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Abstract

Multiview video systems utilize multiple cameras to simultaneously capture the scene

from different viewpoints. They provide video data for new applications such as 3D

television and free-viewpoint video. The amount of data in multiview video is very

large as compared to monoscopic video. Multiview video coding (MVC) is an emerging

research field that focuses on compression of multiview video data. In this dissertation, by

exploiting special characteristics of multiview video, we develop techniques that improve

MVC efficiency while also taking complexity into account.

First, we analyze focus mismatch exhibited in video content, which is caused by cam-

era focus setting differences. We use geometrical optics to demonstrate how focus settings

will affect the captured images. We show that the focus mismatch can be represented

in terms of the focus setting parameters (camera-dependency) and the depths of ob-

jects (depth-dependency). For 1D parallel camera arrangements in multiview systems,

we relate the focus mismatch to the disparity exhibited in frames from different views.

The analytical results provide properties that can be exploited to design focus mismatch

compensation techniques.

Based on this analysis, we propose a novel adaptive reference filtering (ARF) ap-

proach. For MVC inter-view prediction, we exploit the depth-dependency property by

x



utilizing disparity information to partition frames into depth levels, which are prone to

suffer from different types of focus mismatch. For each level, a 2D filter is designed by

minimizing the prediction error. Filtered references are then generated for predictive cod-

ing. We also extend ARF to monoscopic video where no disparity information is available.

Simulation results demonstrate higher coding efficiency as compared to multiple-reference

prediction and adaptive interpolation filtering methods.

The third part of this thesis presents complexity reduction techniques for MVC. By

analyzing ARF results, we propose i) View-wise ARF adaptation based on RD-cost pre-

diction, and ii) Filter updating based on depth-composition change, to achieve compu-

tationally efficient ARF schemes. By exploiting the relationship between motion and

disparity, we propose predictive fast search algorithms that can be used when one of the

fields is available and we wish to estimate the other field efficiently. Simulation results

show that significant complexity reduction can be achieved without significant impact on

coding efficiency.
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Chapter 1

Introduction

1.1 Multiview Video

In multiview video systems, scenes are captured simultaneously by multiple cameras.

These cameras are set to shoot the scenes from different viewpoints. Depending on

the application scenario, multiview systems can be built with cameras arranged on a

horizontal line with parallel orientation, or on an arc with viewing angles converging

to the center of the scene, or even with cameras mounted as a two-dimensional camera

array. These systems provide digital video data that is essential for two main application

categories: 3D television (3DTV) and free-viewpoint video (FVV) [40].

3DTV aims to provide 3D perception experiences using advanced display technologies

which take multiview video as input. A general approach to achieve this goal is to

simultaneously render multiple video from different viewing angles, such that when the

user is viewing the display device from different physical locations, different stereoscopic

views are perceived. Examples of such display systems include the one proposed by

Mitsubishi Electric Research Laboratories (MERL) which uses multiple projectors [33],

1



and a special TV system designed by Philips Electronics [9] which processes multiview

video plus depth data to render video for different viewing angles. The main applications

for 3DTV are live-event broadcasting, advanced theater, and immersive virtual reality.

As for FVV applications, at the receiver side, users can navigate across different view-

points by changing the viewing angle to be displayed on a conventional screen. Assume

N views are captured by the multiview system. If the requested viewing angle coincides

with one of the captured views, the corresponding video can be displayed directly. On

the other hand, if the requested viewing angle differs from any of the captured views, a

view synthesis process has to be applied, which takes n ≤ N adjacent views to render

and display that particular viewpoint. Applications of such FVV systems include edu-

cation, such as archives and medical surgery; entertainment, such as sport broadcasting

and gaming systems; and security, such as surveillance and monitoring tasks.

To provide the content for these applications, multiview video has to be captured,

stored, and transmitted. It contains very large amounts of data as compared to conven-

tional monoscopic video. If each view is considered independently, the amount of added

data will increase with the number of views in multiview systems. Multiview video coding

(MVC), which focuses on compression for efficient storage and transmission of multiview

video data, has been recognized as a key technology to support any applications that

require multiview video. In the next subsection, we will briefly review the recent devel-

opment of MVC, and introduce terminologies that describe the coding schemes that will

be used throughout this dissertation.

2



1.2 Multiview Video Coding (MVC)

Simulcast is a straightforward approach for multiview video coding, in which each view

sequence is encoded independently (see Fig. 1.1). This allows temporal redundancy to be

exploited using conventional block-based motion compensated prediction (MCP) tech-

niques. In a multiview video scenario, because different views are capturing the same

scene, there exists an additional source of redundancy, namely, inter-view redundancy.

Similar to motion compensated prediction, we can use a block matching procedure to

find block correspondences between neighboring views and encode the displacement vec-

tor and prediction difference (residue), through disparity compensated prediction (DCP).

This inter-view redundancy is not exploited in the straightforward simulcast scheme.

A MVC structure that exploits both temporal and inter-view redundancy can be con-

structed as follows: A given frame in view v at time t, can use reconstructed frames within

view v as temporal reference(s) for MCP, while using reconstructed frames from other

views as inter-view reference(s) for DCP. We will denote such coding method as joint

MCP/DCP. In the MPEG-2 standard, a multiview profile (MVP) [8] was defined which

utilizes a two-layer coding scheme (base layer and enhancement layer). View sequences

in the enhancement layer can use either MCP, DCP, or joint MCP/DCP. It has been

demonstrated that allowing joint MCP/DCP in MPEG-2 MVP achieves higher coding

efficiency as compared to simulcast [8]. This coding scheme can be extended to MPEG-

4, with its temporal scalability tool [56]. The coding efficiency is further improved by

introducing weighted average combined with block partition for joint MCP/DCP [11].
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Figure 1.1: Simulcast for multiview video coding

With coding tools such as variable block size MCP, quarter pixel motion estimation,

and new content adaptive entropy coding, the H.264/AVC standard [54] established by the

joint video team (JVT), achieves superior coding efficiency as compared to the preceding

video coding standards. For multiview video coding, Li and He [30] proposed to use

the multiple reference prediction tool in H.264/AVC to facilitate temporal and inter-

view references, thus supporting joint MCP/DCP. This became a very popular technique

which has been used in recent literature to construct various MVC structures based on

H.264/AVC [3, 12, 24, 32, 34], including our work in [24], confirming that utilizing joint

MCP/DCP leads to higher coding efficiency than simulcast. Furthermore, the study

in [13] and [37] show that, for most cases, the joint MCP/DCP method which utilizes

inter-view references from the immediately neighboring views at same timestamp, can

achieve comparable coding efficiency to other schemes that use additional farther away

inter-view references. In 2005, recognizing the importance of MVC for future applications,

the MPEG committee issued a Call for Proposals on Multi-view Video Coding [18], aiming

to establish a standard for MVC. Conforming to recent research trends, all the received

MVC proposals were based on the H.264/AVC framework [19]. While differing in the
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Figure 1.2: An example of MVC structure which utilizes joint MCP/DCP. The arrows
indicate prediction direction.

prediction structures, they all feature joint MCP/DCP in order to exploit temporal and

inter-view redundancy.

Fig. 1.2 illustrates an MVC coding structure with 32 frames forming one group of

pictures (GOP). This GOP contains 4 views in spatial direction and 8 frames in tempo-

ral direction. To facilitate random access, within one GOP the first frame of each view

is encoded with only inter-view DCP, i.e., no temporal references are needed. We de-

note these frames anchor frames. Similar to I frames in monoscopic video, these anchor

frames serve as temporal access points for multiview video. The remaining frames in

a GOP, which we will denote as non-anchor frames, can use both temporal and inter-

view references to exploit the redundancy in two directions. For example in Fig. 1.2, a

block in frame (V 2,t1) can switch between the two corresponding MCP/DCP blocks from

frame (V 2,t0) and frame (V 1,t1) respectively. Note that for simplicity, this diagram only

5



includes frames coded as I-pictures and P-pictures. However the joint MCP/DCP con-

cept can be easily extended to B-pictures with both temporal and inter-view references

available for prediction.

As compared to MCP, the main difficulty in DCP is that, due to differences in camera

settings and shooting positions/orientations, frames from different views are more likely

to exhibit non-translational discrepancy, such as illumination / color mismatch and focus

mismatch. To compensate for these mismatches, advanced coding tools such as illumi-

nation compensation [31] and our adaptive reference filtering method [23, 25–28] (which

will be explained in detail in Chapters 3 and 4) have been developed. Significant coding

gain can be achieved when applying them to inter-view prediction in MVC.

1.3 Contributions of This Research

In this research, we investigate the special characteristics exhibited in multiview video

data, and develop coding techniques that improve MVC coding efficiency while taking

into account the complexity. In particular, coding techniques are designed by exploiting

multiview video properties. The main contributions of this thesis can be summarized as

the following:

• We consider the problem of focus mismatch. To understand its characteristics in

video coding, we analyze focus mismatch based on geometrical optics. We show that

focus differences between images can be represented in terms of the focus setting

differences and the depths of objects. The focus mismatch kernels are circular

symmetric with their shapes varying across different depths. For multiview systems

6



with a 1D parallel camera arrangement, we further demonstrate that the disparity

exhibited in the images can be utilized to reliably identify different types of depth-

dependent focus mismatches. Our analytical results provide insight that can be

exploited to design coding techniques to compensate for focus mismatch in video

content.

• We propose adaptive reference filtering (ARF) approaches to compensate for the

depth-dependent focus mismatch. Based on our analysis, we model predictive cod-

ing with focus mismatch using point spread functions. Depending on the coding

scenario (inter-view or temporal), we estimate different block-wise parameters as

features for classification such that an image can be partitioned into regions suffering

from different types of focus mismatch. Since focus mismatch is depth-dependent,

for MVC inter-view coding, we exploit the block-wise disparity field to partition

frames into regions corresponding to different depth levels. As for monoscopic

video that undergoes camera focus changes across time, we propose to actually es-

timate the localized focus changes and partition frames into regions consisting of

macroblocks that suffer from a similar type of focus change. In both methods, a

2D Wiener filter is designed for each region (class) to minimize the prediction error.

Filtered references are generated for the encoder to perform rate-distortion (RD)

optimized coding selection. For video sources containing strong localized focus mis-

matches, the proposed methods provide higher coding efficiency as compared to

other techniques such as multiple-reference prediction and adaptive interpolation

filtering.

7



• The ARF method is extended to inter-view bi-prediction (B-frames) in MVC, in

which the two predictors from different views may exhibit different types of fo-

cus mismatch. We investigate the interaction between filter estimation and bi-

directional search. We show that designing filters only for the averaged bi-predictor

could lead to a suboptimal solution when combined with conventional bi-directional

search schemes. Instead, we propose a filter design approach that estimates two sets

of depth-related filters, each set compensating for the focus mismatch occurring in

one of the two references used for bi-directional prediction.

• We analyze the encoding results when using ARF for inter-view prediction. The

coding gains demonstrate a strong view dependency, while the estimated filters

at different timestamps exhibit strong correlation when the objects’ depths remain

similar in the corresponding captured scene. These results conform with the analysis

based on geometrical optics. We propose i) a rate-distortion prediction method to

achieve view-wise ARF adaptation, such that ARF will be applied only to views in

which substantial gain can be achieved, and ii) a filter updating mechanism based on

depth-composition change, which allows the same set of filters to be used by several

consecutive frames until there is significant change in the depth-composition within

the scene. These two techniques lead to significantly reduced complexity while

preserving coding efficiency.

• We propose fast predictive search algorithms for joint MCP/DCP, which exploit the

relationship between motion and disparity fields. After one of the motion/disparity

8



fields is estimated, our method obtains good candidate vectors to perform the es-

timation on the other field with very low complexity. We construct a model and

analytically demonstrate how mismatches, such as illumination change, will affect

the accuracy of the first estimated displacement field (motion or disparity), which

consequently will affect the reliability of the candidate vectors obtained with our fast

predictive search methods. Analysis and simulations results both indicate that it is

more efficient to perform motion estimation first and then apply our fast predictive

search to disparity estimation, instead of the other way around.

The rest of this dissertation is organized as follows. First in Chapter 2, we analysis

focus mismatch based on geometric optics and derive properties of focus mismatch ker-

nels. Chapter 3 describes in detail the proposed adaptive reference filtering approach to

compensate for focus mismatch in video content. Then, in Chapter 4, we study the per-

formance of ARF and introduce methods to reduce ARF complexity while maintaining

coding efficiency. In Chapter 5, for joint MCP/DCP, we propose predictive fast search

algorithms with new candidate vectors. Finally, conclusions and possible future work are

presented in Chapter 6.
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Chapter 2

Focus Mismatch in Video Content

2.1 Introduction

Multiview video systems utilize multiple cameras to simultaneously capture scenes from

different viewpoints. As compared to conventional monoscopic video, frames from differ-

ent views are prone to suffer from mismatches other than simple displacement, due to

differences in camera settings and/or shooting positions/orientations. These mismatches

across different views could be obstacles to achieving high coding efficiency, as conven-

tional block matching in video coding may not be effective to compensate for them.

In this dissertation, we consider one particular type of non-translational mismatch

exhibited in video content: focus mismatch, which results in blurriness / sharpness dis-

crepancy among frames from different views. With multiple cameras in MVC systems,

focus mismatch is most likely to be caused by heterogeneous cameras settings. For exam-

ple, camera parameters may be inconsistent, so that the focus settings may be different

from view to view. This can cause localized focus mismatch, as objects may not always

be in sharp focus across different views. Another source of focus mismatch in multiview

10
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Figure 2.1: Camera arrangement that causes localized focus mismatch

systems could be the camera arrangement. Consider the example in Fig. 2.1, where object

A appears at a greater depth (z1) in View 1 than in View 3 (z3). Assume all cameras

are set with the same perfect-in-focus depth at z1, then object A may appear in focus in

View 1 while it will likely be out of focus (blurred) in View 3. On the other hand, object

B will appear sharper in View 3 as compared to View 1. The efficiency of inter-view

disparity compensation could deteriorate in the presence of these mismatches.

Among the multiview video test sequences provided in the initial MVC Call for Pro-

posals document [18], the sequence Race1 exhibits the most clearly perceivable focus

discrepancy among frames from different views. It consists of 8 parallel views captured

by cameras with a 20cm spacing between each, which we will denote as View 0 ∼ View

7. The frames in View 3 are blurred as compared to the frames in View 2; similarly, the

frames in View 5 are blurred as compared to the frames in View 6. Fig. 2.2 shows portions

of the frames from different views in Race1. It can be seen that, besides displacement of

the scene, frames from different views also exhibit blurriness mismatch.

In addition to inter-view prediction in MVC, focus mismatch may also occur in mono-

scopic video. One often observed example of focus change across time happens in dialog
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View 2 View 3 (Blurred w.r.t. View 2)

View 5 (Blurred w.r.t. View 6) View 6

Figure 2.2: Portions of frame 15 from different views of Race1

scenes, in which the camera shifts its focus from one character to another one at a dif-

ferent scene depth. The first character becomes blurred (out of focus) while the second

gets sharpened (in focus). In other occasions, focus changes are created for transition

during scene changes. Fig. 2.3 demonstrates an example of focus change in monoscopic

video. From the left image to the right one, we can see that the focused-depth is shifting

from the back to the front. In particular, the second and third person (counting from the

front) are becoming more “in-focus” while people in the back are getting blurred.

A focus mismatch compensation technique for video coding can be established by

first estimating different focus mismatch kernels and then creating filtered versions of the

reference frame in order to provide a better match to the current frame. Higher coding

efficiency can be achieved by using these filtered references for prediction and transmitting

12



Figure 2.3: Example of focus change in monoscopic video. (Images from Stanford Com-
puter Graphics Lab., Light Field Photography with a Hand-Held Plenoptic Camera, c©
Ren Ng)

the filter coefficients as side information, so that filtered reference frames can be generated

at the decoder. However, without prior knowledge about focus mismatches, estimating

the mismatch kernels can be very complicated as we will have to consider a very large

solution space (in terms of the shape and support of the kernels). Thus in order to

reliably and efficiently estimate focus mismatch kernels, it is necessary to understand

how focus setting differences affect the focus mismatches. Furthermore, as described in

the aforementioned example, objects at different depths could undergo different types

of focus mismatches. Thus, we also need to investigate how focus mismatch changes at

different depths.

In the literature, in order to model how images are captured by a camera, a simplified

model is typically used to approximate a camera as an imaging system with a single lens.

Geometrical optics is widely utilized to derive some well-known properties of the projected

images under a fixed focus setting with the simplified single lens model [29, 36]. In this

chapter, we will further extend these previous results to analyze how focus setting differ-

ences will affect the captured images. We will show that the mismatch exhibited in the

images can be represented in terms of the focus setting parameters (camera-dependency)
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and the depths of objects (depth-dependency). Then we consider multiple cameras which

capture the scene from different viewpoints. For a 1D parallel camera arrangement in

a multiview system, we relate the focus mismatch to the disparity exhibited in frames

from different views. The analytical results provide a better understanding of the focus

mismatch problem and can be exploited to design coding tools aiming to compensate for

such mismatch.

The remainder of this chapter is organized as follows: In Section 2.2 we first review

the characteristics of images captured with a lens. Then in Section 2.3, we will derive

special properties of images under the influence focus setting differences. We will discuss

a multiview system with 1D parallel camera arrangement, and also provide a numerical

example to illustrate the analytical results. Finally, useful characteristics that can be

exploited to design focus compensation tools are summarized in Section 2.4.

2.2 Review: Characteristics of Images Captured with Lens

A camera is typically modeled as an imaging system consisting of a film, a lens with focal

length f , and an aperture with diameter a. For digital cameras, the film is made up with

an array of image sensors. The plane which contains the film is called the image plane,

which is parallel to the lens with distance d to it. In Fig. 2.4, we construct a coordinate

system with its origin located at the center of the lens and its xy-plane parallel to the

image plane. The z-axis, which passes through the lens center, is also called the optical

axis. Note that the coordinate system in Fig. 2.4 uses left-handed orientation such that

points in front of the camera will have positive depth values Z. The two points on the
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optical axis with |z| = f are called the focal points, which have special properties that

will be discussed shortly.
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Figure 2.4: The model of a camera equipped with a lens

We analyze the effects of light via geometrical optics, which treats light as rays [29].

In Fig. 2.4, let us consider a point P at location (X,Y,Z) which is visible to the camera.

Light rays passing through the lens center will not be refracted. Therefore, the light ray

that originates from P , passes through O, will be projected on the image plane at point

P ′ with coordinates (X ′, Y ′,X ′) such that (based on the congruence of triangles):

(X ′, Y ′, Z ′) = (− d

Z
X,− d

Z
Y,−d) (2.1)

The minus signs in (2.1) represents the fact that the projected images on the image

plane will be reversed and upside down (rotated 180 degrees), as compared to the original

appearance in the scene. Similarly, the projections of other visible points produced by

light rays passing through O, can also be determined by (2.1). For a given object, its

projection on the image plane will become smaller as it moves away from the camera

(increasing Z). The principle in (2.1), which describes the light rays passing through

lens center, is called the perspective projection. It is widely used in geometric camera
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models when the focusing effect of the lens is ignored [15]. However, in this work, it is

our goal to analyze the effect of focus introduced by the lens. To take it into account,

light passing through other parts of the lens has to be considered as well. According to

geometrical optics, light rays parallel to the optical axis on one side of the lens will be

refracted to pass through the focal point on the other side of the lens (see examples in

Fig. 2.5). Furthermore, light rays originating from a point P with depth Z will converge

to a point P̂ on the other side of the lens with distance Ẑ that satisfies:

1

Z
+

1

Ẑ
=

1

f
(2.2)

Fig. 2.5(a) depicts three points P,P1, P2 at different depths, the projections P ′, P ′
1, P

′
2

of light rays from these points passing through the lens center, and their converged image

points P̂ , P̂1, P̂2. The dashed light paths are determined after finding the converging

points based on the light paths depicted with solid lines. As a result, on the image plane

with distance d to the lens, a visible point will produce a point projection (perfectly

focused) only if it is at a particular depth Z∗ that satisfies:

1

Z∗
+

1

d
=

1

f
⇒ Z∗ =

d · f
d− f

(2.3)

When capturing the scene, under a fixed zoom parameter set by f , we can focus on a

specific distance Z∗ by fine tuning d (d ≥ f). Operating in a very narrow range, a slight

change in d can cause relatively large variation in Z∗ (Refer to Fig. 2.5(b)). This can be

achieved by using auto-focus (AF) or by manually adjusting the focus ring. For points

at distances other than Z∗, their projections on the image plane will be uniform circles
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with diameter β, as depicted in Fig. 2.5(a). Using again the congruence of triangles, β

can be calculated as:

Depth smaller than Z∗ (Fig. 2.5(a) P1):

β

a
=

Ẑ1 − d

Ẑ1

β

a
=

(

Z1f
Z1−f

− Z∗f
Z∗−f

)

(

Z1f
Z1−f

)

β =
af (Z∗ − Z1)

Z1 (Z∗ − f)
(2.4)

Depth greater than Z∗ (Fig. 2.5(a) P2):

β

a
=

d− Ẑ2

Ẑ2

β

a
=

(

Z∗f
Z∗−f − Z2f

Z2−f

)

(

Z2f
Z2−f

)

β =
af (Z2 − Z∗)

Z2 (Z∗ − f)
(2.5)

Combining (2.4) and (2.5), we can get: β =
af |Z − Z∗|
Z (Z∗ − f)

(2.6)

It can be seen from (2.3) and (2.6) that the value of β is determined by parameters

a, d, f , and the object depth Z. To demonstrate how β varies with different scene depth

Z, under the given focus setting, we define:

k =
Z

Z∗
→ Z = k · Z∗ , i.e. k is the depth normalized by Z∗ (2.7)
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Figure 2.5: (a) Projected images via a lens for points at different depths, (b) Variations
of Z∗, (c) Variations of β

Then from (2.6), β can be represented as:

β =
af |Z − Z∗|
Z (Z∗ − f)

=
af |k − 1|Z∗

kZ∗ (Z∗ − f)
=

af |k − 1|
k (Z∗ − f)

≈ af

Z∗
· |k − 1|

k
(2.8)

The approximation in (2.8) is based on the fact that, typically, f ≪ Z∗ (e.g., f can

be less than 100mm while Z∗ is of the order of several meters). Fig. 2.5(c) illustrates

the variation of β as a function of the normalized depth. As the depth Z deviates from

Z∗ (thus k 6= 1), the diameter β increases, leading to stronger out-of-focus blurriness:

Instead of forming a point image, on the image plane, the image intensity is spread over
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a circle with diameter β (area π(β/2)2). Therefore, for a point with a depth Z, the point

spread function, PSF, is a circular disk:

PSFZ(x, y) =



















4/(πβ2), if x2 + y2 ≤ (β/2)2

0, otherwise

, where β =
af |Z − Z∗|
Z (Z∗ − f)

(2.9)

From Fig. 2.5(a), the center of the point spread function, produced by a visible point

P at (X,Y,Z), will be located at coordinate (X ′, Y ′) on the image plane, as specified

by (2.1). The intensity of the projection resulting from P , denoted as IP , can then be

described as:

IP (x, y) = KP · PSFZ(x−X ′, y − Y ′), (2.10)

where KP represents the light intensity produced by P at converging point P̂ , i.e.,

the intensity if perfectly focused. On the image plane, this value is spread over a disk

as described by (2.10). The total light intensity at (x, y) on the image plane, denoted as

J(x, y), is the superposition of all the projection circles centered at different locations that

contribute non-zero values at position (x, y). In general, projections centered at nearby

locations can have different diameters, as β depends on the depth of the visible point that

produces the projection. However for typical scenes being captured, points within a small

visible region will often have very similar depth Z, so that their corresponding projections

can be well approximated by the same point spread function (corresponding to a fixed Z).

Also, the converged light intensity KP produced by points with similar depth Z, can be
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approximated as a function of only X and Y , which can then be represented as a function

of the projected locations (X ′, Y ′): KP = K(X,Y,Z) ≈ KZ(X,Y ) = KZ(X ′, Y ′). The

subscript indicates that this representation is valid for points that are at a given Z. The

projected image of this region with approximately fixed Z can then be derived as:

JZ(x, y) =

∫ ∫

KZ(X ′, Y ′) · PSFZ(x−X ′, y − Y ′)dX ′dY ′

= KZ(u, v) ∗ PSFZ(u, v), where (u, v) are dummy variables (2.11)

Since KZ(X ′, Y ′) represents the light intensity that would be observed under perfect

focus, (2.11) indicates that for a region with depth Z, the effect of focus setting can be

modeled as the perfectly focused image convolved with the point spread function PSFZ .

2.3 Focus Mismatch Due to Focus Setting Differences

In Section 2.2, we reviewed imaging characteristics of a single camera equipped with a

lens. We now discuss how to model the effect of capturing the same scene under different

focus settings. Let us consider two cameras V1 and V2 in a multiview system. Assume

they have the same focal length setting f (same zoom) and same aperture setting a 1.

However, their perfect in-focus depths Z∗ are not equal, Z∗
V 1 6= Z∗

V 2. For example, if Z∗

is determined by auto-focus, it will depend on the scene contents, which are not exactly

the same for different cameras. From (2.6), this will result in differences in how β varies

as a function of Z. Follow the derivation in (2.7), we define:

1For most cameras currently available in the market, both f and a can be set to a specific value from
a finite/discrete values to choose from (e.g., f = 35mm, 70mm... and a = f/2.7, f/5.6... )
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k =
Z

Z∗
V 2

(Z = k · Z∗
V 2) (2.12)

c =
Z∗
V 1

Z∗
V 2

(Z∗
V 1 = cZ∗

V 2), (2.13)

where k is the normalized depth using Z∗
V 2 as a reference, and c measures the

degree of focus setting mismatch. For the two cameras, their respective βV 1 and

βV 2 can be written as:

βV 2 =
af |Z − Z∗

V 2|
Z (Z∗

V 2 − f)
=

af |k − 1|Z∗

V 2

kZ∗

V 2 (Z∗

V 2 − f)
≈ af

Z∗

V 2

· |k − 1|
k

=
af

Z∗

V 2

|1 − 1

k
| (2.14)

βV 1 =
af |Z − Z∗

V 1|
Z (Z∗

V 1 − f)
=

af |k − c|Z∗

V 2

kZ∗

V 2 (cZ∗

V 2 − f)
≈ af

Z∗

V 2

· |k − c|
ck

=
af

Z∗

V 2

|1
c
− 1

k
| (2.15)

where the approximations in (2.14) and (2.15) are based on the assumptions as for

(2.8). Note that here we also represent β in terms of the reciprocal of the normalized

depth, i.e., 1
k . Fig. 2.6 below demonstrates how the two β’s change as functions of depth

k and its reciprocal 1
k , in the case where c = 0.7 (Z∗

V 1 = 0.7Z∗
V 2).

From Fig. 2.6, we can see that the two β curves change rapidly when k is small while

they vary more slowly as k increases. On the other hand, from (2.14) and (2.15), the

value of β is approximately a linear function of 1
k . The intersection of the two β curves,

which occurs at 1
k = 1

2(1 + 1
c ) (see Fig. 2.6), divides the depth range into two regions:

βV 1 > βV 2 and βV 1 < βV 2. An object at given depth Z (i.e., at a given k or 1
k ) will

appear differently in V1 and V2, under the influence of different β. From (2.9) and (2.11),
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Figure 2.6: β as functions of k and 1/k (Z∗
V 1 = 0.7Z∗

V 2, c = 0.7)

a larger β indicates that the light is spread over a larger area, resulting in stronger out-

of-focus blurriness. If we want to match an image from V1 to the corresponding image

from V2 at the same timestamp, objects with depths in the first region require sharpening

filters as they are more blurred in V1 than in V2, while objects at depths in the second

region need lowpass filtering. To better illustrate how such difference in β will affect the

images, we plot the optical transfer function, OTF, which is the the frequency transform

of PSFZ . That is, Fr{PSFZ(x, y)} = OTF (vx, vy), where Fr{·} denotes the transform

from spatial to frequency domain. The following transform pair can be derived [5] by

applying the Hankel transform to obtain a frequency domain representation in the polar

coordinate system:
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V 2, i.e. c = 0.7)

PSFZ(r) =



















4/(πβ2), if r2 ≤ (β/2)2

0, otherwise

→ OTFZ(q) =
2J1(πβq)

πβq
(2.16)

In (2.16), r =
√

(x2 + y2), q =
√

(v2
x + v2

y), with vx and vy representing the horizontal

and vertical frequencies, and J1 is the Bessel function of the first kind of order 1.

By plugging (2.14) and (2.15) into (2.16), and defining ∆ = πaf
Z∗

V 2
, we get:

OTF V 2
Z (q) =

2J1(|1 − 1
k |∆q)

|1 − 1
k |∆q

(2.17)

OTF V 1
Z (q) =

2J1(|1c − 1
k |∆q)

|1c − 1
k |∆q

(2.18)

Fig. 2.7 illustrates examples of the magnitude of OTF with 1
k values from the two

regions in Fig. 2.6. It can be seem clearly that in the first region a sharpening filter is

required to match OTF V 1 to OTF V 2, while in the second region we need a blurring filter.
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For simplicity, let us denote k′ = 1
k . For a given k′ (a given depth Z), to match

the OTF from V1 to V2, the frequency response HZ of the filter required can be

represented as:

HZ(q) =
OTF V 2

Z (q)

OTF V 1
Z (q)

=
βV 1

βV 2

J1(πβV 2q)

J1(πβV 1q)
=

|1c − k′|
|1 − k′|

J1(|1 − k′|∆q)
J1(|1c − k′|∆q)

(2.19)

From Fig. 2.6, it can be observed that the relationship between the two β curves is

symmetric with respect to k′ = 1
2(1 + 1

c ), if we exchange the roles of βV 1 and βV 2 when

crossing 1
2(1 + 1

c ). This leads to the following interesting property: the filter responses

are reciprocals on the two sides of 1
2(1 + 1

c ). In the following, we will derive such result.

Let us define two points k′+ and k′− with the same distance κ to 1
2(1 + 1

c ), but are on the

opposite sides, i.e. k′+ = 1
2(1 + 1

c ) + κ and k′− = 1
2(1 + 1

c ) − κ (κ > 0):

For k′+:

∣

∣

∣

∣

1

c
− k′+

∣

∣

∣

∣

=

∣

∣

∣

∣

1

c
− 1

2
(1 +

1

c
) − κ

∣

∣

∣

∣

=

∣

∣

∣

∣

1

2c
− 1

2
− κ

∣

∣

∣

∣

∣

∣1 − k′+
∣

∣ =

∣

∣

∣

∣

1 − 1

2
(1 +

1

c
) − κ

∣

∣

∣

∣

=

∣

∣

∣

∣

−(
1

2c
− 1

2
) − κ

∣

∣

∣

∣

Hk′+
(q) =

∣

∣

1
2c − 1

2 − κ
∣

∣

∣

∣−( 1
2c − 1

2 ) − κ
∣

∣

J1

(∣

∣−( 1
2c − 1

2 ) − κ
∣

∣∆q
)

J1

(∣

∣

1
2c − 1

2 − κ
∣

∣∆q
)

=
|α− κ|
|−α− κ|

J1 (|−α− κ|∆q)
J1 (|α− κ|∆q) where α = 1

2c − 1
2 (2.20)

For k′−:

∣

∣

∣

∣

1

c
− k′−

∣

∣

∣

∣

=

∣

∣

∣

∣

1

2c
− 1

2
+ κ

∣

∣

∣

∣

= |α+ κ|

∣

∣1 − k′−
∣

∣ =

∣

∣

∣

∣

−(
1

2c
− 1

2
) + κ

∣

∣

∣

∣

= |−α+ κ|

Hk′−
(q) =

|α+ κ|
|−α+ κ|

J1 (|−α+ κ|∆q)
J1 (|α+ κ|∆q)

=
1

Hk′+
(q)

(2.21)
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The reciprocal relationship Hk′−
= H−1

k′+
can readily be seen as |α+κ| = |−α−κ| and

| − α + κ| = |α − κ|. In Fig. 2.8, we show an example of the filter responses at different

depths represented in terms of k′. Note that for illustration purposes, for each response,

only the portion within the main lobe (see examples in Fig. 2.7) is shown. We can see

that for k′ < 1
2(1 + 1

c ) the filters perform sharpening and for k′ > 1
2(1 + 1

c ) the filters are

lowpass ones 2. The filter shape also changes across different depth k′. To further analyze

the change in filter responses, with different values of k′, we solve for the -3dB/+3dB

frequencies within the main lobe (as those shown in Fig. 2.8) of the blurring/sharpening

filters. Polynomial approximation, J1(x) ≈
∑n

m=0 bmx
m, is used to represent J1(x) from

x = 0 to its first zero-crossing location (see Fig. 2.7), such that the ±3dB frequency can

be calculated as (X =
√

1/2 for lowpass filter,
√

2 for sharpening filter):

HZ(q) =
|1
c
− k′|

|1 − k′|
J1(|1 − k′|∆q)
J1(|1c − k′|∆q) ≈ |1

c
− k′|

|1 − k′|

∑n

m=0 bm (|1 − k′|∆q)m

∑n

m=0 bm
(

|1
c
− k′|∆q

)m = X

n
∑

m=0

bm |1 − k′|m−1
(∆q)m = X

n
∑

m=0

bm

∣

∣

∣

∣

1

c
− k′

∣

∣

∣

∣

m−1

(∆q)m

n
∑

m=0

bm

(

|1 − k′|m−1 −X

∣

∣

∣

∣

1

c
− k′

∣

∣

∣

∣

m−1
)

(∆q)m = 0 (2.22)

Coefficients bm can be determined using approximations proposed in the literature

[35], or simply by solving a least-square regression for samples of J1(x) taken between 0

and the first zero-crossing x. We investigated both methods and found that the lowest

order polynomial to achieve very close approximation over the entire range between 0

2Note here we demonstrate an example with c < 1 (c = 0.7). It is straightforward to demonstrate
from Fig. 2.6 that for c > 1 we will instead have lowpass Hk′ for k′ < 1

2
(1 + 1

c
) and sharpening filters for

k′ > 1
2
(1 + 1

c
).
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Figure 2.8: Filter responses at different k′, with c = 0.7, 1
2(1 + 1

c ) ≈ 1.2143

and the first zero-crossing of J1(x), has order four (n = 4 in (2.22)). However, there

is no direct analytical form to represent the roots of a 4th-order polynomial using its

coefficients. Thus we illustrate how the ±3dB frequency changes with k′, calculated using

(2.22) with 4th-order approximation, as curves in Fig. 2.9. As shown by the analysis of

(2.20) and (2.21), in Fig. 2.9(a), for a given c, the curves on the two sides of 1
2(1 + 1

c ) are

symmetric, with one being the 3dB frequency and the other being the -3dB frequency. The

±3dB frequency changes much more significantly as k′ approaches 1
2 (1 + 1

c ). Subtracting

1
2(1 + 1

c ) from k′, Fig. 2.9(b) illustrates clearly the symmetry property. It also reveals

two important properties of focus mismatches: (i) Larger focus setting difference (c away

from 1) results in mismatch kernels with lower ±3dB frequencies as compared to smaller

focus setting difference (c closer to 1), leading to stronger impact on the images (i.e.,

stronger focus mismatch between two views). (ii) Smaller focus setting difference results

in more rapid change in filter responses as k′ changes, as compared to larger focus setting

difference. (Note however that, as described in (i), this change corresponds to higher

±3dB frequencies.)
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Figure 2.9: Variation of the ±3dB frequencies

While we have used multiview as example, the analysis above can be easily applied

to monoscopic video where focus changes occur over time. Instead of considering the two

curves in Fig. 2.6 as corresponding to two different views, we can simply regard them as

the β curves of the same camera at different time t1 and t2, while the focus setting is

changing (e.g., adjust d to focus on different depths as in the dialog example in Section

2.1). Thus, from t1 to t2, objects at k′ < 1
2(1 + 1

c ) are getting sharpened as their β

decreases. As for objects at k′ > 1
2(1 + 1

c ), they are getting blurred (β increases).

In the following subsection, we will consider a particular case in multiview system

in which the cameras are arranged on a one-dimensional horizontal line with parallel

shooting orientation. In this scenario, we will demonstrate that the disparity exhibited by

images from different views can be exploited as an indication to identify depth-dependent

focus mismatch.
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2.3.1 Multiview with 1D Parallel Camera Arrangement

One of the most common multiview settings uses a 1D horizontal camera arrangement:

Cameras are positioned along a horizontal line with equal spacing b between neighboring

cameras, and their optical axes (Fig. 2.4) are parallel. Consider two neighboring cameras

V1 and V2, where V1 is located to the left of V2. We once again assume they have

the same f and a, and the focus mismatch is caused by a very slight difference in

d which results in different Z∗ and PSFZ . Since V2 is to the right of V1 at a distance

b, as compared to the scene captured by V1, we can regard the scene as shifted by −b

along the x-axis for the coordinate system centered at the lens of V2. From (2.1), due to

the shift of −b, for a visible point with depth Z, the centers of its projections on the

image planes of V 1 and V 2 will be located at P ′
V 1 and P ′

V 2 respectively as:

P at (X,Y, Z)V 1, the projection P ′

V 1 at (X ′, Y ′) =

(

−dV 1

Z
X,−dV 1

Z
Y

)

P at (X − b, Y, Z)V 2, P
′

V 2 at

(

−dV 2

Z
(X − b),−dV 2

Z
Y

)

=

(

−dV 2

Z
X + δZ ,−

dV 2

Z
Y

)

where δZ =
b · dV 2

Z
(2.23)

If the difference between dV 1 and dV 2 is negligible, which is most likely the case, then

from (2.23) the projection centers of a point with depth Z will appear with a disparity

of δZ between images from V1 and V2. The disparity δZ and depth Z are reciprocals:

Objects closer to the cameras (smaller depth) will have a larger disparity; while objects

far away (larger depth) will possess a smaller disparity. The relationship between the two
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projections in V1 and V2 can be represented as follows, where K(x, y) is the perfectly

focused light intensity as in (2.11):

KZ,V 2(x, y) = KZ,V 1(x− δZ , y) (2.24)

Since the focal settings of the two cameras are not identical, (hence they focus on

different depths Z∗
V 1 6= Z∗

V 2), they will have different PSFZ due to the different β. For a

visible region with depth Z, from (2.11) and (2.24) the corresponding images will be:

JZ,V 1(x, y) = KZ,V 1(x, y) ∗ PSFZ,V 1(x, y)

JZ,V 2(x, y) = KZ,V 1(x− δZ , y) ∗ PSFZ,V 2(x, y) (2.25)

(2.25) means that for a 1D parallel camera arrangement with focus setting difference,

the corresponding images in V1 and V2 for a region with depth Z will be displaced

with disparity δZ , and will be affected by two different PSFZ . If we can align the two

images (e.g., via block matching) so that regions with depth Z match each other after

disparity compensation, then the focus mismatch can be analyzed as described in Section

2.3. Furthermore, since the disparity δZ is a reciprocal of depth Z, it is proportional to

the quantity 1
k as defined in (2.8). From (2.14) and (2.15), we can see that the value of

β, which determines the PSF/OTF and consequently the filter HZ , is approximately a

linear function of δZ . Thus, difference in disparity will translate linearly into a difference

in β, and therefore we can identify regions with different focus mismatch based on their

disparity δZ , i.e., regions with similar disparity are likely to suffer from similar focus
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Figure 2.10: An numerical example of focus mismatch in multiview system

mismatch. Since there is no direct measurement of depth available, this property provides

us a reliable method to partition an image into depth levels that suffer from different types

of focus mismatch.

2.3.2 A Numerical Example

In this subsection, we introduce numerical example of focus mismatch in which specific

values can be calculated for the reader to facilitate understanding of the analytical results.

Let us consider a multiview system with three cameras V1, V2, and V3. They are set with

the same focal length f = 20mm (same zoom), and the same aperture settings a = f/8.

However, the fine tuning of their perfect in-focus depth Z∗ was not done perfectly, with

Z∗
V 1 = 1.9m, Z∗

V 2 = 2.0m, and Z∗
V 3 = 2.3m. We can calculate their image plane distances

d using (2.3), and the corresponding values are shown in Fig. 2.10(a). Once again we see

that a slight change in d (-0.17% from 20.21 to 20.175) results in significant change in Z∗

(+21.05% from 1.9 to 2.3).

As in Fig. 2.10(a), the focus setting mismatch results in differences of the β values

of the cameras as functions of Z. An object at given depth Z will appear differently in

V1, V2 and V3 under the influence of different β parameters. Before plotting the optical
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transfer functions (OTF) at different depth, let us describe the frequency range we need

to consider. Since for digital cameras, the image intensity is sampled by image sensors,

only frequencies up to the Nyquist rate have to be taken into account. For a 1/2” sensor

type (H×W = 6.4mm×4.8mm), a resolution of 640×480 pixels leads to a sample-spacing

of 0.01mm between pixels. The Nyquist rate is 100/2 = 50(cycles/mm). In the polar

system, q =
√

502 + 502 ≈ 70.71. Thus, if we plot OTFZ as (2.16) with β expressed

in the unit of mm, we only need to consider the range up to q = 70.71. This value

corresponds to Ω = π in the digital domain. Fig. 2.10(b) and (c) show the differences in

the corresponding OTF. If we encode V2 using V1 as a reference (c = Z∗
V 1/Z

∗
V 2 = 1.9/2 =

0.95, 1
2(1 + 1

c ) ≈ 1.026), for image portions corresponding to visible regions at Z = 1.2m

(k′ = 2/1.2 ≈ 1.67), we need to perform lowpass filtering on the data from V1. For visible

regions at Z = 4m (k′ = 2/4 = 0.5), the corresponding image portions in V1 need to be

slightly sharpened. On the other hand, if we instead use V3 as a reference to encode V2

(c = Z∗
V 3/Z

∗
V 2 = 2.3/2 = 1.15, 1

2(1 + 1
c ) ≈ 0.935), image portions corresponding to depth

Z = 1.2m need some sharpening in order to match V2, while regions at Z = 4m have to

undergo a significant amount of lowpass filtering.

Now if the cameras are arranged on a 1D horizontal line with parallel orientation, and

the spacing between two cameras is 10cm, then from (2.23) the disparity between V1 and

V2 for objects at depth 1.2m and 4m can be calculated as:

δ1.2m =
10

120
× 20.20 ≈ 1.68 (mm), which corresponds to 168 pixels

δ4m =
10

400
× 20.20 ≈ 0.5 (mm), which corresponds to 50 pixels
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Disparity between V2 and V3 can be calculated in a similar manner. By performing

disparity estimation, we can identify regions within a frame that correspond to different

depth levels. Based on the depth-dependency property, each level is anticipated to have

different type of focus mismatch kernels such as depicted in Fig. 2.10.

2.4 Summary

In this chapter, we analyzed focus mismatches occur in video content which are caused

by focus setting differences. We utilize geometrical optics to derive characteristics of the

images captured with a lens, and then demonstrate how images will be affected under

different focus settings. The following analytical results provide useful insight for us to

design coding techniques to compensate for the focus mismatch:

• For lens-based imaging systems, PSF/OTFs are determined by the blur diameter

β, which is a function of depth Z and camera parameters a, f , d.

• β is approximately a linear function of the reciprocal of depth ( 1
k ).

• In the presence of focus setting differences, the corresponding images will exhibit

a depth-dependent mismatch. To deal with different types of focus mismatch at

different depths, compensation kernels should be designed according to the depth-

composition within the scene.

• For a given depth, the mismatch can be modeled using a convolution kernel which

captures the difference between two point spread functions (or in frequency domain,

between two optical transfer functions).
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• The focus mismatch kernels can be represented as blurring/sharpening filters that

are circular symmetric in spatial domain.

• For a given pair of views, if Z∗
V 2 and Z∗

V 1 (perfect-in-focus depth) are made available,

we can determine c and consequently the value of 1
2 (1 + 1

c ), which divides the

disparity (depth) into two regions that require different filter types: blurring and

sharpening.

• In terms of k′, on the two sides of 1
2(1 + 1

c ), the filter responses are reciprocal.

• For 1D parallel camera arrangement, the disparity δZ between frames from different

views is also a reciprocal of depth Z (same as the blur diameter β). This property

can be exploited in order to identify regions within the image that suffer from

different types of mismatch.

• Larger focus setting difference (c away from 1) results in mismatch kernels with

lower ±3dB frequencies, leading to stronger focus mismatches.

• Across different depth/disparity values, smaller focus setting difference (c closer to

1) results in more rapid change in filter responses as compared to stronger focus

setting mismatch.

In the next chapter, we will describe our adaptive reference filtering (ARF) methods

to compensate for focus mismatch, which are designed based on the analytical results

above.
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Chapter 3

Adaptive Reference Filtering (ARF) for Video Coding

3.1 Introduction

In this chapter, we consider the problem of encoding video content that exhibits focus

mismatch, such as focus setting differences in inter-view prediction in MVC and focus

change over time in monoscopic video. Based on the analysis in Chapter 2, systems

for efficient focus mismatch compensation in video coding shall be designed with the

following requirements in mind. First, local compensation is useful in addressing depth-

dependent focus mismatches, as different portions of a video frame can undergo different

blurriness/sharpness changes with respect to the corresponding areas in frames used as

reference. Second, since the characteristics of focus mismatch are determined by camera

parameters and depth-composition within the scene, they will change from view to view

(in MVC) as well as over time. Thus compensation process should be adaptive to the

different mismatches exhibited by the video frames. Finally, to optimize overall coding ef-

ficiency, the decisions on whether or not to use mismatch compensation, and the selection

of mismatch compensation kernels, should be based on rate-distortion (R-D) criteria.
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To improve motion compensation performance in monoscopic video coding, different

approaches have been proposed in which the reference frames are filtered to generate new

predictors [6,46,51,52]. The general idea behind these methods is that predictors better

matched to the current frame can be created after filtering.

Budagavi proposed blur compensation [6], where a fixed set of blurring (lowpass) filters

are used to generate blurred reference frames. For focus changes which lead to circular

symmetric mismatch kernels, as we demonstrated in Chapter 2, Budagavi utilizes simple

n×n uniform averaging filters with different sizes n; as for camera panning (which leads

to directional mismatch kernel), 1 × n horizontal and n × 1 vertical averaging filters are

considered. This technique has two shortcomings for the focus mismatch scenarios we

consider. First, the filter selection is made only at the frame-level, i.e., applying different

filters to different parts of a frame is not considered. However, as noted in Chapter 2, for

the depth-dependent focus mismatches, adaptive local compensation should be exploited.

Second, this method relies on a very limited predefined filter set. Sharpening filters (high

frequency enhancement), for example, are not included. As a result, the usefulness of the

predefined filter set is very constrained as it will only be able to cover particular types of

mismatch. Instead, our approach estimates the mismatch kernels between the reference

frame and the current frame such that the compensation filters are designed adaptively.

In the final motion/disparity search, we allow each block to select the filtered version of

predictor that gives the lowest R-D cost to ensure optimized coding efficiency.

In [46,51,52], adaptive filtering methods have been proposed for generating subpixel

references for motion compensation. Vatis et al. [46], after an initial motion search using

the 6-tap interpolation filters defined in H.264/AVC [54], divide blocks in the current
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frame into groups exclusively based on the subpixel positions of their motion vectors.1

This partition method is used in order to generate different subpixel interpolation filters

for different positions. For each group, an filter is adaptively estimated by minimizing

squared prediction error. The subpixels of the reference frame will then be generated using

these adapted interpolation filters. In the final motion compensation, the encoder chooses

the best match by testing different subpixel positions on the same reference frame. This

approach, which we will refer to as adaptive interpolation filtering (AIF), aims to address

the aliasing problem and motion estimation error when generating subpixel references.

Instead, in our work we design filters by identifying blocks suffering from different types

of focus mismatch. Filtered reference frames will first be generated by applying the

estimated filters. Then, on each of these filtered reference frames, sub-pixel interpolation

(such as in H.264/AVC) will be performed, leading to additional coding gains for disparity

compensation.

In this chapter, we propose a novel adaptive reference filtering (ARF) method for

encoding video with focus mismatch. Based on the analysis in Section 2.3, we first

model predictive coding with focus mismatch using point spread functions and provide

a derivation of how the proposed approach is designed. The main contribution is that,

to compensate for depth-dependent focus mismatch, we adaptively design multiple filters

by estimating the mismatch kernels. In our approach, video frames are first divided

into regions that suffer from different types of focus mismatch. For MVC inter-view

prediction, we exploit block-wise disparity vectors as feature to roughly classify image

blocks into different scene-depth levels. As for monoscopic video with temporal focus

1For example, (1 3
4
, 23 1

2
) and (45 3

4
, 6 1

2
) will be assigned to the same group.
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change, given that depth information is not directly available, we propose an encoding

method that estimates localized focus changes. Frames will be then partitioned into

regions, each consisting of macroblocks (MB) that suffer from a similar type of focus

change (e.g., blurring or sharpening). After frame partitioning, for each region, a 2D filter

is calculated to compensate for the focus mismatch by minimizing the prediction residue

energy (MMSE filter). These filters can be regarded as estimators of the focus mismatch

kernels. To provide better coding efficiency, we generate multiple filtered reference frames

by applying the obtained filters, and allow each block to be predicted from the reference

that provides lowest R-D cost.

We also extend ARF to MVC inter-view bi-directional prediction cases (B-frames),

in which predictive coding is performed by using reference frames from two reference

lists (denoted as List 0 and List 1). A straightforward extension of ARF to B-frames

can be achieved by designing depth-dependent filters that minimize the prediction error

between current blocks and the chosen bi-predictors, which will be obtained by averaging

two reference blocks, one from each reference list. Note that such an extension would be

analogous to that selected for bi-prediction in adaptive interpolation filtering (AIF) [49],

in which for a given interpolation position, only one filter is designed and is applied to

generate interpolated pixel values for references in both List 0 and List 1. This approach

does not separately consider the possibility that different types of mismatch may exist

with respect to reference frames in the two lists. Instead, mismatches from the two lists

are considered jointly in the filter design. Estimating / applying more than one set of

filters to different lists is not possible in this framework. For bi-directional prediction, the

key observation is that with the above described approach, joint filter design is followed
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by conventional independent search for predictors in each list. Because of this mismatch

between filter design and search, the gain with respect to un-filtered bi-prediction is can

be reduced. To tackle this problem, we propose a filter design approach that estimates two

sets of depth-dependent filters, each set compensating for the focus mismatch affecting

one of the two references used for bi-directional prediction. This leads to increased gains

as compared to the straightforward filter design for the averaged predictors.

The rest of this chapter is organized as follows: In Section 3.2, based on the analysis

in Chapter 2, we first provide a focus mismatch model for predictive video coding. The

proposed adaptive reference filtering (ARF) method will then be described in detail in

Section 3.3. We discuss two scenarios with focus mismatch: Inter-view coding in MVC,

and focus change in monoscopic video. The extension to MVC inter-view B-frames is

presented in Section 3.4. Simulation results based on H.264/AVC are summarized in

Section 3.5. In Section 3.6, we analyze the complexity of filter estimation in our ARF

approach. Finally, conclusions are provided in Section 3.7.

3.2 Filtering Model for Video Coding with Focus Mismatch

Let us denote IC(x, y) the luminance pixel value of the current frame to be encoded at

pixel position (x, y), and let IR(x, y) denote the corresponding luminance pixel value in

the reconstructed reference frame. Let (dvx, dvy) denote the displacement vector (i.e.,

a disparity vector for inter-view prediction or a motion vector in temporal prediction).

From the analysis in Chapter 2, in the presence of differences in focus settings, the

corresponding images will exhibit depth-dependent mismatch which for a given depth,
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can be modeled using a convolution kernel HZ which captures the difference between two

point spread functions (or in frequency domain, between two optical transfer functions,

as described in (2.19) ). In this chapter, we model predictive video coding with focus

mismatch for pixel (x, y) corresponding to an object at depth Z as:

IC(x, y) = HZ ∗ IR(x+ dvx, y + dvy) where ∗ denotes the convolution. (3.1)

For depth-dependent focus mismatch, multiple mismatch kernels HZ might be re-

quired in order to model blurriness/sharpness mismatch in different regions within a

frame, corresponding to different depths Z, as depicted for example in Fig. 2.8. Based

on this model, we propose a coding method in which the reference frame is first filtered

by estimators of the mismatch kernels HZ chosen to minimize the prediction error with

respect to the current frame. In an ideal scenario, for a region at depth Z that undergoes

a certain type of focus change, minimum mean-squared error (MMSE) estimation can be

derived by jointly optimizing over both mismatch and displacement:

min
ψ,dvx,dvy

∑

x,y

(IC(x, y) − ψZ ∗ IR(x+ dvx, y + dvy))
2 (3.2)

The filter ψZ will be an estimator of the mismatch kernel HZ for a given region

with depth Z. However, an encoding system with such joint optimization will require

excessive computation. Instead, we adopted a procedure similar to that proposed in

adaptive interpolation filtering [46, 51, 52], i.e., such that the displacement is estimated

first (e.g. using block-based motion/disparity search), and then the filter coefficients of
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ψZ are determined. In this approach, the filter will be designed based on the displacement

compensated prediction error between the reference frame and the current frame. In the

next section, we will describe our proposed adaptive reference filtering approach for video

coding.

3.3 Adaptive Reference Filtering

To design an adaptive filtering approach for situations in which different regions within

a frame may suffer from different types of blurriness/sharpness changes, locally adaptive

compensation has to be enabled. In this work, we propose a coding method in which,

after performing an initial motion/disparity search to obtain displacement vectors and

establish block correspondence, the current image is partitioned into regions suffering

from different types of focus mismatch 2. Each region Dk (k =1, 2, 3...) will then be

associated with one adaptive filter ψk to be designed in the next step. We call this

process frame partition for adaptive filter design. The filter ψk for each Dk is optimized

to minimize the residual energy for all pixels within Dk, i.e.,

min
ψk

∑

(x,y)∈Dk

(IC(x, y) − ψk ∗ IR(x+ dvx, y + dvy))
2 , (3.3)

This approach will allow multiple filters to be estimated for different parts of a video

frame that undergo different blurriness/sharpness changes with respect to the correspond-

ing areas in the reference frames. These filters will be applied to the reference frame to

generate filtered references that provide better matches. Then the final motion/disparity

2Here we describe our approach in general. Specifics of frame partitions for the multiview and mono-
scopics cases will be explained in Section 3.3.1.
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compensated prediction is performed using both original and filtered frames as references.

At this stage each block is allowed to select the reference that provides the lowest R-D

cost, regardless of what the initial classification of the block was. Fig. 3.1 provides a

flowchart of adaptive reference filtering for video coding. In the following subsections, we

describe each step in detail.

Estimate block−wise parameters
Initial search

Final search / encoding

Reference frameCurrent frame

Filtered references

Process flow

Data flow Estimate filter coefficients

Classify block−wise parameters

Generate filtered references

Frame−partition

Figure 3.1: Flowchart of Adaptive Reference Filtering for video coding

3.3.1 Frame Partition for Adaptive Filter Design

The first step is to identify different types of blurriness/sharpness changes in different

parts of the current frame. An exhaustive approach could be, after having computed

the motion/disparity vectors, to assign adaptively to each block in the frame a filter
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that minimizes the motion/disparity compensated prediction error. This approach is

optimal in the sense that for every block the residual energy is minimized. However, it

would significantly increase the bitrate since we would have to transmit filter coefficients

for every single block. To limit the amount of side information (filter coefficients) while

maintaining the ability to compensate for focus mismatches, we use a procedure to roughly

partition a frame into regions, each containing blocks of pixels that suffer from a similar

type of focus mismatch. This can be regarded as a region-based approach, in contrast

to the global (frame-wise) approach of blur compensation in [6] and to the more local,

block based approach we just mentioned. The key issue here is to achieve frame partition

such that different types of focus mismatch within a frame can be reliably estimated. In

this section, we will propose solutions to two focus mismatch examples: (i) Inter-view

prediction in MVC with 1D parallel camera arrangement, and (ii) Monoscopic video when

focus setting changes over time.

Inter-view prediction in MVC

As discussed in Section 2.3, under a given camera setting, the type of focus mismatch

depends on the depth of the scene. To partition image into regions suffering from different

focus mismatch, it is reasonable to consider procedures to identify image regions with dif-

ferent depth levels. When multiple cameras are employed, such as in multiview systems,

disparity information has been widely used as an estimation of scene depth [15]. As dis-

cussed in Section 2.3.1, for multiview systems with a 1D parallel camera arrangement, the

disparity δZ between different views is the reciprocal of depth Z: δZ = b·d
Z (again d and b

representing the image plane distance and the spacing between two consecutive cameras).
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Based on this relationship, numerous approaches have been proposed to estimate scene

depth by computing the disparity [1, 16,20]. While in some existing approaches the goal

is to find an accurate/smooth disparity map at the pixel-level, here we simply aim at sep-

arating objects with different scene depths by modeling their disparities. This is similar to

video object segmentation methods in which the motion field is used to identify moving

objects [58]. To reduce complexity, compressed domain fast segmentation methods have

been proposed that use the block-wise motion vectors, obtained with video coding tools,

as input features to classify image blocks [2, 21,50]. Similarly, we consider procedures to

classify blocks into depth levels based on their corresponding disparity vectors. As shown

in Chapter 2, the blur diameter β can be closely approximated as a linear function of δZ

(Fig. 2.6). Thus, partition a frame into regions of similar δZ leads to regions

for which a similar β can be applied, which serves well for our goal of identifying

different types of focus mismatch. For multiview systems with cameras arranged in par-

allel on the same horizontal line, classification can be achieved by considering only the x

component of the disparity vectors. For a 2D camera arrangement as can be found in a

camera array, the classification could be extended by taking both x and y components as

input features.

We propose to use classification algorithms based on Gaussian mixture models (GMM)

to separate blocks into depth-level classes. We adopted expectation-maximization algo-

rithm (EM) based on the GMM [38] to classify the disparity vectors and their correspond-

ing blocks [2, 50, 55]. In this work, an unsupervised EM classification tool developed by

Bouman [4] is employed. To automatically estimate the number of Gaussian components

in the mixture (thus making the approach unsupervised), the software tool performs an
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Figure 3.2: Disparity vectors from view 6 to view 7 at the 1st frame in Ballroom: His-
togram and GMM

order estimation based on the minimum description length (MDL) criterion. The only

required parameter to be specified is the maximum number of Gaussian components (K)

allowed in the GMM. This tool applies MDL to select the number of Gaussian component

(K, K − 1, ... to 1). We refer to [4,10,39] for details about such techniques. Parameters

of Gaussian components are estimated using an iterative EM algorithm. Each Gaussian

component is used to construct a Gaussian probability density function (pdf) that mod-

els one class for classification. Likelihood functions can be calculated based on these

Gaussian pdfs. Disparity vectors are classified into different groups by comparing their

corresponding likelihood value in each Gaussian component. Blocks are classified accord-

ingly based on the class label of their corresponding disparity vectors. Refining processes

can also be considered, such as eliminating a class to which a very small number of

blocks has been assigned. In the classification result, each class represents a depth level

within the current frame, and blocks classified into a certain level will be associated with

one adaptive filter. To illustrate this frame partition based on classification of disparity

vectors, we provide a segmentation result in Figs. 3.2 and 3.3.
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Current frame Depth level 1

Depth level 2 Depth level 3

Figure 3.3: The corresponding frame partition result of Fig. 3.2

Fig. 3.2 shows the histogram of the x-component of disparity vectors, obtained from

the initial disparity estimation. A corresponding GMM is constructed with a number of

components estimated to be 3 (K was set to 4). In Fig. 3.3, the corresponding blocks

within each class are shown. It can be observed that after disparity-based classification,

depth class 1 corresponds to the far background; class 2 captures two dancing couples

and some audience in the mid-range, along with their reflection on the floor; and class

3 includes the couple in the front. Note that intra-coded blocks in the initial disparity

estimation are not involved in the filter association process. In this example, the classifi-

cation tool successfully separates objects with different depths in the current frame. For

each depth level, we will then estimate a focus mismatch kernel. (More examples of the

proposed disparity-based frame partition are provided in Fig 3.4 and Fig 3.5.)
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Depth class 2 Depth class 3
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Figure 3.4: Frame partition result: Breakdancer View 1 frame 0

Temporal prediction in monoscopic video

Now we consider compensating focus change in monoscopic video. Again our goal is

to identify regions in a video frame that suffer from different types of focus mismatch and

design filters which estimate the mismatch kernels. For instance, in the dialog example

described in Section 2.1 where the focus is changing from the first characters to the

second one, blocks corresponding to the two characters at different depth levels (D1 and

D2) will be associated with two different filters, ψ1 and ψ2, which will produce blurring

and sharpening, respectively.

To achieve such classification without disparity information available to estimate

depth, we considered two possible approaches. First, a set of predefined filters can be

chosen to operate on the reference frame. During an initial motion compensation, each

block selects the filter that provides the lowest matching error. Blocks with similar filter

selections can then be grouped into a class. This approach has a drawback in that it is
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Frame to be encoded Intra coded blocks

Depth level 1 Depth level 2

Figure 3.5: Frame partition result: Race1 View 2 frame 30

possible that the predefined filter set is not complete enough to model all types of focus

change within the frame. Thus, blocks exhibiting focus changes that are not covered by

the predefined filter set, may be grouped with blocks having very different characteristics,

leading to suboptimal compensation filters. With only limited knowledge of the focus set-

tings (for example the perfect in focus depth Z∗ is not likely to be known), it will be hard

to build a satisfactory filter set, unless a very large set of predefined filters is used.

To avoid this problem, we investigate a second approach: During the initial motion

compensation, in order to model the localized focus mismatch, a simple filter is estimated

for each MB to minimize the prediction residual energy (MMSE filter). The collection

of all these MB-wise MMSE filters provides a more comprehensive description of various

focus changes present in the current frame. MBs will then be separated into groups
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by clustering based on the similarity of their respective filters. This procedure can be

summarized as follows:

1. Initial search to obtain displacement vector (dvx, dvy).

2. For each MB, calculate MMSE filter fmb such that:

min
fmb

∑

(x,y)∈MB

(IC(x, y) − fmb ∗ IR(x+ dvx, y + dvy))
2 (3.4)

where fmb =





a b a
b c b
a b a





3. Classify fmb into groups. Filter coefficients are considered as features for the clas-

sification algorithm. Each MB belongs to the class to which its corresponding filter

was assigned. For each class, one adaptive filter will be estimated in the next stage

to compensate for the focus mismatch.

The role of fmb is to capture local focus changes from the reference frame to the current

frame. We selected a 3× 3 filter with circular symmetry for the following reasons. First,

these fmb are estimators of the point spread functions representing different focus changes,

which are isotropic as shown in Chapter 2. Second, we are using their coefficient as the

input features for classification. Larger filters with more coefficients will result in a much

higher dimensional problem, which increases significantly the classification complexity.

More importantly, this could also lead to an over-specified classification, which could be

sensitive to filter variations, and may not be suited to our goal of identifying a few rough

classes of focus changes within each frame.
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Taking the coefficients as features, we can group the fmb into classes. Such classifi-

cation can be visualized by plotting each set of fmb coefficients (a, b, c) as a point in 3D

space. We have observed that the filter points all lie very close to the 4a + 4b + c = 1

plane (which we denote as Pf ). This is reasonable since the MMSE system is attempting

to find a weighted average for pixel values. By performing principal component analysis

(PCA), we observe a system with a very insignificant third eigenvalue as compared to the

first two (in the order of 10−15), which indicates that the assumption that (a, b, c) belong

to a plane is a reasonable one.

To select a classification tool, we performed the following study on fmb: On plane Pf ,

we shift the filter coefficients away from the MMSE point (a, b, c) by (∆a,∆b,∆c) and

record how the MSE changes with different shifts. Statistics are gathered on a frame by

frame basis. Fig. 3.6 shows some results for the sequence fondue-multi 3 in which the

camera focus is changing back and forth among people at different scene depths. We

observe that the increase in MSE away from the optimal point has different gradients in

different directions. These findings suggest that the classification algorithm should take

directional information into account, in addition to considering the distance between data

points. Simply using the Euclidean distance to cluster the various filters into classes will

not be appropriate as this would implicitly assume that the errors generated by changes

in the filter coefficients are equal in all directions.

We propose once again to use classification algorithms based on multidimensional

GMMs to group the fmb into classes. GMM techniques incorporate covariance matri-

ces such that the directional information can be modeled. Filters fmb are classified into

3fondue-multi.wmv by Yi-Ren Ng, Light Field Photography with a Hand-held Plenoptic Camera,
Stanford Computer Graphics Lab, http://graphics.stanford.edu/papers/lfcamera/refocus/
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Figure 3.6: Variations of MSE when shifting fmb parameters away from the MMSE
solution (3.4) by (∆a,∆b,∆c) = n~ui. The four curves represent results with different ~ui.
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and (ii) 4∆a+ 4∆b+ ∆c = 0 such that the shifted filters will still be on Pf .

different groups by comparing their corresponding likelihood value in each Gaussian com-

ponent. Refining processes can also be considered in the classification based on GMM,

such as removing points with too low likelihood from the classes, or eliminating a class

to which too few points have been assigned.

An example of frame partition results using the proposed method on the sequence

fondue-multi is provided in Fig. 3.7. In this example, camera focus is shifting from the

front to the back. The first three people are becoming increasingly blurred, while the

others are becoming more clear. Based on the MB-wise focus change estimators fmb, the

classification tool successfully separates these two groups, as can be observed in classes 1

and 2.
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Figure 3.7: An example of frame partition based on focus changes

3.3.2 Filter Design by Estimating Mismatch Kernels

We now discuss how to select a filter for all blocks belonging to a given region/class Dk,

which are therefore assumed to have similar focus mismatch. We replace the convolution

notation in (3.3) by explicitly expressing the filter operation as

min
ψk

∑

(x,y)∈Dk



IC(x, y) −
n
∑

j=−n

m
∑

i=−m

ψk(i, j) · IR(x+ dvx + i, y + dvy + j)





2

(3.5)
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The size and shape of 2D filters can be specified by changing m and n. In Chapter 2

we established that the focus mismatch is expected to be isotropic. Hence, in this work we

utilize square shaped filter kernels with m = n. Our analytical results also show that the

frequency responses of these filters depend on the camera parameters and object depth,

as depicted for example in Fig. 2.8: Some kernels have very smooth responses while others

have sharp transitions. It is well known that in the design of FIR filters, smooth responses

can be realized with short length filters while for sharp responses we need longer filters.

Thus, in order to select a filter size that can reliably estimate the underlying mismatch

kernels, we need knowledge about the setting differences in camera parameters and the

depth composition of the scene. Furthermore, as described in the numerical example

in Section 2.3.2, the dimension and resolution of the camera sensor array also has to

be known such that we can convert the filter responses from analog domain to digital

domain, and then calculate the filter size in units of pixels. For example, a given blur

diameter β will cover more pixels for sensor arrays with smaller distance between pixels.

A given analog filter response will lead to a sharper transition in digital domain if the pixel

distance is smaller, i.e., higher Nyquist rate. Thus, other things being equal (i.e., same a,

f , d, Z, and sensor array dimension), the selected filter length should be proportional to

the pixel resolution (inversely proportional to the pixel distance). In practical scenarios,

it is very unlikely that we will have full access to all these parameters. Therefore, in this

section, we investigate filters with different sizes and constraints. In adaptive interpolation

filtering (AIF) approaches, even-length (6×6) filters are proposed in order to interpolate

subpixels in between integer pixels. In our proposed ARF approach, we apply adaptive

filters directly to the reference frame in order to generate filtered references that are better
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matched to the current frame. Odd-length filters centered at the pixel to be filtered are

employed in this work.

The filter coefficients ψk(i, j) that satisfy (3.5) can be determined by taking derivatives

with respect to each coefficient, i.e., ∀ ψk(I, J) where −m ≤ I ≤ m,−n ≤ J ≤ n, we look

for a filter such that:

∂

∂ψk(I, J)

∑

(x,y)∈Dk



IC(x, y) −
n
∑

j=−n

m
∑

i=−m

ψk(i, j)IR(x+ dvx + i, y + dvy + j)





2

= 0

∑

(x,y)∈Dk



IC(x, y) −

n
∑

j=−n

m
∑

i=−m

ψk(i, j)IR(x+ dvx + i, y + dvy + j)



 IR(x+ dvx + I, y + dvy + J) = 0

n
∑

j=−n

m
∑

i=−m



ψk(i, j)
∑

(x,y)∈Dk

IR(x+ dvx + i, y + dvy + j)IR(x+ dvx + I, y + dvy + J)





=
∑

(x,y)∈Dk

IC(x, y)IR(x+ dvx + I, y + dvy + J) (3.6)

These Wiener-Hopf equations will lead to optimal linear Wiener filters. By defining

(x̃, ỹ) = (x+ dvx, y+ dvy), and denoting ĨR as the disparity shifted pixel value at IR(x+

dvx, y + dvy), (3.6) can be further written as:

n
∑

j=−n

m
∑

i=−m

ψk(i, j) E [IR(x̃+ i, ỹ + j)IR(x̃+ I, ỹ + J)] = E [IC(x, y)IR(x̃+ I, ỹ + J)] ,

that is

n
∑

j=−n

m
∑

i=−m

ψk(i, j) CorĨR ĨR
(I − i, J − j) = CorIC ĨR

(I, J), (3.7)

where E[·] is the expectation operator and Cor is the correlation function. Both E[·]

and Cor operate over all the blocks that are classified into the depth-level Dk. It can be

53



seen that the linear MMSE Wiener filter is optimized based on the autocorrelation of the

disparity shifted pixel value R̃; and the cross-correlation between the current frame and

R̃.

In this linear system, the number of equations will be equal to the number of co-

efficients in ψk. Filters with more unknowns can be more efficient to compensate for

blurring/sharpening and thus reduce residual energy. However, this comes at the ex-

pense of having to transmit more filter coefficients. (For example, a circular symmetric

3×3 filter contains only 3 coefficients, while a full 3×3 matrix has 9 coefficients). In

Chapter 2 we have shown that the focus mismatch is isotropic. This suggests that we

can impose circular symmetry constraint on the filter coefficients. Thus in this section,

we consider two examples of 5×5 filters (m = n = 2), with a symmetry constraint:

ψ55cir =













f e d e f
e c b c e
d b a b d
e c b c e
f e d e f













(3.8)

ψ55hv =













i g e g i
h d b d h
f c a c f
h d b d h
i g e g i













(3.9)

The filter in (3.8) is circular symmetric, with only 6 coefficients to be estimated

(a ∼ f), which we denote as ψ55cir. The filter in (3.9), which we denote as ψ55hv, can be

viewed as a compromise between a full matrix and the circular symmetric ψ55cir. It has

9 different coefficients (a ∼ i). After partitioning the frame using methods described in
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Figure 3.8: Performance of ARF using different filter sizes/constraints (QP22)

Section 3.3.1, for each depth region, a filter in one of the above forms can be obtained by

solving (3.6).

Fig. 3.8 provides simulation results of MVC inter-view coding for different timestamps,

using ARF with different filter sizes / constraints. (Refer to Section 3.3.3 and Section

3.5 for details on how the simulations were conducted.) We observe that the differences

in coding efficiency between using ψ55cir and ψ55hv as filter structures are small, with

greater differences at higher bitrates (low QP). Thus in Fig. 3.8 we provide results at

QP = 22 for which it is easier to observe the difference in performance. It can be seen

that the performance of the two filters ψ55cir and ψ55hv is very similar, e.g., less than

0.025 dB difference in sequences tested. More importantly, in two of the three sequences

(Ballroom and Rena), reducing the number of coefficients by imposing circular symmetric

actually provides a slight coding gain. These results indicate that by exploiting the

isotropic properties of focus mismatch, we can simplify the filter structure, reducing the

side information (coefficients) to be transmitted, while preserving the ability to reliably

estimate mismatch kernels. In the simulations in Section 3.5, we will provide ARF coding

55



results using circular symmetric filters as ψ55cir. (As a reference, in Fig. 3.8 we also include

results using 3× 3 filters with horizontal/vertical constraints similar to those in (3.9). At

QP = 22, compared to the difference between ψ55cir and ψ55hv , using such filter results in

much larger degradation in coding efficiency, i.e., 0.05 dB degradation for Ballroom and

Race1, and 0.1 dB for Rena.)

Figures 3.9, 3.10, and 3.11 provide the frequency responses of the calculated ψ55cir,

when we perform inter-view coding between view pairs in Race1 sequences. In each

figure, the three curves correspond to filters estimated for different depth levels of a given

anchor frame: the filters, from left to right, correspond to regions ranging from far (small

disparity) to near (large disparity). These estimated depth-dependent focus mismatch

kernels demonstrate similar behavior to that of the analytical results as depicted for

example in Fig. 2.8: For the scenario in which the current frame is blurred as compared

to the reference (Figures 3.9 and 3.11), it can be seen that the filters have a low-pass

characteristic. When the blurring affecting the frame is stronger (Fig. 3.11), the resulting

filters have sharper transitions. In both figures, it can be seen that the responses change

gradually from smaller disparity to larger one (see the dot points). On the other hand,

when the reference frame is a blurred version of the current frame (Fig. 3.10), the filters

emphasize higher frequency ranges so that the reference can be sharpened to create a

better match. In this example, the responses rise to a peak at about Ω = 0.4π.

As for the focus change example in monoscopic video, the filters’ frequency responses

are shown in in Fig. 3.7. For parts of the image that are blurred (Class 2), the correspond-

ing filter ψ2 is a blurring filter (lowpass) with a Gaussian-shaped frequency response. For

parts that are getting sharpened (Class 1), the filter ψ1 emphasizes more the higher
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Figure 3.9: Frequency responses of estimated filters when performing inter-view prediction
from Race1 V2 to V3 at Anchor 9. V3 is slightly blurred w.r.t reference V2.
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Figure 3.10: Frequency responses of estimated filters when performing inter-view predic-
tion from Race1 V4 to V3 at Anchor 3. Reference V4 is blurred w.r.t V3.

frequency ranges (non-Gaussian shape as compared to ψ1) so that the reference can be

sharpened to create better match.

3.3.3 Encoding with Filtered References

The optimized filters will be applied to the reference frame in order to provide better

matches for predictive video coding. In the reference picture list, the original unfiltered

reference as well as multiple filtered references are stored. If subpixel disparity estimation

is employed, all these references will be interpolated to generate subpixel values using

interpolation filters specified by the codec (e.g., 6-tap interpolation filters in H.264/AVC).
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Figure 3.11: Frequency responses of estimated filters when performing inter-view predic-
tion from Race1 V6 to V5 at Anchor 7. V5 is strongly blurred w.r.t reference V6.

During the final encoding process, original and filtered references can be regarded as

inputs for predictive coding with multiple references, such as specified in H.264/AVC [54].

This provides two advantages: Firstly and most importantly, each block can select a block

in any filtered or original reference frame, based on R-D optimization.4 This ensures

highest coding efficiency. Secondly, the filter selection of each block can easily be handled

by signaling the reference frame index in the bitstream.

To correctly decode the video sequence, the filter coefficients also have to be trans-

mitted. In this work, we directly extend the method proposed in [45, 47], in which the

filter coefficients are quantized and encoded as frame level overhead. Using the 5 × 5 fil-

ters with circular symmetric constraints as (3.8), which has 6 coefficients, and assuming

there are 4 filters (which is the maximum number of filter allowed in our simulations),

there will be a total of 24 coefficients as side information. As comparison, for each frame

4Note that after this stage, the filter selection could be regarded as a new “frame partition” Dk, and
filters ψk could be estimated again based on MBs in different classes. Thus, the estimation of Dk and ψk

can be carried iteratively until a stopping criterion is met. The complexity involved in such process will
be fairly high. In this work we limited ourselves to an algorithm without any iteration.
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Figure 3.12: Encoding selection with adaptive filtering

AIF [46] requires 54 coefficients to be transmitted in order to specify the interpolation fil-

ters. Of course, our method has additional side information as compared to AIF, namely

the reference frame index to indicate block-wise filter selection.

In Fig. 3.12 we provide the final filter selection result corresponding to the temporal

focus change example in Fig. 3.7. We can see that different filters were selected for the

front three people and the others (ψ1 and ψ2). The two people in the very back chose

the unfiltered reference frame, as they are not being altered much by the focus changes.

One interesting point to note is that for smooth regions such as the first three people’s

foreheads and cheeks, unfiltered reference is also preferred. This is because for these plain

regions, changing focus would not have much effect on the pixel values. We observed this

same phenomenon for other frames as well.
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3.4 ARF for MVC Bi-directional Disparity Compensation

with Focus Mismatch

Based on the assumption that regions with similar depth will suffer from similar focus

mismatch, in the previous section we proposed an adaptive reference filtering (ARF)

approach for MVC inter-view coding, in which a frame is partitioned into different depth

levels and depth-adaptive MMSE filters are estimated to compensate for focus mismatch.

This method was developed for inter-view P-frames, for which a single reference frame

is used, taken from one of the neighboring views (IPPP for coding V0∼V3 for example).

In this section, we extend focus mismatch compensation to B-frames, where predictive

coding is performed by using reference frames from two reference lists (denoted List 0

and List 1), which consist of previously encoded frames. In MVC inter-view coding, these

lists contain frames from different neighboring views (e.g., frames from the left and right

views in List 0 and List 1, respectively). As a result, a B-frame to be encoded may suffer

from different types of focus mismatch with respect to the reference frames from List 0

and List 1. In what follows, we will first revisit the focus mismatch example in Chapter

2 and then discuss different approaches to design filters. In particular, we emphasize

the interaction between filter design and bi-predictive search when filtered references are

generated.

3.4.1 Inter-view Bi-directional Prediction with Focus Mismatch

Once again, for a camera equipped with lens, we denote f the focal length, a the aperture

diameter, and d the “image plane distance”, i.e., the distance between the image plane
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Figure 3.13: An example of focus mismatch in multiview bi-prediction, with Z∗
V 1 =

1.9m, Z∗
V 2 = 2.0m, and Z∗

V 3 = 2.3m. We consider image sensor type 1/2” (H×W =
6.4mm×4.8mm) with a resolution of 640×480 pixels, i.e. the spacing between pixels is
0.01mm (Nyquist rate 100/2 = 50 cycles/mm). In polar system, q =

√
502 + 502 ≈ 70.71,

which corresponds to Ω = π in (b) and (c).

and the lens. In Chapter 2, we showed that in the presence of difference in focus setting,

frames from different views will exhibit a mismatch that is a function of parameters f ,

a, d and object depth Z. For points at depth Z, the corresponding projections on the

image plane will be uniform circles with diameter β = af(|Z−Z∗|)
Z(Z∗−f) . Z∗ is a specific depth

at which an object will produce a point projection (perfectly focused) on the image plane:

Z∗ = d·f
d−f .

Now let us revisit the example described in Section 2.3.2, where three cameras V1,

V2, and V3 form a multiview system. Assume that the cameras have the same focal

length setting f (same zoom), and their aperture settings are also identical: a = f/8.

However, assume that the fine tuning of their Z∗ was not done perfectly (Z∗
V 1 6= Z∗

V 2 6=

Z∗
V 3), resulting in differences in their β values as functions of Z. Fig. 3.13 shows the

same example as in Section 2.3.2 with heterogeneous settings. Figures 3.13(b) and (c)

demonstrate the differences in the corresponding optical transform functions (OTF), i.e.,

the frequency transform of the point spread function (PSF). If we encode V2 with bi-

directional prediction by putting V1 in List 0 and V3 in List 1 as references, for image
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portions correspond to visible regions at Z = 1.2m, we need to perform blurring on V1

and sharpening on V3 in order to match V2. On the other hand, for visible regions at Z

= 4m, the corresponding image portions in V1 need to be slightly sharpened while V3 has

to undergo a significant amount of blurring. As for the averaged predictor 1
2(V 1 + V 3)

(dotted line) in Fig. 3.13(c), a blurring filter is required to bring down the OTF to that

of V2.

If V1, V2, and V3 are arranged on a 1-D horizontal line from left to right with

equal spacing b between each other, and assuming their image plane distances d are very

similar, we have discussed in Section 2.3.1 that an object at depth Z will result in a

disparity δZ = b·d
Z from V1 to V2 and also from V2 to V3. Since the blur diameter β is

approximately a linear function of δZ (see Section 2.3), we can exploit disparity vectors

to identify image portions suffering from different types of focus mismatch. In Section

3.4.2, we will discuss adaptive filtering methods using the three-view example we just

discussed.

3.4.2 ARF and Bi-directional Disparity Search

As in Section 3.3, we propose to utilize a two-pass coding scheme with an initial search

(the first coding pass) to obtain the block-wise disparity vectors (DVs) and predictors, for

disparity-based frame partition and for designing filters. In what follows, we will discuss

different filter estimation methods, especially emphasizing how filter estimation interacts

with bi-predictive search when filtered references are generated.
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3.4.2.1 Filter Design for Averaged Bi-predictor

In B-frames, for a block that chooses to use bi-prediction, its predictor is actually the

average of two reference blocks, one from the reference frame in List 0 (IL0
R ) and one

from the reference frame in List 1 (IL1
R ). A straightforward filter design approach, which

minimizes the prediction error between current blocks and the averaged predictors would

be, for pixels within a given depth level Di:

min
ψBI

i

∑

(x,y)∈Di

(

IC(x, y) − ψBIi ∗ 1

2

[

IL0
R (x+ dx0, y + dy0) + IL1

R (x+ dx1, y + dy1)
]

)2

(3.10)

In (3.10), (x, y) is the pixel position within a frame, (dx0, dy0) and (dx1, dy1) are

the disparity vectors for IL0
R and IL1

R , respectively, and ∗ denotes convolution. Using

the approach as described in Section 3.3.1, we can partition a frame into regions with

different depth levels, by classifying the DVs in either direction (L0 or L1), or by taking

both directions as two input features for classification. Since for each depth-level Di the

filter is designed for the averaged predictors, it should be applied to both List 0 and List

1, thus filtered references ψBIi ∗ IL0
R and ψBIi ∗ IL1

R can be generated. In Table 3.1, we

summarize this approach as Method A.

However, whether the optimal pair of predictors can be found depends on how the bi-

predictive search is performed. Searching jointly for pairs of vectors from List 0 and List 1

would lead to the optimal solution, but would require high complexity. Typically, simpler

search schemes are utilized, such as independent search, which results in degradation

of coding efficiency as compared to joint pair-wise search: There is no guarantee that
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searching independently for the best matching blocks in ψBI ∗ IL0
R and ψBI ∗ IL1

R will

lead to an optimal solution to the problem of finding the two blocks in List 0 and List

1 that provide the best prediction after averaging and filtering. Clearly, this is also the

case for bi-prediction even if no filtering is used [14]. However, in the following, we will

demonstrate that the suboptimality is exacerbated when filtering is used.

Consider first the case of independent search, where for each block, the encoder

independently searches for the best predictor from references in List 0 and the best pre-

dictor from references in List 1. The bi-predictor is formed by simply averaging the two

without performing any additional search. As for the example in Fig. 3.13(c) for depth

level at Z = 4m, after applying the lowpass filter ψBI designed for 1
2(IV 1 + IV 3), the

filtered reference ψBI ∗IV 1 will actually have stronger mismatch with respect to V2 as its

frequency response is further attenuated as compared to that of V1. During the search

within List 0, due to the effect of the lowpass filter ψBI , the reference ψBI ∗ IV 1 may

not be preferred over IV 1, i.e., it is less likely to be selected. Consequently, the improved

predictor 1
2ψ

BI ∗ (IV 1 + IV 3) may not even be tested by the encoder.

As an alternative, in an iterative search [14], the search is conducted by, iteratively,

fixing the obtained predictor from one side (I
L0/L1
R ) to estimate the best predictor from

the the other side (I
L1/L0
R ). This can improve performance as compared to independent

search, as some joint estimation is made possible. However the iterative process could

still be trapped in a local minimum. For example in Fig. 3.13(c), if the initial selected

predictor from List 0 is V1 instead of ψBI ∗ IV 1, the resulting predictor after several

iterations may still not converge to the optimal predictor 1
2ψ

BI ∗ (IV 1 + IV 3).
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One possible approach to resolve such problem above, without performing exhaustive

search on pairs of vectors, is to modify bi-predictive search so that within each list, instead

of picking only a single “best” predictor, we record the best matched predictors from

each filtered/non-filtered reference frame {IL0
R , ψBI1 ∗IL0

R , ψBI2 ∗IL0
R . . . } and {IL1

R , ψBI1 ∗

IL1
R , ψBI2 ∗IL0

R . . . }. With different combinations of one predictor from each side, multiple

averaged predictors can then be evaluated. This would increase the complexity on top

of the independent search, and also increase memory requirement as multiple pairs of

vectors have to be recorded for mode decision.

In addition to the problems due to the search algorithm, the filter design approach

in (3.10) has another drawback that it may not lead to improved predictors within each

list. For B-frames, a block is allowed be encoded using predictor from only one of the

lists, if the rate-distortion (RD) cost of doing so is lower than using the averaged bi-

predictor. However in (3.10) the filters are designed jointly for averaged blocks, so there

is no guarantee that after applying them to individual frames they will provide good

approximations to the original frame. As we discussed in the example of Fig. 3.13(c), the

effect of the lowpass ψBI in fact leads to the filtered reference ψBI ∗ IV 1 having stronger

mismatch to compensate for IV 2. As a result, the filtered references in each list, when

used by themselves, may not provide better coding options.

3.4.2.2 Filter Design for Predictors from Each Reference List

To overcome the drawbacks (limited coding choices, integration with bi-predictive search)

of the method in (3.10), we consider an alternative filter design approach that estimates
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depth-related filters for each reference list. After the first coding pass, assuming a hor-

izontal camera arrangement, we use the same approach as described in Section 3.3.1 to

partition the current frame IC into depth-levels D1, D2 · · · DK by taking dx0 and dx1

as two features to classify blocks. In other words, we consider a two-dimensional feature

space: Objects closer to the cameras have larger disparities dx0 and dx1, pointing to

opposite directions; while both disparities will be small for far away objects. Instead of

minimizing error with respect to the averaged predictor, two sets of filters are estimated,

one for List 0 and the other for List 1:

ΨL0 =







ψL0
i

∣

∣

∣

∣

∣

∣

min
ψL0

i

∑

(x,y)∈Di

[

IC(x, y) − ψL0
i ∗ IL0

R (x+ dx0, y + dy0)
]2







ΨL1 =







ψL1
i

∣

∣

∣

∣

∣

∣

min
ψL1

i

∑

(x,y)∈Di

[

IC(x, y) − ψL1
i ∗ IL1

R (x+ dx1, y + dy1)
]2







(3.11)

This filter design method directly addresses the potentially different types of depth-

dependent mismatch exhibited in reference frames from List 0 and List 1 (e.g., as in the

example depicted in Fig. 3.13). In (3.11), sets ΨL0 and ΨL1 will both contain K filters.

They will be applied to List 0 and List 1 respectively to generate filtered references. In

this approach, a given block in IC will participate in both filter estimations to minimize

prediction errors with respect to references in List 0 and List 1.

Note that our approach here is different from a fully independent design, which would

involve performing the complete ARF design twice: one for L0, one for L1, both with

classification and filter estimation as in Section 3.3. In such fully independent approach,

which is summarized as Method B in Table 3.1, there are also two sets of filters, but a
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block in the current frame may belong to two different classes for List 0 and List 1; while

in our approach (Method C in Table 3.1) there is a single class (joint classification with

two features, dx0 and dx1) for each block.

The proposed two-sets filter design, Method C, has the following advantages:

1. Better integration with conventional bi-predictive search schemes: since filters are

optimized independently for each list, the search within each list is likely to obtain

better matched predictors. Since the two predictors are both focus compensated,

they can be used to form the averaged bi-predictor, or serve as the starting point

for iterative search.

2. More coding options: Based on (3.11), the filtered references in each list provide

better matched predictors that can be used by themselves, i.e. as P-mode instead

of B-mode, leading to more options (predictor from one of the lists, or from the

averaged bi-predictor) for encoder to perform RD optimization.

3. Potential speed up for bi-directional search: In our approach, for a given class k,

ψL0
k and ψL1

k are designed for the same depth level within frame IC . Thus

if we observe that a given block selects a particular filtered reference ψL0
k′ ∗ IL0

R after

the search within List 0, it is reasonable to constrain the search in List 1 to the

reference ψL1
k′ ∗ IL1

R . A constrained bi-predictive search can be designed based on

the search results from one of the lists.

With the advantages above, the joint classification followed by independent filter

estimation approach Method C, is preferred over Method A and Method B.
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Table 3.1: Filter design methods for bi-directional disparity compensation

Filter design for
averaged bi-predictor

Filter design for predictors from each list

Method A: Method B: Method C:
Joint design Independent design

(i.e. perform ARF-P
twice)

Joint classification fol-
lowed by independent
filter estimation

Frame
partition

One partition Di by
classifying dx0 and dx1

Two partitions: DL0
i

by classifying dx0, and
DL1
j by classifying dx1

One partition Di by
classifying dx0 and dx1

as two features

Filter es-
timation

For blocks in Di, esti-
mate MMSE filter ψBIi
with respect to the av-
eraged bi-predictor

For blocks inDL0
i , esti-

mate MMSE filter ψL0
i

with respect to the
predictor from List 0.

For blocks inDL1
j , esti-

mate MMSE filter ψL1
j

with respect to the
predictor from List 1

For blocks in Di, esti-
mate one MMSE filter
ψL0
i with respect to the

predictor from List 0,
and one MMSE filter
ψL1
i with respect to the

predictor from List 1

Filtered

references

ψBIi ∗IL0
R and ψBIi ∗IL1

R ψL0
i ∗IL0

R and ψL1
j ∗IL1

R ψL0
i ∗IL0

R and ψL1
i ∗IL1

R

3.5 Simulation Results

We performed simulations based on H.264/AVC coding standard. To partition a frame,

the EM classification tool [4] based on GMM is combined with our encoder. The classifier

takes disparity vectors (multiview case) or coefficients of fmb (monoscopic video) as input

features. To solve the block-wise MMSE filters fmb, we extended the code from [45]. For

both methods, reference frame management functions have been modified to store filtered

reference frames. Finally, as described in Section 3.3.3, filter coefficients are encoded as

in [45,47].
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The proposed adaptive reference filtering approach (ARF) is compared with AIF [46]

and current H.264/AVC. Our proposed ARF utilizes multiple filtered versions from a

single reference frame. If the EM classification generates K classes, each with a corre-

sponding filter, there will be N = K + 1 references in the reference list, including the

original unfiltered one. In H.264/AVC, motion compensation with multiple references is a

coding tool [54] that also aims to improve coding efficiency by providing better matches.

In our simulations, the maximum K allowed is 4. Thus, we also compare our method to

H.264/AVC with the number of reference frames set to 5.

Inter-view prediction in MVC: P-frames

In Section 3.3, depending on the information available, we proposed two methods

to partition frames into regions suffering from different types of focus mismatch. For

MVC inter-view prediction, the depth-dependency characteristics of focus mismatch can

be exploited by using disparity information to classify blocks. Here we would like to first

verify the efficiency of such design approach. We conduct simulations of ARF based on the

classification of disparity vectors, denote as ARF-Z, and also the classification based on

the estimated coefficients of MB-wise filters fmb, denote as ARF-fmb. Using H.264/AVC

reference software JM10.2 [42], we encode anchor frames only at given timestamps using

inter-view coding, i.e., we take a sequence of frames captured at the same time from

different cameras and feed this to the encoder as if it were a temporal sequence. The intra

period is set equal to the number of views such that the coding structure for anchor frames

is IPPP, as depicted in Fig. 1.2. Fig. 3.14 shows the rate-distortion (RD) comparison

between the two filter design methods, along with H.264/AVC results as references. The
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Figure 3.14: Comparison between two ARF methods on inter-view coding

four rate points were obtained at (from left to right) QP = 36, 32, 28, and 24. It can

be seen that using disparity information to identify different types of focus mismatch

achieves higher coding efficiency as compared to classification based on estimated fmb.

The gain is larger at higher bitrates: At QP=24, ARF-Z has 0.15 dB gain over ARF-fmb

for Race1 and 0.25 dB gain for Rena. The results justify that the utilization of disparity

is a reliable way of estimating different focus mismatch kernels. Furthermore, ARF-Z

is less complex than ARF-fmb. In what follows, all our comparisons will be based on

ARF-Z.

It can be seen from Fig. 3.15 that for the multiview sequences we tested, ARF-Z

provides higher coding efficiency than H.264/AVC, although the gains vary significantly

depending on the test sequence. In the Ballroom sequence, almost no cross-view mismatch

can be observed. Furthermore, frames from different views have been rectified (properly

registered) by applying homography matrices [18]. In this situation, the three enhanced

predictive coding schemes: multiple reference frame, AIF and ARF all provide very similar

coding efficiency, i.e., about 0.3 ∼ 0.4 dB gain over H.264/AVC with one reference.
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Figure 3.15: Comparison of different techniques applied to inter-view coding

Cameras for the Breakdancers sequence are arranged on an arc. View 4 in this se-

quence is somewhat blurred while all the other views have very a similar subjective visual

quality. From the simulation results, we see that adaptive filtering can be used to pro-

vide better reference for predictive coding. Both the proposed method and AIF achieve

higher coding efficiency than the multiple references method in H.264/AVC. Our ARF

method designed based on scene depth, provides a marginal gain over AIF. However, it is

worth noting that the achievable gain with these enhanced predictive codings is relatively

modest as compared to that achievable with other multiview sequences in Fig. 3.15. It

is because the frames in the Breakdancers sequence have large homogeneous areas for

which intra coding was selected. Fig. 3.4 provides an example of the disparity-based
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frame partition and intra-coded areas during the initial disparity estimation. Due to the

relatively large number of intra-coded blocks, our proposed method provides a 0.2 dB

gain at 100Kb/frame over H.264/AVC with one reference.

Race1 is the sequence that suffers from most severe focus mismatch across views. As

a result, the benefit of adaptive filtering is more prominent: AIF provides a 0.3 dB gain

over multiple reference H.264/AVC, and the proposed ARF achieves an additional 0.2 ∼

0.3 dB gain over AIF (0.7∼ 0.8 dB over H.264/AVC with one reference). Focus mismatch

is more efficiently compensated with our depth dependent adaptive filtering. As for the

Rena sequence, in the presence of some degree of inter-view discrepancy, our ARF method

again provides a 0.15 dB gain over AIF (0.6 dB gain with respect to H.264/AVC with one

reference). In this sequence, due to a much closer spacing of the cameras as compared to

other test sequences (5cm versus 20cm), the standard multiple reference method achieves

coding efficiency similar to that of AIF.

Based on the simulation results, it can be concluded that our proposed method is

especially helpful for disparity compensation with focus mismatch. It effectively designs

filters as estimators of mismatch kernels to compensate for the possible discrepancies

associated with scene depth. For sequences with stronger focus mismatch, it provides

greater coding gains over single reference AIF and the multiple reference method without

adaptive filtering.

Inter-view prediction in MVC: B-frames

The proposed ARF with support of bi-directional prediction (Section 3.4) is integrated

with JMVM 5.0, which is a reference software from JVT dedicated for multiview video
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Figure 3.16: Rate-distortion performance of the proposed ARF

coding based on H.264/AVC. We partition a frame into up to three depth-levels and

estimate the corresponding filters. Filters of size 5×5 with circular symmetry are used

(ψ55cir as equation (3.8)). We encode frames only at given timestamps using inter-view

coding with IBPBP structure. The interval between two timestamps is 0.5 sec. (e.g.

Inter-view coding at every 12th frame for frame rate 25fps, no temporal prediction.)

Without making any modification to the bi-predictive search schemes, we performed

simulations based on Method A and Method C in Table 3.1 using iterative search.

(Initial search range ±64, plus 4 iterations with refinement search range ±8.) For the

sequences tested, the two-set filter design Method C achieves higher coding efficiency

than joint filter design Method A. Thus in Fig. 3.16, we provide the corresponding RD

results of the two-set filter design approach. The four rate points (from low to high) were

obtained with QP = 37, 32, 27, and 22. It can be seen that, for views encoded with

bi-directional prediction (inter-view B-frames), a 0.6∼0.8 dB gain is achieved on Race1

when applying the proposed two-set ARF design, while the improvement is about 0.3∼0.4

dB for Rena.
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We also tested the fast bi-directional search method proposed for filter design Method

C, in which the search over multiple filtered references is only performed within one of

the lists, and constrained search will then be performed for the other list based on the

filter selection in the first list. Since there are two lists, this procedure can obviously

be carried out in two different orders: Multiple reference search in List 0 followed by

constrained search in List 1, or vice versa. The multiple search should be performed

on the list in which blocks are more likely to select the correct filter, i.e., in the list

where choosing different filters will results in greater differences in prediction error, such

that the filter selection is more reliable to serve as the constraint for the search in the

other list. From the analysis in Section 2.3 and Fig. 2.9, across different disparity values

(depths), filter responses resulting from smaller focus setting mismatches have greater

differences as compared to those resulting from larger focus setting mismatches. However,

these filters have higher ±3dB frequencies (i.e., smaller setting mismatch, less impact on

the images). For natural images, energy is mostly concentrated in the low frequency

components. As a result, although there are larger differences in filter responses, they

may not corresponds to larger differences when calculating prediction error. On the other

hand, larger focus setting mismatch leads to filters that have stronger effect on the images.

But at different depths the difference between filter responses is not as significant as in the

case of filters resulting from smaller setting mismatch. Thus, without actually knowing

the exact setting difference, we conduct simulations for both search orders. The results

on different views of Race1 are shown in Fig. 3.17. The two constrained search schemes

lead to about 0.1 ∼ 0.2 dB degradation as compared to multiple reference search in both

lists.
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Figure 3.17: Performance of constrained fast search for ARF-B

Temporal prediction in monoscopic video

In Fig. 3.18, we first provide the RD coding results for a monoscopic sequence with

strong localized focus changes. From the test sequence fondue-multi, we excerpt and

encode frames 126 ∼ 170 during which the camera focus is changing back and forth rapidly

among people at different scene depths. It can be seen that the proposed adaptive filtering

approach ARF-fmb provides about 1 dB gain over H.264/AVC with 1 reference, 0.5 dB

gain over H.264/AVC with 5 references, and around 0.2 ∼ 0.3 dB gain as compared to

AIF. The results demonstrate that, when video undergoes local focus changes, adaptive

filtering can be used to provide better reference for predictive coding. The proposed

method and AIF both achieve higher coding efficiency than the multiple reference method

in H.264/AVC. Our approach is more effective in modeling the localized focus changes,

with multiple versions of filtered references generated for motion compensation.

As a reference, we provide another set of simulations results on the sequence Raven,

which exhibits global motion blur : At different timestamps, the entire frame may be

blurred due to camera movement. It can be seen that for this particular case, the two

adaptive filtering approaches, ARF and AIF, achieve almost identical coding performance:
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Figure 3.18: Rate-Distortion comparison of different approaches

about 0.3/0.6 dB gain over H.264 with 5/1 references. This result indicates that the

proposed ARF method provides more gain than AIF only when the blurring mismatch is

localized. In other video sequences extracted from movie trailers containing some degree

of focus mismatch, we also achieved 0.4 ∼ 0.7 dB gain over H.264/AVC with 1 reference.

The gain is much smaller when applying the proposed method to regular sequences with

no focus changes. Thus, in a practical system, it would be desirable to develop tools

to detect the existence of focus mismatch (e.g., applying appropriate criteria to residual

blocks), so that mismatch compensation is only explored when a potential coding gain

can be achieved.

3.6 Complexity Analysis

There are two main factors in our proposed ARF approach that will increase encoding

complexity. One is the process of estimating mismatch kernels, which includes initial
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motion/disparity search, classification of disparity vectors or coefficients of fmb, calcu-

lating filter coefficients, and generating filtered references. This will be discussed in

detail in Section 3.6.1. The other factor which introduces additional computation is the

motion/disparity search loop over multiple filtered references. Note that filters in AIF

are applied to different subpixel positions at a single reference frame. When conduct-

ing simulations, we measured the motion/disparity estimation time with a profiling tool

provided in JM 10.2 software [42]. When full search is applied, the motion/disparity

estimation time in our method (including the initial and final search) is similar to that

of H.264/AVC with 5 references, and is about 2.5 times as long as in AIF (note that

AIF also involves an initial search). However, unlike the multiple reference method in

which references are from different views or different timestamps, thus having different

disparity/motion, the references in our system are simply different filtered versions of the

same frame. Taking this into account, significant complexity reduction could be achieved

by reusing motion/disparity information: As we proceed from the unfiltered reference (as

in the initial search) to the filtered ones (final search), a much smaller search range could

be applied based on previously computed motion/disparity. We performed simulations

by changing the final search range from ±64 to ±4 using the vectors obtained from the

initial search as predictors. The R-D degradation observed is negligible, while the total

encoding time is reduced to about 1
4 [23].

In what follows, we will focus on the complexity associated with the filter design.
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3.6.1 Complexity of ARF Filter Design

The ARF filter design process can be decomposed into the following three parts: (a)

classification of block-wise parameters (disparity vectors or coefficients of fmb) for frame

partition, (b) calculation of the filter coefficients, and (c) generation of filtered references.

In the frame partition process (Section 3.3.1), with the maximum number of Gaussian

components set to K, classification is performed based on EM algorithm for k = K, K-1,

. . . 1 [4], to cluster the block-wise features. The k which provides the lowest minimum

description length MDL, denoted as k′, will be selected to build the final model. The

complexity of this unsupervised classification is proportional to the maximum number K,

and the number of input elements to be classified. To speed up this process, one can

consider setting a smaller K or performing classification with sub-sampled vectors and

classifying the corresponding blocks. Since the valueK determines the maximum possible

number of depth levels in the classification results, ideally it should be set as sequence-

dependent by observing the scene of each multiview sequence. In our ARF approach,

we do not assume any prior knowledge about the scene, and let the classification tool

decide the number of classes (unsupervised), with a proper upper bound K to start with.

We have observed that for Ballroom, forcing the classification tool with a reduced K

(from 4 to 3 to 2) led to coding degradation that is not negligible. Another possible

approach to reduce classification complexity is to use less elements for classification.

For example, in MVC inter-view prediction, we can sub-sample the disparity field. The

possible degradation due to the sub-sampling method will only be significant on detailed
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object boundaries, where more disparity vectors on smaller block size have to be used to

differentiate disparity values.

To analyze the complexity of filter calculation, let us denote C the number of distinct

filter coefficients in a given filter (e.g., 6 coefficients for ψ55cir), and PDk
the number of

pixels in depth class Dk. As shown by (3.6), constructing the Wiener-Hopf equation for

one coefficient in one depth class requires PDk
C+C (left side) + PDk

(right side) addition

/ multiplication operations to calculate the sum of products. Thus, for all filters, each

with C coefficients, the total number of operations will be
∑

k C (PDk
C + C + PDk

). This

value is upper bounded by C (PC + C + P ) ≈ PC(C + 1), as intra coded blocks will not

be assigned to any depth class (i.e.
∑

k PDk
≤ P ). Solving the linear system for each filter

with a set of Wiener-Hopf equations (3.6) requires addition / multiplication operations

in the order of C2 (1st-order linear system with C equations and C unknowns). Thus,

designing k′ filters will require k′C2 operations. For a typical example with k′ = 4, C = 6

(Section 3.3.2), and P = 640 × 480, the value k′C2 is relatively small as compared to

the previous term PC(C + 1). As a result, the total number of operations in (b) can be

approximated by PC(C + 1). For the example filter with C = 6, the result is P × 42.

Note that this will be similar to the complexity of applying different interpolation filters

to generate frame data at all subpixel positions for P pixels, as specified by H.264/AVC

(which can be estimated to be P × 66 [48]).

Finally, to generate filtered references, the complexity of the convolution depends on

the structure of filters: To generate one filtered pixel, the number of multiplications is

equal to the number of distinct filter coefficients, and the number of additions is equal to

the number of elements in the filter minus one. For ψcir55 which has 6 coefficients, there
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will be 6 multiplications and 5 × 5 − 1 = 24 additions to generate one pixel. Thus the

total number of operations is k′P × 30, which will be P × 120 when k′ = 4 or P × 90

when k′ = 3. Again the complexity of this step is similar to the calculation of sub-pixel

values with interpolation filters as in H.264/AVC.

We measure the execution time by performing ARF encoding in three steps: (i)

Initial motion/disparity search, (ii) frame partition, filter estimation, and generating

filtered references and (iii) final encoding with filtered references. On average, without

any complexity reduction method, the processes in (ii) together lead to an increase of

about 25% in execution time as compared to a H.264/AVC coding process with one

reference, ±64 search range.

3.7 Conclusions

We have proposed an adaptive filtering approach for encoding video content exhibiting lo-

calized focus mismatch in different regions within a frame. Our approach first performs an

initial motion/disparity estimation to obtain motion/disparity information and establish

block correspondence. For inter-view prediction in MVC, disparity vectors are exploited

to identify regions suffering from different types of focus mismatch. Blocks with similar

disparity vectors are grouped into classes (scene-depth levels). As for monoscopic video

with focus changes, we first capture the local variation of focus changes by estimating

MB-wise filters. MBs with similar filters are then grouped together and associated with

adaptive filters to be designed. In both cases, EM classification algorithm with GMM ba-

sis, which consider directional variations, is applied. It automatically decides the number
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of class based on MDL criterion. Based on the classification result, an filter which is an

estimator of focus mismatch kernel, is constructed for each class by minimizing predic-

tion error energy. Such filter design approach is adaptive to the focus changes between

the current frame and the reference frame. Filtered references are generated by applying

the estimated filters. For the sequences we tested, the proposed method provides higher

coding efficiency as compared to the current H.264/AVC with multiple reference frames

and other adaptive filtering approaches such as AIF. Larger coding gain is achieved for

sequences with stronger localized focus mismatch.

We also extend the ARF method to MVC inter-view bi-directional prediction with

focus mismatch. We show that the filter design approach for the averaged bi-predictor

leads to a suboptimal solution when combined with conventional bi-predictive search

schemes. Taking into account the interaction between filter design and the bi-predictive

search with filtered references, we proposed a filter estimation method which designs a

set depth-related filters for each reference list. Simulation results show that for views

coded with inter-view bi-directional prediction, the proposed method provides up to 0.8

dB gain over current H.264/AVC in the sequences we tested. We evaluate the efficiency

of constrained search within one of the list based on the filter selection in the other list.

The degradation as compared to performing multiple search on both lists is about 0.1

dB.
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Chapter 4

Computationally Efficient ARF for MVC Inter-view Coding

Based on Rate-distortion Prediction and Filter Sharing

4.1 Motivation

The gain in coding efficiency from the ARF approach we just described in Chapter 3 comes

at the expense of higher encoding complexity, in particular because this is a two-pass

encoding scheme (initial disparity estimation, frame partition, filter estimation, and then

final encoding with filtered references). Even though the computation during the final

disparity estimation can be significantly reduced, without sacrificing coding efficiency, by

reusing the disparity information obtained from the initial disparity estimation [23], the

other components can still introduce significant complexity (Section 3.6.1).

Without any prior knowledge about the mismatch, the initial search and filter estima-

tion are necessary in order to adaptively design filters. However, for inter-view prediction

in MVC, there are certain multiview characteristics that can be exploited to help us apply

ARF in a more efficient manner. In Chapter 2, we have demonstrated that focus mismatch

in multiview systems is a function of the focus setting difference (view-dependency) and
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the object depths (depth-dependency). Assume that during the multiview video captur-

ing process, the cameras being used, the spacing and the relative shooting orientations

between cameras, as well as the focus settings (parameters a, f and d), are time invariant

(we will refer to this as a “time-invariant multiview setting”). Then the optical transfer

function (OTF) of each view will also be time-invariant. The type of focus mismatch

will depend on which view pair is being considered, and will also depend on the scene

being captured. For a pair of views with larger focus setting mismatch (larger difference

in their β curves as functions of disparity/depth), the depth-dependent discrepancy will

also be stronger, leading to lower coding efficiency in inter-view prediction and potentially

higher coding gain if applying ARF. As for a view pair with no focus setting difference,

theoretically the images will only be affected by disparity (as described by (2.25)). The

potential benefit of ARF would be limited since there is no depth-dependent mismatch

to address.

The multiview test sequences used by the JVT-MVC group [18] were captured under

a fixed (time-invariant) multiview setting, i.e., there are no camera adjustments while

the video is being captured. It has been reported [17] that these sequences exhibit inter-

view mismatches that are strongly view dependent. Correspondingly, in MVC inter-view

coding, we have observed that the coding gain achieved by our ARF method, varies

significantly among different multiview sequences. Figures 4.1 and 4.2 illustrate coding

performance of ARF for different views of Ballroom and Race1. For the different QP

tested, View 1 of Ballroom has about 0.5 dB gain when ARF is applied. However the

coding gain in View 4 is significant only at high bitrates. For views that exhibit strong

focus mismatch with respect to the views used for prediction, for example View 4 of Race1,
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applying ARF provides significant coding gain (greater than 1 dB for tested QP settings).

On the other hand, for a view with no perceivable focus mismatch as compared to its

reference view, encoding using ARF leads to very limited (or virtually no) improvement

in coding efficiency. Considering the additional complexity due to ARF, it is desirable

to develop prediction methods to determine whether ARF is beneficial for a given view,

such that we can avoid applying ARF to views that would not achieve much coding gain.
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Figure 4.1: ARF performance in different views of Ballroom
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Figure 4.2: ARF performance in different views of Race1

Furthermore, since the OTFs are time-invariant, for a given pair of views, the mis-

match associated with an object at depth Z will be the same at different times. Thus,
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across time, when the captured scene is composed of similar levels of depths, the mis-

matches present in the images will also be alike, leading to similarity in the ARF filters.

It is observed that for a given view, the estimated filters at different timestamps tend

to be very similar. Thus, instead of estimating ARF filters at every timestamp, a set

of filters can be re-used during a certain time interval until there is significant change

in depth-composition within the scene. With time-invariant camera spacing (fixed b in

(2.23) ), a given depth Z will correspond to the same disparity δZ even for images cap-

tured at different timestamps. Thus to determine changes in depth-composition, we can

compare the distribution of block-wise disparity vectors (DVs) at different timestamps.

A more efficient filter estimation/updating scheme can be developed by exploiting this

property.

In this chapter, we analyze the performance of ARF in MVC inter-view prediction.

Besides the variation in gains for different multiview sequences reported in Section 3.5,

we further investigate the variations across different views of a given multivew sequence,

and across different times for a given view. We show that the gains in coding efficiency

can exhibit significant differences from view to view. Furthermore, the estimated filter

coefficients at different timestamps demonstrate strong correlation when the depths of

objects in the scene remain similar. By exploiting the properties derived in Section 2.3

and from the performance analysis in Section 4.2, we propose two techniques to design

an efficient ARF coding scheme, which maintains coding efficiency with significantly

reduced complexity: i) view-wise ARF adaptation based on RD-cost prediction, which

determines whether ARF is beneficial for a given view, and ii) filter updating based on

depth-composition change, in which the same set of filters will be used (i.e., no new filters
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will be designed) until there is significant change in the depth-composition within the

scene. Simulation results in Section 4.3 will show that significant complexity savings are

possible (e.g., the complete two-pass ARF encoding process needs to be applied to only

20% ∼35% of the frames) with negligible quality degradation (e.g., around 0.05 dB loss).

4.2 Computationally Efficient ARF for Inter-view Coding

4.2.1 Rate-distortion Analysis and View-wise ARF Adaption

In state of the art video coding techniques, high coding efficiency is achieved by rate-

distortion optimization. For each macroblock (MB), the coding mode which provides the

lowest rate-distortion cost (RD-cost) will be selected:

RD-costMB = min
mode

(Dmode + λRmode) , (4.1)

where Dmode is the distortion between the original MB and the reconstructed MB

using a given mode, Rmode is the bitrate required to encode that mode, and λ is the

Lagrange multiplier. In video coding schemes such as H.264, λ is often chosen as a

monotonic function of QP [43,53]: larger QP (low bitrate scenario) results in larger λ to

put greater penalty on rate. To analyze the performance of ARF, we record the frame-

wise R-D cost in the initial disparity estimation (with only unfiltered reference) and in

the final encoding (with unfiltered and multiple filtered references). The frame-wise RD-

cost is calculated by aggregating MB RD-costs as in (4.1) estimated during MB mode

decision. We apply ARF to MVC inter-view coding with IPPPPPPP structure. For

multiview data with frame rate 24 fps, inter-view coding is performed only at every 12th
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Figure 4.3: Frame-wise RD-cost reduction provided by ARF

frame: 0, 12, 24......; for data with 30 fps, inter-view coding is performed at every 15th

frame: 0, 15, 30...... Thus these timestamps correspond to a half second interval, and we

will call them “anchor timestamps” 0, 1, 2... etc. Fig. 4.3 provides a comparison between

the frame-wise RD-cost in the initial and final disparity estimation for different views

across anchor timestamps.

According to the analytical results in Chapter 2, view pairs with no focus setting

differences will not produce depth-dependent mismatches which ARF is designed to com-

pensate for. However, when there exists a focus setting difference, the type and degree of
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mismatch will depend on the depths of objects appearing in the scene. This will result

in variations in ARF performance. The RD-cost reduction in Fig. 4.3 shows behavior

that is consistent with the analytical results. First, the RD-cost reduction achieved by

our ARF approach varies significantly from view to view. These variations are consistent

with the reported mismatches in multiview test sequences [17]: For views that exhibit

strong focus mismatch with respect to the views used for prediction, for example Views 4

and 5 of Race1, applying ARF can provide more than 10% reduction in RD-cost. On the

other hand, for a view with no perceivable focus mismatch as compared to its reference

view, encoding using ARF leads to very limited improvement in coding efficiency. Sec-

ond, views showing higher gains with ARF (i.e., exhibiting focus mismatch) tend to have

larger variations in RD-cost reductions across different timestamps, due to the change

in depth-composition. Note that while Fig. 4.3 only depicts results at a given QP for

each sequence, the same behavior (variations cross view/time) is observed for all three

sequences across QP 22, 27, 32, and 37. However it is worth mentioning that the RD-cost

reductions become smaller as QP increases (low-bitrate scenario).

From the analytical results in Section 2.3 and observations above, if for a given view

the RD-cost reduction achieved by using ARF is consistently very small over multiple

anchor timestamps, it is reasonable to consider not applying ARF for future anchor

frames. We propose a predictive ARF adaptation method such that, within a period of

N anchor timestamps, the encoder evaluates RD-cost reduction provided by ARF in the

first T anchor timestamps, and determines whether to apply ARF to the remaining anchor

timestamps. In the next period of N anchors, ARF will be tested again to determine

whether it will be efficient. Let µV(1,T ) denote the average RD-cost reduction over anchor
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timestamps 1 to T (where T ≥ 1 ) in view V when applying ARF, and σV(1,T ) denote the

corresponding standard deviation. This ARF adaptation method can be summarized as:

Algorithm 1 ARF adaptation for a given view

Divide anchor frames into groups of N anchor frames
for Each group of N anchor frames do

for 1 ≤ i ≤ T , i.e. the first T frames in each group do
Apply two-pass ARF

end for
Calculate µV(1,T ) and σV(1,T )

if µV(1,T ) < κ and σV(1,T ) < ǫ then
for T + 1 ≤ i ≤ N do

Conventional encoding (No ARF for the following frames)
end for

else
for T + 1 ≤ i ≤ N do

Apply two-pass ARF
end for

end if
end for

We call this approach View-wise ARF adaptation based on RD-cost prediction. In

Section 4.3, simulation results will be provided with selected settings of N , T , κ, and ǫ.

4.2.2 Filters Correlation and Filter Updating using Depth Composition

From the analysis in Section 2.3, if multiview setting is time-invariant, the type of mis-

match between frames from a given pair of views will depend on the depth-composition

within the captured scene. Parts of the scene at depth Z will produce the same type

of mismatch at different capturing timestamps, leading to similarity in the correspond-

ing estimated ARF filters. To further investigate how filters vary over time, we perform

correlation analysis: For a given view, we concatenate filter coefficients from filters es-

timated at anchor timestamp t1 to form a coefficient vector At1 , and compared it with
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Figure 4.4: Correlation of estimated filter coefficients at different timestamps

the corresponding filter coefficient vector Ati at another anchor timestamp ti. Fig. 4.4

provides results for some of the analyzed sequences.

For Ballroom, there are multiple dancing couples moving in the scene. A couple may

appear in some frames at depth Z0, while in the preceding frames there is nothing at

this particular depth. Due to such depth-composition difference, the filter correlation has

larger variation as compared to the other sequences tested. On the other hand, in Rena,

the scene composition is consistent across time: A foreground girl and the background

remain at same distances to the camera for the entire sequence. The estimated filter

coefficients demonstrate very high correlation even over 14 anchor timestamps (about 200

frames). The most interesting case is Race1. In this sequence, the content in the scene is

changing due to the viewing angle shift of the camera-set and the carts driving along the

runway. However, frames at different timestamps mostly cover the same range of depth

(Refer to Fig. 4.7). That is to say, at different timestamps, there is no new “depth level”

being introduced (as compared to the Ballroom case). As a result, filters still demonstrate

very strong similarity. These results are consistent with the depth-dependency property

derived in Chapter 2.
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When the filters are highly correlated over a certain time interval, e.g., when depth-

composition within the scene remains similar, it is not necessary to estimate them at

every single timestamp. Applying the same set of filters over multiple timestamps will

reduce the effort spent on initial disparity search and filter estimation, while the coding

efficiency could be preserved. Moreover, when filters are re-used across time, we do not

need to transmit filter coefficients. Our analysis suggests that the time intervals during

which the filters are re-used and when to re-estimate/update filter coefficients, can be

adaptively determined by comparing the depth-composition at different timestamps. In

ARF, disparity vectors are exploited to partition frames into depth-levels by performing

classification based on GMM. To determine whether there has been a change in depth-

composition, we compare the GMM classification results at different timestamps. Let

µGMM
V,i (m) denote the mean of Gaussion component m in the DV classification for frame

i in view V , and let PGMM
V,i (m) be the corresponding percentage of blocks being classified

into that class. A Gaussian component is defined as “not being covered”, in a reference

timestamp r, if its mean is at least D pixels away from any Gaussian mean at timestamp

r, µGMM
V,r (n). If the sum of the PGMM

V,i (m) of all these “not covered” components is over

a certain percentage P , we determine there is a “change in depth composition” and thus

apply the two-pass ARF coding for the current frame to update filters, otherwise the

filters estimated at the reference timestamp will be re-used.

WV,i(m) =

{

1, if ∀n |µGMM
V,i (m) − µGMM

V,r (n)| > D

0, otherwise
(4.2)
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If
∑

m

WV,i(m) · PGMM
V,i (m) > P → Apply two-pass ARF

Otherwise → Re-use filters. (4.3)

However, there is an issue preventing us from directly using the above scheme: For

the current frame being considered, at the point when making the decision to update

filters or not, we actually do not have its disparity information yet. Disparity estimation

should be performed only after we decided to apply two-pass ARF, otherwise filter will

be re-used and initial estimation is skipped. To overcome this problem, we refer to a view

in the earlier coding order for GMM disparity information. For example, when encoding

View 2, the DV GMM for frames in View 1 are exploited to determine whether there has

been a change in depth-composition, and then to decide whether to update the filters.

(Note that in this scheme, we cannot apply filter re-use to the first view being inter-view

coded, as there will be no reference disparity.) This method would be most suitable for

1D parallel camera arrangements with equal spacing among cameras, as the disparity

values of different views at same timestamp should be very similar in this scenario. We

denote such method as filter updating based on depth-composition change. Fig. 4.5 shows

some filter re-use results when we set D = 5 pixels and P = 15% in (4.2)(4.3). It can be

seem that the coding efficiency (reduction in RD-cost) can be well-preserved while the

no new filter are estimated. Note that since the RD-cost is calculated by accumulating

MB-wise RD-cost, the potential bit saving achieved by not sending filter coefficients is

not reflected in Fig. 4.5.
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Figure 4.5: Examples of RD performance when filters are re-used

Combining with the ARF adaptation described in Section 4.2.1, an efficient ARF

coding scheme is summarized in Algorithm 2. In this new scheme, within a period of

N anchor timestamps, after evaluating ARF for the first T anchor timestamps, there

are three possible encoding options for the remaining frames. (i) If the encoder decides

not to use ARF, the remaining frames will be encoded normally, followed by a GMM

classification on the DVs to provide disparity information for the next view. If it instead

decides to apply ARF, (4.2) and (4.3) will be used to choose between (ii) simply re-

using filters or (iii) performing the two-pass ARF to update filters. Frames encoded by

re-using filters do not need to undergo initial disparity search and filter estimation, but

simply perform disparity search with filtered references. Classification on DV will then

be applied to generate disparity information for the next view.

4.3 Simulation results

We conduct simulations with the proposed efficient ARF techniques. As described in

Section 4.2.1, IPPPPPPP inter-view coding is performed at anchor timestamps with

half-second time interval between two timestamps. We implemented the ARF coding
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Algorithm 2 Efficient ARF coding scheme for MVC inter-view prediction (V total num-
ber of views: View 0 ∼ View V − 1. Inter-view coding performed on anchor frames for
View 1 ∼ View V − 1.)

for 1 ≤ v ≤ V − 1 do
Divide anchor frames into groups of N anchor frames
for Each group of N anchor frames do

for 1 ≤ i ≤ T , i.e. the first T frames in each group do
Apply two-pass ARF: Initial disparity estimation, classification, filter estima-
tion, final encoding

end for
Calculate µV(1,T ) and σV(1,T )

if µV(1,T ) < κ and σV(1,T ) < ǫ then
for T + 1 ≤ i ≤ N do

Conventional encoding (No ARF for the following frames)
GMM classification for disparity vectors

end for
else

if v=1, i.e. the first inter-view coded view then
for T + 1 ≤ i ≤ N do

Apply two-pass ARF to update filters
end for

else
Filter reference timestamp r = T
for T + 1 ≤ i ≤ N do

Calculate WV−1,i(m) as in (4.2)
if
∑

mWV−1,i(m) · PGMM
V−1,i (m) > P then

Apply two-pass ARF to update filters
Filter reference timestamp r = i

else
Re-use the filters at timestamp r
Encode with filtered reference
GMM classification for disparity vectors

end if
end for

end if
end if

end for
end for
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scheme on top of the H.264/AVC framework using reference software JMVM 5.0. We set

N = 20 and T = 4, i.e., for a 10 second period (20 anchor timestamps), anchor timestamps

in the first 2 seconds will be encoded with ARF to evaluate the RD-cost reduction. To

set the thresholds κ and ǫ, we observed ARF performance for sequences with virtually no

perceivable focus mismatch, thus having very limited improvement, such as Exit and Uli.

The achieved RD-cost reductions for these sequences are in the range of 0% ∼ 2%. Thus

we set κ = 2% and ǫ = 1%: The encoder will disable ARF coding if it observes that the

average RD-cost reduction over the first 4 anchor frames is less than 2% with a variation

less than 1%.

For the remaining frames which require filtering, (4.2) and (4.3) are used to determine

whether filters will be re-used or updated (thus performing the entire two-pass ARF). We

tested different values of parameters D and P , which resulted in differences in how often

filters are updated. For example for views in Ballroom, with D = 5 pixels, when changing

P from 15% to 10% to 5%, over a period of 20 anchor timestamps, the frequency at which

the filters are updated will increase from twice to four times to five / six times. Updating

filters less frequently leads to larger degradation in coding efficiency as compared to

performing two-pass ARF at every anchor timestamp. In Fig. 4.6, we present encoding

result with D = 5 pixels and P =15%, for which the filters are only updated at most

twice1 over the timestamps tested, as indicated in Table 4.1, 4.2, and 4.3.

It can be seen from the results that the proposed techniques are very efficient in

preserving ARF coding gains while the complexity is significantly reduced. After zooming

in on the RD curves, we observe a degradation of less than 0.05dB as compared to the

1Excluding the initial ARF testing period, i.e., the first 4 anchors for each 20-anchor period.
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Figure 4.6: Encoding results of the proposed coding scheme (QP = 37, 32, 27, 22)

Table 4.1: Encoding selection of the proposed efficient ARF: Ballroom (20 anchors each
view. The first four, a1 ∼ a4, are encoded with two-pass ARF. If it is determined that
the remaining anchors also need filtering, the anchors at which filters are updated are
also listed in the table, and the other anchors will be encoded by re-using the filters.)

Ballroom (20 anchors)
QP Scenario V1 V2 V3 V4 V5 V6 V7

22 Filtering for a5 ∼ a20? Yes Yes No Yes Yes Yes No
(Update filter at) (All) (a5, a10) (a5, a10) (a5, a10) (a6, a10)

27 Filtering for a5 ∼ a20? Yes Yes No Yes Yes Yes No
(Update filter at) (All) (a5, a8) (a5, a8) (a5, a8) (a5, a8)

32 Filtering for a5 ∼ a20? Yes Yes No No Yes No No
(Update filter at) (All) (a5, a8) (a5, a9)

37 Filtering for a5 ∼ a20? Yes No No No No No No
(Update filter at) (All)

previously proposed ARF results. (Note that the degradation will be even smaller when

the filters are updated more frequently than in the example here, e.g. when P < 15%.)

Across different QPs, the view-wise ARF adaptation method successfully identifies views

for which limited coding gain would be achieved if ARF were applied. With higher QP,

ARF is applied to fewer views since the achievable gains tend to be smaller under the low

bitrate scenario. For example in Table 4.1 Ballroom View 4, ARF is applied only to QP

22 and 27. This behavior matches well with the coding results provided in Fig. 4.1. As
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Table 4.2: Encoding selection of the proposed efficient ARF: Rena (20 anchors each view.
For views that require filtering, since the depth composition remain unchanged, the filters
are re-used throughout the remaining anchors.)

Rena (20 anchors)
QP Scenario V39 V40 V41 V42 V43 V44 V45

22 Filtering for a5 ∼ a20? No Yes Yes Yes No Yes No
(Update filter at)

27 Filtering for a5 ∼ a20? No Yes Yes Yes Yes Yes No
(Update filter at)

32 Filtering for a5 ∼ a20? No Yes No Yes No No No
(Update filter at)

37 Filtering for a5 ∼ a20? No Yes No Yes No No No
(Update filter at)

for views that indeed utilize ARF, most of the frames are encoded using one-pass coding

with filtered references constructed using already estimated filters.

4.4 Conclusions

In this chapter, by exploiting the focus mismatch characteristics derived from the theoret-

ical analysis in Section 2.3, we propose techniques to efficiently apply ARF to inter-view

prediction in MVC. We analyze the performance of ARF in MVC inter-view prediction.

For different views, the gains in coding efficiency demonstrate a strong view-wise vari-

ation. For a given view, the estimated filter coefficients at different timestamps exhibit

strong correlation when the depth-composition within the scene remain similar. The ob-

served properties conform with the results in Chapter 2. The two techniques introduced

in the chapter are i) view-wise ARF adaptation based on RD-cost prediction, which de-

termines whether ARF is beneficial for a given view, and ii) filter updating based on

depth-composition change, in which the same set of filters will be used until there is

significant change in the depth-composition within the scene. Simulation results show
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Table 4.3: Encoding selection of the proposed efficient ARF: Race1 (35 anchors each
view. a1 ∼ a4 and a21 ∼ a24 are encoded with two-pass ARF. If it is determined that
the remaining anchors need filtering, the anchors at which filters are updated are also
listed in the table, and the other anchors will be encoded by re-using the filters.)

Race1 (35 anchors)
QP Scenario V1 V2 V3 V4 V5 V6 V7

22 Filtering for a5 ∼ a20? Yes Yes Yes Yes Yes No Yes
(Update filter at) (All) (a14) (a14) (a14) (a14) (a15)

Filtering for a25 ∼ a35? Yes Yes Yes Yes Yes No Yes
(Update filter at) (All)

27 Filtering for a5 ∼ a20? Yes Yes Yes Yes Yes No Yes
(Update filter at) (All) (a16) (a16)

Filtering for a25 ∼ a35? Yes Yes Yes Yes Yes No Yes
(Update filter at) (All)

32 Filtering for a5 ∼ a20? Yes Yes Yes Yes Yes No Yes
(Update filter at) (All) (a16)

Filtering for a25 ∼ a35? Yes Yes Yes Yes Yes No Yes
(Update filter at) (All)

37 Filtering for a5 ∼ a20? Yes Yes Yes Yes Yes No Yes
(Update filter at) (All) (a15) (a15) (a15)

Filtering for a25 ∼ a35? Yes Yes Yes Yes Yes No Yes
(Update filter at) (All)

significant complexity reduction can be achieved, since the complete two-pass ARF en-

coding process needs to be applied to only 20% ∼35% of the frames, while the coding

efficiency is not affected significantly (e.g., around 0.05 dB loss).

98



Ballroom, Anchor 4 Ballroom, Anchor 5 Ballroom, Anchor 10

Rena, Anchor 4 Rena, Anchor 10 Rena, Anchor 15

Race1, Anchor 4 Race1, Anchor 9 Race1, Anchor 19

Figure 4.7: Images at different anchor timestamps for the sequences tested
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Chapter 5

Predictive Fast Motion/disparity Search for Multiview

Video Coding

5.1 Introduction

As described in Chapter 1, temporal and inter-view redundancy can be exploited in MVC

by applying block-based motion/disparity compensated prediction (joint MCP/DCP). As

before, let us denote IC(x, y) the luminance pixel value of the current frame to be encoded,

with (x, y) representing the pixel position within a frame, and let IR(x, y) denote the lumi-

nance pixel value of the reconstructed reference frame. In block-based motion/disparity

compensation, for a given block with size M×N at position (xo, yo) withing IC , the block

matching procedure is performed by evaluating different displacement vectors (dxi, dyi),

to find the best predictor from the reference IR that minimizes a cost function. The

most commonly used cost function is the sum of absolute differences (SAD). The block

matching procedure with SAD as a cost function can be summarized as:

min
(dxi,dyi)

yo+M−1
∑

y=yo

xo+N−1
∑

x=xo

|IC(x, y) − IR(x+ dxi, y + dyi)| (5.1)
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For MVC structures with joint MCP/DCP, such as the one depicted in Fig. 1.2 and

others in [3, 12, 34, 56], higher coding efficiency is achieved by independently searching

the best predictor within each reference (temporal or inter-view), and selecting the one

with lower matching cost. While consistent coding gain is obtained, these coding schemes

require much higher coding complexity as compared to simulcast: For a frame utilizing

joint MCP/DCP, both motion estimation (ME) and disparity estimation (DE) have to

be performed, leading to additional search complexity.

To reduce the complexity associated with joint MCP/DCP, fast search methods have

been proposed which exploit the relationship between motion and disparity fields. They

can be classified into two categories: 1. Joint motion and disparity fields estimation, and

2. Predictive fast search algorithms. In the first category, a regularization constraint

is utilized to jointly estimate motion and disparity fields. Fig. 5.1 illustrates a possible

regularization constraint when a physical point P appears in two views at different time

(i.e., P is not occluded).
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Figure 5.1: The regularization constraint on motion/disparity fields

In Fig. 5.1, P1, P2, P3, P4 are the pixels corresponding to the same point P in the

scene. MVV 0 and MVV 1 are the displacements from P1 to P3 and from P2 to P4 (motion
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vectors); and DVt0 and DVt1 are the displacements from P1 to P2 and from P3 to P4

(disparity vectors). The depicted regularization constraint can also be represented as:

MVV 0 +DVt1 = DVt0 +MVV 1 (5.2)

Instead of independently searching for motion and disparity predictors, joint estima-

tion of both motion and disparity fields can be performed by imposing such regularization

constraints to the block matching procedure [57, 59]. For example in Fig.5.1, after ob-

taining DVt0 and MVV 0, the remaining two vectors DVt1 and MVV 1 can be searched

jointly by selecting the pair of vectors which provides the minimum matching cost while

satisfying (5.2). Although searching complexity can be reduced, these methods have the

drawback that, due to the constrained search, obtained predictors might not be as good

as those found by independent motion and disparity search. As a result, applying such

joint estimation methods causes some noticeable degradation in coding efficiency.

For the second category (predictive fast search), correlation between disparity fields at

different timestamps, or correlation between motion fields in different views, are exploited.

For example in [11], at certain timestamps, a single global disparity vector between V 0

and V 1 is estimated by finding the most dominant disparity value in blocks correspond

to static background. To perform ME for a current block in a frame within V 1, by using

this global disparity, the corresponding block in the frame within V 0 is first obtained.

Then the MV of this corresponding block is chosen as search candidate for ME of the

current block, and a smaller search range applied. However, a single global disparity

vector might not be accurate to provide inter-view correspondence for all blocks within a
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frame. In particular, objects closer to the cameras will have larger disparity as compared

to the background. As a result, MV candidates obtained with this method could be less

reliable for foreground regions.

In this chapter, we propose predictive fast search algorithms (category 2) that can be

used when either the motion or the disparity field is available and we wish to estimate

the other field efficiently. For a current frame to be encoded, if, say, its disparity field

is available after performing DE, and the motion field is available for frames in other

views, then instead of using a global disparity vector as in [11], our method uses the

estimated block-wise disparity field to locate the corresponding blocks in other views,

and exploit their MV as candidates. Likewise, it is also possible to obtain good disparity

candidates when the motion field is available for the current frame after ME, and the

disparity field is available for frames at other timestamps. Furthermore, we construct

a model and analytically demonstrate how mismatches, such as illumination change,

will affect the accuracy of the first estimated displacement field (motion or disparity),

which consequently will affect the reliability of the candidate vectors obtained with our

methods. We also investigate search strategies that can better exploit the characteristics

of the candidate vectors obtained with our method. The rest of this chapter is organized

as follows. In Section 5.2, we introduce the proposed predictive search algorithms with

candidate vectors obtained via local motion/disparity information (in lieu of using a

single global vector as in [11]). The analytical model describing the relationship between

displacement estimation error and illumination change, is provided in Section 5.3. In

Section 5.4, simulation design such as different search strategies, and coding results across

different bitrates, are discussed. In this section we also discuss the bit allocation issue [22]
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and we demonstrate improved overall performance is achievable when simple bit allocation

rules are used. Finally, conclusions are presented in Section 5.5.

5.2 Predictive Fast Search with Candidate Vectors

Obtained from Local Motion/Disparity Information

In this section, we consider the problem of complexity reduction in motion/disparity es-

timation for frames using joint MCP/DCP by proposing search algorithms that, after

either the motion field or the disparity field has been estimated, obtain with low com-

plexity a good set of candidate vectors for the other field. From Fig. 5.1, with small

temporal and inter-view distances, MVV 0 ≈ MVV 1 and DVt0 ≈ DVt1. The main nov-

elty in our method is that, we explicitly exploit the fact that MVV 0 and MVV 1 can be

related via DVt1, while DVt0 and DVt1 can be related via MVV 1. The proposed scheme

performs predictive motion search from view to view and predictive disparity search from

one timestamp to another time. Details are provided in the next subsections.

5.2.1 Predictive Search I: Disparity then Motion (DtM)

In standard video coding, fast motion search algorithms can be designed based on the

assumption that the MV in neighboring blocks are highly correlated. We can use the

result of ME in causal neighboring blocks to obtain a set of MV candidates that can be

used to initialize a search with reduced search range in the current block [7, 44]. In a

MVC scenario, since there are multiple cameras capturing the same scene, it is possible

to predict the motion field of one view using the other view’s motion as reference [11].

104



We propose that for a given frame, after its disparity field has been estimated, we will

be able to find good search candidates for the motion field with very low complexity.

Fig. 5.2 depicts the basic procedure for predicting the motion field from view to view by

identifying MV candidates. In Fig. 5.2(a), the vector field represented with solid arrows

is estimated first. When encoding a non-anchor frame, DE is performed first. For a given

block in a non-anchor frame of current view, Fig. 5.2(b), we track along its disparity

vector to its corresponding block in the reference view. Depending on where this block is

located, it could be overlapped with at most 4 blocks in the reference view, each having

a MV. These can serve as the candidates, denoted MV1,MV2,MV3,MV4 in Fig. 5.2(b),

and provide initialization points for the search. After predicting the motion field of the

current view, the same procedure is used to predict the motion field of the next view,

using the current view as the reference. We denote this as the Disparity then Motion

(DtM) scheme.

V0 V1 V2 V3

DtM from view to view

2
6 7

3 4

5

8

Reference view

Disparity vector

Candidates for
motion vector

Curent view

1

t−1

t

Figure 5.2: (a)Left: The structure of predicting the motion field from the reference view
(DtM) (b)Right: Obtaining MV candidates to predict the motion field

To assess the performance of the additional MV candidates obtained using DtM, we

define two sets of candidates (refer to Fig.5.2(b)): A = {MV5,MV6,MV7,MV8,~0}, which
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contains the motion vectors selected from blocks in a causal neighborhood (as typically

used in many fast motion estimation algorithms) and B = A ∪ {MV1,MV2,MV3,MV4},

which also includes the additional candidates obtained from the neighboring view. For

each block in a non-anchor frame, we choose the candidate that provides the minimum

SAD from each of the sets. The residual image PSNR values are compared in Table 5.1.

For all three test sequences (Aqua, Ballroom, and ST), it can be seen that higher qual-

ity is achieved if the additional candidates provided by the DtM scheme are considered.

One of the drawbacks of the fast motion search using neighboring blocks is that the search

may only identify a motion vector representing a local minimum when the current block

happens to have a MV that is different from those of the neighbors. A typical example is

in situations where the current block is located close to the boundary of a moving object.

Our DtM approach helps to alleviate this problem by providing a block correspondence

in the other view to obtain additional MV candidates.

Table 5.1: Compare different sets of MV candidates, PSNR of residue images

Aqua Set A Set B Ballroom Set A Set B ST Set A Set B

V1 29.47 30.65 V1 28.45 29.25 V1 30.70 32.74

V0 29.54 30.79 V2 28.29 29.16 V2 31.14 32.93

V3 27.94 28.84

5.2.2 Predictive Search II: Motion then Disparity (MtD)

A similar idea can be applied to predict the disparity field after the motion field

has been estimated. We can use the disparity at time t − 1 as the reference to predict

the disparity at time t. This approach is illustrated in Fig. 5.3. Again, the field shown
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with a solid arrow is estimated first. This time when encoding a non-anchor frame,

motion estimation is performed first. For a given block in a non-anchor frame at time

t, Fig. 5.3(b), we track along its motion vector to its corresponding block at time t− 1.

This would give us at most 4 different candidates DV1,DV2,DV3,DV4 to initialize the

disparity search. After predicting the disparity field at time t, this disparity field will be

used as the reference to predict the disparity field at time t + 1. We denote this as the

Motion then Disparity (MtD) scheme.

1 2

3 4

V0 V1 V2 V3
time t−1

t
8

5 6 7

disparity vector
Candidates for

Motion vector

Figure 5.3: (a)Left: The structure of predicting the disparity field from a time instance
(MtD) (b)Right: Obtaining DV candidates to predict the disparity field

5.3 Displacement Estimation under Illumination Changes

The accuracy of the first estimated field will affect the reliability of the obtained candi-

dates: If the first field failed to find accurate corresponding blocks, the candidate vectors

are less trustworthy as they are from regions that do not correspond to the block we want

to encode. There are two primary factors that will affect the accuracy of the estimated

block correspondence. Firstly, instead of pixel-based estimation, motion/disparity com-

pensated prediction is performed in a block-based manner. Different block sizes/shapes

and the signal characteristics within the block will have influence on the matching process.
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Secondly, the accuracy can also be affected by mismatches other than simple displace-

ment, For example, it has been observed that frames from different views in multiview

systems can suffer from illumination and focus mismatches [17]. Inter-view disparity

compensation could fail to obtain reliable correspondence due to these mismatches.

In [31], a block-based illumination model is proposed by first decomposing a block

signal into its mean and a mean-removed signal. In this section, we adopt such decom-

position to demonstrate how the accuracy of the estimated displacement will be affected

by the illumination mismatch when using SAD as cost function, thus justifying the use of

mean-removed block matching utilized in [31]. Moreover, we will derive specific proper-

ties for planar regions which relate the estimation error to the signal characteristics such

as mean and gradient, and to the block matching size.

Following from (5.1), we denote the current block to be matched as BC , and the ith

candidate reference block with displacement vector (dxi, dyi) as Bi
R. That is:

For 0 ≤ x ≤ N − 1, 0 ≤ y ≤M − 1: BC(x, y) = IC(xo + x, yo + y)

Bi
R(x, y) = IR(xo + x+ dxi, yo + y + dyi) (5.3)

A block of pixels can be written as the sum of its mean µ and a zero-mean signal

w [31] (which we denote as a mean-removed structure), i.e.,

BC(x, y) = µC + wC(x, y) and Bi
R(x, y) = µiR + wi

R(x, y), (5.4)

The block matching procedure with SAD cost function can then be represented as:
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min
i

M−1
∑

y=0

N−1
∑

x=0

∣

∣BC(x, y) −Bi
R(x, y)

∣

∣

min
i

M−1
∑

y=0

N−1
∑

x=0

∣

∣(µC − µiR) +
(

wC(x, y) − wi
R(x, y)

)∣

∣ (5.5)

The reference block which provides the minimum SAD is denoted as B∗
R. We assume

that, when there is no other type of mismatch between IC and IR, and no occlusion for

BC in IR, this reference block B∗
R gives the most accurate correspondence to BC , i.e. the

difference of means is ∆µiR = (µC − µ∗R) ≈ 0 and the mean-removed structure difference

is (wC − w∗
R) ≈ 0 (zero matrix).

Now, assume that there are illumination mismatches between the current frame and

the reference frame, such that in the neighborhood of the most accurate correspondence

B∗
R, the reference blocks are affected by a local illumination change so that:

B̂i
R(x, y) = S ·Bi

R(x, y) + C

= (S · µiR + C) + S · wi
R(x, y), (5.6)

where (5.6), S is a multiplicative scale factor and C is an additive offset. Substituting

(5.6) into (5.5), we get:

min
i

M−1
∑

y=0

N−1
∑

x=0

∣

∣

(

µC − S · µiR − C
)

+
(

wC(x, y) − S · wi
R(x, y)

)∣

∣ (5.7)
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The block matching with SAD cost function will be affected by S and C. For the

special case with only additive illumination offset, i.e., S = 1, (5.7) will be simplified as:

min
i

M−1
∑

y=0

N−1
∑

x=0

∣

∣

(

µC − µiR − C
)

+
(

wC(x, y) − wi
R(x, y)

)∣

∣ (5.8)

In (5.8), a larger |C| will have stronger effect on the estimated displacement, leading

to less reliable block correspondence. While the matching for mean is affected by the

offset C, matching for the mean-removed structure remains the same. Thus for localized

additive illumination offset, we can modify the cost function as a mean-removed SAD to

preserve block correspondence when performing block matching [31].

In what follows, we discuss an example in the case of homogeneous/smooth regions

in order to quantify how illumination parameters S and C affect the accuracy of the

estimated displacements.

Example: Homogeneous/Smooth-varying Regions:

For a homogeneous/smooth varying region, we assume that the pixel values fit closely

to a planar function such that (1) BC(x, y) = ax + by + d, and (2) The corresponding

region in the reference frame, without any illumination change, is a shifted version with

displacement vector (Dx,Dy), i.e., Bi
R(x, y) = a [(x−Dx) + dxi]+b [(y −Dy) + dyi]+d.

In this scenario, we will have wi
R = wC . By replacing µiR with (µC − ∆µiR), the block

matching of (5.7) can then be approximated as:
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min
i

M−1
∑

y=0

N−1
∑

x=0

∣

∣

(

(1 − S)µC + S · ∆µiR − C
)

+ (wC(x, y) − S · wC(x, y))
∣

∣

min
i

M−1
∑

y=0

N−1
∑

x=0

∣

∣(1 − S) (µC + wC(x, y)) − C + S · ∆µiR
∣

∣ (5.9)

Given that for
∑

k |ak −X|, the minimum occurs when X is equal to the median of

the sequence {ak}, the block matching in (5.9) will find the block with mean difference

closest to the following value:

∆µR = −
(

1 − S

S
·median(µC + wC(x, y)) − C

S

)

(5.10)

Since the pixel positions x and y are both equally spaced, median(µC + wC(x, y))

= median
{

ax+ by + d| 0≤x≤N−1

0≤y≤M−1

}

= mean
{

ax+ by + d| 0≤x≤N−1

0≤y≤M−1

}

= µC . Thus from

(5.10), the block matching will find a block with:

∆µR = −
(

1 − S

S
µC − C

S

)

, for planar regions (5.11)

µC and ∆µR at a given (dx, dy) can be computed as:

µC =
1

MN

M−1
∑

y=0

N−1
∑

x=0

(ax+ by + d) = a
N − 1

2
+ b

M − 1

2
+ d (5.12)

∆µR|(dx,dy) =
1

MN

M−1
∑

y=0

N−1
∑

x=0

(ax + by + d) − [a(x−Dx+ dx) + b(y −Dy + dy) + d]

= a(Dx− dx) + b(Dy − dy) (5.13)
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Using (5.12) and (5.13) in (5.11), we get:

a(Dx− dx) + b(Dy − dy) = −
(

1 − S

S
· (aN − 1

2
+ b

M − 1

2
+ d) − C

S

)

(5.14)

To illustrate the effect of illumination parameters (S,C), let us consider the case when

the region has zero gradient in y direction (b = 0), in other words, pixel values linearly

change along x-axis only:

a(Dx− dx) = −
(

1 − S

S
· (aN − 1

2
+ d) − C

S

)

dx = Dx+

(

1 − S

S
· (N − 1

2
+
d

a
) − C

aS

)

(5.15)

We can see that, in the presence of illumination change, the estimated displacement

dx will deviate away from the actual displacement Dx, by 1−S
S · (N−1

2 + d
a) - C

aS . Thus,

besides the obvious fact that larger |C| and S farther away from 1 will result in greater

error in the estimated displacement, other interesting properties can be observed from

(5.15), which we summarize below:

With only additive illumination change (S = 1), |dx−Dx| = |Ca |

Planar regions with larger gradient will be more robust to such additive offset, since

|dx−Dx| is inversely proportional to a(or b).

With only multiplicative illumination change (C = 0), |dx−Dx| = |1−SS · (N−1
2 + d

a)|
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• When a and d are fixed, block matching with larger block size (larger N) is more

vulnerable to multiplicative illumination change, leading to larger error in the esti-

mated displacement.

• Under same block size and same gradient (N and a fixed), a block with a larger d,

hence a larger mean, will receive stronger influence from multiplicative illumination

change, thus will make greater error in the estimated displacement.

In conclusion, stronger illumination mismatch (greater |C| and |1 − S| values) will

cause larger error in the estimated displacement, thus providing less reliable block corre-

spondence. For planar regions, more specific properties can be derived which relate the

estimation error to the signal characteristics (mean, gradient) and to the block matching

size. A larger error in estimated displacement indicates that the selected reference block

is farther away from the actual corresponding block B∗
R for BC . Consequently, the can-

didate vectors obtained with methods proposed in Section 5.2 will empirically become

less trustworthy. In Section 5.4, simulation results will demonstrate that when the first

estimated field is affected by illumination change such that the block correspondence

is not accurate, performing predictive search for the other field based on the obtained

candidates, will lead to larger degradation in coding efficiency.

5.4 Experiments Design and Results

In this section, we design experiments to evaluate the proposed predictive fast search

methods which obtain new candidate vectors. For frames utilizing joint MCP/DCP, we

consider the following three schemes: 1. Both ME and DE use full search (we denote this
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a dual full search scheme), 2. DtM, where disparity field is estimated by full search and

motion is fast searched with new candidates, and 3. MtD, where motion is full searched

and disparity is fast searched with new candidates. The dual full search scheme serves as

a baseline of the potential gain as compared to simulcast. As for MtD and DtM, there

are multiple candidate vectors that can be used. In Section 5.4.1, we investigate different

search patterns utilizing these candidates.

5.4.1 Investigation of Efficient Search Patterns

As described in Section 5.2, the main novelty in the proposed algorithms is that we track

along the first estimated field (motion or disparity) to obtain candidate vectors for the

other field. The additional candidates provide improved prediction in cases where the

motion/disparity vector of the current block is not similar to that of its neighboring

blocks.

In most predictive motion search algorithms for monoscopic video, the mean or median

of the candidates is used to initialize the search location. This approach relies on the

assumption that the motion field tends to be locally smooth. However, the disparity field

is not as homogeneous as the motion field and disparity vectors can be seen to exhibit

significant variation even across neighboring blocks [30, 56]. To see why this is true,

consider that in disparity estimation an area within an object that is closer to the camera

will have larger disparity than an area in the same object that is further away from the

camera. However motion in the two areas is likely to be the same unless the object is

rotating. Thus blocks that belong to the same moving object could have very different

disparity even though they have similar motion vectors. This suggests that computing
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the mean/median of a set of disparity vector candidates may not provide as good a

predictor as applying the same technique to a set of motion vectors candidates. To tackle

this problem, we investigate a search strategy, such that multiple searches are performed

around each of the candidates, with each of the searches employing a much smaller search

range than what would be typically used in combination a single search window centered

at the mean of the candidates. Fig. 5.4 illustrates this search pattern. Note that this

multiple-search method can be seen as an extension of the enhanced predictive zonal

search (EPZS) [44] where we obtain additional candidate vectors via motion/disparity

fields.

Individual candidates
Mean of the candidates

o

X

o

o

o X

Figure 5.4: The search pattern that uses all candidate vectors

For MtD, there are 9 candidates to be considered: DV1 to DV8 and ~0. One approach is

to order the candidates, based on their SAD, for example, and only perform search around

the top priority candidates. Or we can search around all 9 candidates. Since some of the

candidates might be the same and their search ranges may overlap, we currently adopt

the second approach so that a search is performed for each of the candidates.

To verify the efficiency of the new search pattern, we compared the following two

scenarios in the MtD scheme:

• EachC: Search with 3×3 windows (±1 × ±1) centered at each DV candidate
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• MeanC: Search with a 9×9 window (±4 × ±4) centered at the mean of the DV

candidates

Note that the maximum number of vectors to search for EachC is 81, while MeanC

always has to check exactly 81 vectors.
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Figure 5.5: Comparison of different search patterns.

Fig. 5.5 provides the simulation results for two different sequences using H.264/AVC-

based coding structure described in Fig. 5.2. The search pattern EachC achieves higher

coding efficiency when we perform the predictive search on disparity estimation. The

non-smooth disparity field is better predicted because our search pattern takes all the

candidate vectors into account instead of adopting the mean of candidates as a single

search center. In the following simulations, we adopt this multiple-search method for

both MtD and DtM schemes.

5.4.2 H.264/AVC-based Simulations

Our H.264/AVC-based MVC coding structure is implemented on top of the JM reference

software [41]. A immediate benefit of MVC can be observed: the anchor frames are now
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encoded using inter-view prediction, which provides a higher coding efficiency as compared

to the simulcast case, where they were intra coded. The quality of these encoded anchor

frames is crucial because they serve as the temporal references for the later frames. The

work in [22] studied the bit allocation issue in dependent video coding scenarios such as

those arising in MVC. Their results demonstrate that if more bits are spent on anchor

frames, a better overall coding efficiency will be achieved, because all the frames following

the anchor can be encoded more efficiently. Here we simply use a smaller quantization

step size (the QP parameter in H.264/AVC codec) to encode the anchor frames. For

example, if the non-anchor frames are coded with QP = 28, then the anchor frames will

be coded with QP = 26. Fig. 5.6 shows the effect of this QP change. Gains from this bit

allocation are observed on all the test sequences and under all three coding schemes (dual

full search, DtM, MtD). In all the following results provided in this section, we adopt this

smaller QP for anchor frames.
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Figure 5.6: The effect of changing QP for the anchor frames

In Figures 5.7, 5.8, and 5.9, we present the rate-distortion curves (R-D curves) from

our simulation results. The GOP structure in our simulations has 10 frames in time
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direction and 3 to 4 views in spatial direction. The degradation of MtD and DtM,

as compared to the dual full search scheme, comes from that one of the field is fast

searched with the proposed algorithms. When using a 3×3 range (±1×±1) around each

candidate, the average number of vectors tested for the fast searched field, is about 40

∼ 65 for disparity and 30 ∼ 50 for motion. This is a very low cost for the predictive

searched field, as compared to full search range of ±32 × ±32 = 4225 or ±64 × ±64 =

16641 used in our simulations (see Table 5.2). Note that during the search, here we did

not use any early termination techniques such as the one proposed in EPZS [44]. Since

in Section 5.4.1 we have demonstrated that the candidates obtained with our methods

can be more efficiently exploited with multiple search regions, it is reasonable to consider

using them in the context of the EPZS scheme in which its early termination techniques

can help further reduce the search complexity.

The MtD approach achieves very good performance for all three test sequences, even

with a small search window (3×3) around each candidate. The R-D curves are very close

to the curves obtained with the dual full search coding scheme. The performance of

DtM predictive search varies among different test sequences. The Aqua sequence has the

most dense camera setting among our three test sequences: 15 cameras with about 1.8cm

spacing. The correlation between motion fields in different views is very high. Fig. 5.7

Table 5.2: Parameters of the sequences and simulation settings for Section 5.4

Sequence Dimension Frame Rate No.Views GOP in simulation Full search range

Aqua 320×240 10 fps 15 V2→V1→V0 ±32 × ±32

Ballroom 640×480 25 fps 8 V0→V1→V2→V3 ±64 × ±64

ST 640×480 15 fps 6 V0→V1→V2 ±64 × ±64
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shows that the DtM approach provides almost the same coding efficiency as MtD. For

the Ballroom sequence, the R-D performance of DtM exhibits some degradation (0.1

∼ 0.2 dB) with respect to the dual full search scheme. In our simulations, this is the

sequence with the highest gain in coding efficiency (up to 1.5 dB) when comparing MVC

with simulcast (Fig. 5.8). DtM preserves much of this gain with a low complexity for

predictive motion search. The worst case of DtM appears to be on the ST sequence

(Fig. 5.9). As discussed in Section 5.3, the inter-view illumination mismatch reduces

the accuracy of the first estimated disparity field. With a 3×3 search range for MV

candidates, the DtM’s R-D curves lie about halfway between the dual full scheme and

simulcast. We provide one more set of simulation results as the search range is increased

to 5×5. The corresponding R-D curves move to about 0.1 ∼ 0.2 dB below the dual full

search scheme.

Once again we see that the key to the performance of the proposed predictive al-

gorithm is that the most reliable estimation should be performed first, so that the fast

predictive search on the second field can make use of good candidate vectors. For MVC,

since the camera view settings vary among different applications, plus the fact that frames

from different views are prone to suffer from illumination and focus mismatches [17], it is

likely that computing the motion field first will be in general more efficient, so that MtD

should in general be chosen over DtM in MVC.
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5.5 Conclusions

Higher coding efficiency can be achieved in MVC by exploiting both temporal and inter-

view redundancy. In this chapter we propose novel predictive fast search algorithms to

reduce the complexity for MVC. After one of the motion/disparity fields is estimated, the

proposed algorithm obtains good candidate vectors to perform the estimation on the other

field with very low complexity. A more efficient search pattern employing the candidate

vectors is also investigated, and the results conform with the finding in EPZS. The new

candidate vectors can provide additional prediction information if the first estimated field

is accurate. Since motion estimation generally provides better block correspondence than

disparity estimation, MtD generates very consistent coding efficiency among different

test sequences, as compared to DtM. Simulation results with H.264/AVC-based MVC

structure show that MtD can achieve coding efficiency that is very similar to the dual full

search scheme, while the complexity is reduced significantly. The simulations also verify

that in general MtD should be chosen over DtM.
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Figure 5.7: Predictive search simulation results for Aqua sequence
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Figure 5.8: Predictive search simulation results for Ballroom sequence
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Figure 5.9: Predictive search simulation results for ST sequence
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Chapter 6

Conclusions and Future Work

Multiview video compression is a key technology for efficient storage and transmission of

multiview video data. In this dissertation, we exploit special characteristics of multiview

video to develop techniques that improve MVC efficiency with reduced complexity.

We consider the problem of encoding video content exhibiting focus mismatch due

to focus setting differences. We first use geometrical optics to analyze characteristics of

images captured under the effect of focus. It is demonstrated that the focus mismatch

can be represented in terms of the focus setting parameters (camera-dependency) and the

depths of objects (depth-dependency). The focus mismatch kernels are circular symmetric

with their shapes varying across different depth. For 1D parallel camera arrangements in

multiview systems, we relate the focus mismatch to the disparity exhibited in frames from

different views. The analytical results provide useful properties that can be exploited to

design focus mismatch compensation techniques.

Based on the analysis, to compensate for depth-dependent focus mismatch, we propose

a novel adaptive reference filtering (ARF) approach. We estimate block-wise parameters

as features for classification such that an image is first partitioned into regions suffering
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from different types of focus mismatch: For inter-view coding in MVC, we exploit the

disparity field to partition frames into regions corresponding to different depth levels. As

for monoscopic video, with no disparity information, we propose a method to estimate the

localized focus changes and partition frames into regions consisting of macroblocks that

suffer from a similar type of focus change. After frame-partitioning, for each region, a 2D

filter is designed by minimizing prediction error. Filtered references are then generated

for encoder to perform rate-distortion optimized coding selection. The ARF approach is

also extended to MVC bi-directional inter-view coding, in which we propose filter design

method that incorporate well with conventional bi-directional search. Simulation results

demonstrate higher coding efficiency as compared to multiple-reference prediction and

adaptive interpolation filtering methods.

Finally, complexity reduction techniques for MVC are presented. We analyze the

encoding results of ARF on inter-view prediction. It is observed that the coding gains

demonstrate a strong view-wise variation, while at different timestamps the estimated

filters exhibit strong correlation when the objects’ depths remain similar. Based on these

findings and the analytical results, we propose i) view-wise ARF adaptation based on

RD-cost prediction, which determines whether ARF is beneficial for a given view, and ii)

filter updating based on depth-composition change, in which the same set of filters will be

used (i.e., no new filters will be designed) until there is significant change in the depth-

composition within the scene. We also propose fast predictive search algorithms, which

exploit the relationship between motion and disparity fields, that can be used when one

of the fields is available and we wish to estimate the other field efficiently. We construct

a model and analytically demonstrate how illumination change will affect the accuracy
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of our fast predictive search methods. Simulation results show that when applying these

techniques, significant complexity reduction is achieved while the coding efficiency can

be well-preserved.

Based on the results in this thesis, there are some interesting extension of the work

that can be addressed in future research:

• Improving ARF based on camera parameters. In Section 2.4, we listed several prop-

erties of focus mismatch based on camera setting parameters and object depth.

However, due to the fact that most of these values are not available in the test

sequences we have, our ARF approach only exploits qualitative properties such as

isotropy and depth/disparity dependency of focus mismatch kernels. It will be in-

teresting to further utilize quantitative properties if camera setting parameters are

available. For example in monoscopic video with no disparity information, knowing

the setting parameters and depth range of the scene, we can derive focus mis-

match kernels and construct a set of representative filters covering these kernels.

To identify regions suffering from different type of mismatch, instead of estimating

block-wise filters as in Section 3.3.1, we can compare the representative filters to

determine which one provides best match and then design MMSE filter for each

region.

• Adaptive filtering for other non-translational mismatches. The general methodology

of ARF, i.e., partition frames into regions based on the properties of the targeted

mismatch, and then estimate mismatch kernels, can be extended to other types of

mismatch. For example, consider motion blur in sport sequences. Instead of being
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isotropic, the direction of motion blur is expected to be highly correlated with mo-

tion information. Thus an ARF approach can be developed by separating an image

into regions moving in different directions, and design directional filters. Another

example is depth-dependent affine transformations in inter-view prediction due to

convergent camera arrangement. Once again we can partition a frame into depth

levels and for each level estimate affine parameters. Warped reference frames can

be generated, after applying obtained affine parameters, to provide better coding

efficiency.
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