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Block diagram of a generic communications system. The source
outputs blocks that are encoded and transmitted. Note that the
diagram depicts an encoder formed by a transform (T), quantizer
(Q) and entropy coder (E), as well as an output buffer. However
this is not the only configuration we will consider. . . . . . . . ..
Operational vs. traditional rate distortion formulation. The tradi-
tional R-D formulation assumes a model for the source and is con-
cerned with obtaining bounds on achievable performance, without
providing constructive methods to approach those bounds. In an op-
erational R-D framework the optimization has to find good actual
operating points among the discrete set of those available (depicted
as in individual points in the figure). . . . .. .. .. ... ...
Lagrangian optimization. For a given real positive number A the
operating point x; which minimizes D(z;) + AR(x;) is good in the
sense of being on the convex hull of the R-D characteristic. For
given A, the point that minimizes the lagrangian cost is that point
that is first “hit” by a line of slope A and is thus guaranteed to lie
on the convex hull. Using several values of A\ enables to map the
convex hull and search for points that meet a budget. . . .. ...
Dynamic programming. The problem is to find the minimum cost
path in a trellis where each branch has a cost and the costs are
additive. If the optimal path from A; to A4 passes through As then
the subpath from of this solution that goes from A; to As is also the
optimal path from A; to As. . . . . . .. ... ...

Block diagram of the encoding system. The buffer control mech-
anism determines the quantizer to be used for each input block.
Given the set of quantizers, the system can be characterized by the
rate, r;;, and distortion, d;;, for each block and quantizer. . . . ..
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Individual and composite Rate-Distortion characteristics. Constrained

and unconstrained optimization. (a) Each block in the sequence has
a different Rate-Distortion characteristic. In this example there are
three quantizers available to code each block. (b) For a given choice
of quantizers for the blocks in the sequence, we can obtain R-D
points to form the composite characteristic. No point in the convex
hull meets the budget Ry. The optimal solution R* is not a convex
hull solution. (¢) R* is not a feasible solution with the chosen buffer
SIZE. o e e e e e e e
Trellis diagram to be used for the Viterbi algorithm solution. Each
branch corresponds to a quantizer choice for a given block and has
an associated cost, while its length along the vertical axis is pro-
portional to the rate. For instance, quantizer 1 at stage ¢ produces
a distortion d;; and requires rate r;;. A path will correspond to a
quantizer assignment to all the blocks in the sequence. . . . . . ..
The problem seen from the VA point of view: (a) The R-D char-
acteristics of the blocks with available quantizers. (b) Equivalent
representation. Each of the branches corresponds to the choice of
a specific quantizer and has an attached cost. The length of the
branch along the vertical axis is proportional to the rate. (c) All
possible paths for the three blocks considered. Paths 1 and 2 cannot
be used because of overflow. 1 and 3 are, respectively, the minimum
and maximum distortion paths. . . . . . . ... ... . ...
SNR vs. cluster factor: The cluster factor indicates how many states
or nodes are clustered at each trellis stage. Note that the subopti-
mality is negligible for cluster factors as high as 100, i.e. when the
number of nodes, and thus the complexity, is reduced by a factor of
100, .« o e
Surviving paths using the full VA. The problem has finite memory:
for a sufficient length, all surviving paths share the same initial path.
B, 1s the buffer size in bits and L is the number of blocks on which
the VA is run. (a) Bqe = 400 and L = 100, (b) B = 500 and
L =100. Note that as the buffer size is increased the length of the
common path decreases. . . . .. .. ... ... ... ...
SNR vs. number of blocks, n, used to obtain the VA solution. We
divide n by the normalized buffer size so that the horizontal axis
represents the window of the VA expressed in “number of buffer
sizes”. In the experiment, a quantizer is chosen for block 7 based on
the best path from ¢ to 7 + n. To select the path, we force it to end
at an arbitrary buffer position at stage ¢ + n (normally mid-buffer)
thus explaining the non-monotonicity of the resulting function.
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Moving Average of the Optimal Solution. The average is taken over
300 blocks. Note that the average is always close to the channel rate
(100). .« . o
For each block, minimizing d;.(;) + Ariz(;) for a given A is equivalent
to finding the point in the R-D characteristic that is “hit” first by a
“plane wave” of slope A\. . . . . . . ... ..
All possible “constant slope” solutions. Note that not all final states
can be reached with a constant slope path. However, if a path exists,
it is optimal. In this example B, = 3000 bits. . . . . . . .. ...
Differences in quantization choices between Algorithms 2.1 and 2.3.
Note that the quantization obtained using iterative constant slopes
and the VA is different for only a few blocks. . . . . . .. .. ...
An example of Algorithm 2.4. From block ¢ to block j the allocation
is not recomputed. Then, as the buffer state exceeds the threshold,
the allocation is recomputed. . . . . . .. ... ... L.
SNR of suboptimal VA (top) and Algorithm 2.4 with 10% heuristic
threshold. When a sufficient number of blocks is considered, the
heuristic approximation comes within 0.05 dB of the distortion for
the optimal solution. . . . . . .. . ... ... L
SNR vs. normalized buffer size. The normalized buffer size (B,q:/7)
represents the size of the memory expressed in number of blocks
coded at the nominal rate of r bits. Note that for different values of
r the curves have a similar shape and the optimal normalized buffer
size is roughly the same. . . . . . . . . ... o000
Comparison of “fixed” activity—based allocation and optimal buffer—
constrained allocation. In both figures the channel rate is r = 64
bits/block and the buffer size B,,.. = 2000 bits. WSNR denotes
the activity weighted SNR. (a) Buffer evolution for “fixed” control.
For the chosen buffer size and nominal quantizer, there is underflow
at both the beginning and the end of the frame. (b) Buffer evolution
under VA allocation. . . . . . . .. ... oo 0oL
Buffer evolution in the common buffer for the 4 sources when the
allocation is computed using a combined or multiplexed VA (solid
line) or an independent VA (dashed line). The resulting total SNR
(obtained by averaging the MSE of all sources) increases as was to
be expected when a combined VA is used for the allocation. The
independent VA uses 1/4 of the rate and buffer size of the combined
scenario independently for each source. . . . . . . ... ... .
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Individual buffer occupancies for each source. (a) Source 1, (b)
Source 2, (c¢) Source 3, (d) Source 4. The independent buffer evolu-
tion (dashed line) corresponds to a buffer size of 2000. The combined
or multiplexed buffer evolution (solid line) is simulated based on the
combined allocation and assuming that the channel rate was the
same as in the independent case, i.e. 1/4 of the total rate. Observe
that the most demanding sources (2,3,4) increase their effective rates
in the combined case at the expense of the least demanding source
(1). Overall the same total rate is used and, as seen in Figure 2-16,
the overall SNR is improved when doing a combined allocation.

Three configurations for transmission of VBR coded video. Note
that the control box sets a quantization parameter ¢). (a) Typical
configuration for studying the statistical behavior of video source
and modeling the output bit rate. (b) Self policing for transmission
over a packet network. (c¢) Transmission over a CBR link. . . . ..
Rate and distortion behavior for a sequence containing four types
of scenes: Test, Normal, Easy, Difficult. Note that the scales are
not important: we just try to qualitatively illustrate the typical
behavior. . . . .. Lo
Rate time series with constant Quantizer of 0.4. Peak/mean rate =
156118.0/76482.6 = 2.04. . . . . . . . ...
SNR time series with constant Quantizer of 0.4. Peak/mean dist =
16345.8/5545.4 = 2.95. . . ..
Rate time series with target Rate of 157000 b/frame. Peak/mean
rate = 156994.0/105110.8 = 1.49. . . . . . ... ...
SNR time series with target Rate of 157000 b/frame. Peak/mean
dist = 16345.8/4614.1 = 3.54. . . .. .. ...
Rate time series with target SNR of 36.8 dB. Peak/mean rate =
156118.0/46070.8 = 3.39. . . . . . ...
SNR time series with target Distortion of 18000. Peak/mean dist =
17998.4/14120.2 = 1.27. . . . . . .
SNR trace with (a) greedy and (b) non-greedy rate control. Note
that the SNR remains the same for the most difficult scene, but does
not exceed the target for easier scenes in the non-greedy case.

Buffer occupancy trace with (a) greedy and (b) non-greedy rate
control. Note substantial buffer underflow for easy scenes in non-
greedy case. . . . ... Lo Lo
Worst case average rate for several window sizes. As an example:
the point (1, R- N) indicates that the maximum bit rate that can be
used by a single frame is R - N. The range of average rates allowed
under the constraint is represented the area under the curve.
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Motivation for using a double leaky bucket. The worst case short
term behavior is determined by the short bucket, while the long term
average is set by the long bucket. As before the range of admissible
average rates is represented by the area under whichever curve is
closer to the z-axis, for a given window size. . . . ... ... ... 102
Worst case burst curve for a LB(3,60) that has been chosen for
the non-greedy source of Fig. 3-10(b). The window is short (N =
3) and thus the leak rate has to be large enough to permit the
larger frames to be sent. The drawback is that the long term av-
erage is 60kbit /frame, while the actual sequence’s average was 46.3
kbit /frame. The greedy sequence of Fig. 3-10(a) would also be ad-
missible. . .o 103
Worst case burst curve for a LB(60,55). The non-greedy sequence of
Fig. 3-10(b) is also admissible under this L.B. Note that the longer
window NV, = 60 enforces a lower long term average. However, there
is the danger that a compliant source may generate bursts of up to
3000 kbit/frame! . . ..o oo 104
Effect of combining two LLB’s. The resulting worst case burst curve
shows both the lower long term average (which tends to 55kbit /frame)
and smaller short term bursts (less than 180 kbit/frame). . . . . . 104

Operational R-D characteristics of 2 frames in a dependent coding
framework, where frame 2 depends on frame 1. (a) Independent
frame’s R-D curve. (b) Dependent frame’s R-D curves. Note how
each quantizer choice for frame 1 leads to a different Ry — D5 curve.
The Lagrangian costs shown are J = D + AR for each frame. . . . 109
Overview of typical source coding environments.. . . . . . . . . .. 110
Example of search for the minimal A. Choosing quantizer 2 would
be optimal if only the first frame were considered. However choosing
quantizer 1 for frame 1 is better overall because the gain for frame
2 compensates the suboptimality for frame 1. . . . . . . . .. ... 113
Typical MPEG coding framework. (a) The MPEG frames: the I
frames are independently coded, the P frames are predicted from
previous I or P frames, and the B frames are interpolated from ad-
jacent I and/or P frame pairs. (b) Temporal dependency in the
MPEG framework. Note that the B frames are leaves in the depen-
dency tree, since no prediction is generated using them. . . . . .. 117
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The I-B-I special case of MPEG. Finding an R-D convex hull point
corresponding to a A is equivalent to finding the smallest cost path
through the trellis. Fach trellis node corresponds to a quantizer
choice for the I frames, monotonically ordered from finest to coars-
est, and is populated with the associated Lagrangian cost (J([) =
D(q) + AR(q)). The branches correspond to the B frame pairs,
and are populated with their minimum Lagrangian costs (J(B) =
min[D(q)+AR(q)]) for the particular | frame quantizer choices given
by each branch’s end nodes. For quality slope A, the optimal total
cost path is obtained with the Viterbi algorithm. The “dark line”
path joins the smallest cost I frame nodes. Monotonicity implies
that all dashed line paths can be pruned out. . . . .. .. .. ... 118
Pruning conditions obtained from monotonicity. (a) Ji(i2)+ J2(42,7)
is the minimum Lagrangian cost of all branches terminating in node
J. Therefore (see Lemma 1), the (i3,7) branch can be pruned. (b)
J3(2,71)) is the minimum Lagrangian cost of all branches originating
from node i. Therefore (see Lemma 2), the (¢,72) and the (¢,73)
branches can be pruned. (c) Diagram used for the proof of Lemma 1. 120
General MPEG “trellis” diagram extension of Fig. 3. Here, the
inclusion of the P frames prevents the decoupling of the B frame
pairs, and the entire tree has to be grown. Note that each stage
of the trellis is represented by “vector” branches whose dimension
grows exponentially with the dependency tree depth. . . . . . . .. 122
Tree pruning using the monotonicity property (Lemmas 1,2). The
numbers are the cumulative Lagrangian costs for a typical example
for A = 10. Branches pruned at each stage are shown with dashed
lines. In this example, the number of R—-D points generated is cut
down from 363 (exhaustive) to only 36 with no loss of optimality. . 126
Tree pruning using monotonicity as well as a “greedy” heuristic for
the same conditions as those of Fig. 6. The number of R-D points
generated is now 24, at a slight loss of optimality (total Lagrangian
cost is 77.91 versus optimal cost of 77.24). . . .. ... ... ... 127

Multiresolution image retrieval system: typical user interaction and
corresponding system parameters. . . .. .. ... 136
System model for a multiresolution image retrieval system. ¢ is the
probability an image is one of the targets. P(«) is the probability
that a percent of the total bits provide sufficient quality. B is the
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Norton equivalent network. . . . . . ... ... .. .. ... ....
Total delay as a function of « for two values of ¢. In all cases we have
that a,,; = 0.3012. The other parameters are set to M = 10,m =
5,10 = 0.1, uo = 0.01, A = 0.1. Note that the trade-off is practically
identical for both valuesof t. . . . . . .. ... ...
Total delay as a function of « for several values of py. In all cases
we have that a,, = 0.3012. The other parameters are set to M =
10,m = 5,1 = 0.1, = 0.05, A = 0.1. Note that for uy = 0.01 the
delay due to the database access, uy = 0.1, is still significant so that
optimizing the transmission results in modest gains. Conversely, for
the other two values of uy transmission dominates the delay.

Total delay as a function of a for several values of the number of
users. In all cases we have that a,,; = 0.3012. The other parameters
areset tom =5,y = 0.1, 2 = 0.01,¢ = 0.05, A = 0.1. Note that, as
all users share the database, increases in M imply that the database
delay becomes more significant and the gains obtained by optimizing
the transmission are smaller. . . . .. .. ... o000
Total delay as a function of « for two values of the number of users
when the commnunication resources are shared. In all cases we have
that o,y = 0.3012. The other parameters are set to m = 5,y =
0.1,p2 = 0.01,¢ = 0.05,A = 0.1. The relative gain is practically
the same regardless of the number of users because the transmission
delay dominates as the links are shared. . . . . . . .. .. .. ...
Total delay as a function of « for two values of ¢ when the communi-
cation resources are shared. In all cases we have that o, = 0.3012.
The other parameters are set to m = 5,y = 0.1,y = 0.01, M =
5 A=0.1 Lo
Overall delay at the optimal combination of a’s for different values of
m. Note how the delay can be significantly decreased by increasing
the number of resolutions, at the cost of increased complexity. . . .
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Adaptive quantization algorithm. (a) The adaptation algorithm can
be decomposed in two parts (i) the estimation of the input distribu-
tion based on past samples and (ii) the design of the new quantizer
given the estimated distribution. (b) In the simplest case the adap-
tive algorithm uses a fixed finite window to estimate the distribution.
In a more general case it would be necessary to change the speed of
adaptation as well, so that the window size would also change over

Notation used in the model estimation algorithm. The b,’s denote
the decision levels, with by and b7 denoting the outer boundaries
of the finite support approximation. The x; are the knots of the
piecewise linear approximation. In this figure there are as many
knots as bins but in general one can use more knots than bins.
Note that we depicted an f(a) which is non zero outside the range
determined by bg, b7, to emphasize the fact that these two boundaries
have to be estimated and that the operation introduces some error.
Example 1. 3-bin case and pdf f(x) = 3/4(1 — 2?) for —1 < a <1,
f(z) = 0, elsewhere. We represent the unique solution for the
boundary (vertical axis) that meets the centroid and nearest neigh-
bor conditions, for each of the initial conditions on the boundary
(horizontal axis). Note that regardless of the initial conditions the
range of solutions achieved is very restricted and close to the opti-
mal solution obtained on the true pdf. As we have only three bins
and the pdf is symmetric around zero, the quantizer is completely
determined by a single parameter, the boundary of the middle bin.
Example 1. Result of applying successively the algorithm to the
three bin case with f(z) = 3/4(1 — 2?). Note that convergence
is very fast. Just two iterations are sufficient. The vertical axis
represents the choice for the initial quantizer. The horizontal axis
represents the number of iterations. . . . . . .. ... ... .. ...
SNR obtained after running the Lloyd-Max iteration on the f(:z;)
obtained with different starting conditions. The horizontal axis rep-
resents the different choices for the initial quantizer with 1 being the
uniform quantizer and 10 the Lloyd-Max quantizer obtained on f(x).
The top line indicates the performance of the Lloyd-Max quantizer
design for the true pdf. The top graph represents the 3-bin case, the
bottom one the 8-bin case. Note how the degradation due to using
the approximation is smaller, as expected, in the 8-bin case.
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SNR obtained after running successive Lloyd-Max iterations where
at each stage the true pdf is used to generate the counts that will
produce f(:z;) A 2 bit quantizer is used. The resulting quantizer is
used as the starting condition of the following iteration. Note that
convergence is fast and that even after only one iteration (with a
uniform quantizer as the initial condition) the SNR is very close to
that attained at convergence. . . . . . .. ... ...
Loss in performance due to the adaptivity for several numbers of
quantizer levels. The curve depicts the difference in SNR between
the optimal Lloyd-Max quantizer and the quantizer obtained after
iterating our algorithm. Note that the loss diminishes as the number
of level increases. Also note that the decrease is not strictly mono-
tonic. The error incurred between f(x) and f(:z;) in the approxima-
tion is clearly strictly monotonic in the number of quantizers, but

this may not be the case as far as the loss in performance is concerned.187

Comparison between adaptive and Lloyd-Max algorithms. (a) Mean
mismatch. The Lloyd-Max quantizer is designed for a zero mean
gaussian source. The adaptive algorithm maintains its performance
constant. The variance of the source was 1. (b) Variance mis-
match. The Lloyd-Max quantizer is designed for a variance 1 gaus-
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