a predictor for future ones (see

Chapter 4).

Inadequacy of the training set or the model with respect to the actual

source. Obviously if there is a mismatch between the expected and actual sources
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a scheme that is capable of adapting should be better (see Chapter 6 for an example

of codebook adaptation). Note that the case of image and video is particular in that

there are models available only for the coding units (e.g. DCT blocks, subbands) but

not for the images as a whole, which would be too complex to model. Therefore the

need for blockwise bit allocation can be seen as an adaptation to the speci�c input

image.

Other constraints. Finally it may be possible that other constraints operating

directly or indirectly on the rate may determine the use of an adaptive point. For

example, some situations may require a rate control that meets certain requirements

due to system performance issues, rather than purely source coding performance (see

Chapter 3). Also, multiresolution (MR) schemes present a di�erent problem in that

they require that a codeword is chosen for each of the resolutions of the signal source.

While choosing the codewords based on R-D criteria may be one of the objectives

[85, 86], the relative rate of the di�erent resolutions can also be chosen based on other

constraints. For instance, in a multiresolution image database browsing scheme, our

aim can be to operate with a minimum query delay. The problem is also one of

adaptation since we would allocate the rates in a di�erent manner depending on the

characteristics of the image set to be queried (see Chapter 5).

1.4 Optimization framework

Traditional rate-distortion theory provides bounds on the performance for certain

classes of sources and encoders. For a stationary source, characterized by its proba-

bility density function (pdf), the rate-distortion function will give a lower bound on

the distortion that is achievable with a given rate. However, rate distortion theory

does not specify how to construct encoders to achieve results close to those bounds.
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Parts of this thesis (Chapters 2, 3, 4) will be concerned with studying and optimizing

the performance of actual encoders, operating on sources for which we make no as-

sumptions on stationarity. We therefore depart from the traditional R-D framework

in two ways (refer to Fig. 1-2):

1. We use in our optimization actual values of rate and distortion as in the opera-

tional rate-distortion framework of [22], i.e. for every source block we measure

the distortion and the length of the resulting codeword. Instead of looking for

the expected values of rate and distortion, as in a model based approach relying

on stationarity, we �nd time averages and our objective is to minimize these

averages for the known source. Thus in Fig. 1-2 the available points marked

with the crosses were directly measured on the source.

2. To achieve adaptivity we consider that the encoder can choose for each symbol a

reproduction vector from one of the discrete set of M codebooks (C1; � � � ; CM).

Thus we assume that we are given a discrete set of admissible quantizers to

operate with, as in [101], and our problem will be to choose the \best one" for

every block in our source. Thus in Fig. 1-2 we observe a �nite set of available

operating points.

1.4.1 De�ning a cost function

We have so far mentioned the existence of a distortion function without detailing

the type of function that we expect to use. Due to its convenience and wide us-

age the mean square error (MSE) measure is very frequently chosen. If blocks of

size n are considered and the Xi(j) are the components of a block then MSE =

(1=n)
P
(X̂i(j)�Xi(j))

2. Our results are valid for MSE but also for more general dis-

tortion measures, namely, those which can be computed individually on each block,
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Figure 1-2: Operational vs. traditional rate distortion formulation. The traditional
R-D formulation assumes a model for the source and is concerned with obtaining
bounds on achievable performance, without providing constructive methods to ap-

proach those bounds. In an operational R-D framework the optimization has to �nd
good actual operating points among the discrete set of those available (depicted as
in individual points in the �gure).

i.e. where D = D(Xi; X̂i). Additionally, by aiming to minimize the average distor-

tion we are implicitly assuming that the average distortion for a set of blocks is a

good measure of the overall reconstruction quality of the set.

It is well known that MSE may not be correlated to the perceptual quality of

the decoded images, so that images with similar MSE may have widely di�erent

perceptual quality. Also, it is questionable that averaging a distortion measure such

as MSE is meaningful. For instance, can a very poor quality block within an image

be \compensated" by the fact that adjacent blocks have good quality? To face the

shortcomings of the MSE measure while still considering objective cost functions we
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propose the following two modi�cations, which both produce distortion measures

that can be used within our framework.

Weighted MSE. This is a well known technique to improve the correlation be-

tween the objective measure and the subjective quality. The idea is to weigh the

MSE according to the type of block/image under consideration. For example, in a

block-based DCT scheme one could weigh the MSE by the \activity" of the block as

measured, for example, by the energy of the transform domain coe�cients. By doing

this, blocks with higher activity, i.e. more high frequency content, could be quan-

tized more coarsely without a�ecting as much the subjective quality as in the case of

low activity blocks. Note that in designing the quantization one is already implicitly

using a frequency weighted MSE approach, since higher frequency coe�cients tend

to be more coarsely quantized. Furthermore, if relative weights derived from Human

Visual System (HVS) factors can be attached to the di�erent frequency coe�cients

or subbands, one can use a frequency weighted MSE in the bit allocation process.

See [48] for a comprehensive review of perceptual factors in signal compression.

Thresholded MSE. Optimization of distortion across the blocks in the source may

result in a misleading averaging of high quality and low quality blocks. To avoid this

problem, we resort to setting thresholds on the MSE. For instance, assume that for a

certain block i and codebook j we achieve a quality such that the next higher quality

codebook j � 1 provides a decoded block which is visually indistinguishable from

that obtained with j. Then, we should set to zero the MSE corresponding to using

either for that block. In this way, the optimization techniques will avoid increasing

the quantization quality beyond the point where it no longer makes a di�erence.

Similarly, if a certain quality level was deemed unacceptable for some block and a

given application, we could set the cost of choosing the corresponding codebook,
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and those of worse quality, to in�nity. In this way we are in e�ect eliminating that

codebook from the set of admissible quantizers for the block in question.

While it may not be straightforward to set up the abovementionedweights and the

thresholds it is worth noting that they can help provide an objective measure closer

to the perceptual quality criteria, while being readily usable within our optimization

framework.

1.5 Problem formulation and complexity

1.5.1 Formulation

Assume we are givenN blocks to be quantized, and that we haveM possible operating

points for each of the blocks. The rate and distortion for each of the blocks and each

of the operating points are known also. Then our problem will be to �nd the encoding

rule f to

min
NX

i=1

D(X̂i;Xi) (1.5)

and such that for every i we have:

X̂i = f(X̂1; : : : ; X̂i�1;X1; : : : ;Xi�1;Xi; : : : ;XN ):

while possibly meeting some set of additional constraints on the rates R(X̂1; : : : ; X̂N ).

Note that we have written f in the more general form as in (1.2) but we will

restrict ourselves variously to forward adaptation as in (1.4) in Chapters 2, 3 and 4

or to backward adaptation as in (1.3) in Chapter 6. Also it should be emphasized

that our objective is the encoding rule: our goal will be to obtain an algorithm f that

will choose X̂i based on the available information, for any source. We denote f as a

function for convenience, although it should be clear that it represents an algorithm.

In the literature, two approaches have been used to deal with bit allocation
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problems: an analytical model{based (continuous) framework and an operational

rate{distortion based (discrete) framework. The model{based approach assumes var-

ious input distributions and quantizer characteristics from Gaussian inputs [47] to

negative{exponential distributed quantizers [50, 97]. With this approach, one can

sometimes get closed{form solutions based on the assumed models, using continu-

ous optimization theory. Alternatively, bit allocation for completely arbitrary inputs

and discrete quantizer sets has also been addressed in [101] in the operational rate{

distortion framework we have chosen.

Note that while the problem can be conveniently expressed in terms of the rate

and distortion there are other parameters of interest, namely the complexity of the

encoding algorithm and the encoding delay.

1.5.2 Encoding delay

We de�ne the encoding delay as the number of \future" blocks that have to be

considered in order to encode a given block as in (1.4). For instance if in an image

application we select the codebook and reproduction level independently for each

block, then there is no encoding delay. If conversely we perform a global allocation

of codebooks to blocks we are incurring a one-image encoding delay.

Note that some of the questions raised in Section 1.3 may be tackled without

necessarily recurring to an increase in encoding delay. For example the bu�er con-

straint may be dealt with, as has often been the case in the literature, by choosing

the codebook based on the current block and the bu�er occupancy. Also, assigning

di�erent codebooks to di�erent blocks can be done by having some criterion based on

the block itself. As an example one could measure the activity (for instance using the

total power in the transformed block) in each block of DCT coe�cients and assign

the codebooks accordingly, so that higher activity blocks get coarser quantization.
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In this thesis we will consider problems where we are seeking to optimize the

encoding rule to meet some requirements while resorting to the encoding delay as

one of the parameters that can be adjusted. Assuming relatively long encoding delay

is legitimate for some applications for various reasons. (i) For non-interactive appli-

cations, e.g. image transmission, the encoding delay is not as critical as, say, in an

interactive videoconferencing environment. (ii) The complexity required when oper-

ating with long encoding delays may be acceptable in asymmetric applications (e.g.

broadcast) or \one-time coding many-time decoding" (as in coding for CD-ROM)

where encoding delay results in only a \latency" at the start of the transmission and

where complex encoders can be considered.

1.5.3 Data complexity

A further measure of the complexity of the optimization comes from the amount of

data required to achieve optimality within our framework. To avoid making assump-

tions on the input source, we are required to know the rate and distortion data for

each of the blocks. This assumption may be realistic in applications such as block-

based image coding [101] where the R-D values can be computed independently and

quite e�ciently for each of the blocks. However, in environments such as video,

where there exists a prediction, the number of R-D points to be computed grows

exponentially (see Chapter 4). In order to make these algorithms practical it may

be necessary to include some model-based assumptions on the R-D data. While this

approach would not achieve optimality the trade-o� may be worthwhile in that the

amount of data to be computed could be substantially reduced.
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1.5.4 Tools

Some of the problems that we will be tackling in this thesis involve searching among

a �nite, but possibly very large, set of operating points for one that minimizes a cost

function while meeting a certain number of constraints. This type of problem is called

Integer Programming [67, 66] and, due to the discreteness the set of possible solutions,

tends to be particularly di�cult since neither the objective, nor the cost functions

have the properties (e.g. di�erentiability, convexity) that are used in problems where

solutions have to be found within a continuous set. The main problem is that no

speci�c properties are assumed for the set of points and we need to resort to techniques

that will enable us to search through the data without resorting to an exhaustive

search. For example, in Fig. 1-2 one would have to �nd \good" operating points

among a discrete set for which no structure is assumed. We briey mention the two

well-known techniques that will be used the most, namely lagrangian optimization

and dynamic programming. Here we just give the intuition of the techniques, which

will be presented in more detail later on.

Lagrangian optimization. We will only introduce here the geometrical interpre-

tation of this technique (see Fig. 1-3), while a more formal presentation is given in

Chapter 2. We start by representing all possible solutions for our problem as points

in an R-D plot. Note that we have a discrete number of possible operating points,

denoted x1; x2; : : :, where xk = (X̂k
1 ; : : : ; X̂

k
N ) is a possible solution and we are plot-

ting D(xk) =
P
D(X̂k

i ) versus R(xk) =
P
R(X̂k

i ). Then, for a choice of a parameter

�, a real positive number, we have that

x�(�) = arg min
xk

(D(xk) + �R(xk))
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is the operating point that is �rst touched by a line of absolute slope �. The main

advantage of this technique is that it �nds operating points that are good, in the sense

of lying on the convex hull of the set of operating points. Further, by varying � one

can sweep all the points on the convex hull and, in particular, search for that point

which meets some rate budget constraint. The main problem seems to be that we

have to compute the combinedR-D characteristic beforehand (i.e. �nd all the possible

combinations of rate and distortion) which would be very complex. In fact, this is

not necessary. In the case where all the possible combinations D(xk) and R(xk) are

the sum of the rate and distortion at each of the blocks, the above minimization can

be done individually for each block and the combined R-D characteristic of Fig. 1-3

need not be computed. This would be an \independent" coding environment, where

each block's rate and distortion can be computed without knowing the other blocks.

Details are given in Chapter 2. In some cases however, the \dependent" case, other

quantized blocks need to be known in order to quantize a given block (typically

because some prediction is used) and thus the optimization becomes more complex.

This second case is studied in Chapter 4.

Dynamic programming. In this thesis we use dynamic programming to perform

a sequential search through the set of possible solutions, while eliminating the ones

that turn out to be suboptimal along the way. Dynamic programming [7, 9] can be

used in �nding the minimumcost path through a tree or trellis where each branch has

a cost attached and the cost is additive over the path. The main result of Bellman's

optimality principle (refer to Fig. 1-4) states that if the minimum cost path from A1

to A4 passes through A3 then its subpath going from A1 to A3 is also the optimal

path from A1 to A3. Thus to �nd the optimal path we can set out to �nd sequentially

the optimal path from the initial stage to successive stages, while knowing that any

paths that have been pruned along the way would not have been globally optimal. In
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Figure 1-3: Lagrangian optimization. For a given real positive number � the operating
point xi which minimizes D(xi)+ �R(xi) is good in the sense of being on the convex

hull of the R-D characteristic. For given �, the point that minimizes the lagrangian
cost is that point that is �rst \hit" by a line of slope � and is thus guaranteed to
lie on the convex hull. Using several values of � enables to map the convex hull and
search for points that meet a budget.

our context, we can use dynamic programming to sequentially eliminate suboptimal

solutions. We can grow a tree where each stage represents one block and where the

di�erent states represent solutions which use the same number of bits up to that

stage. Then we can rule out solutions for which there is an alternative providing less

total distortion for the same rate. If two paths converge to the same node in the tree,

i.e. the two solutions use the same number of bits for blocks considered, then we need

only keep the minimum cost path. We will see how a modi�ed version of this idea

can be used to solve the problem of bu�er constrained optimization in Chapter 2.
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Figure 1-4: Dynamic programming. The problem is to �nd the minimum cost path
in a trellis where each branch has a cost and the costs are additive. If the optimal
path from A1 to A4 passes through A3 then the subpath from of this solution that
goes from A1 to A3 is also the optimal path from A1 to A3.

1.6 Overview and contribution of the thesis

Chapter 2 formulates the problem of bu�er constrained allocation in a deterministic

context. It describes an algorithm to �nd the optimal solution using dynamic pro-

gramming and also provides several alternative approaches that achieve near-optimal

performance with much reduced complexity. This chapter thus considers the problem

of adaptivity through rate control, when a bounded encoding delay is allowed.

Chapter 3 considers the rate control problem in the case of transmission of video

over packet networks. It argues that rate control algorithms di�erent from those of

Chapter 2 should be used in this environment to enable good overall performance,

for both coders and network, and, in particular, to ensure existence of statistical

multiplexing gain. Furthermore, simple policing strategies such as the leaky bucket

may not be su�cient to guarantee the desired performance and we show how a double
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leaky bucket approach may help solve this problem.

Chapter 4 is devoted to \dependent quantization", where the dependency comes

from using a predictive encoding environment. There we extend the results of optimal

independent allocation [101] and show how some additional assumptions are needed

in order to avoid having to do an exhaustive search for the solution. Simple examples

in the case of MPEG encoding are given and a solution is proposed for the bu�er

constrained case as well.

In Chapter 5 we consider the problem of allocating rate to the di�erent layers of

a multiresolution encoder under the constraint of minimizing the end-to-end delay in

querying a multiresolution image retrieval system. In this case we use a simple model

to motivate the fact that di�erent allocations should be used depending on the set of

images that is being queried.

Finally, Chapter 6 studies the problem of providing adaptivity without requiring

that overhead be sent. Since many quantizer design algorithms start by assuming a

model for the source, we propose that a way to achieve adaptivity is to have encoder

and decoder learn the model from the quantized blocks and then use a quantizer

design method for the approximated model. We show experimental results for scalar

quantizers and study the convergence properties of our model learning technique.


