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Chapter 6

Adaptive Quantization Without Side
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6.1 Introduction

The most successful methods for lossless compression of data, such as arithmetic

coding [55, 116, 80], Lempel-Ziv coding [120] or dynamic Hu�man coding [35, 54, 111],

are all adaptive (see [6] for an extensive review of lossless compression). While the

initial work on entropy coding (e.g. Hu�man coding) relied on knowing, or measuring,

the source distribution, adaptive schemes make no prior assumptions on the source

statistics, which the coders try to learn. Here, we are concerned with designing

1For publications related to this chapter see [75]
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adaptive quantization algorithms which exhibit characteristics similar to those of the

abovementioned adaptive lossless compression schemes. In the most general context

we can de�ne our problem as that of adapting some or all of the parameters of a

quantizer/entropy coder system (including bin sizes, reconstruction levels, codeword

lengths and dynamic range) to the changing statistics of an input source. We make

few assumptions on the source and, in particular, we allow it to be have long term

dependencies and show varying \local" behavior. We will assess the performance of

the adaptive schemes by comparing their rate-distortion characteristics with those

achievable by means of non-adaptive schemes,

We are concerned with systems where the adaptation occurs based only on the

causal past so that both encoder and decoder can adapt in the same manner, and no

extra information needs to be sent. We propose to split the adaptation algorithm in

two parts (see Fig. 6-1(a)):

1. Model estimation: Based on the previous N samples we estimate the distribu-

tion function of the source.

2. Quantizer design: for the given estimated distribution the new quantizer pa-

rameters are computed.

The advantage of splitting the algorithm in this manner is that well known quantizer

design techniques can then be used (such as the Lloyd-Max algorithm in the case

of constant rate quantizers). If we correctly estimate the distribution then we are

guaranteed optimality.

A further question arises as to how much memory should be used in estimating

the distribution. Clearly, if the source input were independent identically distributed

(i.i.d), it would be reasonable to accumulate statistics over a long time window.

Conversely, if the source input distribution were changing over time, shorter windows

would have to be used. If the window size is kept constant, choosing an appropriate



(b)

Figure 6-1: Adaptive quantization algorithm. (a) The adaptation algorithm can be
decomposed in two parts (i) the estimation of the input distribution based on past
samples and (ii) the design of the new quantizer given the estimated distribution. (b)

In the simplest case the adaptive algorithm uses a �xed �nite window to estimate
the distribution. In a more general case it would be necessary to change the speed of

adaptation as well, so that the window size would also change over time.

6.1.1 Related work

Once we have established our objective we �rst examine related work in several areas.

Note that our general formulation raises a number of di�erent issues some of which

have been tackled in other contexts.
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6.1.1.1 Adaptive quantization

We �rst summarize some of the approaches proposed for adaptive quantization. As

stated above we consider only schemes that do not require overhead information,

i.e. we look at backward adaptation rather than forward adaptation. Bit allocation

is a form of forward adaptive quantization which requires the input sequence, or a

segment of it, to be known by the encoder, which then transmits the quantizer choice

as overhead [39]. From that perspective, the schemes described in Chapters 2 and 4

are examples of forward adaptive quantization, which operate with �xed codebooks.

Recent work [20, 28] looks at forward adaptive quantization and describes a procedure

to optimally obtain the various codebooks from a training set of data.

We mention two di�erent approaches to backward adaptive quantization. In [49,

25, 12] the objective is to adjust the support region of a scalar quantizer, so that

this quantizer can be used in conjunction with a predictor in a DPCM system. The

original idea of Jayant's adaptive quantizer [49, 41, 50] was to change the support

region based on the previous quantized sample, while in [25] more than one sample

of memory is used. Finally in [12] both the support region and the bin sizes can be

adjusted, although the bin sizes are restricted to a �nite set of values.

A somewhat di�erent problem is tackled in [15] where an initial tree structured

vector quantizer (TSVQ) is �rst designed, with a rate higher than the rate available

for transmission. Then the adaptive algorithm chooses which subtree of the previously

designed tree has to be used at every instant. Both encoder and decoder keep counts

of the number of samples that corresponded to each of the nodes of the tree, and they

select the subtree which minimizes the expected distortion (under the assumption

that future samples will have the same distribution as past ones).

Note that all these systems use (implicitly or explicitly) simple models of the

source to determine the changes in quantization. For instance [49] assumes that the
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sources are relatively smooth but have varying dynamic range so that the role of the

adaptation is to estimate the changes in the variance of the source (so that the dy-

namic range of the quantizer is adapted) while a uniform quantizer is used. Similarly,

the assumption in [15] is that the initially designed tree-structured codebook is suf-

�ciently representative of the expected input signals, so that the adaptive algorithm

can �nd a \good" sub-tree at any given time. In our work, the aim is to explicitly

determine a model for the source from the data known to encoder and decoder, and

then adapt the quantization scheme to get the best performance for the given model.

6.1.1.2 Adaptive lossless compression

The topic of adaptation has been extensively dealt with in the area of lossless data

compression. The two main approaches to adaptive lossless compression are model{

based (e.g. Arithmetic Coding (AC) or adaptive Hu�man coding) and dictionary-

based (e.g. Lempel Ziv (LZ) coding), where the adaptivity comes from dynamically

updating, respectively, the model and the dictionary. We refer to [6] for an extensive

survey of lossless compression techniques.

We will concentrate on the AC algorithm [55, 80, 116] as it is closer to some of

the main ideas in our work. In the simpler case of a binary source, the encoder has

to update the probabilities of the 0's and 1's. If the source is stationary and the

model is correct then AC can provide a performance very close to the �rst order

entropy. However, in real life environments, where sources need not be stationary,

the performance of the algorithm is determined by how well it adapts to the changing

statistics of the source. In that sense, the model tracking part of the AC algorithm

plays an essential part in the system performance.

The problem of tracking the changing source statistics in the Q-coder, IBM's im-

plementation of AC, is dealt with in [79]. The main problem is to �nd, for every
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newly arrived symbol, whether the occurrence is \normal", i.e. consistent with the

current model, or \not-normal", i.e. unexpected within the current model. The pro-

posed solution is to have di�erent rates of change in the model so that the estimated

probability of the most likely symbol will change slowly, while the estimated prob-

ability of the least likely symbol will change faster. The basic idea is that unlikely

events (such as the occurrence of the least likely symbol) may signal a change in the

distribution. These ideas also highlight the main trade-o� in de�ning an adaptive

coding algorithm. Because of the need to adapt to changing statistics, the scheme

of [79] will perform worse than a static algorithm for an i.i.d. source. A similar

trade-o� can also be seen in the context of adaptive �ltering, where in least mean

square (LMS) type algorithms fast convergence comes at the price of noisy behavior

if the source is stationary [83].

As another example of adaptation in the context of lossless coding, it has been

shown that the Hu�man coding tree can be modi�ed \on the y" so that the code

would adapt to changing statistics, or learn them starting with no prior knowledge

[35, 54, 111]. A �rst approach to generate these statistics would be to choose the

number of samples N over which symbol occurrences are counted. However, a fully

adaptive scheme would also require a procedure to change N , if necessary, during the

coding process in order to improve the performance (we would thus have a parameter

N(n) as in Fig. 6-1(b)). Recent work [46] presents a solution to this last question,

at the cost of some complexity, by proposing that the window size N be updated

by choosing, among several possible sizes, the one producing a code with better

compression.

Finally, it is worth noting that the question of what constitutes a good model for

random data is a topic of interest not only for compression but also as a problem per

se. Indeed, the minimumdescription length (MDL) technique introduced by Rissanen
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[93, 94] provides the link between these two problems by establishing the asymptotic

optimality of describing a distribution with a set of parameters that requires the least

total number of bits to be encoded when counting both the bits needed to describe

the model and the bits needed to encode the occurrences of the di�erent symbols

within the model. This criterion has been shown to also provide an asymptotically

optimal universal code for data generated by a stationary source.

6.2 Adaptation algorithm

In this section we describe the various components of the adaptive quantization

scheme as depicted in Fig. 6-1(b). For each of the elements we will formulate the

objective and examine some solutions. The algorithm consists of three main blocks, a

�rst one estimates the source probability density function (pdf), a second one updates

the quantizer to maximize the performance for the given estimated distribution, and

�nally the third one decides what subset of the decoded sequence should be used to

compute the model.

6.2.1 Estimation of input distribution

In this section we will study the problem of estimating the input source pdf, f(x).

Note that we refer to f(x) as the pdf by abuse of language. We are computing an

approximation to f(x) based on a subset of the previously transmitted samples and

assuming that those samples were generated according to some underlying model.

In that sense our aim is to �nd a model that best \explains" the data under the

sole assumption of being smooth, and obviously the model we obtain will depend on

which set of data we are trying to model. Our goal is to:

Objective 6.1 Given the N most recent quantized sample occurrences x̂(n � N),

x̂(n � N + 1), : : :, x̂(n � 1), where N might be a constant or can be changed by
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the speed adaptation algorithm, �nd an estimate f̂(x) of the probability distribution

function of the source, f(x).

We will use the following notation. The quantizer has L reconstruction levels ri

with L � 1 decision levels denoted b1; : : : ; bL�1. Additionally, we have counted over

the last N samples how many fell in each bin. These counts are denoted n0; : : : ; nL�1,

where n0 and nL�1 are the number of samples that fell in the \outer" bins. Our goal

is to, given the knowledge of n0; : : : ; nL�1 and b1; : : : ; bL�1, �nd a good approximation

f̂ (x). From the observed data we can deduce that:

Pi =
Z bi+1

bi

f(x) dx =
ni

N
; for i = 0; : : : ; L� 1; and b0 = �1; bL = +1: (6.1)

Although strictly speaking the equality holds only in the limit as N goes to in�nity,

it is a su�ciently good approximation.

The task of determining f̂ (x) is complicated by the fact that we are limiting

ourselves to accessing only the quantized data. The problem can be separated into

two parts: (i) estimating f̂ (x) in the two outer bins, where we can only rely on

knowing one of the boundaries (this is equivalent to estimating the dynamic range

of the source), and (ii) estimating f̂(x) within the inner bins, where we know the

boundaries.

In the more general case, since we have a �nite amount of available data we can

choose a set of P , P � L, points, x0; : : : ; xP�1 and our objective will be to �nd

f̂ (x0); : : : f̂(xP�1), while f̂(x) can be linearly interpolated at other points x. The

xi can be chosen arbitrarily within the estimated dynamic range of the source, say

[b0; bL]. The task of approximating the dynamic range will be dealt with in more

detail in section 6.2.1.3.

Assume, thus, [b0; bL] given and choose P � L points which, for simplicity we

assume equally spaced. Further assume that the pdf f(x) that we are trying to
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approximate is smooth in some sense. Then we can aim at �nding f̂ such that

Z bi+1

bi

f̂ (x) dx = Pi; for i = 0; : : : ; L� 1: (6.2)

Since f̂ is a piecewise linear approximation we can write the equations (6.2) as a

function of the P unknowns f̂ (x0); : : : f̂ (xP�1). This can be seen as a typical inverse

problem which in the case of P > L is overdetermined. Several techniques can be

used to regularize such problems [81]. We outline a linear regularization method

that has the advantage of resorting to the pdf smoothness assumption. An excellent

description of these techniques can be found in [81].

Clearly, if P > L there are many possible solutions which meet the constraints

of (6.2). For a large enough P linearizing is a good approximation and we can thus

write the constraints as

P�1X
k=0

f̂(xk)ri(xk)(xk+1 � xk�1)=2 = Pi; 8i = 0 : : : L� 1; (6.3)

where ri(xk) = 1 if xk 2 [bi; bi+1] and ri(xk) = 0 otherwise. Assuming for simplicity,

equally spaced xk and normalizing everything so that xk+1 � xk = 1, we can write in

matrix form

R � f = p (6.4)

where f is the vector of the P unknown \knots" in the piecewise linear approximation,

p is the vector of the L observed samples densities and R = frikg = fri(xk)g is the

P � L matrix which determines what f̂ (xk) should be considered in each of the L

constraints.

The basic idea of the linear regularization methods is to �rst relax the constraint

of choosing f̂ (xk) to exactly match the observed frequencies of occurrence as in (6.4).

We thus introduce a cost M which measures how much a solution deviates from a
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perfect �t

M = jR � f � pj2: (6.5)

Additionally, we introduce a second cost S that will measure the \smoothness" of

the resulting f̂(x). For instance, if we expect a priori f̂(x) not too deviate much from

a linear function we can introduce a cost based on an approximation to the second

derivative f̂ 00(x) so that

S =
Z
(f̂ 00(x))2 dx '

P�1X
k=0

(�f̂(xk) + 2f̂ (xk+1)� f̂(xk+2))
2: (6.6)

Which can be then be also expressed in matrix form as

S = f �BT �B � f (6.7)

where B = fbikg, with bik = �1 for k = i, bik = 2 for k = i+1, bik = �1 for k = i+2,

and zero elsewhere, for i = 1; : : : ; P � 2 and k = 1; : : : ; P .

Now, combining the two costs M and S and choosing a real positive number �

we can �nd f̂ (xk) to minimize:

min(M+ �S) = min(jR � f � pj2 + �(f �BT �B � f)) (6.8)

a least squares problem which can be solved using standard techniques. We refer to

[81] for the details.

Thus we can �nd for each value of � a set of points f̂(xk) that yield an approxi-

mation to the pdf. There are two main advantages to using this technique:

1. It does not require an accurate estimation of the \outer boundaries". A good

guess for the outer boundaries su�ces, as the matching and smoothness crite-

rion will guarantee smoothly decaying tails for the approximated distribution.
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2. It provides an elegant way of including in the estimation any available prior

knowledge about the smoothness of the pdf to be estimated.

However, there are also drawbacks in this approach, as for instance the relatively

high number of points that are required, P , and, most importantly, the relevance

of a good choice for the parameter � which determines the relative weights to the

smoothness and matching criteria. Potentially, an iterative procedure, where several

�'s are tried until an appropriate solution is found, may be required. For these reasons

we now propose a simpler approach that requires only P = L points and involves no

iterations.

si
b0 bi bi+1

xi

f(bi)

f(bi+1)

f(xi)

bL

f(x)

f(x)

Figure 6-2: Notation used in the model estimation algorithm. The bi's denote the

decision levels, with b0 and bL denoting the outer boundaries of the �nite support

approximation. The xi are the knots of the piecewise linear approximation. In this
�gure there are as many knots as bins but in general one can use more knots than

bins. Note that we depicted an f(x) which is non zero outside the range determined
by b0; bL to emphasize the fact that these two boundaries have to be estimated and

that the operation introduces some error.
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6.2.1.1 A simple non-iterative approach

Assume again that we have chosen the boundaries b0 and bL, such that f̂(b0) =

f̂ (bL) = 0, as our estimate of the dynamic range (Refer to Fig. 6-2). Furthermore,

assume that we estimate that our choice of b0; bL is expected to \leave out" a fraction

of the tail of the distribution such that
R b0
�1

f(x)dx =
R
+1

bL
f(x)dx = Pout (the details

will be explained in section 6.2.1.3). Then, denoting P 0
0
= P0 � Pout and P 0L�1 =

PL�1 � Pout with P 0i = Pi for i = 1; : : : ; L � 2, we can choose P = L points xi at

which we need to calculate the function values f̂(xi) = fi such that f̂ will meet the

constraint of (6.2). To restrict the number of degrees of freedom we arbitrarily choose

the xi to be center of each of the inner bins 2.

Now we can write the integrals over each bin of the piecewise linear approximation

as

P̂i =
Z bi+1

bi

f̂(x) dx =
1

2
(f̂(xi) + f̂ (bi))(xi � bi) +

1

2
(f̂(xi) + f̂ (bi+1))(bi+1 � xi) (6.9)

where f̂ (bi) can be found by linear interpolation

f̂(bi) = (bi � xi�1)
f̂(xi)� f̂(xi�1)

(xi � xi�1)
+ f̂ (xi�1) (6.10)

and we have f̂ (b0) = 0 and f̂(bL) = 0. Note that, since we have only one \knot" per

bin, each of the equations (6.9) involves at most three unknowns f̂ (xi�1); f̂(xi); f̂(xi+1)

so that the system we have to solve is

T � f = p0 (6.11)

2Note that we arbitrarily choose the xi = bi+(bi+1� bi)=2 as the \�xed" points in our piecewise
linear approximation. We do this for simplicity but one could also de�ne the estimation problem as
one where both fi and xi have to be chosen to satisfy the constraint. By allowing more degrees of
freedom this method could provide smoother estimated distributions
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where T is a L � L tridiagonal matrix and p0 denotes the vector of observed prob-

abilities (with the corrected tails). E�cient gaussian substitution methods can be

used to solve this system [81].

6.2.1.2 The zero frequency problem

So far we have seen how to estimate the distribution from the available sample counts

but a further question remains as to whether the counts can be used as is or some

additional assumptions have to be made. In particular the zero frequency problem

[6, 115] arises: if for a certain i (not one of the outer bins) we have ni = 0 should

we assume that the source has probability 0 of producing samples in that range?

or, conversely, should we assume that the set of samples is not of signi�cant enough

size? We adopt the solution advocated, for instance, in probability estimation for

arithmetic coders, and we add one count to all counters to avoid the problem [55, 80].

Using some such technique is particularly important when N is small and we have a

rapidly varying source.

6.2.1.3 Estimation of the dynamic range

The remaining task is to determine the points b0; bL at which we estimate the pdf

to be zero. Note that this problem is especially relevant in the simple method of

Section 6.2.1.1. Indeed, while in the more general case, a su�ciently large number of

interpolation points P > L enables us to produce a model with smoothly decaying

tails, in the scheme of Section 6.2.1.1 we are restricted to a f̂(x) with a linear decay

tail. More precisely, in the general case as P � L, the tail in the outer bins can

have several linear segments, thus achieving a smoothly decaying tail, while in Sec-

tion 6.2.1.1 we are restricted to just one such segment. If we chose points b0; bL which

overestimate the true dynamic range of the input source we may have cases where
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the result of solving (6.11) would yield negative values for f̂ (x0); f̂(xL�1). We are

thus interested in having good estimates of the dynamic range of the source. More

formally, our objective is to:

Objective 6.2 Find b0 and bL, de�ned as the points such that we estimate the source

pdf to be \almost zero". For these points we will have by de�nition f̂ (b0) = 0 and

f̂ (bL) = 0.

The di�culty here stems from the fact that we have limited information: we know

that n0, resp. nL�1, samples fell below b1, resp. above bL�1, but we need to use some

of our assumptions to estimate b0 and bL. Obviously the main assumption is that

the outer bins should contain the tails of the distribution. Based on the available

information, i.e. the counts ni, the current decision levels bi, i = 1; L�1, and bold
0

and

boldL the dynamic range estimates obtained in the previous iteration, we will consider

three cases as follows (we outline the algorithm for adjusting b0, but the same ideas

apply for bL):

1. if n0 = 0, i.e. the outer bin is empty, we readjust the boundaries so that b0 = b1

(unless the adjacent bin is also empty), and we then \split" one of the inner

bins (e.g. the one where we observed more samples), say i, and we assign ni=2

samples to each of the newly formed bins. Thus we choose the new b0 such

that, at least based in our latest observation, we have f̂(b0) = 0.

2. if n0=(b1�bold
0
) > n1=(b2�b1) then clearly our current estimate is incorrect since

we assume smoothly decaying tails for the distribution and we are observing

more \sample density" in the outer bin. We have to expand the quantizer

range and thus choose the new boundaries so that the two adjacent bins have

the same sample density, thus we pick b0 = b1 � (n0=n1)(b2 � b1).
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3. the two previous cases occur when there is a large enough disparity between

our current estimate and the \true" short term source distribution. When our

estimate is su�ciently good that neither (1) nor (2) apply, we assume that the

tail of the distribution is gaussian. The mean of the distribution is estimated

by �nding the average (weighted by the ni) of the current reconstruction values.

Under the assumption of a gaussian tail distribution and knowing the number

of samples that fell on the two outer bins we can estimate the variance of the

distribution. Finally we choose the outer boundary so that the tail beyond b0

has a probability of less than some threshold Pout and thus the requirement

that f̂ (b0) ' 0 is met. Usually a threshold is needed since under the gaussian

the input source distribution does not have �nite support. Furthermore, this

threshold will have to depend on the number of bits of the quantizer and should

not be very small since, as mentioned earlier, overestimating the dynamic range

of the source may result in non-admissible (i.e. negative) solutions for the f̂ (x).

Note that cases (1) and (2) have to be dealt with separately since they repre-

sent cases where our previous estimates are incorrect and therefore would result in

incorrect mean and variance estimates. Furthermore, it is clear that, since we carry

a running memory, cases (1) and (2) would not occur if we updated the quantizer

su�ciently often. For instance, we note how in [49, 41], where the dynamic range is

estimated after each quantized sample is received, no such situations arise. In that

sense (1) and (2) are safeguards to enable a less complex operation of the algorithm.

It should also be pointed out that the estimation of the dynamic range is not that

important when the more general approach is used. Finally, in some cases, as for

instance image processing applications, the boundary estimation is not as critical

since the source has inherently �nite range.
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6.2.2 Quantizer design for the estimated distribution

The ideas of the previous section have provided a way of computing an estimate of

the source distribution. The objective of the next building block, see Fig 6-1(b), is

to

Objective 6.3 Redesign the quantizer for the given distribution f̂ . This can be done

by using an optimal quantizer design algorithm which assumes f̂ as the input distri-

bution.

As an example, we can design a constant rate quantizer simply using the Lloyd-

Max algorithm for the given piecewise linear approximation. The task is to choose

a new set of bin boundaries b0i, as well as the corresponding reconstruction levels

r0i, such that the expected distortion for the distribution f̂(x) is minimized. Note

that, as is the case with Hu�man coding for example, one can guarantee optimality

provided the model matches the source distribution. More formally, the algorithm

�xes the outer boundaries b0
0
and b0L and then iterates the following two steps:

Algorithm 6.1 Lloyd-Max algorithm:

At iteration k:

Step 1: Centroid condition (CC): choose the reconstruction levels to be the centroids

of the current bins. For i = 0; : : : ; L� 1

rki =
1

Sk
i

Z b
k�1

i+1

b
k�1

i

xf̂(x) dx where Sk
i =

Z b
k�1

i+1

b
k�1

i

f̂(x) dx;

Step 2: Nearest neighbor condition (NNC): use the nearest neighbor rule to �nd the

new bin boundaries. For i = 0; : : : ; L� 2:

bki+1 =
rki+1 � rki

2
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Step 3: If some convergence criterion is met stop. Otherwise, k ! k+1, go to Step

1.

Note that obviously b0 and bL are not changed in the optimization since these

are not decision levels and are only used for the purpose of de�ning the model f̂ (x).

Because linear approximations to the distribution are used, determining the centroids

can be done in closed form, at a low cost in complexity.

The same framework can be used with a variable rate entropy constrained design

[22] where we keep step (1) as above but now have, for a given choice of a Lagrange

multiplier �, a positive real number:

Algorithm 6.2 Entropy constrained quantization[22];

At iteration k:

Step 1: As in Lloyd-Max algorithm.

Step 2: compute the estimates of the entropy of each of the current bins, for i =

0; : : : ; L� 1,

Hk
i = � log

2

1

N

Z b
k�1

i+1

b
k�1

i

f̂(x) dx:

Step 3: select the boundaries bki+1 so that each value of x gets assigned to the bin

that is optimal in the sense of minimizing the lagrangian cost. Thus given the

reconstruction levels rki , we have that r(x), the reconstruction level assigned to

point x, is

r(x) = arg min
rk
i
;i=0;:::;L�1

((x� rki )
2 + � �Hk

i ):

Step 4: If some convergence criterion is met stop. Otherwise, k ! k+1, go to Step

1.

It is important to note that once we have estimated a model (i.e. chosen the f̂(xi))

the model is not modi�ed by the algorithm that redesigns the quantizer. Furthermore,
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since our system keeps a running memory of the counts for each bin (the counters

are not reset to zero after the quantizer has been redesigned) we also change the

counters to adjust for the new bin sizes. Therefore, after the quantizer design stage,

and calling b0i and n
0

i, respectively, the new bin boundaries and the updated estimated

bin counts, we have that:

n0i = N �

Z b0
i+1

b0
i

f̂(x) dx: (6.12)

6.2.3 Determining the speed of adaptation

The remaining block to be de�ned in the encoder of Fig. 6-1(b) is that in charge of

determining the speed of adaptation. Our aim here is to:

Objective 6.4 Dynamically determine at every iteration the number of past samples

N that should be used in estimating the pdf.

The classes of error produced by the choice of memory can be separated into two

classes:

(a) Non-signi�cant data: if not enough memory is used we may be dealing with a

non-signi�cant (in a statistical sense) set of data and our estimation will necessarily

be erroneous.

(b) Sources with memory: if the source statistics (as determined by time averages

over �nite windows) change over time then an excess of memory will not permit

su�cient adaptivity and will result in loss of performance.

Note that if we were quantizing a i.i.d. source with unknown statistics we could

use a training mode operation [38] where the quantizer learns the statistics of the

source during a certain period of time and afterwards the adaptivity is switched o�.

Similarly, one could operate the quantizer alternatively in training and stationary

modes according to whether the current measured statistics agree with previously

measured ones.
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In our experiments we choose to keep two set of counters, one accumulating the

long term statistics, the other accumulating the latest pattern of sample arrivals.

We choose to use the short term data to estimate the model only if the di�erence

between short and long term data exceeds a threshold. In this way, we try to detect

the changes in statistics while avoiding always using a short term estimate, and thus

risking having to deal with non-signi�cant data.

6.3 Convergence of the adaptive quantizer

In this section we study in more detail the behavior of the adaptive algorithm. While

in Section 6.4 we will deal with the quantization performance on real sequences of

samples here we deal with the performance bounds in ideal situations as well as with

the convergence and the asymptotic properties of the algorithm. The building blocks

of the adaptive algorithm, as determined by their objectives (see Objectives 6.1, 6.3,

and 6.4) each introduce errors by estimating the parameters of the source based in

the quantized data, rather than on the actual samples.

We will concentrate on both the asymptotic and stationary performance of the

algorithm. While the dynamic behavior is also of interest it is much more di�cult to

characterize since one would have to start by establishing some measure of variability

for a source. We refer to the discussion on choosing the speed of adaptation (see

Section 6.2.3).

Also we will not compare the errors introduced by the di�erent approaches that

were presented for approximating f(x) with a piecewise linear function. Although

we have set up a general framework for determining the approximation, given some

smoothness criterion, we �nd the simpler approach of Section 6.2.1.1 to be su�ciently

good for our purposes. All the results presented in this section and Section 6.4 were

obtained using the approach of Section 6.2.1.1.



180

6.3.1 Asymptotic performance under �ne quantization assumption

We briey note, without a rigorous proof, that our algorithm is asymptotically opti-

mal for an i.i.d. source, under the �ne quantization assumption. In the asymptotic

case we are interested on the behavior of the algorithm as (a) we gather statistics

over an arbitrarily long time, i.e. N large, and (b) the number of quantization levels

L becomes large.

The statistics gathered from the decoded data become arbitrarily close to the true

statistics of the input pdf as the number of observed samples increases. By the law

of large numbers, for a stationary input pdf, if N is the total number of observed

samples and ni(N) is the number of samples that fell in bin i, we have that,

lim
N!1

ni(N)

N
=
Z bi

bi�1

f(x)dx;

where f(x) is the source pdf and the b's are the bin boundaries. Therefore, if we wait

a long enough time the variance of the estimated statistics can be made arbitrarily

small.

Also when L increases the error we make in approximating a smooth input pdf

with a piecewise linear function decreases. This is analogous to the arguments used in

high resolution quantization analyses [39]. Therefore, for a su�ciently large number

of quantizer levels the performance can be made arbitrarily close to that of the

optimal quantizer for the given input pdf, and thus, quite obviously, the error due to

generating the model based on the quantized levels can be minimized.

Therefore, as N and L increase our approximation gets arbitrarily close to the

true pdf and thus the resulting quantizer is arbitrarily close to optimal.
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6.3.2 Stationary performance

We now look at the behavior when the source input is again i.i.d. but we make

no assumptions on L. This case is of interest as it provides for practical cases (i.e.

with small number of bins) a measure of how close the adaptive quantizer is to the

optimal performance. Since we noted that under stationarity the measured bin counts

approach those dictated by the true distribution, we assume here that we know f(x)

and we thus measure solely the error due to using a piecewise linear approximation

f̂ (x), instead of the true pdf f(x). Moreover, we also assume that the input pdf has

known �nite support so as to ignore the errors derived from the estimation of the

dynamic range for a non-�nite support distribution.

Note that the Lloyd iteration converges to a solution that meets the two optimality

conditions, namely, the centroid condition (CC) and the nearest neighbor condition

(NNC) [39], however it is not guaranteed to converge to a global optimal.

We will consider two main issues in the stationary behavior, (1) whether for the

piecewise linear functions that we consider the Lloyd-Max iteration yields a global

optimum and (2) the performance degradation due to using past quantized samples to

obtain f̂ (x). Section 6.4 will present examples of this behavior in actual sources. By

resorting to the two following examples we seek to isolate the e�ect of the quantized

data from the error in determining the dynamic range and the error due to estimating

the Pi from a �nite set of past data.

6.3.2.1 Example 1: Closed form solution

Consider �rst a simple examplewhere we use a 3-bin quantizer with f(x) = 3=4(1�x2)

for �1 � x � 1, f(x) = 0, elsewhere. We start by choosing an initial quantizer and

for each of the initial conditions we compute the piecewise linear approximation.

Since we assume a 3-bin quantizer and a �nite-support, symmetric pdf, only one
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parameter, namely the boundary between inner and outer bin, is needed to fully

specify the quantizer. Here solutions that meet both CC and NNC can be obtained

in closed form. In Fig. 6-3 we plot the quantizer that meets these two conditions

(i.e. the result of a Lloyd-Max iteration) for each of the possible initial conditions. A

�rst comment to be made is that the initial conditions, i.e. the initial quantizer from

which f̂ (x) will be estimated, do matter. However, note that the dependency on the

initial condition is small. Indeed all the solutions (vertical axis in Fig. 6-3) are fairly

close to the optimal one for the true pdf f(x). A second conclusion is that in this

particular example there is a unique solution that meets the optimality conditions

(Nearest neighbor and centroid) on f̂ (x), and therefore the Lloyd-Max algorithm on

the approximated pdf would also �nd the global optimum.

If we now use our adaptive algorithm successively on the known distribution, we

can �nd out to what solution the algorithm would converge. Here we apply the

adaptive algorithm for given initial conditions and we �nd a new quantizer using the

results of Fig. 6-3, then we take the new quantizer as the initial condition and so

on, until we converge. Indeed we observe (see Fig. 6-4) that after just one or two

iterations the algorithm converges to a unique solution. We also note that the same

�nal result is reached no matter what the initial conditions were.

6.3.2.2 Example 2: solution using Lloyd-Max with known pdf

Our second example examines the iterative solution that can be obtained using the

adaptive algorithm on a known pdf. We no longer seek closed form solutions and thus

we can consider quantizers with larger number of bins. Here we use a quadratic pdf

(convolution of 3 uniform distributions) and we also note that the initial conditions

determine the result. Refer Fig. 6-5. In the experiment we use initially a quantizer

that is a linear combination of the Lloyd-Max quantizer for the true pdf and a uniform
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Figure 6-3: Example 1. 3-bin case and pdf f(x) = 3=4(1�x2) for �1 � x � 1, f(x) =
0, elsewhere. We represent the unique solution for the boundary (vertical axis) that
meets the centroid and nearest neighbor conditions, for each of the initial conditions
on the boundary (horizontal axis). Note that regardless of the initial conditions
the range of solutions achieved is very restricted and close to the optimal solution

obtained on the true pdf. As we have only three bins and the pdf is symmetric around
zero, the quantizer is completely determined by a single parameter, the boundary of
the middle bin.

quantizer. Note how the initial choice of quantizer is not too critical and, as should

be expected, even less so in the case where a larger number of bins is used. Fig. 6-5

represents the result after using a single Lloyd-Max iteration on the approximated

function. If we then use the new quantizer as the initial condition we will observe

again that we have convergence.

Fig. 6-6 represents an example of the successive application of the algorithm (with

a 4 level quantizer). Note that the �rst iteration (when the algorithm is started with

a uniform quantizer as the initial condition) is already very close to the convergence

value.

We can also measure the performance when using the iterative solution for di�er-

ent number of quantizer levels. Our results are shown in Fig 6-7. We observe that the

iterative application of our algorithm converges to a unique solution. Furthermore
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Figure 6-4: Example 1. Result of applying successively the algorithm to the three bin
case with f(x) = 3=4(1�x2). Note that convergence is very fast. Just two iterations
are su�cient. The vertical axis represents the choice for the initial quantizer. The
horizontal axis represents the number of iterations.

we see that the loss due to adaptivity is minimal, and diminishes as the number of

levels increases. This �gure shows the lower bound of the error due to adaptivity.

6.3.2.3 Discussion

So far we have seen in Example 1 that using the Lloyd-Max algorithm on a piecewise

linear approximation can produce a global minimum. More generally, in order for the

global minimum to be reached, a su�cient condition [33, 103] is to have a log-concave

f̂ (x). For instance a concave piecewise linear approximation can be shown to be log-

concave and thus will yield a global minimum. Generally speaking, we should expect

that if a solution exists for the underlying pdf f(x) then a good approximation f̂(x)

will also be well behaved.

In both examples considered we observed convergence of the Lloyd iteration. This

observation was con�rmed by the experiments performed on real sources. In the above

examples the only source of error was due to using f̂(x) in the quantizer design, since
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Figure 6-5: SNR obtained after running the Lloyd-Max iteration on the f̂(x) obtained
with di�erent starting conditions. The horizontal axis represents the di�erent choices

for the initial quantizer with 1 being the uniform quantizer and 10 the Lloyd-Max
quantizer obtained on f(x). The top line indicates the performance of the Lloyd-
Max quantizer design for the true pdf. The top graph represents the 3-bin case, the
bottom one the 8-bin case. Note how the degradation due to using the approximation
is smaller, as expected, in the 8-bin case.

the Pi were computed directly from the known pdf f(x). However, in the case of

actual sources, the errors in estimating Pi and the boundaries would both prevent a

perfect convergence. In other words, even for an i.i.d., the quantizer obtained in the

process of successively estimating f̂ (x) and running the Lloyd-Max algorithm will

probably change slightly at each iteration, because the samples observed over the

latest interval may give slightly di�erent estimates for Pi.

To summarize, we have shown examples of how our algorithm performs when

the e�ects of boundary and Pi estimation are not considered. We have observed

that the procedure of successively matching the observed counts and re-designing the

quantizer converged for pdf's similar to those that we would be expecting in real

cases.
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Figure 6-6: SNR obtained after running successive Lloyd-Max iterations where at
each stage the true pdf is used to generate the counts that will produce f̂(x). A 2

bit quantizer is used. The resulting quantizer is used as the starting condition of
the following iteration. Note that convergence is fast and that even after only one
iteration (with a uniform quantizer as the initial condition) the SNR is very close to
that attained at convergence.

6.4 Experimental results

In this section we present several examples to illustrate the performance of our adap-

tive quantization. We are concerned with the advantages of adaptivity in situations

where the input pdf, as measured by the gathered statistics, changes over time. We

will also show examples for i.i.d. sources where we should be experiencing some per-

formance loss due to the adaptivity of the algorithm. Most examples are provided

for �xed rate quantizers at a rate of two bits per sample. The examples with variable

rate quantization indicate the achieved SNR vs. entropy trade-o�. Note that we use

the normalized SNR, log(�2x=�
2

r) where �
2

x and �2r are respectively the variance of the

signal and that of the error. When we are dealing with non time-varying signals, we

use averages over windows as our estimates for the variance.
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Figure 6-7: Loss in performance due to the adaptivity for several numbers of quantizer
levels. The curve depicts the di�erence in SNR between the optimal Lloyd-Max
quantizer and the quantizer obtained after iterating our algorithm. Note that the
loss diminishes as the number of level increases. Also note that the decrease is not

strictly monotonic. The error incurred between f(x) and f̂ (x) in the approximation
is clearly strictly monotonic in the number of quantizers, but this may not be the
case as far as the loss in performance is concerned.

6.4.1 Advantages of adaptivity

An adaptive algorithm can be useful even in the case of i.i.d. sources. In partic-

ular, adaptive schemes can learn the distribution \on the y" (for instance, they

could operate in \training mode" part of the time, typically at the beginning of the

transmission). Furthermore, because they are not designed for a speci�c distribution

they do not su�er the shortcoming of loss of performance in the face of mismatch

between the actual source distribution and the one that was assumed in the design.

Two examples of this can be seen in Figs. 6-8 (a) and (b), where the behavior of the

adaptive algorithm and a Lloyd-Max quantizer are compared when the mean and

variance of the source, respectively, do not match those assumed in the design.
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Figure 6-8: Comparison between adaptive and Lloyd-Max algorithms. (a) Mean

mismatch. The Lloyd-Max quantizer is designed for a zero mean gaussian source.
The adaptive algorithm maintains its performance constant. The variance of the
source was 1. (b) Variance mismatch. The Lloyd-Max quantizer is designed for
a variance 1 gaussian source. As the mismatch becomes signi�cant the adaptive
algorithm clearly out performs the Lloyd-Max quantizer.

A second advantage of using an adaptive algorithm is that it can outperform sys-

tems that are designed considering only long term statistics, by attempting to �nd

short term trends in the data. As an example, Fig 6-9(a) shows the performances of

the Lloyd-Max algorithm (trained on the sequence) and the adaptive algorithm for

a bimodal source which randomly switches between two states each producing dif-

ferent mean and variance. When an i.i.d. source is considered though, the adaptive

approach will be less e�ective although, as shown in Fig. 6-9(b) for a gaussian distri-

bution, only marginally so. Note that the results we present were obtained using the

adaptive algorithm with the same parameters for both types of sources (i.e. both the

time between quantizer updates, and all the thresholds were �xed at the same level

in both cases). Fig. 6-10 shows that the advantage of adaptivity can also be obtained

within an entropy constrained variable rate quantization framework [22].
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Figure 6-9: Comparison of performance of Lloyd-Max and the adaptive algorithm.

The SNR is the average measured over blocks of 2000 samples. (a) When a bimodal
source is considered, the performance is much better than a Lloyd-Max design based
on the complete sequence. The source switches between two states each producing
di�erent mean but same variance (�2 = 1). (b) When a stationary gaussian source
(�2 = 1) is considered, the loss due to the adaptation is minimal.

6.4.2 Loss due to adaptivity

In this section we briey discuss the performance of our adaptive algorithm for i.i.d.

sources and show how the loss due to operating with estimates of the distribution,

rather than the samples themselves as is the case in the Lloyd-Max design, is min-

imal. In our experiment, we use the adaptive algorithm but initialize it with the

optimal Lloyd-Max quantizer trained on the source, rather than a uniform quantizer

as is usually the case. In this way, since our �rst \guess" was optimal, the loss in

performance is due exclusively to the adaptivity. Table 6.1 summarizes our results.

In Table 6.1 the recurrence time is the period between consecutive quantizer

updates. The memory (measured in units of the recurrence times) represents the

number of samples that are considered to generate the new quantizer. For instance

a memory of 1.25 implies that the previous 50 samples are used when the recurrence

time is 40, a memory of +1 means that all previous samples are considered at
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Figure 6-10: Comparison of performance of Lloyd-Max and the adaptive algorithm
in the entropy constrained case. The average entropy of the quantizer is used. (a)
When a bimodal source is considered, the performance is much better than a Lloyd-

Max design based on the complete sequence. (b) When a stationary gaussian source
(�2 = 1) is considered, the loss due to the adaptation is minimal.

every update. We note that, as the number of samples becomes small the main

factor becomes the \non-signi�cance" error, i.e. not enough information is used in

updating the quantizers. This error can be overcome by appropriate choice of the

speed of adaptation. Conversely, for long update intervals the main factor becomes

the error introduced by the algorithm itself due to its manipulating quantized data,

rather than the original samples as in the Lloyd-Max algorithm. This error can be

seen to be very small.

6.5 Conclusions and future work

We have described an adaptive quantization algorithm which learns the source dis-

tribution from the quantized data and adapts the quantizer parameters using well

known design methods. As an example we have demonstrated adaptive �xed rate

and entropy constrained scalar quantizers which use a piecewise linear approximation
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Recurrence time T (samples)

Memory (times T ) 40 200 400 2000

1.25 8.824 9.157 9.220 9.259

1.67 8.903 9.210 9.241 9.264

2.5 9.109 9.240 9.257 9.266

5 9.154 9.260 9.265 9.267

+1 9.241 9.264 9.266 9.267

Table 6.1: Performance at di�erent speeds of adaptation for a stationary source. Note

that the adaptive algorithm was initialized with the optimal quantizer as designed by

the Lloyd-Max algorithm on the actual data. The Lloyd-Max performance is 9.271
dB.

of the source distribution and rely on Algorithms 6.1 and 6.2 to update the quantizer

parameters.

Future research will concentrate on extending these ideas to more general environ-

ments (e.g. VQ), and exploring its suitability for DPCM applications. Applications

to image compression, e.g. in quantization of subbands, will also be considered. Fur-

ther work is needed on the problem of estimating the boundaries and determining

the speed of adaptation.
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