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Abstract

Microarrays and new sequencing techniques offer a high throughput platform to study the

whole genome with the unprecedented capability of measuring millions of genomic features

on a single essay. This massive parallel measurement power has an enormous potential for

research in Biology and Medicine with the ultimate objective of identifying and learning

the biological processes occurring in different organisms and diseases. Existing model

learning methods are severely limited by the reduced number of samples that are usually

available compared to the measurements.

We propose that sparse signal representations can model these biological signals and

we develop the analytical tools to accurately extract the relevant information. We exploit

the underlying sparseness of the biological model to overcome some of the problems

associated with analyzing these massive datasets. This work demonstrates the potential

benefits of this approach by studying three different problems involving microarray data.

The first problem concerns the supervised design with a limited amount of training

samples of a classification procedure to predict tumor progression. We propose a greedy

search strategy to select a sparse feature subset with a block diagonal covariance matrix

structure to build a linear discriminant analysis model for tumor prognosis. The second

problem deals with the detection of copy number alterations. We develop a maximally

xiii



sparse representation for these copy number alterations, and a sparse Bayesian learning

approach is optimized to detect these alterations from noisy microarray observations.

The third problem involves finding genetic determinants of gene expression. In this case,

we propose a linear regression model with a sparse Bayesian prior on the large matrix of

the regression coefficients relating genome alterations to transcription levels.

xiv



Chapter 1

Introduction

1.1 Significance and scope of the research

In recent years we have witnessed a tremendous advance in technologies to extract bio-

logical data from living organisms. Automated DNA sequencing has made it possible to

obtain a reference sequence for the human genome (Human Genome Project - HGP [16])

and many other organisms. From these DNA sequences 3 billions of base pairs (the

AGCT genetic code) one can identify which portions are genes that are transcribed to

RNA to produce a protein. It is estimated that there exist about 25.000 human genes,

and these are used as a blueprint to build about 100.000 different proteins which are

responsible for running the biological functions on human cells. Although 99.9% of the

genome is identical among all humans, small differences in the form of Single Nucleotide

Polymorphisms (SNP), inversions, and copy number alterations (CNA, e.g., deletions

and duplications) give rise to the rich variability between individuals. New technolo-

gies such as microarrays provide the means to measure gene expression activity (RNA

arrays) and genomic alterations (SNP and aCGH arrays) with millions of probes along
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the genome [81]. Other techniques have been developed to study protein levels, protein

structure, DNA methylation and many other biological processes occurring in the cell

and living organisms.

These advances have contributed to the discovery of key new findings in Biology;

new genes, new functionalities, alternative gene splicing, gene silencing, copy number

polymorphisms and many other. These discoveries have also tremendously affected other

related fields. In medicine [15,35], they have lead to new molecular diagnostic procedures,

unveiled the underlying biological processes of some diseases, and guided the development

of new drugs. Despite technical advances, severe noise degradation of the measurements

due to cross-hybridization and other biological effects poses a challenge when trying to

extract reliable information from these large sets of data.

Accurate and computationally efficient methods are essential for detecting genetic

differences, genomic alterations, and identifying which genes are active or corregulated.

The interdisciplinary field of bioinformatics has been growing quickly and has led to

the development of increasingly efficient and reliable tools for the analysis of very large

biological datasets. The key features of these datasets are i) small n number of samples

(n ∼ hundreds), ii) large p number of measurements (p ∼ millions), and iii) sparseness

of the underlying biological models. For example, a microarray can interrogate millions

of positions along the genome with dozens of probes for all the known 25.000 genes of

the human genome but only a very reduced set (about 10 to 100) will be active at a

given time on some tissue. Gene activity is also regulated through networks with a sparse

number of interactions. The alterations along the genome are also a rare event and only

a very small subset have a role in in explaining differences in gene activity. In conclusion,
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though the number of measurements is very large, the number of underlying variables

that are involved in regulating the biological process is however quite small.

This research is one of the first to apply recent advances in sparse signal representa-

tions and machine learning to develop new bioinformatics tools. Sparse signal representa-

tions seek to minimize the number of elements chosen form a dictionary of signals neces-

sary to approximate (e.g., as a linear combination) special cases of signals (e.g., smooth,

piecewise constant, splines, etc.). Large efforts have been devoted to designing the most

adequate bases (e.g., wavelets) or overcomplete collections of bases to build sparse rep-

resentations for different classes of signals (e.g., images, speech and audio, econometric,

biomedical) [19, 50, 62, 102]. Fast and accurate optimization algorithms for finding the

optimal sparse representations have been proposed (e.g., matching pursuit [61, 70], ba-

sis pursuit [13] and sparse Bayesian learning [97, 104]). The theoretical properties of

these methods are still under study but important results have been obtained [20,98] for

applications such as signal denoising [50] and compressive sensing [12,48,99].

New classifying techniques have been developed such as support vector machines and

regularized linear discriminants with similar optimization algorithms to search the spars-

est models (least number of features) with highest prediction accuracy. Examples of my

research include developing sparse representations for detecting genome alterations and

models for classifying cancer tumors. These methods exploit the sparseness of the un-

derlying biological models to overcome the problem of extracting meaningful and reliable

predictions from a dataset with a very large number of measurements compared to the

number of observed samples, i.e., p >> n.

3



1.2 The Human Genome

This section provides a very short introduction to the human genome, and is not intended

to provide a detailed description. The objective of the next two sections is to provide a

very basic understanding of the biological processes and experimental techniques that are

covered in this dissertation. A more detailed and precise description of the underlying

biology can be found in molecular biology textbooks [2].

All the (somatic) cells of the body contain a full set of chromosomes, with identical

genes, i.e., exactly the same DNA sequence that is known as genome. On 2003, the

Human Genome Project completed the reference DNA sequence for the human genome,

which can be browsed along with annotation information from many different sources like

Ensembl [45] 1, the University of California Santa Cruz (UCSC) browser [52] 2, and the

National Center for Biotechnology Information (NCBI)3. With the completed sequence,

now the efforts are centered in finding and analyzing polymorphisms, i.e. common alter-

ations of the reference sequence; and finding and studying gene expression, the pieces of

the genome that carry out basic functions in the organism.

A gene is a section of the genome that encodes the information necessary to produce

functional products, proteins, to accomplish some function in the cell or the organism. A

gene is said to be activated if it is being read and generates the protein that it encodes

in a process illustrated in Figure 1.1. On any given cell and any given time, only small

subset of all the ∼ 25, 000 genes that compose the genome are active, i.e., they are

being “expressed”. The expression levels of the gene also change dynamically and are

1http://www.ensembl.org
2http://genome.ucsc.edu/
3http://www.ncbi.nlm.nih.gov/
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regulated by a complex network of pathways in which other genes produce the RNA and

proteins (transcription factors) that regulate other genes. The proteins and RNA can also

interact with each other assembling into proteins complexes, reshaping their structure,

and silencing the mRNA (miRNA and siRNA). Gene expression microarrays provide the

technological means to measure transcription levels of hundreds of thousands of DNA

fragments that are expressed.

1. Gene (DNA sequence)

Transcription

2. mRNA 

Translation

3. Protein

Figure 1.1: Gene expression in a cell (Permission for use: (c) Transgene S.A.). The DNA
sequence of the gene (1) is copied into RNA sequences in process called transcription.
Then this sequences are spliced and assembled into mRNA (2). This mRNA serves as a
blueprint to build a protein (3) in a process called translation

The DNA sequence of the genome of any two given individuals is 99.9% identical.

Differences in the sequences, are called mutations, and may or may not affect some of the

many observable different traits that distinguish two persons. The most frequent of these

sequence alterations are called polymorphisms; i.e., common variations of the reference

sequence that are also found in a large amount of other individuals (see Figure 1.2 for an

example). Each polymorphism is located in a particular position of the genome, loci, and

the possible sequence variants are called alleles. Since for most of our genome we have
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two copies of the DNA, the combination of the alleles of each copy define the genotype.

The biological process of meiosis directs how the DNA material is replicated and the

alleles transmitted to the offspring. Alleles that are close together in a chromosome are

transmitted as a block, haplotype, and those that are in different chromosomes (or far

away in the same chromosome) are independently transmitted. This haplotype structure

is a consequence of recombination events during the meiosis in which the parental DNA

copies are crossed over. Since genotypes of proximal loci are linked together, we can

locate the position for rare events (e.g., disease traits) by association to genotypes of

markers for which the positions are known. Genotyping microarrays are able to genotype

thousands (now millions) of Single Nucleotide Polymorphisms (SNPs) markers scattered

along the genome. These experiments can be used to locate and characterize this human

genetic variation.

Human genome: … AGCAAA(T/A)GC…CAG(G/C)TAGCT …

Dad’s genotype:  … AGCAAA  A  GC…CAG  G  TAGCT …

… AGCAAA  T  GC…CAG  C  TAGCT …

Mom’s genotype:  … AGCAAA  A  GC…CAG  C  TAGCT …

… AGCAAA  T  GC…CAG  G  TAGCT …

Son2 Non-Recomb: … AGCAAA  A  GC…CAG  G  TAGCT …(from dad)

… AGCAAA  A  GC…CAG  C  TAGCT …(from mom)

Son1 Recombinant:… AGCAAA  T  GC…CAG  G  TAGCT …(from dad)

… AGCAAA  T  GC…CAG  G  TAGCT …(from mom)

SNP SNP

Figure 1.2: SNP allele transmission and recombination. A Single Nucleotide Polymor-
phism (SNP) is a type of genomic alteration that only affects one nucleotide of the DNA
sequence and has only two possible states, i.e. alleles. Each descendant gets one copy
of the autosomal genome of their parents and the combined alleles defines his genotype.
Alleles of proximal SNP are linked together unless there is a recombination event.
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1.3 Microarray technology

Microarrays are a new type of biological essays with very high throughput capabilities,

i.e., the ability to perform a very large number of measurements in each experiment. This

technology exploits the ability of RNA and DNA to bind specifically to, or hybridize to,

the complementary DNA template from which it originated. The basic design consist

of a solid support onto which relatively short DNA sequences (probes) from thousands

of different sections of the genome are immobilized at fixed locations, see Figure 1.3.

The DNA or RNA is extracted from the sample to study, fragmented, and fluorescently

tagged; then, these tagged fragments preferably bind to target probes with the exact

complementary DNA; and finally, the array is washed of unattached fragments and the

fluorescent intensity of each probe is measured.

Figure 1.3: Affymetrix microarray design. (Image courtesy of Affymetrix. Permission for
use: (c) Affymetrix 2007)

Different types of microarrays have been developed to measure genome features such

as gene expression, genotypes, or copy number (see Table 1.1. The basic approach is the

7



same for all of them; the only change comes from the target DNA sequences that are on

the chip and the type of genetic material that is extracted.

A gene expression array essay is depicted in Figure 1.4. In this case, the material

extracted from the cell to study is RNA, and the microarray contains probes targeting

RNA transcripts. The hybridization intensity of each probe gives a measure of the gene

transcription level.

In SNP genotyping arrays, the DNA is the material extracted form the cells, then cut

in known places by restriction enzymes, and fragmented into small pieces that contain

only one SNP. The array now contains probes with the complementary DNA sequences

targeting the two possible SNP alleles (see SNP in Figure 1.2). The hybridization levels

associated with each allele can be used to infer the genotype or the copy number.

Table 1.1: Different types of microarrays

Type Measurement Application

SNP Hybridization intensities of
fragmented DNA to the two
different SNP allele variants

Genotyping. Association
studies. Drug response.
Genome variation. Copy
number alterations

aCGH Hybridization intensities to
large sections of DNA

Copy number alterations

Expression
(Exon arrays)

Hybridization of fluorescently
tagged RNA transcripts to its
complementary coding DNA
fragments

Gene expression. Gene regula-
tion and function. Molecular
profiling. (Alternative Gene
Splicing)

1.3.1 Issues on analyzing microarray data

The high throughput capabilities of these microarrays have an enormous potential for

research in Biology and Medicine. For example, microarray gene expression studies have

been performed to find which genes are active (being transcribed) on different types of

8



Figure 1.4: Affymetrix gene expression microarray essay. The microarray essay can be
divided in three steps: a) sample preparation, b) hybridization, c) washing and scanning.
In the first step a): the mRNA is extracted from the cells to study, converted to cDNA
(reverse transcription), the cDNA is cut into small fragments of ∼ 26 bases length, and
this fragments are labeled with fluorescent tags. Then, in the hybridization step b),
the fragments in the previous preparation specifically bind to the complementary short
segments of DNA that are specially selected and immobilized on specific locations in
the array. Finally in c), the array is washed and scanned giving a fluorescent intensity
reading. Locations corresponding to expressed genes should have higher intensity that
those corresponding to non-expressed genes. (Image courtesy of Affymetrix. Permission
for use: (c) Affymetrix 2007)

9



tissues, different cell conditions, or in response to an administered drug or treatment.

Other applications in medicine include development of new diagnosis and risk assessment

procedures. Similarly, genotyping arrays have been used to define groups of high risk, to

find a causal genetic locus for a disease, and to study differences in treatment response.

The large volume of the data generated by microarrays pose new issues that require

the development of new data analysis methods that are computationally efficient and

statistically reliable. These issues are essentially three: i) normalization, ii) large number

of variables, iii) small number of samples.

Normalization. The measurements obtained from microarrays are not perfect obser-

vations. Sample extraction and hybridization processes are affected by a large number

of biological factors. Some of these factors can be modeled and corrected by appropriate

normalization procedures. However, there may always be unknown effects like cross-

hybridization, RNA degradation, or other sources of experimental error that are out of

our control. In any case, it is important to define normalization procedures, that make

the microarray measures comparable across different samples, and transform the data

such that we can assume an appropriate distribution safely (e.g. Gaussian).

Large number of variables. Continuous improvements in array technology and se-

quencing are increasing the number of measurements, which are currently in the order of

millions. Gene expression arrays and new exon arrays contain hundreds of thousands of

probes targeting all the genes and their exon transcripts. The newest genotyping arrays

cover nearly a million SNPs along the genome. However, it is expected that only a very

small (sparse) subset of these variables will typically be related to the research questions

10



that we are trying to answer with the microarray experiment (e.g., those given as exam-

ple in the beginning of the section). Thus, efficient as well as reliable statistical methods

are required for screening these large sets variables to build models that are likely to be

biologically meaningful.

Small number of samples. In contrast to the number of variables, the number of sam-

ples is typically very small ∼ 100. This requires that the statistical procedures used for

classification evaluation and for testing genes for association have to be very powerful,

i.e. efficient in the number of samples. In classification, splitting the available samples

in independent sets for model fitting, selection, and evaluation is very inefficient; and

computationally intensive algorithms like cross-validation and bootstrapping approaches

have to be used. Additionally, permutation based tests are used to assess the proportion

of the genes that could be falsely deemed significant (i.e., the False Discovery Rate FDR)

just by chance due to the large amount of noisy predictive variables that are being eval-

uated. In conclusion, the large number of variables together with the reduced amount of

samples make the problem of robustly estimating the underlying biological models very

challenging.

In order to overcome these challenges, prior knowledge about these biological mod-

els should be exploited. There exists a large number of databases that gather relevant

information for a large number of genes, gene regulation properties, pathways, haplo-

type structures, and other potentially useful information that is continuously updated

as ongoing research progresses. Currently, methods for combining these different sources

of information are very limited, and only very simple models are being used due to the

limited amount of samples that are available to fit the model. However, in the foreseeable
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future it is very likely that more complex algorithms will exploit all this prior knowledge

that is being gathered.

1.4 Research contributions

The research contributions of this work have been grouped into three major parts each

one dealing with a different problem related to microarray analysis. The nexus among

the three of them is that in all three cases linear models with sparseness constraints are

adopted. In other words, the solution to the problem consist of finding a sparse linear

combination that depends on only a small subset of all microarray probes. The adoption

of sparse linear models is biologically supported by the underlying assumption that any

basic cellular process is controlled by a very small portion of the genome.

In Chapter 2 we study the design and evaluation of molecular classifiers that are based

on linear discriminant analysis (LDA) of gene expression microarrays. Different options

to select the genes and to place sparseness constraints on LDA are studied. We start

reviewing DLDA, which is a widely used method in which correlations are completely

ignored (i.e., assumed to be 0), and we discuss the application of DLDA to analyze gene

expression profiles for the prognosis of tumor progression in neuroblastomas [6]. Then,

we consider a new gene selection algorithm SeqDLDA [78] that under the DLDA model

selects the genes that are better modeled by the non-correlation assumption. Afterwards,

SeqBDLDA [77] proposes an embedded approach in which the genes and a block diagonal

covariance structure are jointly selected to fit a linear discriminant model. LDA and the

developed feature selection procedures provide a flexible framework for microarray gene
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expression analysis, in which models with different degrees of complexity can be adopted

depending on the amount of available training samples or prior knowledge.

In Chapters 3, 4 and 5 we tackle the problem of detecting genome copy number

alterations (CNAs) using microarray data [75]. Studying copy number alterations is

important to understand the role of natural copy number variations in human genomes.

It is also essential in understanding cancer cells, where genomic instability leads to large

abnormalities in genome copy numbers. The hybridization intensities from SNP probes

in genotyping arrays, or from specially chosen probes in aCGH, are correlated with the

underlying number of DNA copies of their corresponding genome regions but are severely

degraded by noise. In our approach, we model the genome copy number as a piece-wise

constant (PWC) vector for which a sparse representation is formulated. Then, sparse

Bayesian learning (SBL) is optimized for the proposed PWC representation and used

to detect CNA breakpoints. Moreover, a backward elimination (BE) procedure is used

to rank the inferred breakpoints; where a cut-off point can be adjusted to control the

false discovery rate (FDR). The performance of our algorithm is evaluated using both

simulated and real genome datasets and compared to other existing techniques. Our

approach achieves the highest accuracy and lowest FDR, as compared to the state of the

art, while improving computational speed by several orders of magnitude.

In Chapter 6, we describe a novel hierarchical Bayesian model for the influence of

constitutional genotypes from a linkage scan on the expression of a large number of

genes. This work can be considered one of the initial steps to find genetic determinants of

gene expression at a genome-wide scale. The proposed model comprises linear regression

models for the means in relation to genotypes and for the covariances between pairs
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of related individuals in relation to their identity by descent estimates. The matrices

of regression coefficients for all possible pairs of SNPs by all possible expressed genes

are sparse, and modeled as a mixture of null values and a normal distribution of non-

null values. The approach appears to be a promising way to address the huge multiple

comparisons problem for relating genome-wide genotype-by-expression data.
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Chapter 2

Sparse Linear Discriminant Analysis of gene expression

microarrays

2.1 Introduction

Gene expression microarrays can measure the expression values of thousands of genes

in the same experiment. A large number of fundamental biological and medical research

questions involve identifying which genes and mechanisms are responsible in determining,

for example, tumor progression, blood pressure or drug response. In a supervised learning

approach we are given a training group of samples for which the outcome of the variable

of interest is known. Thus, these examples, can be used to fit a discriminant function

to predict the outcome. In microarray experiments the challenge is that the number of

samples (n ∼ 100) is very small compared to the number of features / probes (p > 10000).

These discriminant methods are required to (i) generalize well, i.e., have a low prediction

error for future samples; (ii) be sparse, i.e. be based on a small subset of features; and

(iii) have low False Discovery Rate, i.e. have a large proportion of true relevant features

that can also be confirmed by other studies.
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Linear discriminant analysis (LDA) [22, 40] is a well known supervised classification

technique in which the discriminant functions are linear combinations of the features for

which we obtain a good separation between classes. If we consider a classification problem

with two classes, the degree of separation can be measured by taking the squared distance

between the centroids divided by the variance. In the context of microarrays, we are faced

with a very large number of features, and very few training samples. Thus, the sample

covariance matrix is singular and does not give a reliable estimate of the true covariance

matrix to be used to fit the linear discriminant [105]. Two of the most popular techniques

in microarray classification, diagonal linear discriminant analysis (DLDA) [23] and nearest

shrunken centroids (NSC) [96], are based on LDA and solve this problem by imposing a

diagonal structure to the covariance matrix and using only a small subset of the topmost

discriminative features to build the classifier.

In this chapter we review DLDA and we apply the method to build a prediction model

for the prognosis of neuroblastoma tumor progression 1 that incorporates a novel selection

and evaluation method for DLDA based on nested cross-validation. This method is useful

for deciding which genes to include in the DLDA model, and for accurately estimating

the prediction error for future samples. The proposed model selection and evaluation

methods have been positively received and have been suggested as useful tools for medical

studies [92].

Afterwards, we introduce novel alternative strategies for constructing the linear dis-

criminant function. First, SeqDLDA 2 in Section 2.3 keeps the DLDA model but proposes

1The application and evaluation of the DLDA model has been published as a part of a medical study
for neuroblastoma in [6]

2The SeqDLDA model was proposed in [78]
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a wrapper feature subset selection (FSS) approach that does not ignore correlations. In

SeqDLDA, one gene is sequentially added and the linear discriminant recomputed using

the DLDA model (i.e., a diagonal covariance matrix). Classical DLDA instead adds the

gene with highest t-test score without checking the resulting model. In contrast, Se-

qDLDA will find the one gene that better improves class separation after recomputing

the model.

SeqBDLDA 3 in Section 2.4 extends the DLDA model to consider a block diagonally

structured covariance matrix. In this case we adopt a novel embedded FSS approach, in

which each feature is added sequentially in the model either as an independent block or

inside one of the previously existing blocks of the covariance matrix. At each step, the best

feature and block model are decided by measuring the class separation after computing

the resulting linear discriminant of that feature set and its corresponding block diagonal

covariance matrix. This is the first time that such a joint design of the model with

the feature selection has been proposed in the context of LDA. In order to reduce the

complexity of exploring a large number of BDLDA models, an optimized repeated FSS

(RFSS) search strategy4 is also proposed.

These new contributions show considerable improvement in prediction accuracy both

in simulated and real datasets, especially in the cases where more training samples are

available (Section 2.5). Additionally, the more complex block diagonal modeling could

become even more promising in the future since it could be used to exploit prior knowl-

edge on gene corregulation; i.e., the block structure could be estimated from previous

experiments or genome databases.

3The SeqBDLDA model was proposed in [78]
4This work was in collaboration with Lingyan Shen [91]
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2.2 Background

2.2.1 Linear Discriminant Analysis

In statistical pattern recognition problems, Bayes decision techniques provide optimal

classification performance as long as the distribution of the samples is known [22]. In

many practical cases, these distributions are not known and they must be learned from

training data. In the context of microarrays simple linear models are preferred because

of the limited number of samples available, relative to the number of features.

Linear discriminant analysis (LDA) is a widely used technique for sample classification

[22,40]. For two classes, LDA is defined by a linear discriminant function g(x):

g (x) = wtx− b

{
> 0⇒ Class A

< 0⇒ Class B

}

(2.1)

where x is the vector containing the gene expression of the sample to classify. w is a

vector of weights orthogonal to the hyperplane that together with the scalar b define the

decision boundary g(x) = 0 that discriminates between the two classes to separate. If the

samples are normally distributed with known means and variances: fA (x) ∼ N (mA,K),

fB (x) ∼ N (mB,K); the optimal Bayes maximum a posteriori classifier is given by the

LDA discriminant function with:

w = K−1d d = mA −mB (2.2)

b = ln
(

πA

πB

)

−wt (mA + mB)

2
(2.3)
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where πA and πB are the prior probabilities of each class; and d is the vector that links

the two class centroids.

In a more general sense this solution is also reasonable (but not necessarily optimal) if

distributions are symmetrically bell-shaped (like a normal) because it gives the direction

in which the variance between/within classes (JK (w)) is maximized; i.e., when

JK (w) =
(dtw)

2

wtKw
(2.4)

w = arg max
w

JK (w) = K−1d (2.5)

In practical applications, the mean vectors and the covariance matrix are not known

and have to be estimated from training data, typically using maximum likelihood (ML)

estimators. However, choosing the ML estimators it is only asymptotically optimal [30],

i.e. when the number of training samples grows so ŵ→ w.

Since in our case the number of features p is larger than n this convergence will never

happen. Indeed, in this scenario the regular ML estimates are very misleading, because

i) the estimates are unreliable, and ii) the sample covariance matrix is singular. A p× p

sample covariance matrix K̂ has rank at most n− 2. Thus, the null space of this matrix

has dimension at least p− n + 2 giving the false impression that the natural variation is

0 in this subspace. Then, any spurious difference on the estimated class vector means on

this subspace will be falsely regarded as very significant.

When n and p are comparable, different authors [30, 34, 39, 41] have proposed a reg-

ularized solution for the problem by assuming some structure in the covariance matrix

(e.g., a diagonally dominant covariance matrix). This has the advantage of reducing
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the effective number of parameters that need to be estimated and the risk of obtaining

a sample covariance matrix that is singular. However, when n is much smaller than p

regularization alone is not enough to achieve reliable classification and it is necessary to

further simplify the model by discarding features, i.e., by selecting a reduced feature set.

Feature selection is in fact almost always needed in the context of microarray genomic

classification, where p is in the order of tens of thousands of genes while n corresponds to

a few hundred tissue samples. Taking cancer as an example, it is typically expected that

only a few genes will be associated with the disease. Thus, feature (i.e., gene) selection

serves the dual purpose of i) reducing the effect of a small training set on classification

performance, and ii) identifying substantial genes that are more likely to be associated

with the disease.

2.2.2 Feature subset selection (FSS) approaches

There are three major approaches to classifier design and feature subset selection (FSS) [36];

namely, (i) filter, (ii) wrapper, and (iii) embedded. In filter approaches, features are first

ranked using a statistical score, such as a t-test. Then the classifier is built by selecting

the highest ranking features. This is the most popular method in microarray classifica-

tion problems, due primarily to its simplicity (see Section 2.2.3). Note, however, that it

completely ignores interactions among genes.

In wrapper approaches [53] a classifier is constructed with different candidate fea-

ture subsets, the performance is measured (using, for example, cross validation), and

finally the feature subset that achieves the maximum performance is chosen. This is a

combinatorial optimization problem and a full search would be very complex, requiring
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2p different evaluations, and prone to overfitting. For this reason, only greedy search

strategies using different heuristics are feasible. In the context of microarrays and LDA,

wrapper approaches have been proposed using full [105] or diagonal [10, 78] covariance

matrices and different search strategies (see Section 2.3).

Finally, embedded approaches [58] consider jointly the classifier design and the FSS.

This is in contrast to the wrapper approaches that consider the classifier as a black box

that induces a prediction rule once the feature subset is chosen. Guyon et al. proposed an

embedded approach [37] for Support Vector Machines. To the best of our knowledge, in

the context of LDA we have been the first to propose an embedded design approach [77],

see Section 2.4.

2.2.3 Diagonal Linear Discriminant Analysis (DLDA)

The diagonal linear discriminant analysis (DLDA) model is simply the LDA model with

the covariance matrix constrained to be diagonal and a filter FSS approach. This ap-

proach, formally introduced in [23], is only optimal when the features are uncorrelated

multivariate normal. However, with limited training data the DLDA models are more

reliably trained and may achieve a better prediction accuracy than using the LDA with

an unreliable full covariance matrix.
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Under the diagonal assumption each variable in the DLDA model can be treated

independently since in (2.2) we have that wi = di/(σ2
i ) where σ2

i = Ki,i. Thus, the linear

discriminant (2.1) can be rewritten as linear combination of univariate classifiers:

g (x∗) = log

(
πA

πB

)

+

p
∑

i=0

(
m̂A

i − m̂B
i

σ̂i

)

︸ ︷︷ ︸

ĥi weight

(
x∗

i − m̂i

σ̂i

)

︸ ︷︷ ︸

v̂i vote







≥ 0⇒ x∗ ∈ ClassA

< 0⇒ x∗ ∈ ClassB

(2.6)

where the right term represents a vote,v̂i, a single feature discriminant that scores how

likely it is that a new sample belongs to class A rather than class B; and, the left term is

a weight ĥi that scores how good a feature i is in discriminating two classes. It is easy to

see that ĥi is proportional to the t-statistic for the difference of two population means.

This is illustrated by Figure 2.1 for a two dimensional example.

Figure 2.1: Graphical interpretation of the DLDA model (2.6) for two features. Each
axis represents a feature with the corresponding univariate distributions. Feature x1 has
a larger separation between class centroids compared to the underlying noise than feature
x2. In DLDA we can classify a new sample x∗ by a simple linear combination of single
feature discriminants (x∗1, x∗2, . . .) weighed by the appropriate weights (2.6).

22



In this diagonal model, most of the genes will probably be irrelevant for the classi-

fication. Low scoring genes, can be seen as adding noise to (2.6) so it makes sense to

remove the terms with lowest ĥi. This can be seen as a filter approach for feature se-

lection (Section 2.2.2), since genes are first ranked using the statistical score, and then

the discriminant function is built by selecting the highest ranking genes. The size of the

model, i.e. the number of genes, is usually determined by cross-validation, see Section

2.2.4.

The nearest shrunken centroid (NSC) [96] and the weighed covariate (WC) approaches

in [33] are tightly related to this DLDA procedure [23]. DLDA [23] and WC [33] can be

seen to remove features by hard-thresholding ĥi (Figure 2.2 a). In NSC instead, the

ĥi scores are continuously shrunk to 0 before they are completely removed, i.e., soft-

thresholding (Figure 2.2 b). In NSC [96] the scores ĥi are also made more robust; a

dampening term is added to the standard deviation, σ̂′
i = σ̂i + median(σ̂i), to protect

against very small σ̂i occurring by chance. In our experience, hard-thresholding usually

gives a better prediction with smaller feature sets.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) (b)

Figure 2.2: Hard (a) and Soft (b) thresholding functions. Both methods set small values
(< τ = 1) to zero, but (b) shrinks all the values by τ while (a) leaves the values above
the threshold (> τ) untouched.
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Finally, the size of the model (i.e. the number of top scoring genes to add in the

DLDA or NSC model) is specified as the one that maximizes the classifier prediction

accuracy, which can be estimated by cross-validation (Section 2.2.4).

2.2.4 Model selection and evaluation with cross-validation

Before introducing the new extensions to LDA in the following sections, this background

section will conclude by reviewing the cross-validation techniques that are used to evaluate

the classification models and to guide their construction. The objective of the prediction

accuracy evaluation is to assess the performance for future new samples not included in

the training set. The prediction error computed on the training set, the training error, is

a rather optimistic estimate of the generalization error [40]. For this reason the classifier

has to be evaluated using an independent set of samples known as the test set.

In microarray classification problems the data available is very limited and we cannot

afford to reserve a large number of samples solely for testing. In these situations, cross-

validation (CV) provides an efficient method of iteratively splitting the available samples

between a training set and an independent testing set. For example, in 10-fold CV, the

training samples are randomly partitioned in 10 segments (balanced to preserve the class

proportions), then for each of the 10 segments we train the model with the other nine and

use the one reserved for testing for evaluating the performance. The advantage of using

cross-validation over reserving a large fraction of samples for an independent testing set

is that larger training sets can generate more reliable and more accurate models.

In this chapter we have adopted a 100X10-fold CV (100 repetitions of 10-fold CV) to

select the size of the LDA model; i.e. the number of genes P in DLDA and SeqDLDA, and
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the covariance structure in SeqBDLDA. The model is chosen as the one that minimizes

the average cross-validation error. Some authors point out that to report the minimizing

cross-validation error as the future error rate for new samples could introduce a bias again,

the selection bias, and that a second external round of CV is necessary [5]. To further

ensure that no selection bias is introduced, we use a nested cross-validation procedure

as suggested in [5]. First, an internal 100X10-fold CV strategy is used to select the

LDA model. Then, an external leave-one-out CV (LOOCV) is used to give an unbiased

estimate of the model performance. The evaluation, model/gene selection, and training

are performed as described in Algorithm 1

Algorithm 1 Nested Cross-validation

1: (Leave-one-out external cross-validation loop)
2: for sample i = 1 . . . N do

3: Leave sample i for external test set
4: Use remaining N − 1 samples to form the external training set
5: (Repetitions of internal cross-validation loop)
6: for Repetition r = 1 . . . R do

7: External training set is randomly partitioned in N segments
8: (Internal 10-fold cross-validation loop)
9: for Segment j = 1 . . . N do

10: Leave segment j out for the internal test set
11: Use remaining N − 1 segments for the internal training set
12: for LDA model m = 1 . . .M do

13: Find features to include and fit the model using only internal training set
14: Test the model on the internal test set and count the errors
15: end for

16: end for

17: end for

18: Find the model m∗ that minimizes the average internal cross-validation error.
19: Find the features and fit the model m∗ using the complete external training set.
20: Test the final external model on the left out sample i.
21: end for

22: Report the external error rate as the expected error rate for future samples.
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In summary, the nested cross-validation approach provides an efficient reuse of samples

to perform three tasks that would otherwise require three independent sets of samples: i)

a training set to estimate the models, ii) a validation set to chose the best model, and iii)

a testing set to evaluate the final performance of the validated model. If the number of

samples is very limited, which is the case of most microarray studies, cross-validation has

the advantage that more samples can be dedicated to build the model. In the nested cross

validation approach, the selection bias is avoided by never using the samples reserved for

testing in the inner loops. In the context of microarray studies, we are the first to employ

this nested cross-validation strategy together with LDA based models that we discuss

in this chapter. In a tumor risk prognosis study [6] using the DLDA model (see results

in Section 2.5.1) this evaluation approach has been encouraged and received positive

reviews [92].

2.3 SeqDLDA – Sequential Diagonal Linear Discriminant

Analysis

In the background section (Section 2.2) we mentioned that for microarray applications we

are usually forced to make assumptions about the covariance matrix structure because

there is usually not enough data to accurately estimate all pair-wise correlations. In

DLDA model (Section 2.2.3), if gene correlations are not zero (which can happen often),

selecting all the top-scoring features ignoring their correlations is not the best strategy.

As illustrated intuitively in Figure 2.3 we could select the features whose correlations are
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better suited for the DLDA model. This is the idea behind sequential DLDA (SeqDLDA)

described in this section 5.

(a) (b)

Figure 2.3: Two possible scenarios for selecting correlated features in a DLDA model.
Feature x1 is more discriminative than x2, i.e., H(x1) > H(x2), and H(x2) > H(x3).
The DLDA with a filter FSS approach (a) would choose x1 and x2, while if we check the
resulting discriminant H(g(x)), the SeqDLDA approach (DLDA with wrapper FSS) in
(b) has a better class separation H(g

SeqDLDA
(x)) > H(g

FilterDLDA
(x)).

The discriminant function in SeqDLDA is the same as in Filter-DLDA [23] (Section

2.2.3)

gl (x) = log

(
πA

πB

)

+
∑

i∈Sl

H (xi)
(

xi−µ̂(xi)
σ̂(xi)+σ̂0

)

(2.7)

H (x) =
µ̂A (x)− µ̂B (x)

σ̂ (x) + σ̂0
σ̂0 = median

i=1..p
(σ̂ (xi)) (2.8)

5SeqDLDA was initially proposed in [78]
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where H(x) in (2.8) measures class separation. In relation to (2.6) we have that H(xi) =

ĥi, µ̂A (xi) = m̂A
i , µ̂B (xi) = m̂B

i , and σ̂i = σ̂(xi) + σ̂0. The additional term σ̂0 protects

against an unusually low σ produced by chance and makes the score H(x) more robust

(this strategy is also used in NSC [96]). The essential difference between SeqDLDA and

FilterDLDA is how we choose the set of features S.

Starting from an empty set of features S0 = ∅, at every iteration l, we add the one

gene j that most increases H(gl(x)) to the set of selected features Sl = Sl−1 ∪ {j}. The

SeqDLDA approach can be seen as a wrapper FSS approach [53] (Section 2.2.2). Instead

of measuring H(g(x)) for all possible combinations of features, we use a greedy search

described in [53] as Forward-Selection/Hill-Climbing.

In contrast to SeqDLDA, regular filter DLDA adds the gene with highest score H(xi)

without checking the resulting model. The number of computations is much higher in

SeqDLDA because at each iteration we have to evaluate the resulting discriminants of all

possible candidates to add into the model. The advantage is that in situations as those

depicted in Figure 2.3, SeqDLDA can choose the features whose correlation structure

works better for the DLDA model. An approach similar to SeqDLDA was also proposed

in [10], but using a regular t-test which reduces the robustness of the model and the

exploratory search resulting in a much lower performance. In Section 2.5.2 we can find

the results that evaluate the SeqDLDA compared to other LDA approaches for microarray

applications.

In SeqDLDA, maximizing H(gl(x)) is also equivalent to maximizing J
K̂

(w) in (2.4),

where the vector w is calculated using only the diagonal part of K in (2.5); i.e., wi =
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di/(σi + σ0). In the following section we will extend this approach to consider other

choices for the covariance matrix using a similar greedy search strategy.

2.4 BDLDA – Block Diagonal Linear Discriminant Analysis

The DLDA models covered in previous sections ignore the correlation structure. The dif-

ference between filter-DLDA (Section 2.2.3) and SeqDLDA (Section 2.3) is in the feature

selection: SeqDLDA checks which selected features give better results with the DLDA

model. Model selection and feature selection are usually considered two separate tasks.

For example, in a Linear Discriminant Analysis (LDA) setting, a modeling assumption is

typically made first (e.g., a full or a diagonal covariance matrix can be chosen) and then

with this model the feature subset providing the best prediction performance is selected.

If limited training data is available, then the number of parameters of a model that can be

reliably estimated will also be limited. In the context of LDA, model selection basically

entails simplifying the covariance matrix by setting to zero some of these components.

This leads to different block diagonal matrix structures (e.g., full / diagonal) which involve

different sets of features and require different parameters to be estimated.

In this section, we argue that LDA feature and parameter selection should be done

jointly; and we propose a greedy algorithm SeqBDLDA 6 for joint selection of features

and of a block diagonal structure for the covariance matrix. To the best of our knowledge

this is the first time such a joint design is proposed in the context of LDA. In more recent

work, shrunken centroids regularized discriminant analysis (SCRDA) [34] proposes what

can also be considered a joint feature/model selection for LDA. SCRDA, includes two

6SeqBDLDA was initially presented in [77]
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shrinkage parameters that are adjusted by cross-validation: the first parameter regular-

izes the covariance matrix by shrinking the off-diagonal terms towards zero, the second

parameter performs variable selection by shrinking each feature weight of the discrimi-

nant (as in NSC, see Section 2.2.3). In contrast to SCRDA, which only offers a trade-off

between a full and a diagonal covariance matrix, the BDLDA framework introduced in

this section considers a search across a large collection of different block diagonal options.

The choice of a block diagonal structure is motivated by microarray classification

problems, where we have a very large amount of features (i.e., genes) that are expected

to be corregulated in small blocks (groups of corregulated genes). Figure 2.1 illustrates a

scenario with two features which could be modeled as one BDLDA block. In the context of

gene expression analysis, this can be the case of two corregulated genes x1 and x2, where a

very small change in x2 triggers a larger change in x1. The microarray measurement noise

makes it very difficult to detect changes in x2, but taking into account the correlation

with x1 results in a more discriminative LDA model.
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Figure 2.4: Linear discriminant scenario with two correlated features. Feature x1 is
more predictive than feature x2 since it has better separation between classes. If the
correlation between x2 and x1 is ignored, the resulting DLDA classifier assigns practically
all the weight to x1, so x2 will be removed from the model if we use a filter (Section 2.2.3)
or wrapper (2.3) approach. If we do not ignore the correlations, the resulting LDA model
is more powerful in separating the two classes.
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Table 2.1: Sequential generation of candidate covariance matrix models for LDA.

Number  of  parameters

N
u

m
b

er
 o

f 
fe

at
u

re
s

Starting with an empty list, we add one feature at a time (namely, the one that maximizes a statistical score) using two possible operations: (i) Block

expansion (solid lines), where a new feature is added to an existing block grouping already chosen features in the correlation structure. (ii) Independent

feature addition (dashed lines), where a feature is added ignoring correlations (i.e., independent of existing blocks of variables in the correlation structure).

The best among all these models is selected using cross-validation.
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2.4.1 Block Diagonal LDA – BDLDA

Model selection, in the LDA context, is essentially a choice of a structure for the covariance

matrix. Thus a simple method would be to perform feature selection for both a diagonal

and a full covariance matrix structure and select the best of the two. In a diagonal model,

the number of parameters to estimate, l is l = p, while in a full matrix l = 1
2p (p + 1). In

this section, we propose to further increase the number of available models by including

a whole range of block diagonal matrix structures, as shown in Table 2.1.

Applying the bias/variance trade-off principle [39] in this setting implies that the

more parameters we estimate the less bias we will have, but at the cost of increasing

the variance. For this reason, the LDA performance is limited primarily by the number

of parameters to estimate (rather than by the number of features). We use this insight

to develop novel efficient techniques to embed feature and model selection, which are

based on searching for the best feature set and covariance model for a given number of

parameters.

Thus, for a given number of parameters, more features can be used with a diagonal

covariance model than with a full covariance matrix, but correlation among features will

be completely ignored. For uncorrelated features this model will perform best, but there

might be correlations present that could be exploited to get better performance with fewer

features. Exploring all possible feature subsets and possible block diagonal structures is

not feasible. Thus, we propose a sequential greedy algorithm, SeqBDLDA, for finding at

the same time a feature subset and a block diagonal structure.
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2.4.2 Greedy Feature and Model Selection for Block Diagonal LDA

Our proposed greedy algorithm for feature and model selection (see Algorithm 2), adds

features to the model sequentially, one at a time. The process starts by selecting the best

feature measured with the J score of (2.4). Then, at each stage, we have two options:

i) adding one more feature, independent of all previously selected features, thus leading

to a new block in the block-diagonal structure, and ii) growing the current block in the

matrix structure by adding one more feature to it. These two options are marked with

dashed and solid lines, respectively, in Table 2.1 and can be used alternatively to produce

feature subsets with different block diagonal covariance structures. In both operations

the current set of features, A, is “inherited” from the parent node.

In order to determine which is the best new feature for a given structure we use

the scoring procedure discussed in Section 2.4.2.1. After obtaining one feature subset

Am for each of the models in Table 2.1, we are interested in finding which is the more

reliable model if the number of parameters is limited. To do so we use leave-one-out

cross-validation (see Section 2.4.2.2).

Algorithm 2 Greedy feature subset and model construction

1: Create first model with best feature: i = arg max
j∈S

dj

σj

2: for all Model m in Table 2.1 do

3: A ← Feature set of the parent node
4: j∗ ← AddFeature(A,m) ⊲ Find the best feature to add

5: Am ← A∪ {j∗}
6: ǫm ← EvaluateModel(Am,m) ⊲ Using crossvalidation

7: end for

8: l← Number of parameters
9: m∗ ← arg max

m:|m|=l
ǫm ⊲ Find the best model with l parameters
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2.4.2.1 Feature addition scoring procedure

Assume that we have already chosen a subset of features A, with sample covariance

matrix K̂A and difference of sample means d̂A. Then, from (2.2) the LDA classifier with

a model m is constructed using the following weights:

wA = K̂−1
A,md̂A, (2.9)

where K̂A,m is obtained from K̂A by zeroing out those terms that are zero in model m

(see examples in Table 2.1). Then, using (2.5), the best new feature to add to the model

j ∈ AC (where AC is the complement of A in the original feature set) will be:

j∗ = arg max
j∈AC

(

d̂t
Aj

wAj

)2

wt
Aj

K̂Aj
wAj

Aj = A ∪ {j} (2.10)

In our greedy procedure, the new feature is always added in the lower right corner of

the matrix, either as an independent block (i.e., ignoring correlations), or by increasing the

size of the lower right block by one. In finding the best feature, significant computational

savings can be achieved by exploiting the block structure of the matrix in (2.9), and the

fact that only certain blocks in vectors and matrices in (2.10) change with j.

2.4.2.2 Model selection with cross-validation

Since we used the J score (2.4) to guide the search for the feature subset we cannot use

it to decide which model to select. This is because it is a biased estimate of performance

of the classifier that can be used to compare alternative models with same number of
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parameters and features, but does not provide a reliable way to compare models with

different structures.

We used leave-one-out cross-validation (Section 2.2.4). to estimate the probability of

error of a classifier without bias. In leave-one-out cross-validation, one sample is left out

and we train with the remaining n− 1 samples. Then the sample that has been left out

is classified. The entire training procedure is repeated n times for each of the samples

and the error rate ǫm is estimated as the total number of misclassified samples divided

by n. In our case, if the number of parameters is limited to l, we will select the model in

the column l of Table 2.1 with the lowest cross-validation error.

2.4.3 Relationship with other LDA methods and applications

Table 2.1 contains several models that have been proposed in the literature: models

“grown” by following only solid lines, correspond to “full matrix” LDA with forward fea-

ture selection (SeqLDA, [105]). Alternatively models grown by following only dashed lines

correspond to forward selection using the Diagonal LDA (SeqDLDA, Section 2.3) model.

Thus both “full matrix” LDA and SeqDLDA are part of the space of solutions being

searched. Note also that if some a priori knowledge was available about the structure of

the covariance matrix this could be exploited to reduce the complexity of the search by

removing some of the paths in Table 2.1 from consideration. For example, if it is believed

that features will tend to be correlated in small groups, it is very easy to set limits on

the maximum size of the blocks to be explored by our algorithm.
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2.4.4 Repeated feature subset selection BDLDA (Rep-BDLDA)

Using cross validation in the model selection (Section 2.4.2.2) for BDLDA is very time

consuming, thus not an appropriate algorithm for gene expression data, which has a

large number of features and the number of possible models grows exponentially. As

an alternative, we could exploit some underlying knowledge of the data to reduce the

BDLDA parameter search space. This is the idea behind the repeated FSS (RFSS)

search strategy7 discussed in this section.

RFSS search method consist of repeating the model construction and feature selection

N times. At each repetition, only a predefined maximum number of features MaxFeature

is permitted, with the features selected during previous iterations removed from the set

of candidate features. Finally, the N models are combined by vector concatenating N

means and block diagonally concatenating N covariance matrices. The feature sets in all

N models are different and uncorrelated. The model construction is performed N times

or stops when there are not enough candidate features. These heuristic search enables

the algorithm to find more discriminating features without being influenced by previously

selected models. The resulting approach, Rep-BDLDA is useful for gene expression data,

because genes belonging to the same pathway tend to be have sparse correlations, but also

more than one gene in the same pathway could independently lead to the same outcome

we are trying to predict.

7This work was in collaboration with L. Shen, more details can be found in [91]
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2.5 Results

Several simulated and real microarray datasets are used to evaluate the linear discriminant

methods discussed in this chapter: DLDA (Section 2.2.3, SeqDLDA (Section 2.2.3) and

SeqBDLDA (Section 2.2.3). The microarray data used in this section correspond to

publicly available datasets from medical research in four different cancer classification

studies (leukemia [33], colon [4], prostate [93] and neuroblastoma [6]). Cross-validation

(Section 2.2.4) is used to properly fit and evaluate the models. In simulated datasets,

where the underlying distributions are known, the true classification accuracy can be

obtained either analytically or numerically (with Montecarlo Simulation).

2.5.1 Application of DLDA to neuroblastoma

The development of the classification techniques proposed in this chapter are part of a

medical study for neuroblastoma tumor led by Dr. Asgharzadeh at Childrens Hospital

Los Angeles. This section will describe the dataset that was collected, and will show how

to apply and evaluate the DLDA model (as was done in [6]). Some of the evaluation

techniques used here, will also be used in the following sections to evaluate the other

LDA based techniques presented in this chapter.

Metastatic neuroblastomas lacking amplification of the MYCN proto-oncogene vary

in their clinical behavior. Those diagnosed before one year of age are least aggressive

and those diagnosed after two years are most aggressive. Age, however, is not always

correlated with survival, and it is hypothesized that molecular classification of tumors at

diagnosis using gene expression profiling would improve prediction of outcome.
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Gene expression profiles of 102 untreated primary tumors from patients with stage 4

MYCN non-amplified neuroblastoma diagnosed at < 12, 12−24, > 24 months of age were

determined using Affymetrix microarrays. A supervised method using DLDA (Section

2.2.3) was devised to build a multi-gene model for predicting outcome.

Figure 2.5: Classification error plot showing the percentage of neuroblastoma patients
misclassified using DLDA models of different size (x-axis). Red line: mean error rate
generated from 100 times 10-fold cross validations using the training set. Blue box plots:
lower and upper bounds of the boxes represent the 25th and 75th quartiles of the cross-
validation errors for a given gene model; whiskers represent data within the range of 1.5
times the upper and lower inter quartiles; outliers are shown as red crosses. The first
minima of the curve occurred with 55 genes.
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The average cross-validation error rate was first minimized for models that used probes

for 55 genes (52 unique genes) as shown in Figure 2.5. As a validation strategy, we per-

formed nested leave-one-out cross-validation of the entire process including the model

selection. The leave-one-out cross-validation error-rate estimates from our nested algo-

rithm in predicting progression status was 15.7% with permutation standard error of

±3.95% for all patients and 17.9% ± 5.09% for those diagnosed after 12 months of age.

Without cross-validation, the training error rate of 9.8% for 55 genes using all 102 tumors

is probably an underestimate and reflects the need for cross-validation [5]. To evaluate

if the selection of the multi-gene model that minimizes classification error rate occurred

by chance, we permuted our samples by randomly mislabeling them with respect to their

progression status and created 1000 sample sets. The error rates generated from multi-

gene models in these permuted sample sets was found to be higher than that generated

from our correctly labeled sample set (P < 0.01).

The gene expression signatures of tumors obtained at diagnosis from patients with

clinically indistinguishable high-risk, metastatic neuroblastomas identify subgroups with

quite different outcomes. Accurate identification of these subgroups with gene expression

profiles will probably facilitate development, implementation, and analysis of clinical

trials aimed at improving outcome. The list of candidate genes can also be used as

candidate targets for future medical studies. The following sections will analyze in this

and other microarray datasets if the other techniques introduced in this chapter can

obtain a better performance in terms of prediction accuracy or in capturing better the

correlations between the genes.
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2.5.2 Evaluation of SeqDLDA in four microarray datasets

The proposed SeqDLDA algorithm (2.3) has been evaluated using 100 runs of 10-fold

Cross-Validation on several 2-class datasets shown in Table 2.2. The leukemia [33] (n=72,

p=7129), colon [4] (n=22, p=2000), prostate [93] (n=102, p=6033) datasets are publicly

available and widely used in other studies. The neuroblastoma dataset (n=102, p=44298)

has been described in Section 2.5.1. In all cases, the gene expression has been normalized

by clipping values lower than 1 and taking a log-transform.

Using the same evaluation methods, the proposed SeqDLDA approach has been com-

pared to DLDA [23], NSC [96], GP-DLDA [10], ULDA [106] and Linear SVM.

Table 2.2: Average Cross-validation error, number of selected genes and standard devia-
tion (SD)

Leukemia Colon Prostate Neuroblastoma

Seq-DLDA 4.11%,180(1.32%) 12.06%,50(1.87%) 5.53%,26(0.90%) 13.87%,70(2.41%)
GP-DLDA 3.82%,18(0.77%) 13.08%,16(1.76%) 6.44%,20(0.70%) 15.77%,35(1.61%)
DLDA 3.38%,7(1.30%) 12.40%,3(1.44%) 6.99%,2(0.33%) 16.91%,55(1.54%)
NSC 4.18%,70(0.80%) 10.31,20(1.02%) 7.65%,6(0.42%) 17.98%,70(1.67%)
ULDA 3.39%,p(0.747%) 15.19%,p(2.72%) 8.53%,p(1.10%) 13.42%,p(1.55%)
Lin-SVM 2.61%,p(0.57%) 15.39%,p(2.17%) 8.01%,p(1.14%) 14.13%,p(1.45%)

In the studied datasets SeqDLDA obtains results very close to the best approach, and

the best results for the prostate and neuroblastoma datasets. Additionally SeqDLDA

performs gene selection, unlike ULDA and SVM whose classifier uses the whole set of

genes. Gene selection is crucial in order to identify genomic targets that may explain the

disease.

Classical DLDA filtering approaches [23, 96] provide similar results in the absence of

gene correlations or inter-pair correlations in GP-DLDA [10]. For example, Nearest
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Shrunken Centroid (NSC) obtains the best results in the colon dataset. However correla-

tion among genes is generally present and the SeqDLDA method will allow us to choose

genes that may have a lower score (under a diagonal correlation assumption) but can

be shown to provide better classification performance when combined with the already

selected genes. Additionally, we have also noticed that improvement in performance over

DLDA is more noticeable when a larger number of training samples is available. In the

neuroblastoma data set, the average misclassification rate of DLDA (16.91%) is signifi-

cantly reduced to 13.87% using SeqDLDA.

2.5.3 Simulation results with SeqBDLDA

The SeqBDLDA has been first extensively analyzed with artificial data for two basic

reasons. First this allows to control the covariance matrix and to evaluate the ability of

the algorithm to select a model close to actual one. Second, evaluation is simplified, since

for a given LDA-trained model we can exactly compute the probability of error without

having to estimate it.

The training data is generated by drawing n samples with distributions fA (x) ∼

N (mA,K), fB (x) ∼ N (mB,K). The two basic generating parameters are K, and

d = mA −mB. We have experimented with several covariance matrix structures and

randomly permuted the features, so that in general two contiguous features are not nec-

essarily correlated. In the experiments presented here d was fixed so that the SNR of

the features is exponentially decreasing with parameter γ:

∣
∣
∣
∣

dj

σj

∣
∣
∣
∣
= e−γj

(

σ2
j

)

j
= diag (K) (2.11)
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The number of features that will be optimal for the classifier will usually be between 1/γ

and 4/γ approximately, increasing with the sample size n and decreasing with p. When

n and p are constant, if γ is small, a large number of features will be required for the

classifier and a diagonal matrix model will be preferred over a full matrix one.

After training the weight vector w, we can compute the exact probability of error

Pe|w = 1− Φ

(

1

2

√

JK (w)

1 + 1/n

)

JK (w) =
(dtw)

2

wtKw
(2.12)

where Φ (x) is the standard normal cumulative distribution function and 1 + 1/n takes

into account the cost of estimating the b parameter in (2.3). This is possible because we

know the underlying distribution that generates the samples we want to classify. Using

Montecarlo simulation, we repeat the training and evaluation T times and the average

Pe is estimated as:

P̂e =
1

T

T∑

t=1

Pe|ŵt
(2.13)

These results are reported for our proposed algorithm (SeqBDLDA) along with the

two related wrapper methods SeqDLDA and SeqLDA (see Section 2.4.3). Finally, 95%

confidence intervals asses the statistical significance of our findings.

The first simulation example uses a Toeplitz symmetric covariance matrix. A Toeplitz

symmetric matrix arises from AR processes, in which contiguous features are locally

correlated. This is exploited by several classification algorithms [30], which will, however,

fail if the features are permuted. Our proposed algorithm avoids this problem since
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it is invariant to feature permutation. This comes indirectly from our original design

assumption that no prior knowledge exists about correlation between features.

In our experiments the more diagonally dominant the matrix is, the better the diagonal

model will be. If the training data is limited, the full-matrix approach quickly fails as

we increase the number of parameters. Figure 2.6 illustrates this with the following

covariance matrix:

K =
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(2.14)

In general, the SeqBDLDA algorithm achieves a very good performance for a Toeplitz

covariance matrix. Although a Toeplitz matrix it is not strictly block diagonal, it has a

sparse number of correlations different than 0. Thus, even in the case that the underlying

features covariances cannot be arranged in blocks for some permutation, SeqBDLDA still

does a good job in reducing the number of parameters that have to be estimated to

approximate the underlying Toeplitz structure.
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Figure 2.6: SeqBDLDA Classification performance, Toeplitz covariance matrix. p = 200,
n = 120, K as in (2.14), γ = 0.2. Solid and dotted lines represent the mean P̂e and
its 95 % confidence interval for 100 trainings. In this example SeqBDLDA (in green)
outperforms both SeqLDA (red) and SeqDLDA (blue).

The second experiment tests the algorithm with block diagonal matrices. Figure 2.7

shows the results for the following covariance matrix structure:

K =















A 0 0 0

0 B 0 0

0 0 C 0

0 0 0 D















(2.15)
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Figure 2.7: SeqBDLDA Classification performance, Block covariance matrix. p = 200, n
= 60 (thin line),120 (thick line), K as in (2.15) , γ = 0.1. Solid and dotted lines represent
the mean and its 95 % confidence interval for Pe of 100 trainings. This example illustrates
that depending on the number of samples available, SeqBDLDA (in green) can chose an
adequate block diagonal structure, that outperforms both SeqLDA and SeqDLDA.

Figure 2.7 shows that when training data is very limited, e.g., n = 60, a diagonal

structure (SeqDLDA) outperforms a full matrix approach (SeqLDA), while as n increases
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the full matrix approach becomes better. Our technique approach can default to SeqLDA

or SeqDLDA for some number of parameters, but it is also capable of choosing other

intermediate block-diagonal alternatives. This is why most of the time SeqBDLDA can

outperform SeqLDA and SeqDLDA in a block matrix scenario.

2.5.4 Results with Rep-BDLDA on microarray data

In microarray datasets the SeqBDLDA algorithm evaluated in the previous section is

very slow and we need mechanisms to avoid using cross-validation to select the model

and heuristics for reducing the search of the best block structure. This can be achieved

by Repeated FSS (RFSS) of small sets of BDLDA models as explained in Section 2.4.4

(more details and results also in [91]).

The Rep-BDLDA algorithm is tested on the colon, prostate and neuroblastoma datasets.

The Rep-BDLDA algorithm was used with N = 5 repetitions of BDLDA models with

maximum block size MaxGrow = 3 and MaxFeature = 20 features. The average

50X10-fold cross-validation error rates and standard deviations are shown in Table 2.3.

In SCRDA [34], the cross-validation error rate corresponds to the minimum after adjust-

ing two regularization parameters.

In all three real datasets, BDLDA has the lowest error rates. Among them, Neu-

roblastoma, with more than 40,000 features, is considered the most challenging. Our

algorithm reduced the error rate by more than 2%, compared to the second best algo-

rithm, SeqDLDA (Section 2.5.2).
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Table 2.3: Average Error Rate (Standard Deviation) for microarray data

Colon Prostate Neuro-blastoma

RepBDLDA 10.06% 5.21% 10.61%

(1.15%) (0.85%) (1.29%)
SeqDLDA 12.06% 5.53% 13.87%

(1.87%) (0.9%) (2.41%)
NSC 10.31% 7.65% 17.98%

(1.02%) (0.42%) (1.67%)
SCRDA 11.41% 5.41% 14.22%

(1.69%) (0.89%) (1.39%)

2.6 Conclusions

This chapter covered the design and evaluation of classifiers based on linear discriminant

analysis (LDA) for microarray applications. The design of accurate classifiers is chal-

lenging due to the limited number of training samples compared to the large number of

genes in microarray studies. Under these conditions, the estimation of parameters to fit

an LDA model (the covariance matrix and the class centroids) is not robust. However,

the underlying biological models tend to be sparse in the sense that: i) very few genes are

normally relevant for the outcome the classifier is trying to predict, ii) genes are corre-

lated in relatively small groups. Several modeling and feature selection approaches have

been proposed using the LDA framework exploiting this underlying sparseness.

Starting from DLDA models that ignore gene correlations we investigate several

searching approaches (filter DLDA and wrapper SeqDLDA) for selecting a subset of

genes. This is then expanded to BDLDA models in which we search for a feature subset

along with a block structure that models the interactions between genes. In other words,

48



we solve the problem of fitting an LDA model by searching the combination of genes and

gene correlations that give best discrimination between classes.

Depending of the number of the training samples available, we can can search for a

smaller or larger model in terms of number of parameters to estimate. The appropriate

size of the model can be determined by crossvalidation. The embedded FSS search tries

to give the best block structure and parameter/feature selection of a model of a given size.

Results on simulated and real microarray data demonstrate that the proposed SeqDLDA,

SeqBDLDA and specially RepBDLDA offer a very competitive performance compared to

other state-of-the-art approaches such as NSC, SCRDA, GP-DLDA and SVM.

There is a steady increase in the knowledge about gene regulation and more and more

microarray experiments are deposited into large public available databases every day. In

future work, all this prior knowledge could be used in the FSS and BDLDA framework

presented here. For example, groups of corregulated genes could be proposed to belong

to the same block in BDLDA, or gene pathways could be used to guide the FSS search.
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Chapter 3

Sparse representation and Bayesian detection of genome

copy number alterations from microarray data

Genomic instability in cancer leads to abnormal genome copy number alterations (CNA)

that are associated with the development and behavior of tumors. Advances in microarray

technology have allowed for greater resolution in detection of DNA copy number changes

(amplifications or deletions) across the genome. However, the increase in number of

measured signals and accompanying noise from the array probes present a challenge in

accurate and fast identification of breakpoints that define CNA. In this chapter we propose

a novel detection technique that exploits the use of piece-wise constant (PWC) vectors

to represent genome copy number and sparse Bayesian learning (SBL) to detect CNA

breakpoints 1. First, a compact linear algebra representation for the genome copy number

is developed from normalized probe intensities. Second, SBL is applied and optimized to

infer locations where copy number changes occur. Third, a backward elimination (BE)

procedure is used to rank the inferred breakpoints; so that a cut-off point can be efficiently

adjusted in this procedure to control for the false discovery rate (FDR). The performance

1Part of the work presented in this chapter has been published in [75,79]
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of our algorithm is evaluated using simulated and real genome datasets and compared to

other existing techniques. Our approach achieves the highest accuracy and lowest FDR

while improving computational speed by several orders of magnitude.

3.1 Introduction

Copy number alterations involving deletion or replication of entire chromosomes or chro-

mosomal regions are known to occur in numerous genetic disorders (e.g., Down’s syn-

drome, Klinefelter’s syndrome), while replications of multiple chromosomes leading to

states of hyperploidy are well known in cancer biology [3]. Similarly, regional CNA

have been demonstrated in tumors, and linked to leading them to develop aggressive

behavior. Examples include loss of RB tumor suppressor in retinoblastoma or MYCN

proto-oncogene amplification in neuroblastoma. Recently, a large number of copy number

variants (CNVs) have also been described in the human genome [82] and found across

large numbers of individuals. These recurrent copy number changes, CNVs, tend to be

much smaller in size and will be considered in more detail in Chapters 4 and 5. Array-

based technologies use genetic material as sensors or probes to estimate copy number

for the intended genomic regions. The resolution for detection of CNA depends on the

number and type of probes placed on these arrays. Comparative genomic hybridization

(CGH, [51]) is one of the earlier array platforms that uses large insert DNA fragments

(kilobases) as probes in measuring DNA copy number. These probes, numbering typically

in the order of hundreds of thousands to millions, allow co-hybridization to take place

between a fluorescently tagged genome of interest and a normal reference genome. The
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relative intensity at a given probe is directly proportional to the copy number for that

region. More recently, platforms using short oligonucleotide probes (≤60 bases), which

allow placement of hundreds of thousands of probes on an array, have become more widely

used [80]. The probes are only hybridized to a tagged genome of interest and the inten-

sities are usually compared to those of reference set of arrays of normal genomes. The

majority of these arrays use oligonucleotides that also probe for regions with genotype

polymorphisms thus providing both copy number and genotype information [43,71]. The

increase in the probe density poses computational challenges to accurately and efficiently

assess DNA copy number and identify altered regions.

Several algorithms have been proposed to detect CNA [11,29,42–44,60, 64, 68, 69, 73,

80, 107]. Most of these algorithms rely on a fundamental characteristic, namely, that a

genome is composed of relatively long segments, DNA sequences, that have a constant

number of copies present. The genomic segments can be represented by m probes map-

ping to a specific position on the genome having cm copies. The copy numbers cm can be

ordered and arranged as vectors c that have two key characteristics: i) they are piecewise

constant (PWC) with very small number of breakpoints relative to the number of probes

and ii) they have discrete values (DIS) (i.e., copy numbers can only be 0,1,2,3,. . . ). How-

ever, these properties cannot be directly observed in the log-intensities ym measured with

microarrays, due to contamination by biological and technical noise; thus a widely used

model is:

ym = xm + ǫm (3.1)
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where xm represents the average log intensity, and ǫm is an additive zero-mean white

random process (see Figure 3.1).
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Figure 3.1: Graphical representation of the observation model (3.1) using a chromosome
section with 2 alterations as an example (simulated data). The underlying mean hybri-
dization intensity xm is piece-wise constant (PWC) with breakpoints I = {i1, i2, i3, i4}
that mark the starting probe of each segment, and amplitudes a = (a0, a1, a2, a3, a4) that
depend on the underlying number of copies (DIS). The observed probe hybridization in-
tensities ym do not follow this expected behavior due to degradation by hybridization
noise ǫm.

Most techniques exploit the assumption that xm ∝ log2(cm) and that properties

PWC and DIS, as introduced above, are met. For example, one of the first and sim-

plest techniques to exploit PWC consisted of applying a smoothing filter followed by a

threshold [43, 80]. This has been improved upon by more specialized techniques such

as wavelets [42], segmentation [60, 69, 73], or penalized least-squares [44]. Additionally,

hidden Markov models (HMM) [29, 64, 68, 107] and Bayesian methods [11] exploit both

PWC and DIS by assuming that each observation ym comes from a probe in a particular

hidden copy number state cm to be inferred. Exploiting DIS can be difficult in cases

where that state is rare (observed a small number of times), or in cases of specimens

containing a heterogeneous population of cells with respect to DNA copy numbers. This
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heterogeneous copy number state typically occurs in the case of tumor samples, where

xm = log2(c̄m) would correspond to the average copy number in the mixture.

Among all the previous methods, circular binary segmentation (CBS) [69] was found

to be one of the most accurate methods for CNA detection by two independent com-

parative studies [57, 103], but was also one of the slowest. These studies used synthetic

datasets where the CNA occur at known positions, the probes are uniformly spaced, and

the hybridization noise is generated according to a white Gaussian distribution. More

recently, new approaches [25,85,90] have extended previously proposed methods in order

to target specific scenarios not considered by the CBS approach, e.g., presence of out-

liers [90], non-uniform probe spacing [85], and chromosomes with a reduced number of

probes and non uniform variance [25]. In our case we focus on the default conditions

and metrics proposed by [103] under which our results show that these new algorithms

do not give better accuracy than that of CBS and are slower. The performance of these

algorithms under different conditions that may arise on specific microarray platforms is

discussed in Chapter 5. Recently, the computational performance of CBS algorithm has

significantly improved with a new approximate version [101] with no significant loss of

performance. However, the run-times of this new version and the other new algorithms

are still very high, especially when applied to the new high density array platforms.

In contrast, we propose a novel modeling of genomic data using PWC vectors that can

be efficiently exploited to build algorithms for CNA detection with very significant gain

in computational speed. We also propose a new approach that we call genome alteration

detection algorithm (GADA) for CNA detection from array data that combines the sparse

Bayesian learning (SBL) technique introduced by [97] and a backward elimination (BE)
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procedure that can efficiently adjust the accuracy trade-off between sensitivity and the

FDR.

We evaluate our algorithm using the simulated array-CGH dataset proposed by [103],

where the underlying positions of copy number changes are known and can be used as

a benchmark to compare the accuracies of different algorithms. We also evaluate the

performance of three algorithms [25, 85, 90] that appeared after the [103] comparative

study, and the newer CBS implementation [101]. Using that benchmark dataset our

GADA approach obtained one of the best accuracies, and the best performance in terms

of computational speed, followed by CBS. Additionally we compare the results of our

algorithm and CBS on data generated from several array types from two commercial

manufacturers (Affymetrix and Illumina) using DNA from four different neuroblastoma

cell lines. Our results indicate that our algorithm can analyze data efficiently from high

density platforms and provide an accuracy similar or better than that of state of the art

algorithms, but with reduced computation costs. On the new large array platforms, our

algorithm is two orders of magnitude faster than one of the most accurate algorithms

available to date, i.e., CBS [69].

This chapter is organized in to major parts. The first part (Sections 3.2 through

3.7) introduces the PWC models, the SBL and BE algorithms that compose the GADA

approach; and also discusses the theoretical properties of these models and algorithms.

The second part evaluates the proposed GADA approach in both simulated (Section 3.8)

and real microarray data (Section 3.9) and presents the final conclusions.
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3.2 PWC vector representation of Genomic Data

One of the major contributions of this work is the development of a compact description

for the copy number along the chromosome using PWC vectors (green signal in Figure

3.1). Using simple linear algebra, any PWC vector x with K breakpoints I = {i1, . . . , iK}

can be compactly represented by a linear combination of K step vectors f i (each with a

single breakpoint i in I, see Figure 3.2) plus a constant vector f0.

f i (m) =







−
√

M−i
iM

m ≤ i

√
i

M(M−i) m > i

(3.2)

f0 (m) =
1√
M

(3.3)

1 i M
Probes (m = 1,…,i,…,M) ordered in chromosomal position

 

 

−
√

M−i

iM

√

i

M(M−i)

m ≤ i m > i

 f
i
(m)

Figure 3.2: Step vector fi with a breakpoint between probe i and i+1 as defined in (3.2).
Notice that the step vectors have been normalized to have unit norm,

∑M
m=1 (fi (m))2 = 1,

and average zero for i > 0,
∑M

m=1 (fi (m)) = 0.

Therefore, in matrix notation, we can write this linear combination as:

x = Fw (3.4)
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where the columns of F are the step functions (F = [f0, f1, ...,fM−1]); and, w is a sparse

vector, i.e., there are only K + 1 non-zero components. Equivalently, we can remove the

components of w that are zero and write:

x = F IwI (3.5)

where F I = [f0, f i1
, . . . ,f iK

] and wI = [w0, wi1 , . . . , wiK ]. This representation has three

very important properties that are proved in Section 3.2.1. First, the columns of F form a

basis that can be used to represent any arbitrary vector. Second, it has a nested structure,

and for each additional breakpoint i that the PWC vector may contain, we only require

an additional weight wi to be nonzero. Third, any arbitrary PWC vector with exactly K

breakpoints can be represented with K + 1 non-zero components which is proved to be

the minimum possible amount; i.e., maximal sparseness.

To the best of our knowledge, we are the first to explicitly propose this representation

in the context of genome copy number variations [79] and to exploit its properties to

develop a highly accurate and efficient detection technique that will be detailed in the

following sections.

3.2.1 Properties of the PWC representation

This representation was initially inspired by the concept of wavelet footprints [21] where

the more general case of piece-wise polynomial signals is considered from a wavelet anal-

ysis perspective. The maximally sparse representation for PWC signals demonstrated

in wavelet footprints is reformulated here using standard linear algebra and extended to
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arbitrary vector lengths. This also allows us to establish a correspondence between sets of

breakpoints and a nested structure of vector subspaces which we use here to demonstrate

the representation properties.

Mathematically, a PWC vector x can be completely characterized by its change loca-

tions (i.e., breakpoints) and the constant values of the regions in between (i.e., segment

amplitudes):

Definition 1 (PWC vector). A piece-wise constant vector x = (x1, . . . , xM )t is character-

ized by an ordered set of K discontinuity locations I = {i1 < i2 . . . < iK} ⊂ {1, . . . , M − 1}

(ik denotes the beginning position of segment k) and a vector with the corresponding K+1

segment amplitudes a = (a0, . . . , aK)t. Thus:

xt =

(

a0
↑1

, . . . , a0, a1
↑i1

, . . . , ak−1, ak−1, ak
↑ik

, ak, . . . , aK
↑M

)

(3.6)

With this definition it is easy to show that the breakpoint sets Is induce the following

vector subspace properties:

Lemma 1 (PWC Vector Subspaces). Let SI be the set of all PWC vectors x that have

breakpoint locations contained in I, and segment amplitudes a ∈ R
K+1. Then, we have

that:

i) SI is a subspace of R
M of dimension K + 1.

ii) SI1 is a subspace of SI2 if and only if I1 ⊂ I2

Proof. It is clear that i) holds since, first, for any x1, x2 with breakpoints in I, but

different amplitudes a1 and a2; we have that x3 = x1 + x2 may remove existing break-

points but never create a breakpoint outside I, thus x3 ∈ SI because it will always have
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breakpoints contained in the same I, and a3 = a1 + a2. Second, for any x1 ∈ SI and for

all α, x4 = αx1 will also have breakpoints contained in I with a4 = αa1 and thus will

belong to SI . Furthermore, when I is fixed x and a vector spaces are isomorphic and

hence SI has dimension K + 1; thus, ii) readily follows from i).

Part ii) of the lemma is equivalent to saying that any PWC vector x ∈ SI can be

represented as a linear combination of step vectors in S{k}, k = i1, . . . , iK . With this

principle in mind, we now introduce a basis for PWC signal representation that has some

desirable properties.

Theorem 1 (PWC Basis). Define a matrix F = [f0, f1, ...,fM−1], with columns f i

defined as in (3.2). Then, we have the following properties:

i) (Complete Basis): The columns of F are a basis for R
M , i.e., for any x ∈ R

M

there exists a unique w such that x = Fw.

ii) (Nested Structure): The columns of F I = [f0, f i1
, . . . ,f iK

] , “nest” of F , are

a basis for the vector subspace SI , formed by PWC vectors with breakpoints at I =

{i1 < i2 . . . < iK}.

iii) (Maximal Sparseness): Any PWC vector x ∈ SI , can be written as x = Fw, where

w has as many as |I|+1 non-zero entries, which is the minimal amount possible (maximal

sparseness). Moreover, if the non-zero weights are wI = [w0, wi1 , . . . , wiK ], we can write

x = F IwI , where the subscript I denotes that only the columns of F (resp. components

of w) at the positions corresponding to the indices in I are included.

Proof. In order to better understand the previous theorem we will give a proof by con-

structing the PWC basis using the nested structure. First, if x is a constant vector, i.e.,
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it has no discontinuities, I = ∅, the dimension of S0 = SI=∅ is one and can be spanned

by the constant vector f0. Then, for k = 1, . . . , M − 1 the vector spaces Sk = SI={k} of

PWC vectors with a single discontinuity between k and k + 1 can be spanned by adding

the element fk, a step vector with a breakpoint at that position. Moreover, the set of

vectors now forms a complete basis: from Lemma 1.ii) any x ∈ SI can be represented by

linearly combining {f0, f i1
, . . . ,f iK

}. This basis construction proves ii) in the theorem,

as well as i) when I = {1, . . . , M}.

Alternatively we can prove that i) holds, by simply checking that F is a square in-

vertible matrix. The the rows of its inverse F−1 which form the dual basis are:

F−1 =
[

f̃0, . . . , f̃M−1

]t

(3.7)

f̃0 =
1√
M

1M

f̃k (m) =







−
√

k(N−k)
N

m = k − 1
√

k(N−k)
N

m = k

0 otherwise

The most appealing property for our specific application is iii), since copy number

vectors will have very few breakpoints (K << M) which makes w a sparse representation.

We can prove iii) by the following argument. First, we cannot have less than K + 1 non-

zero elements because this is the minimum required to form a basis for SI . Then, for all

m /∈ I, we have that xm − xm−1 = 0, and using the dual basis, w = F−1x, we have that

for all m > 0 wm = 0 if and only if xm−xm−1 = 0. Thus, there are exactly K+1 non-zero

elements, which is indeed the minimum (so the representation is maximally sparse).
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3.3 Formulation of the breakpoint detection problem

The compact representation developed in the previous section can be used to facilitate

estimating x from a degraded observation y generated as in model (3.1):

y = x + ǫ = Fw + ǫ, (3.8)

where x has been replaced by its representation in terms of the basis vectors, Fw. Since

the number of copy number changes is very small compared to the number of probes,

K << M , then x = Fw has a sparse representation in the F basis, while the noise ǫ is

not sparse in this representation. Under this scenario, the problem is formulated as that

of finding x̂ = Fŵ that is closest to the observed y subject to having only K non-zero

components of ŵ.

ŵ : min
w

e (Fw, y) s.t. s (w) = K. (3.9)

Different measures of closeness e (.) and sparseness s (.) can be used. For closeness, we

will use the least squares error measure, since it is the most widely used for approximation

and will facilitate comparison among algorithms, although it may be sensitive to outliers.

For measuring sparseness we are especially interested in the l0 norm (i.e., the number of

wm 6= 0), which best models the biological property that K << M without imposing any

restriction on the specific values of wm.
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Then, the optimization with these measures can be rewritten as follows:

ŵ = arg min
w
‖y − Fw‖2 + λ ‖w‖0 (3.10)

where the lp norm and the l0 pseudo-norm are defined as:

‖w‖p =
M∑

m=1

|wm|p ‖w‖p→0 =
M∑

m=1

I (wm 6= 0) (3.11)

and with λ > 0 as a trade-off parameter between goodness of fit and sparseness.

Finding a solution for the problem of (3.10) would require solving O(KM2) least

squares problems. This approach is intractable for chromosome lengths M and number

of discontinuities K that are typical for our application. There exist several popular

sub-optimal approaches both in the signal processing and in the statistics literature (see

Table 3.1) that use a greedy search strategy or convex relaxation.

Table 3.1: Relationship between signal processing methods for overcomplete expansions
and methods in statistics for variable selection in multiple regression

Signal Processing Statistics

Greedy Methods:
MP-FS Matching Pursuit [61] Forward Selection [88]
OMP Orthogonal Matching Pursuit [70]

Relaxation methods:
MoF-Ridge Method of Frames [13] Ridge regression [40]
BP-Lasso Basis Pursuit [13] Lasso [40]

Methods are paired when a similar version of equation (3.9) is solved (i.e., when the same metrics are

chosen). But note that there will be differences in how λ is adjusted, and the size or types of design

matrices F that are used.

The first class of strategies, greedy methods, consists of reducing the search space of

all possible variable (breakpoint) subsets 2M by assuming that the best set of K1 variables
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(breakpoints) will often be a subset of the best set of K2 variables, for K2 > K1. If this

assumption is correct, the set of best predictors can be constructed sequentially as in

MP-FS; where we start selecting the vector (regressor) with largest projection (largest

F-score), and keep adding the vector that most reduces the energy of the residual. This

strategy is only optimal when F is orthogonal, or nearly optimal [20] when the coherence

of F (C = max
〈
fk, f j

〉
k 6= j) is small and the signal is “sufficiently” sparse (i.e., ‖w‖0

is small). It is important to note that this result cannot be applied to our case, since the

coherence of F approaches 1, i.e., the set of vectors considered here is highly coherent.

The second class of strategies is based on replacing the l0 sparseness measure ‖w‖0

by some other lp measure, such that more efficient optimization methods (such as linear

programming, projection or gradient methods) can be used. For example, for p = 2 (i.e.,

‖w‖2), we would have a ridge regression in which the two square norms can be easily

combined resulting in ŵrigde =
(
F tF + λI

)−1
F ty. However, ŵridge is not sparse at all

in l0 sense, and thus we would be interested in using a p as small as possible. The l1

norm is often used, because it is is the minimal one for which the constraints form a

convex set and thus convex optimization or linear programming can be used to solve the

problem. This is the strategy behind basis pursuit [13] and lasso [40], for which there

exist a similar result as in MP [20] showing that if the coherence is small then minimizing

for l1 is equivalent to minimizing for l0. Therefore, when F is highly coherent, as in our

case, these techniques lead to sub-optimal performance and a new approach is needed.

In conclusion, the performance of the methods in Table 3.1 is severely limited by

the high collinearity between the columns of F [20] (the inner product is almost 1, the

maximum). On the other hand, sparse Bayesian learning (see next section) for the specific

63



application of CNA detection [79] can successfully exploit the collinearity structure of the

PWC representation.

3.4 Sparse Bayesian Learning (SBL)

The optimization problem defined in (3.10) can be formulated from a Bayesian estimation

point of view, as was done by [104], for the case where F is an arbitrary matrix, and solved

using sparse Bayesian learning (SBL) [97], an empirical Bayes approach. Following [104],

the problem in (3.10) can be cast as a maximum a posteriori (MAP) estimate:

ŵMAP = arg max
w

p (w|y)

= arg max
w

p (y|w) p (w)

= arg min
w
− log p (y|w)− log p (w) (3.12)

where the observation model p (y|w) specifies the goodness of fit measure e (.) and the

prior distribution for the weights p (w) specifies the sparseness measure s (.) in (3.9).

In SBL [97], the observation model is assumed normal:

p (y|w) ∼ N
(
Fw, σ2I

)
(3.13)

which leads to the mean square error as a measure of fit in (3.10). The limitations of this

measure are basically the same as all the least square based methods. We will discuss

robustness to extreme outliers in Section 3.8.1 and Chapter 4.
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The sparseness measure in lasso/BP and Ridge-Tikhonov methods presented in Sec-

tion 3.5 is equivalent to using the Laplacian and the normal distributions for the prior

p(w) respectively. In contrast, the prior distribution for the weights in SBL is specified

as a hierarchical prior:

p (w|α) =
M−1∏

m=1

N
(
wm|0, α−1

m

)
, (3.14)

where α is a vector of hyperparameters that are distributed according to a gamma dis-

tribution:

p (α) =
M−1∏

m=1

Γ (αm|a, b). (3.15)

The choice of p(w) in convex relaxation methods is more relevant in terms of enforcing

sparseness (approximating better the l0 norm) in a computationally efficient manner than

in terms of incorporating some existing prior knowledge on the actual p(w) distribution.

In this regard, the SBL prior has three useful features.

First, given the hyperparameters α, the conditional posterior weight distribution

(3.16) is normal:

p
(
w|y, α, σ2

)
= N (w|µ, Σ) (3.16)

Σ =
(
σ−2F ′F + diag(α)

)−1
(3.17)

µ = σ−2ΣF ty (3.18)
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and, following [97], p (w|y) can be correctly approximated by point estimates as p
(
w|y, α̂, σ̂2

)
;

thus, the MAP estimate is given by the posterior mean ŵ = µ.

Second, by treating the weights w as hidden variables, the maximum likelihood esti-

mation for the hyperparameters α can be obtained by the EM algorithm [97]. Thus, for

each iteration l until convergence we would alternate:

E Step : Ew|y,α(l),σ2

(
w2

m

)
= Σmm + µ2

m (3.19)

M Step : α̂
(l+1)
m = 1+2a

Σmm+µ2
m+2b

(3.20)

Finally, although this hierarchical prior does not appear to encourage sparseness, it

has been demonstrated that indeed it has very good sparseness properties [97,104]. This

behavior can be unveiled by finding the marginal “effective” prior, p (w), which is is

an i.i.d. t-distribution with 2a degrees of freedom and a scale parameter of
√

a/b (see

Appendix A). When b→ 0 and a is small, this distribution peaks very sharply at 0, and

has very thick flat tails that decay at (1+2a) rate in log-scale:

log p (w) →
b→0

C (a) + (1 + 2a)
M−1∑

m=0

log |wm| (3.21)

Thus, as shown in Figure 3.3, with this prior we obtain a sparseness cost that more

closely approximates the desired l0 norm. In other words, this prior forces a very large

number of weights to be 0 while the non-zero weights are free to take any value (in

Figure 3.3 the sparseness penalty is almost constant for any r > 0), which matches well

our underlying biological knowledge for copy number changes.
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Although, the model contains several hyperparameters, the α and σ parameters are

estimated from the data while b is set to 0 (uninformative prior). Thus, sparseness is

adjusted solely by the a parameter (Section 3.4.1 and Appendix A)
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Figure 3.3: SBL and l1 sparseness metrics compared to the desired l0 norm (dotted
line). Each curve represents the sparseness metric for an arbitrary vector w with only
K = 1, . . . , 5 non-zero coefficients coefficients at any position. All the non-zero weights are
given the same magnitude r for different values of r on the x-axis. Ideally, we would like
the sparseness metric to be inversely proportional to the the l0 norm, which will be equal
to the number of non-zero components (K) regardless of the value of the components
themselves (i.e., r). Note that the SBL metric approximates better the l0 norm, while l1
norm deviates significantly from this ideal behavior.

3.4.1 Implementation of SBL to find copy number alterations

To the best of our knowledge this is the first time that SBL has been employed to find copy

number alterations, and more specifically with the PWC representation that we propose,

where F has a very special structure. One of our contributions [79] is the observation

that SBL can function well in our situation where significant collinearity exists, unlike

other standard methods in Section 3.3.
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Additionally, SBL computational performance can be optimized for our PWC repre-

sentation by exploiting the nested structure property. Direct computation of equations

(3.17) and (3.20) for an arbitrary F would require O(M3) operations [97,104]. However,

for our particular F in (3.2), HI = G−1
I =

(
F t

IFI

)−1
is, for all possible I, a symmetric

tridiagonal matrix, with main diagonal

h0 (j) =
(M − ij) ij

M

(ij+1 − ij−1)

(ij+1 − ij) (ij − ij−1)
(3.22)

and upper/lower diagonal

h1 (j) =

√
(M − ij) ij (M − ij+1) ij+1

M (ij+1 − ij)
(3.23)

This structure can be used to efficiently compute Σmm and µm for each EM step (3.19)

in O(M) steps (see lines 9-14 in Algorithm 3 ).

Additional computational savings are achieved through removal of columns of F that

correspond to the breakpoints whose weights w are very likely to become 0 (lines 15-

19 in Algorithm 3). This column removal strategy was used by [97] for the general F

case, but, when combined with the tridiagonal structure exploited here, each EM step is

solved more rapidly; complexity is O (|I|), so that the speed increases as the number of

remaining breakpoints |I| decreases.

In our implementation, σ2 is estimated from the data. The parameter σ2 in the

previous work [97,104] is usually jointly estimated by the EM algorithm. However, since

each chromosome in the genome is analyzed independently, and σ2 is assumed to be the
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Algorithm 3 Sparse Bayesian Learning SBL for PWC

Input: y, a, σ2

1: ȳ ← 1
M

∑M
m=1 ym

2: y ← y − ȳ ⊲ Removing ȳ allows us to remove f0 from F

3: α← 0M ⊲ Initialize to a vector containing M zeros

4: I ← {1, . . . , M − 1} ⊲ Initially every possible location can be a breakpoint

5: [h0, h1]← G−1
I ⊲ Inverse is tridiagonal symmetric with hi = ith-diagonal

6: w0 ← F−1y ⊲ F−1 is bidiagonal

7: z← F ty ⊲ Computed by solving the tridiagonal system G−1z = w0

8: repeat

9: [t0, t1]← T =
(
σ2G−1

I Λ + I
)

⊲ G−1
I

= [h0, h1] and Λ =diag(α)

10: w ←Solve the tridiagonal system Tw = w0 ⊲ E-Step

11: Obtain diagonal of Σ = σ2T−1G−1
I ⊲ Only need tridiagonal band of T−1

12: for j = 1 . . . |I| do

13: αj ← 1+2a
w2

j +Σjj
⊲ M-Step

14: end for

(Optional reduction by removing very unlikely breakpoints)
15: if ∃i ∈ I : αi > τ = 1E8 then

16: I ← {i ∈ I : αi ≤ τ}
17: [h0, h1]← G−1

I ⊲ Recompute only terms that change

18: w0 ← G−1
I z (I) ⊲ G−1

I
is tridiagonal

19: end if

20: until w has converged (‖wold −wnew‖ ≤ ǫ)
Output: wI , I
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same for all chromosomes, it is more robust to estimate σ2 for the entire genome before

applying the EM algorithm in each chromosome. In this chapter, σ2 is estimated as

σ̂2 =
1

2M

M∑

m=1

(ym − ym−1)
2 (3.24)

in which the difference ym − ym−1 removes the baseline PWC component and is dis-

tributed as N (0, 2σ2) except for the breakpoints, which can be removed in the sum by

replacing the mean by a trimmed mean. Similar estimates have also been widely em-

ployed in signal denoising approaches [21]. In the context of multiples samples, as will be

discussed in Chapters 4 and 5, a probe specific variance terms could also be used.

Finally, the EM algorithm is guaranteed to improve the solution after each step and

will always converge [104], but it may converge to a local minimum instead of the global

minimum. However, these local minima are indeed always sparse (see Theorem 2 in [104]).

The degree of sparseness in the SBL algorithm is controlled by the parameter a, as can

be seen from (3.21) and Figure A.1, whereby an increase in a causes a sharper peak at

zero with faster tail decay and leads to a sparser solution. The a parameter also controls

the convergence rate of the EM algorithm, with larger a leading to faster convergence.

However, larger values of a are not always desirable and lead to suboptimal placement of

breakpoints because of rapid convergence of the EM algorithm to a local minimum. The

EM local minimum problem can be corrected by checking the statistical evidence for each

breakpoint after obtaining a set of breakpoints at an appropriate a level. The statistical

significance test can be performed by a backward elimination procedure described in next

section, which also allows more flexibility in setting the final desired degree of sparseness.
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3.5 Breakpoint ranking by Backward Elimination

Not all breakpoints found by SBL have the same statistical significance since noise may

make areas without any underlying alteration appear similar to those areas corresponding

to actual alterations. Some breakpoints mark the separation between two long segments

(i.e., such that each segment includes many probes) and are such that the difference

between the estimated amplitudes of the two segments is large. Such breakpoints are

more likely to correspond to true underlying changes in copy number, and therefore

will have have higher statistical score tj = |ŵj | /
√

σ2h0 (j) (see Appendix B). This score

depends on the two contiguous breakpoints, and thus significance scores will change every

time a breakpoint is removed (i.e. two segments are merged).

Instead of testing all the possible breakpoint combinations (i.e., segmentations), we

have adopted a sub-optimal backward elimination (BE) strategy, in which we recursively

eliminate the breakpoint with lowest statistical evidence tj . Although the procedure

is suboptimal, since we may eliminate breakpoints that would be more significant in a

later stage, it is much less sensitive than forward selection [53]. The BE procedure can

be stopped when all the remaining breakpoints have tj higher than a specified T , the

BE critical value. Moreover, with IK being the breakpoint set obtained from SBL, the

procedure creates a sequence of nested subsets I1 ⊂ I2 . . . ⊂ IK , which are obtained

backwards, and such that successive subsets differ only in one discontinuity: this directly

provides a breakpoint ranking. This ranking r is obtained efficiently by Algorithm 4 in

O(|I|), where we exploit the fact that removing one discontinuity at a time only affects

the two neighboring breakpoints (lines 9 and 12).
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Algorithm 4 starts with the set of breakpoints I (given by the SBL algorithm), the

original array observations y and the noise variance estimate σ2. Lines 2 and 3 find

the breakpoint weights wI (i.e., the projection coefficients of y onto SI) exploiting the

structure of the PWC representation instead of using equation (B.1) directly. On the

loop (lines 5-17) we sequentially remove the breakpoints with least statistical score tj

(line 6) until all breakpoints are removed. When we remove a breakpoint j∗, we do not

need to compute all the weights again but only those of the left (line 9) and right (line

12) neighbors.

Algorithm 4 Breakpoint Ranking by Backward Elimination

Input: y, I, σ2

1: Compute HI , i.e. [h0, h1], using (3.22) and (3.23)
2: z← F ty ⊲ Computed by solving bidiagonal system (F t)−1z = y

3: wI ←HIz (I) ⊲ HI is tridiagonal

4: Compute scores t, tj = wI (j) /
√

σ2h0 (j)
5: for k = |I| , . . . , 1 do

6: j∗ = min
ij∈I
|tj | ⊲ Find the least significant breakpoint for removal

7: rk ← (ij∗ , tj∗) ⊲ Give breakpoint the k-th rank

8: if j∗ > 1 then

9: wI (j∗ − 1)← wI (j∗ − 1)+ ⊲ Recompute left breakpoint
√

(M−ij∗−1)ij∗−1

(M−ij∗)ij∗

(ij∗+1−ij∗)
(ij∗+1−ij∗−1)

wI (j∗)

10: end if

11: if j∗ < |I| then

12: wI (j∗ + 1)← wI (j∗ + 1)+ ⊲ Recompute right breakpoint
√

(M−ij∗+1)ij∗+1

(M−ij∗)ij∗

(ij∗−ij∗−1)
(ij∗+1−ij∗−1)

wI (j∗)

13: end if

14: I ← I − {ij∗} ⊲ Remove breakpoint from the set

15: wI ← wI (I) ⊲ Remove j∗ component

16: Recompute h0, and t for new I ⊲ Only j∗ − 1 and j∗ + 1 change (3.22)

17: end for

Output: r
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Finally, with the ranking of breakpoints r, we can adjust the final breakpoint list

to any critical value of T with no additional computational cost. This provides great

flexibility in adjusting the final breakpoint set. The expected false discovery rate (FDR)

is monotonically decreasing with T , thus we can obtain a list of breakpoints with lower

FDR by increasing threshold T .

3.5.1 The role of the T parameter in BE ranking

The ranking provided by the backward elimination procedure, Algorithm 4, can be used

to quickly return a breakpoint set with different degrees of sparseness that contains the

breakpoints with the strongest evidence. This is done by cutting the ranking r at some

specified threshold T , such that all the remaining breakpoints have a |tj | ≥ T . Both true

positives and false positives will decrease with increasing level of sparseness (i.e., higher

T ) but if P (|tj | ≥ T |wj = 0) < P (|tj | ≥ T |wj 6= 0), the expected proportion of false

breakpoints on the returned set (i.e., the false discovery rate FDR) will be monotonically

decreasing with T . The previous condition is true for Gaussian noise but will also be true

for other symmetrically bell shaped noise distributions.

Additionally, we can associate a p-value for any particular value of t, or a significance

cutoff α = P (|tj | ≥ T |wj = 0) for any T, if we assume the noise is normal, using (B.9).

If the noise is not Gaussian, the p-value will still be a good a approximation for the

breakpoints with large flanking segments (i.e., the two neighboring breakpoints are far

apart), since t will converge to a normal distribution under the null hypothesis (for any

noise with zero mean, finite variance and small correlation). Alternatively, for small
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segments, we could estimate the p-value by a resampling method (e.g. bootstrap [24]) or

replace the t score by a non-parametric ranksum test.

It is important to notice that the aforementioned p-value is associated with a sin-

gle breakpoint in one of the many possible segmentations. Thus, it does not take into

account all the possible segmentations that are effectively tested during the algorithm,

i.e. multiple hypothesis testing or multiple comparison problem. Commonly used tools

to solve this problem (Bonferroni, Benjamini-Hochberg [8] and Benjamini-Yettukeli [9])

are not recommended here because they do not take into account the special correlation

structure that exists between the t scores of overlapping or neighboring segmentations,

and the independence between the t scores separated by one breakpoint or more. Solving

the problem of the multiple testing in this scenario, in the sense of being able to provide a

T that controls for the FDR being below some bound is still an open problem. However,

since the FDR is monotonically decreasing with T , we can adjust it to achieve a particular

degree of sparseness, and then estimate the FDR that corresponds to that T either using

results from multiple samples, replicates or by a resampling procedure.

3.6 Segment Alteration Detection

The SBL and BE procedures are segmentation approaches that make no assumptions

about the amplitude of the reconstructed segments. The objective is to provide a nearly

optimal set of amplitudes and breakpoint positions that best fits the hybridization in-

tensities observed in the array as described in (3.10). Once the breakpoints are fixed, in

order to achieve the minimal residual error RSS, the amplitude corresponding to each
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segment is given by the average hybridization level of all the probes that fall inside that

segment. Because of this model, segments that correspond to the same underlying copy

number state may be given a different reconstruction amplitude. Thus, an additional

step has to be done to classify these segments into a copy number (0, 1, 2, 3, 4, . . . ) or

alteration status (Non-Altered, Gain and Loss).

There are two popular alternatives to perform this additional step, since it is also

required in other segmentation procedures such as DNAcopy [69] and CGHseg [73]. The

first alternative, also used in smoothing and thresholding methods [43, 80], assumes or

estimates a baseline Non-Altered mean hybridization level and classifies all the segments

whose average amplitude is significantly above (below) that level as Gain (Loss), other-

wise Non-Altered is assigned. The second alternative is the MergeLevels algorithm [103],

which reduces the number of different reconstruction amplitudes by recursively merging

those that are the least significantly different. The final smaller set of levels may be

associated with a copy number state (0, 1, 2, 3, 4, . . . ).

Other CNA/CNV detection approaches, especially those that are based on HMMs

automatically incorporate a classification into the different states of a hidden variable

associated with each probe. However, as we discussed in Section 3.1, this may not be a

good model when the number of hidden states that has been assumed does not match the

true number of underlying mean hybridization levels. This is especially likely to occur

when analyzing tumor samples that represent mixtures of cells with different copy number

state, because cancer genomes are inherently unstable and heterogeneous [31].
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3.7 GADA approach to CNA detection

We now summarize our algorithm for detecting CNA, which we call GADA, and consists

of two steps. First, we apply SBL, which will provide a set of breakpoints with a specified

initial level of sparseness controlled by the prior hyperparameter a. Then, the second

step ranks the breakpoints provided by SBL by using a BE procedure, where the critical

value T is used to establish the final degree of desired sparseness. The combination of

these two approaches provides greater accuracy and flexibility.

First, this combination provides greater accuracy because each step minimizes the

impact of the assumptions made by the other. SBL provides a better search strategy

because effective removal of breakpoints is accomplished in several EM iterations. How-

ever, the breakpoint set detected by SBL may still include some spurious breakpoints

(see Section 3.4.1). These ‘false’ breakpoints are then removed using the BE procedure

(Section 3.5). The BE approach is greedy and fast, and it benefits from starting from a

smaller set of breakpoints provided by the SBL, since fewer errors will accumulate with

a smaller set (see Appendix B).

Second, it provides greater flexibility in adjusting the final breakpoint set. Both a and

T can adjust sparseness in an equivalent way. We have shown that breakpoints obtained

with higher sparseness settings in SBL (i.e. larger a values) tend to be subsets of those

obtained with lower sparseness settings when evaluated using the same T value in BE

(see Appendix C.1). Moreover, adjusting T can be done at no additional computational

cost. Thus, SBL will be used with a small a, which gives a high initial sensitivity, and

BE adjusts the final level of FDR.
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The foreseeable usage by a practitioner of the GADA approach in detecting CNA (or

CNV) would start by analyzing a large collection of microarray samples with a small initial

a. This a can be obtained by analyzing a small subset of samples and/or chromosomes.

However, we have found by analyzing simulated and real datasets on platforms ranging

from 50K to 550K probes that a = 0.2 is small enough to give the necessary initial level

of sensitivity (see Appendix C for more information). Following analysis of samples with

SBL, the user can adjust T to obtain the final breakpoint set. A significance value α =

P (|t| > T |w = 0) can be computed if the array noise is considered normal (t ∼ N(0, 1)),

or estimated using a resampling procedure. Any of the procedures that are typically used

to control for FDR as was mentioned in Section 3.5.1 are not recommended for adjusting

T because they do not take into account the dependence structure among the breakpoints.

However, if replicate samples are available, the FDR can be estimated at a given T .

3.8 Simulation Results

3.8.1 Simulated CGH Data and evaluation metrics

The datasets used to compare the algorithms’ rates of accuracy (sensitivity and FDR) are

those proposed by [103]. To further assess these metrics in CNA occurring in genomes

with differing complexities, we generated six additional simulated datasets containing

200 genomes each with 20 chromosomes. All datasets were generated in Matlab form-

ing chromosomes of length 200 probes and sampling the CNA from the same empirical

distribution used by [103], but were categorized by the number and length of CNA (see

Table 3.2). These categories include: 1) no breakpoints, 2) only one breakpoint at any

77



position (uniformly distributed), 3-6) generated as in [103] but categorized by the number

of breakpoints and the length of the altered segments.

Table 3.2: Simulated datasets categorized on the number of breakpoints and segment
lengths

Category Number of breaks Segment lengths

1) 0 —
2) 1 Any length
3) Few (2 to 4) Large (10-150)
4) Few (2 to 4) Small (1-9)
5) Many (5 to 10) Large (10-150)
6) Many (5 to 10) Small (1-9)

All experiments consist of 200 samples with 20 chromosomes containing 200 probes. Each row represents

a set of samples with different genomic complexity.

Table 3.3 shows definitions of the accuracy metrics used in the analyses of simulated

data (sensitivity and FDR). A breakpoint is claimed to have been detected correctly only

if it is placed within a distance of δ probes from the true breakpoint. In evaluating the

performance of the algorithms, an algorithm is considered to perform better than another

if 1) the algorithm’s FDR is smaller with same sensitivity, or 2) if its sensitivity is higher

with same FDR, or 3) if it has both lower FDR and higher sensitivity. All other cases

are considered uninformative (e.g., similar FDR and sensitivity or discordant FDR and

sensitivity). For each sample in a given simulated data set, the performance (FDR and

sensitivity) of the algorithms was measured. The proportion of times that an algorithm

performed better was obtained using only the informative cases. The two-sample test

for binomial proportions (or McNemar’s test) was used then to assess differences in the

performance of the algorithms.

Concordance between algorithms was measured as |A ∩ B| / |A ∪ B| [56]; where A

and B are the breakpoint sets returned by each algorithm. Breakpoints belong to the
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intersection (i.e., are considered to be the same), if they are separated by less than δ = 2

probes.

Table 3.3: Possible outcomes for each candidate breakpoint position

Breakpoint Not detected Detected

Present FN TP
Not present TN FP

Performance metrics:
Sensitivity
or Recall = E

[
TP

FN+TP

]
FDR or

1-Precision = E
[

FP
FP+TP

]

Note: A True Positive (TP ) only occurs if the breakpoint that has been detected is within a distance

of δ probes from a true breakpoint. If there is more than one breakpoint detected within this vicinity,

only the closest one is considered TP and the remainders are False Positives (FP ). The true breakpoint

positions that are not detected are False Negatives (FN). The regions without a breakpoint where no

breakpoints have been detected are True Negatives (TN). If the array has M probes, M −1 is the number

of candidate breakpoints (i.e. M − 1 = TP+FP+TN+FN). The number of breakpoints falling in each

of these categories are random numbers obtained on each simulated sample; thus expected values can be

obtained for False Discovery Rate (FDR = 1- Precision) and Sensitivity (Recall) by taking the average

over all the simulated samples.

3.8.2 GADA approach compared to greedy search methods

In this section we compare the GADA approach to the other popular methods in Table 3.1

that could be used with our PWC formulation. Compared to GADA, most of these

existing methods are severely limited by the high collinearity/coherence between the

columns of F (see Section 3.3).

Using the performance evaluation procedure described in Section 3.8.3 [103] the

precision-recall operating curves (PROC) were generated for each approach. The sen-

sitivity and FDR for detected CNA in the simulated CGH dataset is obtained at each

operating point (Figure 3.4). SBL had the best performing PROC curve as compared to

other approaches for all given values of δ (data shown only for δ = 2).
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Figure 3.4: PROC operational curves for sensitivity vs. false discovery rate in detect-
ing real copy number changes within a δ = 2 sample precision window in the dataset
introduced by [103].

3.8.3 GADA approach compared to other CNA detection methods

We evaluated the performance of the proposed algorithm and compared the results with

other published algorithms that are publicly available; including CBS [69, 101], SWAR-

RAY [54], HMM [29], RHMM [90], PL [25], RJaCGH [85], and GLAD [46]. We employed

a simulated array-CGH dataset with known CNA positions [103], where the accuracy in

detecting breakpoints was measured in terms of sensitivity and FDR as defined in Section

3.8.1.

The performance in terms of accuracy for all the analyzed algorithms (using their

respective default parameters) is reported in Figure 3.5. Three of the methods, CBS,
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HMM, and GLAD were previously analyzed by [103] and results are identical to those

reported previously The faster new CBS [101] was also evaluated with results matching

those from the previous implementation [69]. For RJaCGH, due to the long computational

running time of the algorithm (> 1 day), the segmentation results were obtained directly

from the authors and then evaluated with the same metrics. GADA, CBS, RJaCGH and

RHMM are the most accurate algorithms in terms of both sensitivity or FDR, while the

remaining algorithms clearly show poorer accuracy in both metrics. Among these top

four algorithms, considering the times required to analyze the entire dataset, GADA (48

seconds) is fastest, followed by CBS (625 seconds), RHMM (41 minutes) and RJaCGH

(> 1 day).
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Figure 3.5: Median sensitivity and FDR for detecting known copy number changes within
a probe window of δ length (δ = 0 − 3). The results are obtained using the default
parameters settings in each algorithm (in GADA this is a = 0.2 and T=4). The median
and the interquartile range (IQR) are taken across the 500 samples.

In Figure 3.6, the parameters that control the trade-off between sensitivity and FDR

are adjusted in GADA and CBS to generate the precision versus recall operation curves
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Figure 3.6: PROC operational curves for the mean sensitivity vs. FDR in detecting real
copy number changes within a δ = 2 sample precision window in the dataset introduced
by [103] (averages taken across the 500 samples). RJaCGH and RHMM results are
obtained using the default parameter settings and provide a single point. CBS operation
points are obtained by varying the α, while GADA operating points were obtained by
varying the T parameters with the default a=0.2.

(PROC). The single operating points generated by RJaCGH and RHMM algorithms

(using their default parameters) are also shown for comparison. The results show no

significant differences in performance among these four algorithms. The GADA results

presented in this section are also not sensitive to different choices of the a parameter.

Figure C.2 shows that essentially the same results as in Figure 3.6 are obtained for a

range of a parameters. As discussed in Section 3.7, GADA is a two step procedure

controlled by two parameters a and T . Setting a higher a simply makes the PROC curve
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shorter (i.e., it starts further to the left and to the bottom) since all the breakpoints

that would be removed by BE are instead eliminated in the SBL step. It should also be

noted that RJaCGH, RHMM and PL are reported to have a better accuracy than CBS in

situations different than the ones evaluated by the employed dataset, which may include:

non-uniform probe spacing, chromosomes with a reduced number of probes, non uniform

variance, and presence of outliers. In Chapters 4 and 5 we will study the impact of some

of these situations on GADA performance, as well possible extensions to GADA in order

to handle them.

In what follows we focus on comparing GADA to CBS, the baseline algorithm that

most of the recent approaches use for comparison. The newer algorithms are not included

in this analysis as they do not show significant improvements over CBS using the standard

evaluation methods designed by [103] and have considerably slower running-times.

In Section 3.8.1 we observed that the majority of the simulated genomes by [103]

have few breakpoints with large altered regions. To further assess the performance of

GADA and CBS on genomes with complex patterns of CNA, typical of those observed in

tumors, we generated six additional simulated datasets. These data sets contained varying

complexity of CNA and were derived using the same procedure proposed by [103]. The

datasets included both ‘quiet’ genomes (0-1 breakpoint) and complex genomes involving

few or multiple breakpoints resulting in small or large CNA regions. The performances

of GADA and CBS on these six datasets are provided in Table 3.4. Both algorithms

work well for finding a small number of discontinuities within large segments, but there

is significant evidence that GADA outperforms CBS for the complex cases. However, the

magnitude of the overall differences in sensitivity and FDR between GADA and CBS is
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relatively small (< 3%), and the main advantage of our approach is in its flexibility and

computational speed when analyzing large density arrays.

Table 3.4: Sensitivity and FDR dependence on datasets of different complexity

Compl. FDR % Sensitivity % Both terms
Categ. GADA CBS (<,>) GADA CBS (>,<) (GADA,CBS) p-val.

1) 0.00 0.00 (19,54) — — — —
2) 5.00 5.00 (76,62) 95.00 95.00 (43,41) (74,52) 0.025
3) 4.04 5.61 (91,70) 95.96 97.83 (24,95) (60,69) 0.21
4) 3.85 3.48 (84,77) 80.39 77.78 (129,30) (94,34) 6E-8
5) 2.97 5.56 (162,30) 95.28 96.23 (50,92) (100,30) 4E-10
6) 2.15 2.84 (119,62) 77.23 76.07 (155,38) (114,20) 2E-16

For each of the simulated datasets of different complexity in Table 3.2 we compare the performance of

GADA and the CBS algorithms. For all the cases, the GADA algorithm is set to T = 4.0, and CBS

to α = 0.01, since this provides comparable performance points in the PROC curves, and allows to

comparison to other cases. The median sensitivity and False Discovery Rate % in breakpoint detection

within 2 probes δ = 2 are evaluated. The FDR and sensitivity of GADA and CBS are also compared

for each sample in a given dataset and the number of times where FDR and sensitivity are smaller or

larger (<,>) between the two algorithms are reported. The value pairs in parentheses are arranged so

that if the left value is higher than the right one indicates a better performance of GADA. The rightmost

column counts the number of times GADA is performing better than CBS either in terms of smaller FDR

or higher Sensitivity (a p-value is computed as described in the Section 3.8.1).

3.9 Evaluation with microarray data

3.9.1 Neuroblastoma Genomic Data from Array Platforms

Four neuroblastoma cell lines, two with known MYCN oncogene amplification (SK-N-

BE2, SMS-KAN) and two lacking MYCN amplification (LAN-6, CHLA-20) were grown

in RPMI medium with 10% FCS to confluence prior to extraction of DNA using STAT60

(Tel-Test, Inc.). The same stock of DNA was used to perform whole genome analysis

for CNA using Affymetrix SNP arrays 50K Xba, 250K Sty, and 250K Nsp and Illumina

GoldenGate 550K SNP array based on their respective protocols. The raw data obtained
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from the Affymetrix platform arrays were normalized using routines employed in Copy

Number Analysis Tool version 3.0 (www.affymetrix.com) where log2ratios of the inten-

sity of the probes are calculated after fitting a regression model generated from a normal

set of diploid samples. The Illumina platform data were normalized and summarized

using the BeadStudio Genotype analysis software and the log-R-ratio data were exported

for further analyses. Data from 60 NCI cell lines generated using Affymetrix 50K Hind

and 50K Xba [31] were also used to assess the computational speed of the algorithm

(GEO repository accession number: GSE2520).

3.9.2 Computational speed in commercial microarray platforms

We recorded the time required to analyze using GADA and CBS copy number data

generated on Affymetrix or Illumina platforms from neuroblastoma cell lines and NCI

cell lines. Results are summarized in Table 3.5. The GADA algorithm was on average

100 times faster than the latest implementation of CBS. The GADA algorithm provides

an additional advantage by identifying all breakpoints corresponding to all the operating

points of the PROC curve within the time frames shown in Table 3.5. This allows real-

time control of the final adjustment of the representation of CNA regions corresponding to

different choices of the critical value T with no additional computational time. In contrast,

in the current implementation of CBS, the entire procedure needs to be repeated in order

to obtain sets of breakpoints at different values of the α parameter.

The computational complexity of SBL has been greatly optimized by exploiting the

properties of the PWC representation as described in Section 3.4.1. The EM algorithm

converges very fast, and each EM step is solved in a linear number of operations O (M),
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Table 3.5: Average analysis time (seconds) for Affymetrix and Illumina microarrays

50K 100K 250K 500K Illumina

GADA 1.5 2.98 7.10 15.95 20.49

CBS 197.7 444.9 597.72 1262.40 2665

Average time required to analyze the data in seconds per chip (only the time spent by the detection

algorithm is counted). The 100K and the 500K columns correspond to the analysis of the combination of

the two 50K (Hind/Xba) and two 250K (Nsp/Sty) chips respectively.

resulting in an overall running time that, as confirmed in Table 3.5, increases linearly

with the array size M . In contrast, the computational complexity of CBS is composed

of two parts; i) the circular binary segmentation optimization with O
(
M2
)

operations,

and ii) the hybrid permutation test [101] that decides whether or not to proceed with

the recursive segmentation with O (MP ) operations (P is the number of permutations).

The hybrid permutation test in CBS has been improved as compared to the previous

implementation [69], which required O
(
M2P

)
operations; however, the overall complexity

is still limited by i), the circular segmentation taking O
(
M2
)

operations.

3.9.3 Comparison of neuroblastoma CNA detection using different array

platforms

The DNA from two neuroblastoma cell lines with (SK-N-BE2, SMS-KAN) and without

(CHLA-20, LAN-6) MYCN oncogene amplification were analyzed for DNA copy number

alterations. Three Affymetrix genotyping arrays (50K Xba, 250K Nsp, 250K Sty) and

Illumina’s humanhap550 genotyping beadchip were used to generate the copy number

data. A total of 105 breakpoints were identified for at least two of the platforms using

the SBL algorithm and were used for further analysis ( Tables 3.7, 3.8 and 3.6). Figure 3.7
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shows graphical output of the algorithm on representative chromosomes where significant

CNA are known to be associated with neuroblastoma.

Of the 105 breakpoints identified, 68 (65%) were identified on all platforms using

GADA (Tables 3.7 and 3.8). The lowest density platform Xba, detected 78 (75%) of the

105 breakpoints, while the highest density platforms detected all (100%) the breakpoints.

The detected alterations include the correct identification of the MYCN oncogene in the

two cell lines with known MYCN amplification status and other common alterations

found in neuroblastoma genome: loss of proximal region of 1p, gain of 17q, loss of distal

region of 11q. Although the SK-N-BE2 showed copy number of two for chromosome 1p

(Figure 3.7), genotype information revealed loss of heterozygosity (LOH) in this region

(i.e. uniparental disomy - data not shown) with gain of 1q not reflecting any significant

change in the rate of heterozygosity. There was also no gain of 17q in this cell line but

there was loss of 17p and LOH for this region. Finally, we compared GADA and CBS

detection performance in this real data set. The concordance rate between GADA and

CBS for breakpoints that were detected by at least two platforms was 93% (Array specific

concordances: Xba 97%, Nsp 90%, Sty 98%, Nsp+Sty 90%, Illumina 95%). There was

also no significant difference between CBS and GADA in the distribution of distances for

concordant breakpoints identified across the array platforms (Table 3.10).

3.10 Conclusions

We have introduced a new representation for genome copy number data and methodolo-

gies to detect CNA. The proposed PWC representation provides very useful properties
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such as sparseness, embeddedness, and computational efficiency. This representation was

exploited using a novel combination of two algorithms. The first one is based on sparse

Bayesian learning (SBL), and the second one is a stepwise backward elimination (BE)

procedure. Combination of these approaches results in an accurate and fast methodology,

which we call GADA, to detect CNA. To the best of our knowledge, this is the first report

that applies SBL to detect copy number changes or to estimate PWC representations in

any application.

In simulated datasets, the GADA approach obtained the best performance in accu-

rately detecting CNA when compared to other approaches. We have also demonstrated

its applicability to two different commercial microarray platforms (Affymetrix and Illu-

mina). The fast computational speeds obtained in analyzing these large arrays should

allow further development of our algorithm in analyzing large cohorts of samples.

Although inclusion of allele specific copy number data has not been addressed in this

work, the Bayesian framework in our algorithm could be extended to include the genotype

data to improve placement of breakpoint positions. The genotype data and population

heterozygosity frequencies could be used to jointly estimate loss of heterozygosity and

allele specific copy number alterations. The advantage of such an approach is evident in

our analyzed data of tumor cell lines with copy neutral LOH of chromosome 1p.

The performance of the proposed GADA approach has been studied and evaluated

assuming that hybridization noise is additive white Gaussian [103]. However, real mi-

croarray probe hybridization intensities may be affected by a wide range of platform

specific effects like regional trends, non-uniform variance and outliers. Normalization of

the microarray probe intensities can correct or minimize the impact of some of these
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effects in a pre-processing step to ensure that the data follows closely the model. Ad-

ditionally, there exist several statistical tests (e.g. White test, Breusch-Pagan test or

Kolmogorov-Smirnov) that could be performed on the residuals of the resulting segmen-

tations to check for presence of the effects ignored by the model. Chapter 5 will evaluate

the impact on the accuracy of GADA based on these different possible departures from

the assumed model, and consider how these departures could be included in the Bayesian

approach described here.
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Figure 3.7: Inferred copy numbers from neuroblastoma cell-lines SK-N-BE2, SMS-KAN,
LAN-6 and CHLA-20. Cell-lines were analyzed using Affymetrix’s genotyping arrays 50K
Xba, 250K Nsp and 250K Sty and Illumina’s humanhap550 genotyping beadchip. The
output of our software GADA(SBL) used the critical value of T = 4.8 and is compared
to DNAcopy (CBS) with α = 0.01. T was adjusted to the point where an increase on
T removed concordant CNA between samples and platforms, and a decrease on T did
not provide additional concordant CNA regions. Blue color tones indicate loss of genetic
material, and red color tones amplification
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Table 3.6: Significant copy number alterations found in four neuroblastoma cell lines

Chr. SK-N-BE2 SMS-KAN LAN-6 CHLA-20

1: –(pEnd–
p13.3)

–(pEnd–
p36.12)

+(p21.3–
qEnd)

+(p21.1–
qEnd)

+(p21.1–
qEnd)

2: +(pEnd–p21) +(pEnd–
p24.1)

+(pEnd–
p22.1)

++(pEnd–
p16.1)

++p24.3
MYCN

++p24.3
MYCN

+(p16.1–
q31.1)

++p24.1 +q35
–q22.1
–q23.3 +(q32.2–

q37.2)
3: –(pEnd–

p14.2)
–(pEnd–
p14.3)

+(p12.1–
p11.1)

4: –(p16.1–
p15.33)

–(q12–q22.1) –p24 KLHL5

–q22.3 +(q35.1–
q35.2)

+(q34.1–
qEnd)

5: –(q35.3–qEnd) +q11.2
6: –(q12–p16.3)

–(q22.31–
qEnd)
– – q26
PARK

7: +(pEnd–
p15.1)
–q21.1 AHR +7
–(p14.3–
q11.21)
–(p11.21–
q11.22)

–q33 SEC8L1

8: –(pEnd–p12)
–(q22.1–
q23.3)

+q21.3

– –q24.23 +(q22.2–
q24.1)

9: –p24.2 GLIS3

–(p23–p21.2)
– –
p21.3MTAP

–p13.3RECK

10: +(pEnd–
p11.23)
–q22.3 PT-

PRE

11: +(q13.1–
qEnd)

–(q14.2–
q23.3)

+(q13.4–q25) –q14.1

– –(q25–qEnd) +q22.1
CNTN5

12: +(q23.3–
q24.33)

+12

++ q24.33
13: –q31.1
14: –(q23.2–qEnd)

+0(q31.3)
TTC8

15:
16: +16q +(pEnd–

p13.3) LEP

17: – –p11.2
EPN2

-(pEnd–q11.2) -(pEnd–q11.2) +17
+(q21.2-
qEnd)

18: -18 +(p11.23-
qEnd)

19: –(q13.2–
q13.33)

+19p

20: -p13
21:
22:
X: X XX X XX

Table listing the most significant copy number alterations T = 5, that have been found on at least two of

the platforms (Xba,Nsp,Sty,Nsp+Sty) being analyzed.
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Table 3.7: Copy number breakpoints found on all platforms (SK-N-BE2 and SMS-KAN)

Cell-line Chr & GADA Position [BP] CBS Position [BP]
name Cytoband Xba Nsp Sty Nsp+Sty Illumina Xba Nsp Sty Nsp+Sty Illumina

SK-N-BE2 1p21.3 97045920 96895983 97183094 96895983 96808701 96602215 96564172 95918556 96486927 96808701
SK-N-BE2 2p24.3 15977810 15978001 15977810 15978001 15979864 15977810 15978001 15977810 15978001 15979864
SK-N-BE2 2p24.3 16419609 16453092 16462002 16462002 16463522 16419609 16453092 16462002 16462002 16465097
SK-N-BE2 2p21 48447814 47722197 48071628 47629563 47840828 48447814 47728339 48071628 47738916 47840828
SK-N-BE2 3p14.2 61381385 61301823 61423021 61159361 61312730 61227509 61301823 61137444 61241447 61312730
SK-N-BE2 8q24.23 137748993 137757306 137735555 137747078 137747933 137748993 137746403 137735555 137746403 137747933
SK-N-BE2 8q24.23 137892295 137955330 137924208 137924208 137919630 137892295 137931617 137924208 137931617 137919630
SK-N-BE2 11q13.1 64310154 64977325 65339642 65010150 65335248 64310154 64977325 65339642 65339642 65193464
SK-N-BE2 17q11.2 28109086 28263828 28164827 28283675 28247634 28109086 28263828 28164827 28266739 28214976
SK-N-BE2 20p13 2406160 2773972 3036010 3036010 2987115 2406160 2773972 3036010 3036010 2987115
SMS-KAN 1p13.3 108157301 107888773 108203626 108218567 108177825 108157301 108208349 108186644 108178227 108177825
SMS-KAN 2p24.3 15721907 15868241 15853157 15868241 15869663 15721907 15868241 15853157 15868241 15869663
SMS-KAN 2p24.3 16419609 16576876 16551640 16576876 16578889 16419609 16576876 16551640 16576876 16578889
SMS-KAN 2p24.1 21887032 21974989 22013932 22013932 21992435 21887032 21974989 22013932 22013932 21992435
SMS-KAN 2p24.1 22466771 22475341 22470539 22475341 22475673 22466771 22475341 22470539 22475341 22475673
SMS-KAN 3p12.1 83843045 84210511 84386931 83873910 84165323 85157384 84137907 84386931 83960187 84165323
SMS-KAN 3p11.1 88163152 90346746 97369003 90346746 90472437 88163152 90346746 96620438 90346746 90472437
SMS-KAN 4q12 55018889 55049094 55058835 55049094 55040244 55152302 55049094 55056941 55049094 55040244
SMS-KAN 4q22.2 94894653 94792613 94948871 94957181 94937901 94894653 94833508 94919018 94872717 94940338
SMS-KAN 10p11.23 30297356 30435753 30721148 30685964 30559838 30297356 30552253 30721148 30721148 30551022
SMS-KAN 10q26.2 129582283 129682011 129741611 129741611 129689191 129582283 129686948 129693110 129689191
SMS-KAN 10q26.2 130102560 130079710 130148252 130148252 130172807 130095140 130168048 130148252 130172807
SMS-KAN 11q14.2 85287454 85435237 85383124 85383124 85381622 85287454 85367689 85383124 85383124 85381622
SMS-KAN 11q23.3 117735474 117791205 118235879 118235879 117802601 117735474 117791205 117823148 117823148 117802601
SMS-KAN 19q13.2 45796700 45571967 45879279 45879279 45910451 45796700 45571967 45879279 45879279 45910451
SMS-KAN 19q13.33 57641156 57395071 57400799 57395071 57374324 57641156 57395071 57322747 57395071 57374324

Table listing the locations for the copy number breakpoints detected by GADA and CBS on the neuroblastoma cell-lines SK-N-BE2 and SMS-KAN that

have also been found on all array platforms (Xba, Nsp, Sty, Nsp+Sty, Illumina).
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Table 3.8: Copy number breakpoints found on all platforms (LAN-6, CHLA-20)

Cell-line Chr & GADA Position [BP] CBS Position [BP]
name Cytoband Xba Nsp Sty Nsp+Sty Illumina Xba Nsp Sty Nsp+Sty Illumina

LAN-6 1p36.33 21940846 22438012 22476248 22476248 22480144 22445846 22438012 22476248 22476248 22480144
LAN-6 1q21.1 142661525 143607676 143798352 143887291 144106312 142661525 143607676 143798352 143798352 144106312
LAN-6 2p22.1 42656869 41405461 33909326 41340562 41358977 42656869 41405461 41335143 41340562 41358977
LAN-6 2q36 218185198 218577787 218754682 218756027 218628755 218395997 218577787 218754682 218754682 218628755
LAN-6 2q36 220406369 220398375 220629809 220629809 220449867 220406369 220534849 220475305 220480390 220449867
LAN-6 3p14.3 57324905 57032227 57238434 57238434 57215650 57324905 57032227 57238434 57238434 57215650
LAN-6 6q12 68022441 68353881 68154792 68095015 68197504 68022441 68095015 67263660 68095015 68197504
LAN-6 6p16.3 106344198 105090334 105177437 105110313 105135994 105275051 105090334 105110313 105110313 105112419
LAN-6 6q22.31 123295546 123710384 123731764 123710384 123710826 123295546 123710384 123605395 123710384 123710826
LAN-6 7p15.1 27784099 24892359 24256367 24892359 24919337 27784099 31129325 25064458 24892359 24919337
LAN-6 7p14.3 31126902 31129325 31135758 31135758 31145274 31126902 31129325 31135758 31135758 31145274
LAN-6 7q11.21 62171000 62343621 63050316 63050316 62336389 62171000 62910986 62283233 62934268 62336389
LAN-6 7q11.21 63993279 63940919 63137057 63940919 63963370 63993279 63940919 65748163 63940919 63963370
LAN-6 7q11.22 69847573 69835520 68907809 69835520 69831960 69738283 69835520 69807385 69835520 69831960
LAN-6 8p12 39331612 37835460 37192319 38093651 37869447 37458281 37835460 38093651 38093651 37869447
LAN-6 8q22.1 93948610 95445117 95274323 95445117 95414304 96630283 95445117 95372632 93495648 95414304
LAN-6 8q23.3 116469762 116142633 116478611 116140376 116480735 116519714 116472717 116471437 116472717 116480735
LAN-6 9p24.2 3394434 3579281 3316679 3579281 3585674 3394434 3579281 3316679 3579281 3585674
LAN-6 9p24.2 4947650 4635935 4685068 4648449 4647040 4947650 4630212 4624827 4624827 4647040
LAN-6 9p23 12741741 12643846 13524659 12649691 12706172 12741741 12643846 12164190 12754534 12716962
LAN-6 9p21.3 21451790 21460464 21460997 21460997 21468318 21451790 21460464 21460997 21460997 21484643
LAN-6 9p21.3 22185820 22158464 22197037 22197037 22197037 22404973 22158464 22197037 22197037 22197037
LAN-6 9p21.2 28417657 28860162 28929272 28820009 28857478 28765609 28853202 28742971 28820009 28844830
LAN-6 11q13.4 71592372 71549242 71591974 71591974 71607855 71592372 71549242 71591974 71591974 71634231
LAN-6 12q23.3 105993065 106086197 106095939 106095939 106074551 105993065 106086197 106232150 106095939 106074551
LAN-6 14q23.1 60468351 60341891 60393691 60343301 60386017 60468351 60436455 60393691 60393691 60386017
LAN-6 17q11.2 25755541 24749129 24833230 24836351 24865310 25755541 24836351 24833230 24836351 24865310
LAN-6 17q21.2 36391251 35264341 36690164 35852756 35294289 36095487 35264341 36556209 36393487 35294289
LAN-6 17q22 50618719 51862430 51475956 51862430 51856911 50618719 51862430 51475956 51862430 51855630
CHLA-20 1q21.1 120089986 143607676 120928505 143887291 143328536 142661525 142756696 143798352 143657867 14802010
CHLA-20 2p16.1 68885099 57662314 55736176 57577846 57662175 57629406 57662314 58097954 57625311 57583694
CHLA-20 2q31.1 174726584 174705263 174793287 174717018 174730921 174726584 174705263 174717018 174717018 174730921
CHLA-20 2q32.2 178651035 178581699 179377095 178574520 178576047 178214924 178574520 179028748 178574520 178576047
CHLA-20 4p16.1 5722378 5842107 5913372 5842107 5844271 5722378 5842107 5913372 5842107 5842107
CHLA-20 4p15.33 12551237 12300938 12392275 12321237 12316278 12551237 12300938 12391799 12321237 12300938
CHLA-20 4q34.1 175185953 174895669 175097390 174895669 174897540 175185953 174895669 174890618 174895669 174895669
CHLA-20 8q21.3 87234127 87640754 87583206 87583206 87594384 87858742 87640368 87583206 87583206 87594384
CHLA-20 8q21.3 90473708 90386811 90407394 90407394 90366715 90138115 90372039 90407394 90376886 90366715
CHLA-20 8q22.2 100574413 99817691 99940387 99940387 99638911 99803560 99817691 99940387 99940387 99638911
CHLA-20 8q24.1 127917518 128903451 128922998 128922998 128913903 127917518 128903451 128922998 128922998 128913903
CHLA-20 18p11.23 8617957 8510927 8200848 8510927 8392640 8617957 8393289 8309751 8448484 8392640
CHLA-20 19q12 33171613 32761177 23876259 32690406 24095263 33171613 32761177 24165666 32690406 24053526

Table listing the locations for the copy number breakpoints detected by GADA and CBS on the neuroblastoma cell-lines LAN-6, CHLA-20 that have

also been found on all array platforms (Xba, Nsp, Sty, Nsp+Sty, Illumina).
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Table 3.9: Additional copy number breakpoints found by at least two platforms

Cell-line Chr & GADA Position [BP] CBS Position [BP]
name Cytoband Xba Nsp Sty Nsp+Sty Illumina Xba Nsp Sty Nsp+Sty Illumina

SMS-KAN 2q22.1 141962960 142006622 142006622 141996840 141962960 141991258 141991258 141996840
SMS-KAN 2q22.1 142284086 142419855 142419855 142418322 142284086 142419855 142386408 142418322
SMS-KAN 2q23.3 152928225 152959722 152945591 152947104 152928225 152959722
SMS-KAN 2q23.3 153172826 153233532 153356905 153182040 153172826 153231102
SMS-KAN 4q22.3 98081595 97971534 97971534 97946136 98081595 97971534 97971534 97946136
SMS-KAN 4q22.3 98389453 98794422 98492192 98515047 98389453 98489669 98489669 98515047
LAN-6 4q35.1 187001741 187043679 187043679 187037031 187001741 187248120 186997226 187037031
LAN-6 4q35.2 189693227 189400592 189537964 189715209 189693227 189400592 189693227 189715209
LAN-6 5q35.3 178389593 178435944 178439675 178388353 178389593 178435944 178439675 178388353
LAN-6 6q26 162768919 162672040 162783990 162769931 162768919 162770133 162770133 162769931
LAN-6 6q26 163042210 162863051 163042210 163069487 163073363 162948280 163042210 163069487
LAN-6 7p21.1 17042942 17048506 17048506 17079506 17079506
LAN-6 7p21.1 17194089 17293268 17293268 17187461 17194647
LAN-6 9p13.3 35932406 35934224 35923323 35923323
LAN-6 9p13.3 36095264 36117196 36036596 36036596
LAN-6 11q25 134393784 134408260 134410991 134410991
LAN-6 12q24.32 125117158 125475975 125319087 125257058 124609076 125131448 125319087
LAN-6 12q24.33 127723245 127722879 127723245 127723245 127723245 127835197 127723245 127723245
LAN-6 13q31.1 82988642 82996585 82996585
LAN-6 13q31.1 83045936 83063672 83055928
LAN-6 14q31.3 88300117 88381272 88443831 88310402 88300117 88381272 88443831
LAN-6 14q31.3 88499809 88623396 88625132 88647502 88499809 88623396 88634883
LAN-6 16p13.3 5755300 5775884 5775884 5679682 5669239 5775884 5802165 6023611
LAN-6 16q23.3 82340991 82342624 82374996 86364648 82340991 82342624 82502789
LAN-6 17 19109505 19117656 19120783 19117656 19120783
LAN-6 17 19175068 19175068 19145456 19175068 19145456
CHLA-20 2q37.2 236702079 236768287 236768287 236738515 236702079 236844697 236768287 236765691
CHLA-20 4p14 38741486 38741486 38758076 38741486 38741486 38752396
CHLA-20 4p14 38996761 38996761 39068335 38996761 38996761 39006763
CHLA-20 5q11.2 50870182 50824363 50850389 50824363 50824363 50850389
CHLA-20 5q11.2 51529692 51532772 51532772 51529692 51532772 51532772
CHLA-20 7q33 132875721 132875721 132884795 132875721 132875721 132875949
CHLA-20 7q33 133004505 133004505 132996066 133004505 133004505 132996066
CHLA-20 11q14.1 78683236 78694008 78694008 78691521 78694008 78694008 78691521
CHLA-20 11q14.1 78805883 78801531 78801531 78814667 78801531 78801531 78818346
CHLA-20 11q22.1 99371373 99366936 99366936 99378927 99371373 99240362 99366485 99378927
CHLA-20 11q22.1 100243669 100322922 100322922 100299086 100243669 100319819 100322922 100299086

Table listing the locations for the copy number breakpoints detected by GADA and CBS on the four neuroblastoma cell-lines (SK-N-BE2, SMS-KAN,

LAN-6, CHLA-20) that have also been found on at two of the array platforms analyzed (Xba, Nsp, Sty, Nsp+Sty, Illumina).

94



Table 3.10: Differences in copy number breakpoint placing between chips

MAD [BP] K-S p-value
Chips compared # cases GADA CBS GADA larger CBS larger

i) min (|Xba− Sty| , |Xba−Nsp|):
59 95670 93132 0.54 0.76

ii) |Nsp− Sty|:
61 88024 71265 0.35 1.0

iii) |(Nsp&Sty)− Illumina|:
91 22784 21388 0.58 0.95

For the confirmed breakpoints and excluding those near the centromere, we computed the median absolute

difference in breakpoint location between chips (units in base pairs [BP]), and the p-value associated

with the Kolmogorov-Smirnoff test for the hypothesis that differences are stochastically larger (i.e. less

accurate) in one algorithm vs. the other. The chips compared are: i) the Xba to the Sty and Nsp

separately, ii) the Nsp to Sty chips, and iii) the combined Nsp and Sty chips to the Illumina chips. No

significant changes in accuracy have been found between chips of similar size on number of probes.
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Chapter 4

Bayesian detection of recurrent copy number alterations

across multiple array samples

Copy number changes (CNAs or CNVs) affecting small portions of chromosomes are

difficult to identify. Advances in microarray technology now allow very high resolution

scans of large cohorts of samples but at the price of severe noise degradation. Our

proposed genome alteration detection algorithm (GADA) has been shown to be a highly

accurate and efficient approach to analyze a single array sample. In this chapter, the

sparse Bayesian learning (SBL) used in GADA is extended to model CNA on multiple

samples that share breakpoint positions but may have different magnitude of alteration1.

Our model is especially well suited to analyze sample replicates, i.e., multiple arrays

from the same specimen. Our results show that replicates greatly improve the accuracy

and robustness in detection. In some cases, a single replicate sample offers an accuracy

equivalent to a 2-fold increase in the signal to noise ratio, while reducing by up to a 50%

the detection of false CNA caused by outliers. The computational cost of the algorithm

is essentially linear, O(NM), in the number of microarray probes, M , and samples, N .

1Parts of this work has been presented in [74]
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In conclusion, the multiple sample GADA (N-GADA) presented here appears to be a

promising tool for finely locating small CNAs that are shared across multiple samples.

4.1 Introduction

Recent advances in the microarray technology enabling high resolution genomic scans of

large cohort of individuals have revealed presence of short copy number variation CNVs

that are repeated across normal genomes (i.e., polymorphic CNAs) [82] constituting a

completely new source of unstudied natural genetic variation. Small alterations are the

most difficult to detect and the ones most likely to lead to false detections because of

severe noise degradation. A joint analysis of many samples would undoubtedly increase

the performance in detecting small CNAs, but nearly all currently available algorithms

only analyze one sample at a time.

In Chapter3 (see also [75,79]) we developed a copy number detection approach called

GADA (genome alteration detection algorithm) that achieved excellent performance in

single-sample CNA detection. Compared to other state-of-the-art methods, using stan-

dard evaluation datasets and benchmarks [103], GADA obtained the highest accuracy

and was at least 100 times faster. GADA is based on a compact linear algebra rep-

resentation of the array probe intensities as a piece-wise constant (PWC) vector and

makes use of a two step detection approach. In the first step, sparse Bayesian learning

(SBL [97,104]) identifies all potentially interesting breakpoints that delimitate the CNA.

The second step uses a backward elimination (BE) procedure to statistically rank the

identified breakpoints, allowing a flexible control of the false discovery rate (FDR).
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In this chapter we extend GADA to detect CNA across multiple samples (N-GADA).

The method is especially suited to detect CNAs from sample replicates, since the un-

derlying breakpoint locations should be the same, but the mean magnitude of the array

probe measurements may be different. These differences may be due to sample contam-

ination, different initial DNA concentrations, or other uncontrolled effects that cannot

be corrected. Compared to the large number of algorithms proposed for single-sample

CNA analysis, there are very few approaches dealing with the multiple sample prob-

lem [17, 60, 84, 89]. Two of them [17, 84] are post-processing techniques to refine the

results obtained by a given single-sample algorithm and do not propose a joint model.

The other two approaches [60, 89] propose models that only encourage overlap among

CNAs across samples. In contrast, our approach is unique in the sense that it encourages

recurrent breakpoint positions.

More precisely, the SBL hierarchical prior is modified in this chapter to encourage the

selection of breakpoints delimiting CNA at exactly the same positions across the samples

under analysis. We hypothesize that this may be a more powerful model when there is

underlying evidence that the alterations start and end at recurrent positions, as is the

case for sample replicates and possibly for CNA polymorphisms. In order to evaluate N-

GADA we used simulation and real datasets of pairs of replicate samples with the same

underlying copy number profile. The results of the new approach show that replicates

greatly improve the accuracy and robustness of detection while maintaining a very good

computational efficiency.
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This chapter is structured as follows. The extended N-GADA approach and its imple-

mentation are presented in Section 4.2. Section 4.3 is devoted to presenting the results,

and conclusions are discussed in Section 4.4.

4.2 N-GADA for multiple samples with shared breakpoints

In this section we extend the GADA approach so that it can handle multiple samples.

First, we extend the SBL hierarchical prior to model sparse breakpoints occurring at

similar locations across multiple samples. Then, we describe how to efficiently fit the

resulting model using a expectation maximization (EM) procedure [66]. Finally, we detail

the new multiple sample implementation of the BE procedure to control for the false

discovery rate (FDR).

4.2.1 Sparse Bayesian Learning for multiple samples with shared breakpoints

As was shown in Section 3.4, the CNA detection can be formulated using SBL as the

problem of finding the maximum a posteriori (MAP) estimate:

ŵMAP = arg max
w

p (w|y) = arg max
w

p (y|w) p (w)

= arg min
w
− log p (y|w)− log p (w) (4.1)

where the observation model p (y|w) specifies a goodness of fit measure and the prior

distribution for the weights p (w) specifies the sparseness constraints. Here, we extend

our previously proposed model in Section 3.4 to multiple samples. Assuming that the
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noise is normal and independent across probes m and samples n, for a given underlying

CNA profile for each sample, xn = Fwn, the observation model would be:

p
(
y1, . . . ,yN |w1, . . . ,wN

)
=

N∏

n=1

N
(
Fwn, σ2

nI
)

(4.2)

and the prior distribution for the weights is specified as a hierarchical prior:

p
(
w1, . . . ,wN |α

)
=

N∏

n=1

M−1∏

m=1

N
(
wn

m|0, α−1
m

)
(4.3)

where α is a vector of hyperparameters that are distributed according to a gamma dis-

tribution:

p (α) =
M−1∏

m=1

Γ (αm|a, b). (4.4)

Notice that here the α hyperparameters are shared across multiple samples. This is

in contrast to the application of SBL in 1-GADA, which implies that a different set of a

hyperparameters is used for each sample. The role of the hyperparameter αm is to control

the likelihood of the presence of a breakpoint at a particular position of the genome but

without imposing any restriction on the actual magnitude of the breakpoint wn
m and its

corresponding CNA.

The mathematical procedures to fit this multiple sample model and to infer the CNA

breakpoints are basically the same as in 1-GADA (Chapter 3). We also use the EM algo-

rithm, exploiting the conjugacy properties between the gamma and normal distributions,

as well as the properties of our PWC representation (i.e., the matrix structure for F ).
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The E-step is the same as before but repeated for each of the samples; i.e., finding the

posterior distribution given the hyperparameters and the observation:

p
(
wn|yn, α, σ2

n

)
= N (wn|µn,Σn) (4.5)

Σn =
(
σ−2

n F tF + diag(α)
)−1

(4.6)

µn = σ−2
n ΣnF tyn (4.7)

The M-step, on the other hand, takes all the samples into account in computing the

α hyperparameters:

α̂m =
2a + N

∑

n

(

Σn
mm + (µn

m)2
)

+ 2b
(4.8)

The EM algorithm requires very few iterations to converge in our experiments; and

all required operations in each iteration can be performed in a linear number of steps

O (NM). This is clear for the M-step, and we already demonstrated in Chapter 3 that

the operations required to compute µ (4.7) and the diagonal of Σ (4.6) is O(M) for each

sample, since we can exploit the fact that (F tF )−1 is a tridiagonal matrix.

4.2.2 Backward Elimination for multiple samples with shared breakpoints

In Chapter 3 the statistical significances of breakpoints returned by SBL were ranked

by a simple BE procedure using a standard linear regression model. Here, this is done

within the SBL algorithm but taking into account the statistical evidence observed across

multiple samples. For a single sample, both approaches are essentially equivalent; but
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the new approach can exploit better the information gathered by SBL about the multiple

samples (i.e., the α hyper-parameters). In this new BE procedure, after the SBL has

converged for the first time to a set of breakpoints with high sensitivity, each breakpoint

is statistically scored as

tm =

√
∑

n

µn
m

2

Σn
mm

(4.9)

The squared of this score can be seen as the sum across the individual squared scores

(Section 3.5) for each individual sample, n, at position m. Using Appendix B the t2m score

also represents the total increase in the residual sum of squares (RSS) after removing

breakpoint m of all samples. The lowest scoring breakpoint is recursively eliminated

from the model by setting wm = 0 and repeating the EM algorithm described in Section

4.2.1. Eliminating the lowest tm increases the sparseness by removing the breakpoint that

minimally increases the RSS, i.e, more likely to be a false positive (noise). Repeating the

EM to re-estimate the hyperparameters αm seems to lead to better results with the model

proposed in this chapter because the αm are shared across samples while it does not make

a difference when the αm are different across samples (Chapters 3 and 5). Finally, as in

Section 3.5, the sensitivity vs. FDR trade-off is controlled by stopping the BE procedure

when all the remaining breakpoints have a score higher than a critical value T .

4.3 Results

In this section we evaluate the proposed N-GADA algorithm for the case where N = 2

replicates are available, but results extend to other N. We employed the same artificial

102



dataset it is used in Section 3.8.1, which consists of 500 samples of 20 chromosomes with

100 probes where the underlying CNA are known and the noise is i.i.d. Gaussian. We

generated the sample replicates using the same ground truth but with an independent new

noise realization ǫ ∼ N (0, σ2I), with uniformly distributed noise power σ ∼ U(0.1, 0.2)

and tissue mixture p ∼ U(0.3, 0.7) parameters. These kind of simulations [103] may not

reflect all possible scenarios, but constitute the most widely used method for quantitative

evaluation.

These 2×500 samples are used to compare the performance of N-GADA to two other

alternatives (Figure 4.1). The algorithms that combine both samples, i.e., 2-GADA and

naive averaging, greatly improve the accuracy in breakpoint detection in comparison to

the case in which no replicates are available (1-GADA). Roughly, a sample replicate would

be equivalent to a two fold increase of the signal to noise ratio of a single sample. The

results obtained by naive averaging are slightly worse than those of the 2-GADA approach;

because the former assumes that breakpoints and segment reconstruction levels are the

same while in the latter only the breakpoints are the same. On this simulation dataset,

the reconstruction levels for each sample in the pair change depending on the tissue

mixture parameter p.

In order to further assess the performance in terms of robustness, we randomly in-

troduced single probe outliers (extreme values) in only one of the samples in each pair

in a simulation dataset. Ideally, we would like to avoid false detections that are only

supported by one of the samples. The single-sample algorithm and the one based on

sample averaging cannot distinguish these outliers and nearly all of them will cause false
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Figure 4.1: PROC operational curves for the mean sensitivity vs. FDR in detecting real
copy number changes at their exact location. Black curve consist of applying 1-GADA
to each of the two samples independently. Red curve combines the two samples by a
weighted average into a single sample which is analyzed by 1-GADA. Blue curve is the
proposed M-GADA approach. The benchmark metrics sensitivity and FDR are the same
as originally defined in [103] in terms of CNA breakpoint detection.

detection. On the other hand, 2-GADA reduces false detection caused by these outliers

by about 50%.

Our results on real data are also in accordance to the findings obtained using simu-

lation data. Figure 4.2 shows a visual representation of some of the CNA detected on 3

different FDR operating points (T settings) for a pair of replicate samples (S1, S2) ana-

lyzed with Affymetrix 500K platform. The CNA found are very short segments because

the samples are from a healthy human subject (NA01416). We can observe the higher
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sensitivity of the 2-GADA approach on the deletion on q35; the CNA is retained for a

higher significance setting T = 7 while it is removed on the single-sample approaches.

This higher sensitivity can also be achieved by the sample averaging procedure, but this

naive combination may cause more spurious false CNA (see 3rd column, T = 4). On

the other hand, the 2-GADA approach is more robust since it retains the information

of the origin of each observation. This can also be seen on an S2 outlier in q21.13

T = 5; 2-GADA eliminates this false alteration since it is not supported on S1, one of

the two samples, while in naive averaging this outlier causes a false detection. In terms

of computational speed, the 2-GADA approach performance is very competitive, with

computational complexity linear in the number of probes M and samples N .

4.4 Conclusions

This chapter presents a novel approach N-GADA to solve the problem of finding CNA

with breakpoints at recurrent positions across multiple samples. N-GADA extends the

single-sample algorithm GADA presented in Chapter 3 using a Bayes hierarchical prior

for the breakpoints that is shared across all the samples. Simulation and real data results

show that the proposed approach achieves a higher accuracy and robustness to outliers

when sample replicates are available. The resulting approach retains a linear complexity

in the number of samples and probes. Thus, the approach can be considered a promising

tool to discover small alterations that are recurrent across many samples.

In this chapter, the noise is considered independent across samples, but microarrays

can also share a significant amount of noisy artifacts across samples. These array artifacts
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would look similar to true recurrent CNV if not corrected. Chapter 5 will propose a

method for correcting shared artifacts if multiple samples are available. This new method

can be used in combination with the shared breakpoint method proposed in this chapter.

106



Figure 4.2: Visual representation of the detected CNA using different algorithms and
settings (columns) on two replicates (S1 and S2) of a normal human sample (NA01416)
analyzed using Affymetrix 500K (Nsp) platform. Columns are divided into three sections,
each representing a different threshold T used for CNA detection. In each group, the first
two columns correspond to the independent analysis of S1 and S2 using 1-GADA, the
third column is the result of applying 1-GADA to the S1 and S2 weighted average, and
the last two columns in each group (4th and 5th) are the outputs corresponding to S1 and
S2 resulting of the 2-GADA joint analysis. For each claimed CNA, red tones represent
amplification and blue tones loss of genetic material.
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Chapter 5

Joint estimation of copy number variation and reference

intensities on multiple DNA arrays using GADA

The complexity of a large number of recently discovered copy number polymorphisms

is much higher than initially thought, thus making it more difficult to detect them in

the presence of significant measurement noise. In this scenario, separate normalization

and segmentation is prone to lead to many false detections of changes in copy number.

New approaches capable of jointly modeling the copy number and the non-copy number

(noise) hybridization effects across multiple samples will potentially lead to more accurate

results. In this chapter, the genome alteration detection analysis (GADA) approach intro-

duced previously is extended to a multiple sample model. The copy number component

is independent for each sample and uses a sparse Bayesian prior, while the reference hy-

bridization level is not necessarily sparse but identical on all samples. The EM algorithm

used to fit the model iteratively determines whether the observed hybridization levels

are more likely due to a copy number variation or to a shared hybridization bias. The

new proposed approach is compared to the currently used strategy of separate normaliza-

tion followed by independent segmentation of each array. Real microarray data obtained
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from HapMap samples are randomly partitioned to create different reference sets. Using

the new approach, copy number and reference intensity estimates are significantly less

variable if the reference set changes; and a higher consistency on copy numbers detected

within HapMap family trios is obtained. Finally, the running time to fit the model grows

only linearly in the number samples and probes.

5.1 Introduction

The DNA copy number alterations (CNAs) introduced in Chapter 3 focused mainly the

relatively large chromosomal aberrations that are commonly seen in cancer tumor cells.

In recent years, when the resolution of DNA microarrays increased, it become apparent

that changes in DNA copy number were also widespread across normal genomes. This

natural DNA copy number variation (CNV) can be seen in many places across the genome

of healthy individuals but the altered DNA segments are much shorter in size compared

to those generally seen in cancer (CNAs) [26–28, 47, 82]. In this chapter we will extend

the results of Chapter 3 to the detection of copy number variations (CNVs).

Currently, some known CNV regions (CNVRs) catalogued in the database of genome

variants (DGV) [47] tend to be large and not very clearly delimitated regions and also

miss smaller CNV (∼10Kbases) due to the lower resolution of the technologies used in the

past [65,72]. Moreover, the copy number structure of some of the most highly polymorphic

regions has a much higher complexity than initially thought [72]. In order to understand

the role of CNVs as a genetic determinant we still require a better characterization and

109



delimitation of these polymorphisms along the entire genome using higher resolution

arrays and more accurate detection algorithms.

There are several array platforms that can be used to measure CNV. In this work, we

focus on the latest high density array platforms that use millions of short oligonucleotide

probes distributed along the genome. The high resolution of these arrays is particularly

well suited to detect new short CNVs and more accurately delimitate the position and

structure of known CNVs. Additionally, some of these probes are also used to target

the possible allelic variants of a single nucleotide polymorphism (SNP), making it possi-

ble to obtain with the same experiment the SNP and CNV genetic profile of a sample.

Commercially available platforms with these characteristics include Affymetrix SNP 6.0

and Illumina Human 1M microarrays. The basic premise for copy number detection is

that the hybridization intensities of probes falling under a CNV region will have higher

(or lower) values than those expected on a non copy number variant (non-CNV) region.

However, probe hybridization intensities also depend on other non-copy number related

events, which can be regarded as experimental noise that makes CNV detection a chal-

lenging problem. Correct estimation of a reference hybridization intensity expected on a

non-CNV probe is essential to consider that the noise has zero mean.

Existing CNV detection algorithms assume that the measurements are unbiased (i.e.,

the noise distribution is centered at zero) and require a separate pre-processing step for

normalization and reference extraction (Figure 5.1A). Different normalization approaches

have been proposed, including CNAT [43], dChip [107], CNAG [68], GEMCA [54], Bead-

Studio [71], CRMA [7] and ITALICS [83]. Examples of non-copynumber sources of vari-

ation that are targeted by some of these procedures include: allele cross-hybridization
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(GEMCA, BeadStudio and CRMA) and, in Affymetrix chips, fragment length and GC

content effect (CNAG, GEMCA, CRMA and ITALICS). These and other methods pro-

posed by [18, 63] can remove probe hybridization biases that have spatial correlation

(i.e.“wave-like”) or correlation with the GC content or fragment length. While the spa-

tially correlated portion of the bias can be removed by these pre-processing methods

(Global Effects Normalization in Figure 5.1 A) there is still a probe specific bias due to

its own binding affinity that needs to be corrected. This is usually done by taking a robust

average (trimmed mean, median, clustering) across a set of reference samples. However,

if the aim is to identify CNVs that are frequent in population, the application of median

normalization on a set of reference samples, where the non-CNV regions are not known

a priori, would lead to biased results. This has been already pointed out as potentially

problematic by several authors [7, 54, 83], and there is no clearly defined methodology

currently available to establish a good reference in regions of the genome with complex

CNV patterns.

In this chapter, we propose a new model for joint estimation of CNVs and the reference

hybridization intensity associated with the non-CNV state. This new model extends our

previous work with the genome alteration detection analysis (GADA) approach (Chapter

3, [75, 79]) that achieved excellent accuracy in normalized samples. Specifically, we

incorporate in the model a vector parameter for the reference intensities in addition to the

CNV component. The copy number component, as in our previous work, is represented

by a sparse Bayesian learning (SBL) prior, which favors estimates where each sample has

a small number of CNV regions, but is uninformative with regard to the position and

magnitude of these regions. Extending this representation, our proposed hybridization
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Figure 5.1: Copy number detection block diagrams: A) the typical workflow used to
analyze copy number with separate pre-processing. B) the new proposed workflow using a
joint estimation model for copy number variations and the probe hybridization intensities.

reference intensity has a flat prior, but the effects are shared among all samples. The EM

algorithm is used to fit the model, and simultaneously estimates the copy number and

the reference parameters in a given set of observed samples.

The new approach is evaluated in both simulated datasets and microarray data ob-

tained from a pool of HapMap specimens [38] using the Affymetrix SNP 6.0 array plat-

form. We compared the new GADA with joint reference normalization (GADA-JRN),

with the currently used approach of using the median to compute the reference hybridiza-

tion (GADA with separate median normalization, GADA-SMN) and, with the Affymetrix

Genotyping Console GTC3.0.1. with GC correction. The presented results demonstrate

that the detected CNV are significantly more consistent within the HapMap family trios.
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CNV detected by the new approach are also less variable if we change the set of samples

used to create the reference. Finally, the computation time to fit the new model GADA-

JRN is very competitive, since the resulting algorithm (as was the case for GADA-SMN)

has complexity that grows linearly with the number of samples and probes.

5.2 GADA model with separate median normalization (GADA-

SMN)

In chapters 3 and 4 we assumed that there was no remaining bias after log ratio extraction

(LRE ); i.e.,

ỹm = xm + ǫm, (5.1)

In contrast, this chapter assumes that for a collection of microarray experiments the

following holds true:

ymn = xmn + rm + ǫmn (5.2)

where ymn represents the log2 of the hybridization intensity observed by probe m on array

n; xmn represents change in hybridization intensity due to altered copy number, rm is

the reference probe hybridization intensity expected for a non-CNV state, and ǫmn is a

zero-mean array noise.

In other words, comparing the models in (5.2) and (5.1), if the reference rm were

known, we could move it to the left side and ỹmn = ymn− rm would become the log-ratio
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intensities with only two remaining variations: the CNV effect xmn, and the zero-mean

hybridization noise ǫmn. Once this effect has been removed, the n in the notation can be

dropped because each sample n can be analyzed separately.

In general, the probe hybridization bias is not known and it has to be estimated and

corrected. The typical approach to estimate this bias is to use the median or some other

robust estimate of the mean and then perform copy number analysis independently in

each sample. Throughout this chapter, GADA-SMN refers to the resulting approach of

combining a separate median normalization followed by GADA (as in Chapter 3).

5.3 GADA model with joint reference normalization (GADA-

JRN)

The new proposed model does not assume that the probe hybridization bias for each probe

rm in (5.2) has been removed, it is instead estimated jointly with the copy number from

a large number samples. In vector form, the observation model for the log-hybridization

of each probe on sample n can be rewritten as:

yn = xn + r + ǫn (5.3)

There are two basic premises that allow the joint estimation of the reference r and the copy

number xn component. First, the copy number component xn on each sample is piece-

wise constant with a small number of breakpoints K and can be efficiently represented

with as xn = Fwn. It should be noted that the number and position of those breakpoints

is in general different for each sample. Second, the probe hybridization bias (or non-CNV
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reference intensity) r is not necessarily PWC, but is exactly the same across multiple

arrays. Our model can also be extended for cases in which the amplitude of r may

change, i.e. ymn = xmn + ρnrm + ǫmn (see Section 5.3.2).

The copy number component is modeled using and independent sparse Bayesian learn-

ing (SBL) hierarchical prior for each breakpoint m and sample n:

p
(
w1, · · · , wN |α1, · · · , αN

)
=

N∏

n=1

M−1∏

m=1

N
(
wmn|0, α−1

mn

)
(5.4)

p
(
α1, · · · , αN

)
=

N∏

n=1

M−1∏

m=1

Γ (αmn|a, b) (5.5)

The properties of the SBL prior are detailed in [75,97,104] and also in Chapter 3. Setting

b = 0 and a to be small encourages a sparse number of breakpoints, but is uninformative

with respect the position and magnitude of the corresponding CNV regions. Compared

to the single sample model N = 1, this model includes an SBL prior independent for each

sample n, which means that independent CNV locations can be chosen across samples.

The only parameter that is shared is the hyperparameter a that controls the expected

degree of sparseness (number of CNV) in each sample. The noise ǫ, as in Chapter 3,

is assumed normal p (ǫn) ∼ N
(
0, σ2

nI
)

using a different variance parameter (with a flat

prior) for each array experiment. Finally, the new r component is modeled using an

uninformative flat prior.

5.3.1 Fitting the model with the EM algorithm

The model parameters are estimated by finding the maximum a posteriori (MAP) using

a similar evidence maximization procedure as was introduced in Chapter 3. The EM
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algorithm starts by setting αm and rm to zero; then, it iterates the following E and M

steps:

E Step : Σn =
(
σ−2

n F ′F + diag(α)
)−1

(5.6)

µn = σ−2
n ΣnF ′(yn − r) (5.7)

x̂n = Fµn (5.8)

M Step : α̂n
m =

1 + 2a

Σmm + µ2
m + 2b

(5.9)

σ̂2
n =

1

M

(

‖yn − x̂n − r‖2 + σ2
n

∑

m

(1−Σn
mmαm)

)

(5.10)

r =
1

N

∑

n

(yn − x̂n) (5.11)

where P
(
wn|yn, αn, r, σ2

n

)
= N (wn|µn,Σn) exploiting the conjugacy properties be-

tween the gamma and normal distributions. The same notation as in Chapter 3 is used

and the super/sub-scripts n and m are added to identify the parameters that correspond

to each sample and probe respectively. For example, Σn
mm refers to the diagonal terms of

the covariance matrix for the breakpoint weights wn posterior distribution of sample n.

Convergence of the model is reached with very few EM iterations; and all required oper-

ations in each iteration can be performed in a linear number of steps O (MN) exploiting

the properties of our PWC representation (i.e., the matrix structure for F , see Chapter

3 for details).

In relation to the previous GADA [75] model in Chapter 3, if the new r component was

modeled by a fixed point estimate (e.g. the median across samples), then the entire model

will be completely equivalent to processing each sample independently using GADA (i.e.,
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GADA-SMN). This can also be seen on the EM steps, if r is a fix point estimate then

(5.6 - 5.10) can be updated separately for each n. Therefore, in GADA-JRN the CNV

are placed independently in each sample and the coupling is only through the estimation

of r.

During the EM algorithm most of the weight parameters ŵm = µm are driven to 0

to fulfill the sparseness constraints imposed by the hierarchical prior. Upon convergence

to zero, the corresponding weight parameter and hyperparameter can be eliminated from

the model and the EM algorithm can continue with a model of reduced dimensions. This

elimination makes the algorithm run faster since it has to update fewer parameters (i.e.,

only those that are non-zero).

5.3.2 GADA-JRN model with a scale parameter for the bias

The main model proposed in this chapter assumes that the probe hybridization bias for

each probe rm in (5.2) has exactly the same magnitude across samples. However, we

can adapt the model to include a different amplitude term ρn for each sample: In vector

form, the observation model for the log-hybridization of each probe on sample n can be

rewritten as:

yn = xn + ρnr + ǫn (5.12)

The same two basic premises that allowed the joint estimation of the reference r and the

copy number xn component also extend here with the inclusion of the ρn term. Notice

that the probe hybridization bias (or non-CNV reference intensity) r is exactly the same
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across multiple arrays but the addition of the ρn allows a change in the amplitude and

the sign of r. The copy number component and the noise is modeled exactly the same as

in Section 5.3 and the new ρn parameters are given an uninformative flat prior.

The new resulting EM algorithm is:

E Step :

Σn =
(
σ−2

n F ′F + diag(α)
)−1

(5.13)

µn = σ−2
n ΣnF ′(yn − ρnr) (5.14)

x̂n = Fµn (5.15)

M Step :

α̂n
m =

1 + 2a

Σmm + µ2
m + 2b

(5.16)

σ̂2
n =

1

M

(

‖yn − x̂n − ρnr‖2 + σ2
n

∑

m

(1−Σn
mmαm)

)

(5.17)

ρn =

∑

m (ymnrm)
∑

m r2
m

(5.18)

r =

∑

n ρn (yn − x̂n)
∑

n ρ2
n

(5.19)

where we notice that if we fix ρn = 1 we obtain the same algorithm as before.

5.4 Backward Elimination

The sensitivity vs. false discovery rate (FDR) trade-off of our model is controlled by

the hyper-parameter a. For higher values of a a more sparse solution with fewer CNVs

is obtained, reducing both the FDR and the sensitivity (see Appendix A). In order
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to efficiently explore solutions with different level of sparseness without having to run

the algorithm all-over again, the same backward elimination (BE) strategy described in

Section 3.5 is employed. Separately, for each of the samples the breakpoints with the

lowest score tm are recursively removed:

tm =

√

µm
2

Σmm
(5.20)

The sensitivity vs. FDR trade-off is controlled by stopping the procedure when all the

remaining breakpoints have a score higher than a given critical value T . Therefore, as the

algorithm continues to remove all the breakpoints and keeps track of which score, T, a

particular breakpoint is eliminated, the breakpoints can be rapidly adjusted to any desired

level based on their rank. The final result is reported as a set of segment breakpoints and

amplitudes that represent the copy number variations. The parameter T is physically

more informative than the parameter a because it can be interpreted as the standard

error the user is willing to tolerate to call a CNV significant.

5.5 Performance metrics and evaluation methods

In order to compare the performance of the different approaches for combining normaliza-

tion of the non-CNV probe reference intensities and copy number detection, the follow-

ing methods and performance metrics are introduced. 270 samples from the Affymetrix

dataset (Section 5.6.2) are randomly partitioned into reference sets of different sizes (10,

20, 30, 45, 70, 90 and 135 samples). In each partition, one given sample would have been

grouped with a different set of samples. For example, if we create 10 random partitions
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into 9 groups of size 30, each sample will have been grouped randomly with 29 different

samples of the remaining 269.

The Affymetrix dataset used in this analysis was processed under ideal conditions

(i.e. processed on the same day using three plates; personal communications). Thus, we

expect copy number estimates x̂n
g would be very similar regardless of the subgroup chosen

as the reference (see relevant results in Section 5.6.7). Although, significant changes

in r̂g are not observed in this dataset, it is noteworthy that the r̂g will likely change

with various laboratory conditions or across different batches. Section 5.6.7 will address

possible methods to analyze samples from different batches. Variance in non-copy number

and copy number estimates (Vr and Vx) across different subgroups g can be used to assess

the performance, with smaller variance indicating better performance.

Vr = median
m

1

G

G∑

g=1

(rg − r̄g)
2 (5.21)

Vx = median
n



median
m

1

G

G∑

g=1

(
x|rg
− x̄|rg

)2



 (5.22)

Since this dataset contains 180 samples that are related in family trios, we also propose

an additional measure of trio consistency. Identified CNVs in each HapMap trio are

classified for each probe as in Table 5.1. Then, the failed trio consistency rate (FTCR)

metric is defined as the ratio of inconsistent CNV probes in a trio among all identified

CNV probes (except those considered uninformative):
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FTCR =
I

C + I
(5.23)

A smaller FTCR value indicates that copy numbers within a family trio are more con-

sistent. This measure ignores less frequent scenarios; e.g., if both mother and father have

one chromosome with a CNV gain and the other chromosome without variation, it will

still be possible (25% of the time) for the son to not inherit the CNV. In order to assess

the validity of the FTCR measure, the FTCR scores of true trios are compared to those

obtained from randomly grouping unrelated samples into trios.

Table 5.1: Consistency on HapMap trios

Father and Mother pairs
Offspring (G,G) (G,L) (G,N) (L,L) (L,N) (N,N)

Gain C C C I I I
Loss I C I C C I
Neutral I – C I C –

For each variation detected as (G)ain, (L)oss or (N)eutral (no variation detected) there
are 18 possible CNV possible outcomes for each trio. Each outcome is labeled with ‘C’,
‘I’ and ‘–’ indicating whether they are consistent, inconsistent or uninformative.

5.6 Results

All the samples used to evaluate the methods described in this chapter are publicly

available as the Affymetrix SNP 6.0 Dataset [1]. The implementation for the new GADA

method is publicly available at http://biron.usc.edu/~piquereg/GADA. The algorithm

has been implemented in C and tested using Matlab.
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5.6.1 Simulation datasets

An artificial dataset in which the underlying model is known (i.e., copy number, array

artifacts and noise) was created to assess the proposed approach under specific scenarios.

Using the model in (5.2) we created an artificial microarray dataset with N = 20

samples and one single chromosome with M = 10000 probes. We generated a copy

number profile xmn containing two CNV regions (CNVRs) of different type (Figure 5.2A).

The first one is a region with aligned CNVs (breakpoints occurring at same position across

samples). The second type is a region with non-aligned CNVs. The non-CNV portion

of the genome, has an expected log2-ratio xmn = 0. The first variation is chosen to

represent a loss xmn = −1 (copy number 1), and the second variation is chosen to have

copy number 3 (xmn = log2(3)− 1 = 0.58). The reference, or systematic bias to remove,

is chosen to be a sinusoid rm = sin(2π0.001m), which represents a wavy effect similar to

what has been observed in some actual array experiments [63]. The noise introduced in

the dataset is white i.i.d Gaussian ǫmn ∼ N (0, 1). The major difference of this simulation

model as compared to others [57, 103] is the inclusion of the probe hybridization bias

effect rm = 0.5sin(2π0.001m) + N (0, 0.25) with two main components: i) a sinusoidal

wave with spatial correlation similar to what has been observed in some actual array

experiments [63], and ii) a noise wave without spatial correlation simulating each probe

specific affinity. The proposed methods have also been evaluated with other simulation

scenarios which include:

1. “Wave” only bias shared on all the samples rm = 0.5sin(2π0.001m) (Figure 5.3

Top).
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2. “Non-Wave” probe specific bias shared on all the samples rm ∼ N (0, 1) (Figure 5.3

Bottom).

3. “Non-Wave+Wave” with a different amplitude in each sample, (Figure 5.10).

4. “Non-Wave” bias different in two subgroups (batch effect). r1
m ∼ N (0, 1) indepen-

dent of r2
m ∼ N (0, 1) (Figure 5.14).

5.6.2 Affymetrix SNP 6.0 data set description and normalization

The Affymetrix dataset contains 270 samples from the International HapMap Project

consisting of 30 CEPH trios (CEU), 30 Yoruban trios (YRI), 45 unrelated Han Chinese

samples (CHB) and 45 unrelated Japanese samples (JPT). The Affymetrix Genome-Wide

Human SNP Array 6.0 integrates about 1.9 million probesets (931,946 SNPs, 946,000 CN).

The preprocessing software packages that are available for the Affymetrix SNP Array

6.0 platform include: the Affymetrix Genotyping Console 3.0 (GTC3) with a normaliza-

tion similar to CNAG [68], dChip with invariant set normalization [86], and Aroma.Affymetrix

which implements the CRMA [7]. The CRMA method was chosen, since it has been

shown to be more robust and accurate than other methods ( [7]). The Aroma.Affymetrix

package performs the following 4 correction steps: 1) allelic crosstalk calibration, ACC,

for SNP probes; 2) probe level modeling PLM, which gives a single signal for the SNP

probes; 3) fragment length normalization FLN, which corrects the differences in the PCR

reaction due to the length and GC content of the fragment; and finally, 4) log ratio ex-

traction, LRE, which calculates the log hybridization intensity relative to the expected

diploid signal reference intensity using the median. In Figure 5.1A, the steps ACC, PLM
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and FLN are grouped together as global effects normalization, and LRE is the probe bias

correction.

In this chapter, we argue that while steps 1-3 may be performed safely during pre-

processing, finding the non-CNV reference intensity is problematic in regions rich in copy

number polymorphisms. In normal samples, most of the probes (> 90%) will fall on

regions without CNV which implies that the normalization model parameters which have

a global effect on all probes can be safely estimated using robust strategies as those

employed by CRMA [7]. On the other hand, in any given region of the genome con-

taining a highly polymorphic CNV it is not known a priori which samples do not have

a CNV. Ideally, this CNV effect should be removed before estimating the probe hybri-

dization intensity associated with the non-CNV state. In this work, we will extract the

corrected probe intensities after steps 1-3, and use our new proposed model (GADA-JRN)

to jointly estimate the reference and the copy number component (Figure 5.1B). Results

from Affymetrix GTC software with GC correction are also obtained for comparison.

5.6.3 Results with simulated data

The artificially generated data (Section 5.6.1) illustrates a scenario in which there are two

relatively high frequency CNVs (Figure 5.2 A) with a bias on the hybridization measure-

ment from the array experiment (Figure 5.2 B). If the probe hybridization bias r is not

removed from the data, the results will be contaminated with a large number of spurious

segments not associated with true CNVs (Figure 5.2 C). While other approaches [7,18,63]

can correct the “smooth-wave” (GC correlated) part of the bias (see next section), GADA-

JRN can also correct the non-smooth (uncorrelated) probe specific bias. The currently
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Figure 5.2: Illustration of the observation model. Colors represent the observed hybridiza-
tion intensities and the relative copy number change (blue - loss ‘-1’, red - gain ‘+1’, green
- neutral ‘0’). A) The true underlying CNV component with two CNV regions (CNVR-1
around m=2500 and CNVR-2 around m=7500). B) Simulated array hybridization in-
tensities degraded by noise ǫn and a systematic measurement bias r. C) Copy number
profile using GADA on non normalized data. D) Data after reference subtraction esti-
mated by separate median pre-processing (SMN). E) Copy number profile using GADA
with separate median normalization (GADA-SMN). F) Copy number profile estimated
using GADA with joint reference normalization (GADA-JRN).

used approach of separate pre-processing is based on estimating rm as the median across

a set of reference samples (here the simulated samples themselves) before extracting the

CNVs. This can eliminate rm in the areas of the genome without CNVs (xmn = 0 re-

gions); but it is problematic in CNV regions containing a large amount of CNV across

samples (Figure 5.2 D and E). The new joint reference normalization approach (GADA-

JRN in Figure 5.2 F) can correctly delimitate the CNV on the samples with CNV on the

region CNVR-2, while the separate median normalization (GADA-SMN in Figure 5.2 E)

incorrectly reports CNV on samples n = 1, . . . , 10. Additionally, GADA-JRN can better

detect the small CNV on CNVR-1, in which the separate median normalization tends
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to make the amplitude of the variation smaller and thus more difficult to detect. These

results are not affected if rm has different types of wave as illustrated with more examples

in Figure 5.3.
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Figure 5.3: Simulation model with measurement bias of only one type: Top rm =
0.5sin(2π0.001m), Bottom rm ∼ N (0, 1.0). The colors represent the observed hybri-
dization intensity and the copy number (blue - loss, red - gain, green - neutral). A)
The true underlying CNV component with two CNV regions (CNVR-1 around m=2500
and CNVR-2 around m=7500). B) Simulated array hybridization intensities degraded by
noise ǫn and a systematic measurement bias r. C) Copy number profile using GADA on
non normalized data. D) Copy number profile using GADA with separate median nor-
malization (GADA-SMN). E) and F) Copy number profile estimated using GADA-JRN
with or without a scaling parameter ρn for the bias.
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5.6.4 Results with Affymetrix microarray data

The hybridization intensities are obtained after using ACC and applying FLN corrections

from Aroma.Affymetrix, on the 270 HapMap samples analyzed with Affymetrix SNP 6.0

arrays. This pre-processing step appropriately scales and centers the data removing the

spatially correlated part of the bias. We next compare GADA-JRN and GADA-SMN

employing the evaluation methods introduced in Section 5.5.

Using the randomly chosen reference sets of different size, we evaluated the variability

Vr and Vx in the reference intensities and the copy number estimates. Figure 5.4 shows

that, as the number of samples in the reference set increases, the variability on CNV

estimates Vx decreases. More importantly, we can see that using GADA-JRN achieves a

considerably better performance when compared to GADA-SMN. In some cases GADA-

JRN requires about half of the samples in order to obtain estimates of similar accuracy to

those achieved with GADA-SMN. In terms of variance of the reference intensity estimates,

Vr, GADA-JRN also achieves a significantly smaller values (p < 1E − 7 Kolmogorov-

Smirnov test, data not shown).

This improvement in performance can also be observed using the trio consistency

measure (FTCR) described in Section 5.5. In Figure 5.5, the trio consistency improves

(i.e., FTCR decreases) with the size of the reference set, and GADA-JRN also achieves

significantly better consistency. The results are also similar with change on the sparse-

ness parameters a and T that set the trade-off between sensitivity and FDR. Figure 5.6

illustrates for one of the reference sets (90 CEU samples) the consistency that is obtained

for different settings of the parameter T , which controls the backward elimination (BE)
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Figure 5.4: Variability on the copy number estimates if the set of reference samples
changes.
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Figure 5.5: Consistency of the copy number estimates on HapMap Trios if the set of
reference samples changes.
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step. The FTCR measure improves (decreases) with increasing T , since the number of

detected false CNVs (i.e. FDR) decreases; but for higher values of T (e.g., T > 8) true

CNVs may also fail to be detected on the offspring (i.e. lower sensitivity), and thus FTCR

stops decreasing. The FTCR obtained on randomly formed trios of unrelated samples

assures that this metric is actually capturing the increase on shared CNVs within a family

(p < 0.01) and can be used to compare different normalization and copy number detection

approaches. In Table 5.2 GADA-JRN obtains a better FTCR (16.7%) than GADA-SMN

(19.5%) and GTC (19.45%) when using 90 reference samples. On a larger reference set of

180 samples, GADA-SMN (FTCR = 18.3%) and GTC (FTCR = 17.31%) improve but

GADA-JRN still retains a better FTCR (16.5%). Overall, the new approach is especially

indicated for small reference sets and for regions with highly polymorphic CNVs. Fig-

ure 5.7 and 5.8 shows the copy number estimates obtained on an already known highly

polymorphic region of chromosome 17. The predicted gains and losses of GADA-JRN are

retained when the reference set of 90 reference (CEU) samples is enlarged to include 180

(CEU+YRI) samples. On the other hand, GADA-SMN is less consistent in delimiting

the CNV boundaries.

Table 5.2: Comparison on HapMap trio consistency FTCR

Number of Reference Samples
90 CEU 180 CEU+YRI

FTCR # CNVs FTCR # CNVs
GADA-JRN 16.7% 85 (T=10) 16.5% 127 (T=9.0)
GADA-SMN 19.2% 94 (T=9.0) 18.3% 125 (T=8.0)
GTC 18.45% 86 17.31% 127

Table with the Failed Trio Consistency Rate (FTCR) and the median number of CNVs per sample

when using three different algorithms GADA-JRN, GADA-SMN, and GTC. The threshold values for

GADA-JRN and GADA-SMN were chosen to obtain approximately equal number of CNVs among the

algorithms.
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Figure 5.7: Section of the chromosome 17 that contains an already known CNV. Each
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Figure 5.8: Example of a complex copy number section of Chr. 17 within a HapMap
trio (Top row, father; Center row, son/daughter; Bottom row, mother). Left column
shows the original observed array values and a smoothed version that shows that there
is a hybridization bias correlated along the samples. Center column shows the median
normalized intensities and the detected altered segments in red (GADA-SMN). Right
column shows the resulting intensities corrected with the reference estimated by GADA-
JRN and the corresponding detected segments in red. This result visually depicts that
the detected alterations are more consistent within trios with the new GADA-JRN model.
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Finally the computational time required for fitting the model is longer on the new

approach, but still retains a very competitive linear complexity in the number of probes

and samples (see Figure 5.9).
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Figure 5.9: Computational time required to fit the models GADA-JRN and GADA-SMN.
The time required to fit the model is linear on the number of samples for both approaches.
Execution times required to process the models are measured on the same machine.

5.6.5 Simulation results with a scale effect

In order to evaluate this model which includes a scale parameter ρn, a new simulated

dataset is created. The same underlying copy number profile xn is used (Figure 5.10

A) but the wave r that is added to each sample is multiplied by a random amplitude

ρn ∼ U(−1, 1) (uniformly distributed between -1.0 and 1.0). The bias wave used in this

experiment is rm = 0.5sin(2π0.001m) + N (0, 0.25) and has two main ingredients: i) a
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sinusoidal wave with spatial correlation, ii) a noise wave without spatial correlation. The

resulting observed array intensities ymn have three components (Figure 5.10 B): a) the

copy number component which is piecewise constant independent for each sample, b) the

wave that is correlated across samples n and possibly across probes m, and c) the noise

uncorrelated across samples n and m probes with variance 0.2.

The new joint reference normalization approach (GADA-JRN in Figure 5.10 F) can

correctly delimitate the CNVs on the samples and extract the probe hybridization bias

and its magnitude from each sample.

135



Probe m

S
a
m

p
le

n

Underlying CNA component xmn

A

2000 4000 6000 8000 10000

2

4

6

8

10

12

14

16

18

20

Probe m

S
a
m

p
le

n

Observed array data ymn = xmn + ρnrm + ǫmn

B

 

 

2000 4000 6000 8000 10000

2

4

6

8

10

12

14

16

18

20

Probe m

S
a
m

p
le

n

GADA without normalization
C

2000 4000 6000 8000 10000

2

4

6

8

10

12

14

16

18

20

Probe m

S
a
m

p
le

n

GADA-SMN
D

2000 4000 6000 8000 10000

2

4

6

8

10

12

14

16

18

20

Probe m

S
a
m

p
le

n

GADA-JRN without bias amplitude paramterE

2000 4000 6000 8000 10000

2

4

6

8

10

12

14

16

18

20

Probe m

S
a
m

p
le

n

GADA-JRN with bias amplitude paramterF

2000 4000 6000 8000 10000

2

4

6

8

10

12

14

16

18

20

−1.5

−1

−0.5

0

0.5

1

1.5

Probe m

S
a
m

p
le

n

Underlying CNA component xmn

A

2000 4000 6000 8000 10000

2

4

6

8

10

12

14

16

18

20

Probe m

S
a
m

p
le

n

Observed array data ymn = xmn + ρnrm + ǫmn

B

 

 

2000 4000 6000 8000 10000

2

4

6

8

10

12

14

16

18

20

Probe m

S
a
m

p
le

n

GADA without normalization
C

2000 4000 6000 8000 10000

2

4

6

8

10

12

14

16

18

20

Probe m

S
a
m

p
le

n

GADA-SMN
D

2000 4000 6000 8000 10000

2

4

6

8

10

12

14

16

18

20

Probe m

S
a
m

p
le

n

GADA-JRN without bias amplitude paramterE

2000 4000 6000 8000 10000

2

4

6

8

10

12

14

16

18

20

Probe m

S
a
m

p
le

n

GADA-JRN with bias amplitude paramterF

2000 4000 6000 8000 10000

2

4

6

8

10

12

14

16

18

20

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 5.10: Simulation model with measurement bias with different amplitudes: Top
ρn ∼ U(0.7, 1.0), Bottom ρn ∼ U(−1.0, 1.0). The colors represent the observed hybri-
dization intensity and the copy number (blue - loss, red - gain, green - neutral). A)
The true underlying CNV component with two CNV regions (CNVR-1 around m=2500
and CNVR-2 around m=7500). B) Simulated array hybridization intensities degraded by
noise ǫn and a systematic measurement bias r. C) Copy number profile using GADA on
non normalized data. D) Copy number profile using GADA with separate median nor-
malization (GADA-SMN). E) and F) Copy number profile estimated using GADA-JRN
with or without a scaling parameter ρn for the bias.
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5.6.6 Scale effect on the Affymetrix data

The same pre-processed data as in Section 5.6.4 is used to evaluate the new model with a

bias amplitude parameter. In real data, the change of the amplitude of the bias is likely

to be a consequence of the differences on the initial amounts of DNA material as was

shown by [18]. The Aroma.Affymetrix pre-processing can make the amplitudes ρn the

same across samples using the appropriate scaling and correction to each of the Sty and

Nsp fragments. For this reason, the results do not differ much whether or not this new

parameter is added to the model (Figure 5.11).
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Figure 5.11: Consistency within HapMap trios using a different sparseness setting T .
Using 180 HapMap samples (CEU+YRI) the GADA+JRN algorithm does not show a
significant improvement if we add a bias amplitude parameter on this set of samples after
Aroma.Affymetrix normalization.
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5.6.7 Impact of the batch effects on the Affymetrix dataset

All the samples in the Affymetrix dataset were generated on the same laboratory at the

same time and analyzed on three plates with each ethnic group (CEU, YRI, JPT+CHB)

analyzed in separate plates. The batch effects that would be expected if the plates were

analyzed in separate days or labs would be much higher than what it is actually seen in

these samples, see simulated example in Figure 5.14. For this reason, we do not observe

any significant difference in FTCR with the new algorithm if the two batches are analyzed

separately or combined together with (GADA-JRN) in Figure 5.12. The performance of

separate median normalization independently in each plate is worse because the median

in not robust in a small set of samples (especially in this dataset where each plate has a

different ethnic group).

If the subgroups (or batches) are not known a priori the residuals after running

GADA can be useful to discover subgroups of samples that share a common artifact.

In Figure 5.13B, two blocks can be visually appreciated that do not appear on Fig-

ure 5.13C. The average magnitude of these correlations is small (< 0.05) compared to

the variability within each block (< 0.25) because the shift in r is not substantially large.

Less than < 0.36% probes have a shift in rm larger than a true copy number change

(|rCEU
m − rY RI

m | > 0.585 = log2(3) − 1). This remaining probe hybridization bias if spa-

tially uncorrelated will be regarded as an additional white noise in our model (higher

noise variance estimate) and are unlikely to cause false detections but a decreased sen-

sitivity to true changes. These shifts are likely to be considerably larger if the batches
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Figure 5.12: Consistency within HapMap trios when two plates (CEU and YRI) are
analyzed separately or together using the GADA-SMN and GADA-JRN algorithms. In
terms of FTCR we only obtain a small improvement if we separate each batch using the
GADA-JRN, but a decreased performance in terms of the median because it requires
more than 90 samples to become a more robust estimator.
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Figure 5.13: Pairwise Spearman’s Correlations between different signals: A) the origi-
nal microarray observed intensities, B) the residual intensities after processing together
CEU+YRI with GADA-JRN, and C) the residual intensities after processing separately
CEU and YRI groups with GADA-JRN. Samples 1 to 90 correspond to the CEU ethnic
group and 91 to 180 to the YRI ethnic group.
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were analyzed in different days or labs. In this latter case we would analyze each batch

separately with GADA-JRN (see Figure 5.14 for a simulation result).
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Figure 5.14: Simulation model with a batch effect: for n = 1..20 rn
m =∼ N (0, 1.0) inde-

pendent of n = 21..40 rn
m =∼ N (0, 1.0). The colors represent the observed hybridization

intensity and the copy number (blue - loss, red - gain, green - neutral). A) The true un-
derlying CNV component with two CNV regions (CNVR-1 around m=2500 and CNVR-2
around m=7500). B) Simulated array hybridization intensities degraded by noise ǫn and
a systematic measurement bias r. C) Copy number profile using GADA on non normal-
ized data. D) and E) Copy number profile using GADA-SMN and GADA-JRN on all the
samples together. G) and H) Copy number profile using GADA-SMN and GADA-JRN
on each batch separately. F) Pairwise correlation between the residuals of GADA-JRN
after processing the batches together or I) separately.
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5.7 Discussion

The application of the proposed GADA-JRN is not only limited to Affymetrix SNP arrays

but it can also be applied to other platforms such as Illumina beadarrays or NimbleGen

aCGH. In Illumina BeadStudio the probe hybridization intensities R (obtained after allele

crosstalk correction, ACC) can be extracted instead of the LRR values. The extraction

of the LRR values uses a cluster approach to compute the expected R values of non-CNV

regions [71] which have similar drawbacks as separate median normalization. In aCGH,

the reference DNA from a single sample or a pool of samples is used as a reference,

but these log-ratio intensities may still contain a remaining “wavy” artifact [63] that our

proposed approach could eliminate.

ITALICS [83] is an iterative approach that alternates two separate steps of copy

number detection and normalization. The iterative concept is similar to the EM algorithm

employed to fit the GADA-JRN model in this chapter but there are two fundamental

differences. First, ITALICS operates on a single sample and only includes a small set of

parameters correcting for global array effects such as the fragment length and GC content;

ITALICS assumes that the reference non-CNV probe intensity is fixed and extracted

from a separate reference set of samples. Second, the copy number extraction and the

normalization model are iterated in practice only twice and not integrated under an

unifying probabilistic model as in GADA-JRN. In contrast, GADA-JRN first proposes a

multiple sample probability model, which includes parameters for the CNV component

and the reference non-CNV probe hybridization intensity of every position of the genome;
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then an iterative approach to fit the model is derived using the EM algorithm, which

guarantees the parameters converge.

GEMCA [54], only available for Affymetrix 500K platform, approaches the problem

by finding the reference after copy number detection. First, the copy number is estimated

on the difference between all the possible pairs. The CNV regions are defined as those

identified in certain number of pairs. Then the largest subgroup of samples with no

relative variations (found using a maximum clique algorithm) is used to establish the

reference set for that particular region of the genome. The Canary algorithm in Birdsuite

[55] uses a GMM mixture model to identify a posteriori the copy number variation state

of already delimited regions of copy number variation. In both GEMCA and Canary, the

underlying assumption that CNVs are tightly aligned across samples and do not overlap

with other possible CNVs represents a challenge in dealing with complex polymorphic

CNV regions of the genome (e.g., Figure 5.7).

5.8 Conclusions

In this chapter we introduced a new method in which the reference probe hybridization

intensity is jointly estimated with the copy number component. This type of methods

are essential for the characterization of CNV on normal population using the latest array

technologies, in which the underlying genome copy number variations are not known

a priori. The currently used approach of separate pre-processing using the median to

estimate the hybridization intensities may fail to accurately detect highly polymorphic

regions of the genome. The new proposed method extends the previous GADA model by
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introducing a new vector of parameters that model a common hybridization bias shared

across many arrays. Results demonstrate a significantly better performance with the new

extended GADA model while maintaining the attractive linear computational complexity

in number of probes and samples.

GADA-JRN may also prove to be a flexible algorithm in a variety of other appli-

cations. For example, samples processed by different labs or on different days may not

necessarily have the same non-CNV reference hybridization intensity even if the platform

is exactly the same. GADA-JRN could be applied to assess if this effect has changed be-

tween different experimental batches. Moreover, one or more control samples replicated

across experimental batches could be used to better characterize and correct the probe

hybridization noise.

In addition to the probe hybridization reference, other parameters can also be intro-

duced to the GADA framework to model other known sources of variation. For example,

allowing changes in scale of the bias, using an independent bias correction for each SNP

allele, and including probe specific noise variances (heteroscedastic model). The residuals

of the model can be used to assess the impact of these other sources of variation on the

results In particular, correlation on the model residuals can be used to discover hidden

batch effects indicating the need for subgroup analysis. Finally, the GADA-JRN model

could be used in combination with the N-GADA model [74] (in Chapter 4) for modeling

breakpoints of CNVs across multiple samples.

144



Chapter 6

Bayesian hierarchical modeling of means and covariances of

gene expression data within families

The previous chapters proposed methods for extracting and analyzing only one kind of

genomic information. Chapter 2 covered gene expression, and microarrays are used to

quantify the transcription activity of each gene in the genome. Chapters 3,4 and 5 covered

the analysis of DNA copy number changes using genotyping arrays. In this chapter we

will develop a new method that will identify variation in the DNA (SNP genotypes) that

influence the gene expression levels.

We propose a novel hierarchical Bayesian model for the influence of constitutional

genotypes from a linkage scan on the expression of a large number of genes. This work was

presented in Genetic Analysis Workshop GAW-15 and was also selected for publication

[76], and can be considered as a first step to find genetic determinants of gene expression

at genome-wide scale.

Results on Chr. 11 replicate an already known association between a DNA variation

(SNP) and a gene expression level. The approach appears to be a promising way to
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address the huge multiple comparisons problem for relating genome-wide genotype-by-

expression data.

This chapter is organized in the following way. First we provide the background on the

problem, the approaches that exist and we motivate the need for new methods (Section

6.1). Then, on the Methods Section we present our model, the statistical approaches

used to fit the model, and the data that has been used. Sections 6.3 and 6.4 present and

discuss the results obtained.

6.1 Introduction

The two major genomic informations: i) DNA variation and ii) gene expression have

been usually been studied separately. An extensive literature on the analysis of gene

expression data has evolved over the last five years, and since the advent of ultra high

volume genotyping platforms, genome-wide association and linkage scans using SNPs

have also become feasible.

The multiple comparisons problem is central to the analysis of either type of high-

volume data. In 2001, Jansen [49] proposed combining the analysis of the two technologies

(SNPs and gene expression arrays) in what he called “genetical genomics” to provide

insight into the genetic regulation of gene expression.

However, only quite recently have attempts been made to relate the two technologies,

first by Morley et al. [67] in a linkage scan for 3,554 expressed genes in relation to 2,756

autosomal SNP markers, and subsequently by the same group [14] in a genome-wide

association scan of 27 of the expressed genes with the highest linkage in the first study, in
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relation to > 770, 000 SNPs. (See also Schadt et al. [87] and Stranger et al. [94] for similar

analyses.) Independently, Tsalenko [100] proposed a biclustering method to visualize

SNPs and the transcripts they regulate, using an approach that is more visual than

statistical. The multiple comparisons problem in such analyses (2.7 billion comparisons

in the association analysis) dwarfs those from either genome-wide linkage or association

analyses of single traits or supervised cluster analyses of expression data in relation to

single outcomes.

Therefore, there is a need to develop new statistical methods to analyze all transcripts

and genotypes together. Here, we describe a novel hierarchical Bayesian approach to the

analysis of all possible pairs of associations and linkages between expressed genes and

SNP markers. We demonstrate the results for chromosome 11 and we argue that the

method can be extended to cover the entire genome and transcriptome.

The proposed model comprises linear regression models for the means in relation

to genotypes and for the covariances between pairs of related individuals in relation to

their identity by descent estimates. The matrices of regression coefficients for all possible

pairs of SNPs by all possible expressed genes are in turn modeled as a mixture of null

values and a normal distribution of non-null values, with probabilities and means given

by a third-level model of SNP and trait random effects and a spatial regression on the

distance between the SNP and the expressed gene. The latter provides a way of testing

for cis and trans effects, depending if the alteration affects the gene where it is sitting or

some other gene.

The method was applied to data on 116 SNPs and 189 genes on chromosome 11, for

which Morley et al. [67] had previously reported linkage. We were able to confirm the
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association of the expression of HSD17B12 with a SNP in the same region reported by

Morley et al., and also detected a SNP that appeared to affect the expression of many

genes on this chromosome. The approach results are promising and could be extended to

cover an genome-wide gene expression and genotyping scan.

6.2 Methods

6.2.1 Statistical model

Let Y n
ij denote the expression of gene n in member j of family i and let Gm

ij be the

corresponding SNP genotype at marker m at location xm. For the means and covariances

of the expression traits, we adopted a Generalized Estimating Equations model of the form

used by Thomas et al. [95].

E
(
Y n

ij

)
≡ µn

ij = αn
0 +

M∑

m=1

AnmGm
ij (6.1)

E
(
Cn

ijk

)
≡ χn

ijk = βn
0 + BnZijk (Xn) (6.2)

where Cn
ijk = (Y n

ij − µn
ij)(Y

n
ik − µn

ik) and Zijk(x) is the estimated E(IBDijk(x)|Gi) at

chromosomal location x for pairs (j, k) from nuclear family i, based on the complete

multilocus marker data. Xn is a latent variable for the location of the unobserved causal

locus linked to expression trait n. For j = k, V (Y n
ij ) = χn models the gene expression

variance in (6.2).
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In (6.2), the regression coefficients Anm are modeled as mixtures of null values with

probabilities 1 − πnm and a normal distribution of non-null values with means αnm ex-

pressed in terms of row and column effects:

Anm ∼ (1− πnm) δ (0) + πnmN
(
αnm, σ2

)
(6.3)

where

αnm = γA
0 + γA

1 I (xm ∈ Rn) + eA
m + hA

n (6.4)

logit (πnm) = γP
0 + γP

1 I (xm ∈ Rn) + eP
m + hP

n (6.5)

The parameter γ1 distinguishes between cis and trans effects, a cis interaction occurs

when the chromosomal location xm of SNP m is within the interval Rn, the alignment

region for the gene expression probe n. The random effects e and h are distributed as

(
eA
m, eP

m

)
∼ N2 (0, T ) (6.6)

(
hA

n , eP
n

)
∼ N2 (0, W ) (6.7)

and the γs, T , W have uninformative normal and Wishart priors.

The regression coefficients Bn in the covariance model (6.2) are handled similarly,

except that we assume each trait has at most one region linked to it. (This is not essential

to the method, as Eq.(2) could be extended to a summation over multiple independent

linkage regions, but it would not make sense to offer all marker locations simultaneously,
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since the IBD variables are highly correlated from one location to the next.) Thus, we

assume

Bn ∼ N
(
γB

0 + γB
1 I (Xn ∈ Rn) , τ2

)
(6.8)

and pick a uniform prior for Xn; to simplify the calculations, we restrict Xn to the

observed marker locations xm and compute IBD probabilities only at these locations.

Xn thus has a discrete distribution with prior masses inversely proportional to the local

marker density, here estimated simply as |xm+1 − xm−1|. The full model is represented

in the directed acyclic graph (DAG) shown in Figure 6.1.

Yij
n

Cijk
n

Gij
m

Rn

ij
n

Bn

ijk
n

Zijk(X
n)

Xn

Anm

nm nm

xm

n

Xn Rn
xm Rn

em hn

T W

Figure 6.1: Directed acyclic graph for the analysis model. Squares represent observed
data, circles represent parameters or latent variables, triangles represent deterministic
nodes.
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We fitted the model using a Markov chain Monte Carlo (MCMC) approach, im-

plemented in Matlab. Updates of all parameters except the location parameters Xns

involve standard Gibbs sampling from their respective full conditional distributions, e.g.,

[αn
0 |Y n, G, A], [βn

0 |Cn, Z, B], [Anm|Y n, Gm, αn
0 , πnm, αnm, σ2], etc. The updates of the

Xs are based on a Metropolis-Hastings procedure with a random walk proposal. The

sequence was started 10 times from several initial points chosen from an overdispersed

prior around rough estimates. Half of the initial samples are discarded and the second

half is kept. The number of kept samples, L = 4000, is chosen to be large enough so that

for all parameters of interest the variance between sequences VB is comparable to that

within sequence VW , R < 1.10:

R̂ =

√

L− 1

L
+

1

L

VB

VW
(6.9)

The rationale behind this convergence monitoring procedure is described and justified

in [32].

6.2.2 Subjects, genotypes, and phenotypes

In order to keep the computation to a manageable level, we restricted this analysis to the

SNP genotypes and expressed genes on chromosome 11, as previous analyses by Morley et

al. [67] had found evidence of linkages both in cis and in trans at this chromosome. The

final dataset thus had 116 SNPs and 189 expressed genes. IBD status was estimated from

the complete two-generation pedigrees (excluding grandparents) by a program written
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based on the Lander-Green algorithm [59]. All 378 sibpairs (110 individuals) from the

available 14 families were included in the phenotype analysis.

6.3 Results

After convergence has been reached, the number of regression coefficients with nonzero

coefficients in (6.2) is very small. This is because in the mixture model employed in (6.3),

a large number of the probabilities are close to 0 as shown in Figure 6.2.

Figure 6.2 also shows, as expected, that each gene expression phenotype is explained

by relatively few genotypes that have a role in regulating their expression. Table 6.1

lists, for the best predicted phenotypes, the SNPs included most frequently in the model.

Significantly, the top ranking phenotype, HSD17B12 (217869–at), associated with SNP

rs1453389, is the same as the one reported by Cheung et al. [14] as associated with

another SNP in the same region (not included in the GAW dataset). Figure 6.3 shows

that some SNPs in chromosome 11, especially rs916482, are significantly associated with

more phenotypes than others. These SNP are possibly within a master regulatory region

of gene expression. The list of gene ontology terms that were over-represented in the list

of its associated genes involved mostly metabolic functions (Figure 6.4).

The covariance model (2) results are summarized in the right panel of Figure 6.2,

and the strongest linkage peaks are listed in Table 6.2. This linkage is for the remaining

variation not explained by the association/means model (1), and the peaks would corre-

spond to unseen genotypes that are in linkage disequilibrium (LD) with a marker that

was not used in the association model. Thus, this explains in part why linkage results
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Table 6.1: Top ranking associations
Top SNPs used in the prediction

Phenotype Probe R2 P (R2 > 0) SNP1 πnm SNP2 πnm SNP3 πnm SNP4 πnm

HSD17B12 217869 at 0.25 0.988 *rs1453389 1.00 rs916482 1.00 rs1425151 0.40 rs509628 0.28
C11orf10 218213 s at 0.12 0.986 rs916482 1.00
AMPD3 207992 s at 0.19 0.985 *rs2029463 0.81 rs948215 0.80 rs1157659 0.21 rs1491846 0.17
FEZ1 203562 at 0.12 0.984 rs2029463 1.00 rs2155076 0.20 *rs948215 0.11
ADM 202912 at 0.11 0.982 rs916482 1.00
STIP1 213330 s at 0.11 0.981 rs916482 0.99 rs1319730 0.33
DDB1 208619 at 0.15 0.978 rs1530966 0.91 rs597345 0.54 rs1499511 0.10
FADS1 208964 s at 0.14 0.974 rs1216592 0.85 rs1605026 0.38 rs591804 0.35
TPP1 200743 s at 0.13 0.970 rs916482 0.94 rs1157659 0.14 *rs902215 0.14
RBM14 204178 s at 0.10 0.966 rs916482 0.98 rs674237 0.10
HMBS 203040 s at 0.13 0.963 rs86392 0.49 rs916482 0.47 *rs1319730 0.44 rs1945906 0.20
PPME1 49077 at 0.11 0.958 rs916482 0.82 rs2155001 0.16
CD44 204490 s at 0.12 0.957 rs702738 0.34 rs916482 0.28 rs1319730 0.28 *rs1453390 0.17
NRGN 204081 at 0.10 0.946 rs2029463 0.93 rs961746 0.16 rs509628 0.15
NDUFS8 203190 at 0.11 0.944 rs86392 0.68 rs1319730 0.33 rs1945906 0.32
PSMD13 201232 s at 0.09 0.923 rs916482 0.91 rs1319730 0.12

Phenotypes ranked by most significant coefficient of determination, and some of their top associated

SNPs ranked by average π
nm. (*) indicates a cis-acting interaction, defined as the SNP being within

10MB of the phenotype probe alignment.

Table 6.2: Linkage of residual gene expression variation after association

Phenotype R
2

P (R2
> 0) Samples Mode[Xn]

208964 s at 0.014 0.912 1749 rs2226844
202223 at 0.009 0.908 1526 rs1453390
220964 s at 0.007 0.862 1412 rs647837
201432 at 0.005 0.821 1567 rs931811
201477 s at 0.008 0.802 1492 rs1941817
204178 s at 0.004 0.800 1548 rs2155076
202076 at 0.004 0.772 1668 rs681267
206067 s at 0.002 0.749 1535 rs2029463
210364 at 0.003 0.718 1586 rs470719
203675 at 0.006 0.706 1659 rs1216592
205412 at 0.001 0.683 1585 rs470982
202418 at 0.001 0.679 1444 rs470719

Pr[Xn = m]
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are calculated form samples drawn (from 10% of the mass) around the mode.

are less compelling than the association ones. However, for those phenotypes for which

significant linkage was found, the expression covariance increased with the IBD status,

especially in 208964–s–at.
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6.4 Discussion

We have introduced a novel hierarchical Bayes model for genetic control of gene expres-

sion. Our approach to dealing with the multiple comparisons problem is to represent the

matrices of all possible SNP expressed gene association or linkage coefficients in terms

of row and column random effects, along with a spatial regression on the distance be-

tween the two. Although this allows inference on specific pairs, we have greater interest

in the variances of the row and column effects, which reflect systematic tendencies for

SNPs to affect variable numbers of phenotypes and for phenotypes to be differentially

expressed. Our mixture model also supports the possibility that the vast majority of

such associations or linkages would be truly null, and allows separate estimation of both

the probability and magnitude of non-null tests. So far we have not imposed any relation-

ship between the parameters of the association (means) and linkage (covariance) models,

but one might contemplate using the broad regions where linkage is seen for a particular

phenotype as a prior for testing single-SNP associations with that phenotype.

The strongest gene-expression SNP association reported by Cheung et al. on chro-

mosome 11 also appeared in our results as the most significant association, but with a

SNP close to theirs (their reported SNP was not included in the dataset). We also found

evidence of at least one SNP that appears to be linked to a large number of expressed

genes, suggesting the existence of master regulatory genes in that region.

We chose to restrict these analyses to a subset of genes and SNPs on a single chromo-

some to test the feasibility of the method. In principle the approach could be extended

on a genome-wide scale, since the computation time increases linearly with m, n, sample
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size, and number of MCMC samples. Generating 4000 MCMC samples required 6 hours

on a 2.2 GHz single-processor machine. However, one outstanding methodological chal-

lenge that would have to be addressed before the approach could be applied to dense SNP

associations would be how to deal with the multicollinearity problem. This is because

very close SNPs will exhibit highly correlated genotypes (strong LD). For this reason, we

chose to restrict this analysis to only a subset of SNPs that were not strongly correlated

(in strong LD) with each other.
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Figure 6.2: Gene expression x Genotype associations and residual linkage summary. (Left)
Image describing the mean value of the association parameters πnm between the gene
expression phenotypes (rows) and the SNP genotypes (columns). The matrix shows that
the interactions are very sparse (dark spots), meaning that phenotypes are controlled by
small number of SNPs, with no apparent concentration along the cis region delimited by
blue lines. However, there exist some SNPs (columns) that seem to be correlated with a
large set of phenotypes, potentially indicating a master regulatory region. (Right) Image
describing the posterior probability of the linkage locus after removing the association
effect from the covariance.
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Figure 6.3: Potential Master Regulatory region around rs916482 SNP. Bottom plot is the
cross-section of column 84 of Figure 6.2, describing the association between all phenotypes
in chromosome 11 and SNP m = rs916482. The top plot shows the magnitude and sign
of dependence on the genotype. This SNP has a large number of associated genotypes,
providing a strong indication of a Master Regulatory region.

Figure 6.4: Gene Ontology (GO) on potential Master Regulatory region. Overrepresented
GO terms by the phenotypes associated to the SNP rs916482 analyzed using FatiGO
(http://www.fatigo.org/).
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Chapter 7

Conclusions

The research presented in this dissertation has been developed with the primary applica-

tion of providing new Bioinformatics tools for reliable and efficient processing of very large

biological datasets. These datasets can measure millions of biological variables degraded

by noise, but the underlying sparseness of these biological systems can be exploited to

extract the relevant information.

In Chapter 2, a novel embedded FSS framework was developed that builds a block

diagonal linear discriminant model (BDLDA). BDLDA was showed capable of identifying

gene interactions and improving the classifying accuracy in simulations. The algorithm

is based on a greedy search that recursively seeks to add either a new feature or an

interaction term in the model. Feature selection is very important not only for reducing

the number of parameters but also for identifying relevant genes or genetic pathways

(group of genes that are corregulated) which are consistent with the underlying biology

of the disease (e.g., inflammatory genes, DNA repair, cell division).

As higher density microarrays and direct RNA sequencing become available novel

analytical techniques will be required for finding differences in gene expression (and exon
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splicing) in different kinds of tissues, organisms or tumors. In this context, sparse signal

representations can be used to group microarray probes that belong to the same exon

and characterize which of the different exon combinations (splicing variants) are active

on a given sample. A similar methodology as employed to detect copy number alterations

(Chapter 3) can be used to extract these splicing features. These clean features can then

be used to build models using the discriminant analysis tools (DLDA and BDLDA) we

already developed in Chapter 2. As more knowledge of the underlying biology is becoming

publicly available and genetic pathways are better understood, the BDLDA model search

strategies can be adapted to look for patterns of coexpression along these pathways.

Copy number alterations can also be represented by a sparse PWC representation. In

GADA approach, introduced in Chapter 3, a sparse Bayesian learning (SBL) is used in

combination with the PWC representation. When compared to other popularly used copy

number detection approaches, GADA achieves one of the highest detection accuracies

while improving computational speed by several orders of magnitude, especially on very

large arrays. Other segmentation approaches with comparable accuracy to GADA such

as CBS have a quadratic cost in terms of computation. The GADA software and source

code is publicly available (http://biron.usc.edu/~piquereg/GADA) and has been down-

loaded and used by a large number of institutions including the Sanger Institute, The

Center for Applied Genomics (TCAG), and the Center for Genomic Regulation (CRG)

among others.

The GADA approach has also been extended to scenarios where multiples samples

are available and a joint analysis would help achieve higher detection accuracy (Chapters

4 and 5). The first of these scenarios models breakpoint locations that are shared across
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samples (examples include sample replicates or samples with common ancestry), Chap-

ter 4. The second scenario assumes that the breakpoints are not necessarily located at

the same position across samples, but there is a systematic perturbation (or measurement

bias) on the probes that can be estimated and thereby removed. We demonstrated in

Chapter 5 that joint extraction of a reference hybridization intensity and the copy number

component of a large cohort of samples has better performance in terms of accuracy and

robustness than using the median across the samples.

The shared breakpoint model can be integrated with the joint reference normaliza-

tion model into a complete multiple sample model. These improved models and methods

should be especially indicated to make experimental designs in which a set of well known

reference samples are replicated across batches. These methods will help to bring the

intensity values together and reduce the experimental variability across different experi-

mental batches or laboratories. The GADA approach could also be extended to find PWC

discriminatory regions along the genome to separate groups of samples in a supervised

fashion. Copy number alterations associated with a target disease should also exhibit a

piecewise constant behavior on the statistical scores used to measure association. GADA

can exploit this PWC behavior to accurately detect regions associated with some disease

condition.

In the near future we expect that the number of technologies that are available to

extract genetic measurements will only continue to increase. If the current trend in mi-

croarray technology continues, the number of measurements duplicates every few months.

New and cheaper sequencing techniques (Solexa and 454 sequencing) are becoming avail-

able enabling a new set of experiments that generate millions of reads that can map to
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any position on the genome (3 billion pairs). Chromatin Inmuno-Precipitation (ChIP)

studies have been developed to detect the organization of the DNA around nucleosomes

in the nucleus and DNA binding proteins. Large scale projects that have been launched

in the last three years (e.g., the HapMap project, the cancer genome atlas (TCGA), the

1000 genomes project) are generating large amounts of data that is becoming publicly

available. These datasets will shed light on the characteristics of the cancer genome and

the natural variation present on human healthy cells, but will require developing new and

more efficient analysis techniques. GADA or similar methods could be used to detect

signals of interest in data obtained by new generation sequencing techniques that are

becoming available.

The knowledge on how to measure gene expression (mRNA) and genetic alterations

(DNA) will make it possible to answer more complex biological questions. We will be

able to use and extend systems biology precise knowledge on small isolated biological

processes to the genomewide scale data obtained by high-throughput experiments on cells

in living organisms. Sparse signal processing representations will be useful to interconnect

these system biology models in a large sparse network that will span the entire genome.

For example, pharmacogenetics studies will measure the impact of a drug on the gene

expression for diseases that require better treatments and reduced undesired secondary

effects. Other than drugs, new experiments will focus on the DNA alterations that are

induced by viruses which may lead to discover new preventable agents of cancer.

We still know very little about which parts of the genome play a role in regulating

rates of gene expression, mRNA degradation, or translation. Our ability to interpret the

regulatory “language” of DNA sequences is extremely limited. Future research should
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aim to provide much better annotation of the regulatory elements in the human genome,

and ultimately, to work towards detailed models of the combinatorial nature of gene

regulation. These models and corresponding validations would contribute to create a

much deeper understanding of the gene regulation mechanisms and the functional impact

of genetic variation. The research presented in this thesis provides a starting point to

develop analytical methods to jointly analyze the impact of genetic alterations with the

gene expression levels to pinpoint important genome regions for gene regulation.
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Appendix A

The role of the parameter a in SBL

The parameter a controls the shape of the prior distribution over the weights p (w)

specified by the hierarchical prior defined by p (w|α) (3.14) and p (α) (3.15). Following

[97], the α hyperparameters can be integrated out to find the marginal “effective” prior

p (w):

p (w) =

∫

p (w|α) p (α) dα

=
M−1∏

m=1

∫

p (wm|αm) p (αm) dαm

=
M−1∏

m=1

p (wm) (A.1)

where p (wm) is:

p (wm) =

∫

p (wm|αm) p (αm) dαm

=
Γ (a + 1/2)

Γ (a)
√

2πa

√
a

b

(

1 +
w2

2b

)−( 1
2
+a)

(A.2)
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a t-distribution with 2a degrees of freedom and a scale parameter of
√

a/b. When b→ 0

and a is small, this distribution peaks very sharply at 0, and has very thick flat tails, as

shown in Figure A.1.
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Figure A.1: Plot of the SBL marginal prior distribution on a single weight for different
choices of the hyperparameter a. To make the plot we approximated b → 0 by b =
1E − 80, this is a similar conceptually as approximating a delta distribution by a normal
distribution with σ = 1E − 80.

As justified in Section 3.3 and 3.4, the log of the prior distribution p (w) gives us the

sparseness cost measure (i.e., the penalty for not having coefficients different than 0):

log p (w) = C (a, b) +
(

1 +
a

2

)M−1∑

m=0

log

(

1 +
w2

m

2b

)

and we are interested in the case when b → 0, which gives (3.21) which we repeat here

for easier reference:

log p (w) →
b→0

C (a) + (1 + 2a)
M−1∑

m=0

log |wm|

After providing the details in the derivation of the SBL sparseness cost, the second

objective of this appendix section is to provide more discussion on its properties. This

sparseness cost is depicted for a single nonzero weight and several a in Figure A.1 and for
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multiple nonzero weights and a single a in Figure 3.3. The approximately flat tails makes

this sparseness cost a good approximation of the l0 norm, and much more desirable than

the l1 norm (i.e., Laplacian prior). Considering specifically a in (3.21) and Figure A.1,

we can see that the sparseness penalty is proportional to (1+2a). For example, in Figure

A.1 (left), for a = 1 we get a penalty of around 300 for large coefficients as compared to

100 when a ∼ 0, i.e., (1 + 2a) times higher. Therefore, we can increase the sparseness by

increasing a, this takes mass away from the tails and puts it on the “delta” (point mass

at 0) by decreasing the rate on the tail decay. In Figure A.1 (right), the tail decay rate

is about (1 + 2a) on the natural logarithmic scale.

The parameter a also has an impact on the convergence rate of the EM algorithm,

i.e., the speed of the SBL algorithm. In our experiments, for higher sparseness settings

(fewer breakpoints and larger a), the algorithm converges faster than for smaller a. This

is also supported with the following argument. The α−1
m parameters, either converge to

0 (breakpoint discarded) or to a finite point (breakpoint accepted). The EM algorithm

rate of convergence is governed by the maximum eigenvalue of the Jacobian matrix of the

EM mapping defined in (3.20), [66]. In that situation, 1/(1 + 2a) would pull out of the

derivative of α−1
m in (3.20); thus speeding up convergence since the maximum eigenvalue

is divided by 1/(1 + 2a).

In conclusion, the a parameter controls the sparseness in the SBL algorithm, and the

speed of the algorithm. An increase of a leads to a sparser result, fewer breakpoints, and

faster convergence.
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Appendix B

Backward Elimination algorithm properties

The backward elimination (BE) procedure used in GADA (Chapters 3, 4 and 5 ) could

be used alone, without the SBL step, for CNA detection. It is based on considering our

PWC model (3.8) as a classical variable regression selection problem, y ∼ Fw; where the

regressors wi with less impact on the residual are sequentially removed one by one. To

the best our knowledge, this simple procedure has never been proposed as a standalone

technique for CNA detection before. This is a greedy approach, which is suboptimal since

we may eliminate breakpoints that could be more significant at a later stage. Since errors

can be added by each greedy decision, this algorithm tends to be more reliable when

the number of regressors (i.e., candidate breakpoints) is smaller. Compared to forward

selection (FS), BE has been seen to perform better in situations where, as in our case,

the columns of F have high degree of collinearity [53]. Furthermore, the structure of F ,

the design matrix, can be exploited to efficiently find and remove each breakpoint and

produce a ranking list as detailed in Algorithm 4.
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Using standard linear regression, for a given fixed breakpoint set I, the least squares

estimate for the breakpoint weights wI is found by solving the normal equations:

F t
Iy = F t

IF IŵI

ŵI =
(
F t

IF I

)−1
F t

Iy (B.1)

which gives the orthogonal projection x̂I of the vector y on SI as:

x̂I = F IŵI (B.2)

x̂I = F I

(
F t

IF I

)−1
F t

Iy (B.3)

and the residual sum of squares RSSI or norm of the error is:

RSSI = ‖y − x̂I‖2

= ‖y − F IŵI‖2 (B.4)

All these operations can be solved efficiently by noticing again that HI =
(
F ′

IFI

)−1
is

a symmetric tridiagonal matrix, with main diagonal h0 (3.22) and first off-diagonals h1

(3.23) (see lines 2 and 3 of Algorithm 4).

The criterion to decide which breakpoint to remove can be seen in three different but

equivalent ways.
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First, we might consider removing the breakpoint which increases the least the RSSI .

If we denote RSSj to be the residual sum of the squares after removing ij from I

(RSSI−j), then the increase in RSS is:

RSSj −RSSI =
ŵ2

I (j)

h0 (j)
(B.5)

Furthermore, when the noise is normal N(0, σ2I),

Fj =
RSSj −RSSI

RSSI/(M −K)
(B.6)

is distributed as F1,M−K Fisher-Snedecor distribution (M is the number of candidate

breakpoints, and K = |I| the number of breakpoints in the model). If the σ2 is known,

or M >> K,then RSSI/(M −K)→ σ2 and F1,∞ ∼ χ2
1; thus

t2j =
RSSj −RSSI

σ2
=

ŵ2
I (j)

σ2h0 (j)
(B.7)

is distributed as a χ2
1 distribution.

Second, if we assume that the noise is normal N(0, σ2I), and σ2 is known. Then the

least squares estimate for ŵI is also normally distributed:

ŵI ∼ N
(
wI , HI/σ2

)
(B.8)
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Therefore, under the hypothesis that wI(j) = 0

tj ≡
ŵI (j)

√

σ2h0 (j)
∼ N (0, 1) (B.9)

Third, developing what tj represents in terms of y and σ2 by performing all the

operations in (B.1), we can see that:

tj =

(

1
ij+1−ij

ij+1∑

m=ij+1
ym

)

−
(

1
ij−ij−1

ij∑

m=ij−1+1
ym

)

σ
√

1
ij+1−ij

+ 1
ij−ij−1

(B.10)

which can be interpreted as the difference between the sample mean of the right and the

left segment of ij breakpoint divided by the square root of the variance of that difference.

Even if the noise is not normal, but has a finite variance σ2, (B.10) tells us that as the

size of the segments increases, under the null hypothesis of no difference, tj will converge

to N(0, 1) because of the central limit theorem.

Recalculation of the weights after each removal, can be done efficiently with very few

(a constant amount of) operations using the weights already calculated (see lines 9,12

and 16 on Algorithm 4). Thus the overall order of complexity to rank a breakpoint set I

is linear with the size of the set O(|I|).
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Appendix C

Adjustment of the SBL and BE parameters in GADA

Both the SBL or the BE procedure could be used independently to estimate copy number

changes. However, the best results and flexibility are obtained with the combination of

these two algorithms that was discussed in Section 3.7.

The objectives of this appendix are: 1) show that SBL and BE elimination produce

breakpoint sets that are subsets of those obtained from higher sparseness settings, higher

T or a, and can produce equivalent breakpoint sets; 2) propose a strategy for efficient pa-

rameter adjustment in the most general case; 3) evaluate the effectiveness of this strategy

in the simulated dataset [103].

The experiments consist of drawing simulated chromosomes of different lengths M

(M=100, 200, 500, 1000 and 2000 probes per chromosome) in the following conditions:

i. Simulation of null hypothesis (no breakpoints) using normal noise with different

levels of variance.

ii. Simulation of normal copy number variations (few breakpoints and short segments)

with real noise obtained by randomly sampling segments of data of size M from a
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pool of a normal (diploid genome) CEPH cell line samples analyzed by Affymetrix

250K Nsp array platform.

iii. Simulation on cancer copy number variations, by sampling random chunks of data

of size M from cancer samples analyzed in Section 3.9.3.

iv. Evaluation on the simulated dataset analyzed in Section 3.8.3, (only M=100).

For i. to iii. we simulated L = 10000 chromosomes, for the last case iv. all the L =

500×20 = 2000 chromosomes of size M = 100 were used. Each sample, i.e. chromosome,

was analyzed with different options for a and T , and the returned breakpoint sets were

evaluated using different metrics. The sparseness of each set was computed as the number

of returned breakpoints divided by the size of the chromosome, i.e. |I|/M . λ denotes the

average sparseness across all samples. When comparing two breakpoint sets A and B ob-

tained for the same sample but with different parameter settings, we denote A∩B the set

of common breakpoints, which in our case includes all breakpoints in A such that there

exists a breakpoint in B less than δ probes away (if there are two breakpoints in A closer

than δ to a breakpoint on B then only the closest one is assigned to the intersection). We

then computed the averages of the following metrics [56] along the L simulated samples:

P (A = B) =
|A ∩ B|
|A ∪ B| (C.1) P (A ⊂ B) =

|A ∩ B|
|A| (C.2)
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which represent the proportion of breakpoints that are the same on both sets, i.e., concor-

dance (C.1); and the proportion of breakpoints on A that are also in B, i.e., inclusiveness

of A in B (C.2).

C.1 Experiments adjusting a and T in GADA

In all four panels of Figure C.1, we can see that in the initial breakpoint sets provided

by SBL (at T = 0), a higher a setting increases sparseness (lower plots in each panel);

but at the same time the breakpoints remain the same since the P (A ⊂ B) > 99% in all

the cases. That means that breakpoint sets obtained with higher a tend to be subsets of

those obtained with lower a.

As T increases we can see on the lower plots of each panel that we are monotonically

obtaining sparser sets. The breakpoints that we are removing with BE might be different

depending on the initial conditions; for example, a = 0.8 already has a high degree of

sparseness so it will not start removing anything until T > 2.88, where the sparseness will

start to curb down and eventually will converge to the curves obtained with lower a. On

the top plot, we can see that this convergence is not only on the degree of sparseness but

also on the breakpoint sets themselves too, since as T increases concordance goes to 1.

That means that as we increase T we remove the extra part that it was in the breakpoint

set obtained with lower a and we end up with the same breakpoints. Following the

example with a = 0.8, we can see in Figure C.1 (A), that for T > 4.15, the concordance

to starting with a lower a is higher than 80%; and for T > 4.25 and T > 4.35 we obtain

concordances that are respectively higher than 90% and 95%.
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These results indicate that we can adjust the sparseness of the resulting segmentation

equivalently with a and T in a wide margin of settings to give the same breakpoint

set. This behavior has been observed in all the experimental settings (i.–iv.). If there

is something to be detected, true copy number alterations or outliers (ii.) then the

probability of detection is higher and the high concordance is reached for smaller values

of T than in the (i.) case (compare A and C , and B and C, on Figure C.1). For (iii.) case

(data not shown) the concordance is even higher since cancer samples contain more CNA.

The size of the chromosome M also has some impact on the convergence; on chromosomes

with larger M high concordance is reached at a higher T , but for M > 2000 it does not

move further more to the right. Additionally, our results on case (i.) are exactly the same

for different noise power σ2 because both a and T have already been corrected by σ̂2.

C.2 Strategy to adjust a and T in GADA

Adjusting sparseness with T can be done at no additional computational cost, while

adjusting a requires to run the EM algorithm again. Thus, a good strategy is to select

a small a for SBL, i.e., one that provides an initial breakpoint set that reduces most of

the unlikely breakpoints but still ensures a high sensitivity. The first step is sufficiently

sensitive so as not to miss any breakpoints that would require us to switch back to a

lower a. Then, the final degree of sparseness will be adjusted with T .

From the previous experiment in concordance between sets (Figure C.1), we can see

that a good sensitivity means that we do not remove anything that would not be removed

with a lower a at the same T . The worst case, i.e. requiring a higher T for the same
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concordance, is where there is nothing to be detected (Figure C.1 A and B); or when the

true copy number alterations are very short and small (the hardest to be detected).

Moreover, dense arrays (higher M) will be more sensitive because CNA will be sam-

pled with more probes and will produce statistically larger t (compare panels A and C

to B and D in Figure C.1). Thus, small arrays will be those requiring the smallest T

to be highly sensitive. Even very small arrays with 100 probes per chromosome, T = 4

provides enough initial sensitivity. Thus, we find that a = 0.2 should be small enough in

general, and is the value that we have used in all the results on Section 3.8. In Chapter

5 and 6 we increase a up to 0.5 because the size of the arrays M is much larger and we

can use a higher T with similar initial sensitivity.

A practical approach to ensure that the parameter a is well chosen for a particular

setting of T on real data is the following. Assuming that a = 0.2 (or any other choice) we

can check that is small enough for a particular T of interest by rerunning the algorithm

with a lower a, e.g. a = a/2, and checking if the set of breakpoints returned for that

particular T and different a’s are essentially the same (e.g., > 95% concordant).

C.3 Sensitivity to the adjustments of a and T

We will use the simulation case (iv.), to evaluate the impact of the parameter setting

strategy described in the previous section in terms of accuracy. This is the same dataset

as the one used in Section 3.8.3 and by [103], where the underlying breakpoints are known,

so we can exactly evaluate the FDR and the sensitivity for different choices of T and a.
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In Figure C.2, curves corresponding to different a have different starting point in terms

of sensitivity and FDR, but as T increases we decrease the FDR and similar operational

points in terms of sensitivity and FDR are reached compared to those obtained from

different a. The proposed a = 0.2 in Section C.2 offers an initial sensitivity and FDR

such that all the remaining points in the curve are reached adjusting only T , providing

all the levels of sensitivity or FDR that we might be interested in using without having

to switch to another a.

Compared to CBS, we are able to obtain a wider margin of operating points of the

PROC curve. Moreover, independently of the initial a we always have a point with similar

or better average performance either in terms of FDR or sensitivity.
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ii) Real noise (NSP platform), CEPH cell−lines CNA, M=1000
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Figure C.1: The four panels (A,B,C and D) represent a different experimental dataset,
with the results of applying different settings of a and T parameters. Each color corre-
sponds to different setting of a = 0.01, 0.05, 0.1, 0.2, 0.5, and the x-axis increasing values
of T or its associated significance level log10(α). On the top plot we have represented the
inclusiveness P (Ia ⊂ Ia=0.01) (dashed line); and the concordance P (Ia = Ia=0.01). The
concordant breakpoints are defined within a window of δ = 2 probes. The bottom plot
represents the sparseness which on A and B also represent specificity because there are
no underlying breakpoints. A and B use the normal noise simulation described in i. with
chromosome lengths of M = 500 and M = 2000 (different noise levels σ2 generate ex-
actly the same curves); and C and D use the simulation described in ii. with chromosome
lengths of M = 500 and M = 1000.
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Figure C.2: PR operational curves for sensitivity vs. false discovery rate in detecting
copy number changes within δ = 2 probe window. Each line corresponds to SBL+BE
with different starting breakpoint sets (a = 0.05, 0.1, 0.2, 0.5, 0.8, 1.0, 1.5) and varying
T (T increases as we traverse the curve from right to left, i.e. FDR decreases). The
light green curve represents the operating points obtained by CBS with different α =
1E − 4, 0.001, 0.002, 0.005, 0.01, 0.05
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