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Abstract

In this thesis we are proposing algorithms in the areas of signal processing and
networking to enable efficient and reliable transmission of multimedia data. This
work can be divided into three parts, the first part deals with source encoding,
the second with channel decoding and the third with channel modeling.

Multimedia data is correlated and many popular source coders take advantage
of this correlation to improve their performance, for example, predictive quanti-
zation, context based entropy coding and spatially adaptive thresholding for de-
noising. Clearly for these memory based systems, performance can be improved
by permitting the processor to lookahead for several samples, i.e., permitting the
processor to make decisions based not only on past samples but also on future
samples.

In the source coding community the advantages of this “delayed decision” ap-
proach have long been recognized, but popular usage of this approach has been
limited by the associated increase in complexity of the source encoder. In this the-
sis, we propose a general framework for reducing the complexity of the lookahead
search for memory based source coders. We have applied our algorithm to rate
distortion optimization in an adaptive context based entropy coding environment.
A compression and a denoising algorithm for images have been developed; these
algorithms achieve better results than the state of the art coders and denoisers. In
addition, the results are comparable to results obtained by the traditional, more
complex, lookahead search algorithms.

On the other hand, in channel decoding the delayed decision approach is very
popular. However the memory of the system is mostly provided either by the inter-
symbol-interference in the channel or by the forward error correction codes like
convolution codes. There has been limited work on incorporating source properties

and using the memory of the source in channel decoding. In this thesis we propose
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a channel decoder based on maximum likelihood sequence estimation (MLSE) for
predictive coding environments, where the source information is supplied by using
the multiple description coding (MDC) format. MDC is a novel forward error
correction scheme which does not require retransmission and provides graceful
degradation, hence it is very popular for multimedia data. Our MLSE channel
decoder exploits the correlation across descriptions and within a description to
estimate data lost due to noise in a description. This allows the MDC decoder to
decode at a higher SNR and also reduce error propagation.

The last part of work is on network modeling. Given the best-effort nature of
the current Internet, it is up to the application to adapt to a wide range of network
conditions. To allow the applications to be adaptive, simple and efficient network
loss models are needed so that the applications can predict the future and adopt
the optimal strategy. We have developed a model for the temporal dependence
between losses in network traffic, based on the universal modeling concept of
Risannen which shows a marked improvement over the traditional models based

on the Markov chains.
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2.10 Barbara image, Gaussian random noise of std=20. Single pass

3.1

3.2

3.3

3.4

3.5

3.6

lookahead algorithm, where soft thresholds are kept at each state.
There are two choices, to threshold or not to threshold. The path
which has the minimum distortion for a given a rate is chosen. Rate
is the regularization metric, to calculate rate a uniform threshold
quantizer is used. However, the distortion is calculated between
the thresholded and the original samples. . . . . ... . ... ...

Lena image coded using Progressive JPEG coder. Base Layer mean
square error (MSE) =59.06, Enhancement Layer MSE =3589.1,
Total Bpp =1.8, Total MSE =8.8506, MSE is w.r.t. original Lena
IMAge. . . . . o e e e e
S1 and S5 are two descriptions generated of the source Y and trans-
mitted over independent channels. If both are received, the decoder
decodes to Y with central distortion Dy. If only one description is
received, say Sp, the decoder decodes to }}1 with side distortion D;.
R, and R, is the rate associated with the respective description.

MDC based on the polyphase transform and selective quantization
work of Jiang and Ortega [4]. This MDC technique will be used
for simulations in this chapter. . . . . . . .. .. ... 000 L.
The proposed MDC system based on DCT transform coding. An
8x8 blocks of image data is DCT transformed. It is quantized by
the high resolution (HR) and low resolution (LR) quantizers and
zig-zag indexed for entropy coding. Polyphase transform along the
zig-zag index separates the blocks into even and odd (underlined)
coefficients for each of the quantizer blocks. The even coefficients
of HR are packetized with odd coefficients of LR to form Descrip-
tion 1 (D1). The odd coefficients of HR are packetized with even
coeflicients of LR to form Description 2 (D2). . . ... ... ...
Lenna image coded using MDC-PT. Description 1 MSE = 22.16,
Description 2 MSE= 22.01, Total Bpp= 1.79, HR MSE= 14.39,
MSE is w.r.t. original image. . . . ... ... ... .. .....
The x-axis represents the DCT frequency coefficients, along the zig
zag index, in a 8x8 block. The y-axis represents the quantization
parameter being used for a particular coefficient in a description.
This is an extension of MDC-PT; in the first description the first
coefficient is quantized with (Qp;, the second with (Qps, so on and
then the fifth coefficient is again quantized with @Qp; (here k=1).
For the second description, the first coefficient is quantized with
@p2 and the cycle is repeated. . . . . ... ..o L.

36

39



3.7

3.8

3.9

3.10

3.11

3.12

The x-axis represents the DCT frequency coefficients, along the
zig-zag index, in a 8x8 block. The y-axis represents the quanti-
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The x-axis represents the DCT frequency coefficients, along the
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Redundancy for MDC-PT and MDC-BPT is 1/3 of the total bit-
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for Gaussian Markov source with correlation 0.9. Uniform thresh-
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5.1

5.2

9.3

0.4

3.9

The tree coding algorithm for the sequence 10001. The numbers
within each node are counts for the number of times a node oc-
curs with the associated symbol. Each node is labeled with the
context (z;..z;_,) associated with it, the root node is the memo-
ryless context. The first step of the algorithm is to find the best
contexts, in terms of coding efficiency, for the given past symbols
and the present symbol to be encoded. For example at tree 7T'(4)
the fifth symbol 1 has to be encoded and the past symbols are
1000. The algorithm compares the conditional probabilities p(1|®),
p(1]0), p(1/00) and p(1|000), i.e., it compares the coding efficiency
of the nodes along the dotted line. Father child comparisons are
made for all nodes lying on the path and as soon as the father node
wins the best node (context) is found. After finding this best con-
text the tree is grown with the rules in steps 4 and 5. The count
for symbol 1 is updated along all the nodes of the path till a node
which has a count of 1 is reached. This is the (00) node, as it is
internal node, from step 5 the counts of children are updated. If
it was not an internal node, it would have been split to form new
children nodes. . . . . . . . . ...
The full tree generated for the trace-27 file. The counts for each
time a node (context) occurs is given within the node and can be
used to calculate the conditional probability using equation ( 5.3).
Also, the number in the circle outside each node, represents the
number of times a node is used to code a symbol. . . . . .. ...
Entropy results for Markov-chain modeling of the two traces. It
can be seen that the minimum entropy is for chains of order 3, and
there is no advantage in increasing the order. . . . . . .. .. ..
Entropy results for the Markov tree modeling. The minimum en-
tropy occurs for a tree depth of around 35 for trace 25. This ob-
servation is corroborated by the fact that in [1] the authors have
found that this trace has a correlation lag of around 42. For trace
27 the minimum occurs for a tree depth of around 25. The number
of contexts in the model are Zf:o 2¢ where k is the tree depth.

The figure analyses the number of times a node is used to code
a symbol. We group together nodes on a level of the tree and
accumulate their counts. From this figure, there are nodes on level
32 and level 42 which are used very frequently to code the symbol
zero. On the other hand, nodes at level 2,3 and 4 are used to code
symbol 1. Clearly, the memory of contexts needed to code symbol
0 and symbol 1 is different. . . . . . . . . .. . ... ... ..
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2.6

5.7

2.8

The entropy of usage of nodes within a level is being plotted, the
probability of using a node to encode a symbol is used to calculate
entropy. If the nodes are being equally used, the usage-entropy
will be close to one, if only a very small subset of nodes in a level
are being used, the usage-entropy will be very small. If the usage-
entropy is high it means that nodes are used randomly, this will
mainly happen when nodes are not being used regularly enough.

The tree in Fig. 5.2 is pruned using the REC counter introduced
in section 5.3. Only the most efficient nodes are kept. These con-
nected nodes, and the corresponding conditional probabilities form
the best model for the given trace. . . . .. .. ... ... ....
Results comparing the pruned tree model with the chain model.
Results are for trace-27. All results are adaptive, in that the prob-
ability models are learned on the fly. In Pruned Model-1 the set
of pruned nodes (best set of contexts) has been derived by running
Context Algorithm on trace-27 and pruning the resultant tree. In
Pruned Model-2, the set of contexts has been derived from trace-
25, i.e., Context Algorithm is run on trace-25 and the best set of
contexts are extracted. Pruned Tree-1’s performance is very close
to the Markov tree model’s performance. . . . . ... . ... ...
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Chapter 1

Introduction

1.1 Motivation

Advances in the speed and degree of integration of digital circuits have led to
a steady increase in the popularity of digital signal communications. The ever
growing Internet, high definition television broadcast and mobile wireless tele-
phony are examples of digital communication systems that have had considerable
commercial success in the past decade.

To motivate the work proposed in this thesis, let us first examine a generic
communication system (Fig. 1.1). It is composed of five main elements, a source
encoder, a channel encoder, a communication channel, a source decoder and a
channel decoder. The source encoder’s task is to minimize the amount of infor-
mation needed to reproduce the source at the decoder, enabling efficient transmis-
sion and storage of the source. The channel encoder’s task is to facilitate reliable
transmission over noisy channel conditions. It is the case with all communication
systems that the received signal can differ from the transmitted signal due to var-
ious channel impairments (attenuation, thermal noise, or plain congestion). For
digital signals, bit errors are introduced in transmission, i.e., a binary 1 is trans-
formed into 0 and vice versa. These bit errors can lead to a severe degradation
in the quality available at the receiver; the channel encoder provides the means
to combat these channel errors. The channel decoder and the source decoder

perform the opposite task of the encoders and will not be discussed here.
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Figure 1.1: A communication system illustrating Shannon’s separation principle.

The number of users and the volume of data on these communication systems
has been growing steadily, often taxing the limited resources. But it is the change
in nature of the traffic that has raised several new challenges for digital communi-
cation system design. Multimedia traffic has exploded in the past couple of years;
already MP3 is the most searched keyword on the Internet and it was reported [6]
that in November 1999 listeners spent nearly a total of 2 million hours tuned
to Internet audio. With 3G wireless technology, the promise of multimedia data
delivered to a hand-held device is also becoming a reality.

Multimedia data have two important characteristics that differentiate it from
traditional (textual) data. First, there is a strict transmission delay imposed on
it, such that if data is not received at its associated playback time, it would be
considered lost. This is a problem especially in the present day Internet where
there are no guarantees on the quality of service and delays are common due to
congestion over the network. Second, the nature of the multimedia data is such
that it is possible to lose some information and still decode it to a visually accept-
able quality. Loss can occur randomly due to channel errors or be introduced in
a controlled manner as in a lossy compression algorithm.

The huge amount of “data” contained in a multimedia signal implies that there

is a need for compression of multimedia signals. For example, an uncompressed
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bi-level document would require a storage space of about 1.2 Mbytes and about
30 minutes for transmission over standard telephone lines. Lossless source coding,
as employed used in the FAX standard, reduces the storage space by a factor of
40 along with a proportional decrease in transmission time. In another instance, a
45 second piece of uncompressed Handel’s Water Symphony is about 4Mbyte and
requires 40 seconds to download from a source in Columbia University, New York,
to a receiver in Univ. of Southern California, Los Angeles. However, by using
the MP3 standard this signal can be lossy compressed, without any perceptible
loss in quality, to about 0.3Kbytes! Thus powerful compression techniques have
been developed and standardized for multimedia signals, e.g., JBIG [7] for bi-level
image coding, JPEG [8] for color image coding, MPEG [9] for video coding and
the popular MP3 format for audio coding.

One of the disadvantages associated with compression is that in a compressed
signal, the bit errors due to channel imperfections can be catastrophic. For exam-
ple, in predictive coding, often used for audio signals, a single error will propagate
to the end of the signal due to the feedback loop in the decoder. To combat
such channel errors and make efficient use of the limited bandwidth, a channel
encoder either adds redundancy to the transmitted data as in forward error cor-
rection (FEC) codes or allows for retransmission of the lost data. Significant
progress has been made in the area of channel encoding. The development of
turbo codes [10] and rate compatible punctured convolutional codes [11] are im-
portant achievements of the 1990s. At the same time, the networking community
has been developing reliable protocols, some of which use FEC as the means for re-
liable communication [12], while others employ automatic retransmission request
(ARQ) [13] to reliably transmit information.

Despite these advances in compression and transmission for digital communi-
cation systems, the explosion in usage of multimedia data has necessitated contin-
ued research in these areas. Bandwidth and disk storage space, though cheaper,
still comes at a premium. Algorithms which can use properties of the source to
efficiently process data and improve their performance are of considerable interest
to both the academic and the commercial world.

A property common to many multimedia sources is that they are correlated,

i.e., given the past and present samples, the future samples can be predicted
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with a high probability. Many popular source processors take advantage of this
memory to improve their performance. Predictive quantization [14], context based
entropy coding [3, 7] and spatially adaptive thresholding for denoising [15] are
examples of applications where memory based systems have been used. For these
memory based systems, performance can be improved by permitting the processor
to lookahead for several samples, i.e., permitting the processor to make decisions
based not only on past samples but also on the future samples [16].

In the source coding community the advantages of this “delayed decision” ap-
proach have long been recognized, examples include trellis and tree quantizers [16],
smoothed DPCM codes [17] and entropy constrained halftoning [18]. However
the popular usage of this approach has been limited by the associated increase
in complexity of the source encoder [16]. In this thesis, we propose a general
framework for reducing the complexity of the lookahead search for memory based
source coders. We have applied our algorithm to rate distortion optimization in
an adaptive context based entropy coding environment. Compression and denois-
ing algorithms for images have been developed; these algorithms achieve better
results than the state of the art coders and denoisers. In addition, the results
are comparable to results obtained by the traditional, more complex, lookahead
search algorithms.

On the other hand, in channel decoding the delayed decision approach is very
popular. However memory of the system is provided either by the inter-symbol-
interference in channel [19] or by the forward error correction codes like convo-
lution codes [20]. There has been limited work on incorporating source proper-
ties and using the memory of the source in channel decoding. An exception is
the work by Sayood and Borkenhagen [21], where the “residual” memory in the
DPCM generated prediction errors is used for maximum likelihood channel esti-
mation (MLSE) based channel decoding. A similar algorithm has been developed
by Miller and Park [22]. (A disadvantage of these algorithms is that sub-optimal
assumptions, like use of training data sets, have to be made because sufficient
source information is usually not available at the decoder.

In this thesis we propose a MLSE channel decoder for predictive coding envi-

ronments, where the source information is supplied using the multiple description



coding [23] (MDC) format. MDC is a novel forward error correction scheme which
does not require retransmission and provides graceful degradation, making it very
popular for multimedia data [24]. In MDC two or more descriptions of the source
are generated and sent over independent channels, each description is indepen-
dently decodable and each additional description improves decoding performance.
In MDC systems, if there are channel errors in a description, for data encoded
using a predictive coder, then the description is discarded [5]. Given that the
descriptions are correlated this is clearly a waste of resources. Our MLSE channel
decoder exploits the correlation across descriptions and within a description to
estimate data lost due to noise in the description. This allows the MDC decoder
to decode at a higher SNR and reduce error propagation.

Another contribution of this thesis is towards modeling of temporal dependen-
cies in packet loss over the Internet. For Internet based multimedia applications,
e.g., video conferencing tool, radio etc., since the Internet does not provide a
guarantee on quality of service and packet losses are common, the application
has to adapt to the changing network conditions so as to provide good quality
to the end-user. To allow the applications to be adaptive, simple and efficient
network loss models are needed so that the applications can predict the future
and adopt the optimal strategy. We have developed a model for the temporal
dependence between losses in network traffic, based on the universal modeling
concept of Risannen [25], which shows a marked improvement over conventional
models based on the Markov chains [1].

The sequence based source encoder and channel decoder is discussed in detail
in Sections 1.2 and 1.3 respectively. The network modeling algorithm is discussed
in Section 1.4 and the chapter concludes with an overview of contributions of the

thesis in Section 1.5.

1.2 Source Encoding of multimedia dat

Context based entropy coding is an example of a memory based system. Let us use
this example to motivate the advantages of a lookahead search in memory based

encoders. In a context based entropy coder, the quantized samples are entropy



coded (usually using arithmetic coding) based on different probability models.
These models, static or adaptive, are selected based on the values of the previously
coded samples, i.e., on the contert. In most compression algorithms that use a
context based entropy coder, the mode of operation is to quantize the data first on
a sample by sample basis and then entropy code it. This is clearly suboptimal as
the number of bits required to code a sample depends upon its context, i.e., upon
the past encoded samples. In other words, the quantization decisions on the past
samples will affect the coding bits for the present sample. Thus, if quantization
decisions are taken independently for each sample, the quantization that is best
for a sample (in terms of distortion) could negatively affect the coding of future
samples.

The advantages of a sequence search for memory based systems have long been
recognized [16], but it has not been used much because of the associated increase
in complexity. Without getting into details here, the increase in complexity can be
considered to be proportional to the memory of the system. For source coders with
infinite memory, i.e., memory which expands with each encoding operation, such
as those using predictive coding, the complexity of an optimal sequence search
is prohibitive. Even for systems where the memory is finite, but large, the cost
of an optimal lookahead search can be very high [16]. Thus suboptimal sequence
search algorithms like the M-L algorithm [18] and the iterative decision feedback
equalization (DFE) [2] are usually used to provide a reduced complexity solution.

In this thesis, we propose an alternative suboptimal sequence search algorithm
for the memory based encoders. The novelty of our work is to demonstrate that
the per survivor processing (PSP) principle [26] can be used to perform a reduced
complexity, one-pass lookahead search for source coding environments, with its
performance being comparable to that of traditional, (M-L, DFE), suboptimal
algorithms. Our approach performs a search where the number of states, where
state is a variable which completely captures the memory of the system, is reduced
through pruning. The basic idea is to preserve the structure of the state space
(i.e., the memory of the state is maintained) but to compare states that have some
common information (e.g., compare states that have ”similar” values for recent

intervals in time, while they differ for past intervals). Then only the best states



among these states are kept while the others are pruned. Obviously this approach
precludes achieving the optimal solution but the rationale for it is that if the
pruning is done in sets of similar states then the loss in performance will be small.
PSP has been popular in adaptive MLSE channel decoding when the channel
parameters are unknown. To the best of our knowledge it has only been applied
in source coding in Predictive TCQ [27], where it has been used to estimate the
prediction error at any state of the trellis. In our work we present a systematic
approach to apply PSP to a source coding environment; the extension is non-
trivial as each scenario a new and appropriate state model has to be formulated.

We have specifically considered the context based adaptive entropy coding en-
vironment as an example of non-finite memory coding systems. However, this
work should serve as motivation towards the application of PSP to other source
coding applications involving lookahead [28]. Three different applications have
been considered in this thesis. First, we consider bi-level images where quantiza-
tion implies flipping of pixels. Our sequence based quantizer could be used within
the JBIG standard to introduce losses in the image. This not only reduces the
bit-rate but is often helpful in removing noise in the image, in particular pep-
per noise. The second application that we have considered is the quantization of
wavelet coefficients in a gray-level image coder. The underlying coder is based
on the work by Chrysafis and Ortega [3]; our results show an improvement over
the symbol based quantizer used by the authors. Removal of random noise from
a gray-level image is the third application. We work in the wavelet domain and
use the principle of Occam filter [29] to denoise the image, i.e., we use signal
compression for denoising the image. In addition, we have also implemented a
one pass algorithm for denoising of images using spatially adaptive thresholding,

with results that are comparable to the multi-pass algorithm of Chang et al. [15].

1.3 Reliable Transmission of multimedia data

As shown in Fig. 1.1, source and channel coders are often designed separately in
communication systems. This is on the basis of Shannon’s separation principle
[30], which states that in a point-to-point transmission and for infinite source

length, source and channel can be separately optimized, as long as the source
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code produces a bit rate that can be carried by the channel capacity. However, in
practical systems, due to constraints on decoding delay and complexity, arbitrarily
long sequences cannot be used; this limits the applicability of the principle but
not its usage. Researchers have started recognizing that coupling between the
source and channel coder can give substantial gains in performance or a reduction
in complexity of the coder and there is extensive ongoing work in the area of joint
source channel coding/decoding (JSCC) [31, 32].

An example of a JSCC is a scheme that recognizes the priorities that occur
naturally in multimedia signals and accordingly offers higher protection to the
data with higher priorities. For example in scalable schemes like layered coding
(LC), e.g., progressive JPEG, the signal is coded hierarchally into different reso-
lutions (layers) and each resolution can improve the decoding quality if and only
if it is decoded in the same hierarchal order in which it was encoded. Thus there
is a dependency between layers and there is a prioritization where the layer which
was encoded first has the highest priority while the one which was encoded last
will have the least priority. A JSSC scheme like priority encoding transmission
(PET) [33] will assign more channel coding bits to the lower layers (layers encoded
first), and less channel coding bits to the higher layer.

Another example of JSSC is MDC where the redundancy is added in the source
domain. Two or more descriptions of the source are generated and sent over dif-
ferent channels to the receiver, as shown in Fig. 1.2. If only one description is
received, the decoder can reconstruct the signal to a minimum level of distortion.
However, if both descriptions are received, information from one channel augments
information from the other and it is possible to achieve a lower level of distor-
tion than with a single channel. Thus MDC is robust due to the redundancy of
the multiple descriptions of the same source and it is scalable as each correctly
received description improves the decoder performance. Also MDC does not re-
quire prioritized transmission, as each description is independently decodable.
In the figure we have shown only two descriptions but this can be easily extended
to multiple (more than two) description systems.

The first contribution of our work is to compare the two scalable schemes, L.C

and MDC. Clearly if there is no channel noise, LC will outperform MDC. However
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Figure 1.2: Multiple Description coding and decoding. S; and S5 are the two
descriptions of the source Y.

in presence of noise and with no protection, especially to the higher priority layers,
the performance of LC will degrade sharply. A JSCC scheme for LC based on
automatic retransmission (ARQ) is proposed in this thesis. The base layer, i.e.,
the layer which was encoded first, is sent first with ARQ and, given the time
constraints associated with multimedia data, the higher layers are transmitted
next without any protection. Thus a form of selective retransmission [34] is used to
ensure that the base layer gets across error free before other layers are transmitted.

This LC based JSCC scheme is compared with THE MDC scheme of Jiang and
Ortega [4] under lossy packet network conditions. The cost of a retransmission
in JSCC varies across different situations and will determine whether ARQ can
be used. For example, in a point-to-multipoint communication even a single
retransmission can be prohibitive due to the NAK implosion at the server. For
point-to-point links, the number of allowable retransmissions will depend upon
the round-trip-time (RTT) of the link and the latency of the application. In our
simulations we have varied these parameters to find scenarios under which MDC
would be better than ARQ. The results show that ARQ is not a good solution
for links with long RTT (intercontinental) or for applications with very short
latency. In addition, we have compared layered coding to MDC for a receiver
driven layered multicast scenario [35]. The results show the advantage of using

MDC in a multicast environment.
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The second contribution of this thesis towards reliable transmission of multi-
media sources is in developing a sequence based channel decoding algorithm. In
particular, predictive encoding environments are considered for two reasons. First,
these environments are commonly used in multimedia compression schemes, e.g.,
motion prediction in video coding or DPCM in audio coding. Second, in these
environments channel noise can have catastrophic effect at the decoder due to the
feedback loop in the decoder. Most traditional schemes limit error propagation by
periodically restarting the prediction loop but do not allow recovery of lost data.

MDC has been proposed as a means of robust transmission of predictive en-
coded multimedia data [24]. However, in most MDC schemes for predictive source
coders, if there is an erasure in a description the description is discarded, i.e., no
attempt is made to estimate data lost due to channel noise [5]. This is true even
if the second description is received error free. Given that the descriptions are
correlated and that most sources have memory, this is a waste of resources and
motivates the need for an error recovery algorithm.

The major contribution of our work is an algorithm which estimates the lost
data through processing at the decoder. The algorithm is based on maximum
likelihood estimation of the erased samples, in say Sy (Fig. 1.2), where likelihood
is defined in terms of a distance measure between the estimated Y> and Y; with
the added constraint that the estimated Yy sequence be consistent with all the
error-free data that has been received. Thus, in the estimation algorithm we
exploit both redundancy between descriptions as well as the encoder memory.
As consistency is a key part of our algorithm we will call it consistent sequence
estimation algorithm (CSE).

Forward error correction (FEC) codes could also be used for local recovery at
the decoder. The main disadvantage of FEC codes is that they experience the
cliff effect [24]; their performance is constant for up to some e erasures and then
drops very sharply for more than e losses. Our scheme, on the other hand, results
in graceful degradation; as the length of a burst of erasure grows, the performance
of the CSE degrades gracefully.
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1.4 Modeling of temporal dependency in packet

loss using information theory concepts

A number of studies have shown that network traffic is correlated, i.e., the packet
losses exhibit a finite dependence in time [1] and thus it can be modeled as a
correlated random process. Specifically, if a network traffic trace is represented as
a binary message, with the symbol one representing a lost packet and the symbol
zero a received packet, then the channel can then be modeled as a binary Markov
process, i.e., a process where the conditional probabilities of a symbol depend
upon a function of a finite number of contiguous past observations. This function
of the past observations will be referred to as the “context” of the symbol in this
thesis. Hence, to define the random process and thus model the channel, a set of
contexts and their associated conditional probabilities have to be found.

One such popular model for modeling the packet loss, i.e., the channel, is the
Markov chain model [1]. In a Markov chain model of order k, the context of a
symbol is the string of past k observations. Thus there are No = 2% contexts
in this model. An advantage of the Markov chain is that a finite state machine
(FSM) can be associated with it, where each state corresponds to a context and
its associated conditional probabilities.

However, when fitting Markov chain models to the data by estimating the
conditional probabilities of the contexts, a number of difficulties arise [36]. First,
there is an explosive increase in the number of states (2¥) if the order of the model
is increased to find the best fit. In the paper by Yajnik et al [1], their analysis
shows that models of up to order 40 may be required to best fit the trace. Clearly
the computational cost of such a large model will be very high.

Another problem with the Markov chain model is that some contexts occur
very rarely in the data and when they are used for modeling the process they
may not provide enough information about the process. This is referred to as the
“context dilution” problem. Thus it may be more efficient to either delete these
set of contexts from the model or alternately “lump” them together to form a
new context. However, if the redundant parameters are removed by arbitrarily

lumping together equivalent states, the result may not be a finite state machine
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implementation of the process, let alone one of a Markov type [36].

In this thesis, we use the universal modeling concept [36] to alleviate the
problems of Markov chain models. A universal model is one which represents
an entire class of probability distributions such that it is able to capture the
behavior of any model in that class. From this set of models, the “best” model
for the observed data is found. To define the “best” model we need a measure
of the performance of a model. We use the concept of the “shortest description
length” [37], where description length is defined as the negative logarithm of
the probability distribution estimated for the given data, a concept similar to
Shannon’s entropy [30]. Thus to evaluate a model, the entropy of the observed
data is calculated with respect to the model and the best model is the one which
gives the lowest entropy.

An example of universal model is the tree model proposed by Rissanen [25].
This model will be referred to as the Markov tree model. A simplistic view of
the model is that it is a collection of all possible Markov models, from which
the most appropriate model is chosen for prediction of of the source [38]. In
a kth order Markov chain model, memory of all the contexts is of the order £,
in a kth order Markov tree model, all possible contexts with memory of order
1...k will be arranged in a tree. The nodes of the tree represent a context and
its associated probability distribution. The best set of contexts, i.e., a set of
connected nodes, for the observed data can be efficiently found using the Context
algorithm developed by Rissanen [25]. Thus, rather than deleting or lumping
contexts of the Markov chain, all possible contexts are grown and the best set
is chosen, i.e., from an “overcomplete” model, a model which captures essential
information of the source is chosen. We propose to use this concept for modeling
of network traces, an area, where to the best of our knowledge, it has not been
used before. Our results show the improvement in modeling performance of the

tree models over Markov chain models.

1.5 Overview and Contribution of the thesis

The main contributions of this thesis are,
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e Reduced complezity lookahead search with applications to image coding and
denoising. The main novelty of our scheme is that it proposes a method to
make sequence based decision in environments where traditionally lookahead
had been computationally expensive. The proposed algorithm has been used
for coding and denoising of images, using a adaptive context based encoder.

This is presented in Chapter 2 of the thesis.

e Comparison of MDC to layered coding. We have compared the performance
of MDC to layered coding in delay constrained environments using the net-
work simulator ns. This is presented in Chapter 3 along with a brief review

of existing MDC techniques.

e Error recovery scheme in predictive coding environments using MDC. In
predictive coding, errors are catastrophic due to the feed back loop in the
decoder. In other MDC based DPCM schemes, if there is an error in a
description, the description is discarded. We show that the correlation be-
tween two descriptions along with the memory of the source can be used to
recover the errors. We have proposed a novel sequence estimation algorithm

for our error recovery algorithm. Chapter 4 covers this part of our work.

e Modeling of temporal dependence in packet losses We have presented a novel
method of analyzing network traffic traces based on information theoretic
concepts. We have also introduced new Markov models based on a tree
structure which model the channel, i.e, the packet losses, in a better manner
than traditional Markov chain models. This is presented in Chapter 5 of
this thesis.
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Chapter 2

Reduced complexity lookahead
search with applications in image

compression and denoising

2.1 Introduction

In spite of the cheap availability of bandwidth and storage space, due to the explo-
sion in usage of multimedia data, efficient compression of the data has become a
necessity. Given the correlation often present in the data, compression approaches
that exploit this inherent memory to improve their performance have become very
popular. In many of these approaches, the quantization and/or entropy coding
operation depends not only on the current input but also on the past history of the
output, i.e., a sample is coded (quantized or entropy coded) differently depending
on the values of the past coded samples. Predictive quantization [14], context
based entropy coding [3, 7] and spatially adaptive thresholding for denoising [15]
are examples of applications where memory based systems have been used.

In these approaches, which have been called recursive coding systems [16],
the influence of past outputs on current encoder operation can be completely
captured by a state variable. Given an input sequence, the encoder produces both
a sequence of channel symbols and a sequence of states [16]. These state based

approaches can be broadly classified into the following categories:
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e Finite state coding systems. In this case, the present encoder operation
depends upon a finite number of past outputs. Hence a finite, constant,
number of states can capture the memory in the system. Examples include
the finite state vector quantizer [16], where the current state determines the

codebook to be used to quantize the next vector.

e Non finite state coding systems. The present encoder operation in this sys-
tem, is dependent on all past operations. Hence the number of states grows
with each encoder operation for these systems. Predictive quantization and
context based entropy coding with adaptive probability models are examples

of such systems.

In most of the popular compression schemes where state based coders are
used, the quantizer operates in an “instantaneous decision” fashion, i.e., given the
present state and the present input it will produce an output with the minimum
possible distortion. However this mode of operation is “greedy” in nature and
could lead to a deterioration in performance. Due to the memory of the system
it is possible that good short term decisions can lead to bad long term behavior.
Let us take the example of a context based entropy coder. In a context based
entropy coder the quantized samples are entropy coded (usually using arithmetic
coding) based on different probability models. These models, static or adaptive,
are selected based on the values of the previously coded samples, i.e., on the
contert. In most compression algorithms that use a context based entropy coder,
the mode of operation is to quantize the data first on a sample by sample basis and
then entropy code it. This is clearly suboptimal as the number of bits required
to code a sample depends upon its context, i.e., upon the past encoded samples.
In other words, the quantization decisions on the past samples will affect the
coding bits for the present sample. Thus, if quantization decisions are taken
independently for each sample, the quantization that is best for a sample (in
terms of distortion) could negatively affect the coding of future samples.

Clearly, for these state based coders, the coding performance, in terms of bit-
rate and distortion, can be improved by permitting the quantizer to look ahead for
several samples, thereby permitting a better long term minimum distortion fit at

the expense of increased complexity and delay. The advantages of this “delayed
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decision” approach have long been recognized, with examples including trellis
and tree quantizers [16], smoothed DPCM codes [17] and entropy constrained
halftoning [18].

The main disadvantage of using lookahead is the complexity of the encoder [16].
For the finite state coding systems, with limited memory, optimal sequence search
can be performed efficiently by using the Viterbi Algorithm (VA) [39] over the
associated trellis. The Trellis Coded Quantizer (TCQ) [40] is a classic example
of a delayed decision finite state quantizer. However, if the memory is large then
the cost of an optimal lookahead search will be very high and for non-finite state
coding systems, the cost could be prohibitive. Hence suboptimal algorithms like
the M-L algorithm [18] or approximate iterative algorithms [2] are traditionally
used to perform a reduced complexity search.

In this chapter, we propose an alternative suboptimal algorithm for lookahead
coding in state coding systems. The main novelty of our work is to demonstrate
that the per survivor processing (PSP) principle [26] can be used to perform a
reduced complexity, one-pass lookahead search for these environments with its
performance being comparable to that of M-L and iterative algorithms.

In a PSP based lookahead search, the basic idea is to merge “similar” states
(e.g., states that have same values for recent intervals in time, while they differ
for past intervals) so as to form a trellis of a finite and small number of “merged-
states”. VA can then be used to find the optimal sequence in the trellis, with
the modification that any uncertainty in the transition metrics are removed or
reduced by data-aided estimation techniques [26]. In a typical example, this un-
certainty could be due to imperfect knowledge of source parameters, such as the
probability model needed for entropy coding or uncertainty could also be due
to the truncation of memory associated with merging of states. The novelty of
PSP is that it allows the reduction of uncertainty within the calculation of each
transition metric in the Viterbi algorithm. The estimation is based on the data
sequence associated with the survivor path of a state, i.e., the path with the least
cost into the state. The motivation behind PSP is that the survivor sequence is

the best approximation of the data seen so far [26].
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PSP has been popular in adaptive MLSE channel decoding when the channel
parameters are unknown. To the best of our knowledge it has only been applied
in source coding in Predictive TCQ [27], where it has been used to estimate the
prediction error at any state of the trellis. In our work we present a systematic
approach to apply PSP to source coding environment; the extension is non-trivial,
for each scenario a new appropriate state model has to be formulated.

We have specifically considered the context based adaptive entropy coding en-
vironment as an example of non-finite state coding systems. However, our work
should serve as motivation towards the application of PSP to other source cod-
ing applications involving lookahead [28]. Three different applications have been
considered in this paper. First, we consider joint entropy coding and quantization
of bi-level images, where quantization consists of flipping of pixels. Our sequence
based quantizer could be used within the JBIG standard to introduce losses in
the image. This not only reduces the bit-rate but is often helpful in removing
noise in the image, in particular pepper noise. The second application that we
have considered is the quantization of wavelet coefficients in a gray-level image
coder. The underlying coder is based on the work by Chrysafis and Ortega [3],
our results show an improvement over the symbol based quantizer used by the
authors. Removal of random noise from a gray-level image is the third applica-
tion we have considered. We work in the wavelet domain and use the principle
of Occam filter [29] to denoise the image, i.e use signal compression to denoise
the image. In addition, we have also implemented a one pass algorithm for spa-
tially adaptive thresholding for denoising, the results being comparable to the
multi-pass algorithm of Chang et al. [15].

The chapter is organized as follows. We start with the general design algo-
rithm in Section 2.2. In Section 2.3 we introduce the basic concept behind context
based adaptive entropy coding and Section 2.4 motivates lookahead search in a
context coding environment. Then, in Section 2.5, we provide a series of exper-
imental results to demonstrate the benefits of our approach and compare with
other traditional approaches. A review of relevant work is given in the associated

sections.
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2.2 PSP based reduced state space lookahead

search

In this section we present an algorithm for a reduced state sequence search for
state based systems using the PSP principle.

We start with some definitions, let y represent the past encoding operations,
where each y; can take any of N, possible values. If the memory of the state

system is M, then a state, at the ith stage, can be written as the M-tuple

$i = (Yio1, Yio2---YiM)- (2.1)

Given this definition of state, the transition rule s; — s;.1 is well defined for all
y;- State explosion can occur if M = 7, as in a non-finite state system. It can also
occur if M < but N, is large in a finite state system.

We can also write the state s; as,

si = (fWim1-Yi_w), 9Wiz1--Yimnr)) (2.2)

where M < M and f(), g() are functions defined such that equations (2.1 & 2.2)

are equivalent. Let us further define ms; as,

ms; = f(Yi1,Yi-2-Yi_yri1) (2.3)

and P, as,

The basic idea behind PSP is to compare, at every instant, states which have
the same value for ms;; these are what we referred to as similar states. From
among these similar states, keep the one which has the lowest cost and prune the
rest thus allowing a reduced state search. Note that though the number of states
is being reduced, the memory of each state is not affected.

The easiest way to implement this reduced state search is to use the function
f() to merge similar states, i.e., define ms; as a “merged-state” where all the

states which have the same value for f(y; 1...y;,_j;) are merged. The function f()
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could be defined such that, Ny, the number of different values f() can take is
limited to a small number.

A trellis of these merged-states can be defined, however note that these merged-
states do not form a finite state machine. With each merged-state there is the
“uncertainty” of P,,;,; unless P, is known we cannot define the transition rule.
This is because unless ms; and P,,,, are both known the state s; cannot be defined,
hence the associated finite state machine cannot be defined. Here we are making
that the state s; is the smallest unit representing the memory of the system.

Thus in the trellis of merged-states the uncertainity of P,,,, needs to be es-
timated. PSP allows this estimation within the Viterbi Algorithm by using the
history of the survivor path, i.e., the path with the least cost into the merged

ms; ms;°

state, to estimate the “parameter set” P,,,,. If (yi_ls...yif i1 ) is the history asso-
ciated with the survivor path of merged-state ms; then mathematically parameter

set is defined as,
S

S )
Prnsi = 92 0" )- (2.5)
This can also be written as the recursive equation,

S
msi

Pms,- = g(fpmsi s Yio )7 (26)

1

with the right initializations. Using VA, the survivor state and path are found
for a state and its the parameter set is updated using the survivor information.
A PSP based trellis is shown in Fig. 2.1.

With the above formulation the problem of reducing complexity in lookahead
search amounts to finding the right f(). (Given f(), g() will be automatically
defined). Definition of f() will vary with the environment considered, in the next
section we design a f() for context coding environment. Before ending this section

we present the modified VA algorithm.
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Figure 2.1: A PSP based trellis is shown in the figure. With each merged-state
ms;(j) there is an associated parameter set P(ms;(j)). The parameter set carries
the history of the surviving path into the state. Given the merged-state and the
parameter set, the transition rule is well defined. VA is used to find the survivor
path, i.e., the path with the least cost, for state ms;,1(l). If the survivor path,
for example, is ms;(j)— > ms;y1(l) then the parameter set of ms;(j) is copied
into parameter set of ms;,1(l) and updated with the symbol associated with the
transition.

Lookahead search algorithm

Let BM (ms;—; — ms;) be the branch metric, associated with transition ms;_; —
ms;. Let the set of merged states {ms;_1}ms,_,—»ms; be all the merged states in
stage ¢ — 1 which transit to the state ms; in stage .
For each stage 1
For j =1..N;
For state ms;(j) find the survivor state:
(1) ms$., (msi(j)) =
arg Minvms; _ye{msi_1}ms;_,—ms;J (MSi-1) + BM(msi—1 — ms;(j))
(2) Compute J(ms;(5)) = J(msi_,(msi(5))) + BM(msi; (ms;(5)) —
ms;(7))
(3) Update P(ms;(j)) based on the survivor ms; | (ms;(j)).
end
Derive, using the parameter set, the transition rule ms; — ms; 1 .
end

end
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The above algorithm is the Viterbi algorithm with the steps in bold font being
the additional PSP step. Step (4), uses the parameter set P(ms;(j)) to derive the

transition rule for the 7 + 1t*

stage. With each state we are storing a parameter
set, hence the memory requirements are more than a standard VA (with the same
number of states). However, using this parameter set we can reduce the number
of sets by a significant factor, in our context based scheme from a minimum of 2!°
states to just 15 states. The additional operations in a PSP-VA are the update

of the parameter set, equation (2.6), and the derivation of the transition rule.

2.3 Examples of Context Coding Environment

The encoder and decoder of a typical context based system are shown in Fig. 2.2.

Refer to the figure for notation used in this section.

Channel

N

X . s s . X
2o Quantizer y Context based _S S _ Entropy Y Dequantizer — 1=

Entropy Coder e — Decoder

Figure 2.2: A generic context based encoder and decoder are shown. z; is the
input which is quantized to produce the quantization index y;. y; is encoded by
the entropy coder based on the probability model P(y;|c(y;)) where ¢(y;) is the
context information for sample y;. The binary symbol s; is transmitted to the
decoder where it is entropy decoded to produce y;. The dequantizer reconstructs
the input to Z;.

In the general case the context information for a sample is defined as the
information that can be obtained from the neighboring samples. In this paper
we assume that only causal neighbors are used to calculate the context, this
avoids having to send any side information to the decoder. Thus, for a one
dimension signal the context information corresponding to the index y; is the
function ¢(y;) = f(Yi—1, Yi—2-...)- The key issue in context coding is to find efficient
contexts, i.e., those that approximate the “true” statistics of the source; obviously,
the exact nature of the context information will be application specific.

The first step in defining a context is to select a neighborhood template. An
example neighborhood template for a two dimensional source is shown in Fig. 2.3.

For this template, let y;, ¢ = 1...K be the indexes in one line of the 2D source,
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where K is the width of the line and let w; be the context information derived
from these indexes. One line of the context information is kept; at the top of the
source all w; are set to zero and after encoding of index y;, w; is updated. The

rule for updating can vary with the environment.

I VY+1 VY+2

Wa| Wo | Wa| vy,

Figure 2.3: An example of a template used in context coding. The sample to be
encoded is the quantization index y; and the context is derived from the previously
encoded neighboring indexes y; using context information w; = ¢g(y;). The context
could be simply a string of the neighboring pixels as in the bi-level case or it could
be a mathematical function of the neighboring wavelet coefficients as in the gray-
level image coding case.

The second step in context coding is to derive the context from the context
information in the template. Let us explain the above steps using the examples
of bi-level and gray-level image coding.

In bi-level image coding the context information is usually derived in the image
domain, i.e, x; are pixels of the image. If no quantization is used then, z; = y; = ;.
Quantization in the bi-level case implies flipping of pixel value, ie., Z; = y; =
1 — ;. An example of context coding in bi-level images could be that the context
is a string formed by concatenating the w; in the template, e.g., if the indexes in
the given template are w; = 0,w; 1 = 1, w;490 = 1, w43 = 0, w;—9 = 0, w;—; = 0,
then ¢(y;) = (011000) = 48,4 (to the base 10). After encoding y;, w; is updated
using the rule, w; = y;.

On the other hand, for gray-level image compression, context based entropy
coding is usually done in the transform domain, i.e., the image is transformed, e.g.
by wavelet transform [3], quantized and the context is formed from the quantized
coefficients. Let x;, ¢ = 0..K — 1 be the wavelet coefficients in one line of a
certain subband, where K is the width of the line, then y; are the corresponding

quantization indexes on this line. Starting at the top of the subband with all w;
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equal to zero we update each w; after we encode an index y; as follows:

w;/2 otherwise

_{ il ify #0
w; =

Based on the w; the context ¢(y;) for index y; can be derived as:-

i = w; + 2w 4+ Wiy + (Wi—s||wi_o||wite||wits) (2.7)
14 if a; > 21 -1
c(y)) =1 0 if 0;=0 (2.8)

1+ logs| ;] otherwise

For more information on the gray-level context, see [3].

A finite number, N,, of contexts is usually selected in context coding to avoid
the problem of context dilution [41]. In the example for bi-level image coding
given above, context c(y) can take on at most 2 = 64 values, while for gray-level
image coding, quantization ensures that the context can take at most 15 distinct
values.

After deriving the context for an index, the probability p(y; = g;|c(vi) = z),
where z;, k = 1..N,, are the possible context values and ¢;, 7 = 1...N,, are the
possible quantization indexes, is estimated. This probability may be estimated
from fixed probability tables, derived either from test images or from a probability
distribution function that matches the source characteristics. For example, gen-
eralized Gaussian distributions are often used to characterize wavelet coefficients.
As mentioned in the introduction, adaptive models are more commonly used. One
way of performing adaptive modeling is to store the counts, n(y; = g;|c(yi) = 2x),
i.e., the number of times y; = ¢; occurs with context c(y;) = zx. Each time a
y; follows a given context c(y;), n(y:|c(y;)) is increased by one. The probability
p(yi = ¢;c(yi) = 2x) is estimated by
n(yi = g;lc(y:) = 2k)

plyi = gjlc(yi) = 2) =
( jle(wi) 2 Z;-V:ql n(yi = qjle(ys) = )

To prevent the probability model from saturating and to allow it to continue
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learning the statistics of the source, either a forget factor is used to forget the
past or if the counts exceed a large number the counts are halved. The last
step in a context based entropy coder is to entropy code the sample y; using
the probability model p(y;|c(y;)). In this paper we will be using an arithmetic
coder as the entropy coder, though other entropy coders could also be used. Note
that in this section, we have introduced the context encoder that is used in our
applications, however, the reduced complexity lookahead search algorithm can be

used in any fixed template, causal, context coding environment.

2.4 Lookahead in context coding environment

Let us start this section by further motivating lookahead for context coding en-
vironment. In Fig. 2.4 two binary bitstreams A and B as shown. Assume that
a one dimensional, 1st order (i.e one past pixel) context and fixed probability
model is being used. The probability models are such that p(0|0) >> p(1]|0) and
p(1]1) >> p(0]1), i.e, the probability of seeing “runs” of symbols is high, which is
a reasonable assumption to make for image sources.

In a traditional symbol based approach, the cost (distortion and rate) of coding
pixels as is or flipping them are compared for each individual sample. At the first
one pixel (shown by the arrow), as the probability p(0]0) is very high, the rate
gain of flipping the 1 to 0 will offset the distortion cost induced by the flipping.
This implies that for sequence A the isolated pixel will be flipped to zero, and for
sequence B all one pixels will be flipped (first one pixel is flipped, then the next
one pixel, i.e., there will be a cascade effect). In the sequence based approach
the cost of coding the string is compared with the cost of coding another string.
For this example, there are 2!% possible strings to compare with as the length of
the string is 12. The string which has the lowest cost is selected. The difference
between the outputs of the symbol based and sequence based approaches (Fig. 2.4)
is that the symbol based approach does not recognize the difference between the
isolated one (in A) and a run of ones (in B) while the sequence based approach,
because it looks ahead, is able to do so. Clearly, there is an advantage in lookahead

quantization.
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000001000000 B 000001111111

n

A 000000000000 B 000000000000

n

A, 000001000000 B 000001111111

Figure 2.4: Two bi-level sequences A and B are considered. A 1st order context
with fixed probability model p(0/0) >> p(1|0) and p(1|1) > p(0|1) is used for
coding. The results for symbol based quantization (flipping for bi-level) A and B
are shown alongside the results for a sequence based approach A, and B,.

There are two issues that arise in a sequence optimization for adaptive context

coding environments:

e (1) In case of adaptive entropy coding, the probability model is updated
after each encoding operation, i.e., the probability model depends upon the
entire history of operations. Clearly, this is an example of a non-finite state

system where a state at stage ¢ can be defined as,
$i = (Yi=1.---Y0) (2.9)

(2) Even if the memory of the state is finite, say M, the number of states,
for the definition given in equation(2.1), will be Né” , if there are N, possible
quantization choices for each sample. This could be a very large number,
for example in coding gray-level images, the quantized wavelet coefficients
can take up to 2° different values [3], hence the number of states in this
case would be 2'® for a memory of order 3. Even with the efficient Viterbi

algorithm the cost of lookahead search would be prohibitive.

Both these issues lie within the general framework of the problem for which

a PSP based solution has been proposed in section 2.2. Let us take a concrete

example, in Fig. 2.5(a) a non-finite state system which models an adaptive entropy

coder for bi-level sources is shown. For adaptive models the entire past history is

needed, i.e., each path in the tree in has a different probability model. To reduce
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the non-finite state system to a finite state system, similar states have to be
merged together. If f() is defined as f(y;_1..-yo) = ¥;_1 then the similar state can
be merged together to form the trellis in part (b) of the figure. For these merged-
states the uncertainty is the probability model; for each path into the merged-state
there is a different probability model and hence a different transition out of the
merged-state. Given this definition of f(), g() has to be a function of y;_1...4,
such that the probability models can be calculated for each state. Thus, if the
parameter set is defined as the probability model associated with each state, then
the transition rule is well defined. PSP could be used to estimate the probability
model from the survivor path of the merged-state. Using this definition of merged-
state and parameter set a trellis can be defined and modified VA run to find the
best sequence. The update operation for each state, equation(2.6), is a single
operation of incrementing the probability count with the encoded sample, yzm s"s,

corresponding to the survivor path.

00

01

10

711
@ - (b)

Figure 2.5: In a bi-level adaptive entropy coding, the entire history is needed
to calculate the probability models. Hence, the tree shown in (a) is needed for
lookahead, with each path having a corresponding history. The non-finite state
system can be reduced to a finite state, let the similar states be (00, 10) and (11,
01). They can be merged to form merged-states 0 and 1 respectively. Its clear
that the broken line into a merged-state has a different probability model than
the solid line. To define the transition rule, i.e., the next encoding operation the
probability model is needed, hence the parameter set of each merged-state carries
a probability model which is based on the survivor path of the merged-state.
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To give a general solution for all adaptive context based environments, and one
which will be used in our experiments, we define the merged-state to be a context
value, i.e, ms;(j) = zj, j = 1...N.. The main reason for using this definition is
is that the number of contexts N, is usually small, hence the number of merged-
states in the PSP based trellis is also going to be small. Also a context encoder
while encoding a source moves from one context to the next, hence its operation
can be modeled as a finite state machine, this will be reflected in the designed
trellis.

Given this definition of the merged-state the parameter set can be easily de-
fined. As discussed above for the adaptive entropy model for bi-level coding, the
parameter set has to contain the probability models. This parameter set will suf-
fice for the bi-level image coding, however for the gray-level case, y; 1 and y; o
(or equivalently w;_1,w;_o) are needed along with c(y;) (ms;) and y; to calculate
¢(yix1) (ms;y1). Thus for the gray-level coding case, y; 1 and y; o, have to be
stored in the parameter set and updated with the survivor path. In the next

section we present results of our reduced state space search.

2.5 Experimental results

In our experiments we are minimizing D(X, x) for a given rate budget R(y). This
can be reformulated into an unconstrained minimization problem using Lagrange

multiplier A, i.e., the goal becomes
L n
miny (Y d(zi, &) — A Y_ log(p(yilc(y:))))
=0

=0

If z; is the input, y; is the index associated with the branch (s; 1(j) — s;(k)) and
c(s;—1(7)) is the context associated with state s;_1(j), then the branch metric can

be calculated as:

BM(si-1(5) = si(k)) = d(yi, 2:) — Mog(p(yile(si-1(7)))) (2.10)
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We are using the adaptive 2D context model introduced in section 2.3 for our
experiments. Each line of a 2D source can be considered as an independent
1D sequence by assuming that the previous line of the source has already been
encoded, i.e. w;, wiy1,w;yo are fixed (fig. 2.3). This simplifying assumption has
been used in most image coding environments[2]. Better results can be obtained
by using near optimal algorithms for the 2D digital least metric problem, like the
iterative message-passing algorithm [42, 43], however the improvement comes at

the cost of additional complexity.

2.5.1 Lossy Bi-level Coding

In a lossy bi-level image coding, pixels are flipped within the rate-distortion opti-
mization framework. We start by comparing the PSP based sequence optimization
algorithm with the two suboptimal sequence algorithms, the M-L algorithm [18]
and the iterative algorithm [2] for lossy coding of a bi-level image. In the M-L
algorithm, used for sequence optimization of non-finite state systems, the tree is
grown with each stage keeping, at most, the best M states. At the L'* stage the
first symbol is released, the tree is grown again and the second symbol is released
at the next stage and the process is continued for each symbol.

Fig. 2.6 compares performance of a PSP based trellis and a M-L algorithm
with varying M, parameters. Note that the trellis is run over a row of length
740 samples, of the image. As M, L increase the performance of tree algorithm
improves, but it is clear that to achieve performance comparable to the PSP, a
very large L would be required, which would be impossible to implement because
of the complexity.

An iterative algorithm has been proposed for adaptive context coding envi-
ronment used in near-lossless compression of gray-level images [2]. The iteration
scheme starts with an initial probability model, finds the optimum sequence in
the trellis given the model, and updates the model with the optimum sequence.
The procedure is repeated until the gain in entropy becomes negligible. In an
earlier paper [44] we have shown, for this near-lossless coding scenario, that PSP
based VA achieves the same performance as the iterative scheme but does not

require any iteration. In this paper we compare the two schemes for lossy coding
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Figure 2.6: Comparison of the PSP based trellis algorithm to a tree algorithm
where all the probability models are retained. ML algorithm is used to find the
best path in the tree.

of bi-level images, Fig. 2.7. In Iterative 2 the maximum number of iterations is
set to 8, in Iterativel the stopping criteria is the change in bit-rate between the
two iterations. If it is less than 0.01% then iterations are stopped. The figure
shows that PSP performance is very similar to these iterative algorithms.

Bo Martins and Forchhamer [45] have implemented a greedy look ahead scheme
for lossy context coding of binary images. We have shown that our scheme out-

performs their scheme especially for 1-D context models in our ICIP paper [44].

2.5.2 Lossy Gray-level Image Coding

For gray-level image coding, we are using the encoder developed by Chrysafis
and Ortega [3] and described in section 2.3. We have replaced the symbol based
quantizer in their work by our sequence based quantizer based on the PSP trellis.
The results shown in Fig. 2.8, show the improvement of sequence quantization
over symbol quantization. X,Y, Z are results obtained by a symbol quantizer of
different step size. Using the step size corresponding to X, we can lookahead and
perform a search to find the path with the best D + AR for different A. This will
trace the PSNR-rate curve shown in Fig. (curve with left triangles). Point W the
PSNR is higher than that obtained at Y using a symbol quantizer, showing the

improvement in using a lookahead scheme.
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Figure 2.7: Results for bi-level coding. Image is 745x1024 b&w image from the
CCITT database. PSP stands for the proposed PSP based modified Viterbi al-
gorithm. TIterative schemes are based on the traditional approach used by [2].
Iterativel the stopping criteria is change in rate between iterations should be less
than 0.01% and Iterative2 8 iterations are performed each time.

Ramchandran and Vetterli [46] have implemented a lookahead scheme for
JPEG which is similar to our work in wavelet coding of gray level images. How-
ever, their lookahead scheme is for 1D run length coding while here we use 2D

context models.

2.5.3 Denoising of Gray-level images

For denoising we follow two separate methodologies. First, we us the principle
of Occam’s filter proposed by Natrajan [29] to provide joint compression and
denoising. The idea is that random noise will be more difficult to compress than
the signal (which has some structure). Hence a good compression method can
provide a suitable model for distinguishing between signal and noise. In Fig. 2.9,
we compare the denoising results of our sequence based encoder with the symbol
based encoder of Chrysafis. The PSNR is calculated by using the mean square
error between the original and the denoised image [47]. The results clearly show
that sequence based encoders are more efficient than symbol based encoders and
are better than the best reported results in [47].

In addition, we have also used the soft thresholding method proposed by Chang
et al. [47]. They have derived soft thresholds, to threshold noisy data in wavelet
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Figure 2.8: Results for gray-level coding. X,Y,Z are results for different quan-
tization step size of the symbol based quantizer, i.e., no lookahead is used for
these results. For each of the step sizes, the lookahead algorithm is run, and the
sequence with the minimum D + AR cost is found. As A is increased, the PSNR
and bit rate slide down the curves shown in the figure (a different curve for a
different, step size). Thus we can start with the uniform quantizer step size 0.5
corresponding to result X, increase A and slide down to point W. The PSNR for
W is higher than the PSNR for Y but both are coded with the same bit rate.

domain, based on the estimated noise variance and signal variance. In a later
paper [15], the same authors have extended their algorithm such that the thresh-
old for each sample is calculated from local information by using the variance of
pixels in the neighborhood. They use a two pass algorithm: the first pass gathers
information about the source; the second pass calculates the thresholds and de-
noises the data. The authors have mentioned the disadvantage of using a single
pass algorithm: a run of zero coefficients may cause all subsequent coefficients
to be quantized to zero. They have not given their single pass result but have
mentioned that the results were much worse the two pass results.

We have implemented a single pass lookahead soft thresholding scheme. The
disadvantage of a single pass algorithm, can be avoided by using lookahead. The
PSP based trellis is used, with the modification that the parameter set for each
state contains the probability model and the threshold for denoising based on the
past information. The operation at each state is to threshold or not to threshold

and each operation has a corresponding path in the trellis. Using rate as the
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Figure 2.9: Results for Barbara image, with Gaussian noise of std=20. The Occam
filter is used, i.e., a compression scheme is used to denoise image. The PSNR
results are calculated by finding mean square error between original (clean) and
denoised image. We are comparing our sequence based encoder with Chrysafis
et al [3] symbol based encoder. Clearly the sequence based scheme does much
better.

regularization metric [48] we find the path which has the lowest distortion for a
given rate. In Fig. 2.10, we show the improvement in a single pass algorithm. A
single pass without rate-regularization and lookahead would give about 24.5dB,
by using lookahead and rate-regularization we can improve the performance to
around 27.4 dB which is very close to performance of the two pass algorithm of

Chang et al. (using the same causal context).

2.6 Conclusion

In this paper we have proposed a reduced complexity lookahead search algorithm
for environments where there can be a state explosion, e.g., where the present en-
coding operation depends upon all the past operations. The solution is based on
per-survivor processing principle. We have taken the example of context based en-

tropy coding environment and shown that a reduced complexity lookahead search
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Figure 2.10: Barbara image, Gaussian random noise of std=20. Single pass looka-
head algorithm, where soft thresholds are kept at each state. There are two
choices, to threshold or not to threshold. The path which has the minimum dis-
tortion for a given a rate is chosen. Rate is the regularization metric, to calculate
rate a uniform threshold quantizer is used. However, the distortion is calculated
between the thresholded and the original samples.

can be performed to improve compression and denoising performance. Our algo-

rithm could be easily extended usually to other state systems with large memory.
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Chapter 3

Multiple Description Coding

3.1 Introduction

In the previous chapter we have presented algorithms for efficient compression
of multimedia data. As mentioned in the introduction compressed data is more
vulnerable to channel noise, hence efficient schemes for reliable transmission of
compressed multimedia data are needed. Also it has been recognized that schemes
that add redundancy, to protect the data, in a joint source channel coding manner
are more efficient. One such scheme, Multiple description coding (MDC), was
first proposed in the 1980s [23]|, and has gained practical significance over the
past few years. Since the introduction of multiple description scalar quantizers
by Vaishampayan [49], in 1993, many techniques have been developed for MDC,
some of which are reviewed later in this chapter.

MDC, as discussed in the introduction, besides robustness also offers scalable
streams. A description is independently decodable and each additional description
improves the decoding quality. For networks such as the Internet that offer no
guarantees on the quality of service, scalability of the application is a desirable
feature [50, 35]. The application can adapt to the changing network conditions by
scaling the bit-rate, e.g., if high bandwidth is available a high quality, i.e., a high
bit-rate version of the data, can be made available. On the other hand, if very
low bandwidth is available a coarse quality, low bit-rate, data will be available to

the user.
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Many methods are available for adjusting the quality/bit-rate of the data,
e.g., multi-resolution (also called layered) coding, transcoding, and keeping several
versions of the data at different qualities. Of these, layered coding is the most
popular because of its low complexity and high compression performance. In
layered coding there is an order in which the layers are encoded and if at the
decoder a lower layer, i.e., one which was encoded first, is not available the higher
layers are rendered useless. In Fig. 3.1, the Lenna image is encoded into two layers
using the progressive JPEG coder [8]. Clearly if the base layer, the first layer to be
encoded, is lost then the enhancement layer, the second layer to be encoded, will
decode to a visually unacceptable quality. Increasing congestion on the Internet
means that this scenario of losses in the base layer could happen often, at least
as long as there is no infrastructure to give higher priority to the correct delivery

of the base layer.

Figure 3.1: Lena image coded using Progressive JPEG coder. Base Layer mean
square error (MSE) =59.06, Enhancement Layer MSE =3589.1, Total Bpp =1.8,
Total MSE =8.8506, MSE is w.r.t. original Lena image.

In spite of this disadvantage, layered coding has become popular for realtime
multimedia transmission over Internet. Receiver driven layered multicast (RLM)
is an application developed by McCanne et al. [35] for video conferencing over
multicast networks. Here layered coding is used to cope with receiver heterogene-
ity; the receiver individually adapts its reception rate by adjusting the number of
layers that it receives. Another application is the recently proposed protocol for

real-time streams over the Internet, rate adaptation protocol (RAP) [50], which is
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an end-to-end TCP friendly protocol, employing layered coding for quality adap-
tation at the sender.

To ensure reliable transmission of layered coding data, joint source channel
coding schemes (JSCC) which recognize the priorities in layered coding and assigns
higher protection to higher priority layers are often used [51]. We propose a
JSCC scheme where the base layer is protected by using retransmission (ARQ)
while the enhancement layers are sent without any protection. Given the time
constraints associated with multimedia data, there is a finite time for transmission
of a “frame”. In our scheme, the base layer of the frame is transmitted first. If
the base layer is received error free and there is time remaining for transmission
of the frame, then enhancement layers are transmitted; thus a form of selective
retransmission [34] is used.

In this chapter, we compare the performance of this JSCC scheme with a
MDC scheme for transmission over lossy packet networks. We consider a point-to-
point communication link with feedback. Parameters such as the Round trip time
(RTT) of the link and the latency of the application are varied and performance of
the proposed MDC and LC schemes are compared. As expected the performance
of LC, where base layer is protected by ARQ), is more dependent upon the above
parameters than MDC. On the other hand, MDC’s performance is independent
of these parameters and thus more suitable for heterogeneous environments. We
have also compared a LC (without ARQ) based RLM scheme to a MDC based
RLM, and established the viability of using MDC for multicast scenarios.

Reibman et al. [52] have also compared MDC with a JSCC scheme for a layered
source encoder. In their JSCC scheme the the layers are unequally protected
through FEC codes. In comparison with MDC, they have shown that their system
is worse than MDC for erasure rate greater than 10~ 4 and for lower erasure rates
the performance is very similar. In contrast to Reibman et al.’s work, we have
used ARQ to protect the base layer because if a back channel is available, ARQ
offers full reliability (given sufficient transmission delay), makes efficient use of
the limited bandwidth and, unlike the FEC codes, is easily scalable to various
channel conditions. ARQ is often ruled out for realtime data because of the delay
associated with retransmission. However, this may not be true for all situations,

especially if selective retransmission [34] techniques are used.
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Section 3.2 presents an extensive review of the available techniques for MDC.
In Section 3.3 we review the MDC scheme proposed by Jiang and Ortega [4]
and extend it to the JPEG domain. In Section 3.4 the simulation architecture is
presented and Section 3.5 gives the results of our simulations. Finally we conclude

with comments on future work in Section 3.6.

3.2 Review of Multiple Description Coding

MDC is inherently suitable for realtime applications, it provides local recovery at
the decoder which is preferable to Go-back-N type retransmission. In addition
it provides graceful degradation unlike popular FEC codes. MDC is particularly
useful for applications where physically separate channels are used, e.g., multi-
channel, packet radio networks [53], or disparity routing for wired networks [54].
However, virtual channels having independent loss probabilities could also be cre-
ated over a single physical channel by appropriate interleaving of the descriptions.
The degree of interleaving would depend upon the loss properties of the underly-
ing physical channel. Thus, MDC has been proposed as a viable means for robust
transmission of realtime media over the Internet, with extensive research going
on presently in this area [4, 49, 55, 56, 57]. The paper by Goyal [24] provides a
good overview of MDC schemes.

The multiple description coding problem, first posed by Wolf et al. [58], for
binary data, is that given the set of distortion (D, D1, D5) find the set of (R, Ry)
necessary and sufficient to achieve these distortions (Fig. 3.2). It was subsequently
solved for Gaussian data by Ozarow [59]. El Gamal and Cover [23] generalized the
results for all kinds of data, characterizing achievable rates for multiple description
in terms of the mutual information in the descriptions.

One of the first practical method for MDC, multiple description scalar quan-
tizer (MDSQ), was developed in 1990 by Vaishampayan [49]. He designed quan-
tizers for the side encoders such that the quantizer for the central decoder is
a refinement of (either of) the side quantizers. The side and central decoders’
performance can be traded off by adjusting the parameters of the side quantizer.

The pairwise correlating transform (PCT) was introduced by Wang et al. [60]
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Figure 3.2: S; and S, are two descriptions generated of the source Y and trans-
mitted over independent channels. If both are received, the decoder decodes to 1%
with central distortion Dg. If only one description is received, say Si, the decoder
decodes to YI with side distortion D;. R; and R, is the rate associated with the
respective description.

as a way of achieving MDC within the transform domain. In this scheme, MDC-
PCT, the idea is to introduce correlation between a pair of source symbols by
using an invertible correlating transform. The correlated symbols are sent over
different channels. If both symbols are received, the inverse of the correlating
transform is applied to recover the original signal. If only one symbol is received,
it is used to estimate the correlated lost symbol and inverse correlation transform
is applied to recover original symbols. The authors have developed an optimal
transform based on rate redundancy distortion theory. Similar work was done by
Goyal et al. [55], who extended the scheme to vectors of length greater than two.

Goyal et al. [61] have also used over-complete expansions for generating mul-
tiple descriptions, MDC-OC. The source, which belongs to the space R, is de-
composed into an over-complete basis of dimensions n > k, thus generating n
descriptions of a k& dimensional source. If any m > k descriptions are received,
the signal can be recovered to its original quality. If less than k& descriptions are
received, estimators (linear or nonlinear [62]), can be used for approximately re-
covering the source, thus providing graceful degradation unlike a (n, k) channel
code [24].

Mobhr et al. [63] and Puri and Ramchandran [56] have independently introduced

a novel scheme for MDC which utilizes an RS erasure code and overcomes the
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above mentioned shortcoming of FEC. They split an embedded stream across
packets (descriptions) and provide unequal protection based on the importance
level of the stream. If a minimum number of descriptions is received, the high
priority symbols can be recovered. With each additional description more low
priority symbols will be received (and/or) recovered at the decoder. This scheme

is based on an unequal error protection scheme which was first developed in [33]
and will be referred to as MDC-FEC.

3.3 Multiple Description Coding based on
Polyphase Transform

A simple MDC scheme which gives excellent results is the polyphase transform
and selective quantization scheme developed by Jiang and Ortega [4]. A block
diagram for a two description system is shown in Fig. 3.3. The source is coded
using two quantizers, e.g., a high resolution and a low resolution quantizer. The
odd polyphase of the high-resolution (HR) coded source and the even polyphase
of the low-resolution (LR) coded source are put together in one packet and sent as
a description. The other packet contains the odd polyphase of HR and the even
polyphase of LR. If all packets are received, the source vector is reconstructed to
HR, else the reconstruction is to a quality that is the average between HR and
LR.

. - 0Odd Polyphase Description 1
High Resolution  __— pojyphase Transform
Quantizer —=  Even Poplyphase

Source

. —=  Odd Polyphase
Low Resolution = pgjyphase Transform
Quantizer —  Even Poplyphase Description 2

Figure 3.3: MDC based on the polyphase transform and selective quantization

work of Jiang and Ortega [4]. This MDC technique will be used for simulations
in this chapter.

The advantages of MDC-PT are, firstly it requires minimum modification to

standard source encoders and decoders to generate or decode the descriptions.
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Secondly it can easily adapt to changing channel conditions [64] by appropriately
adjusting the quantizers’ step size. Thus in comparison with the schemes men-
tioned in the previous section MDC-PT is simpler in implementation and yet gives
comparable results [4].

A reliable layered coding scheme, which does not use retransmission, and is
related to our MDC approach was proposed by Turletti et al. [65]. In their work
a polyphase transform is used for producing independent layers for audio coding.
Each layer contains one polyphase decomposition of the original sequence. If only
one layer is subscribed to, then the other polyphase components are estimated by
interpolation. Each additional layer improves the signal quality. The polyphase
components are transmitted using the real time protocol (RTP), and robustness
to packet loss is achieved by sending two polyphase components in the first layer.
The scheme is similar to ours in that each polyphase component can be thought
of as a description, with the main difference being that we incorporate redundant
information. Also the emphasis of our work is the performance of a layered coding
scheme when there are losses in the network. Turletti et al., on other hand, use
their scheme to establish the effectiveness of congestion control using a layered

approach.

3.3.1 MDC-PT for JPEG coded images

Previous work on MDC-PT considered decorrelated synthetic data generated from
sampling a probability distribution [4, 64]. In this thesis we have extended the
MDC-PT scheme to transmission of images. Images are usually compressed before
transmission and one popular compression scheme is the discrete cosine transform
(DCT) based JPEG [8]. In this section we present an algorithm for generating
multiple descriptions of an image, each of which is encoded using the standard
JPEG algorithm.

The MDC-PT system in the JPEG domain is shown in Fig. 3.4. The im-
age is DCT transformed and the transformed coefficients are quantized using two
quantizers, high resolution (HR) and low resolution (LR). The quantizers differ
in the step size, Qpp,, Qpir, used in the standard JPEG quantizer. The quantized
coefficients are ordered using the standard zig-zag indexing of JPEG [8]. These
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ordered coefficients are then polyphase transformed, e.g., in Fig. 3.4, the under-
lined coeflicients are the odd polyphase components of a transformed block. The
odd polyphase coefficients of HR and the even polyphase of LR form descrip-
tion 1 (D1). Description 2 (D2) contains even polyphase HR coefficients and odd
polyphase LR coefficients. Each description is then entropy coded using the stan-
dard JPEG entropy coder. In practice we do not need to perform the polyphase
transform, instead we make two copies of the transformed coefficients. In one
copy we quantize the even (in the zig-zag order) coefficients with Qpp, and the
odd coefficients by Qp;-. In the second copy, the odd coefficients are quantized by
Qpr and the even coefficients by Qp;-. These copy are entropy coded and thus we
generate the same descriptions as above without the use of an explicit polyphase
transform.

If both the descriptions are received correctly at the decoder, odd HR and even
HR coefficients are collected from their respective descriptions and the resulting
data is decoded to the high resolution quality. If only one description is received,
then additional preprocessing is required before it can be decoded. For example
if D1 is received a preprocessor would multiply, the entropy decoded, LR even
coefficients by Qpp./Qpir- A standard decoder using the quantization step size
Qpp will then decode the data.
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Figure 3.4: The proposed MDC system based on DCT transform coding. An 8x8
blocks of image data is DCT transformed. It is quantized by the high resolution
(HR) and low resolution (LR) quantizers and zig-zag indexed for entropy coding.
Polyphase transform along the zig-zag index separates the blocks into even and
odd (underlined) coefficients for each of the quantizer blocks. The even coefficients
of HR are packetized with odd coefficients of LR to form Description 1 (D1).
The odd coefficients of HR are packetized with even coefficients of LR to form

Description 2 (D2).
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An example of the Lenna image coded with the MDC-PT scheme is shown
in Fig. 3.5. The descriptions are generated in the DCT domain, thus ensuring
that the polyphase transform does not remove the correlation of the source and

hamper the compression performance of the JPEG coder.

Figure 3.5: Lenna image coded using MDC-PT. Description 1 MSE = 22.16,
Description 2 MSE= 22.01, Total Bpp= 1.79, HR MSE= 14.39, MSE is w.r.t.
original image.

In practice we do not need to perform the polyphase transform, instead we
make two copies of the transformed coefficients. In one copy we quantize the even
(in the zig-zag order) coefficients with Qpp, and the odd coefficients by Qp;,. In the
second copy, the odd coefficients are quantized by Qpy, and the even coefficients
by Qp;-- These copies are then entropy coded and thus we generate the same

descriptions as Fig 3.4 without the use of an explicit polyphase transform.

3.3.2 Generation of multiple layers/descriptions

For congestion control strategies as used in RLM or RAP, two layers/descriptions
will not give sufficient granularity. In this section we propose three different
schemes for generating higher number of descriptions in the JPEG environment.
Also a comparison of the proposed schemes in terms of their coding efficiency,
i.e., their compression performance, is presented below. For each of these schemes
we are describing the method for generating four layers, however it can be easily
extended to higher number of layers.

In Fig. 3.6 the MDC-PT scheme described in Fig. 3.4 is extended to multiple
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layers. An important feature of the JPEG entropy coder is the run-length of ze-
ros, which it codes very efficiently reducing the bit-rate of the compressed image.
However, because of the polyphase transform over individual coefficients, the run
length of zeros is often broken in MDC-PT thus adversely affecting the compres-
sion performance. This problem can be alleviated by grouping the coefficients
together, along the zig-zag index, and performing the polyphase transform over
the set of groups. One such scheme, MDC-BPT, is shown in Fig. 3.7, where the
coefficients are grouped together into four groups, G1, G9, G3, G4 and each group
is quantized with the four different quantizers. In the first description coefficients
in group (G; are quantized by Qp;, in G5 with Qps, in G3 with @ps and in G4
with @ps. While, in the second description coefficients in group G; are quantized
by @p2, in Gy by @ps, in G5 by Qps, and G4 by Qp;. This cycle is repeated to
generate the other descriptions.

An alternate scheme for reliable transmission of the image could be to encode
N (N is the number of descriptions) copies of the image, each with a different
quantizer: Qp:...Qpy. The multiple copies could then be transmitted over the
channel. The disadvantage of this scheme is that each additional copy will not
improve the decoding quality of the decoded image; the lower resolution copies
will have to be discarded entirely if a higher resolution copy is available. The
advantage of this scheme is that coding will be very efficient and hence the total
bit-rate required will be lower than MDC-PT or MDC-BPT. In Fig. 3.8, MDC-
PT and MDC-BPT are compared with the the multiple copies scheme in terms
of coding efficiency. Coding efficiency is defined as the ratio of total bit-rate of
sending the descriptions in MDC, to the total bit-rate of sending multiple copies.
The figure shows show that MDC-PT is very inefficient when the redundancy
is very low. MDC-BPT on the other hand performs very well for all levels of

redundancy.
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Figure 3.6: The x-axis represents the DCT frequency coefficients, along the zig
zag index, in a 8x8 block. The y-axis represents the quantization parameter being
used for a particular coefficient in a description. This is an extension of MDC-PT;
in the first description the first coefficient is quantized with ()p;, the second with
@p2, so on and then the fifth coefficient is again quantized with @Qp; (here k=1).
For the second description, the first coefficient is quantized with ()p, and the cycle
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Figure 3.7: The x-axis represents the DCT frequency coefficients, along the zig-
zag index, in a 8x8 block. The y-axis represents the quantization parameter being
used for a particular coefficient in a description. This MDC scheme will be referred
to as MDC-BPT, here the coefficients are grouped together G; = {Cy..Cp, }, G2 =
{Cry41--Cny}, Gs = {Chyi1..Cry }, G4 = {Chy....Cos }, where C is the ith transform
coefficient. In the first description the first group is coded with @p;, the second
with @ps and so on. In the second description, the first group is quantized with
@p2, the second group with ()p3 and the cycle is repeated.
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Figure 3.8: Coding efficiency is defined as the ratio of the total bit-rate for coding
descriptions to the total bit-rate of sending two copies of the image. Each copy
is quantized with a different quantizer,QQp;,or, @p2, and encoded using the stan-
dard JPEG encoder. The results are shown for two descriptions, (Jp; is the high
resolution quantization parameter, while @ps is the low resolution (redundancy)
parameter. The results show the disadvantage of MDC-PT, the coding efficiency
is very low.

An even more efficient method of generating multiple descriptions is shown in
Fig. 3.9. This scheme, MDC-H, is a hybrid of LC and MDC. Layers are generated
using a standard layered coder and the base layer is sent as the first description.
For the second description, the low frequency coefficients in the base layer are
coarsely quantized and added to the first enhancement layer. In the case shown
in the figure, the second and third enhancement layer have no redundancy, but
redundancy can be added by coarsely coding the low frequency coefficients. As
each description is received the highest resolution frequency coefficients are ex-
tracted and decoded. In the next sections we compare these MDC schemes with

a proposed LC scheme for transmission of realtime data over a lossy network.

3.4 Simulation Architecture

We simulate a real time video transmission over a packet switched network. In
real-time streams, data has to be played back continuously at fixed time intervals,
e.g., for jitter free television broadcast, 30 frames must be displayed in a second.

This implies that there are strict timing constraints on the delivery of data, i.e.,
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Figure 3.9: The x-axis represents the DCT frequency coefficients, along the zig-
zag index, in a 8x8 block. The y-axis represents the quantization parameter being
used for a particular coefficient in a description. This MDC scheme, (MDC-H), is
a hybrid of layered coding and MDC; the image is split into layers, the base layer
is sent as it is. For the first enhancement layer, redundancy is added by adding low
frequency coefficients {0..m;} at the coarse resolution Qp,. If more redundancy
is needed the higher enhancement layers can also have coarsely quantized low
frequency coefficients.

each frame should be received before its playback time. To simulate these con-
straints we define a timeout T at the receiver. This is the time that the data,
of a frame, has for transmission. The assumption we are making is that there
is a fixed time for transmission of a frame due to the fixed time for playback of
the frame. This is not necessarily true, however it is a simplifying assumption
and as both the LC and the MDC schemes are being simulated under the same
conditions the comparisons are valid. 7" is dependent upon the receiver playback
rate and the receiver buffer size and reflects the needs of the application (e.g., in
a video conferencing application 7" will be smaller than for video playback from a
server). In our simulations, we ensure, by choosing the channel bandwidth, that
if there is no congestion all data of a frame is received in 7" time. Congestion is
then added to the network using random background traffic and the performance
of each scheme is measured as parameters such as RT'T and T are varied.

Before getting into details of the simulation, we need to describe the layered
coder used for our experiments. The layers are generated by using a progressive
JPEG coder, shown in Fig.3.10. An example of the Lenna coded with LC has

48



been shown in Fig. 3.1. The extension of the layered coding scheme to higher

number of layers is shown in Fig. 3.11; all frequency coefficients in a block are

quantized with the same quantizer and divided into layers.
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Figure 3.10: Proposed layered coding scheme based on Progressive JPEG.
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used for a particular coefficient in a layer. The frequency coefficients are coded
with the same quantization parameter and divided into layers. No redundancy is

added to the layered coder.

3.4.1 Network Topology

We simulate the network by using ns [66], with the topology shown in Fig. 3.12.

Transmitter 7, and receiver R, are used to send and receive data, while the

other transmitters and receivers are used for background traffic. Ten sources are
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initialized to generate background traffic in our simulations. Eight of these sources
are TCP sources, five of which carry a variable amount of data, while three carry
a fixed amount of data. Two sources are CBR, all the sources start and stop
randomly and the side delay for these sources are also randomly generated. In
the table 3.1, the parameters for the bottleneck link and the background sources

are listed.

dgaddddddd

Figure 3.12: Network Topology, 7; are the transmitter and R; are the receivers.
The link between switches SW1 and SW?2 is the bottleneck link and SW1 is the
bottleneck point.

Parameter Value
Bottleneck Link Delay 20ms

Side Bandwidth 100 Mbps
Bottleneck B/W 5 Mbps
Bottleneck Queue 50 packets
Background Packet Size 500 bytes
Background CBR Rate 0.6 Mbps
Background TCP Window Size | 40 packets

Table 3.1: Simulation Parameters

Each description is divided into a fixed number of packets and sent over the
network shown in Fig. 3.12. The packets are interleaved so as to lower the prob-
ability of losing both the descriptions in case losses are correlated. Similarly the

base layer and the enhancement later are sent in different packets, if a base layer
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packet is lost, the low frequency coefficients are assumed to be zero and the high
frequency coefficients are decoded from the enhancement layer packet. If both
packets are lost, all coefficients are assumed to be zero; this is also true of the
MDC case.

3.5 Simulation Results

Each experiment has been performed 200 times and the results reported are av-
eraged over all the iterations. We have not used a real video sequence to generate
the data; instead we have used a set of images, (available in the SIPI database),
each coded with JPEG. Thus each image is considered as a frame and it is coded
and packetized separately. Packets of an image have T seconds to be transmit-
ted to the receiver, if packets of a image are received after its timeout they are
discarded.

We have considered an image sequence because the problem of generating
good descriptions of a motion compensated video sequence is still unsolved, with
extensive work going on in this area in recent years [67]. Also motion compen-
sation though giving a higher compression performance can have a severe degra-
dation in quality, in presence of channel noise, due to the feedback loop in the
encoder/decoder. The extension of MDC-PT to MPEG [9] coding of video is

proposed as part of future work.

3.5.1 Unicast transmission using UDP

User Datagram Protocol (UDP) [68] is a transport layer protocol which offers
no guarantee on quality of service. The packets are sent over the network and
if they are lost the protocol does not attempt to recover them. The parameters
that can be controlled are the packet size and the packet transmission rate. In
Fig. 3.13, we compare the various MDC schemes with the LC scheme when the
layers/descriptions are transmitted using UDP. The total bit-rate of all the layers
(or descriptions) is 0.8 bps, with each layer being coded at 0.2 bps. The redun-
dancy is set to 1/3 of the total bit-rate in MDC-PT and MDC-BPT and to 1/4
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of the total bit-rate in MDC-H. A packet size of 100 bytes is used and the trans-
mission rate is set such that all the packets of a frame would arrive in timeout 7,
if there were no losses. 7' is set to 0.1 sec for this experiment. MDC-H shows the

best performance over a wide range of packet loss.
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Figure 3.13: 4 layers/descriptions are transmitted using UDP. The total bit-rate is
0.8 bps, which is equally divided between the layers/descriptions. Redundancy for
MDC-PT and MDC-BPT is 1/3 of the total bit-rate and for MDC-H is 1/4 of the
total bit-rate. 64 packets of 100 bytes are transmitted for each layer/description.
LC’s performance degrades sharply with increased packet loss rate, MDC-PT and
MDC-BPT have a constant performance, while MDC-H scales well between low
packet loss rate and high packet loss rate.

In Fig. 3.14, MDC-H and LC are compared under the condition that the bit-
rate of each additional layer is twice the bit-rate of previous layer. Comparing
with Fig. 3.13, we see that MDC-H performs better than LC at a lower packet
loss rate.

From these experiments it is clear that MDC will outperform LC when there
are losses on the network, especially if base layer packets are lost. The need for

reliable transmission of the base layer (BL) is immediately obvious.

3.5.2 Unicast transmission using TCP and UDP

TCP [13] is a transport layer protocol that offers a guarantee on quality of service,
given sufficient transmission time. It uses retransmission to ensure that all packets

are received at the receiver. However, this reliability comes at the cost of a variable
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Figure 3.14: 4 layers/descriptions are sent over network using UDP. As the packet
loss rate increases, LC has a sharp degradation in performance while MDC-H
performance is quite constant. Here each additional layer is coded at twice the
bit-rate of the previous layer.

transmission time which may or may not be suitable for an application. In this
experiment, we send the base layer reliably using TCP and explore the effect of
the RTT of the link and the latency of the application on the performance of
MDC and LC.

In our experiment BL is transmitted first, if packets are lost in BL, the sender
retransmits them. The sender has until Ty, + 7 to get the BL across. If BL gets
across before Ty, + T, the remaining time is used to send enhancement layer
(EL) using UDP. Using the same background sources (we record the start/stop
times of the background sources used in LC simulation) we also send MDC using
UDP. At end of the T sec duration, we play back both LC and MDC with the
packets that have been received and compare the MSE of the reconstructed image.
In the experiment in this subsection, MDC and LC are coded at 0.8 bps with 1/3
redundancy for MDC. MDC-PT is used as the scheme for generating the multiple
descriptions.

Given WindowSize and the BufferSize parameters in TCP, we have set a side
delay for our network, such that if there is no congestion all packets of an image
would arrive in 1sec. Then we add congestion and vary 7". The results are shown
in Fig 3.15. The results show that ARQ needs an additional latency of 0.6 sec. to

achieve the same performance as MDC. if the application could afford this latency,
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the JSCC scheme of LC with ARQ would be a better alternative.

— LC
—— MDC

log(MSE)

> . . . .
500 1000 1500 2000 2500 3000
Timeout in ms

Figure 3.15: BL sent using TCP, after all BL: packets received, if time is remaining
from timeout 7', EL is sent using UDP. MDC is sent using UDP with the same
network conditions. The RT'T used is such that all packets are received in 1sec. if
there is no congestion. After adding congestion, the results show that MDC can
achieve good performance close to 1sec. but LC requires 1.6 sec to achieve similar
performance.

In the experiment above, given the bottleneck link and TCP parameters, the
RTT of the network was set to ensure that if there was no congestion, then a frame
(both layers) can be received in 1 sec. In realistic scenarios RTT will vary over a
wide range, in our next experiment we vary the RTT of the network by varying
the delay between Ty Ry in Fig. 3.12. The timeout is set to 1 sec. and if there is
no congestion, then if for the RTTs that have been used for the experiment, both
MDC and LC can get all packets of a frame across in the timeout. Congestion
is added and the results in Fig. 3.16, show that for longer RTT, LC-ARQ would
do worse than MDC. This experiment establishes that MDC can operate over a

wide range of network conditions.

3.5.3 Multicast transmission using RLM

In the above section we have considered unicast transmission, in this section we
are transmitting over a multicast network using the RLM protocol. The topology
of the RLM network is shown in figure 3.17. In RLM the transport layer protocol

used is UDP. A receiver subscribes to layers (descriptions) one at a time. If
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Figure 3.16: RTT between sender and receiver is varied. LC1, MDC1: the total
bps is 0.8 and packet size is 500 bytes for both the packets. In LC2 the packet
size for base layer is 600 bytes and for enhancement layer is 400 bytes. If there
was no congestion LLC would perform better than MDC for all RTT, if there is
congestion than MDC performs better for long RTTs.

a receiver experiences losses it backs off by unsubscribing to the highest layer.
Hence, it is form of congestion control where the receivers choose the best possible
data rate.

In table 3.2 results for RLM are shown, the number are the log;,(MSE). At
Node 6 the bandwidth to the end user is low, and every time the user subscribes
to an additional layer, there are losses. In LC these losses could imply that parts
of base layer are lost and this is the reason why MDC performs better than LC
for all scenarios.

For Node 4 the bandwidth is capable of supporting multiple layers, however
when loss is added to the link (node 1 to node 3), by the time Node 4 backs off
there are losses in the base layer. If the latency of back off is high there will be
more losses in the base layer, hence performance of Node 4 varies with the delay
of the link 4 under these lossy conditions. Node 2 has medium bandwidth and no

losses, hence MDC and LC performance are comparable.
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Node 2 Node 4 Node 6
LC MDC | LC MDC | LC MDC
No Loss, D=200ms | 2.1635 | 2.1821 | 2.129 | 2.1602 | 2.2951 | 2.2420
No Loss, D=2000ms | 2.1635 | 2.1821 | 2.2843 | 2.3143 | 2.2993 | 2.2460
Loss, D=200ms 2.1707 | 2.1811 | 2.518 | 2.5107 | 2.5313 | 2.5107
Loss, D=2000ms 2.1707 | 2.1638 | 2.8913 | 2.5781 | 2.5325 | 2.5155

Table 3.2: Results for RLM

3.6 Discussion of Results and Conclusion

Table 3.3 lists the scenarios under which MDC does better than a LC with ARQ.
The first unicast experiment established that if layered coding is sent without
protection, its performance will deteriorate rapidly in case of packet loss, especially
if base layer packets are lost. We protected layered coding with ARQ and showed

that if the latency requirement was very low or the RTT was very long, MDC
would be better than ARQ.

Parameter Winner
No Protection for Layered Coding | MDC
Unequal Error Protection MDC
Long RTT MDC
Short Latency MDC

Table 3.3: Summarization of Results

In case of multicast, retransmission is expensive. We have compared the case
of RLM using LC with RLM using MDC. Our results show that MDC performance
is comparable to LC or better in all scenarios.

The ARQ results are to be expected, retransmission is expensive if the RTT of
network is long and also if the application has short latency requirements. There
are two drawback of our current simulations, (a) a video encoder has not been
used. (b) The base layer uses TCP as the retransmission protocol. More suitable
transmission protocols like those in [34] and [69] will give better results for the

ARQ scheme. This is left as part of future research.
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Figure 3.17: Topology of RLM, the bandwidth and the delay for each link is listed.
The delay D of link node 3 to node 5 is varied, loss is added to link node 1 to

node 3 by using a Loss Monitor. Queue size is 35.
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Chapter 4

A Robust DPCM scheme based
on Multiple Description Coding

4.1 Introduction

In the previous chapter we have discussed the performance of Multiple Descrip-
tion Coding (MDC) for transmission of images (or a sequence of frames) over a
best effort packet networks, such as the Internet. In this chapter we focus on
transmission of multimedia data compressed using a predictive encoder. Predic-
tive encoders, e.g., differential pulse coded modulation (DPCM) in audio coding,
motion prediction in video coding, take advantage of correlations in the source
to achieve better performance than other approaches, such as pulse coded mod-
ulation (PCM) [14]. However, the main drawback of the predictive schemes is
that a single erasure causes decoding errors to propagate through all the sam-
ples following the erasure. In contrast, PCM schemes treat the source as a set of
independent samples and are thus are more robust, as losses do not propagate.

To make matters worse, most practical encoders tend to use entropy codes to
represent the quantized data. Since the entropy coders use variable length codes
(VLC), single bit error can lead to desynchronization of the decoder and cause
catastrophic error propagation. In the case of entropy coded DPCM, an error in
the bitstream can cause desynchronization in both the entropy decoder and the
DPCM decoder.
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A common approach to prevent error propagation in DPCM coders it to restart
the prediction loop by periodically inserting PCM coded samples. One drawback
of this approach is that though it limits the length of error propagation, there is
a loss in coding efficiency due to the frequent restarting of the loop. Moreover, in
this scheme it is difficult to recover lost samples. A similar approach is followed for
VLC coders where self-synchronizing markers [70] are added to allow the encoder
and decoder to resynchronize periodically.

In this chapter, we propose a novel robust entropy coded DPCM scheme,
based on MDC, Fig. 4.1. For a detailed description of MDC refer to Chapter 2.

The significant contribution of our work is the development of a sequence based

A

SIDEDECODER1 ___ Y1 ___SideSNR

SNRy,
S | n
Y _ MDC Encoder ~ CENTRAL DECODER___ Y _ Central SNR
= SNR;
S \
SIDEDECODER2 __ Y> _SideSNR

SNRy,
MDC Decoder

Figure 4.1: Multiple Description coding and decoding. The source Y is coded in
two descriptions, S7 and Sy and each description is transmitted over an indepen-
dent channel. If both descriptions are received, then the central decoder decodes
to ¥ with SN R,, else if one description is received, the corresponding side de-
coders decode to }Afl or }72 with corresponding SNR,, or SNR,,. SNR, > SNR,,
with SNR, > SNR;,.

decoder to estimate data lost due to channel noise in a description. An example
of the environment we are considering is shown in Fig. 4.2. If there was error
propagation across packets, either due to the DPCM coder or the VLC coder or
both, packet P3 will also have to be discarded [5].

Clearly the descriptions are correlated and the lost samples can be estimated
from corresponding samples of the other description. In addition, we propose that
these estimates have to be consistent with the received data. In simple terms the

estimates are consistent, if and only if, when source decoded the output lies within
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Figure 4.2: Two descriptions are sent over the channel and packet Pyy of descrip-
tion 2 is lost. If the packets are not independent, the error propagates, the decoder
discards packet P»; and P,3 and decodes only description 1.

some bounds; these bounds are set up by the second description which is coding
the same source though with a different quantizer. Also, for the predictive coding
scenario consistency needs to be checked in a lookahead manner. As discussed
in the introduction of this thesis, in memory based systems decisions that are
taken at the present instant are going to affect the future. This implies that
a estimate which is consistent at the present instant may lead to inconsistency
in the future samples. An example is shown in Fig. 4.3. Thus our algorithm
is based on maximum likelihood estimation of the erased samples Py, where
likelihood is defined in terms of a distance measure between the estimated }Afl
and Yg with the added constraint that the estimated Py samples be consistent
with all the error-free data that has been received, i.e., description 2, P,; and
Py3. Our estimation algorithm exploits both the redundancy between descriptions
and the encoder memory. As consistency is a key part of our algorithm we will
call it consistent sequence estimation algorithm (CSE). This idea of consistent
estimation is taken from 7?7 though have applied it in the totally different field of
oversampled A/D converters. Note that we have taken the example of a packet
network but our algorithm applies to all erasure channels. Vaishampayan and
John have developed a MDC based robust DPCM scheme (BMDC-VJ) [5] using
the multiple description scalar quantizers [49]. In their scheme their assumption
is that if there are erasures (single/multiple) in a description, the description is
discarded and the decoder decodes to the side SNR. Using our CSE algorithm we
can estimate the lost data and thus decode close to the central SNR, this implies
an improvement in performance of about 10-12dB over BMDC-VJ. In addition

we have developed our own MDC scheme for DPCM coding. Two quantizers with
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Figure 4.3: In the figure the dots are reconstructed samples of a DPCM coded
signal. The vertical lines represents the bounds within which the output samples
have to lie. The erased sample, (4) is estimated, however due to error in the
estimation, which propagates, the estimation becomes inconsistent, i.e., violates
the bound, at sample (6). This motivates the need for lookahead in consistency
check for memory based encoders/decoders.

different step sizes are used in the side DPCM loops. Unlike those proposed in [5],
the quantizers in our scheme do not require any special indexing. Thus standard
quantizers like the Lloyd Max quantizers (for fixed length coding) and uniform
threshold quantizer (for entropy coding) can be used. An important advantage of
our scheme is that both balanced and unbalanced descriptions can be generated
by simply changing the relative step size of the quantizers. A simple central
decoding algorithm ensures that the central SNR is higher than the maximum
side SNR for both the balanced and unbalanced schemes. Moreover, we propose a
novel optimization algorithm which given the quantizers, can be used to generate
descriptions where we can tradeoff the central and side SNR.

Forward error correction (FEC) codes could also be used for local recovery at
the decoder. The main disadvantage of FEC codes is that they experience the cliff
effect [24]; the performance is constant for up to some e erasures and then drops
very sharply for more than e losses. Our scheme, on the other hand, provides
graceful degradation; as the length of erasure grows, the performance of the CSE
degrades gracefully.

The chapter starts with some details on DPCM coding which are relevant to

our work. Section 4.3 presents a review of robust coding schemes, in particular
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MDC based DPCM and VLC scheme and Section 4.4 gives the overview of our
system. Section 4.5 gives the encoding algorithm for the central encoder and
in Section 4.6 we introduce the erasure estimation algorithm. The results in
Section 4.7 compare various schemes for MDC and show the advantage of using
our estimation algorithm. We conclude with some directions for future work in
Section 4.8.

4.2 Differential Pulse Coded Modulation

A typical DPCM encoder and decoder, Fig. 4.4, is an important example of a pre-
dictive coding system. Let Y (i) be the original signal, ¥ (i) be the reconstructed
signal, and Y (i) = f(Y(i — 1), Y (i — 2)...) be a prediction of Y (i) based on the

past reconstructed samples. The DPCM equations can be written as

where X (i) is the prediction error, X (7) the corresponding quantized value and
q(7) the quantization error. Equations (4.1) and (4.2) lead to the interpretation
that DPCM is a generalized quantizer for which the zero, or center-point, keeps
getting shifted to the latest value of the predictor, Y (i). This shifting aligns
the quantizer with the amplitude range most likely to be occupied by Y and
enables the encoder to use a finer quantizer (than in PCM) for a given number
of quantization levels. This interpretation will be used in deriving and explaining
the CSE algorithm. See Jayant and Noll [14] for more details on DPCM systems.

In this chapter we consider a first order linear predictor, i.e.,
Y(i)=aV(i—1),

where o < 1 is the predictor coefficient. Our approach can be easily generalized

to higher order predictors.
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Figure 4.4: A first order DPCM encoder and decoder. Y is the source, X is the
quantized prediction error sent over the network, Y is the reconstructed output.

4.3 Review: Robust DPCM schemes

A significant amount of work has been done on erasure recovery algorithms for
predictive coding schemes; an excellent review can be found in [51]. In MDC
based robust schemes, explicit redundancy is sent in the form of the multiple
independent descriptions. Vaishampayan and John [5] developed one of the first
MDC scheme (BMDC-VJ) for predictive coding environment. They use multiple
description scalar quantizers (MDSQ) [49] in each of the side loops. Hence the
descriptions are mutually refining, i.e., each additional description improves the
decoder performance, and are balanced, i.e., each description has approximately
the same quality and bitrate. An example of the two side quantizers is shown
in Fig. 4.5. To maintain the mutual refining property for DPCM coders it is
necessary that the shifted quantizers in the two loops have aligned thresholds.
The scheme ensures this by quantizing the predicted values to multiples of the
quantizer step size, so that both quantizers will always be shifted by multiples
of their step size. This quantization of prediction leads to a loss in performance
in the side decoders but this loss is a trade off against an increase in the central
SNR. As mentioned in the introduction of this chapter, the CSE algorithm can be
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used to estimate data lost in BMDC-VJ thus improving its performance in case

of erasures in a description. We also compare our proposed MDC scheme with
BMDC-VJ.

[ I S T b | I | | | | | Description 1

0 0
— . } } } } } } } } Description 2

Figure 4.5: The two side quantizers of BMDC-VJ [5] with their index assignment.
Input Y is quantized to the bin in black, and indexes (-1,0) are sent as the descrip-
tion to the decoder. If both are received, the decoder uses reconstruction values
of the black bin. If one description, e.g. description 2, is received the centroid of
the reconstruction levels of the three bins (shaded with a slant) with this index is
used.

BMDC-VJ designs balanced descriptions, unbalanced descriptions could also
be designed such that one of the descriptions has a high quality and the other has
a low, but acceptable, quality. The low resolution description is primarily used
as redundancy, to be decoded in case of losses in the high resolution description.
An example of an unbalanced scheme is the robust audio tool (RAT) [71]. The
advantage of an unbalanced MDC system is that it is easier to optimize the level
of redundancy given channel conditions, mainly because no special quantizers are
needed. Note that the descriptions can be unbalanced, however, using appropriate
packetization strategy, e.g., the one used in RAT, packets of equal importance can
be designed. In our MDC scheme for DPCM we present a method for scaling from
unbalanced to balanced descriptions.

Another MDC based predictive coder is the video coder developed by Reib-
man et al. [72]. The descriptions are generated by using the pairwise correlating
transform [60]. In case of erasures in one description, a linear estimator derived
from the correlating transform is used to estimate the lost data. Our erasure
recovery scheme, on the other hand, uses the inherent memory of the source to
perform a maximum likelihood sequence estimation. Reibman et al.’s work has
been specifically designed for video data. We have not yet applied our technique

to video data, we propose it as part of future work.
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Sequence estimation algorithms are used in many channel decoders. Two
which deserve mention, because they use the source memory, are [73] and [21]
where the authors have used the residual redundancy in a DPCM loop and the
catastrophic nature of the VLC codes to correct errors. In principle this is similar
to our work, except that we are exploiting the correlation between the description
and the memory of the source to estimate erased data. Similar work has been
presented by Yao and Vaishampayan [74] for a MDC based PCM scheme, where
each description is VLC coded and a Viterbi based sequence decoding algorithm
has been proposed.

One of the problems associated with MDC based prediction systems is that of
choosing the best predictors. If both descriptions are received, the best predic-
tor would be formed from past information transmitted on both the descriptions.
However, if only a single description is received, prediction should be based on in-
formation corresponding to the one description that has been received, otherwise,
if the prediction is based on information unavailable at the decoder, there will
be a prediction loop mismatch leading to a poor MSE performance. Regunathan
and Rose [57] have developed efficient prediction for MDC based on an estimation
theoretic approach. In their work, information available at the decoder is used to
calculate regions in which the original signal should lie. This is very similar to
our definition of a consistent region (Section 4.4), though we developed our work
independently in [75]. In addition, we introduce a sequence based algorithm for
estimating data lost due to channel noise, an issue which none of the previously

proposed algorithms addressed.

4.4 Overview of the proposed scheme

Fig. 4.7 shows the block diagram of our proposed MDC based scheme. The
source is encoded using two parallel DPCM loops, where each DPCM coder uses
a quantizer with a different step size (for uniform threshold quantizers) or different
number of bins (for a Lloyd Max quantizer) thus generating two descriptions. Note
that these quantizers will be replaced by MDSQ for the BMDC-VJ scheme, the

rest of the system remains the same.
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Figure 4.6: A MDC DPCM encoder.

The encoder with its parallel DPCM loops is shown in Fig. 4.6. The input Y
is coded using quantizers ); and ()3, so that Y and Y, are the outputs. X, and
X, are the corresponding quantized prediction error sequences which correspond
to the descriptions S; and S in Fig. 4.7. Note that, unless otherwise stated,
quantized variables are denoted with a hat and a variable without an index denotes
a sequence, i.e., X is a sequence while X (7) is the ith sample of the sequence. In
addition to the side DPCM loops, an optimization algorithm is used to find the
description Sy, for a given set of quantizers and description S,, the algorithm will
maximize the central SNR if both descriptions are received at the decoder. The
descriptions are packetized before being transmitted over the network. Packets
of equal size can be created by packetizing each description separately for the
balanced MDC. For unbalanced MDC the RAT packetization strategy can be

followed; each packet contains high resolution samples of the present frame and
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low resolution samples of a previous frame (a frame is a segment of data in time).
Thus from the packet network viewpoint, each packet, in either case (balanced or

unbalanced) has equal priority and the same size.

— — 8 Y,
—  DPOM SideEncoder 1 — == DPCM Side Decoder 1 ——
[ ;
© |
v 4 5 M S . .
N = . M Y
Central SNR Optimizer 3 @ g_ Consistent Sequence o Central Decoder Y
Input § g Estimation
‘ Channel N
§—> DPCM Side Decoder 2
—= DPCM SideEncoder2 ——= Y,

Figure 4.7: Block diagram of the proposed system. Two side DPCM loops gener-
ate the prediction errors, corresponding to the descriptions S; and Sy. The central
SNR optimization block searches for the optimal S;, given the quantizers and the
S5, which would maximize the central decoder’s SNR if both descriptions were
received at the decoder. If both descriptions are received then they are decoded
to Y7 and Y, and used as inputs to the central decoder. If one of the descriptions,
say Si, has a loss, then the consistent sequence estimation algorithm estimates
the erased data. The inputs to this estimation algorithm are 172 and the received
data of description one. The estimated signal, denoted by f’r, is used as input to
the central decoding to ensure that the performance is as close to central SNR as
possible.

If both descriptions are available at the decoder then the central decoder de-
codes the descriptions. In the case of loss, for example in S;, the sequence esti-
mation algorithm uses the received S; and Sy data to estimate 171 The estimated
signal ¥, can then be used as an input to the central decoder in order to achieve
an outcome close to the central SNR performance.

The assumption underlying the estimation algorithm is that there are no cor-
related losses, i.e., erasures do not occur at the same location in both the de-
scriptions. This can be ensured by using sufficient interleaving among packets
containing different descriptions for a bursty channel. If the erasures lie in the
same segment of the data for both descriptions then the data cannot be decoded.

There are three important observations to be made about this MDC-DPCM
system. We are quantizing the same source using two different quantizer. Hence

the bin that the source is quantized to by one quantizer should overlap with the
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bin that it is quantized to by the second quantizer. In the case of DPCM loops,
there will be an overlap only after the appropriate shifting of each quantizer to
account for the different predictors used in each loop. Fig. 4.8 shows an example
where each quantizer has been shifted by its prediction. The sample X is then

quantized to bin 2 of ()3 and the overlapping bin 7 of ;.

p(y)
a?l(i-l)
a Y, (i-1)
X (i)
Y
Q, % % o
0 1 2 3
Q, et —t— o ——

0 1 2 3 4 5 6 7

= Box 1

Box 2

= BOX 3

Figure 4.8: Quantization in DPCM is equivalent to using a scalar quantizer with
its center shifted to the value of predictor. In this example 1 & Q1 are shifted by
aYi(i — 1) & a¥s(i — 1) respectively. The prediction error by the two quantizers
is quantized to X;(i) = 2 and X, (i) = 7 respectively. It is clear that the source
will always be quantized to bins which overlap. Note that Y is the source being
quantized while X is the prediction error being generated by the DPCM loop.

68



The observations are closely tied with our definition of consistency and con-

sistent region:

Definition 1 Consistency: Given quantizers Q1 and Qs, a sample, X; (1) is con-
sistent with X,(i) if there exists an input Y (i) such that Q1 (Y (i) = X.(i) and
QY (3)) = Xz(z)

Definition 2 Consistent Region R The consistent region given quantizers (Qq
and @y and outpul sequences X, and X, is the set of inputs that can generate

these outputs:
R¢={Y : VY, X is consistent with Xg}

For a DPCM loop the quantizers are going to be shifted to their respective predic-
tions. Hence the consistent region will be defined by the prediction errors, X, (7)
or X,(i) and the respective predictions, a¥;(i — 1) or a¥;(i — 1).

The three observations are,

e Observation 1 In Fig. 4.8, if a¥;(i — 1), a¥5(i — 1), X1(i) and X,(i) are
available at the decoder, i.e., both the descriptions are received error free,
then it can be inferred that X (i) belongs to Box 1. As Box 1 is a subset
of bin 7, using the centroid of the box for the reconstruction will give a
lower distortion than if using the centroid of bin 7. In general, when both
descriptions are received at the decoder the consistent region R is a subset
of the bins of the quantizer and its centroid can be used for reconstruction
to get a lower distortion. This result will be used in the central decoding

algorithm developed in section 4.5.

e Observation 2 From the figure, if a¥i(i — 1), a¥3(i — 1), and X,(i) are
available at the decoder, then it can be inferred that X (7) belongs to Box 2.
As Box 2 overlaps with bins 5,6,7 of (), if sample X, (7) has been lost, then
the lost sample has three possible candidates, namely 5,6,7. In general, if
there is an erasure on a single description, at the point of erasure the second
description can be used to define the consistent region R® which would give
the possible candidates for the lost data. This will be used in the estimation

algorithm to generate candidates in section 4.6.
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e Observation 3 Suppose there is a single erasure in description one but at
some point beyond the erasure, X (i) € bin 7 and X, (i) € bin 2, a¥;(i — 1)
are available at the decoder. For X;(i) and X,(i) to be consistent the
bins have to overlap, i.e., the prediction ozf/l(z' — 1) has to belong to Box
3. If a candidate (observation 2) has been selected for the erased sample
Xi(e), (e < 1), such that a¥;(i — 1) is not in Box 3, it can be inferred that
the candidate for X (e) is inconsistent. Box 3 corresponds to the bounds
discussed in Fig. 7?. This observation can be used to check inconsistencies
that may occur in the future if an incorrect candidate is selected for an
erased data. It will be further discussed in the path consistency check step

of the estimation algorithm in section 4.6.

Before ending the section, let us introduce some notation which will be used
in the central optimization algorithm and the estimation algorithm introduced in
the next two sections. Let C; and C); represent the codebook partitions of (); and
(- respectively. Note that when the quantizers are shifted in a DPCM loop, the
partitions will be shifted accordingly. In the DPCM encoder with the predictor

coefficient «, for any sample 7

Xi() = Y(@E) —a¥i(i—1) 4.4
Xo(i) = Y()—aYs(i—1) 4.5
= X1(1) = Xo(i) +a(Ya(i — 1) = Yi(i — 1)). (4.6)

Let € = Y5(i — 1) — Y1(i — 1), then we have
X1(7) = Xo(i) + ae.

Finally, if X,(i) = j, then, X5(i) € Co(j) £ [aj,b;], and if X;(i) = k, then,
X.1(i) € Cy(k) £ [Ag, By).
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4.5 The central SNR optimization algorithm

At the central decoder both descriptions are received and decoded; from observa-
tion 1 the consistent region R is a subset of the bins of either of the quantizers

because of the overlap. Using notation from section 4.4, R¢ is defined as,
R 2 laj + ce, bj + ae] N [A, By (4.7)

Let X (i) be the centroid of R¢. As R¢is a subset of C(k) and C5(j), reconstruc-
tion with X (i) is going to give a lower distortion than X, (i) or X5(i). If there is
a model for the source then the centroid could be calculated based on the model,
or else the center of R° could be used.
The best central SNR performance can be achieved with the following central
decoder [57],
V(i) =aY(i—1)+ X(i) (4.8)

iff there is a corresponding central encoder such that,

X(@)=Y()—aV(i—1) (4.9)

In order to achieve this central decoder performance and maintain independence
of the descriptions, three independent encoders/decoders are needed and X has
to be transmitted along with Xl and Xg. This scheme has been used by Reib-
man et al. [72]. Though the scheme gives optimal central SNR performance its
disadvantage is that there is an associated overhead of transmitting X.

We on the other hand run two DPCM loops at the encoder and decoder,
and transmit Xl and X'Q. X is derived at the decoder and is used to refine the

prediction error of the S; decoder loop, i.e., our central decoder equation is,

A~ ~ —

V(i) = aYi(i — 1) + X (i) (4.10)

Thus we avoid overhead cost of transmitting X, but we do have a lower central
SNR performance than that of the central encoder/decoder defined by equations
(4.8 &4.9). Equation (4.10) gives us a gain in central SNR of about 1 dB over the
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side SNR, SNRg,. The question that arises is that can we do some processing at
the encoder to increase the central SNR, 7 In Fig. 4.8, given the quantizers and
X,, X (4) is dependent on o¥;(i—1), i.e., on X;(i—1). Thus, if there was a different
X, (i—1) there would be a different X (i), i.e., each possible sequence X; will give a
different R, and thus a different central SNR. Hence a central optimizing algorithm
can be designed which consists of choosing among all possible X, sequences that
sequence which gives the highest central SNR given );, )2 and X,. The sequence
that gives the highest central SNR will obviously not give the highest side SNR.
Hence in this search there is a tradeoff between the central and side distortions.

Given a 1, a trellis describing all possible prediction error sequences can
be designed. Each state corresponds to a reconstruction value (centroid) of a
quantization bin of @); (the possible values that a prediction error Xl(j) can
take) and every state is connected to every other state. Given the sequence X,
Viterbi algorithm [19] is used to find the minimum D, + ADy,. A is the parameter
which controls tradeoffs between the side distortion and the central distortion.
There are many sequences which may not be possible and can be removed at run
time.

Fig. 4.9 shows the tradeoff between the side S; and central SNR for the bal-
anced and unbalanced cases. The points on the SNR axis are results when no
lookahead is used. In the balanced case, our search algorithm gives a gain of
nearly 4dB over the no lookahead case, while for the unbalanced case a more
modest gain of about 0.7 dB is achieved. For either case, note that the highest
side SNR is obtained by using the lookahead with A = 0 and that the decrease in
side SNR is not more than 0.5 dB.

4.6 Consistent Sequence Estimation Algorithm

In the previous section we proposed an algorithm for generating multiple descrip-
tions in a DPCM coding environment. In this section we develop an algorithm
for estimating the data lost in a description due to channel losses. The first sub-
section develops the algorithm for fixed length coded descriptions. The variable

length coded case and the associated errors in the bitstream are covered in the
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Figure 4.9: Tradeoff between the central SN R, and side SN Rg,. Results are for
Gaussian Markov source with correlation 0.9. Uniform threshold quantizers are
used. In the balanced case the total bit rate (after Huffman coding) is 1.99 & 1.92
for the two descriptions. For the unbalanced case, the bit rate is 3.23 for S; and
0.75 for SQ.

second subsection.

4.6.1 Fixed length coded DPCM

We start with the outline of our algorithm, assuming that only sample X, () of the
description one is lost at the decoder while description two is received error free.
Our goal is to estimate the lost sample by taking into account the information

that was received. The algorithm works through a 3 step process:

e Candidate selection: Of all possible quantized values for X (e), only those
that are consistent with X(e) are considered as candidates. In mathe-

matical terms the candidates can be found as follows: if Xg(e) = j, l.e.,
Xs(e) € Ca(j) 2 [a;,b;], then X;(e) € R® where R is defined as

R° £ [a; + ¢, b + af] (4.11)

All the bins of Q; that intersect with R¢ are candidates for X;(e). This is

related to observation 2 of section 4.4.
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e Path consistency check: For each of the above candidates, description one
is decoded N samples into the future. Observation 3 is then used to check
consistency of each of these decoded sequences. For an incorrect candidate,
the shift of quantizer ; would be such that bins of the received X (i) and

X,(i) for some 4 > e will not overlap.

Mathematically, the path consistency check can be derived as follows. If
X, (i) = j is given, i.e., X1(i) € C1(j) £ [A;, B;] then X5(i) € 7 where r is
defined as

r2 [A; — ae, Bj — ] (4.12)

Given a sequence of X;(i), i > e, the reconstructed sequence Y;(i) is consis-
tent with Vs if, at each sample, the interval r from (4.12) overlaps with the

the quantization bin of Xj(i).

e Likelihood test: Finally, the consistent sequence closest to Vs, in Euclidean

distance is chosen as the recovered Y;.

The example shown in Fig. 4.10 can be used to explain the algorithm. Here
X1(0) = 1is lost but we assume that X,(0), ¥1(—1), Y2(—1) and X; (i), X5 (i) Vi >
0 have been received correctly. Candidate selection gives three possible candidates
for the erased data, namely {0, 1,2}. Each of these three choices are decoded, their
paths are shown in the figure, and checked for consistency. In the figure the top
path, corresponding to X(O) = 2, becomes inconsistent; after shifting ); by the
prediction corresponding to this path, the bin of }71(2) does not overlap with the
bin of XQ(Z). The path consistency is tested for N samples in the future and if
there are more than one consistent path, then the one closest to Y, is chosen.

The above algorithm has been explained for a single erasure and it can easily be
extended to multiple erasures. At each erasure, the candidate selection algorithm
is run to find the candidates and after the end of erasures, the path consistency
check is run to remove all the inconsistent paths. It can be easily seen that for
burst erasures a tree of candidates will grow: for each candidate for the previous
erased sample, there will be a set of candidates for the current erased sample.
This increases the complexity of our algorithm and is its main limitation. To

limit the complexity, pruning is used where only M candidates are kept at any
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Figure 4.10: Erasure Recovery Algorithm. X (0) is erased. Y;(—1), Ya(—1), X5(0)
give 3 possible candidate for lost data: [0, 1,2]. Each of the candidates is decoded,
}Afr’“ represents the estimated path decoded with Xl(O) = k. Consistency check is
done for the decoded paths, at sample 2 the top path is inconsistent: after shifting
by a¥?(1), the bin of X;(2) does not overlap with the bin of X,(2), shifted to
aY3(1). The bins are shown by the shaded boxes on each quantizer. In case of
multiple consistent streams, the one that is most likely i.e. closest (in Euclidean
distance) to Y3, is chosen.

erasure. As pruning can remove all consistent paths, it affects the performance of
our algorithm. We are looking at ways to solve this problem.

Fig. 4.11 shows the result of our algorithm for erasure burst lengths of up to
7 samples. Gaussian Markov data with a correlation coefficient of 0.9 is encoded
with two DPCM loops using Lloyd Max quantizers. The high resolution uses
a 3 bit quantizer while the low resolution uses a 1 bit quantizer. Hence, the
total bit-rate is 4 bps. SN Ry, is the SNR of description one, SN Ry, is the
SNR of the estimation algorithm while SNRy,_, is that of the recovery without

using any lookahead. Note that this result does not take the central decoder into
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account. Only the side decoder performance is given and compared with that
of the estimation algorithm. The results show that for small, but catastrophic,
erasures the estimation algorithm is able to produce estimates which are very
close to original signal. Lookahead performs better than no lookahead because a
“good” local estimate may prove to be inconsistent in the future. N, the amount
of lookahead, depends upon the predictor coefficient and the relative bit-rates of
the two descriptions. We do not have an explicit formula for N but for all our

experiments N = 20 has sufficed.
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Figure 4.11: Results for erasure recovery algorithm when fixed length codes are
used. Gaussian Markov data with correlation coefficient 0.9 is encoded with two
DPCM loops using Lloyd Max quantizers. The high resolution uses a 3 bit quan-
tizer, while the low resolution uses a 1 bit quantizer resulting in a total bit-rate
of 4 bps. SN Ry, is the output of the recovery algorithm, SNRy, , is for recov-
ery without using any lookahead, i.e., no path consistency check is used and the
likelihood test is performed on the sample not on the sequence.

4.6.2 Entropy Coded DPCM

In the above section we assumed that the DPCM descriptions were fixed length
coded. However in most practical scenarios, including BMDC-VJ, the prediction
errors will be entropy coded. In this section we develop an algorithm for recovery
of erasures when the bitstream is Huffman codes encoded.

Fig. 4.12 shows a variable coded bit stream between two resynchronization

markers [70]. The number of symbols, N, between the resynchronization markers
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is known. Consider that a segment of the bit stream is lost (the shaded box).
With reference to the bit stream, the starting point of the erasure s and its end

point e are known. The bitstream packet can be decoded at most to the s bit.

S e

(0100111000 011110010

T ?
Resynchronzing Resynchronizing
Marker Marker

Figure 4.12: Example of a packet loss in a Huffman coded environment. A VLC bit
stream between two resynchronization markers is shown. The number of samples
coded between the markers is known. The shaded box represent erasures in the
bit stream. Thus the start of loss s and the end of loss e is known. The bit stream
can be decoded at most to bit s and also after the right resynchronization marker.

To estimate the erased samples, the candidate selection and path consistency
check introduced in the previous subsection are used along with additional con-
straints. The additional constraints are that if all the candidates for an erasure are
VLC encoded, the resulting bitstream should (i) be consistent with bits that have
been received, (ii) consistent with the number of bits erased and (iii) consistent
with the number of symbols N between the resynchronization marker.

The algorithm is best explained by using the example shown in Fig. 4.13. The
prediction error X; can be represented by any of the three symbols {a,b,c}, and
each symbol has its associated Huffman code. Sequence X, = acac is Huffman
encoded and sent over the channel. Two bits (third and fourth) are erased. At
the decoder only the first bit can be decoded, to a; the second bit (1) does not
correspond to a symbol. Let candidate selection give two candidates for the second
prediction error: a,c. The Huffman code of the string aa is 00 which does not
match the first two error free bits (01), hence aa path is discarded. For the ac path
candidate selection is run again and gives three possible prediction error paths acc,
ach, aca. Of these, acb can be discarded because the fifth bit of this path, when
VLC coded, does not match the fifth bit in the received string. Further, for path
acc the sixth bit of the received sequence cannot be decoded, thus this path is also

discarded. The only valid path in this example is acac which was the originally

7



transmitted path. If more than one paths are left at this stage, path consistency

tests will be run for it and the consistent path closest to % will be the estimated

A
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011011|éChannel %0 1 X X 1 1

a a
Symbol  Huffman Code (i) 0 0
0
b 10
i c c
c y
M 01111

(iv)
01 10

Figure 4.13: Sequence X, = acac is transmitted over a noisy channel. The third
and fourth bits are erased in the transmission. Candidate Selection gives four
possible paths for the erased samples. Of these aa is not valid as its 2nd bit does
not match the 2nd bit of the received string. acb is not valid as the 5th bits do
not match and acc is not valid as the sixth bit cannot be decoded. Only valid
path in this example is acac.

The results of this algorithm for UMDC are shown in Fig. 4.14. Note that
the size of burst erasure has been kept small to avoid the exponential growth in
number of candidates associated with long burst erasures. In the results section
we experiment with much longer bursts, in any case even if a single bit is erased,
the decoder cannot decode till the next resynchronization marker. In view of this
our results are significant as the estimated signal is very close to the original signal
for the short burst erasures considered here. Long bursts can always be avoided

by using some form of interleaving.
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Figure 4.14: Results for erasure recovery algorithm when variable length codes
are used. Gauss-Markov data with correlation coefficient 0.9 is encoded with two
DPCM loops using uniform threshold quantizer. The high resolution is coded at
3.23 bps, while the low resolution is coded at 0.78 bps, resulting in a total bit-rate
of 4 bps. SNRy, is the decoded description S; without errors, SN Ry, is the
estimated signal when S; has errors.

4.7 Results

We first extend our sequence estimation algorithm to the adaptive DPCM encoder
and compare it to DPCM for a speech signal. Then, we compare the various MDC
schemes, BMDC, UMDC and BMDC-VJ along with a comparison to the tradi-
tional method to avoid error propagation, namely restarting loop at the beginning

of each packet.

4.7.1 ADPCM

Speech/Video signals are non-stationary in nature, i.e., they have time varying
source statistics. An adaptive quantizer and/or predictor learns the source statis-
tics as it codes the source and thus performs better than a fixed coder. In their
book, Jayant and Noll [14] have shown the advantage of using adaptive quantizers
and predictors, e.g., for 24kbps speech coding adaptivity can give a gain of over
4dB. The gain in performance comes at the additional cost of sensitivity of errors.
In DPCM the error decays, with lookahead n, at rate . In ADPCM there is an

additional error due to the wrong step size which does not decay with n.

79



In our implementation of ADPCM we have used only adaptive quantizers
and a first order fixed predictor. The adaptive quantizers are based on the step
size multipliers design for uniform quantizers and speech inputs developed by
Jayant [76]. In Fig. 4.15 results with ADPCM and its comparison with DPCM
are shown for speech data. Note that for DPCM we use uniform quantizers with
range equal to three times the estimated variance of the signal. The estimation
is done for every 1000 samples, when the coding loop is restarted. Results show
that for low erasures ADPCM uses its memory to recover better than DPCM, but
if the bursts becomes very large ADPCM’s performance is worse. This is to be
expected as ADPCM will have more constraints so it will recover more often but

if it does not recover the error will propagate further.
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Figure 4.15: Results for ADPCM and comparison with DPCM, both using uniform
quantizer. The left figure gives the SNR of the recovered signal while the right
figure gives the ratio of recovered SNR to the original SNR. In ADPCMl/DPCMl
Yi=4 bps, Y, =3 bps, while ADPCM2/DPCM2 Vi =4 bpp and Y>=2 bps.

4.7.2 Comparisons between various schemes

We start with a comparison of our scheme with the MDC-DPCM scheme of
Vaishampayan and John (BMDC-VJ). Note that all the results for BMDC-VJ

are based on our own simulations of their scheme. For a given total bit rate there
is one balanced MDC (BMDC), but there can be many unbalanced MDC (UMDC)

schemes. We design a UMDC scheme based on the principle that the central SNR
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of unbalanced is close to the central SNR of BMDC-VJ. The optimal performance
along with the step size of the uniform threshold quantizer are given in Table 4.1.

The results are for a Gauss-Markov source with correlation coefficient 0.9.

Table 4.1: Results of UMDC,BMDC, BMDC-V]

Scheme Si So Central
Balanced SNR 16.00 | 16.31 | 21.25
Bit Rate | 1.99 1.92 | 3.91
Step size | 1.3 1.31
Unbalanced | SNR 24.62 | 8.31 | 25.25
Bit Rate | 3.23 | 0.75 | 3.98
Step size | 0.46 | 3.7
BMDC-VJ | SNR 13.18 | 13.25 | 25.12
Bit Rate | 2.03 | 2.03 | 4.06

In Fig. 4.16, we compare the expected SNR at the decoder, given a probabil-
ity of loss p of losing a description, for the three different cases. The expected
distortion E(D) is calculated as,

E(D) = (1-p)*D.+ p(1 — p)Ds, +p(1 — p)Ds, +p°D,

where D; is the distortion when both the descriptions are lost. The figure shows
that the UMDC has better results than BMDC-VJ for very low p and BMDC
is better than BMDC-VJ for p > 0.1. These results are obtained when no CSE
algorithm is used.

In Fig. 4.17, we present results for our estimation algorithm when applied
to BMDC-VJ and compare it to the UMDC case. Again small burst erasures
are considered, BMDC-V] is able to recover more erasures because it has more
balanced information, hence less candidates.

In Fig. 4.18 we compare BMDC and UMDC for different burst erasure sizes.
The step like function in the result is due to the pruning. It is clear from the results
that, if there is a large burst of erasures, BMDC will do better than UMDC as the
minimum side SNR for BMDC is higher than the minimum side SNR of UMDC.
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Figure 4.16: Comparison of expected SNR with given probability of loss for
three different schemes. UMDC is the unbalanced MDC scheme described above,
BMDOC is the balanced scheme. BMDC-V] is the scheme from [5]
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Figure 4.17: Results for the channel estimation algorithm for UMDC and BMDC-
VJ. In the BMDC-VJ[5] there is no estimation of lost data, if there are erasures in
a description it is discarded and the other description is used for decoding. This
would mean a loss of about 12 dB (central to side SNR), with our algorithm close
to central SNR performance can be obtained.
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Figure 4.18: The plot compares the UMDC and BMDC scheme of Table 1. A
Gaussian Markov source with correlation 0.9 is used. The descriptions are Huff-
man coded and the VLC erasure recovery algorithm is used.

We have mentioned pruning as the main reason for the degradation in per-
formance as the size of burst erasure grows. A way of avoiding large bursts is to
interleave samples across packets. One such packet with interleaved samples is
shown below.
X(@+1),X6+2),..X6E+5),X(E+21),X(+22),.X(+25),X(1+41)...|

A 1000 sample stream was packetized into 4 such packets, a packet loss implies

that 250 or 1/4 of the samples were lost. The erasure recovery algorithm estimated
the lost data to within 0.4 dB of the central SNR. As the longest burst erasure
with this interleaving is 5 samples pruning is not needed in the CSE algorithm.
A simple approach to prevent error propagation in predictive coders is to
restart the prediction loop by periodically inserting PCM-coded samples. In
Fig. 4.19 SNR, is the SNR of the 2000 samples Gaussian Markov source, coded
with 4bps, when there are no restarts in the loop. SNR, is the SNR when the
loop is restarted with every packet. If a packet is lost, then SNR,, is the per-
formance at the decoder, where the previous packet samples are used in place
of the lost samples. We compare this scheme to our UMDC scheme, where the
high resolution description is coded at 3bps and the low resolution at 1 bps. MDC
based schemes do well for small burst erasures, and even when a long burst occurs

in a description, the second description can be used for decoding.
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Figure 4.19: The plot compares the restart with each packet scheme to the MDC
scheme. A 1000 symbol source is coded with 4 bits and packetized with different
packet size. If the loop is not restarted the performance is SNR, and if it is
restarted the performance is SNR,. If there is a packet loss, the performance is
SNRy,.. MDC with 4 bits, 3 for the description 1 and 1 for the description 2 is
designed. SN R, is the quality if everything is received error free, else SNR, is
the performance of the recovery algorithm.

4.8 Conclusion

In this chapter we have designed a robust DPCM scheme based on multiple de-
scription coding. Our scheme compares favorably with other MDC based DPCM
schemes. More importantly, we have addressed the key issue of estimating data
erased due to packet loss in a predictive coding environment. Our results show
that small burst erasures can be recovered by using a sequence based estimator.
By using interleaving of samples we can also achieve very good results when a
packet is lost. Our algorithm does not guarantee that the erased data will be
recovered or that there will not be any error propagation. However, it provides a
method for erasure recovery given all the information that has been received at
the decoder. Restart points will still have to be used to limit error propagation,
but they can be positioned further apart thanks to the added robustness provided

by our erasure recovery techniques.
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Chapter 5

Modeling of temporal
dependence in packet losses using

Information Theory concepts

In this chapter we present the last contribution of this thesis, channel modeling.
With the increasing congestion on the Internet, packet losses and delay have
become commonplace. These losses and delay can lead to severe degradation
in the quality of delay constrained multimedia applications such as audio/video
conferencing and Internet telephony. To ensure a suitable end-user quality and
fair bandwidth sharing with the other connections, these applications have to
adapt their transmission rate to the perceived congestion level in the network [1].
They can adjust the transmission rate either by adapting their encoding rate (bits
per sample) [77], or by changing the number of layers they will send [78], or by
adjusting the relative allocation between the source coding and channel coding
bits [79, 4]. To enable applications to be adaptive, simple and efficient network
loss models are needed so that the application can adopt the optimal strategy
based on predicted future network behavior.

A number of studies have shown the network traffic is correlated, i.e., the
packet losses exhibit a finite dependence in time [1]. Thus, the channel, i.e., the
packet loss trace, can be modeled as a correlated random process, e.g. a Markov

process, where the conditional probabilities of a symbol depend upon a function
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of a finite number of contiguous past observations. This function of the past
observations will be referred to as the “context” of the symbol in this paper.
Specifically, if the packet loss trace is represented as a binary message, with the
symbol one representing a lost packet and the symbol zero a received packet, then
the channel can be modeled as a binary random process. The problem of modeling
the random process, generating this binary message, thus amounts to finding a
set of contexts and their associated conditional probabilities.

A popular model for the packet loss is the Markov chain model [1]. In a Markov
chain model of order k, the context of a symbol is the string of past k observations.
Thus there are No = 2% contexts in this model. An advantage of the Markov chain
is that a finite state machine (FSM) can be associated with it, where each state
corresponds to a context and its associated conditional probabilities.

However, when fitting Markov chain models to the data by estimating the
conditional probabilities of the contexts, a number of difficulties arise [36]. First,
there is an explosive increase in the number of states (2¥) if the order is increased
to find the the best fit. In the paper by Yajnik et al. [1], analysis show that models
of up to order 40 may be required to best fit the trace, clearly the computational
cost of such a large model will be very high.

Another problem with the Markov chain model is that some contexts occur
very rarely in the data and when they are used for modeling they may not provide
enough information about the process, this is referred to as the “context dilution”
problem. Let us take a concrete example, the Markov chain model of order 3
for trace-27 (section 5.1) is shown in table 5.1. The counts in the table, one for
each symbol, 0 and 1, are the number of times a symbol occurs for the given
context and can be used to calculate the conditional probabilities for the context.
Contexts (110), (101), (011), (111), do not occur with any regularity, and therefore
their counts are very low. Thus it may be more efficient to either delete these
set of contexts from the model or maybe “lump” them together to form a new
context. Similarly, contexts (100), (010) and (001) have very similar counts and
thus a single context representing this set of contexts may give a better modeling
performance. However, if the redundant parameters are removed by arbitrarily

lumping together equivalent states, the result may not a finite state machine
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implementation of the process, let alone one of a Markov type [36].

Context | Counts Context | Counts
000 360639, 3700 | 100 3702, 155
001 2989, 864 101 158, 46
010 2984, 163 110 872, 40
011 805, 106 111 106, 41

Table 5.1: Counts for Markov chain model of order 3.

In this paper, we use the universal modeling concept [36] to alleviate the
problems of Markov chain models. A universal model is one which represents an
entire class of probability distributions, such that it is able to capture the behavior
of any model in the class. From this set of models, the “best” model class for
the observed data is found. To define the “best” model we need a measure of
the performance of a model. We use the concept of the “shortest description
length” [37], where description length is defined as the negative logarithm of
the probability distribution estimated for the given data, a concept similar to
Shannon’s entropy [30]. Thus to evaluate a model, the entropy of the observed
data is calculated with respect to the model, the best model is the one which
which gives the lowest entropy.

An example of universal model is the tree model proposed by Rissanen [25].
This model will be referred to as the Markov tree model, and a simplistic view of
the model is that it is a collection of all possible Markov models, from which the
most appropriate model is chosen for prediction of a symbol of the source [38].
In a kth order Markov chain model, memory of all the contexts was of the order
k. On the other hand, in a kth order Markov tree model, all possible contexts
with memory of order 1...k will be arranged in a tree, with the nodes of the tree
representing a context and its associated probability distribution. The best set
of contexts, i.e., a set of connected nodes, for the observed data can be efficiently
found using the Context algorithm developed by Rissanen [25]. Thus rather than
deleting or lumping contexts of the Markov chain, all possible contexts are grown
and the best set is chosen, i.e., from an “over-complete” model, a model which

captures essential information of the source is chosen. We propose to use this
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concept for modeling of network traces, an area where to the best of our knowledge
it has not been used before. Our results show the improvement in modeling
performance of the tree models over Markov chain models.

The Markov tree model not only performs well but is also truly adaptive: if
the source changes not only the probabilities but also the set of contexts used to
model the source can change. This is in contrast to a Markov chain model, where
given a order, the set of contexts is fixed and only the probability distributions
can be adapted. The performance of the tree model does come at the cost of
increased complexity, there are Ny = Zf:o 2! contexts in the tree model of order
(depth) k. The number of contexts and hence the complexity could be reduced by
explicitly pruning the best set of nodes of a Markov tree model after the tree has
been trained on some data. Given this set of contexts (nodes), the probability
distributions can be adapted as in the Markov chain model. Our results show
that the pruned tree model can perform better than a Markov chain model with
comparable number of nodes.

The chapter starts with a review of related work in Section 5.1 followed by a
brief introduction to some mathematical concepts in Section 5.2. In Section 5.3
we introduce the universal source coding algorithm and motivate the use of a
tree structure over a Markov chain with some results. Finally, in Section 5.4 we
give the design rules for pruning the Markov tree model and compare the pruned

model with the Markov chain model.

5.1 Related Work

There has been a lot of work on measuring, analyzing and modeling network
traffic [80, 81]. We are primarily concerned with Yajnik et al.’s work because they
have analyzed real network traces and modeled the temporal dependence of packet
losses in these traces as Markov processes. They have measured and analyzed 128
hours of unicast and multicast traffic. Of these 128 hours, 76 hours were found to
be stationary and were used for further analysis. Two methods of analysis were
used, the first being based on the auto correlation present in the binary trace

data. The lag was varied in the experiment and if the corresponding correlation
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was greater than a statistical measure, the data was considered correlated for that
lag. In the results it was shown that the network data can be correlated up to
lags of 1 sec. The second analysis method is based on runlength coding the binary
data and analyzing the histogram of the runs of various length and analyzing the
correlation between the good and bad runs.

Three models were proposed, the Bernoulli model, the 2-state Markov-chain
model and the kth order Markov chain model. Out of the 38 trace segments
considered, the Bernoulli model was found to be accurate for 7 segments, the
2-state model was found to be accurate for 10 segments and for the rest of the
traces higher models, up to the order of 40, were required. The order of the
Markov chain process is estimated by calculating the minimum lag beyond which
the process is independent, this is similar to the estimation of the correlation time
scale. Once the order has been chosen, the probability models can be adapted on
the fly for the set of contexts associated with the model.

In this paper we are using traces measured by Yajnik et al. Instead of using
the correlation measure, we use entropy of the trace for a given model, in order
to find the best model. We have simulated both the Markov chain and the tree
models and the results show the advantage of using a tree model. The motivation
for this work is based on results obtained by Perret in his Master’s thesis [82].

We have analyzed two different sets of traces, each of which is about 2 hour long
and has been found stationary by the method proposed in [1]. The descriptions

of the traces are given in table 5.2.

Date Type Sampling | Destination | Duration | Loss Rate
Interval
Trace-25 | 20Dec97 | unicast | 20ms Seattle 2hrs 1.7%
Trace-27 | 21Dec97 | unicast | 20ms Los Angeles | 2hrs 3.4%

Table 5.2: Trace Descriptions from [1]
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5.2 Preliminary mathematical concepts

We will use this section to define some preliminary concepts which will be used
later in the paper. The information source we are considering is a string of binary
random variables {z;..z,}. At each time instant ¢, after having scanned past data
2" = ,75..7; the modeling problem is to make inferences on the next symbol z;_,
by assigning a conditional probability distribution p(-|c(z*)) to it, where context
c(z') = f(xi...zi_k;) is a function of the past symbols. In the long run, the

modeling goal is to maximize the probability assigned to the entire sequence [41],

lWﬂ=ﬁMMWW» (5.1)

Taking the negative of the logarithm (base 2) of the above equation we see that
the goal is to minimize the code length h(z),

n—1
h(z) = —log,(P(z")) = — ZO logy p(wi41]c(2")), (5.2)
i=
where h(z) is Shannon’s entropy [30]. Entropy will be small when there is order in
the sequence, i.e., some patterns occur regularly, and large when there is disorder.
It is related to data compression in that the number of bits required to store
compressed data should ideally be equal to the entropy of the data.

Clearly there are two steps to modeling the source; the first is to find the “best”
context c(z') for a given z° and z;;,;. The second is to estimate the conditional
probability p(z;11 = ale(z’) = y;), where y; € S and a € A. (S is the context
space and A is the alphabet set). The probabilities can be estimated by storing
the count, n(aly;), i-e., the number of times symbol a occurs with context y,.
Each time z;,; follows a given context c(z*), n(w;y1|c(z)) is increased by one.

The probability is estimated by

p(zip1 = ale(z) = y;) = n(aly;)

= Srean(ly,) (5:3)

Other methods including those developed by Yajnik et al [1] could be used for

online probability estimation.
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The more difficult task is to find the best set of contexts {c(z%)} for the given
source. In the kth order Markov chain model developed by Yajnik et al., the
context is defined as c(z') = (;...7;_;), i.e., the memory is constant for all i
and independent of x;,.;. Thus, once the order £ has been defined, based on a
correlation measure, the problem reduces to estimating the probability models.

In the Markov tree model proposed here, we build a tree of all possible contexts
c(z') = (z;..wi_,), ki = 0..k. For each of these contexts the probabilities are
estimated using equation (5.3) and for each i and z;,; the best context c(z?) is
found such that the chosen set of contexts, minimize the code length in equation

(5.2). In effect at each instant 7 the context c(z?) is
c(z') £ Best {®, (), (i 1)-..(zimi &)} (5.4)

where Best is defined in terms of code length. The algorithm to do so is presented
in the next section.

In the pruned tree model proposed in this chapter, the operation in equation
(5.4) is performed over a training set and set of best contexts extracted. These
are then used to model the observed data. As in the Markov chain model, the

probabilities associated with the contexts can be learned from the data.

5.3 Introduction to the universal coding algo-

rithm

The Context Algorithm, introduced in [25], provides a practical means to search
for the best set of contexts for a Markovian process. The algorithm has two
integrated steps, the first for growing a tree, where each node of the tree represents
a context c(x') and the second for selecting from the tree the best context to
encode z;,1 given z'. This is a truly adaptive modeling structure: it learns and
models the source at the same time. The algorithm as modified by Furlan [38] is

presented below.

1. Initialization:

Start with a tree consisting of a single root node, which has a counter
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for each of the symbols (0,1), set to zero. Read the first symbol z,
encode this symbol as described in step 3 and increment the count the
count of this symbol by 1. Denote the resulting tree by T(1) which is

still a 1 node tree.

2. Choice of the coding node:
Each node of the tree has a list of 2 symbol counts. Recursively, let
T'(i) be constructed after ¢ symbols have been processed. Climb the
tree starting at the root according to the path defined by z;,z; 1....
The node which has the lowest entropy is selected, this can be done by
using an efficiency counter introduced in [38]. Let the node be referred

to as y; where j denotes the jth level of the tree.

3. Probability Estimation:
Estimate the probability of x;,; using the counts stored at the y; node.
If instead of modeling, we were doing prediction, then this node could

be used to predict z;;1.

4. Update of the tree:
Climb the tree, starting at the root, according to the path defined by
Zi, Ti—1.... Then for each node, y;, visited increment by 1 the count

corresponding to the symbol ;.

5. Growing the tree:
Continue traversing the tree till a node is reached whose count for
symbol z;, is one before the update. If the node is internal, update
the count of its children by one. If its not internal, split the node,
initialize its symbol counts to zero except for the symbol x;,; whose

count is set to 1.

Fig. 5.1 provides an example where we run the algorithm for sequence 10001.
At the first step, the symbol 1 is coded using the memoryless context, then the
root node is split and the counters updated for z; = 1. The second symbol x5 = 0
can be coded using conditional probability p(0|®) or using probability p(0|1), i.e.,

the comparison is between the coding efficiency of root node and its child, the
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node corresponding to context (1). This comparison can be efficiently handled by
the relative efficiency counter [38] using step 2. After selecting the node (context)
to be used to encode symbol the tree is updated and grown using steps 4 and 5.
The internal node condition of step 5 is used to update the counts in 7°(1) which
leads to T'(2).

Figure 5.1: The tree coding algorithm for the sequence 10001. The numbers within
each node are counts for the number of times a node occurs with the associated
symbol. Each node is labeled with the context (z;..x;_,) associated with it, the
root node is the memoryless context. The first step of the algorithm is to find
the best contexts, in terms of coding efficiency, for the given past symbols and
the present symbol to be encoded. For example at tree T'(4) the fifth symbol 1
has to be encoded and the past symbols are 1000. The algorithm compares the
conditional probabilities p(1|®), p(1]0), p(1|00) and p(1|000), i.e., it compares the
coding efficiency of the nodes along the dotted line. Father child comparisons are
made for all nodes lying on the path and as soon as the father node wins the best
node (context) is found. After finding this best context the tree is grown with the
rules in steps 4 and 5. The count for symbol 1 is updated along all the nodes of
the path till a node which has a count of 1 is reached. This is the (00) node, as
it is internal node, from step 5 the counts of children are updated. If it was not
an internal node, it would have been split to form new children nodes.
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A fully grown tree for the network trace file trace-27 is shown in Fig. 5.2.
The leaves of this tree form a order 3 Markov chain model. The disadvantages
of using this model have already been discussed in the introduction. Let us take
another example, if the sequence ...1100 has occurred, then to code the last 0, the
Markov chain will use the node corresponding to context 110, i.e., node n(10).
The universal coding algorithm on the other hand will compare costs of coding
the last 0, using three different contexts, 0, 10, and 110. Of these three contexts,
whichever has the lowest cost will be selected. From the counts in the figure, the
most efficient context is 0. This implies that the pattern 00 occurs much more
regularly than the pattern 1100. This is the cause of inefficiency of a Markov
chain, it is forced to use contexts which may not be occurring regularly enough
in the source and thus not giving enough information about the process. The
Markov tree model chooses the most efficient contexts and in effect deletes (or
lumps) contexts of the Markov chain model.

In Fig. 5.2 the number of times a node (context) is used to code a symbol is
shown alongside the node. From the usage count itself, it is clear that the contexts
$,0,00,000,1,01 will be more efficient to code this trace file than the contexts
000,001, ...111 which are associated with the Markov chain model.

In the next subsection we give results which compare the modeling perfor-
mance of a Markov chain model and a fully grown Markov tree model. A full
tree of depth £ will have Ef:o 2¢ contexts as compared to the 2¥ contexts in the
Markov chain, so the comparison may not be fair. However, the Markov tree
model gives the lower bound on the best achievable entropy (within the model-
ing constraints). The results also make clear why nodes besides the ones used in

Markov chain models are useful for modeling the source.
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Figure 5.2: The full tree generated for the trace-27 file. The counts for each time
a node (context) occurs is given within the node and can be used to calculate
the conditional probability using equation ( 5.3). Also, the number in the circle
outside each node, represents the number of times a node is used to code a symbol.
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5.3.1 Results

In Fig. 5.3 we present the results for entropy coding of trace-25 and trace-27 using
a Markov chain model. Beyond an order of 3 there is no change in the entropy,
this is due to context dilution. This figure shows that if Markov chains were to be
used to analyze or model the network traffic, high order Markov chains will not
improve the modeling performance.

In Figure 5.4, we present entropy results for tree coding algorithm for trace-
25 and trace-27. We see that the minimum entropy for trace-25 occurs for a tree
with a depth of around 35. Further, notice that using these models the entropy
of source reduces by at least 5% over the Markov chain model, which implies that
the tree structure is a better model.

The number of times a node is used to code a symbol of the source can also be
a good analyzing tool because it will give an indication of the popular patterns
(contexts) that occur in the trace. As the number of nodes are very large in a
fully grown tree, we group the nodes in a level of the tree and accumulate their
counts. In Fig. 5.5, the counts are given for different levels for a tree of depth 45,
modeling the trace-27. From the figure, there is a node on level 32 and another on
level 42 of the tree which is used very frequently to code the symbol 0. However,
for coding symbol 1, only nodes at level 2,3 and 4 are used. In other words,
when coding symbol 1 a context of smaller memory than when coding symbol 0
is required. Clearly, this is not possible in a Markov chain model.

From the above discussion it is clear that the tree is unbalanced in the choice of
nodes for coding symbols 0 and 1. But, because the counts have been accumulated
for a level, Fig. 5.5 does not reveal whether the tree is unbalanced within a level
for a symbol, e.g., it is clear that nodes on level 32 are efficient for coding symbol
0, but are all the nodes on level 32 used or is there one node which is used more

frequently than others?
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Figure 5.3: Entropy results for Markov-chain modeling of the two traces. It can be
seen that the minimum entropy is for chains of order 3, and there is no advantage
in increasing the order.
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Figure 5.4: Entropy results for the Markov tree modeling. The minimum entropy
occurs for a tree depth of around 35 for trace 25. This observation is corroborated
by the fact that in [1] the authors have found that this trace has a correlation lag
of around 42. For trace 27 the minimum occurs for a tree depth of around 25.
The number of contexts in the model are 3% 2! where k is the tree depth.
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counts. From this figure, there are nodes on level 32 and level 42 which are used
very frequently to code the symbol zero. On the other hand, nodes at level 2,3
and 4 are used to code symbol 1. Clearly, the memory of contexts needed to code
symbol 0 and symbol 1 is different.
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Figure 5.6: The entropy of usage of nodes within a level is being plotted, the
probability of using a node to encode a symbol is used to calculate entropy. If
the nodes are being equally used, the usage-entropy will be close to one, if only
a very small subset of nodes in a level are being used, the usage-entropy will be
very small. If the usage-entropy is high it means that nodes are used randomly,
this will mainly happen when nodes are not being used regularly enough.
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To answer this question, we again use the concept of entropy, the entropy of
the probability of using nodes within a level is calculated. If all the nodes are
used equally, the usage-entropy is going to be very close to one. The smaller the
usage-entropy is it means the smaller the subset of nodes within the level are
being used. If the usage-entropy is very large, nodes are being used randomly
within the level. In Fig. 5.6, the usage-entropies for coding symbol 0 and 1 are
plotted for various levels of a tree of depth 45, for trace-27. From the plot for
symbol 0, it is clear that a very small subset of nodes is being used in each level.
This is corroborated on analyzing the trace, where we find that only the leftmost
node on a level, i.e., the context corresponding to string of zeros is used to code
the symbol 0. For symbol 1, the usage-entropy is low till level 4, after which it
is very high, this is mainly because nodes on higher level are not being used for
coding symbol 1. From the above discussion, the conclusion is that the trees are

unbalanced.

5.4 Pruned tree model

In the universal coding algorithm, there is an implicit selection of contexts inte-
grated with the growing (learning of model) of tree. As pointed out, there are
some contexts which are used more often than others because of their coding effi-
ciency. A tree pruning algorithm can be used to explicitly choose these contexts
and remove the redundant contexts, with pruning based on the efficiency of a
node. A training set is used to generate the full tree, the child node which is
less efficient than its parent node is pruned. An example of a pruned tree model
for the Markov tree of Fig. 5.2 is shown in Fig. 5.7. A modified Context Algo-
rithm can then be used to estimate the probabilities for the observed data, the
modifications are that REC is not updated and the pruned tree is not grown. If
the number of nodes in the pruned tree are Npr, essentially this model amounts
keeping a list of Npy contexts and associated probability models. Based on the
past k observations one of the contexts is selected, the probability estimated and
then updated.

In Fig. 5.8, the results of coding the trace-27 with the pruned tree model are
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Figure 5.7: The tree in Fig. 5.2 is pruned using the REC counter introduced
in section 5.3. Only the most efficient nodes are kept. These connected nodes,
and the corresponding conditional probabilities form the best model for the given
trace.

given along with the results of coding with a Markov chain model. Markov chain
in the figure is adaptive, the probability models are learned while encoding the
trace. For Pruned Model-1, the Context Algorithm is run on trace-27. From
the full tree, the best set of contexts is pruned and the corresponding counts set
to zero. Then, this pruned tree is used to code the trace-27 with probability
models being learned on the fly. On the other hand, in Pruned Model-2, Context
Algorithm is run on trace-25 and the best set of nodes is pruned from the tree.
This best of contexts (nodes) is used to adaptively (probability models are learned
on fly) encode trace-27. We can see from the results, that though the pruned tree
structure has been derived from a different trace in Pruned Model-2, it still gives

better results than an adaptive Markov chain model.

5.5 Conclusion

This chapter shows the limitations of Markov chain models and proposes alter-
nated models based on the universal modeling concepts. The Markov chain model
though being very efficient to implement, due to the associated FSM, gives the
worst performance among the three models. The Markov tree model on the other
hand gives very good results but is difficult to implement due to its large number

of contexts. An intermediate solution is the pruned tree model which gives better
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Figure 5.8: Results comparing the pruned tree model with the chain model. Re-
sults are for trace-27. All results are adaptive, in that the probability models are
learned on the fly. In Pruned Model-1 the set of pruned nodes (best set of con-
texts) has been derived by running Context Algorithm on trace-27 and pruning
the resultant tree. In Pruned Model-2, the set of contexts has been derived from
trace-25, i.e., Context Algorithm is run on trace-25 and the best set of contexts are
extracted. Pruned Tree-1’s performance is very close to the Markov tree model’s
performance.

result than the chain model using similar number of contexts. However, there
may not be a FSM associated with the tree model, to find the next context, the
past k (at most) observations have to be scanned. This makes it a little more

complex than the Markov chain model. This is summarized in table 5.3.

Model Complexity | Performance
Markov Chain | Low Bad

Markov Tree | High Good
Pruned Tree Intermediate | Intermediate

Table 5.3: Summary of the comparison between different models

We have developed rules for associating a FSM with the pruned tree model, i.e.
given a set of contexts, states are designed so as to uniquely define the transition
rule. However, this process is right now offline, as noted by Yajnik et al. online
adaption of the model can help for multimedia applications. We propose this as

part of future research in this area.
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