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Chapter 5

Modeling and Optimization of a Multiresolution

Image Retrieval System 1
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5.1 Introduction

This chapter deals with a di�erent scenario for adaptivity. In Chapter 1 we had

de�ned adaptivity as the possibility of choosing di�erent codewords for a given block

depending on the context. While in Chapters 2-4 we considered video sequences,

where the component frames are to be transmitted in the order they were generated,

here we consider a set of images that is being accessed remotely. The images are

now accessed in a random order and a multiresolution scheme is used to transmit

them. We will further depart from the approach taken in previous chapters in that

1This chapter represents joint work with Zhensheng Zhang. For related publications see [78, 77]
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(a) we will be optimizing the performance based on a model and (b) the aim of the

optimization will be a delay rather than the R-D performance. The adaptivity here

comes from the fact that the set of images will be considered globally to determine

the allocation for individual images.

Consider a generic multiresolution (MR) remote image retrieval system (see [26]

for an example of such a system). The multiresolution approach is already being

used for commercial products (e.g. Kodak's Photo CD) and has also been proposed

for retrieval of video [18]. Users accessing the system will be searching for one or

more images within those available in the remote database. The two main compo-

nents of the system are an image database and a user interface which handles the

communication resources transparently to the user. We assume that there are two

main stages in a query: (i) the database search stage, where in response to the user

speci�cation the database manager de�nes a set of possible candidate images, and

(ii) the browsing stage, where the user tries to select one or more candidate images,

called target images. In the latter stage the user is presented with a set of low res-

olution images (e.g. icons), and can then view them at increasing resolutions, up to

the highest available quality, and this until one or more images are selected or the

query is terminated. The motivation is that by having fast access �rst to \coarse"

versions of the images, users are allowed to discard, if desired, some of the images

without necessarily having to receive the full quality image, thus reducing the overall

transmission costs of the system. When favoring an MR approach, the underlying

assumption is that the communication costs are the limiting factor. This situation

arises either because (i) the users have access to low{speed (or shared) links, so that

transmission delay dominates the total delay in the query (over, for instance, the de-

lay introduced by the search within the database), or simply because (ii) the system

has to be designed to minimize the total transmission cost, which we assume to be
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proportional to the transmission time.

In this chapter we will concentrate on the browsing stage of the queries. We

will further assume that browsing and database search are independent so that our

optimization of the browsing stage will not a�ect the performance of the database

search stage. While work reported in the literature has focused on the progressive

image transmission schemes [53, 96, 64] here we look at the image coding scheme

from a systems perspective. Images in the database are coded with an MR scheme

(which we do not specify) so that, taking the two-resolution case as an example, at

the start of the browsing stage a fraction �B, 0 < � < 1, of the B bits of the image

is transmitted and a low resolution image is reconstructed using those bits. The

remaining (1� �)B needed to reconstruct the full resolution image will only be sent

if the user requests it. We tackle the problem of assigning a number of bits to each

of the image layers (i.e. in our example choosing �) so that the performance of the

image retrieval system is optimized.

Note that in a typical bit allocation problem for an MR image coder [85, 86] the

objective is to assign bits to each of the image layers to maximize the full quality and

possibly to meet some intermediate quality objectives. However here our concern is

to study how the bit allocation among the successive image layers a�ects the overall

system performance. As an example, in [26] arbitrary compression rates are chosen

for the di�erent resolutions: we point out that this choice can be made so that the

system performance is optimized.

To clarify the scope of our optimization, let us note that we can divide the re-

sources used in an MR image retrieval system into roughly three groups: (i) the

database computation resources, (ii) the communication resources, and (iii) the com-

putation (including memory) resources at the user sites. We will only consider the

latter two resources, under the assumption that the bit allocation only a�ects the
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browsing stage and not the search within the database. We can thus state the prob-

lem we are seeking to solve as follows, imposing the constraint that all the images in

the database use the same allocation:

Problem 5.1 How do we allocate the bits to each of the image layers to minimize

the total transmission delay or, equivalently, the transmission cost, during a query

for a target image.

At the beginning of the browsing stage, the user is provided with a set of icons

from which to select the target image. Since the icons will have very low resolution,

it will typically be hard to determine whether the icon set contains a target image

and thus the user will have to retrieve some of the images at increasing resolutions

in order to make a choice. The trade-o� that arises in choosing the bit allocation is

clear. If the intermediate resolution were of very high quality (thus requiring a large

number of bits, or � close to 1), the user would be able to make a decision on whether

the image is acceptable but the cost of retrieving non-acceptable images would be

high. Conversely, if the intermediate quality were low (and thus the required bit rate

were small, or � close to 0) a decision on the image would not be easy while the cost

for choosing a \wrong" icon would be small. The aim of this chapter is to analyze

the trade-o�.

This chapter is organized as follows. Section 5.2 provides a more detailed descrip-

tion of a multiresolution image retrieval system and formally de�nes the parameters

of the system as well as our objective function. Section 5.3 provides solutions to

the problem under the di�erent sets of parameters. In particular, it is shown how a

\dynamic" queueing{based approach and a \static" average analysis yield the same

results. Section 5.4 draws conclusions and points out areas for further work.
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5.2 System de�nition

5.2.1 Multiresolution browsing

Consider the following 
ow diagram for the user interaction (see Fig. 5-1). Each user

�rst generates a request and, after a database search, a set of low resolution candidate

icons is displayed at the terminal. The user then, at Stage 1, selects one of the icons

so that its corresponding low resolution image is displayed on the terminal. At Stage

2, if (a) the quality of the low resolution image is too poor to decide or (b) the image

seems to be adequate for the user requirement, the user requests that the additional

information (necessary to create the full resolution picture) is sent (go to Stage 3).

Otherwise, if the displayed image has su�cient quality and is not one of the targets,

it is rejected and another icon is selected (go back to Stage 1). At Stage 3 the full

resolution image is displayed and the user can accept it (and terminate the query) or

reject it and select another icon (go back to Stage 1). The process repeats until an

appropriate image is found.

Note that the above description presents a somewhat simpli�ed user interaction

since only one candidate image can be considered at any given time. A more general

case would not have such a restriction and users would be allowed to store images

at di�erent resolutions and then make their decision by comparing those selected.

The search can be seen as a process where the user accumulates images at di�erent

resolutions (from icon up to full resolution) until the target (one or several images)

has been found. While a system with memory might seem more realistic, our results

indicate that, as far as the allocation is concerned, the results are identical in both

the memory and memoryless cases.



Figure 5-1: Multiresolution image retrieval system: typical user interaction and cor-
responding system parameters.

5.2.2 System Model

The previous system description can be formalized as follows (refer to Fig. 5-2). Let

t be the probability that an image chosen from the set of icons is one of the target

images. Let � denote the percentage of the image data volume in the low resolution;

we assume that all images are coded using the same parameter �. Let P (�) denote

the probability that the quality of the image reconstructed using � percent of the

bits is su�cient to make a correct decision (see Section 5.2.3). Our objective is to

obtain �opt, the optimal value of � such that the mean response time is minimized,

where the response time is de�ned as the time interval from the time the request is

generated until the time the target image is found.

We model the user interaction (refer again to Fig. 5-2) by assigning probabilities

to the transitions between the successive stages of the query as follows. A transition

from Stage 2 to Stage 1 occurs when the image has su�cient quality but is not a



Figure 5-2: System model for a multiresolution image retrieval system. t is the
probability an image is one of the targets. P (�) is the probability that � percent of
the total bits provide su�cient quality. B is the image size.

target, with probability

1� p = P2!1 = (1� t) � P (�):

A transition from Stage 2 to Stage 3 occurs if (a) the image has insu�cient quality

or (b) if a target image has been found, with probability

p = P2!3 = 1 � P (�) + t � P (�):

Finally at Stage 3, the query will end if a target image has been found and will go

back to Stage 1 otherwise, so that we have:

1 � q = P3!1 =
(1� t) � (1 � P (�))

t � P (�) + 1 � P (�)
; and

q = P3!e =
t

t � P (�) + 1 � P (�)
:
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5.2.3 Probability of su�cient quality

Given a set of N images, S, assume that we allocate to all of them the same �.

We propose to model P (�), the probability that an image, picked at random from

the set, has \su�cient" quality for the user to make a decision, as follows. To each

image from the set sj 2 S, we can associate a rate-distortion (R-D) characteristic,

where each R-D point corresponds to the image coded at one of the available res-

olutions. Denote these functions as (Rj;Dj) and suppose they are obtained either

through measurements on the image set or based upon a model. Note that here

we consider any measure of distortion, in particular, measures based on subjective

thresholding are possible. We now de�ne a threshold Dt(sj), which represents the

level of \indistinguishable quality", i.e. increasing the rate to reduce the distortion

below that threshold produces virtually no improvement to the subjective quality of

the image. Then we can de�ne the normalized rate and distortion functions, �j and

�j respectively, as:

�j = min(1;Dt(sj)=Dj); and �j = Rj=Rmax(sj); (5.1)

where Dt(sj) can be a common threshold for all images or can be chosen individually

for each sj, and Rmax(sj) is the bit rate required by the highest resolution version

available for image sj. Also we de�ne the normalized quality to be �j = 0 when no

bits are used, i.e. �j = 0.

We can see that �j(�j) indicates of the likelihood that a given image has su�cient

quality. For �(�) close to one we are close to the full resolution quality so that we will

have su�cient quality for almost any application. For �(�) close to zero only \easy"

searches (e.g. locating a big object within an image) will be possible, others (e.g.

locating a texture) will require increased quality. Once we consider S as a whole,
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and given that images are picked at random from the set, we can estimate P (�) as

follows:

P (�) =
1

N

X
sj2S

�j(�): (5.2)

In the rest of this chapter we will assume that the probability function P (�) is in

the form of 1� (1� �)m, where m is a positive integer (see Fig. 5-3). Note that our

choice is reasonable when considering typical rate-distortion characteristics and it

only a�ects the exact value of our result; the general analysis holds for more general

expressions of P (�).
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Figure 5-3: Example of P (�) functions for several values of m. Note that the larger
m values are more realistic.

5.3 Analysis and Results

We now provide solutions to the optimization problem outlined in the previous sec-

tion. Note that we formulated the problem of a single user having access to the
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database but we now consider the possibility of several users sharing the system.

Di�erent methods are called for depending on the exact formulation, in particular

whether the communication resources are shared or not. However, we will show that

as far as the optimal point is concerned, most cases of interest yield the same solu-

tion. Note also that here we assume P (�) to be the same for all users accessing the

database. This does not mean that all users are supposed to access the same set of

images, rather it implies that all image sets are similar as far as their quality-rate

trade-o�. The problem will be tackled �rst in a queueing framework (Section 5.3.1)

while a static analysis will be proposed later (Section 5.3.2).

5.3.1 Dynamic Analysis

5.3.1.1 Separate channels and large image set

We assume here that the M users in the system do not share the communications

resources and have only to share the computation resources of the database. Users

generate new requests at rate � but only when they are idle, i.e. when all previous

queries have been completed. The average size of an image is assumed to be 1=�2.

We assume that on average a delay of 1=�1 is incurred every time a user goes back

to Stage 1 in the query; the cost re
ects the computation needed in the database

to have the next selected image ready for tramission (e.g. encoding, loading into

appropriate bu�ers, etc). Note that although transmission of the icons themselves

would produce some delay we are assuming that the icon size is constant and thus

we are not including this factor in the optimization process. We assume that the

image sets that are being searched are large enough that t is constant during the

search. For a given value of �, we are interested in the average response time for

a user to search for the target image. We model the system as a closed queueing

network with four queues, depicted in Fig. 5-4. The �rst queue \stores" the users



Figure 5-4: Model for the system as closed queueing network.

In the following, we derive an expression for the mean response time using the

Norton equivalent theorem of queueing networks [13]. The Norton equivalent network

with a total of M users is shown in Fig. 5-5.

To �nd the state-dependent service rate, si, we use the approach presented in



Figure 5-5: Norton equivalent network.

[13]. Let

�1(i) = �1; �2(i) = i�2=�; �3(i) = i�2=(1 � �)

Xi(k) =
kY

j=1

yi

�i(j)
; i = 1; 2; 3; k = 0; 1; :::;M;

where y1 = y2 = 1=pq; y3 = 1=q; y4 = 1 is a solution of the balance equation (equation

(4) in [13]) and p, q are as de�ned in Section 5.2.2.

Let

G1(k) = X1(k)

G2(k) =
kX

i=0

G1(i)X2(k � i); k = 0; 1; ::::;M; (5.3)

G3(k) =
kX

i=0

G2(i)X3(k � i)

The state-dependent service rate, si, is given by

si =
G3(i� 1)

G3(i)
:

If we de�ne the state of the system as the number of requests at bu�er B in

Fig. 5-5, the state process is a �nite population birth-death process with birth-death
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rates given by

�i =

8><
>:

(M � i)� 0 � i �M � 1

0 i �M

and

si =
G3(i� 1)

G3(i)
; 1 � i �M;

respectively, where G3(i) is given in (5.3).

The steady-state mean queue size and response time can easily be obtained and

are given by [42]:

E[q] = P0

MX
i=1

i
i�1Y
j=0

�j

sj+1
(5.4)

and

E[d] =
E[q]

�(M � E[q])
(5.5)

respectively, where

P0 = (1 +
MX
i=1

i�1Y
j=0

�j

sj+1
)�1:

The optimal value of � is found by minimizing E[d] over �; 0 � � � 1. The

results are summarized in Figs. 5-6, 5-7, 5-8. The most important to note point is

that the optimal operating point is not a function of t, the number of users M or

�2. Fig. 5-6 shows the delay vs. � tradeo� for two values of t. The relative gain of

using the �opt is nearly the same in both cases. Fig. 5-7 shows the same tradeo� for

di�erent values of �2. Note that in the bottom two curves �2 � �1 and therefore the

delay due to the image transmission dominates the delay due to the database access.

However, for �2 = 0:01 the dominant term is the database delay and little can be

gained by choosing a correct �. As was to be expected, optimizing � only makes sense

when communication resources are the bottleneck. In Fig. 5-8 the service rate for the

transmission is only ten times slower than that of the database access and we can

see that when the number of users increases over ten the dominating factor becomes
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the database access delay, and therefore the choice of � does not make as much of a

di�erence (because the users share the database access but not the communication

resources).
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Figure 5-6: Total delay as a function of � for two values of t. In all cases we have
that �opt = 0:3012. The other parameters are set to M = 10;m = 5; �1 = 0:1; �2 =
0:01; � = 0:1. Note that the trade-o� is practically identical for both values of t.

5.3.1.2 Separate channels and small image set: non constant t

The results in the previous section indicate that the value of the optimal � does not

change with the number of users in the system. In this section, we consider only one

user. There are initially N0 unsearched icons but now we assume that N0 is \small",

so that the probability that one chooses the right icon among i unsearched icons is

assumed to be t(i), a function of i. In the following, we will derive an expression

for the average delay, E�(i), incurred in searching the target image, given there are
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Figure 5-7: Total delay as a function of � for several values of �2. In all cases we
have that �opt = 0:3012. The other parameters are set to M = 10;m = 5; �1 =
0:1; t = 0:05; � = 0:1. Note that for �2 = 0:01 the delay due to the database access,
�1 = 0:1, is still signi�cant so that optimizing the transmission results in modest
gains. Conversely, for the other two values of �2 transmission dominates the delay.

i unsearched icons. Using renewal theory, we have

E�(i) = 1=�1 + �=�2 + (1 � t(i))P (�)E�(i� 1)

+(t(i)P (�) + (1� P (�)))((1 � �)=�2 + (1� t(i)=(t(i)P (�) + (1� P (�))))E�(i� 1))

= (1� t(i))E�(i� 1) +
1

�1
+

1

�2
�

1

�2
(1 � t(i))P (�)(1� �) (5.6)

and

E�(1) =
1

�1
+

1

�2
: (5.7)

An explicit expression of E�(i) can be obtained iteratively from (5.6) and (5.7)
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Figure 5-8: Total delay as a function of � for several values of the number of users.
In all cases we have that �opt = 0:3012. The other parameters are set to m = 5; �1 =
0:1; �2 = 0:01; t = 0:05; � = 0:1. Note that, as all users share the database, increases
in M imply that the database delay becomes more signi�cant and the gains obtained
by optimizing the transmission are smaller.

and is given by

E�(i) = (
1

�1
+

1

�2
)(1 +

iX
j=2

iY
k=j

(1� t(k)))�
1

�2
P (�)(1 � �)

iX
j=2

iY
k=j

(1 � t(k)) (5.8)

Since t(i) � 1 for all i; 1 � i � N0, we have
Pi

j=2

Qi
k=j(1� t(k)) � 0. Therefore,

the problem of minimizing E�(i) subject to 0 � � � 1 is equivalent to the problem

of maximizing P (�)(1 � �) subject to 0 � � � 1.

So that we have

�opt = arg max
0���1

(P (�)(1 � �)): (5.9)

For the same set of parameters, �opt is exactly the same as that obtained in the

previous section (although here our analysis only covers the single-user case).
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5.3.1.3 Shared Resources

We now consider the case where all the users share one communication channel.

As in Section 5.3.1.1, the system can be modeled as a closed queueing system (see

Fig. 5-4), with modi�ed transmission rates which can be determined as follows. The

number of users at stages 2 and 3 in Fig. 5-4 represents the number of users sharing

the transmission link. At any given time, a user can either be in stage 2 or stage 3,

but cannot be in both at the same time. Therefore, since the link is shared, if there

are i and j users at stages 2 and 3 respectively, the transmission rates for one user

would be �2
(i+j)�

and �2
(i+j)(1��)

at stages 2 and 3, respectively. The rate at which at

least one user �nishes transmitting would be i�2
(i+j)�

and j�2
(i+j)(1��)

at stages 2 and 3,

respectively.

Because the transmission rate depends on the number of users at other queueing

systems, we cannot use the Norton equivalent theorem of queueing networks. In-

stead, we solve the steady state probability directly. We de�ne the system state as

(x1; x2; x3), where x1; x2; and x3 denote the numbers of users at the last three queue-

ing systems in Fig. 5-4, respectively, and x1 � 0; x2 � 0; x3 � 0; x1 + x2 + x3 � M .

The one step transition probability, p(i1; i2; i3jj1; j2; j3) = p(x1 = i1; x2 = i2; x3 =

i3jx1 = j1; x2 = j2; x3 = j3), 0 � i1 + i2 + i3 �M; 0 � j1 + j2 + j3 � M , is given as

follows:

p(i1 + 1; i2; i3ji1; i2; i3) = (M � i1 � i2 � i3)�

p(i1 � 1; i2 + 1; i3ji1; i2; i3) = �1

p(i1; i2 � 1; i3 + 1ji1; i2; i3) = p
i2�

i2 + i3
�2

p(i1 + 1; i2 � 1; i3ji1; i2; i3) = (1� p)
i2�

i2 + i3
�2

p(i1 + 1; i2; i3 � 1ji1; i2; i3) = (1 � q)
i3(1 � �)

i2 + i3
�2
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p(i1; i2; i3 � 1ji1; i2; i3) = q
i3(1 � �)

i2 + i3
�2

p(i1; i2; i3ji1; i2; i3) =

1� (M � i1 � i2 � i3)��
i2�

i2 + i3
�2 �

i3(1 � �)

i2 + i3
�2 � I(i1)�1

p(j1; j2; j3ji1; i2; i3) = 0 for other values of j1; j2; j3

where I(x) is the indicator function, i.e., I(x) = 1 if x > 0 and I(x) = 0 if x = 0. The

steady state probability �(i1; i2; i3) = p(x1 = i1; x2 = i2; x3 = i3) can be obtained by

solving the balance equations and the normalized equation,
P

�(i1; i2; i3) = 1. The

total number of states is M(M2 + 6M + 11)=6. The mean delay is given by

E[d] =
E[q]

�(M � E[q])
(5.10)

where

E[q] =
MX
l=1

X
i1+i2+i3=l

l �(i1; i2; i3):

Numerical results for M � 10 indicate that the optimal value of � is independent

of the value ofM and once again identical to that obtained in Sections 5.3.1.1, 5.3.1.2.

Fig. 5-9 shows the delay vs. � tradeo� for di�erent number of users, while Fig. 5-10

shows the tradeo� when t varies.

5.3.2 Static Analysis

We deemed \dynamic" the analysis introduced above because we set up a model

where queries could be terminated at any given time with a certain probability. We

now impose the restriction that the user has to examine all the candidate images to

make a decision. We describe this approach as \static" in the sense that the order in

which the images are examined no longer matters, and one can concentrate on the
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Figure 5-9: Total delay as a function of � for two values of the number of users when
the commnunication resources are shared. In all cases we have that �opt = 0:3012.
The other parameters are set to m = 5; �1 = 0:1; �2 = 0:01; t = 0:05; � = 0:1. The
relative gain is practically the same regardless of the number of users because the
transmission delay dominates as the links are shared.

average behavior.

5.3.2.1 Single subresolution case

The user has now access to N icons simultaneously and can select N1 icons to be

expanded to an intermediate quality level based on the following criterion: if the

image quality is su�cient expand the image only if it is one of the targets, else expand

regardless. Out of the N1 intermediate resolution images again N2 are selected to be

displayed at full resolution. The same criterion is applied at this step. Note that the

main di�erence between this model and the previous one is that here the user selects

images in batches, whereas before a sequential selection was performed. Thus we are

in e�ect modeling the user interaction \with memory" mentioned in Section 5.2.1.

Suppose that we know there are n images in the original set of icons that can be
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Figure 5-10: Total delay as a function of � for two values of t when the communication
resources are shared. In all cases we have that �opt = 0:3012. The other parameters
are set to m = 5; �1 = 0:1; �2 = 0:01;M = 5; � = 0:1

of interest to the user, then at every step at least n images are selected while in

addition some images are selected because quality was not su�cient to decide. The

user will make a �nal choice among the N2 remaining images but since all of them

have already been downloaded we assume there is no cost involved and we will ignore

this step in our model.

Assume that, if B is the number of bits for the original images, then �B bits are

used for the intermediate resolution images (where 0 � � � 1). Even though the

images have di�erent sizes, in order to make the selection the user will have to go

through all of them so that the optimal cost depends only on the relative sizes of the

subresolution images, i.e. �, and not on the actual sizes of the images. Therefore,

to simplify our analysis we can assume all images have the same size. Note that this

is consistent with the results of the dynamic analysis where the �opt did not change

with �2. Then, using the same P (�) as before, our aim is to minimize the total
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m �

2 0.4227
3 0.3700
4 0.3313
5 0.3012

Table 5.1: Optimal � for several expressions of P (�). Solutions obtained using the
static analysis.

transmission delay:

J = N2B + (N1 �N2)�B (5.11)

where we just have added the bit rates of the images at each resolution level. Obvi-

ously the quantity to minimize is

J 0 = N2 + (N1 �N2)� = (1� �)N2 + �N1: (5.12)

Now assuming the number of images is su�ciently large, we have that on average:

N2 = P (�)n + (1 � P (�))N1: (5.13)

Using (5.13) in (5.12) we get:

J 0 = N1 + (n�N1)P (�)(1� �): (5.14)

Therefore, since n � N1 our objective in order to minimize the cost is to maximize

P (�)(1 � �), as we had already derived in Section 5.3.1.2. The solutions obtained

for P (�) = 1 � (1 � �)m for m = 2; � � � ; 5 are summarized in Table 5.1. The results

match those obtained following the dynamic analyses of Section 5.3.1.
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m �1 �0 Gain (%)

2 0.4227 0.2803 35.6
3 0.3700 0.2271 44.2
4 0.3313 0.1924 50.8
5 0.3012 0.1676 56.1

Table 5.2: Optimal �1 and �0 for several expressions of P (�). Solutions obtained
using the static analysis in the two resolution case. The gain column indicates the
reduction in total delay obtained when going from one to two resolutions.

5.3.2.2 Multiple layers

Under the same assumptions of a large image set and a search through all the images

in the set, we can extend the above analysis to the case where there are multiple

layers of resolution.

As an example, consider the case where there are two layers: the lower resolution

layer uses �0B bits per image, while the next higher layer uses �1B bits. Then

following a procedure analogous to that just outlined it can be seen that the optimal

pair (�0; �1)opt is such that:

(�1; �0)opt = arg max
(�1;�0)

( (1� �1)P (�1)(1� P (�0)) + (1� �0)P (�0) ) (5.15)

The results are summarized in Table 5.2. Note how using two intermediate reso-

lutions instead of one produces a signi�cant reduction in the overall delay. Also note

that the optimal allocation for the higher resolution �1 is the same as obtained in

the one-layer case. This, as will be seen shortly, is an indication that the problem

can be solved iteratively.

In the more general case, the images are accessed at k resolutions, such that

�k�1; : : : ; �1; �0; are the relative sizes of the images, with �k�1 � �k�2 � : : : � �1 �

�0: Using an analogous notation, we will have initiallyN icons, then N0 images which
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use �0B bits, N1 that use �1B bits and so on. At the last stage there will be Nk

images displayed at full resolution. Under the same assumptions as before we can

write:

N1 = P (�0)n+ (1 � P (�0))N0; N2 = P (�1)n+ (1� P (�1))N1; : : :

and so on, up to

Nk = P (�k�1)n + (1� P (�k�1))Nk�1:

Then, the cost to minimize is Jk, with

Jk = Nk + �k�1(Nk�1 �Nk) + : : :+ �0(N0 �N1) = Nk +
k�1X
j=0

�j(Nj �Nj+1) (5.16)

From the recursive de�nition of the Ni above, we can see that:

Nk�1 �Nk = P (�k�1)(Nk�1 � n) = P (�k�1)(Nk�1 �Nk�2 +Nk�2 � n)

so that

Nk�1 �Nk = P (�k�1)(�P (�k�2)(Nk�2 � n) +Nk�2 � n)

= P (�k�1)(1 � P (�k�2))(Nk�2 � n)

and in general, using repeatedly the same method,

Nk�1 �Nk = P (�k�1)

2
4
k�2Y
j=0

(1� P (�j))

3
5 (N0 � n): (5.17)

The cost can now be rewritten, by adding and subtracting Nj, j = k � 1; � � � ; 0 to
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(5.16), as

Jk = N0 +
k�1X
j=0

(�j � 1)(Nj �Nj+1) (5.18)

so that using (5.17) we can write:

Jk = N0 +

8<
:

k�1X
j=0

(1� �j)P (�j)

2
4
j�1Y
l=0

(1 � P (�l))

3
5
9=
; (n �N0) (5.19)

and therefore, since n�N0 < 0, the solution to our problem is:

(�k�1; : : : ; �1; �0)opt = arg max
(�k�1;:::;�1;�0)

8<
:

k�1X
j=0

(1� �j)P (�j)

2
4
j�1Y
l=0

(1� P (�l))

3
5
9=
; ;

(5.20)

where the quantity to maximize will be denoted Ck�1 and we have the constraints

that

0 � �0 � �1 � : : : � �k�1 � 1: (5.21)

This is a multidimensional optimization problem, which due to the particular struc-

ture of the objective function can be solved iteratively, so that at each iteration only

a one-dimensional problem has to be solved.

To simplify the notation let us de�ne

�i =
iY

j=0

(1� P (�j)):

Then we can write

Ck�1 = (1 � �k�1)P (�k�1)�k�2 + Ck�2

where it is clear that only the term Fk�1(�k�1) = (1��k�1)P (�k�1) depends on �k�1.
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The iterative solution is as follows. We �rst choose

��k�1 = argmax
�k�1

(1 � �k�1)P (�k�1)

and let F �
k�1 = Fk�1(��k�1). Our objective function Ck�1 can now be written as

Ck�1 = (F �
k�1 � (1� P (�k�2)) + (1� �k�3)P (�k�3))�k�3 + Ck�3

and we choose next ��k�2 as

��k�2 = arg max
�k�2

(F �
k�1 � (1� P (�k�2)) + (1� �k�2)P (�k�2))

where we again just consider the terms that depend on �k�2. At every stage j we

have thus

Ck�1(�
�
k�1; � � � ; �

�
j+1) = (F �

j+1 � (1� P (�j)) + (1 � �j)P (�j))�j�1 + Cj�1

and we choose ��j to maximize

Fj(�) = (F �
j+1 � (1 � P (�)) + (1 � �)P (�))

where F �
j+1 represents the maximum obtained in the previous iteration. The proce-

dure is iterated until ��0 is obtained.

The terms on the di�erent �j's are independent of each other and are all positive

so that maximizing the terms separately also yields the overall maximum. Therefore

the solution we obtain through the iterative procedure provides the maximum of

Ck�1 for all k-tuples, (�k�1; : : : ; �0), such that 0 � �i � 1. However, the solution

we are seeking requires that, additionally, the constraint of (5.21) is met. We now
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verify that the iterative solution also meets this additional constraint under the sole

requirement that P (�) be non-decreasing in �, with P (0) = 0 and P (1) = 1 (which is

a reasonable assumption: the more bits we use the better chances we have of getting

su�cient quality).

Consider the j-th stage of the iteration, we have

F �
j = max

�
(F �

j+1 � (1 � P (�)) + (1 � �)P (�))

and

F �
j�1 = max

�
(F �

j � (1� P (�)) + (1 � �)P (�)):

Clearly, since Fj(� = 0) = F �
j+1, and F �

j = max� Fj, we have F �
j � F �

j+1. Assume for

instance F �
j = F �

j+1 + �, with � � 0. Then

��j�1 = arg max
�

n
(F �

j+1 + �)(1� P (�)) + P (�)(1 � �)
o

so that

��j�1 = arg max
�

n
�(1� P (�)) + F �

j+1(1 � P (�)) + P (�)(1 � �)
o

The �rst term cannot increase if � increases (because P (:) is non-decreasing), while

the last two terms have a maximum, by de�nition, at � = ��j . Therefore, since both

terms decrease for � � �j we must have that:

��j�1 � ��j : (5.22)

Thus, we have veri�ed that the iterative solution, which provides the optimal solution

under the constraints 0 � �i � 1, produces a solution that also meets the constraint
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of (5.21). Therefore, we indeed have that (��k�1; : : : ; �
�
0) is the solution to (5.20) with

constraint (5.21). Fig. 5-11 shows how the overall delay can be reduced by adding

intermediate resolution layers to the system. As was to be expected, increasing

the number of layers reduces the overall delay at the cost, however, of increased

complexity.
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Figure 5-11: Overall delay at the optimal combination of �'s for di�erent values of
m. Note how the delay can be signi�cantly decreased by increasing the number of
resolutions, at the cost of increased complexity.

5.3.3 Discussion

A �rst conclusion of the foregoing sections is that �nding the optimal operating point

can be worthwhile in reducing the overall delay, in particular in cases where users

are connected to the database through low-speed links. For instance choosing the

optimal � can provide reductions in delay of up to a factor of two in the m = 5 case
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(see Fig. 5-12 in the static analysis or Figs. 5-9-5-10 for the dynamic analysis in the

shared resources case). Moreover, note how the advantage of choosing a correct value

for � increases as the parameterm, which determines the shape of P (�), increases. In

most cases of interest one can expect a relatively large m to be likely, i.e. a relatively

small percentage of the total bit rate provides su�cient quality to make a decision.
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Figure 5-12: Example of total normalized delay for the range of possible values of �
for several values of the parameter m in the expression for P (�). Note how choosing
the right value for � can reduce signi�cantly the total delay. This example models
the cost as in (5.14) where we assume n � N1 so that the delay is approximately
1 � P (�)(1 � �)

A second point to note is that the optimal � is independent of the exact pro-

cedure that is used for transmission. For instance, the static and dynamic analyses

provide identical results even though they assume di�erent ways of proceeding with

the browsing. Similarly we �nd the same results for � whether one or several users

access the database, and whether or not the users share the transmission resources.

Finally, we see no dependence of the optimal result on the size of the initial image set,
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or the probability of getting the correct image, t (equivalently, in the static analysis,

the number of correct images n).

The intuitive justi�cation is that the exact procedure for retrieving the images is

not relevant because we are concerned with minimizing an average cost. Since for

every image we have an average measure of the \risk" of having to retrieve the rest of

the image (i.e. P (�)) and we assume all images are identical (i.e. same probability)

it is normal to expect that the only factor to determine the optimal operating point

would be P (�).

Similarly, as we increase the number of users, and even if the transmission re-

sources are shared, the optimal value for � remains unchanged. This is again due to

our choosing to minimize the average delay for a set of users that are identical, at

least in a statistical sense.

Even though the optimal operating point is independent of the system parameters,

the gain of using a multiresolution approach is not. In particular we pointed how more

gain can be expected when the transmission resources are shared or the transmission

resources, rather than the database, represent the bottleneck of the system.

Finally, it should be mentioned that our analysis of the multiple resolution layers

case indicates that substantial reductions in delay are possible by using more than

one intermediate resolution. Systems with several intermediate resolutions should

thus be considered provided that the increase in implementation complexity can be

a�orded.

5.4 Conclusions and Future Work

In this chapter, we have addressed a problem that arises when designing a remote

image retrieval system, namely, that of assigning bits to the di�erent layers of the

images to be transmitted. We have solved this problem under assumptions for the
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average quality of the images (P (�)) and the restriction that all the images use the

same bit allocation. Results show that signi�cant gain can be expected from choosing

a correct bit allocation quite independently of the exact procedure that is used to

retrieve the images.

Our analysis leaves a number of questions for future work. In particular it would

be of interest to perform quality measures on real images to obtain empirical ex-

pressions for P (�). Also, since the average analysis provides the same results as the

dynamic one, it would be interesting to relax the constraint on the bit allocation and

allow each image to have a di�erent �. Thus each image would have its own prob-

ability of having su�cient quality and thus we could setup a \static" bit allocation

problem among the images: to give more bits to those images where the bits can do

more \good", in the sense of reducing the overall delay.


