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Abstract

In this thesis, we address algorithms in the areas of image and video coding
that aim at assuring reliable and secure communications. This work can be
divided into 4 different parts: (i) two-dimensional dependent quantization, (ii)
region of interest coding, (iii) multiple description coding, and (iv) watermarking.

The first contribution of the thesis is dedicated to the problem of two dimen-
sional dependent quantization. Traditional greedy-search algorithms are popular
due to their low complexity and low memory consumption, but they are far from
optimal due to their dependency in coding. To resolve this problem, we develop
an allocation technique, which can outperform greedy-search techniques. The
proposed technique enables efficient selection of the quantization parameter for
each coding unit such that the required memory size and computation time can
be significantly reduced, as compared to the exhaustive search approach.

The second part of this thesis studies rate-distortion (RD) modeling for wavelet-
based codecs and analytical bit allocation based on the proposed RD model. The

proposed algorithm efficiently allocates different numbers of bits to different parts

XV



of an image. This type of problem appears in application such as Region of inter-
est (ROI) coding. The proposed scheme provides good estimates of the desired
operating parameters with low complexity, e.g., without requiring an explicit
generation of all possible RD operating points.

The third part of the thesis is devoted to the problem of error-resilient coding
of images. We present Multiple Description Coding (MDC) as a data compression
algorithm that provides efficient recovery from data losses for robust communi-
cation over erasure channels. The performance analysis and simulation results
show that the proposed technique provides graceful degradation in the presence of
channel erasures. In addition to good error resilience, our approach also provides
simple adaptation to the changes in channel behavior by taking into account the
proposed RD model during the optimization.

The last part focuses on video watermarking, and shows the development
of a security mechanism for digital movie distribution. A known signal (a so-
called watermark) which uniquely identifies the owner and authorized buyers
is inserted into the copyrighted movie, in such a way as to be imperceptible.
We determine where to cast and how to insert the watermark such that (i) the
watermarked movie will be perceptually indistinguishable from the original one
and (ii) the watermark will be present in the watermarked movie even after it

has been attacked.
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Chapter 1

Introduction

1.1 Motivation

Recent advances in computing and communication technology have stimulated
research interest in the processing and distribution of multimedia information
over wired and wireless networks. Data compression plays an important role in
multimedia communications, since a compact representation of the large multi-
media data sets leads to a more efficient usage of network bandwidth. Unlike
traditional textual data, digital multimedia information (e.g., audio, speech, still
and moving images) have three important characteristics. First, there exists a
strong correlation between the samples of multimedia data. Second, multime-
dia information can tolerate losses, i.e., the signals can be reconstructed after

decoding with various levels of quality. In other words, it is acceptable to have



a reconstruction that does not exactly match the original as long as the recon-
struction does not have perceptually annoying artifacts. In this way, the lack of
exact reconstruction may be acceptable, which results in much higher compres-
sion ratios. Third, there is a strict rule on the timing delay of decoding schedule
but only in some cases, i.e., speech, audio and video. Clearly, text transfer is not
subject to timing constraints since there is no schedule to decode the data. For
example, sending an email requires lossless transmission since even one bit loss
may alter the meaning of what was transmitted. Typically, text has to be lossless
but is not subject to strict delay constraints.

In order to gain efficiency in coding and transmission of digital media con-
tent, the system must resort to some sort of compression such that the channel
bandwidth or the storage space can be efficiently utilized. Rate-Distortion (RD)
theory [11] provides a starting point by formalizing the tradeoff between coding
bitrate and reconstruction error. Optimization in an RD sense has played a ma-
jor role in recent image and video coding research [52, 57, 27]. Since sources such
as images and video have a great deal of correlation from sample to sample, more
efficient coding can be achieved by predicting samples based on previously trans-
mitted samples. The difference between the sample value and the prediction will
be encoded and transmitted. Clearly, it takes fewer bits to encode differences

than it takes to encode the original sample as long as correlation exists. To



exploit this correlation between the coding units in multimedia data, these dif-
ferential coding schemes have been used in many standards such as JPEG [53]
for image compression and MPEG-1, 2, 4 [28, 29, 85] and H.26x [30, 31] for video
compression.

With the expansion of digital image applications, not only is it important to
provide good RD performance, but providing a functionality to process different
portions of image with different fidelities is desirable as well. In recent years this
non-uniform distribution of the image quality has been incorporated into image
coders such as EZW [71], SPIHT [69] and JPEG2000 [6]. This feature is employed
in applications that require images to be coded in such a way that the end user
can view some portions of the image with higher decoding quality than the rest
of the image. This form of progressive coding is called Region of Interest (ROT)
coding. It enables the ROI to be reconstructed more quickly than the rest of the
image, achieving a higher quality level as well.

In the presence of lossy channels, the extensive use of predictive coding by the
source coder, in order to achieve better compression, makes the compressed data
vulnerable. Thus considering only the compression mechanism without taking
into account the transport mechanism may not be sufficient since failures in the
transport could lead to very low quality reconstruction at the receiver. To gain

robustness together with compression efficiency research has been very active in



the area of joint source channel coding (JSCC) [83]. The goal of these tech-
niques is to provide error-resilient coding at encoder and/or error concealment at
decoder such that the overall quality is maximized. In most of the current net-
working technologies such as Integrated services digital network (ISDN), Cellular
networks, wireless LAN or Broadband wireless IP networks, packet losses can be
frequent [81]. One main reason of the packet losses is network congestion, which
continues to be commonplace nowadays. For instance, when the local buffer at a
switching node or router suffers overflow, packets have to be dropped. For some
applications, there are strict constraints on the end-to-end delay. Packets that
arrive after their scheduled display time will be considered lost. In channels with
high bit error rate or low signal to noise ratios, packets that contain detectable
but uncorrectable bit-errors will also be considered lost.

Recent years have witnessed a proliferation of illegal copying of digital content,
which is facilitated by the ease with which digital content can be disseminated
over today’s networks. Clear examples can be seen in the music and movie indus-
tries. Most songs currently available in the market can also be downloaded with
good audio quality in the widely-used compact MP3 format. Cryptographic sys-
tems based on well-established algorithms (e.g., cryptosystem by Rivest Shamir
Adleman (RSA) [36, 59] or Data Encryption Standard (DES) [21, 76]) are not
sufficient to protect the data since their intent is to provide for a secured commu-

nication or data access control such that only the authorized viewers (the ones

4



who possess a proper key) can access to the scrambled signal. However once the
data is descrambled to be viewed, these authorized customers might be the ones
who then make a large number of copies and distribute them to others.

Research in the area of digital watermarking has primarily focused on ways
to relieve this problem. In such methods, a known signal (watermark) is inserted
into the copyrighted data. For the purpose of copyright protection, the casting
watermark contains information about the owner and the authorized recipient.
The watermark has to be robust to the deliberate or unintentional attacks. Once
the copyrighted content is illegally distributed, the embedded watermark is ex-
tracted and used to place a claim of ownership and uniquely identify the source of
the leak. In this way, appropriate action can be taken (punitive damages sought
and security tightened, for instance).

In this thesis, four practical issues are addressed as follows. Bitrate-constrained
allocation techniques for 2D dependent predictive coding and Region of interest
coding are discussed in detail in sections 1.2 and 1.3, respectively. Novel channel-
adaptive reliable transmission mechanisms that are robust in the face of the net-
work impairments are addressed in Section 1.4. Secured distribution system to
protect media against illegal attacks are presented in Section 1.5 and the chapter

concludes with an overview of contributions of the thesis in Section 1.6.



1.2 Two-Dimensional Dependent Quantization

In recent years there has been a substantial amount of interest in one-dimensional
(1D) predictive coding (or dependent quantization) problem [57, 27, 26]. To ex-
ploit the correlation appeared inside an image for image coding or within a frame
in video coding, the introduction of two-dimensional (2D) differential coding has
played a major role in reducing the amount of information needed to reproduce
the signal at the decoder. The bit allocation problem then requires considering
a 2D set of coding units (e.g., DCT blocks in standard MPEG-4 coding [85]),
where the rate-distortion (RD) characteristics of each coding unit coding depend
on one or more of the other coding units. As an example, in this thesis we consider
MPEG-4 intra-coding [83, 85], where in order to further reduce the redundancy
between coefficients both the DC and certain of the AC coefficients of each block
are predicted from the corresponding coefficients in either the previous block in
the same line (to the left) or the one above the current block. This 2D correla-
tion leads to 2D dependency. Finding the optimal solution to this bit allocation
problem may be a time-consuming problem, given that the RD characteristics of
each block depend on those of the neighbors. One recently proposed technique to
perform the bit allocation is to use the one-dimensional Viterbi algorithm (1D-
VA) across rows via row-column iterations, with or without feedback from rows

[40, 46, 34, 49]. However these approaches may not be efficient for problems with



2D dependencies, since they are not truly 2D in nature. Greedy-search algorithms
are also popular due to their low complexity and low memory consumption, but
they may be far from optimal due to the dependencies in the coding.

As an alternative, in Chapter 2, we introduce an iterative message-passing
technique to solve 2D dependent bit allocation problems. This technique is based
on (i) Soft-in/Soft-out (SISO) algorithms, which are first used in the context of
Turbo codes [8], (ii) a grid model [79], and (iii) Lagrangian optimization tech-
niques [73]. Unlike previous works that use the grid model for an unconstrained
minimization problem [79], we propose to use the grid model to solve a 2D de-
pendent bitrate-constrained allocation problem. The iterative message-passing
technique attempts to achieve a globally optimal solution via a local-metric com-
putation and message passing.

In this work, the key observation to solve this problem is that it is possible
to iteratively compute the soft information of a current DCT block (intrinsic
information) and pass the soft decision (extrinsic information) or message to
other nearby DCT block(s). When the messages from every block arrive, the
global cost function is eventually accounted for at every block. At this point,
a hard decision can be made on the coding choice of each block. To guarantee
that each block can get the information from every block via the least number of

iterations, we define a schedule for the block activation.



1.3 Region of Interest Coding

Recently many researchers have focused their attention on coding schemes that
can provide different level of fidelity within a given image. The part of the image
that is reconstructed at higher quality is called Region Of Interest (ROI). With
the limited bandwidth available on the Internet or over wireless networks, one
might prefer to have higher decoding quality in some specific spatial portion
of the image while maintaining acceptable quality in the rest of the image, so
that the most important parts of the image can be displayed first, while the
rest of the image is being downloaded. For higher bandwidth channels, the ROI
concept may seem to be pointless. However, it is useful, for example, when the
Internet user downloads image from a website that provides ROI coding. Since
ROI is reconstructed faster than the rest of the image, the end user can decide to
terminate the transmission as soon as they are satisfied with the reconstructed
image. Due to the attractive characteristics of ROI coding, several research
communities have attempted to incorporate this feature into their compression
applications. For instance, in the signal compression community, the JPEG2000
standard [6] includes ROI functionality. Furthermore, in biomedical engineering
application lossless ROI coding is desirable so that at some specific parts of the

image of the patient body can be reproduced without losses [86, 54].



In Chapter 3, we address the problem of allocating bits to the different re-
gions in an image coded with a progressive wavelet coder such as SPIHT (Set
Partitioning in Hierarchical Trees) [69] or JPEG2000 [6]. This type of problem
appears in ROI coding [3, 84]. The wavelet coefficients are divided by different
factors before coding to enable different bit allocations to different regions, be-
cause the coefficients in each region are refined at different speeds. We call this
dividing factor a priority scaling factor (psf).

For a given set of relevant distortion criteria, the best psf can be achieved by
exhaustive search of all the possible psf values, after having explicitly measured
the RD characteristics for each candidate psf values. A design based on empirical
data could start by measuring overall RD operating points at a number of different
psfs, and then proceed to select the best psf for a given criteria such as, for
example, the relative quality between the ROI and the rest of the image. It is
clear that an extensive empirical data generation process is required and the bit
allocation is limited in that only a limited number of operating points can be
chosen.

As an alternative, we introduce a novel Rate-Distortion (RD) model for im-
ages coded with a progressive wavelet coder and especially designed to capture
RD behavior when different parts of an image are refined at different speeds. Our
model is an extension of Mallat’s model [42], which takes into account that the

rates used are not necessarily the same throughout the image. Because of the



different rates, certain modeling approximations (e.g., those for coarse quantiza-
tion) can not be used uniformly throughout the image. The main contribution
of this work is thus to provide a novel analytical bit allocation technique based
on the proposed RD model to determine what the psf should be, given criteria

such as relative importance of the regions in ROI coding.

1.4 Error Resilience Coding

A common current scenario is that of transmission over a shared network such
as the Internet, where there are no quality of service guarantees. Thus, multi-
media data is packetized for transmission but, given that there are no priorities,
any packet could be lost during transmission. Traditionally there have been
two error control strategies mainly used so that reliable reproduction of data
can be obtained: Forward error correction (FEC) [40] and Automatic repeat
request (ARQ) [26]. FEC schemes operate by employing additional redundant
bits to both detect and correct at the receiver errors incurred during a trans-
mission. Unlike FEC approach, ARQ involves detecting error and requesting a
retransmission of those packets that were either lost or received with errors. Re-
transmission of lost packets (ARQ) is undesirable (or even impossible) in some
applications such as real-time video conference or low-bandwidth wireless com-

munication. This is because in the scenarios where the channel error rate is high
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the request for frequent retransmission will result in increasing the amounts of
data transmitted, possibly contributing to additional congestion and delay. In
some cases, retransmission is not possible, e.g., when there is no back channel.
FEC schemes thus seem to be the best choice for delay constrained and/or no
feed back applications. However FEC approaches suffer from the so called cliff
effect once the bit error rate is higher than the detection/correction ability.

As the demand for image/video transmission has triggered the development
of several techniques to provide error resilient distribution over channels subject
to losses, it is desirable to have a coding scheme that can enable the receiver to
reconstruct with acceptable quality while using only the coding units that were re-
ceived, without having to request a retransmission. In Chapter 4, we will address
one such approach based on Multiple Description Coding (MDC). In MDC, some
redundancy is retained during source coding so that, after appropriate packetiza-
tion, if packet losses occur it is possible to recover by exploiting the redundancy
(statistical or deterministic) between what was received and what was lost. MDC
has become popular for real time applications as it provides graceful degradation
and does not require retransmission. In an MDC system, the signal is decom-
posed into several packets. If only some packets are correctly received then the
decoder can reconstruct to an acceptable quality level. However, if all packets
are received, information from one packet augments information from others, so

that higher quality can be achieved relative to the case where only some packets
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are received. This makes the system scalable as the quality improves when the
packet loss rate is lower. Since MDC does not require prioritized transmission it
can be used with current Internet protocols, such as UDP [75].

A fundamental design parameter in an MDC system is the level of redundancy.
Higher redundancy provides more error protection, and therefore, ideally, one
would like to match the redundancy to the channel characteristics, and in partic-
ular to be able to change the level of redundancy if the channel conditions are time
varying. It is clear that such a trade-off exists, as the level of redundancy should
increase when the packet loss rate increases, at the cost of some degradation in
the corresponding error free performance. While MDC techniques have shown
some promising results, one potential drawback is the fact that changing their
redundancy level may entail significant changes to the system [82, 24, 70, 48, 55].
As an example, MDC techniques based on transform coding [82, 24] would require
a modification of the transform at encoder and decoder each time the channel
conditions change. Since the level of redundancy should be adjusted to match the
specific channel conditions, the difficulty in adapting can be a significant problem
for time varying transmission scenarios such as for real-time communications over
wireless IP networks, due to the fluctuations of wireless channel conditions.

In Chapter 4, we propose a simple approach for MDC that involves using a
polyphase transform and deterministic redundancy. Each sample of input data

is transmitted several times, with different coding rates. This approach is useful
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in that it greatly simplifies the design of an MDC scheme, since the rate alloca-
tion determines the amount of redundancy to be introduced in the signal that
best matches a given target packet loss rate. Given that the decoder remains
unchanged when the bit allocation changes it is possible to adapt very efficiently
to the changes in channel behavior without requiring a change in the packet sizes,
or the structure of the decoder. Also, this provides a great deal of flexibility as
it enables the choice of redundancy to be almost arbitrary. The proposed RD
model in Chapter 3 can be used to eliminate the need for RD data generation
and determine the optimal level of redundancy for a given bitrate and packet loss

rate.

1.5 Secured Distribution of Copyrighted Data

Besides the problems one may encounter in distributing content when packet
losses occur, copyrighted content presents additional challenges, as the goal is to
ensure that illegal copies of the content are difficult to make and that those who
make them can be tracked down. In this work, we present a mechanism and algo-
rithm for creating undeniable watermarks to provide a secured distribution. This
allows the non-repudiation of watermarked content. More specifically, we study
where in the source domain the watermark bits should be designated and how

to cast the watermark bits into these locations. To satisfy the non-repudiation
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watermark schema requirements, watermarking algorithms must have the follow-
ing characteristics: First, the watermark should use a key from a large number
space such that no two keys are likely to be identical if keys are chosen at ran-
dom. Second, the watermark key can be detected given information other than
the value of the key itself. Third, each copy has a unique watermark associated
with a distinguished key for transaction information in digital content distribu-
tion systems. This key should be usable to detect the watermark. We consider a
digital cinema scenario, where at least 56 bits of watermark payload are needed
to identify a movie at each specific theater and for each show time. Fourth, it is
nice to have blank detection or semi-blank detection watermark. The watermark
detection agent should be able to detect a watermark with no or very limited
information. Last and most importantly, we need to create non-fragile or robust
watermarks. This is the most important requirement in this proposed watermark
schema. To verify the watermark key, the watermark agent needs to reconstruct
the encrypted key-stream exactly. This non-repudiation watermark schema can
be used for copy source tracking in a secure digital content distribution system,
which uses broadcasting technologies, such as satellite or multicast.

In the digital distribution system, we assume that the content owner or
provider uses outside agents to distribute its content. Digital content, which
is watermarked by distribution agents will be undeniably recognizable by the

content provider as originating with that distribution agent. That is to say that
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given certain distribution agents, the content provider will be able to tell, which
distribution agent watermarked the content. The system does not allow a given
distribution agent to watermark content so that it appears to have been water-
marked by another agent. It also does not allow the content provider to wa-
termark content that would appear to have been watermarked by a particular
distribution agent. This allows the content provider to place a high degree of
trust in the identification of the distribution agent and trace “leak” locations of
pirated copies of videos.

In Chapter 5, we propose novel watermark embedding and detection methods
to address the problem of copyright tracking of movies distributed to theaters
by satellite. Temporal and spatial wavelet transformation as well as feature-
based watermark embedding procedures are deployed such that the proposed
watermarking algorithm is able to achieve a compromise tradeoff between visual
quality and robustness. The multi-resolution nature of the wavelet transforma-
tions of a video sequence makes the watermark very robust and secure. Wavelet
features make very large watermark patterns possible, which allows unique dy-
namic labeling of a large number of videos. Changing some of the features in
video wavelet transformation domain according to the defined rules makes the
watermark detection semi-oblivious, which allows watermark detection very ro-
bust and independent without the original sequence. Our proposed watermark

can also be detected robustly after many kinds of malicious attacks.
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1.6 Outline and Contributions

The main contributions of this research are

e Message-passing algorithm for 2D dependent bit allocation. In 2D predic-
tive coding, intensive complexity and large storage requirement are required
to perform exhaustive search. Greedy-search methods relax these require-
ments but still suffer from no guarantee of optimum solutions. In this
work, we have proposed to use the message-passing algorithm based on a
grid model to perform bit allocation for 2D dependent quantization prob-
lem. We show that with slightly higher computation and memory cost, we

achieve a significant performance gain over the greedy-search method [66].

e Analytical model-based bit allocation for region of interest coding. The main
novelty of our method is that it proposes an analytical bit allocation tech-
nique based on a novel RD model. This is used to encode different parts
of the image at different bitrates by using a wavelet-based codec. The
proposed algorithm provides an accurate estimate as compared with the
empirical-based technique, and can achieve significantly reduced complex-

ity [64, 16, 65, 17, 18].

e Optimal bit allocation for channel-adaptive multiple description coding. We

have proposed a simple approach for MDC that uses a polyphase transform
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and deterministic redundancy. This approach is useful in that it greatly
simplifies the design of a MDC scheme, since the rate allocation determines
the amount of redundancy. Moreover, it provides a great deal of flexibility
as it enables the choice of redundancy to be almost arbitrary. We have
introduced an optimal bit allocation algorithm based on the proposed RD
model that allows us to select the amount of redundancy to be introduced
in the signal that best matches a given target packet loss rate. Chapter 4

covers this part of our work [63, 64, 62].

e Dynamic wavelet feature-based watermarking for copyright tracking in dig-
ital movie distribution system. For a digital media content, other than
providing a reliability against packet losses, the security is one important
issue to be concerned. We consider the problem of where to put the water-
mark an how to cast the watermark into the selected location such that it is
imperceptible and robust against the expected attacks. We have proposed
non-repudiable watermarking schemes for copyright tracking of movies dis-
tributed to theaters by satellites. The proposed algorithm is robust against
several types of attack with unnoticeable visual difference between the orig-

inal movie and the watermarked one [67, 68, 89].

Chapter 2 is devoted to two-dimensional constrained dependent quantization,

where the dependency comes from using a predictive encoding environment. The

17



analytical bit allocation technique for ROI coding is proposed in Chapter 3. This
technique is based on a novel RD model to provide the efficient RD data gen-
eration. In Chapter 4 the channel-adaptive bit allocation for MDC is proposed.
We present the way to achieve the reliable transmission in the networks sub-
jects to losses. Our scheme provides an efficient method to adapt to the changes
of channel conditions. Chapter 5 studies the problem of providing confidential
distribution of copyrighted media content. A novel watermarking algorithm is
proposed to cast the watermark in the wavelet domain by adjusting the features
of the wavelet coefficients in such a way that it will be unnoticeable and ro-
bust against illegal attacks. Finally in Chapter 6 extensions and future work are

described.
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Chapter 2

Message Passing Algorithm for 2D Dependent

Bit Allocation

In this chapter, we study efficient bit allocation algorithm under 2-dimensional

dependent environment *.

2.1 Introduction

The general dependent bit allocation problem can be found in many image/video
coding applications such as spatially and temporally dependent coding in MPEG-
1, MPEG-2 and MPEG-4 standards [85, 83, 52] and H.26x [30, 31]. In dependent
coding one chooses quantizers, or number of bits for each coding unit (e.g. DCT-
block or frame), but the actual rate and/or distortion depends on the neighboring

coding units. That is, a set of available R-D operating points for some coding

!"Work presented in this chapter was published in part in [66]
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units depends on a particular choice of R-D operating points for other coding
units. Clearly, although an exhaustive search method provides a global opti-
mization, it is a time-intensive process and requires large memory storage, which
makes it impractical. This is because in a dependent coding framework where
there exists a prediction, the number of R-D points to be computed grows expo-
nentially. A majority of research dealing with dependent-coding environments has
focused on greedy search approaches, which performs a local optimization. Al-
though greedy approaches relieve the complexity and storage requirements, they
do not guarantee an optimum solution nor do they guarantee solutions within a
certain range of the optimum. Therefore, it would be useful to apply an alterna-
tive searching scheme that can efficiently provide a nearly optimal choice while
maintaining acceptable complexity and storage requirements.

The one-dimensional Viterbi Algorithm (1D-VA) [40] has been successfully
used to reduce the complexity problem for one-dimensional (1D) dependent sys-
tems, but it can not be used directly for two-dimensional (2D) dependent systems
as there is no single way of ordering 2D data. The lack of a natural order in
two dimensions means that there is no way to map this problem into a 1D-VA
optimization. Several researchers have attempted to shed light on the 2D de-
pendent problem. They have initially focused on the application of the 1D-VA
across rows and columns via row-column iterations of hard decisions, with or

without decision feedback from rows, which is known as Decision-Feedback VA
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(DF-VA) [46, 34, 49]. Based on an iterative decoding algorithm used for Turbo
codes [8, 5], an iterative Soft-in/soft-out (SISO) algorithm has been proposed
as a tool for digital image processing/compression problems, e.g., digital image
halftoning [7] and near-lossless compression with row/column processing [9].
Although passing soft information typically provides a significant increase in
performance, it is a complex process [79]. Complexity reduction techniques are
thus needed, which may exploit special characteristics of the problem. For exam-
ple, a grid model [80] has been introduced to solve the digital image halftoning
problem. It is a graphical model containing nodes and edges connecting the
nodes. Each node is connected to others by edges and has a support region rep-
resenting the dependency to other nodes. The overlap information between two
nodes represents the intersection between the support regions of two consecutive
nodes. For example, in the image halftoning problem, if a 3 x 3 filter is used, a
support region is a 9-pixel footprint of the filter centered at the pixel being con-
sidered. The overlap information is defined as the 6 pixels corresponding to the
intersection between consecutive 9-pixel footprints of the filter. The soft informa-
tion passed between two coding units (pixels) is the information corresponding
to the 6 pixels that correspond to the intersection between consecutive 9 pixels
footprints of the filter used in halftoning. Therefore, the soft information takes

on 2% = 64 possible configurations.
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A standard message-passing algorithm is a method that utilizes a local mes-
sage computation and distribution such that nearly optimal solutions will be
achieved after a few iterations. In a grid-model-based message-passing algo-
rithm, a node receives messages from other directly connected node(s) and, in
turn, sends messages to every connected nodes. A message represents a measure
of the quality of the possible configurations of the overlap information. The com-
plexity of this algorithm can be kept low due to the local computation. In this
work, based on the grid model, we apply an iterative message-passing technique,
which attempts to achieve a globally optimal solution via iterative local-metric
computation and message passing. Unlike the previous work where the grid
model was used for digital image halftoning [80], here we use the grid model to
solve the 2D bit allocation problem that arises in MPEG-4 intra-coding [85]. In
MPEG-4, instead of performing only DPCM-coding to the DC coefficients in a
horizontal direction as in a general block-based video coding standards [83], both
DC and certain of its AC coefficients will be predicted from adjacent blocks in
2D direction. More specifically, either the block on the left or the block above the
block being considered can be chosen as a predictor as shown in Figure 2.1. It is
worth nothing that in H.264/AVC [33] a similar prediction is used in the spatial
domain by referring to neighboring samples of already coded blocks, in contrast

to MPEG-4 standard where the prediction is conducted in the transform domain.
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Figure 2.1: An example of the 2D dependent structure of MPEG-4 intra-frame
of size 24 x 32. There are 12 blocks of size 8 x 8.

It is worth noting that in the digital image halftoning work [80] there exists
only a local dependency that affects 8 neighbors around a given pixel.

Unlike the local dependency? that exists in digital image halftoning applica-
tion, the RD characteristics of each DCT block in MPEG-4 intra-coding mode
depend on the RD characteristics of all previously coded DCT blocks. Based
on the original grid model [80], the overlap information is defined as the quan-
tization parameters that affect the actual rate and distortion of the coding unit
being considered. For example in Figure 2.1, the arrows show the direction of
the dependency as specified by MPEG-4 texture-coding system. It implies that

the RD curve of node (2,3) depends on the RD curves of nodes (2,2), (1,2),

28 neighbors are affected around a given pixel. Note that extent of the dependency is a
function of the filter that is chosen for the halftoning problem
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(1,1), (0,1) and (0,0). Thus the overlap information is the set of the quantiza-
tion parameters of nodes (1,2), (1,1), (0,1) and (0,0). Given the large number of
possible configurations, using the original grid model and a standard message-
passing algorithm [80] would not result in complexity reduction as compared to
the exhaustive search method.

We propose here an approximation technique that modifies the grid model and
the standard message-passing algorithm so that a solution can be achieved with
significant reduction in complexity and memory consumption as compared with
the exhaustive search method. Compared with the greedy search approach, the
proposed method consumes slightly more memory. Although it requires higher
complexity, it is polynomial-time solvable with respect to the input image size (the
number of blocks). Additionally, the proposed technique provides significantly
better performance. The main contribution of our work is to propose a message-
passing algorithm to efficiently allocate bits to the block in an intra frame where
prediction is used in between blocks, such that total distortion of the frame is
minimized under the budget constraint.

This chapter is organized as follows: in Section 2.2, we introduce the iterative
message-passing algorithm for the 2D dependent bit allocation problem arising
in MPEG-4 coding. We explain this algorithm by starting with a definition of
the messages or soft information that is exchanged between neighboring nodes.

We then address how these messages will be utilized such that a near globally
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optimal solution can be achieved. An analysis of the complexity and memory is
provided in Section 2.3. It includes a comparison among the proposed message-
passing technique, the exhaustive search method and the greedy search approach.
In Section 2.4 we apply the proposed algorithm to solve a temporally dependent
coding problem, which is a simplified version of 2-D dependent coding problem.
Experimental results are shown in Section 2.5 and conclusions are provided in

Section 2.6.

2.2 Iterative Message Passing Algorithm

The recent interest in SISO algorithms has led to a flurry of proposed approaches
in various communications engineering applications where SISO techniques are
used to provide a reliability measure on the possible signal choices [8, 5]. An
example application is the efficient decoding of Turbo codes. The main idea of
SISO algorithm is to iteratively produce soft information from the current sub-
system (intrinsic information) and pass the messages (which become an incoming
extrinsic information) to other nearby subsystem(s) as shown in Figure 2.2.
These subsystems need to communicate with each other because they share
information. More specifically, at each activating subsystem, the accumulated
information, i.e., the intrinsic information, is determined by combining informa-

tion from the subsystem to be processed with the extrinsic information passed
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Figure 2.2: General message-passing between subsystems. The intrinsic infor-
mation is computed by combining the received messages (the incoming extrinsic
information) from other subsystems. The outgoing extrinsic information in each
direction is computed by performing the optimization over the intrinsic informa-
tion and then removing the direct effect of the incoming extrinsic information in
that particular direction to avoid having the repeated version of the information
in the system.

from other subsystems. Afterwards, the intrinsic information is used to generate
an updated message (the outgoing extrinsic information) that is passed to other
subsystems, after removing the direct effects of the incoming extrinsic informa-
tion that was used to construct the intrinsic information. We define an iteration
as the successive activation of all subsystems. Iterations proceed until a stopping
condition is met. In general SISO algorithm used for Turbo codes, the extrin-
sic information and the intrinsic information are probabilistic (e.g. a posteriori
probability (APP) estimates).

Recently SISO algorithms have been proposed as a tool for digital image pro-

cessing/compression problems, e.g., digital image halftoning [7] and near-lossless
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compression with row/column processing [9]. Although passing soft informa-
tion typically provides a significant increase in performance, it is still a com-
plex process [79], as mentioned in the previous section. A grid model [80] has
been introduced to facilitate computations on a previously proposed structure [9]
and improve its performance. In this work, unlike the previous work [80] where
a grid model was used for a problem of local dependent coding, which arises
in applications such as digital image halftoning, we modify the grid model to
solve a problem of global dependent coding arising in MPEG-4 intra-coding [85].
This problem involves additional difficulties as there exist 2D global dependencies
where the RD data of each coding unit depends on the RD data of all previous
coding units (not only on the previously immediate one) and the coding units

can be located anywhere in 2D space, as shown in Figure 2.1.

2.2.1 Problem Formalization

In a DCT-based compression scheme, the encoding rate and the associated dis-
tortion of a video frame are determined by how coarsely the DCT coefficients
are quantized. The coarseness of the quantization can be scaled by adjusting a
quantization parameter (i.e., quantization step size). The 2D dependent bit allo-

cation problem for an MPEG coding system is therefore a problem of selecting the
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encoding rate or the quantization parameter for each DCT block so as to mini-
mize the overall distortion of the whole intra-frame, given that the encoding rates
are restricted by a bitrate budget. More specifically, in MPEG-4 texture-coding
when a given DCT block is to be intra-coded, some of its coefficients will be
predicted from adjacent blocks in either vertical or horizontal directions, because
in general there exists a strong correlation among these blocks in 2 directions. It
is worth noting that the standard does not allow the block to be predicted from
both directions. Only one predictor can be chosen. However, each block can be
used as a predictor to either the block below or the one on its right or both of
them. The choice of the most appropriate block (predictor) is made by measuring
the picture gradient defined by the change of the DC coefficient. If prediction is
in the vertical direction, the top row of coefficients is predicted from the block
above so that only the difference between them needs to be coded. If horizontal
prediction is chosen, the left column of coefficients is predicted from the block on
the left so that again only the differences need to be coded. Two alternate scans
are conducted depending on the prediction direction. It is worth noting that the
choice of prediction is made before coding of the blocks, i.e., it does not depend
on the quantization choice for each block.

Given the prediction chosen for each block, our goal is to determine the best
quantization parameter (i.e., the right number of bits) for each block, Q =

{QO,O,CIo,b---,C]g_L%_l} so that a given bitrate budget Rp is met. Here the
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size of the image is R x C and ¢;; € Q (finite set). Given that there are N
admissible quantization parameters, @ = {rg,...,ry_1} where r; is the quanti-
zation parameter and r; < r; if 7 < j. The goal is to minimize the total distortion
in the intra-frame. Clearly, the right choice for the quantization parameter for a
given block will depend on the quantization choice made at the block from which
it is predicted. More specifically, the goal is to find a quantization parameter g; ;
for a block B;; so as to minimize an additive distortion with local dependency.
Let D; ;(¢;;|Pi;) and R; ;(¢;;|Pi;), respectively, be the distortion and rate asso-
ciated with block B; ;, where P; ; is a set of quantization parameters associated
with all blocks that affect the RD curve of block B; ;. For instance in Figure 2.1,
Pys = {¢22, 012,011,010, 0} Finding the best quantization parameters for
each of the blocks in the frame, Q*, can be stated as a constrained optimization
problem, where each ¢;; has to minimize the total distortion subject to a total
bitrate budget constraint (the average bitrate per sample has to be equal to the

budget, Rp); i.e.,

Q* =arg mén Dy(Q) such that Rp(Q) < Rp (2.1)

where
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Rr(Q) = > > Rij(q:;/Pij). (2.3)
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Pi,j) and (22)

2.2.2 Message-passing-based Bit Allocation Algorithm

Lagrangian optimization techniques [20, 88, 73] can be used to solve this problem

by introducing a cost function, J; ;(A, ¢; ;[P ;) = D; (¢

Pij) + AR; (¢

Pij);
where a Lagrange multiplier, A > 0, is used to trade-off rate and distortion. This
leads to an unconstrained minimization of the cost function for the correct value
of A, namely \*, that is the one for which the quantizer allocation meets the

budget constraint Rg. The best solution for a given \* is:

Q*(\") = arg mci!n J(\", Q) (2.4)
where
B_12
J(A',Q) = Ji i (A", 4ij | Pij)- (2.5)
i=0 j=0

In an independent coding environment where each block’s rate and distortion

can be determined without knowing the quantization assigned to any other block,
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the above minimization would be done individually for each block. In other words,

D; j(:,j|Pi;) = Dij(gi;) and R;;(qi;

P;;) = Ri;(¢:;). However, it is obvious
that in a dependent coding environment, in order to quantize a given block the
quantized version of its predictor blocks need to be known and the optimization
thus becomes more complex. Moreover not only does the previous immediate
quantized predictor block have to be known, but in effect all previously quantized
blocks need to be known. That is, the distortion of the block being considered
depends on the distortions of all previously coded blocks. In this work, our goal
is to combine the message-passing technique with the Lagrangian optimization
method to determine Q*(A) and iteratively change A using the bisection algorithm
until we find the best multiplier \* such that the total bitrate used is Rp(Q) =
Rp.

For the sake of simplicity, we will explain the message-passing algorithm for
the 2D dependent bit allocation problem by using a concrete example as illus-
trated in Figure 2.1. The predictors of each block are pre-determined as described
before. Given that each block can not be predicted from both the block above
and the block on its left, the underlying graphical model contains no cycles, as
shown in Figure 2.1.

Each edge, labeled by e[(3,j), (m,n)], represents the edge variable between
node (7, j) and node (m, n), i.e., e[(¢, ), (m,n)] = {¢ij, Gmn}, Where ¢ ;, ¢mn € Q.
It represents 2 quantization parameter variables corresponding to all possible
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Figure 2.3: Illustration of edge variables e[(1,1),(0,1)] and e[(1,1),(1,2)], lo-
cal dependency configuration, 73, of node (1,1), incoming mutual informa-
tion M1[e[(1,1),(0,1)]] and MI[e[(1,1),(1,2)]] and outgoing mutual information
MOle[(1,1),(0,1)]] and MOle[(1,1), (1, 2)]] when node (1,1) is considered

quantizer combinations of ¢;; and g, ,. Thus each edge takes on N? possible
configurations. Each node will accept the messages or mutual data from other
connecting nodes. At node (i,7), MI[e[(i,7), (m,n)]] denotes the incoming mes-
sage from node (m,n). A message represents an accumulated cost providing
an updated knowledge about the cost function for each possible edge configura-
tion. For each configuration the best decision of all quantization parameters and
the cost associated with the best decision of all quantization parameters in that
particular direction represents the message. 7T;; denotes the local dependency

configuration (variables) for node (i, j). It represents the quantization parameter
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variables of all possible nodes directly connected to node (i, j) including itself,

node (i, 7).
Quantization N? combinations
0 0
1 1
2 2
3 3
N-1 N-1

Figure 2.4: Illustration of maximum number of configuration, N?

Ml
Node 1 » Node 2

----- WN RO
v V/V
WN RO

N-1

Figure 2.5: The information is passed from Node 1 to Node 2 based on the best
decision for each configuration

For example in Figures 2.1 and 2.3, at node (1,1), variables corresponding
to a Ty, are {qo1,41,1,¢1,2}- The edge between node (0,1) and node (1,1) is la-

beled by e[(1,1), (0,1)] = {¢1,1,90,1}. The message sent on the edge between node
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(1,1) and node (0, 1) can be represented as MIle[(1,1),(0,1)]] = MI[g1,q0,1] =
J(q1,1, o) where J(q1,1, o) denotes the accumulated cost sent from node (0, 1)
to node (1,1) for a given edge configuration. The edge and the message each
contain N2 possible configurations since there are 2 quantization parameter vari-
ables, i.e., g1, and ¢p;. Figures 2.4 and 2.5 show the maximum number of
configurations and the information passed between nodes. The final best quanti-
zation parameter will be chosen only at the last iteration by performing a hard
decision. Similarly, the message over the edge between node (1, 1) and node (1, 2)
is MI[e[(1,1),(1,2)]] = MI[qi1,q12) = J(q1,1,¢12))-

The intrinsic information, denoted by INT[T;;] of node (¢,j), is an accu-
mulated cost of each block for each possible configuration. It can be computed
as shown below by combining the best decisions on each configuration received
from the incoming messages from the nodes directly connected to the node being

considered.

INT(T;;] = > MI[e[(i, 5), (m, n)]] (2.6)

(m,n) : e[(4,5),(m,n)]€Ei j
This intrinsic information INT'[T;;] is determined from all incoming messages
for a given configuration, MI|(i, j), (m,n)], where node (m,n) denotes a set of
all possible "nodes” directly connected to node (i,j). Note that E; ; is a set of

all possible ”edges” directly connected to node (i, j).
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Note that each of INT'[T; ;] is determined uniquely by the configuration 7; ;.
At node (1,1), the total number of possible configurations for INT[Ty ] is N3
since there are 3 quantization parameter variables, i.e., ¢i1,qo,1 and g2, and
each quantization parameter variable can be one of N admissible quantization
parameter in Q. Each configuration contains a list of the best decisions from
other nodes corresponding to each possible choices of ¢;1,g0,1 and g ».

After the node has finished the combining process by accepting the messages
from its neighboring nodes, we then need to return an updated message to each of
those nodes. We call this process the marginalization process. The new outgoing

extrinsic information returned on each edge can be determined as shown below.

MOle[(i, j), (m,n)]] = MOlgij, gmn] = arg _~ min  INT[T;;]©MIg;;, Gmn]
Ti,j:e[(za])a(mﬂn)]

(2.7)
where at node (i, 7), MOle[(%, j), (m,n)]] denotes the outgoing extrinsic informa-
tion from node (7, j) to node (m,n). The minimization operation is conducted for
all consistent configurations corresponding to each edge variable with a particu-
lar value. The goal of the optimization is to determine the set of configurations

that minimize the cost INT[T; ;]. Finally the subtraction is performed by remov-

ing the direct effects of the corresponding old (or previously incoming) extrinsic
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information, MI[e[(i, j), (m,n)]], which was used to construct the intrinsic infor-
mation, INT[T; j|. We show below how to extract extrinsic information at node
(1,7) where & denotes the remove operation.

An example of how to compute the outgoing extrinsic information at node
(1,1) is shown below. It is worth noting that the MOle[(1,1), (0,1)]] of node

(1,1) is the MI[e[(0,1),(1,1)]] of node (0, 1).

MO[e[(1,1), (0, )]] = MOlgy1, go,1]

= in  INT[T\,]© MI 08
ar8 T1,1:e[1’(€l,111i(0,1)] [ 1:1] © [(h,l, (10,1] ( )

MOIe[(1,1), (L,2)]] = MOlq11,q1,]

= i INT|T MI 2.9
arng,l:e[I(Ill,IB,(l,z)] VARIRS, 1,1, q12] (2.9)

To guarantee that each node receives the information from all other nodes
via the least number of iterations, we define a schedule of the node activation.
For the purpose of activation scheduling, we re-arrange the dependency structure
from the original structure as shown in Figure 2.1 to a tree as shown in Figure 2.6.

Since the graphical grid model is cycle-free, node (0, 0) is considered as the tree
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Figure 2.6: A dependency tree associated with a system shown in Figure 2.1

root and those nodes that are not used to predict any other node are considered
leaf nodes (e.g., the nodes at positions {(0, 3),(1,3),(2,1), and (2,3)}).

We propose to start activating the nodes in the downward direction. That
is activating the root node first and proceeding the activation following the tree
path until all the leaf nodes are activated. Then we activate the leaf nodes
and proceed upward to the root. It is worth noting that, unlike the downward
direction activation, each intermediate node has to have the information from
all other nodes below it. For example, the nodes at positions (1, 3), (2, 3), and
(2,2) have to be activated before activating node at position (1,2). Next we
activate the node by following the trace we activated reversely. From Figure 2.6

as an example of upward direction, nodes should be scheduled as follows: (i)
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{(0,0)}, (i) {(0,1)}, (i) {(1,1)}, (iv) {(1,0),(1,2)}, (v) {(0,2),(2,0),(2,2,)}

and (vi) {(0,3),(1,3),(2,1),(2,3)}. For a downward direction, the schedule is:

(1) {(0,3), (1,3),(2,1), (2,3)}, (i) {(0,2),(2,0),(2,2,)}, (iii) {(1,0),(1,2)}, (iv)
{(1,1)}, (v) {(0,1)} and (vi) {(0,0)}. This is the two-dimensional dependent bit

allocation using message-passing algorithm.

Algorithm: 2D Dependent Bit Allocation using Message-Passing Al-

gorithm

1. Start by setting Qy = {rn-1,...,7~v-1} and Q = {ro,..., 70}

pr(Q,)-Dr(Q,)
Rr(Qy)-Rr(Q,)”

2. Compute A = —

3. Initialize all incoming extrinsic information, i.e., MI[e[(i, j), (m,n)]] =0

4. Perform the message-passing algorithm.

(a) Consider nodes in the order they appear in the scheduling list .

(b) Combining process: determine the intrinsic information, INT[T; ;] as

shown in Equation (2.6).
(c) Marginalization process: determine the outgoing extrinsic information

MOle|(7,7), (m,n)]] in each edge as shown in Equation (2.7).

(d) Repeat step 4a at the next node in the scheduling list until we complete
all the nodes in the list.
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(e) When we finish the iterations, we compute the final hard decision by

Lji,j = arg min INT[E,]] (210)
q;,;€Q

where Q@ = {rg,...,ry 1}

5. If RT(Q) = RB where Q = {q_(),(), Cj(),l, ey q_%—l,%—l}’ Q* = Q and stop the
algorithm. Else if Rr(Q) > Rp, set Q, = Q, or else if Rr(Q) < Rp, set

Qy = Q. Go to step 2.

By repeating the activation of these nodes, we can pass the accumulated cost
of each node to other neighboring nodes so that the overall optimal solution can
be obtained since all dependencies are already taken into account. Note that
the way we pass the best decision of quantization parameters from the nodes
outside the window of local configuration may be similar to the greedy search
approach. However only the best choices for the quantization parameter from
the previous blocks are used in the greedy search approach. In the proposed
technique, the best decisions from both previous and future directions are taken
in account. Furthermore we iterate the node activation in the downward and
upward directions and then make a final decision at the last iteration. Thus the
performance of the greedy search approach can be considered as a lower bound

performance of our proposed scheme.
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2.3 Complexity and Storage Analysis

The exhaustive search method clearly provides the globally optimal solution while
requiring a larger storage requirement and a very complex search. Although the
greedy search approach achieves a significant complexity reduction and has low
memory requirements, the solution obtained may not be a globally optimal solu-
tion. It is clear that the coding gain comes at the price of significant complexity.
In this section, we will address the complexity and storage requirements of the
proposed message-passing technique in number of operations and bytes, respec-
tively, for the 2D dependent bit allocation framework we are studying. We also
compare the results from the proposed algorithm with the exhaustive search

method and the greedy search approach.

2.3.1 Complexity Analysis

To determine the overall complexity of the message-passing technique, we simplify
the analysis by separating the computation into the number of operations used
to perform (i) the data generation process (or RD population phase) and (ii)
the searching process. The unit of operations for each is different. That is,
one operation for the data generation process is the complexity used to compute
the distortion and rate of one intra-frame. In other words, it is the number of

times the encoder is called to determine the distortion and rate on one block. One
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operation for the searching process is the complexity used to perform a numerical

operation, e.g., plus, minus, minimization.

2.3.1.1 Complexity from RD population phase

For the proposed message-passing algorithm, the RD population phase is needed
to determine INT|T;;]. Given N admissible quantizers and a maximum of 3

edges for each node, there are at most N* possible configurations of INT[T; ;].

RXx
8%

With an image size of R x C, there are S = g nodes. For L iterations in one
intra-frame, we need LSN* or O (SN*) operations.

The greedy search approach performs only a local search from the root to the
leaves. The RD data for N choices of quantization parameters is made for each
block separately and will not be changed in the future. Therefore we need SN? or
O (SN?) operations. Using the exhaustive search method, with all N° possible

configurations of quantization parameters, the complexity required to construct

the RD operation points is O (N¥).

2.3.1.2 Complexity from searching phase

The intrinsic information, INT[T; ;] of node (7,7), has to be computed at each
node. Given a maximum of 3 edges connected for each node, 3 addition-operations
are required for each configuration in INT[T; ;] as shown in Equation (2.6). Given

N admissible quantizers, there are N* configurations in INT[T;;]. Therefore,
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3N* additive-operations will be needed to compute INT[T; ;] of node (4,5). To
compute the outgoing extrinsic information, we need to perform N? comparison-
operations for each configuration of each MO[e[(7,7), (m,n)]]. Given N? config-
urations on each edge and a maximum of 3 edges for each node, we need totally
3N* operations. Therefore, the total number of operations used for node (i, 5) is
3N*. For L iterations, we need 3LSN* or O (SN*) operations.

For the greedy search approach, only local minimization at each node has to be
performed, i.e., N? comparison-operations. Thus it requires O (SN?) operations
to operate on all nodes. For the exhaustive search method, with all N° possible
configurations, to determine which choice yields the minimization, we need to go
over all possible choices. This requires O (N¥) comparison-operations. Table 2.1
shows the comparison of complexity in number of operations among the described
methods.

It is clear that although the message-passing technique yields higher complex-
ity than the greedy search approach, it is polynomial-time solvable with respect
to input image size (the number of blocks) as compared to the exponential-time
solvable exhaustive search method. To summarize, the proposed algorithm offers
an alternative way to provide the optimal solution (as can be provided by the
time-consuming exhaustive search method) with a cost of an increase in complex-
ity consumption compared to the greedy search approach. It however delivers a

significant decrease in complexity compared to the exhaustive search method.
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| O(.) | Exhaustive | Greedy | Message-passing |

| Complexity (data generation) | N¥ | SN? | SN* |
Complexity (searching) N¥ SN? SN*
Storage (bytes) SN¥ S SN?

Table 2.1: Comparison of the complexity in the number of operations and bytes
among (i) the exhaustive search method, (ii) the greedy search approach, and (iii)
the proposed message-passing technique. The complexity of the data generation
phase is the number of times the encoder is called to code one intra-frame while
the complexity of the searching phase is the number of numerical operations (+,-
,Min) used to perform the searching process including the final hard decision
process.

2.3.2 Memory Analysis

With the message-passing technique, only MOle|(i, j), (m,n)]], outgoing extrin-
sic information, needs to be stored since it will be used as an M I[e[(i, j), (m,n)]],
an incoming extrinsic information, to other neighboring nodes. Given N? config-
urations for each extrinsic information and a maximum of 3 edges for each node,
there are 3N? configurations for each node. With 1 byte to keep the quantization
parameter index, we need a maximum of S bytes for each configuration to store
the information of the quantization parameters. Therefore, we need O (SN?)
bytes.

Using the exhaustive search method, it requires to store all N° possible con-
figurations. Since each configuration stores a table of quantization parameter for
each block, it requires S bytes. Therefore, the exhaustive search method con-
sumes O (SN¥) bytes. Since the greedy search approach keeps only the decision

of the quantization parameter of the block previously determined, it requires only
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a table of the (locally) best quantization parameter to fill in, O (S). Table 2.1
compares the memory consumption in bytes among the searching techniques de-
scribed. Clearly, the proposed algorithm requires significantly less memory than
the exhaustive search method. It is worth noting that message-passing algorithm
pay the price to achieve the better solution by consuming more memory than the

greedy search approach.

2.4 Bit Allocation for Temporally Dependent

Coding using Message Passing Algorithm

We now address the general temporal dependency quantization problem of which
MPEG-x [28, 29] and H.26x [30, 31] are examples. The problem is to choose the
quantization parameter for each frame such that the total distortion is minimized
subject to a total bitrate budget constraint. It is worth noting that the temporal
dependency quantization problem is a particular case of the spatial dependency
quantization problem, in the sense that the structure is one dimensional and a
one dimensional dependency may also occur in the 2D case. In video coding
framework, several researchers have experienced the strong dependency in tem-
poral domain [56, 52]. One example of this scenario is illustrated by Figure 2.7
for 4 frames (1-2-3-4). Each frame can be quantized using different quantization
parameters where frame 2 is predicted from frame 1 and frame 3 is predicted
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from both frame 1 and frame 2 (I — P — B — I). Clearly the set of available RD
operating points for frame 2 (3) depends on a particular choice of RD operating

point for frame 1 (2 and 4).

L

Figure 2.7: Example of temporal dependency for 4 frames (I-P-B-I)

Instead of using blocks as a coding unit as we have described for intra-frame
coding, we consider one frame as the coding unit or the node. The goal is to
determine the best quantization parameter for each frame such that the total
distortion is minimized and the total bitrate is constrained under the given bitrate
budget. The schedule of node activation starts from, for example, frame 1 toward

frame 4 and then come back to the frame 1 to finish one iteration.

2.5 Experimental Results and Discussion

In order to confirm the validity of the proposed algorithm, for 2D dependent
bit allocation for intra-frames in MPEG-4, we performed the experiment on the
intra-frame (144 x 176 QCIF-formatted) video sequence Foreman and the still

512 x 512 gray-level images, Lena, Baboon and Plane. Note that still images

45



Image | Bitrate budget (bps) PSNR (dB)
Greedy search ‘ Message-passing

Foreman 0.80 27.00 27.67
1.00 28.36 28.86
1.20 29.37 29.72
Lena 1.70 25.87 26.32
2.00 26.84 27.36
2.30 27.60 27.82
Baboon 0.90 24.95 25.60
1.00 25.59 26.34
1.20 26.94 27.09
Plane 0.30 32.19 33.83
0.50 36.17 36.65
0.60 36.54 36.92

Table 2.2: Performance comparison between the greedy search approach and the
proposed message-passing technique for 2-D spatial dependent coding problem

are considered here as intra-frames in a video sequence. We performed the ex-
periment at different target bitrate budgets. As an image coder, we modified
the normal JPEG coder to enable the MPEG-4 texture-coding feature. We first
determined the quantizer for each block from the greedy search approach and
our message-passing algorithm. The selected choice of quantizers was used as an
input argument to the texture coding system. Experimental studies reveal that
the system that uses the proposed message-passing algorithm is able to provide
an achievable performance better than the greedy search approach by 0.57 dB on

average as shown in Table 2.2.
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Image Bitrate budget (bps) PSNR (dB)
Greedy search ‘ Message-passing

Bream 0.70 50.00 50.97
0.90 50.44 51.38
Coast guard 2.00 43.82 44.02
3.00 46.14 46.83
Foreman 2.00 43.85 44.12
3.00 46.61 46.83
Silent 0.70 42.98 44.85
1.00 47.82 47.97

Table 2.3: Performance comparison between the greedy search approach and the
proposed message-passing technique for temporally dependent coding problem

Similarly we validate the proposed scheme for the temporal dependency quan-
tization problem. We perform the experiment for 4 different 10-frames QCIF-
formatted video sequences of Bream, Coast guard, Foremen and Silent. The first
frame is the I-frame and the rest are P-frame. The same admissible set of quanti-
zation parameter, @ € {2,3,4,5,6}, is used for each sequence. We performed the
experiment at different target bitrate budgets. In Table 2.3 the proposed scheme

shows promising results with improvements over the greedy search approach.

2.6 Conclusions

In this work we propose a new bit allocation algorithm for the 2D dependent prob-
lem that appears in MPEG-4 texture-coding system when intra-coding. Message-
passing algorithm is applied in 2D dependent bit allocation problem. The pro-

posed algorithm achieves promising performance while maintaining relatively low
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complexity and storage requirements. We show that message passing technique
can provide an achievable performance better than greedy search approaches with

lower complexity and less storage requirement than full-search method.
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Chapter 3

Analytical Model-based Bit Allocation for

Region of Interest Coding

In the previous chapter we introduced a message-passing-based algorithm to solve
a 2D dependent quantization problem. In this chapter, we consider another
problem that arises when different parts of an image are required to be coded
at different fidelities and speeds. This so-called region of interest (ROI) coding
application is relevant to several communities, e.g., signal /image processing [6]
and biomedical engineering [86, 54]. Our main motivation in this work is to

achieve a simple algorithm to perform bit allocation in a ROI coding framework

1

"Work presented in this chapter was published in part in [64, 16, 65, 17, 18]
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3.1 Introduction

The bitplane-by-bitplane successive refinement used in most progressive wavelet
coders, such as EZW [71], SPIHT [69] or JPEG 2000 [6], leads to a very simple
technique to provide ROI coding [3, 50, 44, 14, 84, 13]. Roughly speaking, a
progressive coder transmits information about large-magnitude coefficients before
it transmits information corresponding to smaller coefficients. The goal in ROI
coding is to transmit the region of interest with higher quality than other areas
in the image. Since large coefficients are sent first, it is enough to divide the
wavelet coefficients in areas outside the ROI by a factor greater than one so that
they are transmitted later (on average) in the resulting bitstream. This dividing
factor is called the priority scaling factor (psf). At the decoder, the reconstructed
coefficients are then multiplied back by the corresponding psf before the inverse
wavelet transform is performed. Since all the coefficients (after being divided)
have been refined to a particular bitplane, it follows that those coefficients to
which a psf > 1 has been applied will be more coarsely quantized, i.e., their
binary representation will be “shifted” with respect to coefficients with psf = 1.
Therefore on average more bits per pixel are used for the ROI than for the rest of

the image?. This technique is known as a divide-and-multiply or up-shift method

2This motivates the need for a Rate-Distortion (RD) model covering all rates: if all coeffi-
cients are refined in parallel, it will be necessary to reach high rate in ROI, in order to obtain
a reasonable (but lower) quality in the rest of the image.

a0



and has appeared in Part 1 of JPEG2000 standard [6]. This technique is also
useful for bit allocation inside each description in an MDC framework [63, 64],
where we use the divide-and-multiply method to vary the quality of different
parts of an image. Several versions of the same image are then transmitted, with
each part of the image transmitted at various quality levels across images. More
detailed descriptions will be provided in Chapter 4.

Prior works on bit allocation for ROI coding [3, 50, 44, 14, 84, 13] were
based on heuristic techniques or required that rate and distortion characteristics
be measured at each of the potential operating points. For example, a design
based on empirical data could start by measuring overall image RD data at a
number of different psf values, and then proceed to select the optimum or the
most appropriate psf for a given criterion. There are two major drawbacks of
this empirical-based method. First, it is obvious that the technique is limited in
that the solution will have to be one of the discrete operating points that were
explicitly measured, so that optimality may suffer if a bad choice was made of
those discrete quantizers. Second, collecting the RD data may be complex. The
more admissible quantizers are used, the more time will be needed to complete
the RD data generation process. Although Part 2 of JPEG2000 standard [6]
has adopted an ROI coding mechanism to analytically determine the dividing
factor (Maxshift method [13, 78]), it is most appropriate for very high-quality

ROI coding. This approach in JPEG2002 Part 2 is based on determining a
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dividing factor that is sufficiently large to make the largest background coefficients
smaller than the smallest non-zero ROI coefficients. In this way, all ROI wavelet
coefficients will be transmitted first. Thus, the relative rates of the regions can
not be chosen and after ROI refinement is completed we will have a very high
rate ROL. This is equivalent to providing only a single operating point and limits
the flexibility of the relative importance between ROI and the rest of the image.
Therefore it would be useful to design a model-based bit allocation algorithm that
can both efficiently work on arbitrary input images and enable fine granularity
in the selection of RD operating points for the ROI and the rest of the image.

Several RD models for images have been studied with either high bitrate [11]
or low bitrate [42] assumptions. In ROI coding, some parts of an image will
be transmitted with higher quality or higher bitrate than the rest of the image.
Thus we are motivated to define a model that will give accurate estimates and
will provide good RD approximation for all bitrates. Rather than using separate
models for different rate conditions we use a single model that can be valid in
general at all rates. Thus, in this chapter, we modify Mallat’s model [42], which
performs accurately at low bitrates, to improve its performance at moderate and
high bitrates.

The main contributions of our work are to (i) introduce a closed-form RD
model for wavelet-coded images that can operate at any bitrate and (ii) use it

within an analytical bit allocation technique for ROI coding to determine different
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psf values such that a total rate budget is met and a criterion based on the relative
distortions of the regions is optimized. We take SPIHT as an example for which
our analysis is valid. Other progressive wavelet coders can be similarly modeled.

This chapter is organized as follows: in Section 3.2, we introduce the RD
models, including models for each of the regions in an image when an ROI coding
framework is used. We demonstrate the accuracy of the proposed RD model by
comparing the results obtained by the proposed model with those obtained by an
empirical search technique. Furthermore, we show the improvement by comparing
the results obtained by the proposed model with those obtained by Mallat’s
model. We then present the analytical bit allocation based on the proposed model
for ROI coding and analyze its complexity in Sections 3.3 and 3.4 respectively.
The experimental results are shown in Section 3.5. The conclusions of this work

are addressed in Section 3.6.

3.2 Analytical Rate-distortion Model

First, we briefly discuss the RD model for SPIHT originally proposed by Mal-
lat and Falzon [42]. Given a total bitrate budget for an image B, the average
quantization error D(C}) as shown below is the summation of the quantization

error due to quantizing the significant coefficients £ and that due to setting to
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zero the insignificant coefficients E***, divided by the total number of wavelet-

transformed coefficients, V:

B4 B G + S, [e)f

N N N ’

D(Cy) =

(3.1)

where (), is the number of significant coefficients, that is, those with amplitude
larger than A, the size of final quantization bin, i.e., the final threshold. Also, C
is directly related to the average bitrate B via C, = % which is obtained em-
pirically. All N wavelet coefficients are sorted in monotonically descending order
of magnitude, to obtain a list {w(4)}, for which i = {1,2,..., N}. E™% is the
energy of the last N — (', smaller amplitude coefficients since it is the error when
all insignificant coefficients are quantized to zero, i.e., B = szi_ct lw(i)]?.
According to the sorted sequence, it is clear that A = |w(Cy)|. The average
quantization error per significant coefficient is calculated based on the hypothesis
that the pdf of the significant coefficients is flat within each quantization interval
and thus the well-known approximation of a uniform distribution can be used,

Esig
Cy

= f—;. As shown in Figure 3.1, this explains why Mallat’s model works bet-
ter at low bitrates. This is because the histogram outside the central bin, A9,
is sufficiently flat, with coarse quantization, leading to an accurate approxima-

tion for E,;,. However, at high bitrates, the histogram outside A% is not as flat,

so that approximating by a uniform distribution within the interval may not be
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accurate. Even though at high rates the quantization bins are small, they are
not sufficiently small to make the uniform approximation sufficiently accurate.
This can be verified in Figure 3.2 where the PSNR curve obtained from Mallat’s

model can be seen to deviate from the actual results at high bitrates.
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Figure 3.1: Normalized histogram of the wavelet coefficients of the gray-level
Lena image. Ay, = 16 and Ay = 4 are the sizes of final quantization bin and,
A9 = 32 and A%, = 8 are the sizes of zero bin, at low and high bitrate (0.3 and
1.1 bps), respectively.

In our proposed model, we start by assuming that the pdf of the wavelet
coefficients can be modeled as a Laplacian distribution [39]. To model E**, we
start by computing the average error due to quantizing the significant coefficients
in each quantization interval, i.e., coefficients located outside the zero bin, which
have amplitude larger than the final threshold. Since SPIHT uses a uniform
quantizer, all intervals are the same size and the reconstruction values are the
midpoints of the interval. In this way, the error introduced in the ** interval will
be fi(AHl)A(w— (i+3)A)? fi (w)dw where fy (w) = eIl represents a Laplacian

pdf and A is the Laplacian parameter. We average the error generated from all
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intervals except the zero bin to obtain a new representation of the error for the

significant coefficients, which is given by:

R R
(w—(i+ E)A) fW(w)dw)

G
b = afny

- C”e_K(l_e_)T)(K2—4K+8—6_K(K2+4K+8))a (32)

KG

where K = AA and G is the number of quantization intervals besides the central
bin. Note that we leave E*9 unchanged since there is no approximation in

representing an error due to setting to zero the insignificant coefficients.
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Figure 3.2: Comparison between the PSNRs of the gray-level Lena image ob-
tained from actual experiment, those obtained from Mallat’s model and those
obtained from the proposed model [64]

With the new E*%, the overall model is given by:
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_ _KG
D(Cb) = N

>ia X6

* N

(3.3)

We validate the accuracy of the proposed model for different rate conditions
in Figure 3.2. We can see that our model provides accurate results up to high bi-
trates. However, at very low bitrates (less than 0.3 bps), Mallat’s model provides
a better approximation. This comes from an inaccurate estimate of E*¥ at low
bitrates. This can be explained by the fact that the Laplacian model is initially
designed to capture the characteristics of most coefficients, i.e., to best fit the
empirical histogram of wavelet coefficients. Since most coefficients belong to the
middle of histogram, the tail area of histogram (which has very low value of pdf
and then is considered flat) might not be accurately estimated. However, Mallat’s
assumption fits well on this particular area since it assumes a flat histogram. As
shown in Figure 3.2, although Mallat’s model estimates better at very low bi-
trates, our proposed model is still able to give a reasonably accurate performance
under these rate conditions as well. It is worth nothing that a hybrid model could
be always used so that Mallat’s model is used at low rates and the approximation
of a uniform distribution distribution is used at high rates. However the decision

could be based on determining how good of an approximation we have at a given
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A, for a given image which may in turn be more complicated than the case where

the only single model is used.

3.3 Analytical Model-based Bit Allocation for

Optimization of Region of Interest Coding

Having established the proposed RD model, in this section we address an an-
alytical model-based bit allocation for ROI coding. Here, we restrict ourselves
to only two regions, for the sake of simplicity, but without loss of generality.
First, we can write the distortion for each of the two regions: namely D;(C})
and Dy(Cy) representing region 1 and 2, respectively, by finding C; and Cs and
using them in Equation (3.3). Obviously, Dot = %Dl (Cy) + %DQ(CQ) where
C: and () are the number of significant coefficients and N; and N, are the total
number of wavelet coefficients of region 1 and 2, respectively. It is clear that
Cy = % =(C1+Cy and N = Ny + N,. This can be simply generalized to obtain
the distortion equations of the multiple regions. It is worth noting that given a
bitrate budget B, the total number of significant coefficients, Cj, is a constant.
We now show how the proposed model can be applied to the divide-and-
multiply method in ROI coding framework. We then illustrate the comparison of
the overall RD operating points obtained by empirical technique, Mallat’s model
and the proposed model at a number of different psfs in Figure 3.3. To start the
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Figure 3.3: Comparison between the PSNRs obtained by exhaustive search, those
obtained by Mallat’s modeland those obtained by the proposed model. The gray-
level Lena image, after dividing the wavelet coefficients outside the ROI by psf, is

coded by a single SPIHT at rate 0.5 bps with a rectangular ROI of size 200 x 200
centered in the middle of the image.

analysis, the ROI is designated as region 1, and the rest of the image is called
region 2. We divide the wavelet coefficients in region 2 by a given psf, so that the
quantization bin of region 2 will be psf times larger than the quantization bin of
region 1. It is worth noting that we use a normalized dividing factor so that the
dividing factor for region 1 is always psf = 1. Clearly coefficients in region 2 are
quantized with a final threshold A = psf.A, while threshold A is used for region
1. For a given overall bitrate, as we increase the psf value, (' is increased and
results in a decreasing distortion in region 1. But this increases the distortion in

region 2 because C; must be reduced in order to keep Cy, = C; + Cs.
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As illustrated in Figure 3.3, we now explain why Mallat’s model introduces an
error in RD curves as compared to the benchmark results (the empirical curves),
especially in the results of ROI (region 1), and why our proposed model can
close this gap. Based on the divide-and-multiply method, as we increase the psf
value, the coefficients in region 1 will be quantized with a finer quantizer than
that in region 2. In other words, A will get larger while A will get smaller, as
the psf value increases, since A= psf.A. Thus, the coefficients in region 1 are
coded at high bitrate while those in region 2 are coded at low bitrate. Since
the assumption of Mallat’s model (the histogram outside the zero bin should
be considered sufficiently flat) is not respected at high bitrate as illustrated in
Figure 3.1, Mallat’s model provides low accuracy in region 1. It is apparent that
the results of the proposed model provide a more accurate RD curve, even when
the coeflicients of region 1 are assigned a very high bitrate, i.e., when a large psf
value is used.

For region 2, both the proposed model and Mallat’s model provide similar
results as shown in Figure 3.3. Since coefficients of region 2 are coded at low
bitrate, the histogram outside zero bin is sufficiently flat. It is worth noting that
there is still a small gap between the empirical results and the proposed ones in
region 2. Based on the experiments, which are done for a fixed bitrate B, as the

psf changes, the actual number of significant coefficients, namely Cp“, is not a
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constant while the analytical number of significant coefficients, Cj, is constant?
Instead C¢ tends to decrease, when psf gets larger. Hence, as psf increases,
C, will be larger than the Cf* and this will lead to a higher analytical PSNR
than the actual PSNR. This affects mostly region 2 because the model expects
to have the additional number of significant coefficients (i.e., C, — Cg") assigned
to the wavelet coefficients of region 2. Since this phenomenon occurs when very
large psf is used, it results in very clear ROI but very blurred background. This
is somewhat useless in the existing applications, and so the effect of this error is
not significant.
| w;(i) |
A

A = |w1(C1)|

psfh

Figure 3.4: Curves of the sorted wavelet coefficients of each region, W; and W,

3Recall that Mallat’s model assumes that C, = %. This indicates that the number of
significant coefficients depends only on the total number of coefficients N and the average

bitrate B.
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There are many possible distortion criteria that can be used to encode an
image with ROIL. Here, we consider the case where the goal is to determine the
appropriate psf such that a desired ratio between distortion of non-ROI and ROI

is satisfied. In other words, we seek to solve Equations (3.4)-(3.6) as shown below.

 Dy(Cy)
Ratio = Dy (C) (3.4)
C,=0C1+Cy (3.5)
. ’LUQ(CQ)
psf = |2 (3.6)

where w; and w, represents the sorted coefficients of ROI and non-ROI with
quantization bins A and psf x A, respectively. wy(Cy) is the last coefficient sent
for non-ROI and wy (C}) is the last coefficient sent for ROI. This enables adjusting
the relative importance of the regions as a psf > 1 indicates that only relatively
larger coefficients are sent, and thus the bit rate required is lower. Equation (3.6)
can be derived as shown in Figure 3.4. Using the proposed model of distortion as
described in Section 3.2, we will be able to determine the psf without having to

generate extensive RD data or without restricting the psf to take discrete values.
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A simple calculation is performed over (3.4)-(3.6) to determine the appropriate
C1, Cy and finally psf.
Algorithm: Analytical model-based bit allocation algorithm for ROI

coding system

1. Start by computing the wavelet coefficients from the input image.
2. Split the wavelet coefficients into ROI and non-ROI, X; and Xs.

3. Sort the wavelet coefficients in each region in decreasing order to obtain the

sorted sequence, W7 and Ws.
4. Compute D;(C4) and D,(C3) as shown in Equation (3.3).

5. Determine the best C} and Cj using Equations (3.4) and (3.5) for a given

bitrate budget, B.
6. Determine the best psf; from Equation (3.6) to obtain the optimal psf*.

7. Divide the wavelet coefficients corresponding to the background by psf

value computed from previous step.

3.4 Complexity Analysis

In terms of the complexity requirement, the proposed algorithm is much less
complicated than the empirical-based method since it does not require that RD
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characteristics be measured at each of the potential operating points. The most
complicated process in the proposed algorithm is to sort the wavelet coefficients in
monotonically descending order, e.g., using Quicksort algorithm, which requires
O (Nlog N) operations on average.

More specifically, given an image of size N pixels the model-based bit allo-
cation algorithm requires: (i) O(NN) operations for wavelet transform (ii) O(N)
operations for polyphase transform, (iii) O(N log(/N)) operations for Quicksort
sorting process, (iv) O(/N) operations for generating D;(C;), (v) O(N) operations
for determining the optimal {C;} (vi) O(1) operations for computing the opti-
mal psf* and (vii) O(N) operations for dividing psf* to the wavelet coefficients
in areas outside the ROI. Thus the total number of operations is O(N log(N))
operations. Based on this analysis, it is clear that the complexity of the proposed

model-based analytical bit allocation approach is low (polynomial-time order).

3.5 Experimental Results and Discussion

In our experiments, we applied the distortion ratio criterion to three standard
gray-level images of size 512x 512 pixels (Lena, Boat and Lake). We validated our
results by using different types of ROIs in different positions in each image: (i) a
rectangular ROI of size 200 x 200 in the middle of the image, (ii) a cross-shaped

ROI in the middle of the image, and (iii) an L-shaped ROI in the upper-left
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corner of the image. We determine the psf obtained from our proposed model,
denoted psf,ro, the one obtained using Mallat’s model, denoted ps fy,q;, and the
one obtained through an exhaustive search (i.e., selecting the best value among
psf in the set {1,1.1,1.2,...,400}), which we denote psfem,. Each of the psf
values is chosen so as to target a desired distortion ratio between the ROI and
the rest of the image, while minimizing the overall distortion, for a given total
rate budget at 0.5 bps. We computed the variation between psf,., and psfemp
and the variation between psf,, and psfen,,. For each shape, we averaged the
variations of the means (mean) and the standard deviations (std) over 3 images
when the desired ratio varied from 1 to 10. We computed 3 statistical sets of
data, which are: (i) psf values (ii) ROI distortions (dist,,;), and (iii) background
distortions (dist,,o;). These are shown in Tables 3.1(a) and 3.1(b), based on our
proposed model and on Mallat’s model, respectively. Our results show clearly
that our proposed model provides more accurately match the psf values and the
distortions of the results obtained by optimization of empirical data as compared
to those obtained by using Mallat’s model.

To validate the subjective performance, we show the perceptual results be-
tween the reconstructed images using the psfem, and the psfy,. As illustrated
in Figure 3.5, our approach provide an accurate estimate of the psf values to
achieve the expected quality, and provides similar accuracy as the, significantly

more complex, empirical-based method.
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(b)

Figure 3.5: The reconstructed image with ROI of size 200 x 200 at the middle
of the image when the empirical-based method (a) and the proposed algorithm
(b) are applied to determine the psf value. The desired ratio is 50 and the total
bitrate is fixed at 0.5 bps.
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Shape psf dist,; di8tproi
mean | std | mean | std [ mean | std
rectangular | 2.23% | 1.70% | 1.94% | 1.64% | 1.01% | 0.91%
Cross 2.83% | 1.93% | 1.95% | 1.90% | 1.70% | 1.30%
L 2.30% | 1.74% | 1.74% | 1.26% | 1.30% | 1.12%

(a)

Shape psf dist,; dist o
mean | std | mean | std [ mean | std
rectangular | 6.75% | 3.12% | 2.99% | 2.81% | 3.45% | 2.45%
Cross 5.87% | 3.01% | 3.79% | 2.47% | 3.39% | 2.16%
L 6.14% | 3.50% | 4.22% | 3.75% | 2.90% | 1.81%

(b)

Table 3.1: Experimental results obtained by using (a) the proposed model and
(b) Mallat’s model

3.6 Conclusions

In this chapter we propose a novel analytical bit allocation based on using the
proposed model to estimate RD characteristics in each region. We show that
our analysis provides a bit allocation very close to that obtained by exhaustive
search. We finally deploy our work in an ROI coding framework to demonstrate

the efficiency of our model in a practical application.
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Chapter 4

Channel Adaptive Multiple Description Coding
for Image Transmission over Packet Loss

Channels

In this chapter, we consider the problem of not only compressing data, as ad-
dressed in Chapter 2 and 3, but also robustly distributing the compressed data
over unreliable channels. The main motivation is to provide an error-resilient
coding algorithm by preserving some of the redundancy in the signal. This re-
dundancy can be used to recover the data after channel losses. Additionally, the
amount of redundancy can be easily adjusted as the characteristics of channel

impairment change over time. !

"Work presented in this chapter was published in part in [63, 64, 62]

68



4.1 Introduction

One of the major challenges in achieving widespread delivery of real-time mul-
timedia information comes in enabling such delivery over packet-based channels
that are either subject to losses or suffer from variable delay. In this work we
concentrate on error-prone transmission environments, such as the current best-
effort Internet and the wireless IP networks, that are heavily subject to packet
losses. These losses occur because packets are dropped as network queues fill up,
or because network congestion delays their arrival to the receiver so that they can
not be decoded before their scheduled playback time. In particular, in wireless
networks, channel capacity may fluctuate due to several reasons such as multi-
path fading, cochannel interference, changing distance between the base station
and the mobile host, or network changes as a mobile terminal moves. These
lead to time-varying transmission scenarios that result in a significant number
of corrupted or lost packets. If there are no appropriate error and loss recov-
ery mechanisms in place, significant quality degradation can be observed in the
received multimedia signal.

One popular method dealing with lossy transmission environments has fo-
cused its attention on Layered Coding (LC) [43]. LC techniques have shown
promising results in today’s heterogeneous Internet because they enable qual-

ity adaptation, i.e., the base layer is sent first and then enhancement layers are
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added to complete a full reconstruction [58], but when congestion occurs only the
the base layer needs to be sent so that quality level can be adjusted to network
conditions. The enhancement layer depends on the base layer and can not be
decoded if the base layer is not received. The drawback of LC is that if base layer
is lost during transmission the enhancement layers are useless. Therefore in LC
the router or the intermediate nodes are expected to drop lower priority pack-
ets first (base layer packets are assigned higher priority than enhancement layer
packets.) However, a common scenario in today’s best-effort networks is that of
transmission over a shared network where there are no quality of service (QOS)
guarantees in the presence of packet losses. Thus, multimedia data is packetized
for transmission but, given that there are no priorities, any packet could be lost
during transmission under the no-priority-based infrastructure.

To improve the LC performance, several researchers have attempted to apply
Automatic Repeat Request (ARQ) [26] techniques, which enable retransmission
to be requested if needed for LC. Reliable protocols based on ARQ such as TCP
are used in order to get the base layer across error free [75]. However, this may
not be a practical solution if transmission is delay-constrained, especially when
round-trip times (RTTs) are long. Retransmission of the lost packets can also
contribute to network congestion, as it increases the network load.

Given that retransmission may not be desirable, an alternative is to use for

reconstruction whatever is received at the destination. Traditional Forward Error
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Correction (FEC) schemes have been used to recover from packet loss [40, 60].
These schemes operate by adding redundancy to the original data such that it
can recover a certain number of losses at the destination. It however provides
only a single level of protection. That is, once the packet loss rate is higher
than the ability of FEC to recover the losses, the decoding quality will drop
significantly (Cliff-effect). Thus no graceful degradation in reconstructed quality
can be achieved if the number of losses exceeds the correction capacity of the
code. Mohr et al. [48] has proposed to provide a graceful degradation scheme
based on using FEC across the packets, Unequal Error Protection (UEP). All
these FEC-based schemes would require a significant amount of interleaving and
results in a delay especially when channel has bursty errors.

As an approach for source domain redundancy, Multiple Description Coding
(MDC) has been proposed as an effective technique to provide robustness with
graceful degradation under packet losses [19]. MDC can be seen as a forward error
control technique in that the decoder reduces the error based only on the infor-
mation that it received. MDC is particularly useful in scenarios where channels
with unequal error protection are not available and retransmission is not desir-
able, as well as when there are strict delay constraints. Therefore, transmission
of real-time media over the current Internet or wireless network infrastructure

seems to be particularly well suited for MDC techniques since (i) differentiated
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quality of service transmission has not been widely deployed, and (ii) RTTs can
be significantly long.

In an MDC system the input signal is split into blocks and each block is
represented by several descriptions. Then, these multiple descriptions of the
source are sent to the receiver and it is assumed that random losses can affect
each of the descriptions. Recovery of a particular block of data is possible as long
as one of the packets carrying data of this block is received correctly. Unlike L.C
systems where layers are given different levels of importance, since enhancement
layers are useless without the base layer, in an MDC system all descriptions are
equally important, because each of the descriptions of the source can be decoded
independently. When more than one description is received the overall quality
can be improved with respect to having a single description.

The recent interest in MDC has led to proposal of several different MDC
techniques [23, 24]. Examples include Multiple Description Scalar Quantizer
(MDSQ) [70, 72], Multiple Description Transform Coding (MDTC) [82], and
Unbalanced MDC (UMDC) [22, 74, 10, 2]. In an MDC system the basic trade-
off is in the selection of the amount of redundancy. As can be expected, if high
redundancy is chosen, the performance under severe error conditions will be good,
while the performance in an error free environment will be significantly worse
than that of a non-redundant coder at the same rate. Thus, the “right” level of

redundancy may depend heavily on the specific target channel conditions. Given
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that channel conditions in the Internet or wireless communication channels are
time-varying, a useful target is to design MDC systems that can adapt to changing
network conditions by adjusting their level of redundancy.

Several of the approaches mentioned above involve the design of specific
transforms or quantizers that have to be matched to the desired level of pro-
tection [70, 72, 82, 24]. In these schemes, adapting to changing network condi-
tions would entail having the encoder and the decoder both change the trans-
form and/or quantizers. These approaches thus have limited ability to adapt to
changing network/channel conditions. The MDC-FEC scheme [47, 55] is very
popular due to its excellent coding performance. The idea of Unequal Error
Protection (UEP) was applied to generate robust packet streams from a progres-
sively compressed image [47, 55] such that we can determine which part of the
multimedia stream require more protection. When network conditions change,
re-generating the appropriate amount of FEC code is necessary to match the
target channel conditions. However, both FEC computation and the interleaving
are time-consuming processes which increases significantly the cost of achieving
adaptation to channel/network conditions. One way to design these MDC ap-
proaches to account for varying communication conditions is to target the design
for the worst case scenario. However this results in a performance penalty when

the channel is error-free.
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As an alternative, we concentrate on a class of MDC approaches first in-
troduced by Jiang et al. [32] for image coding. These approaches are related
to earlier work on audio coding [25]. In this technique, explicit redundancy is
introduced, so that each input sample (for example each wavelet coefficient) is
transmitted 2 times and coded with 2 different bitrates each time. This strategy
has the drawback of leading to transmission of more samples than initially present
in the source, and thus leads to inefficiency in cases of error-free transmission.
However, this drawback is compensated by the extreme simplicity of the design,
which relies on existing quantizers. As an example, wavelet-based MDC tech-
niques [32, 45] can use the well-known SPTHT (Set Partitioning in Hierarchical
Trees) coder [69] to encode the various descriptions in order to achieve excellent
coding performance while providing robustness. This approach yields a simple
design and our goal here is to enable efficient adaption of the levels of redundancy
in order to increase both robustness capability and coding performance.

In this work we demonstrate how these explicit redundancy techniques have
the additional advantage of providing very simple mechanisms to adapt to chang-
ing network conditions [63]. The key observation is that the level of redundancy
can be selected by determining (i) the number of times a given sample (or wavelet
coefficient) is transmitted, and (ii) how many bits should be used for each of the
redundant representations. More specifically, we show how a bit allocation prob-

lem can be defined, where the goal is to choose the best distribution of redundancy
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Figure 4.1: An example of polyphase transform when an original image, which
is assumed to have a size of 4 x 4, is segmented into 4 blocks of size 2 x 2 where
Y; represents the i** pixel, i = 1,...,16. A polyphase component is obtained by
picking from each subblock a pixel appearing in the same relative position.

for a given packet loss rate. We assume that the packet loss rate can be mon-
itored and estimated via the feedback channel, e.g., RTCP packet. We provide
techniques to solve this problem and show how indeed different loss rates require
different levels of redundancy. Note that by using bit allocation to determine the
level of redundancy, not only the encoder can adjust itself in a simple manner,
but in addition the decoder can handle packets with different levels of redundancy
without requiring any changes to its structure (e.g. the same transform, entropy
coding, etc can be used).

The proposed MDC technique generates the various descriptions through a

polyphase transform. To obtain polyphase components for the case of a scalar
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source, this polyphase-based MDC divide this source, say a 1-dimensional se-
quence {Z1,...,Z,} (for simplicity assuming that n is an even number), into
even and odd samples, i.e., {Z5, Zy, ..., Z,} and {Z1, Z3, ..., Z,_1} (or more sets
if more than two descriptions are required), and will compress each sample us-
ing two different quantization scales (coarse and fine). For an n X n image or
2-dimensional signal source, {Y{11),Y(12),---,Y(nn)}, and for 4 polyphase com-
ponents, Y{; ;) belongs to polyphase component ¢ mod 2 4+ 2 x (j mod 2). An
example of the polyphase transform for an original image of size 4 x 4 composed
of 16 pixels {Y7,...,Y3s} as a 2-dimensional source is provided to illustrate the
definition in Figure 4.1. Then groups of samples are transmitted where a set of
coarsely quantized odd samples is combined with a set of finely quantized even
samples (and vice versa, i.e. fine odd with coarse even.)

The MDC system block diagram at the transmitter is provided in Figure 4.2
in the general case when S descriptions (DC; for ¢ = 0,...,S5 — 1) are used,
based on S polyphase components (X, for j = 0,...,5 — 1). In this case, each
description contains M polyphase components from fine level to coarse level,
each corresponding to different input samples, i.e., M polyphase components
are encoded with different quantization steps from fine to coarse. We call each
packet as described here a description, while we call each redundant version of a
polyphase component a copy. Each copy is coded with a different quantizer. For

example, in Figure 4.2 we show how M copies of a given polyphase component
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Figure 4.2: MDC system block diagram: S descriptions are generated by ob-
taining S polyphase components from the original signal. For each polyphase
component M copies are transmitted. Each description carries the primary copy
of one polyphase component, e.g., X, in DCj, as well as redundant copies of some
of the other polyphase components.

are sent, each in one description, with rates ranging from Ry to Ry, 1. A given
description contains the primary copy of one polyphase component, i.e., the copy
coded at highest quality, along with lower resolution copies of other polyphase
components. Note that our definition of description is consistent with that of
traditional MDC approaches, i.e., the more descriptions are received the better
the quality of the decoded signal.

The decoder operates by gathering the available information for each polyphase
component and then selecting for each polyphase component its highest quality
copy to be used in the decoding; the remaining copies are discarded. For example,
referring again to Figure 4.2, if only D( is lost then all polyphase components
except X; will be decoded at their highest quality, Ry, while X; will be decoded

with its highest received quality, R;.
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Obviously, as the packet losses increase, the chances that the highest quality
copy of a polyphase component reaches the receiver diminish. In that situation,
it would be better to distribute bits more evenly among all the copies. Therefore,
the bit allocation we address in this work is as follows. Given a known packet
loss rate, our goal is to determine (i) the optimal number of copies of a polyphase
component and (ii) the amount of bits to assign to each copy. In other words,
our goal is to determine the number of polyphase components to be included in a
description, M, and the number of bits to be used for each polyphase component
in a description, Ry, R, ..., Rp_1, such that the overall expected distortion
at the receiver due to both coding and description loss is minimized for a given
target packet loss rate, and for a given fixed rate budget. It has to be pointed out
that, unlike other recent MDC approaches [32, 70, 82, 24|, this polyphase-based
MDC system can easily incorporate more than 2 descriptions. This is useful given
that use of only 2 descriptions may be too limited for multicast applications, for
which more than two levels of reconstruction may be required.

It is worth noting that the data generation needed to obtain the Rate-Distortion
(RD) data to be used in the MDC bit allocation is a time-consuming process.
Although the MDC system has a simple design and provides fast adaptation in
redundancy during a time-varying transmission, the complexity can be domi-
nated by the data generation process. We therefore introduce a novel RD model

to simplify the data generation needed for MDC bit allocation. In this chapter,
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we use our efficient RD model proposed in Chapter 3. Recall that the proposed
RD model is an extended version of the RD model originally introduced by Mal-
lat and Falzon [42]. While the original RD model has been proposed to operate
only at low bitrates, we extend it so that it can operate at any bitrate. With
the proposed efficient RD model we enable an MDC approach that is capable of
adapting to changing network conditions.

We finally extend our MDC system so that it is able to provide different levels
of protection to different parts of an image. That is, we add more redundancy to
the Region of Interest (ROI) than to the rest of the image. A similar approach
of combining ROI coding and MDC approach has been introduced by Miguel
et al. [44]. However they use a different bit allocation technique without any
optimization.

This chapter is organized as follows. In Section 4.2 we formalize the problem.
An algorithm using Lagrangian optimization is introduced in Section 4.3 where
each polyphase component included in each description is separately coded. To
exploit the correlation lost by the independent coding, in Section 4.4 we en-
hance the coding performance by coding all polyphase components included in
one description together. Under this dependent coding environment, we use our
proposed RD model to eliminate the complexity due to data generation process
and use it to perform the bit allocation for our MDC system. We address the

problem of protecting a region of interest by using the proposed MDC system in
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Section 4.5. In Section 4.6, experimental results are provided as demonstration
of the validity of our analyses. Finally, conclusion of this work is discussed in

Section 4.7.

4.2 Problem Formulation

As outlined in the introduction, our goal is to determine what the right amount
of redundancy is for a given packet loss. Given that S polyphase components
are generated and S packets are transmitted for each basic coding unit, our
goal is to determine M, the number of copies of each polyphase components to
be transmitted. Obviously, if M = 1 we introduce no redundancy, and thus
any packet loss will result in a polyphase component being lost. Conversely if
M = S the maximum redundancy is introduced, and therefore we will be able to
reconstruct all the polyphase components of the input, albeit with different levels
of quality, as long as at least one packet out of S is received. A related issue is
that of determining, once M has been chosen, the number of bits to be assigned
to each copy, i.e., Ry, Ry, ..., Ry—1. We will show how these two decisions can
be made jointly in the process of performing a bit allocation, by reducing M to
M —kif Ry g, ..., Ry—1 are assigned a negative (or zero) number of bits in the

bit allocation.

80



Clearly, the “right” choice for M will depend on the channel conditions, so
that high redundancy is to be expected when packet losses are high and low
redundancy should be used under low packet loss conditions. Since increasing
the number of polyphase components in a description lowers the coding efficiency,
while increasing the robustness to errors, it is to be expected that at each loss
rate an optimal redundancy can be determined. The goal in our bit allocation
problem is to minimize the expected distortion at the receiver, after taking into
account the effect of packet losses.

We start by evaluating the expected distortion at the receiver as a function
of the packet loss rate. Assume a total bit rate budget B has been fixed, and
assume a known probability that a description is considered lost, P, which is
independent of the level of redundancy in each description (we assume that the
packet size is fixed in all the scenarios we compare.) Given our total number of
polyphase components, S (which is equal to the number of descriptions) and given

the total number of samples N, each polyphase component provides information

N
S

for % samples. Note that of the M polyphase component copies sent in one
description one of them will be primary copy and the remaining M — 1 copies
will be redundant of polyphase components whose primary data is transmitted in
another description. Given a bitrate budget of B bits per sample on average, we

have that the description size is % bits, which does not depend on the number

of polyphase components in a description.
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The primary copy is coded with rate Ry while the other copies are coded with
rates Ry, ..., Ry_1 with R,, > R, for m < n and m,n =0,...,.M — 1. It is
worth noting that our analysis in this work is description-based, i.e., we assume
that each description is contained in a single packet. However similar analyses
can be extended to a more practical packet-based framework, where the packet
size is smaller than the size of a description. For instance, if we need to operate
with small packet sizes, instead of considering the whole original image as the
input in our analysis, we can divide the image into smaller blocks, and then
extract the polyphase components in each of these blocks.

In order to estimate the distortion at the receiver we need to specify the
decoding algorithm. In general, the decoder will receive more than one copy
of each polyphase component. Then, the decoder will select among all those
copies the one with the highest resolution (i.e., higher rate R;) and will use it
for reconstruction, while discarding all other copies. In the worst case, when no
copy of a polyphase component is received, the decoder will use the mean value
of this polyphase component. This is sent as side information which would not
require much overhead.

The expected distortion, E[D], which we seek to minimize, statistically mea-
sures the reconstructed quality at the receiver. Given our proposed MDC ap-
proach, the distortion incurred for a given sample will be that corresponding

to the highest quality copy received for that sample. In the worst case, if all
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copies are lost, the distortion will be the variance of the corresponding polyphase
component.

The expected distortion can be derived by determining the probabilities that
the best copy for a given polyphase component is the one with index 7. Note that
we assume that the packet structures are identical and therefore it follows that
these probabilities will be the same for each polyphase component. Denote P; for
1 =0,..., M, as the probability that copy ¢ is the highest quality one received
for the polyphase component under consideration. P, is the probability that
none of the copies is received (since there are only M copies, with indices 0 to
M —1.) Py is the probability that the primary copy (with high rate equal to Ry)
is received. Denote Dj;(R;) as the distortion associated with copy ¢ of polyphase
component j, coded with R; bps. Then the expected distortion for polyphase
component j will be "M~ P,D;i(R;).

Let us compute the probabilities. Consider the best scenario where, for in-
stance, the description containing polyphase component j as a primary data (i.e.,
it is coded with the highest bit rate Ry) is received. Given a packet loss proba-
bility P, the probability of this case is equal to the sum of the probabilities of all
scenarios where copy 0 of polyphase component j is received: Py =1 — P. That

is, we must ensure that the packet carrying that copy arrives, independently of

whether the others are received.
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In general, the probability of receiving copy ¢ as the one with the highest
quality for polyphase component j will be the probability of receiving the corre-
sponding packet correctly, but losing ¢ higher quality copies, i.e. those coded at
rates Ry through R; ;. This probability can be expressed as: P, = (1 — P)P".

Finally, none of the copies of polyphase component j are received if all the
corresponding M packets are lost. Therefore the corresponding probability can
be written as: Py = PM.

The total expected distortion can be computed by adding the distortions of
each polyphase component divided by total number of polyphase components, S.
Thus, the expected distortion is

5 M-1 S—1

([Xa]p+a-p[ X {P Y Dur)}]), @)

i=0 =0

,_.

E[D] =

CQ|'—‘
<.
<
I
o

where D;;(R;) is the distortion of polyphase component j when R; bits are used,

and O'JQ- is its distortion when all M copies are lost.

4.3 Optimization

When the expected distortion can be computed as above, our goal then is to
find the best bit allocation R; for each of the descriptions, which also leads to
finding the best M for a given P. Finding the best bit allocation can be stated

as a constrained optimization problem, where the R; is selected to minimize
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the distortion from Equation (4.1) subject to a total budget constraint, i.e., the
average bit rate per sample has to be equal to the budget, B: Zﬁ\igl R, = B.
Lagrangian optimization techniques [20, 73] can be used to solve this problem
by introducing a cost function, J, where a Lagrange multiplier, A > 0, is used to
trade-off rate and distortion. This leads to an unconstrained minimization of the
cost function,
M—1
J=E[D]+ (Y R -B). (4.2)
i=0
The optimization process can be summarized as follows. First, we set the num-
ber of polyphase components in each description, M, to be equal to the maximum
possible, i.e., S, which provides the maximum level of protection. Note that while
each polyphase component may in general have different RD characteristics, here
we are assuming that all the packets are structured in the same way so that copy
1 of any polyphase component will always be allocated R; bits. In this work,
we further assume that the RD characteristics are the same for all polyphase
components. This bit allocation can be found based on either closed form RD
models or empirical RD data. In both cases we use the Lagrangian optimization
technique.

Consider first the optimization based on a closed form model. In other words

we assume that the RD characteristics of the source data is available. As an
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example, we consider the case of an i.i.d. zero mean Gaussian random source,
with RD characteristic [11] given by: D(R) = 02272,

Given that performing a polyphase transform with uniform sub-sampling will
not change the rate-distortion characteristics of such a memoryless Gaussian ran-
dom source, we can assume that each polyphase component has the same rate

distortion characteristic (i.e. from Equation (4.1), o2

2 =o0” and Dj;(R;) = Di(Ry)

for all j =0,...,58 —1). Thus, the expected distortion per sample will be
E[D] = o’PM + (1 — Z Pig~2k, (4.3)

Hence, our objective can be stated as follows:

Minimize E[D] = o*PM +5%(1 - Z pig—2F
subjectto B = Z R;. (4.4)

To minimize the average distortion in the presence of channel failures, we
introduce an unconstrained cost function as shown below and then differentiate
this constrained cost function with respect to R; to determine A\* and R;. Finally
optimal bit allocation for each polyphase component in a description is derived

and expressed as shown below.

M-1 M-1
J=0PM 4 521 P ZPz2—2Rz+A(ZRZ—B) (4.5)
=0 1=0
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R;‘=%+%(i—M;1>log2 (P) (4.6)

It is worth noting that the optimal bit allocation can be computed mathematically
and directly because a closed form of a rate-distortion function of each polyphase
component is explicitly assumed.

The solutions obtained above may result in some of the R} to be negative.
If this is the case and, say, R; through R}, ; are all negative, we would restart
the optimization choosing M = k. This is illustrated by the flow diagram in
Figure 4.3.

The same Lagrangian algorithm can also be applied based on empirical data
of the source. Here we first split the source (e.g., an image in the experiments
section) into S polyphase components using the polyphase transform. Then we
independently code each polyphase component, and measure the RD values that
can be achieved. Given a packet loss rate P and budget B, we iterate over a
non-negative A until we find one such that the budget is met. One particular
operating point is that where the rate is zero and the distortion is the variance of
the source. Thus, in the resulting bit allocation (R} for i = 0,...,S5 —1), if some
of the copies have been allocated zero bits that means that those copies should
not be transmitted and therefore that the M should be smaller. For example,

if the optimal bit allocation results indicate that the rates Ry,...Rg_1 should
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Figure 4.3: The algorithm flow diagram
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be zero, then that means that the optimal level of redundancy is M = k. Note
that this process is different from the previous optimization method since no
close form model (e.g., the i.i.d. zero mean Gaussian random source) is assumed
and thus we need to search for the best Lagrange multiplier and the optimal bit
allocation. Moreover, the solutions obtained above can not be such that some of
the R; are negative.

It has to be pointed out that in the empirical-base optimization scheme (when
the closed form model of input source is not available), the complexity from
the RD data generation process significantly dominates the complexity from the
optimization process, i.e., finding all Dj;(R;) points for the problem is much
more complex than finding the optimal solution, given all the possible R-D op-
erating points. In particular, in next section, instead of coding each polyphase
component separately, we propose to code all polyphase components inside the
same description together such that we can effectively exploit the correlation be-
tween them. In that way, the distortion for each polyphase component does not
only depend on its bitrate, but also depends on the choices of the bitrates of
other polyphase components inside the same description. In this case, finding
all Dj;;i(Ry, R, ..., Ru—1) points is needed for the RD data population. Clearly
this dependent coding method results in much higher complexity as compared
to the previous independent coding method. With this computational burden, a

channel-adaptive MDC would be difficult to achieve in real time. Therefore, we
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are interested in model-based bit allocation methods that will avoid the need to
generate real RD data while preserving the optimality. However it is clear that
i.i.d Gaussian assumption can not be assumed for every input image. Therefore
it would be useful to have an RD model that can work on arbitrary input im-
ages. In the next section, we introduce a bit allocation algorithm based on our
proposed RD model in Chapter 3. We show how our method can be used to solve
this dependent bit allocation problem for the proposed MDC system and show

that the complexity is significantly reduced.

4.4 Analytical Model-based Bit Allocation for

MDC

In the previous section, each polyphase component included in each description
is encoded separately. Clearly, the system does not fully exploit the correlation
among the polyphase components inside the same description. It would be prefer-
able to code all polyphase components included in a description together such
that the correlation can be effectively exploited. However this introduces the
problem of how to effectively use the desired number of bits, R;, on the different
polyphase components included in a description, such that given the packet loss

rate, P, the expected distortion will be minimized.
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In this section, we improve our MDC system by using a divide-and-multiply
method used in Region of Interest (ROI) Coding systems that was introduced
in the previous chapter. Recall that in ROI coding different numbers of bits
are allocated to different regions in an image coded with a progressive wavelet
coder such as SPTHT [69] or JPEG2000 [6]. The wavelet coefficients are divided
by different factors before coding to enable different bit allocations to different
regions, because the coefficients in each region are refined at different speeds.

Based on the ROI coding idea, the divide-and-multiply method can be used to
introduce redundancy in each description [64]. That is, we divide each redundant
version of a polyphase component by a psf (Priority Scaling Factor). In this
way different numbers of bits will be efficiently distributed among the polyphase
components in each description as shown in Figure 4.4. At the encoder we di-
vide the polyphase components with different psf values, psfo, psfi,...,psfs_1.
More specifically, corresponding to the original MDC structure in Figure 4.2, the
primary copy is divided by psfy while the other copies are divided by psfi, ...,
psfs_1 with psf,, < psf, for m < n and m,n =0,...,5 — 1. At the decoder,
we multiply the psf values used at the encoder to the corresponding polyphase
component. In this way, different numbers of bits will be assigned to different
polyphase components during the coding process via the bitplane-by-bitplane

successive refinement.
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Similar to the empirical-based optimization mentioned in Section 4.3 where if
M<S, R,=0fork=M,...,5—1,alarge value of psf; fork=M,...,S—1is
expected to be used in the MDC system. In this way, all bits will be distributed
among the primary copy and the next M — 1 copies and no bits will be used by

the remaining copies.
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Figure 4.4: Block diagram of S-description system using ps f

In general the polyphase transform is used to generate regions such that each
region will have the same size, N; = % for j =0,...,5 — 1, and similar proper-
ties. The analytical psf technique has the advantage of being simple (a division
operation) and flexible (the levels of redundancy can be easily changed).

To preserve our total bit rate budget we code each description at bitrate %. It
is worth noting that we use a normalized dividing factor. Without loss of gener-
ality assume that psfy = 1. This results in no loss of generality because the rate
is controlled through the bitplane coding. Define psf = psfy,psfi,...,psfs 1

Denote D;;(psf) as the distortion associated with copy ¢ of polyphase component
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jfori=0,....,8—1and j =0,...,5 — 1. Under this dependent coding envi-
ronment, our notation, Dj;(psf) for the distortion of the 5™ copy of polyphase
component j indicates that psf choices for other copies in the same descrip-
tion affect the result. As derived in Section 4.2, the expected distortion can be

computed as,

1 S—1 1— P S—1 .5',1
Doy (ps1) = (> o2|Po+ — [S°PS” Dyi(pst)]- (4.7)
j=0 i= =0

Now our goal is to find the best psf* = {psf;,psfy,...,psfs_ 1} given the
probability of packet loss P. Therefore, if we assume that we have access to
the distortion curve Dj;(psf), searching all over the RD operating points should
yield the best psf. However, data generation is normally a time-consuming pro-
cess [57]. That is, the encoder has to generate all RD operating points before
starting the optimization process, i.e., the rate and distortion characteristics have
to be measured at each of the potential operating points. For example, a design
based on empirical data could start by measuring overall image RD data at a
number of different psf values, and then proceed to select the optimum or the
most appropriate psf value for a given criteria. There are two major drawbacks
of this empirical-based method. First, it is obvious that the technique is limited

in that the solution will have to be one of the discrete quantizer sets, so that
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optimality may suffer if a bad choice was made of those discrete quantizers. Sec-
ond, collecting the RD data may be complex. The more admissible quantizers are
used, the more time will be needed in the RD data generation process. Therefore,
it would be useful to design a model-based bit allocation algorithm that can both
efficiently work on arbitrary input images and enable fine granularity in the selec-
tion of arbitrary admissible quantizer sets. Next, we introduce a novel RD model
for the purpose of RD data generation and show how to use it to determine the
best psf to use for the MDC bit allocation given a packet loss rate and a bitrate
budget.

In the MDC system with S descriptions, the average distortion can be simpli-
fied from Equation (4.7), by using the distortion model in Equation (3.3), with
the new parameters, C;, the number of significant coefficients for copy ¢ of the
polyphase component. It is worth noting that C; is a function of psf, i.e., C;
depends on the coding choice. To compute the distortion for copy ¢ of polyphase
component j, D;;i(C;), fori =0,...,N —1and j =0,..., N — 1, the source is
first decomposed into S polyphase components. Then we independently sort the
wavelet coefficients in each polyphase component to obtain S sorted sequences,

W; = {w;(0),...,w;(§ —1)} for j=0,...,5—1.

Davg(COa 01, ey CS—I) =
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Cp = > C (4.8)

where D;;(C;) represents the distortion of polyphase component j that is divided
by the psf;.

Therefore, given the probability of packet loss, P, we can determine the op-
timal C} by using Lagrangian optimization techniques [73]. The optimal C} are
determined from the optimization process and then each psf;* can be determined

as

_ w(E)

 |wo(C)l

*

psf; (4.9)

where w;(c}) is the last coefficient sent for copy i and wy(cf) is the last coefficient
sent for copy 0. This enables adjusting the relative importance of the copies as a
psf > 1 indicates that only relatively larger coefficients are sent, and thus bitrate
required is lower.

Without loss of generality, we give an example for a 2-description system as
shown in Figure 4.5. W, and W, represent the sorted coefficients of polyphase
component 0 and 1 with the different quantization bins at A and psf x A,
respectively. The psf value can be determined as shown in Figure 4.5. For
an S-description system, it is therefore clear that the psf can be determined
as shown in Equation (4.9) and used as the input parameter to the MDC codec

afterwards.
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Figure 4.5: Curves of the sorted wavelet coefficients of each polyphase component,
W() and W1

Algorithm: Analytical model-based bit allocation algorithm for MDC

system
1. Start by computing wavelet coefficients from an input image.

2. Split the wavelet coefficients into S polyphase components, X; for j =

0,...,8 =1: X; ={z;(0),...,2;(& = 1)}

3. Sort the wavelet coefficients in each polyphase component in decreasing

order to obtain the sorted sequences, W; for j = 0,...,5 —1: W; =
{w;(0),...,w;(§ = 1)}

4. Compute the D;;(C;) in the same way as shown in Equation (3.3) and use
it in Equation (4.8).
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5. Perform Lagrangian optimization by minimizing Equation (4.8) with the
constraint Cg = Zf:_ol C; to determine the best C} for:=0,...,5 —1, for

a given packet loss rate, P, and a given bitrate budget, B.
6. Determine the best psf; from Equation (4.9) to obtain the optimal psf”.

7. Divide the wavelet coefficients for each polyphase components in a descrip-
tion as shown in Figure 4.4 by the appropriate psf values computed from

Step 6.

8. If there is a change in channel conditions, go back to Step 5 to re-compute

the new psf value for a new packet loss rate and a bitrate budget.

To validate the accuracy of the proposed algorithm, a comparison between
the empirical-based and model-based psf values for a 2-description system is
presented in Figures 4.6(a) and (b) where various different channel conditions are
assumed. It is worth noting that this is a comparison when empirical or model RD
curves are used with different packet loss. The empirical-based psf;, denoted by
psfi®, is obtained from full search of all admissible psf; of {1,1.1,1.2,...,400}

anl

while the model-based psf;, denoted by psf{™, is determined from our analysis
as shown in Figure 4.5. Note that psfy is equal to 1. From Figure 4.6 it is clear

that the proposed scheme provides accurate estimates of the psf values.
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Figure 4.6: (a) Difference between the empirical psf; and analytical psf; and (b)
difference between the PSNR results using the empirical psf; and the analytical
psfi for gray-level Lena image of size 512 x 512. MDC system generates 2
descriptions with a total bitrate at 0.5 bps.
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4.5 Local vs Global Protection using ROI Coding

with MDC System against Packet Loss

The proposed MDC approach can be extended to ROI coding to provide higher
protection to more important portions of the image. In this way, higher quality
can be achieved for the ROI than the rest of the image, i.e., non-ROI (e.g., back-
ground). We first divide the non-ROI coefficients for each polyphase component
in a description with different dividing factors rg,r1,...,7s_1. This is equivalent
to dividing the ROI and non-ROI coefficients for each polyphase component. For
example, in the first description, DCy, we use psfo, psfi,-..,psfs_1 for the ROI
and psforo, psfiri,-..,psfs—1rs—1 for the non-ROI as shown in Figure 4.7. At
the decoder we multiply by the corresponding dividing factor the reconstructed
coefficients before the inverse transform is performed. In this way more bits will
be distributed and better quality will be achieved at ROI than at non-ROI. Thus
MDC can be viewed as a way to globally protect the more important data in
the entire image while ROI coding is a method to locally protect more strongly
information in some parts of the image. A similar approach has been introduced
by Miguel et al. [44] to solve this problem. However that work uses a different bit
allocation technique and no criteria are presented to select the dividing factor,
while in this work the dividing factor for ROI coding can be selected based on

both the distortion criteria and the minimization of the average distortion.
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Figure 4.7: Block diagram of S-description system with the ROI coding. The
ROI is represented as a small rectangular box inside each polyphase component.

There are many possible distortion criteria that can be used to encode an
image containing an ROI to provide different levels of protection to each por-
tion of the image. Here, we consider the case where the goal is to determine
the appropriate psf values to be assigned to each polyphase component, i.e.,
To,T1,...,Ts_1, such that a desired ratio between distortion of non-ROI and ROI
is satisfied where r; is the psf value for the divide-and-multiply method for ROI
coding in each copy of polyphase component j in a description. We can write
the distortion for ROI and non-ROI of polyphase component j as D;;”(C[ %) and
D;‘Z-’"Oi (Crrot) | respectively.

Again, assuming that the characteristics of each polyphase component will
be approximately the same, the distortion function for each description will be

the same, i.e., D;fi(Cim) ~ DI(Cr*) and Dﬁ“(C’f”i) ~ DProY(CrroY). Given
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that C; is computed as described in the previous section, a simple calculation
can be performed to determine the appropriate CI* and C" and finally r} is
computed, as shown below. Note that w!™(C*) and w[*(CI) are the sorted

non-ROI and ROI coefficients of the polyphase component %, respectively.

Droi(croi)
tio = ——— " 4.1
RCL to Dgwm(cfinraz) ( 0)
C; = Oy + ot (4.11)
wnroi(cn'roi)
S= | 4.12

4.6 Experimental Results and Discussion

In order to confirm the validity of the proposed algorithm, we implement it in an
image coding framework. Our experiments were conducted with the gray-level
Lena image of size 512 x 512. The MDC system block diagram for this simulation
is shown in Figure 4.4. At the polyphase coder, the original input image was
first transformed into the frequency domain. Then it was decomposed in the
transform domain into S sub-images, i.e., S polyphase components were created.
In other words, our image of size 512 x 512 was first segmented to % blocks,
each of size S pixels. We grouped the image pixels corresponding to the same

spatial location in each block to create a polyphase component and S copies
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were generated. The polyphase components of each copy were divided by the
appropriate psf values corresponding to the position inside each description as
shown in Figure 4.4. A set of psf values used in the simulation was computed by
the proposed algorithm based on the analytical model-based scheme. Given the
total bit rate B, each uncompressed description from MDC codec was then coded
with the Said-Pearlman wavelet coder, SPIHT (Set Partitioning In Hierarchical
Trees) [69] at a rate g and the output bitstream was transmitted as a description.
At the receiver, the decoder decided to use the available copy of each polyphase
component that has the highest quality for reconstruction.
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Figure 4.8: Characteristic distribution of psf for the case of 8 descriptions with
total bit rate at 1.25 bps

Figure 4.8 shows the characteristics of bit allocation for the varying packet
loss rates in terms of the psf assigned in each polyphase component inside a
description. psf; represents the priority scaling factor for polyphase component
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Figure 4.9: Performance comparison between the proposed MDC using the op-
timal psf values shown in Figure 4.8, Unprotected SPIHT of Said and Pearl-
man [69], MDSQ-SPIHT of Sherwood et al. [72], MD-SPIHT of Miguel et al. [45]
and ULP of Mohr et al. [48] for the case of 8 descriptions with total bit rate at
1.25 bps

1 inside each description. As a comparison, when the packet loss rate increases
(less number of packets received), the result is that the psf’s tends to take similar
values. Intuitively, this leads to the equal protection for each polyphase compo-
nent across all descriptions, as expected. To evaluate the performance of our
MDC scheme, we compare the results of our scheme with other MDC works 2
as shown in Figure 4.9. It is clear that our scheme can surpass the unprotected
SPIHT [69], MD-SPIHT [45] and MDSQ-SPIHT [72]. However, comparing with
ULP [47], our approach is worse when several description have received, because

of the advantage of using FEC, although the complexity of our scheme is lower.

2The authors would like to thank A. Miguel, A. Mohr and G. Sherwood for providing the
performance results.
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(b)

Figure 4.10: Reconstructed image at different packet loss rates for a total of 8
packets: (a) the original Lena image and (b) the reconstructed Lena image when
receiving 8 packets
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(b)

Figure 4.11: Reconstructed image at different packet loss rates for a total of 8
packets: the reconstructed Lena images when receiving (a) 6 packets and (b) 4
packets
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(b)

Figure 4.12: Reconstructed image at different packet loss rates for a total of 8
packets: the reconstructed Lena images when receiving (a) 2 packets and (b) 1
packet
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To show how graceful degradation is perceptually achieved, we demonstrate
the visual qualities of the reconstructed image where different probabilities of loss
are applied. Figures 4.10-4.12 illustrate the graceful degradation of subjective
quality of the reconstructed images. Furthermore, it is apparent that the results
of the proposed MDC system provide robustness even under high packet loss

rates, i.e., when only 1 or 2 packets are received.

512x512 Lena, 2 descriptions, 1.0 bpp total bit rate

40.5

40

395

w
©

Central channel PSNR (dB)
w 8
[o) (&)

375
—% MDSQ-SPIHT of Sherwood et al. !
37H MD-SPIHT of Miguel et al. .
-0 - MDSQ of Servetto et al. o

—— The proposed MDC scheme

36.5 ; ! !
18 20 22 24 26 28 30 32 34 36

Side channel PSNR (dB)

Figure 4.13: PSNR results for our proposed MDC scheme, MDSQ-SPIHT of
Sherwood et al., MD-SPIHT of Miguel et al., and MDSQ of Servetto et al. for
the case of 2 descriptions with total bit rate at 1 bps

The results in Figure 4.13 show the performance comparison of the proposed
MDC scheme with the works of Servetto et al. [70], Sherwood et al. [72] and
Miguel et al. [45] for the case of 2 descriptions at 1.0 bps. The PSNR results are
comparable to the works of [72] and [45] for the low central PSNR region. At

high region we improve the performance over the work of [72]. Better performance
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Figure 4.14: PSNR of the gray-scaled Lena image at 1.0 bps in the wireless
CDMA spread spectrum system at BER = 1073, The results of the case with
known channel loss rate and the case of Equal error protection are shown for
benchmarking comparisons.

over the work of [70] can be justified by the better entropy coder by the SPIHT
algorithm.

In order to assess the effectiveness in term of adaptivity of the proposed
scheme, we show another experiment based on a scenario where a sequence of 40
Lena images is transmitted. In this simulation, each image was coded into 64
descriptions at a total bit rate of 1 bps. One description was transmitted using
a packet with 512 bytes payload (an IPv6 node is required to handle 576-byte
packets without fragmentation and accounting for packet headers a payload may

be as large as 536 bytes [15].)
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In this experiment, channel behavior was simulated based on the first-order
N-state Markov model to emulate the process of packet losses, which has been
shown to be a good approximation in modeling the error process at the packet
level [51]. S; for i =0,..., N — 1 denotes the channel states where Sy represents
the good state and all others represent the bad states. In this simulation, we
use a 6-state Markov channel model to generate loss patterns. The PSNR results
of the end-to-end system for each image are averaged over 50 realizations of the
channel patterns. A set of state transition probabilities that is used to emulate
a wireless CDMA spread spectrum system at BER = 102 can be found in [26].

For the proposed scheme, we assume that at the encoder we have no access
to the present channel behavior, i.e., encoder would not know immediately what
the probability of packet lost before encoding process. Instead we assume that
there is a feedback channel, which is used only to convey a number of packet
losses with a delay of one image interval from the decoder to the encoder. In
other words, the packet loss rate used in the optimization process for the image
being transmitted is a number of lost packets of the previously transmitted image.
Therefore the encoder has no knowledge of the statistical model of the channel
behavior and can only make use of the past packet loss information in the bit
allocation algorithm.

To highlight the adaptivity of the proposed scheme, in Figure 4.14, we com-

pare the performances obtained from 3 different scenarios: (i) Channel-adaptive
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MDC approach with delayed feedback, (ii) Unadaptive MDC approach with max-
imum level of redundancy, and (iii) Channel-adaptive MDC approach with known
channel loss rate. The first scenario is the proposed MDC scheme with the opti-
mal bit allocation based on the delayed (past) channel information as mentioned
earlier, The second scenario is the MDC system without adaptation of the redun-
dancy level to the varying network conditions. We set a degree of the redundancy
to be maximum, i.e., the worst case scenario. The third scenario serves as a
benchmark when the present channel information is assumed to be available for
optimization at the encoder. This is the unrealistic scenario where the encoder
has deterministic knowledge of the future channel conditions. It serves to pro-
vide an estimate of the loss in performance due to imperfect channel knowledge
in the other cases, and can be thought of as an upper bound on the achievable
performance.

Based on our experimental results it is easy to see that the performance,
as is to be expected, improves as we increase the information available about
the channel conditions. Therefore the performance for the unadaptive MDC
scheme is worse than in the case where delayed feedback is available, which in
turn has worse performance than the case where future channel loss rates are
known. In other words, if there is a mismatch between the probability of packet
lost used in the optimization process and the actual probability of packet lost,

the performance of the proposed scheme will suffer accordingly. This justifies
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the gap of the results between the scenarios (i) and (iii). However the proposed
scheme can quickly react to changes in the channel conditions as compared to
the unadaptive scheme where it is unchangeably overestimated the packet loss
by designing the system based on the worst case packet loss (i.e., maximizing the
amount of redundancy).

To validate our idea of combining ROI coding and MDC, we conclude this
section by presenting the subjective results in Figure 4.15. when the packet loss
rate is 50% and the total bit rate is at 1.25 bps. We illustrate the visual quality
when we enable ROI coding feature to have a desired relative distortions at 1 and
4 in Figures 4.15 (a) and (b), respectively. The PSNR of ROI is 35.35 dB and
38.14 in case (a) and (b) respectively while the PSNR of the rest of the image
is 35.27 dB and 32.12 in case (a) and (b) respectively. The face region of Lena
with ROI coding in Figure 4.16 (a) results in better quality than the one without
ROI coding in Figure 4.16 (b). It is worth noting that with ROI coding there is
the penalty of lower quality at the background and entire image, but with better

quality in the ROI.

4.7 Conclusions

In this work, we investigated the problem of achieving simple adaptation to chang-

ing network conditions. We gave an analysis of how a bit allocation technique
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Figure 4.15: Reconstructed Lena image with 200 x 200 rectangular-shape ROI
located in the middle of the image, i.e., ROI is the area inside the block. for the
relative distortions at (a) 1 and (b) 4.
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(b)

Figure 4.16: Zoomed versions of the reconstructed image from (a) Figure 4.15(a)
and (b) Figure 4.15(b)
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can be used to determine the optimal level of redundancy in each description in
an MDC scheme. With the proposed analytical RD model, efficient bit allocation
can be achieved based on the divide-and-multiply method with high accuracy as
compared to the empirical-based bit allocation method at low complexity. ROI
coding was combined with MDC to deliver different levels of protection in dif-
ferent portions of the image. Experimental results showed that the proposed
method provided good performance with low complexity by using the proposed

analytical model-based bit allocation.
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Chapter 5

Dynamic Wavelet Feature-based Watermarking
for Copyright Tracking in Digital Movie

Distribution System

In the previous chapter we introduced an optimal bit allocation for reliable trans-
mission of data subject to packet losses. In this chapter, we consider the need
to provide protection to illegal copying, when delivering media over a network.
We introduce a watermarking system that can be used to uniquely identify the
owner and the source of the leak when the media is modified. The main goal is to
provide the watermark system to protect the data by distributing the watermark

bits into the copyrighted media data .

"Work presented in this chapter was published in part in [67, 68, 89]
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5.1 Introduction

With the recent growth of networked multimedia systems, techniques are needed
to prevent (or at least deter) the illegal copying, forgery and distribution of digital
audio, images and videos. Many approaches are available for protecting digital
data, including encryption, authentication and time stamping. It is also desirable
to determine where and by how much a given multimedia file has been changed,
when being copied from the original. One way to improve the owner’s claim
of ownership of an image/video is to place a low-level signal/structure directly
into the image/video data. This signal/structure, known as a digital watermark,
uniquely identifies the owner and can be easily extracted from the image/video.
If the image/video is copied and distributed, the watermark is distributed along
with the image/video. This is in contrast to the (easily removed) ownership-
information fields allowed by the MPEG-2 syntax. Our goal has been to develop
robust digital watermarks for videos to trace any compromised video copy in dig-
ital movie distribution systems. The multimedia watermarking algorithm must
satisfy the requirement of the non-repudiation of watermarked content in digi-
tal distribution systems, which is useful when the source of multimedia contents
needs to be known or proofed. One such example is when the content and pre-
sentations of that content must be accounted as copyrighted content and the loss

of control of that content could lead to monetary loss on the part of the content
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provider or the content owner. We are designing a dynamic watermark system
to satisfy the following system requirement. First, the watermark should use a
key in its watermarking process. This can be used as a primary index key, i.e.
there is a large number space from where the key is chosen such that no two keys
are likely to be identical if keys are chosen at random. Second, we need to create
a unique watermark for each copy of the content. Each watermark will be asso-
ciated with a different key. Third, we need to create a blank-detect (oblivious)
or at least a semi-blank detection watermark. The watermark detection agent
should be able to detect the watermark without the original content or with very
limited information. Last and most important, we need to create a non-fragile
and very robust watermark.

Previously, several digital watermarking methods have been proposed. Cox
et al. [12] proposed the spread spectrum based watermark techniques for the
video signals, such as FFT/DCT coefficients. Koch, Rindfrey and Zhao [37] also
proposed two general methods for watermarking images with DCT techniques.
However, the resulting DCT has no relationship to that of the true image and
consequently may be likely to cause noticeable artifacts in the image/video and
be sensitive to noise. A method for scene-based watermarking of video data was
proposed by Swanson, Zhu and Tewfik [77]. In this method, each of a number
of frames of a scene of video host data undergoes a temporal wavelet transform,

from which blocks are extracted. The blocks undergo perceptual masking in
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the frequency domain, such that a watermark is embedded therein. Once the
watermark block is taken out of the frequency domain, a spatial mask of the
original block is weighted to the watermark block, and added to the original block
to obtain the watermarked block. Although this method is somewhat similar to
our works, our proposed watermark algorithm is feature-based, in the sense that
we alter certain feature values of static frames of wavelet transformations of
the video scene sequences. Also, Swanson et al.’s method [77] strictly requires
an original video to detect the watermark, while our detection method is semi-
oblivious.

In this chapter, we propose, implement and verify novel watermarking embed-
ding and detection algorithms for copyright tracking of digital videos in digital
cinema, applications. The algorithm is novel in that watermarks created in the
wavelet domain of the digital video are unique, dynamic and robust. The wa-
termark patterns are embedded in the special features of wavelet transforms of
the original video. Uniqueness of the watermark means, given a digital movie,
that the watermark can be identified as a unique label of the movie, or of the
scenes/sequences of the movie. Besides, the watermark can be created dynami-
cally according to the time and places of displaying so that the digital watermark
can protect the copyright of the multimedia content provider and the further
ownership transfers of the media content. Temporal and spatial wavelet decom-

position as well as feature-based watermark embedding procedures are deployed
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such that the proposed watermarking algorithm is able to effect a compromise
tradeoff between visual quality and the robustness. Finally, watermark detection
is semi-oblivious. We validated our proposed algorithms with several attacks and
the experimental results show that our watermark can survive these attacks up
to a level, and that the movie will be unacceptable in terms of quality when the
attack is successful.

This chapter is organized as follows: in Section 5.2, we introduce the secure
distribution system that our watermark algorithm will be used for. We dictate
the specific characteristics of the system architecture such that the watermark
framework is clearly defined. We then provide two watermarking algorithms: (i)
local-blocking method and (ii) polyphase-based method. We address the embed-
ding and detecting processes of these two methods in Section 5.3. In Section 5.4,
experimental results are discussed. The Conclusions of this work are addressed

in Section 5.5.

5.2 Secured Digital Media Content Distribution

Architecture

More and more digital multimedia data is distributed through public networks.
Many approaches are available for protecting digital data; these include encryp-
tion, authentication, time stamping and watermarking. Most existing watermark
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schemes in distributed systems depend on a trusted third party (TTP) to verify
the authentication of the watermark system. The secure delivery of images over
open networks proposed by Augot et al [4] may encounter situations such that a
”trusted third party” can not be found that can be trusted by both parties. Other
watermarking systems that we are aware of that aim to accomplish the same end
goal must employ the services of a ”trusted third party” to put watermarking
keys in escrow to be presented upon demand if there is a dispute.

We propose a mechanism, which does not need “trusted third party”, every
watermark is non-repudiation watermark, and can be used to identify the source
of the watermark. Although there are many uses for this technology, the use
for which it was developed is multimedia content distribution forensic analysis.
In these cases, the multimedia content must be kept secret and not distributed
by unauthorized agents. Should the content ”leak” and become uncontrolled,
it is desirable to locate the source of the leak so that appropriate action can
be taken (punitive damages sought and security tightened for instance.) This
multimedia watermarking mechanism allows content to be linked to the end user
or distributor of the content, whichever is the responsible party in a way that
corrective action (legal or technical) may be taken with confidence.

To show how the digital content will be safely distributed, we present a dis-
tribution model as shown in Figure 5.1. The content provider passes the valuable

digital content to the content distributor to be distributed to all eligible clients,
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Figure 5.1: Digital content distribution model with secure copy monitoring

in this case, the clients are also distributors. All clients are required to put the
watermarks into the digital content according to the proposed non-repudiation
watermark schema so that content provider can trace the source of the leak if the
copy is leaked. The novelty of the distribution model and non-repudiation water-
mark schema is that it allows the reliable and non-repudiable watermark to fulfill
the needs and trust of content provider and content consumers/presenters. This
distribution model does not implement any protections to ensure that the water-
mark is applied properly, it is however assumed that both parties (the content
provider and the distributor) willingly agree to follow the procedure as outlined.
In the case where the distributor or the provider wishes to ”cheat” the other
by circumventing the watermarking procedure, other measures must be taken to
ensure that this is not done [61]. Also, watermark attacks must be addressed and

considered in designing suitable watermark algorithm [68] for the system.
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The non-repudiation watermark schema for digital multimedia distribution is
depicted in Figure 5.2. This schema requires the use of public and private key en-
cryption algorithms and assumes the participation of one content provider and at
least one content distributor. Both the content provider and the distributor have
their own private key that they do not share. This key is central to the identifica-
tion of content watermarked by the distributors. First the content provider sends
a file with the content to the distributor. This may be done in a variety of ways
including but, not limited to, transmission of the content through a data net-
work and distribution of the content on physical media (for instance CDROM’s
or DVD’s). Once the content has been sent to the distributor, the distributor
must contact the provider. This contact must be authenticated using “strong”
authentication techniques. The exchange must be protected by “strong” encryp-
tion techniques. After authenticating with one another, the provider provides a
random number to the distributor. The size of this random number is dictated
by the watermark style to be used. Multiple watermark mechanisms may be used
with this technology. The distributor generates a public and private key pair for
the application of this watermark, which we will call the watermark pair. The
distributor uses the watermark pair private key to encrypt the random number
passed to it by the provider. This encrypted number will be the watermark key.
The distributor then watermarks the content with this key. After watermarking

(or before, depending on the details of the watermark process), the distributor
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Figure 5.2: Non-repudiate watermark scheme for digital movie distribution

will transmit to the provider the public key of the watermark pair signed by its
private key (not the watermark pair private key, the distributor private key) along
with information that will allow the provider to obtain the watermark key given
the watermarked content. We will label this information “location information”.
However, it may not designate a location in the traditional sense of the word
and will depend on the watermark technique selected. The provider archives this

information so that the watermark may be detected later.

5.3 Watermark Algorithms

We are proposing a scene-adaptive feature-based watermarking algorithm and
method in video’s 3-D wavelet domain. Figure 5.3 shows the general watermark-

ing embedding procedure. First, video is segmented into scenes. Digital movies
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are composed of many scenes, each of which has a sequence of similar images.
We use the methods proposed by Zhou et al. [90] for scene change detection and
separate the movie into multiple scenes. That is, the histogram of each frame is
compared to that for its adjacent frames to detect the boundary of a scene. Each
scene will be separately cast with a watermark pattern. Inside each scene, we
develop an algorithm to hide the data in such a way that the comparison between
frames can not lead attackers to detect, or even worse remove, the embedded wa-
termarks. Since the characteristics of each scene are totally different from those
of neighboring scenes, casting different watermark patterns with an independent
frame in each scene would easily result in noticeable artifacts. Therefore, we pro-
pose to embed one type of watermark per scene, or part of a watermark sequence
per scene. To avoid averaging and collusion attacks, for example, if different wa-
termarks were embedded in the frames inside the same scene, they could be easily
removed by comparing frames or simply averaging the frame with its neighbors to
construct new frames without visually noticeable degradation. We then propose
to embed a single feature-based watermark pattern for all the frames inside a
scene on a scene-by-scene basis. To avoid collusion at the frames near the scene
boundary, we need to cast different watermarks in neighboring scenes.

In our proposed watermarking framework, the main focuses are (i) to deter-
mine where in a video sequence a watermark can be hidden so that an optimal

tradeoff between robustness and visual quality can be achieved, and (ii) to learn
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Figure 5.3: Digital video watermark embedding procedure

how to cast a watermark pattern into the selected places in a video sequence so
that the given tradeoff in (i) is satisfied and the watermark detection algorithm
can be performed without the original video sequence. Since wavelet transforma-
tion has shown promising ability in classifying video streams into multiple bands
with different characteristics, we introduce the watermark in the wavelet domain.
We first apply a temporal wavelet decomposition to the original video sequence
to obtain: (i) static frames and (ii) dynamic frames. Static frames basically are
obtained by applying a wavelet low-pass filter along the temporal domain and
subsampling the filtered frames by 2. Dynamic frames are obtained in the same
way but using a high-pass filter instead. For instance, After applying 4-level de-
composition to a 144-frame video sequence it will result in 9 static frames and
135 dynamic frames. Furthermore, we apply the spatial wavelet decomposition

to each static frame. For example, 2-levels wavelet decomposition will result in
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7 subbands, i.e., LL2, LH2, HL2, HH2, LH1, HL1 and HH1, as shown in Fig-
ure 5.4(a). The subband LL2 represents the approximation of the static frame,
which contains the most important data. The other bands contain high frequency
information such as the edge information of each static frame. In summary, in the
temporal domain, we choose to cast the watermark in static frames so that the
watermark can be spread all over every frame in the scene. In the spatial domain,
we decide to embed the watermark pattern on the middle frequency bands, e.g.,
HL2, HH2 and LH2, to establish a tradeoff between the robustness of watermarks
and the visual quality of the video sequence. Figure 5.5(a) shows the watermark
casting procedure.

Next we need to determine how the watermark bits will be cast into the pre-
selected middle frequency bands of static frames. In this work, we propose a
feature-based watermark-casting algorithm. Basically, it can be any feature in
the selected subband. Here, we use a simple feature such as the energy of the
wavelet coefficients blocks.

As shown in Figure 5.4(b), we start by locally separating the coefficients
nearby into multiple blocks. We use the classic embedding procedure of adding
noises into images [87] for the watermark insertion. But different from this pre-
vious work [87], we change the value of the selected features, the energy of the
wavelet coefficients of selected subbands. For the i** selected subband, the energy

of each block, E}; for the 4% block, is modified to be the watermarked energy
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and (b) block diagram of the proposed watermark detection for a single video
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EY , where « is watermark strength and the b; is the 4" watermark bit, which
is either 0 or 1, i.e., Ef = Ej(1 + ab;) = Ej + Ejab;. At the i selected
subband, since the energy is the summation of the squared wavelet coefficients,
Eg = S0 29,2 and ER = Y07 22,2 N; is the total number of wavelet
transformed coefficients in one block that belongs to the i** selected subband.
zgy, and zi, of the k' selected subband, are the k™ wavelet coefficients in the
4% original block and the j™ watermarked block, respectively. Then the origi-
nal coefficient can be modified linearly to obtain a watermarked coefficient , i.e.,
28, = (y/1+ abj)ag,. We only cast the watermark bits into the middle fre-
quency bands of LH1, HL1 and HH2. After we have cast all watermark bits into
all the static frames of the scene, we then reconstruct the movie into raw data
domain by spatial and temporal inverse-wavelet transformation.

To detect the cast watermark pattern, we repeat some of the processes in the
watermark casting procedure i.e., scene change detection, temporal and spatial
wavelet decomposition, as shown in Figure 5.5(b). Watermark key detection
takes place in the following way. The content provider obtains a copy of the
watermarked content, and then iteratively attempts to extract the watermark key
using the location information provided by each distributor. After a candidate
watermark key is extracted, an attempt is made to verify the key by decrypting

the key with the distributor’s public key and comparing it with the random

number, which was sent to the distributor at the start of the initial exchange by
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the content provider. If the numbers match, the copyright of the content has
been successfully identified. Otherwise, provider continues with the key of the
next distributor. At the i** selected subband, the gap in energy between casting
or not casting a watermark bit is the range between 0 and E?;«v. The watermark

bits are detected according to Equation 5.1.

0

Q
E;;’ - E% > Y : embedded watermark bit = 1

g
w_ o _ 5 .
Ej - E}; < 3 : embedded watermark bit = 0 (5.1)
where the threshold Ei;fa is somewhere between the two ends, and ( is the

parameter, which we can adjust to an appropriate threshold for watermark de-
tection. In the experiment section, we will use 8 = 2. We perform the above
process repeatedly until all the watermark bits in every static frame have been
detected. Note that our proposed watermark algorithm does not need to use the
original movie to detect the watermark bit, but only depends upon passing the
original feature values to the detector, i.e., E; and a. This is very useful when a
third trusted party does not exist in the security-system point of view.

After a candidate watermark key is extracted, iterative attempts are made to
verify the distributor’s identification by decrypting the key with the distributors’

public key (provided at the watermarking time in schema of Figure 5.2) and then
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compared with the nonce in Figure 5.2 (given to the distributor at the start of
the initial exchange.) If the decrypted watermark key matches the nonce, the
content source has been successfully identified, if not, the producer goes on to

the next distributor.

5.4 Experimental Results and Discussion

We simulated the watermark on the video test sequence Suzie and Akiyo, which
each has 144 frames, and assumed the video was a scene of a movie. Each
frame has a size of 144x176. We then applied 4-level temporal and 2-level spatial
wavelet decompositions. We categorize our experiment results into a few classes
and present them in the following subsections based on the visual quality and the
robustness against various attacks.

If we put 8 watermark bits in each static frame, the watermark payload can be
up to 72 bits with all the 9 static frames included. This is sufficient for the digital
cinema applications. We used the average Peak Signal to Noise Ratio (PSNR) as
an objective performance measurement of the visual quality after the watermark
embedding. We changed the strength of the watermark based on the parameter
a and plotted the average PSNR for both the Suzie, as shown in Table 5.1. As
expected, the higher the strength of the watermark casting, the worse the video

quality, showing the tradeoff between robustness and visual quality. Thus we
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(c)

Figure 5.6: Comparison of visual quality between (a) original Suzie frame and
(b) watermarked Suzie frame when (c) represents the watermark embedded
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| o | 10 [ 15 | 20 | 25 |

Visual quality (dB) 50.36 49.05 47.90 46.90
MPEG compression (kbps) 450 395 335 295
Temporal cropping 37.50 % | 40.28 % | 46.71 % | 59.72 %
Temporal dropping 66.67 % | 75.00 % | 80.00 % | 80.00 %
Temporal Averaging YES YES YES YES
Spatial cropping 35.23 % | 55.68 % | 65.91 % | 68.18 %
Spatial dropping NO 25.00 % | 25.00 % | 25.00 %
Spatial Averaging NO YES YES YES

Table 5.1: Experimental results of QCIF-formatted Suzie sequence shows the
trade-off between visual quality and robustness at different watermark strengths,
a. Percentage of temporal cropping/dropping is computed as a ratio of the
cropped/dropped frames and the total number of the coded frames in the se-
quence. Percentage of spatial cropping/dropping is computed as a ratio of the
cropped/dropped pizels per frame and the total number of the coded pixels per
frame. These percentages indicate the maximum degree of corrupted data allowed
before the watermark detection fails to correctly extract the embedded informa-
tion. For a given watermark strength a, YES/NO indicates the success/failure
of watermark detection.

have to select an appropriate watermark strength, «, so as to compromise the
visual requirements excessively. To validate the perceptual quality, Figure 5.6
shows the visual differences between the original and watermarked images, and
no visual difference of the two images can be noticed.

The upper bound of the distortion can be approximated: if all the watermark
bits are 1’s, then the energy of each block has to be increased. This is the case
of maximum degree of modification. All the wavelet coefficients in the selected
subbands (i.e., LH1, HL1 and HH2) will be modified to increase in the order of
T — 25y, = (y/1+abj — Dagy < (V1 +a— 1)z7,. Thus, the average Mean

Square Error (MSE) can be approximated to be
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MSE =

where N, is the number of selected subbands, N,, is the number of watermark bits,
N;, is the total number of wavelet coefficients for one block of the i** selected sub-
band, N is the total number of wavelet coefficients in all selected subbands, and,
finally, E, is the average original energy of all selected subbands. From Equation
(5.2), it is obvious that if the average original energies of all the selected subbands
are given, we can determine approximation of the objective quality, MSE. This
approximate relationship between the MSE and the watermark strength, «, will
be highly useful as a tradeoff between the quality of the watermarked movie and
the robustness of the watermarks. In this way, different watermark strengths can
be determined based on the particular characteristics of the embedding scene.

To validate the robustness of the proposed watermarking method, we started
by applying an MPEG re-compression attack to the watermarked testing se-
quences to different bit rates. Table 5.1 shows that the embedded watermarks
can survive at 2/3 of the original video bit rates after re-compression to lower bit
rates.
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Frame dropping, or temporally frame subsampling, can occur when frame
rates are changed. As shown in Table 5.1, we can detect all watermark bits
correctly when the frames are dropped up to 80% (i.e. dropping 4 out of 5 frames).
Frame cropping is to cut video sequences shorter by deleting the frames in the
beginning/end. As shown in Table 5.1, our algorithm can survive at very high
cropping rate. Besides, to detect a watermark after frame sampling/dropping
attacks, we substituted the missed frames with the average of the frames available.
All watermark bit can be detected correctly when subsampling/dropping rate is
up to 80%, which means that our proposed algorithm can also tolerate the frame
averaging attack.

Spatial cropping is clipping image row(s) or column(s). For instance, a wide-
screen movie may need spatial cropping to fit on normal TV screens. As shown
in Table 5.1, our algorithm performs very well even when only a small percentage
of the original image is retained. Spatial dropping or subsampling is the selective
removal of rows and/or columns of an image. Our watermark survives when only
1/4 of the original image is retained. High resolution movies are more vulnerable
to spatial dropping or subsampling attacks. It is worth nothing that the detection

against cropping/sub-sampling requires range searching and shifting.
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5.5 Conclusions

Initial experiments show that our proposed technique has good potential for
copyright tracking in digital cinema applications. By implementing the wavelet-
transformation in hardware, the computation complexity of the 3D wavelet trans-
formation is expected to be decreased. In the future, we plan to extend our
proposed semi-oblivious watermarking technique to oblivious detection, and test

these algorithms with more attacks, especially geometrical attacks.
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Chapter 6

Future Work

In this chapter we propose preliminary ideas for possible extensions of our ap-

proaches.

6.1 ROI coding for JPEG 2000

Besides JPEG2000 [6] has become one of the most recent powerful tool in RD-
optimized image compression, it also provides several useful functionality in many
diverse application areas. Region of interest (ROI) coding is one of the popular
feature sets where the variation of fidelity can be progressively varied in spatial
domain. In chapter 3, we have already addressed the analytical bit allocation
algorithm for ROI coding for SPTHT codec. However SPIHT is not the image
compression standard that is currently most widely used. Adjustments of the

proposed model-based bit allocation algorithm are needed to be able to deliver
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good performance for the JPEG2000 system, which is emerging as the most
effective international image coding standard.

Since the scaling-based method is performed immediately before quantization
and entropy coding, it can be easily applied to JPEG2000 system. That is,
after wavelet-transform coding at JPEG2000 encoder, we can divide the wavelet
coefficients associated with non-ROI by the psf value and then multiply the
same value back at the decoder immediately before the inverse wavelet-transform
is performed.

In the proposed RD model from Chapter 3, recall that the total bitrate is
converted to the total number of significant coefficients by,

_ NR,

My = 6.1
"= 56 (6.1)

where 6.6 is the number of bits per significant coefficient obtained by performing
experiments for the SPTHT codec over a hundred of test images at different
bitrates [42, 41]. The RD model thus has to be slightly modified to find what a
correct parameter would be for JPEG 2000 by collecting the data from the testing
images. Once the number is found, the proposed model can be directly used
and our analytical bit allocation algorithm can efficiently work under JPEG2000

system.
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0000009000

56 7 8 9 101112

Figure 6.1: An example of polyphase transform for video MDC when an original
video sequence, which is assumed to have a total of 12 frames, is segmented
into 4 subsequences. Each subsequence is composed of 3 frames and represent a
polyphase component.

6.2 Polyphase-based MDC for Video Coding

In Chapter 4 we have proposed a simple MDC approach for image source. How-
ever it is possible to extend the proposed idea to the video source. More specifi-
cally, the polyphase transform can be used to split the sequence of video frames
into a number of separate subsequences as shown in Figure 6.1. Each subsequence
is considered as a polyphase component and will be packetized into a description.
Each description will be coded using any existing video encoder, e.g., H.26x or

MPEG-x. The decoder operates by gathering the available information for each
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Figure 6.2: Block diagram when psf represents the quantization parameter for
each frame

subsequence. The it selects for each subsequence its highest quality copy to be
used in the decoding process.

The bitrate for each frame can be adjusted by choosing the appropriate
quantization parameter, leading to the video MDC system as shown in Fig-
ure 6.2. Our goal is to determine the best set of quantization parameters (i.e.,
{psfo,--.,psfs_1}) given the probability of packet loss. To determine the optimal
bit allocation (i.e., the best set of quantization parameters), several approaches
can be used to reduce the complexity as compared to the traditional exhaus-
tive search technique. The message-passing-based bit allocation algorithm for
temporally dependent coding introduced in Chapter 2 can be used to reduce
the complexity and memory requirements. The approach proposed by Ortega et
al. [56] can also be incorporated to provide the optimal solution.

The advantage of the proposed video MDC scheme over most of the existing

video MDC approaches [35, 38| is the absence of drift effect. More specifically,
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we use separate motion estimation/compensation processes for each description
to avoid the mismatch in prediction loop. Unlike the work proposed by Apos-
tolopoulos [2, 1], which also eliminate the drift effect, our proposed approach can
be viewed as a more general case since we can choose to transmit more than one
polyphase component in one description. If the channel conditions are bad, our
system can select to send more than one polyphase component by optimally dis-
tributing the bitrate budget for each description among all polyphase component.
However if we operate in an error-free environment, we can switch off the MDC
system to provide no redundancy, i.e., transmit only one polyphase component
for one description. Clearly Apostolopoulos’s approach [2, 1] is a special case of
our approach when operating in the error-free channel, i.e., only one polyphase
component in a description. In other words, our approach provides additional

flexibility in terms of choosing the amount of redundancy.

6.3 Oblivious Watermarking

With the proposed watermarking algorithm, we require to have the original en-
ergy for the watermark detection. In particular, each original energy has to match
the associated scene such that the detection can be correctly performed. That
means if the attacker switches the order of the scene, the watermark detection

will fail.

141



Therefore it would be more secure to modify the proposed watermarking al-
gorithm such that none of the information from the original video sequence is
required in the detection process. With the well-established watermarking al-
gorithm we proposed in Chapter 5 the location to cast the watermark remains
unchanged, middle frequency subbands of the static frames. However, an alter-
native watermark insertion algorithm is needed. Energy seems to be the simplest
choice to modify but other features are possible too. In other words, beside the
energy modification, other features of wavelet coefficient can be considered as the
good candidates for watermarking. The challenging question would be how to
choose a feature that (i) can provide the robustness against the attacks (confiden-
tial security) and (ii) can lead to the least noticeable artifacts in the host data
(perceptuality). Also that feature would not be needed to be available in the
detection process (oblivious detection). Furthermore, a simple 3D visual model
can be used to determine the appropriate watermark strength to improve the

tradeoff between fidelity and robustness.
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