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Chapter 4

Optimal Bit Allocation for Dependent

Quantization 1

Contents

4.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 105

4.2 Dependent coding problem formulation : : : : : : : : : : : : : : : : : 107

4.3 Temporal dependency: the MPEG case : : : : : : : : : : : : : : : : : 116

4.4 Bu�er constrained allocation for dependent coders : : : : : : : : : : : 126

4.5 Appendix: Proof of Theorem 1 : : : : : : : : : : : : : : : : : : : : : 129

4.1 Introduction

In this chapter we study the problem of dependent bit allocation. All the work

addressed in the literature so far has been con�ned to coding environments where

the input signal units (e.g. image blocks or subbands) have been coded independently.

However, many popular schemes (e.g. DPCM) involve dependent coding frameworks,

i.e. where the set of available R{D operating points for some coding units (Fig.

1Part of this work has been done jointly with Kannan Ramchandran. For related publications

see [85, 72, 84, 86]
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4-1(b)) depends on the particular choice of R{D point for other coding units (Fig. 4-

1(a)). Other dependent coding examples include multiresolution (MR) coders like the

Laplacian spatial pyramid [11] and the closed{loop spatio-temporal pyramid video

coder [108], as well as the MPEG [58] coder. Refer to Fig. 4-2 for an overview of

where dependent coding schemes �t into typical source coding environments.

In this chapter [85, 84, 86], we generalize the bit allocation problem to include

temporally dependent coding blocks (see [85, 86] for the case when dependent alloca-

tion in multiresolution scheme is considered). As in [101], we make no assumptions

about the input or quantizer characteristics, and deal with arbitrary input signals and

arbitrary discrete admissible quantizer sets. An alternative, model-based, solution of

the dependent bit allocation problem has been proposed in [107].

As seen from Fig. 4-1 for the two{frame case, the number of possible operating

points for each frame grows exponentially in the dependency tree depth, making the

problem very di�cult in the general case (e.g. DPCM). However, when the depen-

dency tree is structured, as in MPEG, with several \leaves" or \terminal nodes" (e.g.

B-frames of MPEG, as will be seen in Section 4.3), then it is possible to solve the di�-

cult dependent problem elegantly, by describing how to formulate intelligent pruning

rules to eliminate suboptimal operating points. Moreover, a number of important

applications (like CD-ROM storage) can a�ord considerable o�-line complexity, thus

making our proposed approach relevant.

This chapter is organized as follows: in Section 4.2, we provide a Lagrangian{

based solution for an arbitrary set of quantizers for each coding block. We point out

the complexity of this approach, and introduce a certain monotonicity property of

the operational R{D curves of the signal blocks to help reduce the complexity of the

search for the optimal solution. We address the temporally dependent coding scheme

in detail in Section 4.3 using MPEG as an example, and show how the monotonicity
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property introduced earlier can be used to formulate fast heuristic solutions. In

Section 4.4, we brie
y outline how these techniques could be extended to include

bu�er constraints as well.

4.2 Dependent coding problem formulation

In this section, we de�ne a general dependent allocation problem, show how this

general formulation is applicable to MPEG and multiresolution coders, and give a

solution based on Lagrange multipliers. Before we introduce the dependent coding

problem, let us review the optimal independent allocation case which has been studied

in the literature [50, 101, 113] and which was used in Chapter 2. The formulation is

reviewed here for convenience and also to introduce a notation that is more adequate

for the speci�c problems discussed in this chapter.

4.2.1 Optimal independent allocation { the constant slope condition

The classical rate{distortion optimal bit allocation problem consists of minimiz-

ing the average distortion D of a collection of signal elements or blocks subject

to a total bit rate constraint Rbudget for all blocks. For the two-block case, where
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and bit rate of each block respectively, the independent allocation problem is:
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)] (4.1)

such that R
1
(Q

1
) +R

2
(Q

2
) � Rbudget: (4.2)

The \hard" constrained optimization problem of (4.1),(4.2) can be solved by being

converted to an \easy" equivalent unconstrained problem. This is done by \merging"
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rate and distortion through the Lagrange multiplier � � 0 [101], and �nding the

minimum Lagrangian cost Ji(�) = minQi
[Di(Qi) + �Ri(Qi)] for i = 1; 2. The search

for the optimal R{D operating points for each signal block can be done independently,

for the �xed quality \slope" � (which trades o� distortion for rate) because at R{D

optimality, all blocks must operate at a constant slope point � on their R{D curves

[101, 87]. The desired optimal constant slope value �� is not known a priori and

depends on the particular target budget or quality constraint, but can be obtained

via a fast convex search [87]. See Section 2.4.2.1 for more details.

4.2.2 General formulation

In the more general case, signal units may not be independently coded. Without loss

of generality, we �rst consider a 2-level dependency as in Fig. 4-1. Shown are the R{D

characteristics for a given discrete set of quantization choices for the �rst independent

frame (R
1
(Q

1
);D

1
(Q

1
)) and the second dependent frame (R

2
(Q

1
; Q

2
);D

2
(Q

1
; Q

2
)).

Our constrained optimization problem is: what quantization choice do we use for each

frame such that the total (or average) distortion is minimized subject to a maximum

total bit budget constraint? We model the total distortion as a weighted average of

the individual distortions D
1
and D

2
in our general formulation. We will show how

di�erent choices of the weights lead to di�erent problems of interest. Our problem

can be formulated as:

min
Q1;Q2

[w
1
D

1
(Q

1
) + w

2
D

2
(Q

1
; Q

2
)] (4.3)

such that R
1
(Q

1
) +R

2
(Q

1
; Q

2
) � Rbudget: (4.4)

Note that although Q
1
and Q

2
here represent frame{level quantization choices,

it does not imply that all blocks within the frame have the same quantization scale.
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Thus Q
1
could consist of a vector choice of di�erent quantization scales for each block

of frame 1. Also note that for arbitrary choices of w
1
and w

2
, we have a weighted

mean-squared-error (MSE) criterion, which reduces to the conventional (unweighted)

MSE measure when w
1
= w

2
= 1.

R1
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D2

J2(1,2)
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J2(2,2)

J2(3,2)

(a) (b)

|Slope|=λ
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J1(2)

Figure 4-1: Operational R-D characteristics of 2 frames in a dependent coding frame-

work, where frame 2 depends on frame 1. (a) Independent frame's R-D curve. (b)

Dependent frame's R-D curves. Note how each quantizer choice for frame 1 leads to

a di�erent R
2
� D

2
curve. The Lagrangian costs shown are J = D + �R for each

frame.

4.2.3 Examples

We now provide examples of problems of interest which follow as special cases of

(4.3),(4.4). See Fig. 4-2.



Figure 4-2: Overview of typical source coding environments.

Example 1. Independent coding: The independent case seen in Section 4.2.1

is a special case of (4.3),(4.4), where frame 2 does not depend on frame 1, i.e.

R
2
(Q

1
; Q

2
) = R

2
(Q

2
) and D

2
(Q

1
; Q

2
) = D

2
(Q

2
). The independent coding case arises

for intraframe coding as well as pyramidal coding without quantization feedback

[11, 85, 86]. This was also the situation considered throughout Chapter 2.

Example 2. Spatially dependent pyramid coding with quantization feed-

back: When w
1
= 0; w

2
= 1, we have the case of a two-layer closed loop (quantiza-

tion feedback) pyramid, where the bottom layer (layer 2) depends on the quantization

choice of the top layer (layer 1) [85, 86]. Note that (4.4) refers to a total bit rate

constraint, and we solve the full{resolution quality optimization problem only. In
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addition, for a multiresolution coding environment, it may be necessary to throw in

additional constraints on the top layer bit rate [11, 85, 86]:

R
1
(Q

1
) � R

0

1
; (4.5)

or quality

D
1
(Q

1
) � D

0

1
: (4.6)

Example 3. Temporally dependent coding: This is the most general case

where (4.3),(4.4) apply without any restrictions. DPCM and MPEG come under this

class.

4.2.4 Solution based on Lagrange multipliers

The problem of (4.3),(4.4) can be solved by introducing the Lagrangian cost J cor-

responding to the Lagrange multiplier � � 0 as in [101] as follows:

J
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); (4.7)
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and considering the following unconstrained minimization problem:

min
Q1;Q2

[J
1
(Q

1
) + J

2
(Q

1
; Q

2
)]: (4.9)

Then, by a direct extension of Theorem 1 of Shoham and Gersho in [101], the

following result follows:

Theorem 4.1 If (Q�

1
; Q�

2
) solves the unconstrained problem of Eq. (4.9), then it also

solves the constrained problem of Eqs. (4.3), (4.4) for the particular case of Rbudget =

[R
1
(Q�

1
) +R

2
(Q�

1
; Q�

2
)].
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Proof: See Appendix 4.5.

The above result implies that if we solve the unconstrained problem of (4.9) for

a �xed value of �, and if the total bit rate happens to be Rbudget, then we have also

optimally solved the constrained optimization problem of (4.3), (4.4). Further, as �

is swept from 0 to 1, one traces out the convex hull of the composite R{D curve of

the dependent allocation problem. The monotonic relationship between � and the

expended bit rate [101] makes it easy to search for the \correct" value of �, say ��,

for a desired Rbudget.

Note how for the independent case (J
2
(Q

1
; Q

2
) = J

2
(Q

2
)), where there is a sin-

gle R
2
� D

2
curve in Fig. 4-1, (4.9) becomes the familiar result of [101] (See also

Chapter 2). Here, each frame is minimized independently, as was shown in Section

4.2.1.

For the general dependent case, the 2-frame problem becomes the search forQ�

1
; Q�

2

that solve:
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Q1;Q2

[J
1
(Q

1
) + J

2
(Q

1
; Q

2
)] (4.10)
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1
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2
)] is the minimum La-

grangian cost (for quality condition �) associated with the dependent frame when

the independent frame is quantized with Q
1
. See Fig. 4-1. Thus, for the desired

operating quality �, we �nd the optimal solution by �nding, for all choices of Q
1
for

the independent layer, the optimal (Q�

2
(Q

1
)) which \lives" at absolute slope � on the

(dependent) R
2
{D

2
curve associated with Q

1
.

The important point to note is that here we cannot treat each of the blocks

separately as in Section 2.4.2.1 and thus minimizing (4.9) actually requires, if no

further assumptions are made, an exhaustive search for the minimal lagrangian for
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all possible combinations of Q
1
; Q

2
. Fig. 4-3 shows an example where a greedy choice

of quantizer for the �rst frame, i.e. choosing the quantizer that minimizes J
1
(Q

1
)

would have resulted in overall suboptimality. In general we will have that:

min
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J1(2) < J1(1) J1(1) + J2(1,2) < J1(2) + J2(2,2)BUT

Figure 4-3: Example of search for the minimal �. Choosing quantizer 2 would be

optimal if only the �rst frame were considered. However choosing quantizer 1 for

frame 1 is better overall because the gain for frame 2 compensates the suboptimality

for frame 1.

By a simple extension of Theorem 4.1, it follows that the optimal solution to our

general N{frame dependency problem consists in introducing Ji(Q1
; Q

2
; : : : ; Qi) =

wiDi(Q1
; Q

2
; : : : ; Qi) + �Ri(Q1

; Q
2
; : : : ; Qi) for i = 1; 2; : : : ; N and solving the fol-
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lowing unconstrained problem for the \correct" value of � which meets the given

Rbudget:

min
Q1;Q2;:::;QN

[J
1
(Q

1
) + J

2
(Q

1
; Q

2
) + : : : JN (Q1

; Q
2
; : : : ; QN )]: (4.12)

4.2.5 Complexity

The optimal solution, as shown by (4.12) is obviously exponentially complex in the

dependency-tree depth N . Moreover, it has to be pointed out that the computa-

tional complexity is dominated by the data generation phase, i.e. �nding all the

(Ri(Q1
; Q

2
; : : : ; Qi);Di(Q1

; Q
2
; : : : ; Qi)) points for the problem is much more com-

plex than �nding the optimal solution, given all the possible R{D operating points.

The complexity comes from the fact that, contrary to the situation in the independent

case, the R{D characteristic for a given block is a function of choices of quantizers for

previous blocks and thus an exponentially growing (in the depth of the dependency)

number of possible solutions has to be considered.

In order to ease this computational burden, we are therefore interested in methods

which will avoid the need to grow all the R{D data, while retaining optimality. We

now examine an important property which enables us to do this, and which will be

used in Section 4.3 to formulate pruning conditions to eliminate suboptimal choices

in the MPEG allocation problem. Note that while our methods rely on generating

\real" R{D data, a model-based approach may be used within our framework to

reduce the complexity. For instance, one could measure some of the R-D points and

the extrapolate the R-D values for the others.
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4.2.6 Monotonicity

The key to obtaining a fast solution to the complex dependent allocation problem of

(4.3),(4.4) is the monotonicity property of the R{D curves of the dependent compo-

nents (frames). Consider the example of 2 frames, with the operational R{D curve

of the second frame depending on that of the �rst, as in Fig. 4-1. Assume that the

quantizer grades are ordered as monotonically increasing from �nest to coarsest. Let

us use i and j to denote the quantization choices for the independent and dependent

frames, respectively. Thus, using our convention, i < i0 denotes that quantizer i is

�ner than quantizer i0.

De�nition 4.1 A dependent coding system has the monotonicity property if, for any

� � 0:

J
2
(i; j) � J

2
(i0; j); for i � i0: (4.13)

For example, for � = 0, this means that

D
2
(i; j) � D

2
(i0; j); for i � i0: (4.14)

Stated in words, the monotonicity condition simply implies that a \better" (i.e.

�ner quantized) predictor will lead to more e�cient coding, in the rate-distortion

sense, of the residue (whose energy decreases as the predictor quality gets better).

That is, the dependent frame's family of R-D curves will be monotonic in the �neness

of the quantizer choice associated with the parent frame from which they are derived.

As can be seen, the �ner the quantization for frame 1 (Fig. 4-1(a)), the closer to

the origin of the R
2
�D

2
graph will be the corresponding curve for the dependent

frame 2 (Fig. 4-1(b)). Experimental results involving MPEG verify this monotonicity

property for all the cases that we studied. Thus, monotonicity appears to be a realistic
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property, which has favorable theoretical implications as well, and it can be used to

formulate fast pruning conditions for the MPEG allocation problem in Section 4.3.

4.3 Temporal dependency: the MPEG case

We now address the general temporal dependency quantization problem of which

MPEG [58] is an example. The MPEG coding format, a CCITT video compression

standard, shown in Fig. 4-4, segments the video sequence into groups-of-pictures

(GOP's). Each GOP consists of three types of frames using the intraframe (I),

prediction (P ) and bidirectionally{interpolated (B) modes of operation. The I frames

are coded independently, the P frames are predicted from the previous I or P , and

the B frames are interpolated from the previous and next I and/or P frames. For

the 2-frame dependency illustrated in Fig. 4-1, the problem we are trying to solve

(for an MSE criterion) is the problem of (4.3),(4.4) with w
1
= w

2
= 1:

min
Q1;Q2

[D
1
(Q

1
) +D

2
(Q

1
; Q

2
)] s:t: R

1
(Q

1
) +R

2
(Q

1
; Q

2
) � Rbudget:

The solution to this problem was shown in Section 4.2.2 as being exponentially

complex in the dependency tree depth. Here, we will show how to reduce this com-

plexity for the MPEG coding case (see Fig. 4-4). Before we tackle the general MPEG

problem (with I,P and B frames), we begin with a simpler special case of MPEG that

is easier to analyze and which provides the intuition for the more complex general

problem.

4.3.1 A particular case of MPEG: I-B-I

We consider a special case of MPEG having only I and B frames (see Fig. 4-5),

i.e. the predicted P frames of the more general MPEG format are omitted. The



Figure 4-4: Typical MPEG coding framework. (a) The MPEG frames: the I frames

are independently coded, the P frames are predicted from previous I or P frames, and

the B frames are interpolated from adjacent I and/or P frame pairs. (b) Temporal

dependency in the MPEG framework. Note that the B frames are leaves in the

dependency tree, since no prediction is generated using them.

dependency tree is shown in the more compact form of a trellis. The \states" of the

trellis represent the quantization choices for the independently coded I frames (ordered

from top to bottom in the direction of �nest to coarsest), while the \branches" denote

the quantizer choices associated with the two B frames.

The trellis is populated with Lagrangian costs (for a �xed �) associated with the

quantizers for each frame. Let us focus on the I
1
�B

1
�B

2
� I

2
stage of the trellis.

The state nodes are populated with the costs of the respective I frame quantizers

J(Q) = (D(Q) + �R(Q)). Each (i; j) branch connecting quantizer state i of I
1
to

quantizer state j of I
2
is populated with the sum of the minimum Lagrangian costs



Figure 4-5: The I-B-I special case of MPEG. Finding an R-D convex hull point

corresponding to a � is equivalent to �nding the smallest cost path through the trellis.

Each trellis node corresponds to a quantizer choice for the I frames, monotonically

ordered from �nest to coarsest, and is populated with the associated Lagrangian cost

(J(I) = D(q) + �R(q)). The branches correspond to the B frame pairs, and are

populated with their minimumLagrangian costs (J(B) = min[D(q)+�R(q)]) for the

particular I frame quantizer choices given by each branch's end nodes. For quality

slope �, the optimal total cost path is obtained with the Viterbi algorithm. The

\dark line" path joins the smallest cost I frame nodes. Monotonicity implies that all

dashed line paths can be pruned out.

of the B
1
and B

2
frames, i.e. with J(B

1
) + J(B

2
), where:

J(Bl) = min
QBl

[D(QBl
) + �R(QBl

)] for l = 1; 2 (4.15)

where the R-D curves for B
1
; B

2
, are generated from the i; j quantizer choices

for I
1
; I

2
respectively. From (4.12), it is clear that the optimal path is that which

has the minimum total cost across all trellis paths. Since the independent I frames

\decouple" the B frame pairs from one another, it is obvious that the popular Viterbi
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algorithm (VA) [34] will provide the minimum cost path through the trellis, i.e. we

need to keep a single path (the minimum cost one) arriving at each node. More

formally, we have the following algorithm for the I
1
�B

1
�B

2
�I

2
stage of the trellis:

Algorithm 4.1

Step 1 : Generate J(I
1
) and J(I

2
) for I-frames I

1
and I

2
for all quantizers in

QI1
; QI2

respectively, i.e. populate all the nodes of the trellis with the La-

grangian costs.

Step 2 : For every pair of nodes (i; j), where i and j are the quantizer choices for I
1

and I
2
respectively, assign branch cost J(B

1
) + J(B

2
) where J(Bl) for l = 1; 2

are obtained from (4.15), i.e. populate all the branches of the trellis with the

minimum Lagrangian costs.

Step 3 (VA pruning rule): At every node of I
2
, keep only that branch which

minimizes J(I
1
) + J(B

1
) + J(B

2
).

As noted in Section 4.2.5, the computational complexity is dominated by the data

generation phase, i.e. in the trellis population phase.

4.3.2 Pruning conditions implied by monotonicity

The monotonicity condition stated earlier in Section 4.2.6 will now be used to for-

mulate pruning conditions to eliminate suboptimal operating points in the temporal

dependency coding problem. The �rst lemma is associated with Fig. 4-6(a). As a

reminder, the quantizer states are ranked in a monotonically increasing order from

�nest to coarsest.

Lemma 4.1 If

J
1
(i) + J

2
(i; j) < J

1
(i0) + J

2
(i0; j) for any i < i

0

; (4.16)



Figure 4-6: Pruning conditions obtained from monotonicity. (a) J
1
(i
2
) + J

2
(i
2
; j) is

the minimum Lagrangian cost of all branches terminating in node j. Therefore (see

Lemma 1), the (i
3
; j) branch can be pruned. (b) J

2
(i; j

1
)) is the minimumLagrangian

cost of all branches originating from node i. Therefore (see Lemma 2), the (i; j
2
) and

the (i; j
3
) branches can be pruned. (c) Diagram used for the proof of Lemma 1.
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then the (i0; j) branch cannot be part of the optimal path and can be pruned out.

Proof: We prove the lemma by contradiction. Assume that (i0; j) for any i < i0

is part of the optimal path (see Fig. 4-6(c)) and let the optimal quantizer sequence

path be (i0; j; k; : : : ; l). But, by monotonicity, we have:

J
3
(i; j; k) � J

3
(i0; j; k) (4.17)

� � �

JL(i; j; k; : : : ; l) � JL(i
0

; j; k; : : : ; l) (4.18)

Summing up Eqs. (4.16), (4.17), : : :, (4.18), we get the contradiction that the

total Lagrangian cost of the path (i; j; k; : : : ; l) is smaller than that of the optimal

path (i0; j; k; : : : ; l). 2

The above lemma is associated with pruning branches that merge into a common

destination state. A dual result holds for the pruning of branches that originate from

a common source state (see Fig. 4-6(b)) leading to the following companion Lemma

2, whose proof is omitted as it is similar to that of Lemma 1:

Lemma 4.2 If J
2
(i; j) < J

2
(i; j 0) for any j < j

0

; then the (i; j 0) branch cannot be

part of the optimal path and can be pruned out.

Note that a consequence of the above lemma is that if J
1
(i) < J

1
(i0) for i < i0,

then the state node i0 (and all branches from it) can be pruned out. The two pruning

conditions of Lemmas 1 and 2 can be used to lower the complexity of the VA-based

search. In the special case of MPEG of Section 4.3.1 (refer to Fig. 4-5), Lemmas 1

and 2 eliminate the need to consider the full trellis on which to run the VA, making



Figure 4-7: General MPEG \trellis" diagram extension of Fig. 3. Here, the inclusion

of the P frames prevents the decoupling of the B frame pairs, and the entire tree has

to be grown. Note that each stage of the trellis is represented by \vector" branches

whose dimension grows exponentially with the dependency tree depth.

4.3.3 General MPEG bit allocation

Having established the intuition behind dependent allocation and the power of mono-

tonicity, we now evolve to the more complex (general) MPEG format of Fig. 4-7. The

presence of the P frames extends the dependency tree depth, and the decoupling be-

tween successive stages of the trellis is lost. We can thus no longer resort to the
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Viterbi algorithm, but must instead retain the entire tree, which grows exponentially

with the number of dependent levels (although only until a new I frame is transmit-

ted, so that the complexity may still be manageable.) The good news, however, is

that the monotonicity conditions still apply, and the pruning conditions of Lemmas 1

and 2 can aid in reducing complexity dramatically. As an example, see Fig. 4-8 where

we consider an I-B-P -B-P sequence of MPEG frames (note that for simplicity, we

use only one B-frame between I-P pairs) and a choice of 3 quantizer grades for each

frame. More formally, the algorithm used is the following (refer to Figs. 4-7 and 4-8):

Algorithm 4.2

Step 1 : Generate J(I) for all quantizers q 2 QI . See Fig. 4-8(a).

Step 2 : (Monotonicity) Prune out all I-nodes lying below minimum cost node q� 2

QI in Step 1.

Step 3 : Grow J(I; P
1
) for all combinations of q 2 QP1

and all remaining q 2 QI

after Step 2. See Fig. 4-8(b).

Step 4 : (Monotonicity) Use pruning conditions of Lemmas 1 and 2 to eliminate

suboptimal I � P
1
combinations. See Fig. 4-8(b).

Step 5 : For every surviving I�P
1
combination, �nd the B

1
; B

2
quantizer pair that

minimizes J(B
1
) + J(B

2
), i.e. populate the branch costs of the trellis of Fig.

4-7. See Fig. 4-8(c).

Step 6 : (Monotonicity) Use pruning conditions of Lemmas 1 and 2 to eliminate

suboptimal I �B
1
�B

2
� P

1
combinations. See Fig. 4-8(c).

Step 7 : For all remaining paths, repeat Steps 3 to 6 for the (P
1
� B

3
� B

4
� P

2
)

and the (P
2
�B

5
�B

6
� I) sets.
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The smallest cost path after running Algorithm 4.2 is the optimal solution corre-

sponding to the chosen � for the group-of-pictures considered. While the exhaustive

search would have us grow as many as 363 Lagrangian costs, in our example, only

36 costs need to be grown, an order of magnitude reduction in complexity with no

loss of optimality if the monotonicity conditions apply (in our example, application

of Algorithm 4.2 for � = 10 provides an optimal R{D operating point { 40.76 dB at

1 bpp { as was veri�ed through exhaustive search). The complexity reduction due to

monotonicity is dependent on the desired quality slope �, with higher quality targets

achieving better reduction. In the limit, as � goes to 0, the minimum cost path is

always the one corresponding to the �nest quantizers and thus only a single \highest

quality" path has to be grown. Conversely, if � goes to 1 the monotonicity prop-

erty provides no gain. Thus one should not resort to the convex search techniques

described in Section 2.4.2.1 and would have to use instead search strategies which

start with smaller values for � and increase it until a solution is reached.

4.3.3.1 Suboptimal heuristics

As pointed out, the amount to which the monotonicity property can be exploited is

�-dependent, and may not su�ce for some applications. To this end, it is advisable

to come up with fast heuristics, which, used in combination with monotonicity, can

approach the optimal performance at a fraction of the complexity. In trying to

formulate a fast MPEG heuristic, it is necessary to consider some important points:

(i) the \anchor" I-frame is the most important of the group of pictures and must not

be compromised, (ii) most signal sequences enjoy a �nite memory property, where

the in
uence of a parent frame diminishes with the level of its dependency.

Thus, it may pay to choose (only) the lowest cost nodes for all frames except the

I-frame, for which we retain all nodes remaining after applying monotonicity-based
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pruning. Thus, a single path is grown from each of these admissible I-frame nodes,

whereas in the general case, a whole tree evolves from each such node. Based on this,

we propose the following heuristic: (i) retain all paths that originate from each of

the I-frame quantization states remaining after the monotonicity-based pruning, i.e.

it is not prudent to be greedy for the I-frame, as a greedy error a�ects all dependent

frames derived from it; (ii) use a \greedy" pruning condition (in combination with

the monotonicity property) to keep only the lowest cost branch thus far at all other

stages in the trellis. That is, we follow Algorithm 4.2, except that we add an extra

pruning condition in Steps 4 and 6, where we retain only a single (minimumcost) path

corresponding to every surviving I-frame node. This heuristic, as shown in Fig. 4-9,

leads to near optimal performance at a fraction of the computational cost. For the

example of Figs. 4-8 and 4-9, the optimal solution for a particular � gives 40.76 dB

at 1 bpp, while the heuristic achieves 40.45 dB at 0.97 bpp, certainly very close to

optimality. Unlike Algorithm 4.2, which relies on monotonicity pruning conditions

only and which works best when � is low (high quality), the fast heuristic retains low

complexity even at high values of �. Note how choosing the greedy solution for the

I-frame (bottom-most node) would have given a much worse performance.

4.3.3.2 Discussion

We have shown a method to �nd the optimal bit allocation strategy for an MPEG cod-

ing framework, assuming arbitrary quantizer sets for each MPEG frame. Although

our scheme can be computationally complex, it can serve as an optimal benchmark

to evaluate more practical allocation strategies. Also, model-based approaches (e.g.

measuring one R{D point and using a model-based extrapolation to �nd other points)

can be combined with our techniques to ease the computational burden. Note that

since MPEG coders are typically bu�ered with a bu�er size of the order of a group-



Figure 4-8: Tree pruning using the monotonicity property (Lemmas 1,2). The num-

bers are the cumulative Lagrangian costs for a typical example for � = 10. Branches

pruned at each stage are shown with dashed lines. In this example, the number of

R{D points generated is cut down from 363 (exhaustive) to only 36 with no loss of

optimality.

4.4 Bu�er constrained allocation for dependent coders

In Chapter 2 we dealt with the problem of allocating bits among di�erent signal

blocks when the sequence of blocks had to be transmitted with �nite end-to-end

delay, i.e. we had an allocation problem with the constraint that the encoder bu�er

did not over
ow. In Chapter 2, however, we had assumed that the blocks to be

quantized were coded independently (in an MPEG environment this would mean



Figure 4-9: Tree pruning using monotonicity as well as a \greedy" heuristic for the

same conditions as those of Fig. 6. The number of R-D points generated is now 24,

at a slight loss of optimality (total Lagrangian cost is 77.91 versus optimal cost of

77.24).

only I frames are used) so that our solution there would not be applicable to the

dependent environments discussed in this chapter. Here we outline how the solution

of Section 4.2.4 can be modi�ed to account for the bu�er constraint.

Given the rate and distortion (R and D, resp.) for each frame and calling B(i) the

bu�er occupancy after coding frame i, our bu�er control problem is that of �nding

the quantizer choice (Q
1
; : : : ; QN) to:

min(
NX

i=1

Di(Q1
; : : : ; Qi)) s:t: (i)

NX

i=1

Ri(Q1
; : : : ; Qi) � N � r = Rbudget (4.19)

(ii) B(i) � Bmax; 8i: (4.20)

Obviously, without the bu�er constraint of (ii), our problem reduces to the de-

pendent bit allocation studied in Section 4.2.4. There, the minimization of the cor-

responding Lagrangian cost
P
Ji(Q1

; : : : ; Qi) for each block was formulated as the
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search for the minimum Lagrangian cost path in a trellis, where the states represent

the possible quantizers for each frame (See Fig. 4-7). The search can be sped up by

resorting to heuristics based on the monotonicity property to prune out suboptimal

branches. When constraint (ii) is considered, not all solutions obtained using the

algorithms of Section 4.2.4 will be feasible due to over
ow. However, if we add to the

trellis pruning rules a new rule which eliminates paths that over
ow, the resulting

algorithm will provide the optimal solution to (4.19) and (4.20), within a convex hull

approximation. More formally, we grow all the solutions as in Section 4.2.4 where

each branch, associated with a given quantizer selection, (Q
1
; : : : ; Qi), will have as-

sociated a Lagrangian cost
P
Ji(Q1

; : : : ; Qi) and a bu�er state,

B(i) = max(B(i� 1) +Ri(Q1
; : : : ; Qi)� r; 0):

Thus, on top of the pruning rules described in Section 4.3.2, we will prune out any

branch such that B(i) > (Bmax � r).

The one parameter that remains to be set is the initial bu�er state. Typically,

since regardless of the coding environment the �rst frame in the sequence will be

coded in Intra mode (and thus will very likely require a number of bits above the

channel rate), we can assume that B(0) = 0 so that the bu�er is initially empty. If

we focus speci�cally in an MPEG environment, we can consider a group of pictures

(GOP) and compute the allocation so that the initial and �nal bu�er states are both

zero. In this manner we can decouple the bu�er constrained allocation for consecutive

GOPs.

The above described method requires, in order to solve the problem, that a � such

that
P
Ri(Q

�

1
; Q�

2
; : : : ; Q�

i
) = N �r be found. The pruning rules based on monotonicity

are more e�cient for small values of � (i.e. high bit rate) and, similarly, smaller �'s

will result in more over
owing paths. Thus it is reasonable to initialize � to a \small"
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value and then, to �nd the optimal solution, increase � until the target rate is met.

Solutions that were discarded because of over
ow for a given � do not have to be

reconsidered for a di�erent �.

This algorithm leaves also room for fast approximations based on heuristics. For

example, assume that Q
1
= q is �xed and consider the resulting R-D characteristic,

i.e. the set of all points (
P
Ri;
P
Di) for which Q

1
= q. Then, if the point cor-

responding to (q;Q
2
; : : : ; QN) lies on the convex hull of the the R-D characteristic

generated with Q
1
= q we have found that typically (q0; Q

2
; : : : ; QN) will also lie on

the convex hull of the R-D characteristic obtained when setting Q
1
= q0. Thus after

studying the R-D characteristic for a particular value Q
1
= q one can extrapolate

which combinations for (Q
2
; : : : ; QN) are likely to be suboptimal for any Q

1
and

therefore reduce the search to those that are likely to be \good".

To summarize, in this section we have described some initial results for a deter-

ministic rate control for MPEG encoders. The optimal solution can be found with

slight modi�cations of the algorithm that solves the unconstrained problem. Further

work should focus on exploring more ways of reducing the complexity of the search

by exploiting the structure of the R-D data through the use of heuristics.

4.5 Appendix: Proof of Theorem 1

Note that in the proof, in the interest of notation brevity, we omit the explicit de-

pendence of D
1
; R

1
; J

1
and D

2
; R

2
; J

2
on Q

1
and Q

2
; i.e. we use J

1
= J

1
(Q

1
);D

1
=

D
1
(Q

1
); R

1
= R

1
(Q

1
) and J

2
= J

2
(Q

1
; Q

2
);D

2
= D

2
(Q

1
; Q

2
); R

2
= R

2
(Q

1
; Q

2
), and

similarly for the optimal quantizers Q�

1
and Q�

2
. Then, for all Q

1
; Q

2
, we have from

the unconstrained minimization:

J
�

1
+ J

�

2
� J

1
+ J

2
: (4.21)
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i.e.,

D
�

1
+ �R

�

1
+D

�

2
+ �R

�

2
� D

1
+ �R

1
+D

2
+ �R

2
: (4.22)

or,

[D�

1
+D

�

2
]� [D

1
+D

2
] � �([R

1
+R

2
]� [R�

1
+R

2
�]): (4.23)

Since (4.23) holds for all admissible fQ
1
; Q

2
g, it certainly holds for the subset of

fQ
1
; Q

2
g for which [R

1
+R

2
] � Rbudget, where Rbudget = [R�

1
+ R�

2
]. Therefore, from

(4.23), since � � 0, we have that:

[D
1
(Q�

1
) +D

2
(Q�

1
; Q

�

2
)]� [D

1
(Q

1
) +D

2
(Q

1
; Q

2
)] � 0; (4.24)

i.e. over all fQ
1
; Q

2
g which meet the rate budget, (Q�

1
; Q�

2
) gives the minimum

distortion. 2


