
EVENT BASED MEASUREMENT AND ANALYSIS OF

INTERNET NETWORK TRAFFIC

by

Sean Raymond McPherson

A Dissertation Presented to the
FACULTY OF THE USC GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the
Requirements for the Degree
DOCTOR OF PHILOSOPHY

(ELECTRICAL ENGINEERING)

August 2011

Copyright 2011 Sean Raymond McPherson

Dedication

To my parents, Ron and Lora McPherson, who are the foundation of the tremendous

support structure built for me by my entire family. I know for certain that I would

never have made it to the end of this daunting and rigorous path had it not be for

the simple, yet imperative life lesson that you taught to me at an early age - if you

commit yourself to something, you must not give up. I appreciate you for the simple

actions, like our weekly phone calls that always brighten my spirits, to the feeling of

strength I get just knowing that you support me and my goals no matter how lofty

they may be. I appreciate you for always allowing me to be myself, and thank you

for remaining at my side throughout this entire incredible journey.

To my sister and brother-in-law, Shalynn and Dale Taylor, whose small, but ex-

panding family, has brought our entire family that much closer together. Being able

to spend vacations with you and hearing stories about my growing nieces has pro-

vided me all the pleasurable experiences of raising a family of my own without the

overwhelming commitment.

To my aunt and uncle, Tom and Carol McPherson, who always showed up at just

the right time for our yearly adventure weekend. Providing a much needed break

from everything along with some stimulating and, thankfully, non-research related

discussion.

ii

Acknowledgements

I would like to thank, first and foremost, my dissertation advisor Dr. Antonio Ortega

for his helpful insights, educating advice and most importantly his tireless patience

when dealing with me as a fledgling researcher.

I would also like to say thank you to all my colleagues and friends who I have

had the pleasure to know during my studies. In particular I would like to express my

gratitude to Gautam Thatte and Genevieve Bartlett for the many spirited discussions

we shared, some of which even related to research.

Finally, I would like to thank Prof. John Heidemann, Prof. Urbashi Mitra, and

Prof. Leana Golubchik for acting as my dissertation committee. The feedback I

received in group meetings early on from Prof. Heidemann and Prof. Mitra, while

at times difficult on my ego, significantly contributed to my process of becoming a

researcher, and for that I am grateful.

iii

Table of Contents

Dedication ii

Acknowledgements iii

List Of Tables vii

List Of Figures viii

Abstract x

Chapter 1: Introduction 1
1.1 Motivation . 3
1.2 Summary of Contributions . 6
1.3 Outline . 9

Chapter 2: Signal Representation and Subsampling
Optimization in Internet Measurement Systems 10
2.1 Introduction . 10

2.1.1 Related Work . 14
2.2 Software Measurement System Modeling 16

2.2.1 Packet Transfer to Memory 17
2.2.2 Interrupt Coalescence . 20
2.2.3 System Processing . 23
2.2.4 Signal Representation - SigVec 25

2.3 Subsampling Optimization . 29
2.3.1 Problem Formulation . 31
2.3.2 Optimization Techniques . 33
2.3.3 Performance Evaluation Using Synthetic Data 40

2.3.3.1 Internet Traffic Measurements 46
2.4 Generalization to High Rate Measurement

Systems . 47
2.5 Conclusion . 49

iv

Chapter 3: Anomaly Detection with the IA2D Detection System 50
3.1 Introduction . 50
3.2 Background . 54

3.2.1 Renewal Theory . 54
3.2.1.1 Thinning a Renewal Process 55

3.2.2 Renewal Density . 57
3.2.3 Estimating the Renewal Density 59

3.2.3.1 Histogram as Density Estimator 63
3.2.3.2 Convergence of Renewal Density Estimate 67
3.2.3.3 Effect of Thinning on Renewal Density 70

3.3 Detection of Periodic Events . 71
3.3.1 Sub-Densities . 73
3.3.2 Pearson’s Chi-Square Test . 75

3.3.2.1 Null Hypothesis - No Anomaly 78
3.3.2.2 Alternative Hypothesis - Anomaly 79
3.3.2.3 Relating Detection Parameters to the Distributions . 80

3.3.3 Smooth Approximation . 82
3.3.3.1 Smooth Approximation - Renewal Process 83
3.3.3.2 Smooth Approximation - Non-Renewal Process . . . 83

3.3.4 Jumping Windows . 85
3.3.5 System Parameter Selection 87

3.3.5.1 Width of Sub-Density 88
3.3.5.2 Histogram Bins per Sub-Density and

Width of Histogram Bin 89
3.3.5.3 Maximum Inter-Arrival Time 90
3.3.5.4 Maximum Inter-Arrival Order 91

3.4 Conclusion . 93

Chapter 4: Detection Examples using IA2D 94
4.1 Introduction . 94

4.1.1 Related Work . 97
4.2 Preliminaries . 100

4.2.1 Renewal Process Assumption 100
4.2.2 Subsampling and Back-to-Back Packet Filtering 101
4.2.3 Packet Delay Variation . 105

4.3 Periodic Event Detection . 107
4.3.1 System Analysis with Poisson Process 109

4.3.1.1 Determining Time-to-Detection 109
4.3.1.2 Time-to-Detection for Subsampled Data 113
4.3.1.3 Theoretical Comparison 115
4.3.1.4 Experiments with Poisson Process 118

4.3.2 Detection with Real Internet Traffic 120

v

4.3.3 Quasi-Periodic Anomaly Detection 123
4.4 TCP-Targeted Anomaly Detection 128

4.4.1 Ideal Analysis . 131
4.4.2 Actual Traffic . 135
4.4.3 Comparison to Related Work 139

4.5 Practical System Implementation . 140
4.6 Conclusion . 143

Chapter 5: Multi-level IA2D System 145
5.1 Multi-level Detection Approach . 146

5.1.1 Data Transmission . 149
5.1.2 Data Processing . 151

5.2 Distributed Forensic Detection System 153
5.2.1 Related Work . 156

5.3 Distributed Measurement and Processing
System Architecture . 158

5.4 Distributed Measurement and
Multi-level Detection Simulation . 159
5.4.1 Data Reduction via Subsampling and SigVec 160
5.4.2 Multi-Level Detection Results 161

5.5 Conclusion . 164

Chapter 6: Conclusions and Future Work 166
6.1 Future Work . 168

References 172

vi

List Of Tables

4.1 PFA and PFN results averaged over values of λ = {10, 13.3, 20, 25} µseconds . . . 119

4.2 PFA and PFN using TD based on ideal calculations 121

4.3 PFA and PFN using TD based on worst case scenario 121

4.4 PFA and PFN using back-to-back (B2B) packet filtering and worst case TD . . . 122

4.5 PFA and PFN results for µ = {1, 1.2, B2B} 123

4.6 PFA and PFN results detecting quasi-periodic attack 128

4.7 PFA and PFN using TD based on ideal calculation 137

4.8 PFA and PFN using TD based on the modified calculation 138

5.1 Storage requirements for detection example measurements 161

vii

List Of Figures

2.1 Packet Timestamping in Hardware and Software Measurement Systems 16

2.2 Example of Packet Size Dependent Transfer Model vs. Approximation of Model . 19

2.3 Example of interrupt coalescence using TIC and PIC methods 21

2.4 Examples of interrupt coalescence with absolute and packet timers controlling the

assertion of interrupts . 22

2.5 Example showing system processing operation in a system without interrupt coa-

lescence . 24

2.6 Example of system processing operation in a system with interrupt coalescence . 24

2.7 Example of Software Induced Delay vs. Signal Model 25

2.8 Measurement Timestamp for PIC . 27

2.9 Measurement Timestamp for TIC . 28

2.10 Inter-arrivals retained using OICv1 and OICv2 for m̂ = 6 38

2.11 KL divergence of inter-arrival distributions using only received data 42

2.12 PMF of the number of packets per measurement for the various IC methods . . 43

2.13 KL divergence of inter-arrival distributions using estimates from low order data . 45

3.1 Point Process with Periodic Deterministic Sequence 55

3.2 Generating renewal density for Poisson process 59

3.3 Generating renewal density estimate from measurements 61

3.4 Design of Detection System . 74

viii

3.5 Example of Central and Non-Central χ2 Distributions 82

3.6 Jumping Window Implementation of Detection System 87

3.7 Selecting Detection System Parameters . 88

4.1 Bottleneck Link Creates Periodic Inter-Arrival 95

4.2 KL divergence results comparing subsampled Internet measurements to ideal Pois-

son process . 104

4.3 KL divergence results showing use of back-to-back packet filter to improve Internet

measurements . 106

4.4 Example of Periodic Events Mixed with Other Measurements 108

4.5 Example of Renewal Density Estimate with Periodic Event Peaks 108

4.6 Comparing Theoretical TD for IA2D versus bPDM 117

4.7 Instantaneous Packet Rate with Periodic Bursts due to Shrew Attack 129

4.8 Example of Renewal Density Estimate with Shrew Attack Triangular Peaks . . . 130

4.9 Change in βD as PFA decreases . 142

5.1 Transmission of data between recording and processing nodes in multi-level

scheme . 148

5.2 DDoS attack converging at target . 155

5.3 Downsampling rate vs. confidence in detection 163

6.1 Renewal density estimate from Twitter data 171

ix

Abstract

Analyzing Internet traffic is critical to ensure the proper operation and maintenance

of the current network infrastructure as well as to guide the expansion of future

Internet pathways. Being able to analyze Internet traffic efficiently and with minimal

error demands systems capable of measuring network traffic events while preserving

characteristics of the traffic important to the particular analysis being conducted.

Because of this it is important that measurement and analysis systems for Internet

traffic be designed in a cooperative manner.

As a starting point of our cooperative measurement and analysis system design,

we examine timing errors, with respect to a specific type of analysis task, inherent

to Internet measurement systems. For select measurement systems we derive models

for the timing errors, and show that with the proper choice of signal representation

most of the timing errors can be mitigated. The signal representation we choose,

called SigVec, is a modified point process representation. The modification is required

because, in certain measurement systems, only a subset of packet arrival timestamps

accurately reflect the packet timing. To preserve timing accuracy subsampling of the

signal is required, which we incorporate in the SigVec representation. Then for specific

Internet analysis tasks we propose a method to optimize the subsampling. Most

importantly, our SigVec representation and subsampling optimization are very general

and can be applied to any existing measurement system, including those like NetFlow

that record flow measurements instead of packet arrivals, and measurement systems

x

designed to follow the IPFIX/PSAMP protocols recommended by the IETF [2,3,15].

Conveniently, our SigVec representation allows us to use the wealth of existing

theory regarding point and renewal processes. In particular, from renewal theory we

select a formulation, called the renewal density, which is suited for analyzing long

range characteristics of Internet traffic. Using the renewal density formulation and

our SigVec signal representation we derive a novel detection system, called inter-

arrival based anomaly detection (IA2D), for detecting low-rate periodic anomalies in

Internet traffic. Because IA2D uses the renewal density we can employ many features

not found in existing systems. One feature of our system is the use of subdensities,

which divide the renewal density into narrow time segments; this allows our system

to detect and distinguish between multiple periodic anomalies, something most other

detection systems are incapable of doing. Another feature of our system, due to

renewal theory, is the ability to analyze and completely characterize the performance

of our detection system for an idealized set of measurements, e.g., a Poisson process.

Using this idealized analysis we derive expressions for system parameters, such as

the time-to-detection, which we then use as guidelines for selecting detection system

parameters when actual Internet network traffic is analyzed. Our system differs from

state of the art systems by: i) detecting periodic anomalies at lower-rates, ii) detecting

anomalies in aggregate Internet traffic, i.e., without flow separation as used in some

systems, and iii) being able to distinguish between multiple periodic anomalies.

xi

Chapter 1:

Introduction

Internet traffic measurement systems are used in numerous network analysis appli-

cations such as network tomography, anomaly detection and measuring quality-of-

service [54, 61]. In general a measurement system is any system connected to an

Internet link that extracts information from packet headers, such as packet size, as

the packets pass through the system. The measurement system records this informa-

tion along with a timestamp indicating, with some processing delay, when the packet

arrived at the measurement system. In addition to measurement systems that simply

record packet header and timestamp data, Internet traffic measurement systems can

use information extracted from the packet header to construct flow based measure-

ments. A flow is a connection between a pair of computer systems. Packets from the

same flow are identified by having the same source and destination IP addresses, as

well as using the same port connections [15].

Both packet and flow level measurements are useful for Internet network traffic

analysis in a variety of applications. Internet traffic measurements are used to analyze

existing networks to identify under-performing and outdated links, which can cause

bottlenecks in otherwise healthy networks and should be repaired or updated for

optimal network performance [9,25,42,47]. Detecting anomalies is another important

1

task that makes use of network traffic measurements to detect denial-of-service (DOS)

attacks, which can affect availability of web sites and services thereby impacting the

economy of the Internet [12,34,36,74]. In addition to being important for maintenance

and security of the Internet, network measurements can also effect its operation. For

instance, network measurements are used in the congestion avoidance algorithms of

some recent variations of the transmission control protocol (TCP), such as TCP Vegas

and FAST TCP. The congestion avoidance algorithm of TCP Vegas uses the average

round trip time (RTT) between when a packet is sent and when it is acknowledged as

being received [13]. In FAST TCP queuing delay replaces the RTT in the congestion

avoidance algorithm [8]. Both RTT and queuing delay are estimated using timing

information obtained from packets, therefore, accurate measurements are important

to the proper operation of these congestion avoidance algorithms.

Clearly, being able to measure Internet packet timing with minimal error is im-

portant to Internet traffic analysis and operation. The focus of the work in this thesis

is on generating Internet traffic measurements while mitigating timing errors, yet at

the same time preserving characteristics of the traffic important to a specific type of

analysis task. We propose that we can accomplish these two criteria by selecting the

proper signal representation, and through the use of subsampling. The signal repre-

sentation is the form in which the measurement system records the Internet network

traffic, in this dissertation we select a signal representation that is most natural to

Internet network traffic events, namely a point process representation. Subsampling

is used when the timing information of particular measurements is known to be in-

accurate, typically due to the measurement system. By modifying the operation of

the measurement system it is possible to optimize which measurements are inaccu-

rate, and thus which measurements are subsampled. By optimizing the measurement

system we create measurements that preserve the desired traffic characteristics for

2

particular analysis tasks.

To illustrate how the signal representation and subsampling optimization can ben-

efit Internet traffic analysis we consider a typical, and important, analysis application,

detecting anomalies in aggregate Internet traffic. In this dissertation we select a par-

ticular anomaly, low-rate periodic traffic, and design a detection system that directly

uses our signal representation instead of modifying the representation as done in sim-

ilar detection systems [12, 34, 74]. Further, we optimize subsampling of the traffic

measurements specifically for the low-rate anomaly detection task, which allows us

to process large collections of Internet traffic efficiently while maintaining reliable

detection performance. We test the performance of our detection system in multiple

applications against that of other detection systems that require modifying the signal

representation [74] or separating the traffic based on flows [10]. The performance

results indicate our system performs comparably to other systems, however, since we

require no modifications to the aggregate signal our system can be used more readily.

For example, unlike the method in [10] our method works when flow information is

not available because an attacker uses IP address spoofing.

1.1 Motivation

The motivating theme for the work in this dissertation is the importance of generating

Internet measurements with minimal timing error while preserving characteristics of

the traffic important to specific analysis applications. Typical Internet traffic events,

e.g., packet arrivals or the beginning of a flow, occur discretely, and measurements of

these events are recorded by standard systems with individual timestamps for each

event recorded. However, many Internet traffic analysis techniques convert the event

based measurements to a more common time series representation in order to be

3

compatible with standard signal processing techniques (e.g., fast Fourier transform,

power spectral density, etc.). The conversion from the event based measurements to

a time series signal representation is a potential source of timing error, and requires

additional computations. By selecting one signal representation compatible with both

the measurement and analysis systems we are able to mitigate a potential source of

timing error.

We derived our signal representation, named SigVec, based on our analysis of mea-

surement systems, particularly software based systems, which is described in Chap-

ter 2. Software based measurement systems are a desirable alternative to hardware

system because they are low-cost. However, certain timing errors inherent to these

systems make them unsuitable for Internet traffic analysis, particularly when used on

high speed networks. One source of error, called interrupt coalescence, groups packets

together creating a situation where out of the entire group of packets the timestamp

is accurate for only one packet. In a sense interrupt coalescence can be seen as a form

of subsampling, and in our signal representation only one accurate timestamp for the

group of packets is recorded and the other timestamps are subsampled. By optimizing

how interrupt coalescence works, as discussed in Section 2.3, we are able to generate

subsampled measurements that preserve desired characteristics of the Internet traffic

making the measurements more useful for Internet traffic analysis. This optimization

is task specific, and using our optimization method the measurements generated are

signal independent and do not contain the timing bias found in standard interrupt

coalescence methods.

It is important to note that, as discussed in Section 2.4, the SigVec signal rep-

resentation and subsampling optimization techniques are general and can be used

in any existing measurement system. In particular, subsampling is important for

all measurement systems to reduce the amount of data that must be stored, and to

4

reduce the computational cost in analyzing Internet traffic.

In Chapter 4, we design techniques for Internet network traffic analysis that

use our SigVec representation in order to reduce the timing errors associated with

transforming the signal to a time series representation. Many analysis applications,

anomaly detection for instance, work by analyzing the long-term timing behavior in

Internet traffic. We use concepts from renewal theory, specifically the renewal density,

to perform such long-term timing behavior analysis using our signal representation.

As an example application of the possible uses of long-term timing analysis we se-

lected low-rate periodic anomaly detection and designed a detection system, which

we called inter-arrival based anomaly detection or IA2D, as described in Section 3.3.

This detection system is shown in Sections 4.3 and 4.4 to perform as well as similar

detection systems, with some additional benefits including: (i) ability to distinguish

multiple periodic anomalies and (ii) being amenable to subsampled measurements.

Finally, in Chapter 5 we present a multi-level, distributed forensic analysis system.

The multi-level system varies the level of subsampling, with a high subsampling rate

used at the first level to quickly determine measurements likely to contain an anomaly,

and then lower subsampling rates at the next level to improve detection confidence.

The multi-level architecture of this system requires that the measurement system and

analysis application work together, which occurs seamlessly with our SigVec signal

representation and IA2D detection system.

In this dissertation we show that by selecting the proper signal representation

and by designing Internet traffic analysis techniques that use this representation,

we can mitigate many timing errors and integrate the measurement and analysis

systems. Further, by optimizing subsampling in the measurement system we can

preserve characteristics of the traffic important for various Internet traffic analysis

applications, while reducing the data storage and computational costs required to

5

perform such analysis.

Given the generality of our signal representation and subsampling optimization

method there exist many applications beyond what is considered in this thesis for

further research, both within Internet traffic analysis and in other areas. For example,

the techniques derived in this thesis for Internet traffic can be applied to signals from

research areas, such as biological or financial data analysis, where event based signals

occur naturally. Two examples of event based signals from these areas are the firing

of neurons in the human body, and the purchase and sale times of stocks in the stock

market [60]. Further, low-rate periodic events are just one type of anomaly currently

found in Internet network traffic. Low-rate periodic events were considered here

because, by using the renewal density, it is straightforward to distinguish between

Internet traffic that does and does not contain periodic traffic. It is possible to

detect other types of anomalies by modifying our IA2D detection system, however,

depending on the characteristics of the anomaly, distinguishing between the renewal

density of Internet traffic with and without the anomaly may not be as straightforward

as in the periodic case.

1.2 Summary of Contributions

The following list provides a brief summary of the key contributions of this disserta-

tion.

• Software Measurement System Modeling, Section 2.2 - Similar measurement

system analysis has been performed previously, for example the work of Salah

that derived the maximum throughput and average timing delay of packets

through a software measurement system [66]. However, the analysis presented

here is different in that it provides system component models which reflect the

6

actual operation of the measurement system components, yet are simplified,

making system analysis easier. Using this analysis we show that with the choice

of our signal representation we can mitigate many of the timing errors inherent

to the software measurement system.

• SigVec Signal Representation, Section 2.2.4 - The signal representation derived

here contains all accurate information captured by the software measurement

system. As mentioned previously, due to interrupt coalescence, only one times-

tamp per group of packets is accurate. Therefore our signal representation

reflects this and provides one measurement per group of packets; each measure-

ment indicating the one accurate packet timestamp and the number of packets

contained in the measurement. The signal representation with two components

is a novel idea that conveys more information about the characteristics of the

subsampled Internet traffic than is indicated by just the subsampled timestamps

alone.

• Optimized interrupt coalescence, Section 2.3 - The operation of interrupt coa-

lescence is, for the first time, optimized specifically for Internet traffic analysis.

In order to optimize the operation of interrupt coalescence we define a metric,

which can be modified for specific analysis applications, and use this metric

to optimize the probability distribution of the number of packets per measure-

ment found in the interrupt coalescence algorithm used. Compared to existing

interrupt coalescence methods our optimized interrupt coalescence technique is

signal independent and does not incur timing bias found in some existing meth-

ods. The optimization metric and technique are completely general and can be

used to design subsampling in other measurement systems, not just those that

use interrupt coalescence.

7

• IA2D Detection System, Chapter 3 - The detection system designed here uses

a renewal theory formulation called the renewal density, which allows us to

analyze long-range timing behavior using our signal representation. Because

the system works in the time domain we can detect and distinguish between

multiple periodic anomalies, which is not possible in many other detection meth-

ods. Distinguishing multiple periodic anomalies is possible because we indepen-

dently analyze different time segments of the renewal density, which we call

sub-densities.

• TD - Time-to-Detection Analysis, Sections 4.3.1 and 4.4.1 - IA2D is designed to

wait a specific amount of time in order to gather enough evidence to determine

if an anomaly is present or not. The length of time to gather evidence is called

the time-to-detection, TD, and using renewal theory we derive expressions for

TD for two different anomaly detection applications. The expressions for TD are

based on the assumption that the background Internet traffic is modeled by a

Poisson processes, therefore, we make certain modifications to the expressions

for real Internet traffic in Chapter 4, where we also show that the modifications

reliably predict the TD required for real Internet traffic. The TD analysis also

provides an addition benefit in the implementation of our IA2D detection sys-

tem. For each subdensity in our system TD is different, however, for a better

user interface we desire to have all subdensities report detection decisions at

the same time. Therefore, we design a jumping window implementation, based

on the TD calculation, such that each of the subdensities can report detection

decisions at the same time, at a rate determined by the user.

• Multi-Level Detection System, Chapter 5 - We designed as a final application

of IA2D a distributed, forensic anomaly detection system, which combines our

8

work on measurement and analysis systems into one integrated application. In

this architecture, multiple nodes record measurements of Internet traffic. When

an anomaly is detected somewhere in the network, the recording nodes send

their measurements to a processing node for forensic anomaly detection, seek-

ing to determine the path of the anomaly through the network. In order to

reduce the cost of transmitting data between recording and processing nodes

we propose a multi-level detection method, which at the first level finds measure-

ments that likely contain an anomaly, then request additional data to confirm

the detection. The multi-level structure also speeds analysis at the processing

node making such a system desirable for implementation in large, distributed

measurement networks.

1.3 Outline

This dissertation is organized in the following manner. In Chapter 2 we examine

software based measurement systems, construct a suitable yet simple timing error

model for measurement generation in such a system and derive a signal representa-

tion and subsampling technique that mitigates the timing error. Using this signal

representation, combined with ideas from renewal theory, we derive a low-rate peri-

odic detection system, called IA2D, in Chapter 3. Applications of IA2D are studied

in Chapter 4, and for each application a thorough system analysis is conducted using

an ideal renewal process, e.g., a Poisson process. Finally, in Chapter 6 we provide

some concluding remarks and highlight a number of potential applications of IA2D in

a broad set of research areas.

9

Chapter 2:

Signal Representation and Subsampling

Optimization in Internet Measurement Systems

2.1 Introduction

As described in Chapter 1 measuring Internet traffic in real time is a task with nu-

merous applications, many of which are important to the operation and maintenance

of the current network infrastructure as well as to the expansion of future Internet

pathways. The accuracy of the timing information affects the usefulness of the Inter-

net measurements for many analysis tasks, including those mentioned in Chapter 1.

The timing information may be used explicitly, as in the packet-pair method for esti-

mating bottleneck bandwidths, which measures the inter-arrival time between pairs

of probe packets [47]. Otherwise the timing information might be used implicitly,

such as in DoS detection mechanisms that compute the autocorrelation and power

spectral density of the incoming packet stream, searching for periodic components

which could indicate an anomaly [34, 36]. Distortions or delays in the timing infor-

mation recorded in Internet traffic measurements impact the performance of many

analysis applications.

10

Clearly, measuring Internet traffic in real time is fundamentally important to In-

ternet analysis, therefore, much attention has been given to designing methods and

systems to generate measurements. Not all measurement systems generate times-

tamps for the recorded measurements, for example some systems count the number

of packets per second matching some selection criteria (packet size, destination port

number, etc.) and the measurements are packet counts output at regular intervals.

The focus of this work however, is on systems that produce a timestamp that indi-

cates the timing of the corresponding measurement. The notion of timestamping a

measurement is important because it distinguishes between classes of measurement

systems. Measurement systems can be categorized by the rate at which they are ca-

pable of producing measurements with accurate timing information. Cost is another

way to classify measurement systems, and is linked to the accuracy of the timing

information the system produces. The most accurate systems can cost as much as

$10, 000, while less accurate systems, like those built using everyday personal comput-

ers, may cost only a few hundred dollars. When determining the required accuracy

of the measurement system and the associated cost, it is important to consider the

intended Internet analysis application. For many analysis applications lower cost sys-

tems, with less accurate timing information, or subsampling the number of output

measurements, may be suitable as long as the effect of the measurement is known.

One class of measurement system, which we broadly define as hardware based

systems, uses a very accurate hardware clock to generate timestamps for measure-

ments. The use of a hardware clock is beneficial because it allows the timestamp

to be generated before any processing by the host system takes place. By generat-

ing a timestamp before host system processing occurs, and thereby avoiding delays

caused by the system processing, a hardware based system is capable of generat-

ing timestamps for individual packets at very high rates. Also, because the host

11

system processing delays are removed, the timestamp indicates the time when the

packet arrives at the measurement system. The accuracy of hardware based systems,

most notably the DAG network cards developed by Endace [23, 24], depends on the

precision of the hardware clock. Current systems feature hardware clocks capable

of generating timestamps with nanosecond precision, which is sufficient for current

high speed networks, e.g., 10 Gbps. The major drawback of hardware based sys-

tems is the price; where current systems cost on the order of $10, 000. Further, as

the speed of Internet network links increase, hardware clocks capable of generating

timestamps with greater than nanosecond precision will be desirable; thereby driving

up the cost to produce hardware based measurement systems. Note that it is possible

to create lower cost hardware measurement systems that use less precise hardware

clocks, or use subsampling to reduce the number of measurements, thus decreasing

system complexity. The advantage of such lower cost hardware systems would be

that they remove the timing delays due to system processing, as discussed in the next

paragraph, however, currently such systems do not exist.

Due to the high cost of current hardware systems, recently there has been more

research done on the viability of using alternative classes of measurement systems

to conduct Internet traffic analysis. An alternative class of measurement system,

which we define as software based systems, uses the host system clock to generate

measurement timestamps. Costing less and being readily available, software based

measurement systems represent a potential alternative to hardware systems, how-

ever, their fundamental drawback is the rate at which software systems can generate

measurements. In a software based system the timestamp is not generated until the

measurement software running on the host system receives the packet, which does

not happen until after the packet has been processed by the network interface card

(NIC). Processing in the NIC creates multiple, non-constant delays that impact the

12

accuracy of the timing in software based measurements. The timing delays occur

because, except during low-rate traffic conditions, a software system cannot generate

individual timestamps for each incoming packet. Instead packets get queued, waiting

to be processed, or more commonly a technique known as interrupt coalescence is

used to reduce the burden on the system processor that is created by the network

interface card requesting each packet to be processed individually. Interrupt coa-

lescence reduces the burden by grouping multiple packets for the system to process

together; reducing the time spent by the system context switching and other tasks.

These are done once for each group of packets, but would be done for each packet

if no interrupt coalescence was used [66]. Because multiple packets are grouped to-

gether, the timestamps recorded by the system indicate the time when processing by

the NIC has been finished for the entire group of packets and not the arrival time

of the individual packets, as in the hardware system case. Only when the incoming

traffic rate is low enough can a software system produce timestamps for individual

events; thus, the differentiation between hardware and software systems is based on

the rate at which they can generate measurements.

The goal of this chapter is not to redesign software measurement systems in order

to keep up with the increasing network rates. Instead we focus on two methods to

mitigate the timing errors inherent to software measurement systems such that ex-

isting systems can be used for Internet network traffic analysis. The two methods we

use to mitigate the timing errors are subsampling of measurements, and the choice

of how to represent the measured signal. To derive a meaningful signal representa-

tion and determine methods to subsample measurements we first perform a thorough

analysis of the effect of the software measurement system, and its inherent delays, in

Sections 2.2.1, 2.2.2 and 2.2.3. Then by understanding these delays a new signal rep-

resentation is derived in Section 2.2.4, which is able to group multiple packets (those

13

received during the same interrupt) into a single measurement. It will be shown that

the timing for one packet in each group is accurate; thus the new signal representation

contains all the reliable measured information, one accurate timestamp and a count

of the number of packets in the measurement. Given this system analysis and signal

representation, we show, in Section 2.3, how to optimize the operation of interrupt

coalescence for specific network traffic analysis tasks. Such an optimization is, we

believe, the first of its kind, as normally the operation of interrupt coalescence is de-

signed only to maintain an average interrupt rate. Finally, we will show in Section 2.4

that our signal representation can also be applied to measurements from high rate

(e.g., hardware based) measurement systems, and that our method for optimizing in-

terrupt coalescence can be used to optimize subsampling of measurements in general

systems.

2.1.1 Related Work

Several approaches have been proposed to mitigate the effects of the software system

processing. One method to reduce the timing delays associated with software systems

is to improve the processing performance of such systems. The work of Varenni, et

al. [76] and Dashtbozorgi [19] seeks to use multiprocessor software based measurement

systems that can process multiple packets in parallel. Parallel packet processing

removes or reduces the time that packets are queued waiting to be processed, and

makes interrupt coalescence unnecessary. While such methods are possible given the

current Internet link speeds, in the future such multiprocessor systems will become

increasingly more complex to optimize in order to maintain pace with the bandwidth

of the Internet. Additionally, the work in this thesis uses standard measurement

systems because they cost less and are more available than the specially designed

14

multiprocessor systems.

Another method to make software systems viable for Internet traffic analysis is

to adapt network traffic analysis methods to software based measurements. Some

recent work has focused on adapting a specific analysis task, bandwidth estimation,

to work with software system measurements. Prasad, et al. [61] studied the effect of

the measurement system on a standard bandwidth estimation technique, the packet

train method, and based on their observations were able to adapt the estimation

technique to mitigate the measurement system effect. Man, et al. [50] went a step

further and adapted the analysis method by altering how the packet train was injected

into the network. By altering the packet train the effect of the measurement system

was reduced, which improved estimation time and performance. Thus most existing

work that uses software based measurement systems involves modifying the analysis

task to counteract the effect of the measurement system.

The work presented in this thesis begins with a similar idea, but with one key

distinction. The previous work focused on how the measurement system impacts the

signal used for their particular analysis task, i.e., bandwidth estimation. Our work

instead looks at the entire measurement process, including how measurement times-

tamps and the signal used for analysis are generated. By studying the impact of

the software system on the entire measurement process, we developed a completely

different signal representation. Finally, using this new signal representation, we can

perform various Internet analysis tasks with measurements generated using measure-

ment systems, such as the software based system, that can only produce measurements

at lower rates.

15

2.2 Software Measurement System Modeling

High rate measurement systems, e.g., hardware systems, are able to produce accurate

timestamps for individual packets, even when the packets are received at a very

high rate. The advantage of a hardware based system as compared to a low rate,

or software based system is illustrated in Figure 2.1. The measurement timestamp

generated by the hardware system occurs before the packet is processed by the NIC.

This is advantageous because processing that takes place in the NIC creates multiple,

variable delays that impact accuracy of the measurement timestamp. While the

benefit of the hardware based system is apparent the drawback is in the price of

the systems. Further as the speed of Internet networks increase the cost to produce

hardware systems capable of matching the speed of the network will increase as well.

Figure 2.1: Packet Timestamping in Hardware and Software Measurement Systems

Software based measurement systems are one example of measurement systems

that are not always capable of producing measurements for individual packet arrivals.

The capability of software systems to produce measurements for individual packet

arrivals depends on the incoming traffic rate and the maximum interrupt rate that

they system can handle. However, software systems are a readily available, lower-

cost alternative to hardware systems. The accuracy of the timestamps generated

for a software based system depends on the processing done on the packet before

a timestamp is recorded. As shown in Figure 2.1, the additional processing can

be grouped into three separate blocks. The first block, described in Section 2.2.1,

is a packet-size dependent delay that occurs when transferring the packet data to

16

memory. The second block is interrupt coalescence (IC), which depends on the arrival

timing of the incoming packet stream. Interrupt coalescence, covered in Section 2.2.2,

is a method used in high speed network interface cards (NIC), which lessens the

processing burden on the host system by reducing the number of interrupt service

requests generated by the NIC indicating to the system that a packet is ready for

processing. The last block is the delay due to software processing, which we discuss

in Section 2.2.3. The software processing delay is a combination of multiple delays

from the operating system as well as the application generating the timestamp.

Note that hybrid hardware/software measurements systems exist; one example

system is CoralReef developed by CAIDA [43], which is actually a software suite de-

signed to work with a number of high end network adapters. Using CoralReef along

with a high end network adapter and host system measurements can be generated

for individual packets without incurring the signal-dependent timing delay due to

interrupt coalescence. Thus with such a system the only timing delays are packet

size dependent, and can therefore be removed by post processing making such mea-

surements reliable for Internet analysis. Because of the cost of components, high-end,

hybrid measurement systems typically cost as much as commercial hardware systems

and generally are designed specifically for and maintained by research laboratories or

universities (CAIDA is based at the University of California’s San Diego supercom-

puting facility). In our work we do not consider hardware or hybrid systems because

of their associated cost.

2.2.1 Packet Transfer to Memory

In a software based system the incoming packet data is first transferred to system

memory. The NIC waits for this transfer to complete before asserting a system

17

interrupt letting the CPU know that the packet data is available for processing.

Commonly, two methods are used to transfer data from the NIC to memory, direct

memory access (DMA) and programmed input output (PIO). With PIO the CPU is

used to transfer the data from the NIC to memory. This often overburdens the CPU,

which is already stressed in a high speed network measurement system, so in this

chapter discussion is limited to the study of DMA data transfers [63].

The delay, D[n], incurred in transferring the packet data to memory is a combina-

tion of two delays, i.e., D[n] = D1[n]+D2[n]. The first delay, D1[n], is the time spent

waiting to access the peripheral component interconnect (PCI) bus (used to transfer

data). In typical systems the transfer rate of the DMA channel is comparable to that

of the network link being measured, therefore, in our work we assume that D1[n] is

negligible. As a particular example we consider the rates of the current DMA engines

and current network link rates. According to [65] “a typical DMA engine can sustain

over 1 Gbps of throughput across the [PCI] bus”, which is sufficient for a Gigabit

Ethernet NIC. For higher speed NIC, such as 10 Gigabit Ethernet, a PCI express bus

can be used offering greater throughput than the PCI bus. Maximum raw through-

put for the PCI express bus is 2.5 Gbps with actual data rates depending on the

payload size (packet size) and ranging from 1.5 to 2.0 Gbps [38]. These values are

for individual PCI express bus channels or lanes, therefore 10 Gigabit Ethernet NIC

cards require multiple PCI express bus channels [69].

The second delay, D2[n], is the length of time required to actually transfer the

data to memory. Because the speed of the DMA channel is fixed, the amount of time

required to transfer a packet depends on the size of the packet itself. Thus, the delay,

D2[n], is some constant multiple of the packet size. We approximate delay using

the equation D2[n] = PacketSize/BitRate seconds. Here BitRate is the bit rate

of the DMA channel and PacketSize is the size in bits of the current packet. This

18

approximation for D2[n] captures the packet size dependence of the DMA transfer

time.

Figure 2.2 shows an example of the packet size dependent data transfer model

along with the our approximation of the model. In our approximation the delay

D[n] = D1[n] +D2[n] is simplified by the expression D[n] = D2[n]. We use this ap-

proximation because, as discussed previously D1[n] is assumed negligible. One might

argue that this approximation is overly simplistic, and that the DMA transfer time

depends on the availability of system resources like the PCI bus. However, according

to Salah, et al. in [66] “the transfer rate of incoming traffic [...] is not limited by the

throughput of the DMA channel.” Therefore, using D[n] = PacketSize/BitRate our

packet transfer model approximation accurately reflects the packet size dependence

of the DMA transfer delay while being simple to implement in simulation.

In Figure 2.2 m[n] indicates the time stamp of the beginning of a packet received

at the NIC. At the output of the packet transfer block (in Figure 2.1 the timestamp

of the incoming packet is now m′[n] = m[n] + D[n]). Using our approximation for

D2[n] (lower section of Figure 2.2) the timestamp of the packet now indicates the end

of the packet, and is given by m′[n] = m[n] + PacketSize/BitRate.

Figure 2.2: Example of Packet Size Dependent Transfer Model vs. Approximation of Model

19

2.2.2 Interrupt Coalescence

In a software based measurement system, after the packet data has been transferred

to memory the NIC asserts a system interrupt informing the CPU that the packet is

ready for processing. In low speed networks, an interrupt is asserted for each packet

that the NIC receives, since at these speeds, e.g., 10 Mbps to 100 Mbps, typical

CPUs are capable of responding to an interrupt service request (ISR) for each packet.

However, in high speed networks, e.g., 1 Gbps and beyond, the number of packets

received increases significantly and consequently the number of ISRs made by the

NIC increases as well. The increase in ISRs can result in a condition called receive

livelock where the host system cannot perform any processing and spends all of its

clock cycles servicing the interrupt requests. To prevent livelock, a technique called

interrupt coalescence (IC) is used in high speed NICs that reduces the workload of

the host CPU by lowering the number of interrupts issued by the NIC [66].

Three variations of interrupt coalescence are commonly used: timer-based IC

(TIC), packet-based IC (PIC), and hybrid time based methods (HIC), such as those

found in the Intel NIC [37,44, 66]. The goal of interrupt coalescence is to reduce the

interrupt rate imposed on the measurement system by the NIC. The intuitive way to

reduce the interrupt rate is to not issue an interrupt for each packet received. When

an interrupt is issued depends on the method of interrupt coalescence. For example,

when using PIC after the initial packet arrives, the NIC card waits until a given

number of subsequent packets are received before an interrupt is asserted [66]. The

limitation of this method is that during low traffic rate conditions the latency between

the first packet arrival and interrupt assertion becomes excessive. Alternatively, TIC

waits a fixed amount of time after the arrival of a packet before issuing an interrupt.

In low traffic rate situations long fixed time values can also lead to excessive latency

20

for TIC. Figure 2.3 shows how TIC and PIC generate interrupt service requests. On

the left TIC is used with parameter Tfix, which is the length of time after the initial

packet arrival before an interrupt is issued. Similarly on the right, PIC is pictured

where the number of packets received before asserting an interrupt, Cfix, is set to 5.

Interrupt
Interrupt Interrupt

Time TimeTfix

Fixed Packet IC (5)Fixed Time IC (Tfix)

Figure 2.3: Example of interrupt coalescence using TIC and PIC methods

Although these simple methods successfully reduce processor burden, their lim-

itations create a need for hybrid methods such as that developed by Intel, which

incorporates two separate mechanisms to control the number of interrupts asserted

on the system. These mechanisms are controlled by two separate timers named the

absolute and packet timers [37]. Figure 2.4 illustrates the difference between the timer

variations. The packet timer, Tpack, begins counting down after a packet has been

received. If additional packets are received before the timer finishes counting down,

then Tpack is reset and begins counting down again. Anytime Tpack reaches zero before

a packet arrives to reset the timer, the NIC will assert an interrupt and all packets

that were received since the previous interrupt will be processed by the CPU. During

low traffic rate conditions the packet timer prevents excessive latency in the packet

processing.

However, under high traffic rate situations when packets arrive in rapid succession

it is possible that the packet timer will never count down to zero, so a second timer

called the absolute timer, Tabs, is used. Similar to fixed time IC, the absolute timer

waits a fixed interval following the receipt of an incoming packet before asserting an

21

Tabs Tabs

Absolute Timing

Time

...

Tpack Tpack

Packet Timing

Time

...

Interrupt
Asserted

Interrupt
Asserted

Interrupt
Asserted

Interrupt
Asserted

T[n] T[n] T[n]
...

Figure 2.4: Examples of interrupt coalescence with absolute and packet timers controlling the

assertion of interrupts

ISR. All packets received during the interval Tabs are processed by the system during

the same ISR as the initial packet. Interrupt service requests are issued whenever

Tpack or Tabs count down to zero; in this way interrupts are asserted efficiently during

both high and low traffic rate conditions.

While the effect of the data transfer delay was packet size dependent, the effect due

to interrupt coalescence is packet timing dependent. Because the incoming packet tim-

ing is not known in general, studying the effect of IC on individual packets is difficult.

In [64] Salah used a Markov model to study the average timing delay experienced by

individual packets in a system using fixed-packet interrupt coalescence. In our work,

rather than study the effect of interrupt coalescence on individual packets, we propose

a simplification in Section 2.2.3 and our signal representation in Section 2.2.4, which

allows us to analyze the effect of IC on a group of packets (one measurement) instead

of individual packets. The simplification and change of representation not only fa-

cilities the analysis, but also removes some timing errors, that are described in the

next section, created by the measurement system. While our signal representation

produces a subsampling in the number of data points it preserves only the data for

which accurate timing information is known.

22

2.2.3 System Processing

After interrupt coalescence generates an interrupt service request for a group of pack-

ets, each packet must be processed by the system. The packet processing consists

of two parts. The first part of processing is handling the ISR, which for systems

using DMA consists of interrupt-context switching and informing the system kernel

to begin protocol processing on the packet. Similar to the notation in [65], we define

r to be the ISR handling rate, so that 1/r is the average time to handle an ISR.

One of the benefits of interrupt coalescence is that the ISR processing is done for the

entire group of packets, so the ISR servicing time for all the packets is the same as

the ISR service time of a single packet [65]. The second part of processing involves

protocol processing, based on the type of packet received (TCP, UDP, etc.), and user

application processing, i.e., generating the time stamp. Unlike the first stage, the sec-

ond stage of processing is done individually for each packet even if they are received

as a group due to IC. In general, the processing done in the second stage depends

on the availability of the system processor, which may be different for each packet.

Therefore the system processing time is variable and we define it for the n-th packet

as S[n]. Note that system kernels exist which can generate timestamps for the user

application avoiding some timing errors, however, as will be discussed later, using our

signal representation the effect of user application processing is removed in the final

measurement timing.

One cause for variable system processing time is the fact that the second stage

of processing may be interrupted at any time for ISR servicing. In systems without

interrupt coalescence this fact makes it difficult to model the variability of the system

processing delay. As shown in Figure 2.5, while the actual packet servicing time might

be the same for all packets, the effective packet servicing time can be quite different

23

from packet to packet and depends on the number of ISRs handled during packet

processing.

Figure 2.5: Example showing system processing operation in a system without interrupt coales-

cence

Alternatively, in measurement systems that employ interrupt coalescence the pro-

cessing is slightly different, as shown in Figure 2.6. In this scenario the ISR is not

issued until after the last packet in the coalesced group has been transferred to mem-

ory (here 3 packets are grouped together via IC). Then a single interrupt service

request is handled for the 3 packets (taking 1/r seconds), and then packet processing

begins. We assume that the system is able to process all the packets from the current

coalesced group before an ISR is generated signaling that the next group of packets

is ready for processing. Because of this assumption the second stage processing is

assumed to be constant for each packet, so S[n] = S. When this assumption does not

hold, the timestamp values in the final output measurement will suffer from jitter.

Figure 2.6: Example of system processing operation in a system with interrupt coalescence

24

Given this system processing delay model, and assuming the second stage process-

ing is a fixed time S, the time difference between packets received in a single coalesced

group would be exactly S. An example of this is shown in the top of Figure 2.7, where

the packet timestamps are such that M [0] −M [1] = M [1] −M [2] = S. This fixed

inter-arrival timing is artificial and does not reflect any of the characteristics of the

original signal. The artificial inter-arrival timing is noise that is added to the signal.

In order to reduce the effect of this noise, a more natural signal representation, shown

in the bottom of Figure 2.7 and described in the following section, is used.

Figure 2.7: Example of Software Induced Delay vs. Signal Model

2.2.4 Signal Representation - SigVec

Some alterations to the signal representation become necessary when the effects of

the software measurement system are taken into account. In particular, the problem

outlined in Section 2.2.3, where system processing being done for each packet cre-

ates an inter-arrival time between packets in the same coalesced group that is near

uniformly equal to S seconds. It is desirable to remove the measurements that are

25

affected by the software processing delay, and to do so we propose our signal repre-

sentation, which we have termed SigVec. In SigVec, the signal is represented by the

vector, X(k):

X(k) = {M(k), C(k)} (2.1)

Where M [k] represents the timestamp generated by the system for the first packet

in the coalesced group, and C[k] gives the number of packets received in that group.

The number of packets received in each group, C[k], is recorded because this informa-

tion is needed by many statistical analysis methods. As a simple example, computing

the average rate or inter-arrival time between packet arrivals in a computer network

requires the number of packets contained in each measurement. Let λ denote the

average inter-arrival time between packets, and let λ′ denote the average inter-arrival

time between measurements recorded on a software measurement system using our

signal representation. Then the average inter-arrival times are related by the expres-

sion λ′ = E[C[k]] · λ, i.e., the average inter-arrival between measurements is equal

to the average inter-arrival time between packets multiplied by the average number

of packets per measurement. The information contained in C[k] is also required for

more sophisticated statistical analysis, in particular it is important for deriving an

estimate of the renewal density, which we discuss in Chapter 3 and use in our anomaly

detection method.

SigVec captures precisely the measured information: each interrupt provides ac-

curate timing information for one packet and a packet count. Depending on the type

of interrupt coalescence used in the system the timing information may indicate the

actual timing of the last packet or the first packet in the measurement. This is the

case in systems that use PIC. As an example, in Figure 2.8, the measurement times-

tamp, M [1], generated for the first serviced packet is equal to M [1] = m[3]+1/r+S.

26

Here m[3] indicates the time when third packet has been transferred to the system via

the DMA channel. In this example we assume that Cfix = 3 for PIC, so m[3] is the

last packet in the group of packets. Therefore the timestamp of M [1] indicates the

time when the last packet in the group of packets has been transfered to the system,

plus the ISR handling time 1/r and the system processing time S. Assuming 1/r and

S are constant, the final measurement timestamp, M [1] indicates the actual packet

timing of the last packet in the measurement with a constant shift of 1/r + S. The

constant shift is the same for every measured timestamp, and thus can be ignored.

Figure 2.8: Measurement Timestamp for PIC

A similar situation arises in systems that use TIC. As an example, in Figure 2.9,

the timestamp M [1] is equal to M [1] = m(1) + Tfix + 1/r + S. In TIC the timer

begins counting down after the initial packet, and the interrupt is asserted once the

timer has reached zero. Thus the timestamp generated for the measurement, M [1] is

the timing of the first packet in the group plus a constant shift equal to Tfix+1/r+S.

While knowing that the measurement timestamp indicates the first or possibly the

last packet in the group does not affect the analysis techniques, it is important to

note that only one packet in each coalesced group does have accurate timing, and

thus the signal representation is appropriate.

The key point regarding the signal representation is that by grouping all packets

received during the same interrupt into a single measurement the error associated with

27

Figure 2.9: Measurement Timestamp for TIC

software processing is mitigated, i.e., the artificial S second inter-arrival time is re-

moved. Further, instead of being viewed as a timing distortion, interrupt coalescence

can be seen as a subsampling mechanism that reduces the number of measurements

that can be used for analysis. Thus only the timing delay from transferring the packet

to memory remains. Note that when not measuring the time at the beginning of a

packet, and instead generating a timestamp indicating the end of the packet, the de-

lay due to data transfer actually does not alter the relevant timing statistics. In other

words, the average inter-arrival time between packets remains the same regardless of

whether the timestamp reflects the beginning or the end of a packet.

Therefore the process of generating measurements using a software based mea-

surement system is equivalent to methods which sample only a subset of incoming

packets, such as those described in [4, 16, 78]. The key difference is that in the men-

tioned works subsampling is a process applied to the measured data by the software

or hardware collecting the measurements. Instead, in a software measurement system

subsampling is controlled by the operation of interrupt coalescence, which is primar-

ily designed to reduce the number of ISRs asserted by the NIC and is not designed

for generating measurements. In particular there is no reason to expect that these

measurements preserve information that is important for Internet traffic analysis. In

the next section a general model for interrupt coalescence will be introduced, which

28

we also show how to optimize. The general model for interrupt coalescence, is event

counts, and can be used to generate many of the subsampling strategies described

in [16], and any others that involve event counts. Not that subsampling strategies

that use timing between events cannot be implemented. We do not use timing be-

tween events because as compared to counters measuring timing between events, their

implementation is more difficult in a measurement system, particularly in lower cost

systems.

2.3 Subsampling Optimization

One main contribution of this thesis is to present for the first time a formal approach

to designing subsampling methods, so that measurements are optimized to improve

Internet analysis. We are particularly concerned with quality-of-service monitoring

tasks such as end-to-end link capacity estimation, available bandwidth estimation,

and bottleneck detection, as well as security applications such as denial-of-service

(DoS) attack detection. Besides being important for proper network operation, all

these tasks share a common characteristic of requiring sufficiently accurate inter-

arrival timing data between packets. Given the tremendous packet rates associated

with Internet network traffic, combined with the subsampling architecture already

built-in to standard measurement systems, optimizing subsampling for Internet anal-

ysis is extremely useful.

Our work in optimizing subsampling, which was first presented in [53], was done

considering interrupt coalescence as the method of subsampling. The various practical

IC techniques that have been proposed [37], typically use simple timers triggered by

packet arrivals. The focus in these designs has been on maintaining reasonably low

interrupt rates, and no formal consideration has been given to how groupings should

29

be optimized to facilitate relevant Internet traffic analysis tasks.

We note that while the work here focuses on interrupt coalescence in software

based measurement systems, and therefore only considers packet arrival measure-

ments, the techniques derived are general and can be applied to many other scenarios,

such as those discussed in Section 2.4. For example, instead of being used to imple-

ment interrupt coalescence, subsampling can be applied in high-rate (hardware) based

measurement systems to reduce the storage cost required for storing long segments

of Internet traffic. Subsampling of high-rate measurements can be done using the

existing PSAMP/IPFIX protocols [2,3]. These protocols define the general operation

of measurement systems, yet allow the specific operation of the systems to be left to

the user or system designer. Thus, optimized subsampling methods could be used in

measurement systems under the PSAMP/IPFIX protocols. Further, subsampling is

also applied to flow based measurements, such as NetFlow, therefore our optimization

techniques could also be applied to flow based measurements as well.

The starting point for our work is that for various analysis tasks, measurement

systems should preserve both first and higher order inter-arrival distributions, where

the order refers to how many packets are received in between the measured times-

tamps. Example analysis applications include, end-to-end link capacity and available

bandwidth estimation [41,61], and our anomaly detection method, to be described in

Section 3.2.3, that computes an estimate of the renewal density. Thus, we propose

that various IC (and subsampling) approaches can be compared by obtaining first

and higher-order inter-arrival distributions and quantifying, e.g., using the Kullback-

Leibler divergence, how different they are from those that would be obtained from the

original data, for which timing is accurate for all packets as recorded by a high-rate

measurement system.

Our proposed optimization techniques are based on two main observations. First,

30

existing IC methods are based on timers triggered by packet arrivals. This leads to

potential biases in estimated inter-arrival times, since different packet inter-arrival

patterns affect the timers, which in turn are used to generate measurements. Thus

we propose measurement techniques that group packets to generate interrupts in-

dependently of their inter-arrival times. Specifically, before each measurement, the

system decides how many packets should be aggregated into one measurement and

waits as long as needed for the required number of packets to be gathered before

generating an interrupt. Second, such measurement systems are completely specified

by the distribution of number of packets per measurement.

There are many ways of selecting the distribution of the number of packets per

measurements. Since we consider applications that use different inter-arrival orders,

we propose the following two metrics to that we use to select distributions of packets

per measurement that are optimized for particular Internet traffic analysis applica-

tions. The first metric aims at maximizing the number of accurate first and higher

order measurements, and is optimized for tasks where smooth approximations of inter-

arrival times are required. The second metric aims at distributing more uniformly

measurements across inter-arrivals of different orders, and it is well suited for anomaly

detection tasks. While we only consider the two previously mentioned Internet traffic

analysis applications and corresponding metrics, for other analysis applications dif-

ferent metrics can be designed and used to select the optimal distribution of packets

per measurement for that particular task.

2.3.1 Problem Formulation

Using the signal representation described in Section 2.2.4, denote the “ideal” mea-

sured signal to be X ′(k) = {M ′(k), 1}, where exact timing is available for all packets.

31

If X ′(k) is available then the m-th order inter-arrival, J ′
m(k), for measurement X ′(k),

is obtained by taking the difference J ′
m(k) = M ′(k) −M ′(k −m). For a given mea-

sured signal, X(k) = {M(k), C(k)}, produced by an IC measurement system the

m-th order inter-arrival, Jm(k), is given by the difference, Jm(k) =M(k)−M(k−m)

where m indicates the sum of the number of packets in the j previous measurements,

as in the following equation (note that C(k − j) is not included):

j−1∑
i=0

C(k − i) = m (2.2)

The inter-arrival histogram at order m is computed using all of the inter-arrival

measurements of order m. Without subsampling, every measurement X ′(k) produces

an inter-arrival at every order m, however, when IC or subsampling is used then, for

a measurement X(k), the inter-arrival times that can be computed depend on the

C(k)’s. As stated, our goal is to optimize the coalescing of packets in a way that

maximally retains the first and higher order inter-arrival timing information. Our

goal is in contrast with methods like TIC, PIC and HIC used in [37]. These methods

coalesce packets in order to maintain a desired interrupt rate, and not to preserve any

timing information. Further, these methods use techniques that can potentially bias

the inter-arrival timing information. For example, HIC generates measurements when

a timer counts down between packets biasing inter-arrival time estimates because, for

example, C(k) = 1 only if M(k)−M(k−1) is large (in order for the timer to expire).

To preserve timing information, and eliminate bias, our IC mechanism selects how

many packets are aggregated into each measurement independently of their arrival

times. Instead, our method randomly selects the number of packets in each measure-

ment following an independent and identically distributed probability mass function

(pmf) that is optimized based on the criteria mentioned earlier. Let l denote the

32

number of packets included in the next measurement. Then l is a random variable

with pmf {p(1), p(2), ..., p(N −1), p(N)},
∑N

l=1 p(l) = 1. Thus, the k-th measurement

includes l packets with probability Pr(C(k) = l) = p(l).

Note that with this implementation the pmf of l completely defines how the system

operates. By denoting P (N) to be the set of all possible pmfs with a maximum of

N packets per measurement, our goal will be to define metrics that apply for various

analysis tasks which we can optimize to find the best pmf in P (N) for a given analysis

task.

2.3.2 Optimization Techniques

As a starting point we define I(n) to be the percentage of inter-arrival measurements

retained at order n. I(n) is the ratio of the number of inter-arrival measurements

of order n obtained using the subsampled signal X. The number of inter-arrival

measurements of order n obtained using the ideal signal X ′. These are the inter-

arrivals of order n that can be directly derived from measured data, i.e., without using

histograms derived for lower order arrivals to estimate higher order inter-arrivals. I(n)

is a function of the pmf of the number of packets per measurement. For example, if

p(2) = 1 and p(1) = p(3) = ... = p(N) = 0, i.e., all measurements have two packets,

then I(2 · i+ 1) = 0 and I(2 · i) = 1 because it is not possible to get an inter-arrival

order that is an odd number if all measurements have two packets.

I(n) is computed by taking the summation of all possible ways to get an inter-

arrival of order n (as computed using (2.2)), this is equivalent to finding the integer

partitions of n. A partition of n is a set of strictly positive integers that sum to

n. Let sn(j) be a partition of n with j elements, i.e., sn(j) = {e1, e2, ..., ej−1, ej}

and
∑j

i=1 ei = n. Let S(n) be the set of all partitions of the integer n. Computing

33

partitions is done recursively using a method such as that of Wilf, which computes the

partitions in Gray Code or “minimum change” order [59]. Wilf approach and other

related methods list partitions in non-increasing order. For example, a partition is

listed only as {3, 1, 1}, yet it can also be reordered as {1, 3, 1} and {1, 1, 3}. When

computing I(n) all reorderings are considered different, i.e., each reordering adds to

the number of inter-arrival measurements, at a particular order, retained following

subsampling. Thus, for a given partition, sn(j) with j elements, the number of distinct

permutations is given by j!
jr(1)!·jr(2)!...jr(i)! where jr(i) is the number of elements ej in

the partition equal to a specific integer r(i). In our example, for the partition {3, 1, 1}

we have j = 3 elements, j1 = 2 and j3 = 1 giving 3!
2!·1! = 3 distinct permutations.

To compute the function I(n) we define the mapping α which takes each element in

the partition as the index into the pmf, then computes the product of these elements:

α : S(n) 7−→ P (N)

α(sn(j)) = α({e1, e2, ..., ej}) = p(e1) · p(e2) · · · p(ej)
(2.3)

Here we restrict our partitions to be strictly less than the maximum number of packets

per measurement given our pmf, i.e., n < N .

Finally, the function I(n) is computed by:

I(n) =
∑

sn(j)∈S(n)

j!

j1! · j2! · · · jr!
α(sn(j)) (2.4)

multiplying each partition by its number of distinct permutations, and summing over

all possible partitions of n.

For example, the only way to get an inter-arrival of order 1 is to have a mea-

surement with one packet, thus I(1) = p(1). For I(2) there are two partitions {2}

and {1, 1}, so I(2) = p(2) + p(1)2 Finally, for I(3) there are three partitions {3},

34

{2, 1} (this partition has two distinct permutations {2, 1} and {1, 2}), {1, 1, 1} and

I(3) = p(3) + 2 · p(2) · p(1) + p(1)3.

We now propose two different metrics to be optimized with our choice of pmf.

Formulation 1 OICv1 - Maximize the total number of inter-arrival measurements

of multiple orders, noting that each measurement X(k) contributes to multiple inter-

arrival measurements. Formally:

max
{p(i)}∈P (N)

N∑
i=1

I(i)

s.t.

N∑
i=1

i · p(i) = m̂,

N∑
i=1

p(i) = 1

(2.5)

which maximizes the percentage of inter-arrival measurements retained, up to or-

der N , subject to the constraints that the sum of the pmf is unity and the average

value is a user defined m̂ that gives the desired reduction in measurement rate.

The optimization is carried out using a sequential quadratic programming ap-

proach to solve the constrained, nonlinear, multi-variable formulation via an algo-

rithm adapted from [31]. This optimization, which we term OICv1, results in a pmf

we characterize as “on/off”, where a significant probability weight is given to p(1),

and the remaining weight given to a much higher order to achieve the desired average

value. The “on/off” characteristic of the pmf is caused by the fact that I(n) can

be computed for any chosen pmf, and each pmf resulting potentially resulting in a

very different percentage of inter-arrival times preserved at each order. This leads to

a trade-off, where it may be possible to increase the number of measurements at a

given order, at the expense of decreasing the number of measurements at a different

order. Note that if the desire was for the number of measurements as so other order

35

k to be maximized, i.e., if we want I(k) to be large, then giving significant weight to

p(1) is not the best strategy.

For example, optimizing the pmf for an average of 6 packets per measurement,

and setting N = 40 leads to a solution of p(1) = .8214 and p(29) = .1786. The large

value of p(1) helps this method achieve the maximum number of inter-arrival measure-

ments. To illustrate, consider Figure 2.10, which shows the inter-arrival measurements

retained using OICv1. Because p(1) is large OICv1 produces many consecutive single

packet measurements, and a few measurements with many packets. When n single

packet measurements occur consecutively they produce n−1 first-order inter-arrivals,

n − 2 second-order, etc. In fact, using (2.2) we see that the number of inter-arrivals

retained at order n < 29 is equal to p(1)n; in other words it drops of geometrically.

Alternatively, consider the case where all measurements have 6 packets. This formu-

lation produces the same average number of packets per measurement, however, for

n measurements this formulation only produces n− 1 sixth-order inter-arrivals, n− 2

12th-order, etc., significantly less total inter-arrivals than the previous case.

The relationship between the value of N and the “off” probability weight, i.e.,

p(29) = .1768 in the above example, can also be seen in Figure 2.10. The formulation

in (2.5) maximizes the total number of inter-arrival measurements, which in the figure

is equivalent to maximizing the area under the inter-arrivals retained curve. Notice

that the “off” probability weight is not given to p(N). While it might seem intuitive

that to maximize the number of measurements one should maximize the value of p(1).

However, maximizing the value of p(1) would require that the “off” probability order

p(n) be set at a larger n to maintain the same expected value, i.e., p(1)+n ·p(n) = m̂.

Since we are trying to maximize the area under the curve, selecting a smaller order

n for the “off” probability is actually better.

For analysis the problem with OICv1 lies in the fact that the percentage of

36

inter-arrival measurements retained decreases geometrically in p(1), as shown in Fig-

ure 2.10. Thus, as the inter-arrival order increases, from 1 − 29 in our example, we

have very few measurements available. To solve this problem one approach is to use

the inter-arrival data from the lower orders, specifically the first order data, to esti-

mate the inter-arrival data of the higher orders. This could be done by: estimating the

probability distribution of the first order inter-arrival times (using measurements con-

taining only one packet), and using the estimated probability distribution to estimate

the probability distribution of higher order inter-arrivals by taking the convolution

of the first order inter-arrival distribution with itself multiple times. However, esti-

mating the higher order inter-arrival distributions this way leads to smooth higher

order inter-arrival estimates due to the convolution operation. The problem with the

smooth estimate is that it will miss potentially interesting anomalous events that

occur infrequently. For example, if many “normal” events occur between anomalous

events, then the inter-arrival timing between consecutive anomalous events can only

be observed in the actual higher order inter-arrival time distribution and not in the

estimated distribution.

To solve this problem we propose a second approach, more suited for anomaly

detection, based on a different optimization metric that distributes measurements

more uniformly across orders. The second formulation provides better estimates of

higher order inter-arrival time distributions based strictly on measured data, i.e.,

without using lower order inter-arrival distributions to estimate higher order ones.

37

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Percentage of Inter−Arrivals Retained

Inter−Arrival Order

In
te

r−
A

rr
iv

al
s

R
et

ai
ne

d

OICv1

OICv2

Figure 2.10: Inter-arrivals retained using OICv1 and OICv2 for m̂ = 6

Formulation 2 OICv2 - Find the pmf that produces a uniform distribution of I(n)

for all n.

min
{p(i)}∈P (N)

N∑
i=1

(q − I(i))2

s.t.
N∑
i=1

i · p(i) = m̂,
N∑
i=1

p(i) = 1

(2.6)

which minimizes the error between a uniform distribution and the I(n) functions,

under the same constraints as the first optimization.

The difficulty with this problem is the selection of the parameter q, which is

merely an arbitrary value that the optimization attempts to make all orders of I(n)

equal to. In general this optimization can be solved for any given value of q ≤ N .

However, solving the problem this way only leads to the minimum error solution, i.e.,

38

∑
(q − I(n))2, for that q. Instead, by relaxing the condition

∑N
i=1 i · p(i) = m̂, we

can find an exact solution such that
∑

(q − I(n))2 = 0. For the exact solution the

value of q is not arbitrary, and is instead related to the expected value, m̂.

First we derive the I(i) and p(i) as a function of q. Starting with I(1) = p(1) and

assuming an exact solution exists I(1)− q = p(1)− q = 0 (from (2.6)), thus p(1) = q.

The remaining p(i) are solved for iteratively as follows:

I(2)− q = p(2) + p(1)2 − q = 0 ⇒ p(2) = (1− q) · q

I(3)− q = q = p(3) + 2 · p(1) · p(2) + p(1)3 − q = 0 ⇒ p(3) = (1− q)2 · q

...

I(n)− q = 0 ⇒ p(n) = (1− q)(n−1) · q

(2.7)

The general solution, p(n) = (1−q)(n−1) ·q, can easily be recognized as the probability

of success on the n-th attempt given a geometric distribution. Therefore the geometric

distribution, with parameter q, gives an exact solution to the second optimization

formulation. Further, the expected value of the geometric distribution is 1/q, therefore

using the relation 1/q = m̂ we can choose q = 1/m̂ to meet the constraints of 2.6.

Finally, we claim that value of q = 1/m̂ is the maximum value that solves the

formulation exactly. To show this, assume there exists another value, say q′ > q,

which solves this formulation exactly. As shown above, this implies that p′(n) =

(1 − q′)(n−1) · q′. Since p(n) is given by a geometric distribution, then
∑N

i=1 p(i) =

(1 − q)(n−1) · q = 1. However, for p′(n), the sum
∑N

i=1 p
′(i) = (1 − q′)(n−1) · q′ > 1

because (1 − q′)(n−1) · q′ > (1 − q)(n−1) · q ∀n. Thus, the new solution is not a valid

pmf, and the solution q = 1/m̂ is the maximum value that solves the formulation

exactly. Selecting q to be the maximum value that solves the formulation exactly is

not an explicit constraint of our formulation, it is however implied. Since a geometric

39

distribution of the pmf is the only one that solves the formulation exactly, we could

select the pmf to be geometrically distributed with parameter r < q. The expected

value of this new pmf would be 1/r > 1/q and the expected number of packets

per measurement, i.e., the subsampling rate, would be too large and the constraints

of our optimization framework would not be met. Further, by maximize the value

of q we actually maximize the total number of inter-arrival measurements retained

while meeting the constraints of our formulation. This occurs because the number

of inter-arrival measurements retained is equal to
∑
I(i) i ∈ [1, N], but I(i) = q ∀i.

Therefore, the sum,
∑
I(i) i ∈ [1, N], is actually equal to N · q and is maximized by

maximizing the value of q.

It is important to notice that the solution to the second optimization is equivalent

to uniform random sampling. In uniform random sampling each incoming event is

either retained, i.e., sampled, with probability q or skipped with probability 1 − q.

This equivalence is important because multiple theories regarding thinning a renewal

process, which will be discussed in Section 3.2.1.1, are based on uniform random

sampling of a renewal process. Thus, there is a strong link between thinning a renewal

process and our proposed methods for subsampling Internet measurements.

2.3.3 Performance Evaluation Using Synthetic Data

Since our goal was to retain as much inter-arrival information as possible following

coalescence, we select the Kullback-Leibler (KL) divergence as a metric to compare

the performance of our optimizations with existing IC methods. We compare the

performance of our optimized IC methods, OICv1 and OICv2 (where v1 represents

the method derived from (2.5) and v2 from (2.6)), versus three common IC strategies:

fixed pack IC (PIC), fixed time IC (TIC), and the hybrid IC (HIC) method developed

40

by Intel [37].

The KL divergence is computed by generating histograms to estimate the inter-

arrival timing distribution using ideal measurements (where each packet receives an

individual timestamp) and measurements generated by simulating interrupt coales-

cence with a measurement subsampling rate of 6 (input/output measurement rate).

For each signal we compute the histogram for inter-arrival orders up to 40, and mea-

sure the divergence between the inter-arrival distribution estimates at each order.

While not a true distance metric, KL divergence is a common measure of the

difference between two probability distributions [45]. The divergence, DKL(P ||Q),

between distributions P and Q is computed using:

DKL(P ||Q) =
∑
i

P (i) ln
P (i)

Q(i)
(2.8)

The KL divergence is an average of the difference (logarithmic difference) between the

two distributions [45]. Other divergence or distance metrics could be used, such as

the total variation distance, which finds the greatest distance between the probability

distributions P and Q. We use the KL divergence here because the distributions we

encounter in simulation are smooth, therefore, a greatest distance metric (such as the

total variation distance) is not as meaningful as an average difference metric (the KL

divergence) because the difference between two smooth distributions is likely small

everywhere and the greatest distance would vary randomly to different points in the

distribution. Even in practice, when we estimate the distributions of inter-arrival

times from Internet traffic, the distributions are smooth, yet have small random vari-

ations around this smooth curve because inter-arrival times between packet arrivals

in Internet traffic do not follow an ideal random process. Thus, we select the KL

divergence to give an overall measure of the difference between the distributions.

41

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

18

20
KL Divergence for Inter−Arrival Distributions

Inter−Arrival Order

K
L

D
iv

er
ge

nc
e

(b
its

)

OICv2
OICv1
HIC
PIC
TIC

Figure 2.11: KL divergence of inter-arrival distributions using only received data

In the following analysis we simulate Internet traffic with exponentially distributed

inter-arrival times. While it has been shown [58] that a Poisson process does not

accurately model Internet traffic we use it here to show our solution applies to a more

general class of signals, i.e., signals where packet size does not constrain minimum

inter-arrival times. For actual Internet network traffic, the performance of our method

and the IC methods we use for comparison will be different than in the Poisson case.

We will discuss the important performance differences of the methods when using

Poisson and Internet traffic following the Poisson discussion in Section 2.3.3.1.

Figure 2.11 shows the KL divergence measured using only the inter-arrival times

computed using the actual measurement data. The plot for PIC only contains points

at multiples of the subsampling rate, for example r, because for all measurements PIC

generates C(k) = r. Because PIC generates measurements with identical numbers of

42

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Packets Per Measurement

P
ro

ba
bi

lit
y

PMF of Number of Packets Per Measurement for Various IC Methods

OICv1
PIC
TIC
HIC

Figure 2.12: PMF of the number of packets per measurement for the various IC methods

packets per measurement it contains no inter-arrival information for orders that are

not a multiple of r.

For TIC the KL divergence plot contains multiple bumps, where low points (when

the divergence is minimum) occur near multiples of the subsampling rate 6. This

happens because the value of Tfix used in TIC was selected in order to achieve the

subsampling rate of 6. Selecting Tfix this way creates a distribution of packets per

measurement that is centered around 6, which is shown in Figure 2.12. Much like

the PIC case where all measurements have 6 packets, the KL divergence for TIC is

minimum near multiples of the subsampling rate.

The distribution of the number of packets per measurement for HIC and OICv2,

as shown in Figure 2.12, is nearly identical, and because of this we would expect that

the KL divergence for the two methods to be similar as well. However, based on the

result shown in Figure 2.11 this is clearly not the case. The reason for this is due

43

to the way HIC operates, in particular the packet timer prevents measurements from

having an inter-arrival time shorter than Tpack. Therefore, the first and low order

measurement inter-arrival time distributions are skewed towards higher inter-arrival

times, which is quite different from the ideal measurements and the KL divergence

at low orders is very large. The skew in the distribution impacts the inter-arrival

distribution up to order 6 because this is the value that the timers Tpack and Tabs

were designed for. Beyond order 6 HIC performs similarly to OICv2, which fares the

best overall using only the data received to generate the inter-arrival histograms.

The limitation of OICv1, the on/off measurement behavior, is apparent from the

Figure 2.11 as well (OICv1, is not shown in Figure 2.12, but its distribution would

be bimodal with p(1) = .8124 and p(29) = .1786). The KL divergence is very small

at low orders, and for inter-arrival orders near the ’off’ probability value (p(29) in

this example), which is caused by the combination of ’on’ and ’off’ measurements

generating inter-arrival times with orders close to 1 and 29 in this case. While OICv1

performs well at these orders we see that the divergence increases rapidly at inter-

arrival orders in between the ’on’ and ’off’ probability values and orders much larger

than the ’off’ value.

OICv1 generates the largest number of total inter-arrival measurement by gen-

erating a majority of single packet measurements. This allows OICv1 to accurately

replicate the first order inter-arrival time histogram. We exploit the accurate first or-

der inter-arrival timing information to estimate the higher-order histograms by taking

the convolution of the first-order histogram multiple times, an operation we describe

in detail in Section 3.3.3. With this modification OICv1 can achieve very low val-

ues of KL divergence even at high inter-arrival orders, however, as mentioned before,

the alternative method to generate the higher order inter-arrival histograms creates

smooth approximations of the higher order distributions that are not practical for

44

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
KL Divergence for Inter−Arrival Distributions

K
L

D
iv

er
ge

nc
e

(b
its

)

Inter−Arrival Order

OICv2
OICv1
PIC

Figure 2.13: KL divergence of inter-arrival distributions using estimates from low order data

detecting anomalous traffic.

Figure 2.13 shows the KL divergence performance using estimates of the high

order inter-arrival histograms obtained from the lower order inter-arrival data. From

the figure we see that OICv1 shows the smallest KL divergence of any IC method.

For some methods the KL divergence actually increases, as is the case for HIC and

TIC which are not pictured because their divergence is very large. This is caused

because certain methods (like HIC) are prone to biases in measurements with low

numbers of packets per measurement. Because HIC only generates a measurement

with one packet if the inter-arrival time between consecutive packets exceeds a given

time the first-order inter-arrival histogram is biased towards long inter-arrival times

and is a poor indication of the actual distribution of inter-arrival times.

45

2.3.3.1 Internet Traffic Measurements

As mentioned previously the performance of our optimized IC techniques and the

standard IC methods differ when actual Internet traffic is used in place of Pois-

son traffic. One area where Internet traffic deviates from Poisson is in what is called

“burstiness” of Internet traffic. Burstiness of Internet traffic manifests as short bursts

of many packet arrivals, followed by relatively long periods of inactivity. An exam-

ple of this behavior would be when a user browses on to a website: their web client

requests the webpage from the server, which requires a significant amount of data

to be transmitted from the server to the client. Once the website is loaded the user

will typically spend a large amount of time, relatively speaking, reading the webpage

before browsing on to another website. Aggregate Internet traffic consists of many

such bursty sessions, combined with more regular traffic, e.g., video streaming, where

the traffic rate is more constant. In terms of performance, the difference between our

optimized IC methods and the standard methods, HIC and TIC for example, is that

our methods are signal independent. Signal dependence or independence is important

when trying to measure traffic characteristics. For example, during bursty periods

of Internet traffic HIC will likely coalesce many packets together because the packet

timer does not count down to zero when packets are arriving quickly. Conversely,

when using HIC any stray packets that arrive during the non-bursty, or inactive, pe-

riod will not be coalesced with other packets. Therefore, the measurements containing

only a single packet will only be from the inactive periods. The signal dependent be-

havior of HIC can influence measures of traffic characteristics. Alternatively, when

using our optimized methods the chance that a measurement contains only a single

packet does not depend on whether the traffic was in a bursty or inactive period.

Thus, because our optimized methods generate measurements independently of the

46

incoming traffic, our methods can produce more reliable estimates of traffic charac-

teristics than the standard IC techniques.

2.4 Generalization to High Rate Measurement

Systems

One main benefit of the signal representation we selected in Section 2.2.4 is that it

is completely general and can be used for measurements from all types of existing

measurement systems. This is particularly convenient considering the vast selection

of measurement system architectures, which vary in terms of system cost, accuracy

and measurement type. Similarly, our method to optimize interrupt coalescence in-

troduced in Section 2.3 is directly applicable to measurements from all measurement

systems that employ our signal representation.

For example, as mentioned in the introduction, hardware based systems are ca-

pable of producing very accurate timestamps for individual packet arrivals in real-

time. Examples of such systems include CoralReef, developed and maintained by

CAIDA [43], or the commercial line of DAG network interface cards developed by

Endace [23, 24]. While these systems do not require subsampling of measurements,

in certain scenarios subsampling might be desirable to reduce data storage costs. For

hardware based systems our SigVec representation is a suitable method to record

measurements whether or not subsampling is used.

Further, our signal representation also applies to measurement systems that do not

record packet arrivals, like NetFlow developed by Cisco, which records measurements

of network flows [15]. In systems that record network flows the start of the flow is

typically recorded, thus a timestamp representing the flow start could be reflected in

47

our signal representation. Subsampling of flows is also common in analysis to reduce

the computational cost as was done in [26]. Further, in detection systems that search

for long-range periodicities in flow arrivals, such as the work by Bartlett, et. al. [7],

subsampling could be potentially be applied and our signal representation used.

Our signal representation and methods to optimize subsampling are particularly

relevant given the recent protocols defined by the IETF PSAMP and IPFIX work-

ing groups [2, 3] for creating a flexible distributed measurement system architecture.

The PSAMP and IPFIX working groups defined a set of common protocols to be

used in certified measurement nodes (called recording nodes), which are designed for

recording both packet and flow based Internet traffic events. Because the systems are

designed to be deployed in a distributed manner one desirable quality of the system is

low-cost. In order to make such systems low-cost both protocols define what they call

selection processes, which are methods to select with incoming event to sample. In

other words, a selection process is a method to subsample the incoming events, and

because the selection process is general, a subsampling strategy designed using our

optimization techniques could be implemented. Further, the distributed architecture

is designed such that the measurements are sent from the recording nodes, via an

exporting process, to a collector node where analysis would take place. Subsampling

is an effective method to reduce the data transmission cost between recording and

processing node, which is something we consider in Chapter 4.

Thus, our signal representation SigVec and methods to optimize interrupt coales-

cence can be generalized to many existing measurement systems.

48

2.5 Conclusion

In this chapter we analyzed and modeled the timing errors inherent in software based

measurement system. This modeling was necessary in order to make such systems,

which are desirable for their low-cost, useful for general Internet traffic analysis tasks.

From this system modeling we proposed a signal representation, called SigVec, which

represents the accurate timing information following the software system processing.

In a software system using interrupt coalescence accurate timing is available for only

one packet per group of packets that are serviced during the same interrupt service

request. Because we record only one accurate timestamp for the group of packets the

operation of interrupt coalescence controls the subsampling of the measured events.

To optimize the operation of interrupt coalescence, we created a metric that can

be used to produce software system measurements optimized for specific Internet

traffic analysis tasks. By optimizing generation of measurements and removing their

dependence on packet arrivals we can improve estimates of inter-arrival distributions,

which we use in subsequent chapters to perform Internet traffic analysis.

Finally, the signal representation and method to optimize interrupt coalescence

are general enough to be applied to most existing measurement systems, including

high rate measurement systems, such as the previously mentioned hardware based

systems, and systems that record measurements of flows instead of packet arrivals.

49

Chapter 3:

Anomaly Detection with the IA2D Detection

System

3.1 Introduction

As shown in Chapter 2, Internet traffic events, and more specifically packet arrivals,

occur as discrete events, with each event occurring at a unique time. Thus a collection

of packet arrivals can be seen as a realization of a point process, where each event

(e.g., the n-th packet arrival) is indicated by the time it occurred, tn. Similarly, traces

recorded using Internet measurement systems, e.g. [24], produce a time stamp, say

t′n for each packet measured (in the case of a measurement system this time could

indicate the actual packet arrival time plus some delay due to system processing).

Although the point process is a natural representation of packet arrivals and net-

work measurements, it is common in network traffic analysis to convert the collection

of measurements to a time series representation by uniformly sampling the signal,

as described for example in [18]. The time series representation is generally favored

over the point process representation in tasks that analyze the long term character-

istics of Internet traffic. This is done because, for a uniformly sampled time series,

signal processing tools can be used for analysis, which can efficiently determine long

50

term characteristics in time series. For example in [6, 12, 17, 18, 41] a uniformly sam-

pled signal representation enables the use of standard signal processing tools such

as wavelets [6, 41], and spectral analysis [17, 18], which have been shown to be effec-

tive methods to detect network performance problems like bottleneck links [41] and

network anomalies [6].

The point process representation has been used previously to analyze Internet

traffic, for example in [49] and [42], however in this work only the inter-arrival time

between consecutive events was analyzed. Computing the inter-arrival time between

consecutive events is useful for determining some traffic characteristics, such as av-

erage rate, but looking only at consecutive events fails to capture the long range

behavior in Internet traffic. In this chapter we present a number of formulations,

with existing foundations in renewal theory, that we use to characterize the long term

behavior of Internet traffic measurements while maintaining the timing accuracy in-

herent to the point process representation. We introduce these formulations, called

the renewal function and renewal density, that allow us to perform similar network

analysis tasks as were done with the time series representation, i.e., detecting bottle-

neck links and network anomalies, without having to convert from the point process

representation of the measurement system to the time series representation; saving

storage space as well as processing time. Further, with the added timing precision we

have found these tools to be well suited for one task in particular, detecting low-rate

periodic anomalies.

Low-rate periodic anomalies occur in Internet traffic for a number of reasons, as

will be discussed in Chapter 4. Low-rate anomalies are characterized as involving rel-

atively few packets per second, as compared to the Internet traffic they are aggregated

with. Due to the low-rate nature of the anomalies, detection requires examining long

segments of data in order to gather enough evidence to be certain of an anomaly. The

51

formulations presented here are computed using a fixed window size that is shifted

over the long segment of data allowing efficient computation regardless of the length

of the data being analyzed. Conversely, time series based signal processing methods,

such as the fast Fourier transform, must be computed using a window size equal to

the length of the data segment being analyzed and thus do not scale as efficiently as

our formulations with increased trace durations.

Using the renewal theory formulations, we designed a system to detect low-rate

periodic network anomalies, called inter-arrival based anomaly detection, or IA2D.

IA2D detects differences between an estimate of the renewal density, computed from

the Internet traffic measurements, and an “anomaly-free” distribution that we call

the “smooth approximation”. The smooth approximation is computed on the same

measured data as the renewal density estimate, but by using certain characteristics

of the anomaly we are able to filter out its presence in the smooth approximation.

The benefits of our IA2D system include: 1) it can detect very low-rate periodic

anomalies in aggregate Internet traffic measurements by only analyzing the timing of

the events, 2) it operates without having to train on known anomaly-free measure-

ments, and 3) our detection system can distinguish between multiple periodic events,

which is not possible in other methods.

In addition to the renewal theory formulations presented here to analyze Inter-

net traffic, renewal theory also provides us with another concept, called thinning,

which is a method for subsampling a point process.The theory of thinning contains

some particularly useful results for Internet analysis. One result gives the impact

of thinning on the renewal density. Another outlines how certain renewal processes,

when thinning is applied, converge towards the more ideal Poisson process. When we

apply the second result to subsampling of Internet traffic measurements it allows us

to analyze Internet measurements as if traffic were an ideal Poisson process, and use

52

many of the existing results from renewal theory. In particular, since IA2D is based

on renewal theory we can use an ideal Poisson process to derive theoretical values for

many of the system parameters, which can then be used, with modification, for real

Internet traffic.

The first half of this chapter, Section 3.2 presents the necessary background in

renewal theory for its use in analyzing Internet traffic. In this half of the chapter

two formulations, the renewal function and renewal density, are described which are

useful for analyzing long term behavior of Internet traffic. These formulations are

designed for renewal processes, which are in general infinite length, we discuss the

methods we use to estimate them for Internet traffic measurements. Finally, in the

first half of this chapter, we discuss the theory of thinning, or subsampling, a renewal

process and the impact of thinning on the renewal function and renewal density.

With the necessary background the second half of this chapter describes the design

of our IA2D detection system in Section 3.3. In this discussion we describe how we

split the renewal density into sub-densities, which allows us to detect and distinguish

multiple periodic anomalies. Then we discuss the operation of our statistical test,

Pearson’s Chi-Square test, that we use for detection, including how we construct the

smooth approximation used for comparison in the test. Our detection system operates

using a jumping window approach that allows the system to output detection decisions

at fixed intervals specified by the user. Finally, we describe how to select various

system parameters based on the assumption that the Internet traffic is modeled by

a Poisson process. In Chapter 4 we discuss how to modify these system parameters

when using actual Internet traffic because of the deviation of Internet traffic from the

Poisson process assumption.

53

3.2 Background

3.2.1 Renewal Theory

We start by introducing some basic concepts in renewal theory as they relate to

Internet traffic analysis. Most of this introduction comes from [55], which is a good

source that describes how renewal theory can be applied to computer network and

Internet traffic analysis.

Let M,M1,M2, ...,Mn be independent and identically distributed non-negative

random variables (M is a generic random variable of the sequence), reflecting the

inter-arrival time between events. Note that high-rate measurement systems (i.e.,

no subsampling) record timestamps for each packet arrival, therefore, to generate a

point process we replace the timestamp for each packet arrival with the time elapsed

since the previous packet, e.g. M1 = M(2) −M(1),M2 = M(3) −M(2), ...,Mn =

M(n+ 1)−M(n).

Define the partial sums, S0 = 0, Sn = Sn−1 +Mn = M1 +M2 + ... +Mn, so that

Sn, reflects the time between the starting time and n-th event. The renewal process,

N(t), t ≥ 0, is then defined to be the counting measure given by [55]:

N(t) =
∞∑
n=0

I(Sn ≤ t) = n : Sn ≤ t (3.1)

Here I is the indicator function, and thus N(t) is a continuous time function that

conveys the number of events that occur before time t. By studying the distributions

of the partial sums we can learn the long range behavior of a point process.

For example, consider the problem of determining whether a point process consists

of completely random events, i.e., a renewal process, or if the point process is a

combination of a deterministic sequence, i.e. low-rate periodic events with period P ,

54

mixed with random events, as shown in Figure 3.1. If P � λ, the periodic events do

not occur consecutively; rather they arrive with a random number of renewals between

each periodic pair. The periodic events correspond to a subset of the inter-arrival

times, i.e., Mi(k) where i = {i(1), i(2), ..., i(k)} is an ordered subset of {1, 2, ..., n}. In

Figure 3.1, i = {1, 4} and the periodic events correspond to M1 and M4. Then in

terms of partial sums the inter-arrivals between periodic events gives Si(j) −Si(j−1) =

P ∀j ∈ [2, k], e.g., S4 −S1 = {M4 +M3 +M2 +M1}−{M1} = {M4 +M3 +M2} = P

in the figure.

Figure 3.1: Point Process with Periodic Deterministic Sequence

3.2.1.1 Thinning a Renewal Process

One interesting area of Renewal Theory is ’thinning’ of a Renewal Process, which is a

method to subsample the data in a Renewal Process. The most common implemen-

tation of thinning, proposed by Rényi [62], is uniform probabilistic thinning where a

measurement is retained with probability p and removed with probability 1− p. Two

main results from [62] that are useful in our work are:

1. when thinning a Poisson process with scale parameter λ, the resulting thinned

process is also Poisson with scale parameter λ/p

2. for a general renewal process with intensity λ, the process obtained by thinning

by a factor 1/p converges to a Poisson process with intensity λ/p as p 7−→ ∞

55

The first result will be used in Section 3.2.3.3 when we look at the impact of

thinning on the renewal density of a Poisson process. The second result is important

because actual Internet traffic measurements do not follow a Poisson process, however,

after applying subsampling (the measurement equivalent of thinning) Internet traffic

measurements converge towards a Poisson process. The benefit of this results is that

we can analyze the performance of our detection system using a Poisson process

(Section 4.3.1), and determine some of the system parameters based on this analysis.

While Rényi only considered uniform probabilistic thinning, more general methods

for thinning were examined in [21], including thinning using a thinning probability

distribution. Thinning using a probability distribution is very similar to our idea

of using a probability distribution for subsampling developed in Section 2.3. In fact,

thinning is the equivalent operation to subsampling, however, the term subsampling is

used to indicate when we are applying it to events or measurements whereas thinning

is applied to renewal processes. One difference between our subsampling implementa-

tion and thinning is that when thinning is applied some measurements are discarded,

and the information about how many measurements were discarded is not recorded.

When working with renewal processes, which are infinitely long, discarding this infor-

mation is valid because the resulting process after thinning remains infinitely long and

computing (not estimating) the renewal density does not require information about

the discarded measurements. In contrast, working with actual measurements (finite

amount of data) makes it necessary to use information about discarded measurements

when we estimate the renewal density, as described in Section 3.2.3. Therefore, in

our work, we retain the number of measurements discarded.

For our theoretical analysis in Section 4.3.1, we limit the use of thinning theory to

Rényi’s thinning implementation because the two results mentioned above only work

in a limited number of thinning probability distributions featured in [21]. However,

56

in the future it could be possible to use the results from [21] to analyze the perfor-

mance of our detection system for a more general class of subsampling (thinning)

probability distributions. This would allow more general subsampling methods using

the optimization techniques from in Section 2.3 to be analyzed in a similar manner

as to what was done in Section 4.3.1.

3.2.2 Renewal Density

Let Fn be the cumulative distribution function (cdf) of the partial sum with n vari-

ables, i.e., Fn is the cdf of Sn. The renewal function, R(t) is defined to be the expected

number of renewals in a given time t, i.e., R(t) = E[N(t)] which was shown in [55] to

be:

R(t) =
∞∑
n=1

Fn(t) (3.2)

In other words, R(t) is the sum of the cumulative distribution functions of all partial

sums of inter-arrival times.

The renewal density, is similar to the renewal function, but instead indicates

the probability that a renewal occurs at a given time t. Let fn be the probability

distribution function (pdf) of the partial sum with n variables, i.e., fn is the pdf of

Sn. The renewal density, r(t), as shown in [55], is the sum of the pdfs of all partial

sums of inter-arrival times, given by:

r(t) =
∞∑
n=1

fn(t) (3.3)

For our periodic example above we could expect that the renewal density would have

spikes at multiples of the fundamental period, i.e., t = kP for some integer k. The size

of the peak is a function of the ratio of periodic traffic rate and the regular Internet

57

traffic rate, and is discussed in more detail in Section 3.3.2.

The renewal function and density are related by:

fn(t) =
δFn(t)

δt

r(t) =
δR(t)

δt

(3.4)

For renewal processes the renewal function and renewal density are completely

characterized by the cdf or pdf of the random variable M . This occurs because, as

shown in [55], the distribution of Fn is given by the n-fold convolution of the cdf of

M , thus:

Fn(M) = F n∗(M) = FM ∗ FM ∗ ... ∗ FM︸ ︷︷ ︸
n times

(3.5)

and similarly for the pdf fn(M). Therefore, knowing the cdf or pdf ofM it is possible

to compute the densities of all partial sums and computer either R(t) or r(t).

For a Poisson process, with mean inter-arrival time λ, the renewal function and

renewal density are given by the simple expressions [55]:

R(t) =
t

λ

r(t) =
1

λ

(3.6)

Thus the renewal function is a linear function and the renewal density is a constant

equal to the inverse of the mean inter-arrival time of the process. The reason r(t)

is flat for a Poisson process can be seen in Figure 3.2, which shows the pdfs of

the first few inter-arrival orders that are generated with a Poisson process. As the

inter-arrival order increases the distribution shifts towards longer inter-arrival times,

and the distribution becomes smoother. The shift causes the significant mass in the

distributions not to overlap. The sum of all the shifted and smoothed distributions

58

creates a flat renewal density show as the bottom distribution in Figure 3.2.

Figure 3.2: Generating renewal density for Poisson process

3.2.3 Estimating the Renewal Density

If fM is unknown then most methods to estimate the renewal density rely on gen-

erating multiple instances of the point process to compute estimates of fn and r(t),

denoted f̂n and r̂(t) where we use ·̂ to denote empirical estimates [29]. However,

for practical signals, e.g., packet arrivals, it is not feasible to generate multiple re-

alizations of the point process. Instead, given empirical measurements we generate

time averages using observations from a single set of Internet traffic measurements,

i.e., the renewal density estimate represents the average of multiple observations from

different periods of time. This is accomplished by using multiple observations of the

same set of measurements where each observation reflects a different starting point

in the measured signal, a technique derived in [51].

59

The method from [51] operates by starting with the first event in the signal,

M0, and computing the sequence of partial sums up to the desired order n, i.e.,

{S1(M0), S2(M0), ..., Sn(M0)}. Where the partial sums are given by:

S1(M0) =M1

S2(M0) =M1 +M2

Sn(M0) = Sn−1(M0) +Mn

(3.7)

Moving to the next event in the signal, M1, the process is repeated to generate the

next sequence of partial sums, {S1(M1), S2(M1), ..., Sn(M1)}.

The estimate f̂n is computed non-parametrically using histograms that tabulate

the data from each partial sum observation, Sn(Mj), ∀j, for the entire set of obser-

vations. Each partial sum of order 1 to n is used in the estimate of the pdf at the

respective order, i.e., Si(Mj) contributes to f̂i only. Finally, r̂(t) is computed as:

r̂(t) =
N∑
i=1

f̂i(t) (3.8)

Figure 3.3 shows the operation of our renewal density estimation technique for a

set of measurements. The operation is similar to that in Figure 3.2 except that we

have to compute the partial sums from different observations (starting points) of the

same set of measurements (shown in the top half of the figure) and estimate the pdfs,

f̂n, using histograms. Instead, in Figure 3.2 the partial sums are computed using

different realizations of the renewal process, and the pdfs are the actual distributions

fn.

When subsampling is applied to the measurement the estimation of the renewal

density must take into account both components of the vector measurement signal,

60

Figure 3.3: Generating renewal density estimate from measurements

i.e., the timestamps, M(k), and the number of packets in that measurement, C(k).

Let X(k) be the current measurement with components M(k) and C(k). The partial

sum sequence for X(k) is constructed as follows:

S0(M(k)) = 0

Sn(1)(M(k)) =M(k − n(1))

Sn(i)(M(k)) = Sn(i−1)(M(k)) +M(k + i) = ...

=M(k + 1) +M(k + 2) + ...+M(k + n(i))

(3.9)

61

Where n(i) is computed to be the sum of the C(k)’s:

n(i) = C(k + 1) + C(k + 2)...+ C(k + i) (3.10)

Note that in the sum of n(i) the range is from k + 1 to k + i. Thus, Sn(i)(M(k))

reflects the time between the current measurement and n(i)-th previous event.

With this modification, estimating the renewal density using the technique from

[51] takes into account that for each input measurement the partial sums generated

only contribute to the estimates of a subset of the density functions f̂n(i).

Using the estimation method from [51] the observations are not independent, as

they contain a majority of the same inter-arrival times. The estimation method

introduced by Frees in [29] generates additional observations of the point process

by rearranging the order of the original inter-arrival times, where each observation

corresponds to a different permutation of the indices n of the sequence tn. The

method from [29] works well for renewal processes where each inter-arrival time is

independent and identically distributed. However, the Internet traffic measurements

we consider are not guaranteed to be independent or identically distributed. For

example, when a packet is queued at a router it is output as soon as the router

has finished processing the previous packet. In this example the inter-arrival time

of the queued packet depends on the time taken to process the previous packet and

therefore is not independent. Since Internet traffic measurements are not ideal renewal

processes the method from [29] cannot be used to estimate the renewal density of

Internet traffic.

The fact that Internet traffic measurements are not a renewal process does not

impact our use of the renewal density estimate for detection. We use the renewal

density estimate as a means to examine the long range timing behavior of a point

62

process and to detect anomalies in the timing behavior. Computing a renewal density

estimate using the technique from [51] does not require that the measurements come

from a renewal process. Further, we use properties of the renewal density that are

specific for renewal processes (such as generating fn from f1 via convolution) only

in our analysis section where we approximate Internet traffic by a Poisson process,

and in Chapter 4 we discuss modifications to this analysis specific for Internet traffic

analysis.

3.2.3.1 Histogram as Density Estimator

We now discuss the estimation of the renewal density and the inter-arrival probability

density functions when a histogram approach is used. In [28], the authors discuss the

errors inherent to estimating a probability density using a histogram. The authors

use a binomial random variable to model the number of events falling in the j-th

histogram bin interval, e.g., {t0 + j · h, t0 + (j + 1) · h}, where t0 is a reference point

and h is the bin width in seconds. Letting Nj be the number of events falling in the

j-th bin, then the value of the histogram, f̂(t), at the point t ∈ {t0+ jh, t0+(j+1)h}

is given by f̂(t) = Nj/mh where m is the total number of events, thereby normalizing

f̂(t) so that the area under the histogram is unity.

Let fh(t) be the integral of the actual probability density (the one being estimated)

over the bin interval containing the point t, i.e.,

fh(t) =

∫ t+(j+1)·h

t+jh

f(t)dt . (3.11)

Let f i
h(t) denote the integral, over the same bin interval as above, for the pdf of the

63

i-th order partial sum sequence. Further, let rh(t) be the integral, over the same bin

interval as above, for the renewal density, then

rh(t) =

∫ t+(j+1)·h

t+jh

r(t)dt (3.12)

or in terms of fh(t):

rh(t) =
∞∑
i=1

f i
h(t) (3.13)

Here we assume that the bin interval, h, is the same for all f i
h(t) otherwise the

summation would not be possible.

Using the definition of fh(t) from (3.11), the number of events in the j-th histogram

bin, Nj, is a binomial random variable with number of trialsm and success probability

fh(t) for t ∈ {j·h, (j+1)·h}. Finally, the expected value and variance of the histogram,

f̂(j) are given by [28]:

E[f̂(j)] = fh(t)

V ar[f̂(j)] =
1

mh
· fh(t)(1− h · fh(t))

t ∈ {j · h, (j + 1) · h}

(3.14)

We now consider how to compute an estimate of the renewal density, r̂(j), which is

our novel adaptation of the probability density estimator work in [28]. This involves

64

the sum of multiple histogram estimates, so that the expected value of the renewal

density estimate is given by:

E[r̂(j)] = E[
∞∑
i=1

f̂i(t)] =
∞∑
i=1

E[f̂i(t)]

E[r̂(j)] =
∞∑
i=1

f i
h(t) = rh(t)

t ∈ {j · h, (j + 1) · h}

(3.15)

In other words the expected value of the renewal density estimate is the integral of

the actual renewal density over the bin interval, i.e., rh(t). Thus, using the histogram

approach the renewal density estimate is an unbiased estimator of the actual renewal

density.

Finding an expression for the variance of the renewal density estimate is not as

straight-forward as was finding the expected value. The variance of the estimate is

given by:

V ar[r̂(j)] = V ar[
∞∑
i=1

f̂i(j)] , (3.16)

where, even though the renewals in the process are independent, the probability

density function of the partial sum sequence, say Sk, depends on the pdf of the

partial sum at the previous order, Sk−1, which in turn depends on all previous lower

orders. This also applies to the histogram based estimates of the partial sum pdfs,

i.e., the f̂i(j). Thus, the variance of the estimate can not be readily simplified beyond

the above expression.

Alternatively, rather than find the variance of the sum of multiple histogram

estimates we can approximate this by treating the sum of the histograms as a single

65

histogram, which is the estimate of our renewal density, r̂(j). In other words instead

of computing the variance using (3.16) we find the variance by:

V ar[r̂(j)] = V ar[rh(t)] t ∈ {j · h, (j + 1) · h} . (3.17)

Then applying Equation (3.14) we can express the variance of the renewal density

estimate r̂(j) as:

V ar[r̂(j)] =
1

mh
· rh(t)(1− h · rh(t)) . (3.18)

This approximation is suitable given that for a specific bin interval, {jh, (j+1)h}, only

a small number of histogram estimates, f̂i(j), contribute a non-negligible probability

density. This approximation is based on the fact that as the order i increases the

probability mass of f̂i(j) is shifted towards longer inter-arrival times as was shown

in Figure 3.3. Because only a few f̂i(j) are non-negligible we can treat the f̂i(j)

as independent over the small bin intervals. Therefore the variance of the sum,

V ar[
∑
f̂i(j)], is approximated by the sum of the variances,

∑
V ar[f̂i(j)].

In Section 3.3, we introduce the Pearson Chi-Square test [33], which is the sta-

tistical test we use for anomaly detection. The Pearson Chi-Square test requires the

number of occurrences and not probability of occurrence, which is given by f̂i(j).

Therefore the histogram estimates used in Section 3.3 are not normalized by the total

number of measurements, m, and we denote them by, f̃i(j). Similarly the renewal

66

density estimate computed using the f̃i(t) is denoted, r̃(t). This modifies the expected

value of the renewal density estimate from the expression in (3.15) to the following:

E[r̃(j)] = E[
∞∑
i=1

mi · f̃i(t)] =
∞∑
i=1

E[mi · f̃i(t)]

E[r̃(j)] =
∞∑
i=1

m · f i
h(t) = m · rh(t)

t ∈ {j · h, (j + 1) · h} ,

(3.19)

and the variance of the renewal density estimate, using the same approximation that

was used in (3.18), is given by:

V ar[r̃(j)] =
m

h
· rh(t)(1− h · rh(t))

t ∈ {j · h, (j + 1) · h} ,
(3.20)

Note that the number of events at a particular order,mi, is replaced withm, which

is the average number of events. This approximation is made because in practice

typical values of mi are very large, so small differences between a particular mi and

the average m are negligible.

3.2.3.2 Convergence of Renewal Density Estimate

We now consider the convergence of the histogram to density being estimated. This

topic is covered in detail in [28] where the author considers the mean square deviation

between the histogram and the density being estimated as a function of the size of

the histogram bins, h. Note that [28] only considers estimation of a single density

function, and not the sum of multiple density function estimations that is required for

computing the renewal density estimate. Some comments on how convergence of the

renewal density estimate will be discussed at the end of this section. The optimal size

67

of h naturally depends on the shape of the density being estimated and the number

of samples used to generate the histogram. For example, if the number of samples,

m, is small and we select h to be narrow then most histogram bins will contain only

a few samples and the histogram will not be a good indication of the underlying

probability distribution. Similarly, if the curve of the distribution is flat, e.g., a

uniform distribution, then we do not need many histogram bins in order to achieve

an accurate representation of the distribution; in fact for a uniform distribution only

one histogram bin would suffice. On the other hand, for complex distributions, such

as an exponential or Laplacian distribution, many more histogram bins are required

to accurately model the complex curvature of these distributions.

As a guideline for selecting, h, in [28] the authors propose the following “rule”:

Choose the cell width as twice the interquartile range (IQR) of the data divided by the

cube root of the sample size, i.e.,

hmin ≥ 2 · IQR
m1/3

(3.21)

This rule captures both conditions mentioned above. The interquartile range, IQR,

measures the dispersion of the distribution, which gives an indication of the smooth-

ness of the distribution. While dividing by m1/3 keeps the width of h wider when m

is small, and h can be narrow as m increases.

When selecting the histogram bin width for our detection system, which we discuss

in Section 3.3.5, we follow this rule but provide some modifications since we know

the distributions that we are trying to estimate using the histograms. When selecting

the initial system parameters we make the assumption that Internet traffic can be

modeled as a Poisson process. Using the Poisson process assumption, the distribution

of inter-arrival times at order n follows an Erlang, or Gamma distribution with scale

68

parameter λ and shape parameter equal to the order of the inter-arrival, i.e., for fn(t)

the shape parameter is n. For large n we can use the Normal approximation to the

Gamma distribution, i.e., fn(t) ∼ N(n · λ, n · λ2). The interquartile range for the

Normal distribution is simply IQR = 1.34σ, which given our approximation would

be IQR = 1.34 ·
√
n · λ2. Using this approximation we modify (3.21) to derive the

following expression for the minimum size of h:

hmin ≥ 2.68 ·
√
n · λ2

m1/3
(3.22)

A more convenient expression for hmin is to write it as a function of time. We can

accomplish this by replacingm with the average number of inter-arrival measurements

per second, where m = t/λ, and rewrite (3.22) as:

hmin ≥ 2.68 ·
√
n · λ4/3

t1/3
(3.23)

Using this version of the equation it is easier to determine if the histogram will

sufficiently converge in the amount of time that our system uses to detect an anomaly

(discussed in Chapter 4).

As mentioned previously the convergence results from [28] were derived for the

estimation of a single density function, i.e., fn(t) for some n. Since, in order to

estimate the renewal density, we have to estimate multiple density functions the result

for hmin in (3.23) does not guarantee that the entire renewal density will converge.

Instead we use the approximation, described in Section 3.2.3.1, that inside a single

sub-density only a few of the inter-arrival density function estimates, i.e., only a few

f̃n(t), are non-zero. Therefore, we can use the convergence criterion, given by (3.23),

to verify that the non-zero density function estimates being used in the sub-density

69

where we are performing detection have sufficiently converged. For the non-zero

density functions in a particular sub-density, i.e., the n such that f̃n(t) > 0, it is

possible check that the value of hmin is satisfied because each sub-density has its own

time-to-detection (described in Section 3.3.2). Thus, we can use the time-to-detection

as the value of t and the values of n corresponding to the non-zero density functions

to check that hmin is satisfied using (3.23).

3.2.3.3 Effect of Thinning on Renewal Density

When thinning is applied to a renewal process the renewal density is altered. For a

Poisson process with scale parameter λ, using the result from Rényi [62] mentioned in

Section 3.2.1.1, when thinned with uniform probability, 1/µ, i.e., thinning rate is µ,

the resulting process remains Poisson with scale parameter µ ·λ. The renewal density

of a Poisson process was given in [55] to be r(t) = 1/λ. Combining the results we

see that the renewal density of the process resulting after thinning a Poisson process

with scale parameter λ by a factor of µ is simply:

rµ(t) =
1

µ · λ
(3.24)

Using the second result from Rényi [62], that a general renewal process with

intensity λ when thinned by a factor of µ converges to a Poisson process with scale

parameter λ′ = µ · λ as µ 7−→ ∞, we can see that by thinning a more general

renewal process its renewal density converges to (3.24) as µ 7−→ ∞. This feature of

renewal theory will be used when analyzing and implementing the detection system

for real Internet traffic in Section 4.3.1. Real Internet traffic does not behave like

a Poisson process, and because of this the renewal density estimated for Internet

traffic is not a constant function as defined in (3.6). However, by applying thinning

70

to the measurements the renewal density estimated for Internet traffic converges to

the flat distribution as indicated by (3.6). The trade-off being that, when thinning

is applied, it takes longer for the histograms used to compute the renewal density

estimate to converge. This is clear from (3.23), where the effective scale parameter,

λ′, after thinning becomes larger and requires a longer time, t, before the histogram

will converge.

3.3 Detection of Periodic Events

As discussed in Section 3.2.2 the renewal function and density are two important tools

used to characterize the long term behavior of point processes. Using techniques to

estimate these functions for empirical measurements of Internet traffic allows us to

detect anomalous behavior in the Internet measurements, even if the behavior occurs

infrequently. One particular task that the renewal density is well suited for is detecting

low-rate, periodic events interspersed in regular Internet traffic. Multiple causes of

periodic events in Internet traffic will be discussed in Chapter 4 and include malicious

activity such as DoS attacks, as well as benign but undesirable network behavior such

as bottleneck links.

There are three main classes of methods that have been applied to detect low-rate

periodic events: frequency domain, rate-based, and inter-arrival timing based. Of the

three, frequency domain methods are the most common and work by transforming

the signal into the frequency domain then searching for frequencies containing signif-

icant energy, which can signal the presence of an anomaly. Such methods have been

considered before, see [34], to detect period packet arrivals in Internet traffic. In [52]

we showed that our inter-arrival timing based method, called periodic detection with

multiple measurements (PDMM), outperformed the best frequency domain method

71

available at that time [34] when detecting low-rate anomalies. PDMM is a precursor

to the detection method described in this chapter.

More recently Thatte, et al. derived a rate-based method, called the bivariate

parametric detection mechanism (bPDM) [75]. Rather than using a point process

representation, where observed arrival times are used, bPDM first applies a coarse

uniform time sampling to generate a signal that records the number of events (packet

arrivals) per unit time. Using this signal bPDM derives statistics to determine if

the events are random or random plus a constant signal; signifying the presence of a

constant rate anomaly (an example of which would be a periodic anomaly). Similar

to our previous results, in [75] bPDM was shown to be superior to frequency domain

based methods.

In this section we propose, as an alternative to frequency domain and rate-based

methods an inter-arrival time based method, which we call inter-arrival based anomaly

detection, IA2D. Our detection system works by applying Pearson’s Chi-Square test

on the renewal density [33]. The detection method makes use of the techniques shown

in Section 3.2.3 to estimate the renewal density. Since the periodic events only af-

fect a portion of the estimated renewal density it makes sense to divide the renewal

density into smaller segments, which we call sub-densities, and perform detection on

the individual sub-densities; this process is described in Section 3.3.1. In order to

use Pearson’s Chi-Square test, described in Section 3.3.2, we require a second re-

newal density that is anomaly-free, which we term the “smooth approximation”. In

Section 3.3.3, methods to estimate this anomaly-free distribution from the empirical

measurements, even in the presence of an anomaly, are discussed. Finally, the op-

eration of the detection method depends on the period itself, i.e., it takes longer to

detect anomalous events with longer periods. Therefore, we use jumping windows

72

with varying lengths, discussed in Section 3.3.4, that are used to estimate the re-

newal density in the different sub-densities and allow our system to output detection

decisions at regular intervals regardless of the period of the anomaly. By performing

detection independently on individual sub-densities, IA2D can detect and distinguish

between multiple anomalies, something bPDM cannot do.

Finally, while not considered in this thesis, framing IA2D in terms of renewal

theory makes this method readily applicable to many scientific signals of interest,

where anomalies can be important for diagnosing disease in biological signals or may

be evidence of potential malicious activity in financial data, e.g. stock market data,

[60].

3.3.1 Sub-Densities

One difficulty with using the renewal density to detect low-rate periodic events is

that it requires estimating the renewal density, r(t), up to and beyond the period

of the event, e.g., t > P . Without prior knowledge about the period of the events,

which is assumed unknown, this requires that detection be performed for all potential

periods. Further, the periodic anomaly only affects a portion of the renewal density

in the immediate area around t = P , and the remainder of the renewal density is un-

affected by the anomaly. The unaffected portion of the renewal density decreases the

performance of our detection method because the test we use for detection, Pearson’s

Chi-Square test, compares the renewal density estimate to an anomaly free distribu-

tion, and computes a score based on how similar the two distributions are. Pearson’s

test compares the anomaly free and anomalous distributions over the entire range, i.e.,

0 ≤ t ≤ P , and generates a score based on the difference between the distributions,

however, this score is normalized by the width of the range compared. Therefore, the

73

normalized score would be much smaller when the entire range is considered versus

when a smaller range, i.e., P − δ ≤ t ≤ P + δ, is used because the smaller range

would produce the same difference score (before normalization) as the entire range.

Because of this we designed our detection system such that the renewal density is di-

vided into smaller blocks, which we call sub-densities, e.g., r̃s(j) s ∈ [1, NSub] where

NSub is the number of sub-densities Detection is then performed independently in

each sub-density and because range used in the normalization is smaller we improve

detection performance by using sub-densities.

Figure 3.4: Design of Detection System

The detection system is designed as shown in Figure 3.4. Where the input to

the system are the measurements obtained from the measurement system, and the

multiple outputs correspond to detection decisions from the respective sub-densities.

Performing detection on sub-densities independently presents an interesting system

design challenge. The number of events that must be observed in order to be confi-

dent, statistically speaking, and decide whether or not the traffic contains an anomaly

depends on the period of the event. Thus, detecting higher-rate events (with smaller

74

periods P), which arrive at the system more frequently, requires less time than does

detection of lower-rate events. Therefore, sub-densities corresponding to shorter pe-

riods can potentially report detection decisions more frequently. In our system, how-

ever, it is desirable to have all sub-densities report detection decisions at the same

time interval. The solution to this, which is explained in Section 3.3.4, is to observe

events using jumping windows of varying length. Thus, all sub-densities can report

detection decisions at the same time.

Processing inside the detection system proceeds as follows. The input measure-

ments are processed individually. For each input measurement the estimate of the

renewal density r̃(j) is updated using the technique discussed in Section 3.2.3. If the

time since the last detection decision is greater than the output time interval then

detection is performed in all sub-densities. Detection is performed using Pearson’s

Chi-Square test, described in Section 3.3.2, and the result of the test, whether or not

a periodic event was detected, is then output from the system. After the result is

output the oldest observation window, described in Section 3.3.4, is discarded for all

sub-densities and the system resumes processing input measurements until the next

output time interval occurs.

3.3.2 Pearson’s Chi-Square Test

For detection we use Pearson’s Chi-Square test [33] in order to determine the goodness-

of-fit between the renewal density estimate computed empirically, r̃(j), and a density

derived that is free of anomalies. The anomaly-free distribution, termed the “smooth

approximation” and denoted s̃(j), can intuitively be thought of as what would be

the value of r̃(j) at each j without the periodic traffic. Two methods to derive the

“smooth approximation” are described in Section 3.3.3, using knowledge about the

75

characteristics of the anomaly being detected.

After obtaining the two renewal density approximations the Pearson Chi-Square

test is applied to the sub-densities, denoted r̃s(j) and s̃s(j). Let Nbin be the number

of histogram bins in each sub-density. Then χ2
i is computed for the i-th sub-density,

r̃s(i)(j), using the equation:

χ2
i =

Nbin∑
m=1

(r̃s(i)(m)− s̃s(i)(m))2

s̃s(i)(m)
(3.25)

Next the Pearson statistic, p, is calculated. This is the value of the cdf of a chi-

square distribution with Nbin degrees of freedom computed at the value χ2
i . The null

hypothesis, that the empirical renewal density estimate is statistically similar to the

smooth approximation, is rejected if p > 1−PFA where PFA is the probability of false

alarm and for our application is typically selected to be 0.01 or less [33].

When implementing the detection system in practice, evaluating the cdf of the χ2

distribution in real time is too computationally expensive. Assuming PFA and Nbin

remain fixed, a more convenient solution is to pre-compute the value of χ2
i which

is required to select the alternate hypothesis, i.e., that an anomaly is present. We

call this value χ2
D (it is described later in this section and given by (3.34)). By pre-

computing the value of χ2
D the selection of a hypothesis is done by comparing χ2

i to

χ2
D instead of having to evaluate the cdf of a chi-square distribution.

To understand in more detail why the sum in (3.25) follows a χ2 distribution and to

evaluate the detection system performance we analyze the operation of the detector

in the null and alternative hypothesis cases. Before we begin, however, we make

a modification to our renewal process assumption that is essential to the following

analysis.

Recall from Section 3.2.3.1, that the value of the histogram used in the renewal

76

density estimate at bin j in sub-density i, i.e., r̃s(i)(j), is a binomial random variable

with mean m · rh(t) and variance m
h
· rh(t)(1 − h · rh(t)) (for t ∈ {j · h, (j + 1) · h}

see (3.19) and (3.20)). When the mean and variance were derived we assumed that

the renewal process was based on a continuous distribution, i.e., the distribution of

the renewals fM was a continuous distribution (e.g., an exponential distribution for a

Poisson process). However, in practice the measurements of packet arrival times are

sampled at discrete time intervals. In other words, the value M(k) from (2.1) is some

multiple of the measurement sampling interval, Ts, which typically is in µseconds.

We use ·′ to denote the discrete time version of a continuous time variable, e.g., t′

is the discrete time sampled version of t. Further, let · be the sample number, i.e.,

the multiple of the sampling interval, Ts, corresponding to the discrete time variable,

e.g., t · Ts = t′. Written another way:

t = t′/Ts (3.26)

t is an integer valued number, as are all values denoted with ·.

We use this notation because we can modify the expression t ∈ {j ·h, (j+1) ·h} to

be t ∈ {j ·h, (j+1) ·h}. Then by selecting the value of h = Ts the value of h becomes

h = h/Ts = 1. Thus when working with the sample numbers, the expressions for the

mean and variance of r̃s(i)(j) (from (3.19) and (3.20)) become:

E[r̃s(i)(j)] = m · rh(t)

V ar[r̃s(i)(j)] =
m

1
· rh(t)(1− 1 · rh(t)) .

(3.27)

Finally, because the value of rh(t) � 1 we can approximate V ar[r̃s(i)(j)] as:

V ar[r̃s(i)(j)] ≈ m · rh(t) = E[r̃s(i)(j)] (3.28)

77

Note that this assumption is required for our analysis in the following sections, in

(3.30) and (3.31), and does not change any of the analyses that were conducted in

Sections 3.2.3 or 3.2.3.1.

3.3.2.1 Null Hypothesis - No Anomaly

We begin our analysis of the Pearson chi-square detector by considering why in the null

hypothesis scenario the chi-square score computed using (3.25) follows a centralized

χ2(1) distribution. In this and the next section we drop the index i on the sub-density,

i.e., use s instead of s(i), to simplify the expressions knowing that the analysis (and

detection) is performed one sub-density at a time.

If we assume that the number of observations, m, is large then the binomial

random variable, r̃s(j), can be approximated with a normally distributed random

variable (having mean and variance given by (3.27)). According to [32], for a normally

distributed random variable, X, with mean ω and variance σ2, we have that Y defined

as:

Y =
(X − ω)2

σ2
(3.29)

follows a χ2(1) distribution, i.e., Y ∼ χ2(1) with E[Y] = 1 and V ar[Y] = 2.

Therefore, if the empirical renewal density and smooth approximation estimates

correspond to the same renewal density, i.e., no anomaly present, then according to

(3.27):

Xj = r̃s(j)

ωj = E[r̃s(j)] = m · rh(t)

σ2
j = V ar[r̃s(j)] ≈ m · rh(t) = E[r̃s(j)] ,

(3.30)

where we use the subscript j to denote that the mean and variance are taken over

multiple realizations of the same histogram bin, i.e., multiple values of r̃s(j), observed

78

over a period of time. If we assume that s̃s(j) ≈ E[r̃s(j)], which should be true since

s̃s(j) is the smooth approximation of r̃s(j), then we can rewrite ω and σ2 as:

ωj = E[r̃s(j)] ≈ s̃s(j)

σ2
j = V ar[r̃s(j)] ≈ E[r̃s(j)] ≈ s̃s(j) .

(3.31)

Finally, if we replace the values of X, ω and σ2 in (3.29) with their values from

(3.30) and (3.31), then we see that the expression in (3.29) is identical to a single

term in the summation (3.25). Therefore, each term in the summation (3.25) is

approximately χ2(1) distributed, where χ2(1) is a chi-square random variable with

E[χ2(1)] = 1 and V ar[χ2(1)] = 2.

The sum of Nbin χ2(1) random variables is a χ2(Nbin) random variable with

E[χ2(Nbin)] = Nbin and V ar[χ2(Nbin)] = 2 · Nbin. Thus, the sum in (3.25) follows

a χ2 distribution with Nbin degrees of freedom.

3.3.2.2 Alternative Hypothesis - Anomaly

When an anomaly is present, let the estimates of r̃s(j) and s̃s(j) still be approximated

by normal distributions, but each having a different expected value. This makes

intuitive sense from an anomaly standpoint. If r̃s(j) corresponds to the value of the

empirical renewal density containing the anomaly, then r̃s(j) is the combination of the

anomaly-free distribution, s̃s(j), plus an additional component due to the anomaly.

Denote γj to be the component of the renewal density estimate at r̃s(j) due to the

anomaly:

γj = r̃s(j)− s̃s(j) (3.32)

In the previous case because ω ≈ s̃s(j) and σ
2 ≈ s̃s(j) applying (3.29) resulted in

a χ2(1) random variable. In the anomalous case, if the anomaly appears in histogram

79

bin j, then for X = r̃s(j) we can no longer assume ω = s̃s(j) and σ2 = s̃s(j). Nor

can we assume applying (3.29) results in Yj following a non-central χ2 distribution

χ2
NC(1,

γ2
j

s̃s(j)
) according to [14]. Where the non-central χ2 distribution is defined by

the shift parameter βj =
γ2
j

s̃s(j)
, and has mean and variance given by [14]:

E
[
χ2
NC (1, βj)

]
= 1 + βj

V ar
[
χ2
NC(1, βj)

]
= 2(1 + 2 · βj)

(3.33)

Thus, in any histogram bin j where an anomaly is present, r̃s(j) and s̃s(j) are

from different distributions and the corresponding term in the summation (3.25) is no

longer χ2(1) distributed but follow a non-central chi-square distribution χ2
NC(1, βj).

3.3.2.3 Relating Detection Parameters to the Distributions

Finally, we describe how the probability of false alarm, PFA, and the probability of

false negative, PFN , relate to the central and non-central χ2 distributions. These

are plotted in Figure 3.5 for particular values of the degrees of freedom, which we

denoted previously as Nbins and the shift parameter β. Let χ2
D denote the chi-square

score (computed using (3.25)) necessary to decide that r̃s(i)(j) and s̃s(i)(j) deviate

sufficiently, statistically speaking, to indicate an anomaly. The value of χ2
D is given

by:

χ2
D = F−1

(
χ2(Nbin), 1− PFA

)
(3.34)

where F−1 is the inverse cdf of χ2(Nbin), the central chi-square distribution with Nbin

degrees of freedom, evaluated at 1 − PFA. If r̃s(i)(j) and s̃s(i)(j) are from the same

distribution, i.e., no anomaly present, the chi-square score obtained using (3.25) will

only exceed χ2
D with probability PFA.

When r̃s(i)(j) and s̃s(i)(j) are from different distributions then the chi-square score

80

follows a non-central chi-square distribution, i.e., χ2
i ∼ χ2

NC(Nbins, βi). The shift pa-

rameter, βi of the χ
2
NC distribution determines the shift left-to-right, of the distribu-

tion, and can intuitively be thought of a measure of how much r̃s(i)(j) and s̃s(i)(j)

differ when computing (3.25). For a histogram bin, j, in the sub-density being tested,

when r̃s(i)(j) 6= s̃s(i)(j) then the difference, γj, is given by (3.32). Note that, if r̃s(i)(j)

and s̃s(i)(j) are from different distributions, then the difference γj increases as more

events are observed. The value of γj determines the shift parameter according to

βi,j =
γ2
j

s̃s(i)(j)
[67]. Further, the combined shift parameter, βi, for the sub-density

being tested is the sum of the terms:

βi =
∑
j∈s(i)

βi,j =
∑
j∈s(i)

γ2j
s̃s(i)(j)

(3.35)

The probability of a false negative, PFN , is the Pr(χ
2
i < χ2

D) when χ
2
i ∼ χ2

NC , i.e.,

an anomaly is present. Once χ2
D is determined, PFN is decreased by increasing the

shift parameter, which shifts the distribution of χ2
NC towards ∞.

As an example to illustrate how PFA and PFN relate to the actual χ2 distributions

consider Figure 3.5, which plots the probability density functions for the two χ2 dis-

tributions. The solid line is a centralized χ2 distribution with 5 degrees of freedom,

and the dashed line is a non-centralized χ2 distribution with 5 degrees of freedom and

a shift parameter equal to 10. When no anomaly is present in the measurements then

the chi-square score χ2
i , given by (3.25), follows the centralized χ2(5) distribution

(solid curve), and when an anomaly is present then χ2
i follows the non-centralized

χ2
NC(5, 10) distribution (dashed curve). In this example, the value, x = 11.07, cor-

responds to χ2
D. PFA is the area under the solid curve to the right of x = 11.07,

and PFN is the area under the dashed curve to the left of x = 11.07. Note, that

increasing the value of the shift parameter, β, shifts the non-central χ2
NC distribution

81

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Value (X)

P
ro

ba
bi

lit
y

Probability Density Functions (Chi−Square, Non−Central Chi−Square)

χ2(5,10)

χ2(5)

X = 11.07

Figure 3.5: Example of Central and Non-Central χ2 Distributions

towards the right in Figure 3.5, leading to less overlap between the distributions and

consequently a lower chance for false alarms. The value of β can be thought of as

the amount of evidence for an anomaly that has been collected, which is a function

of the rate of the anomaly and the amount of time over which the events have been

observed.

With explicit expressions for the distribution of χ2
i for both the null and alternative

hypothesis it is possible to determine optimal parameters for the detection system,

which will be discussed in Sections 4.3.1, 4.4.1.

3.3.3 Smooth Approximation

As mentioned in the previous section, the “smooth approximation” is a distribution

designed to be anomaly free. We propose two methods: one for an ideal renewal

process and one to be used for actual Internet traffic. The smooth approximation

82

will be denoted s̃(j), and we assume that the approximation will be chosen for the

specific method, i.e., different approximations for an ideal renewal process and real

traffic.

3.3.3.1 Smooth Approximation - Renewal Process

The first smooth approximation makes use of the fundamental property of the renewal

function (and associated renewal density), which was described in (3.5), namely that

given the distribution of the first order partial sum sequence, i.e., F1(M) or f1(M),

all other orders can be determined via convolution. Therefore, the entire renewal

function (or density) can be determined from F1(M) or f1(M). Similarly, the smooth

approximation can be determined using the estimate of the inter-arrival pdf, i.e.,

f̃1(j), by taking multiple convolutions of f̃1(j):

s̃(j) =
∞∑
k=1

f̃k(j) =
∞∑
k=1

f̃k∗(j) (3.36)

where f̃k∗(j) is the k-fold convolution of f̃1(j).

The smooth approximation assumes that f̃1(j) is not affected by the anomalous

events. This assumption is reasonable given the fact that for the detection problem

considered here the anomalous events are low-rate, i.e., P is large. Therefore, mul-

tiple background events occur between pairs of anomalous events meaning that the

distribution f̃1(j) does not have a strong component at j = P and consequently the

convolutions of f̃1(j) do not have a strong component at j = P either.

3.3.3.2 Smooth Approximation - Non-Renewal Process

The second method to derive a smooth approximation is necessary for traffic that does

not follow a renewal process. In this case, the first order inter-arrival pdf cannot be

83

used to compute the higher order inter-arrival pdfs via convolution. The failure of the

convolution method to produce an accurate smooth approximation for Internet traffic

is due to one issue in particular, so-called “multiple-packet deterministic sequences”,

which are caused by packets being queued at routers then output from the router

back-to-back [40]. The inter-arrival timing of the back-to-back packets is a function

of their packet sizes, which is known to follow a roughly bi-modal distribution [71].

The deterministic nature of the inter-arrival times for back-to-back packets causes the

inter-arrival time (or first order partial sum) distribution to deviate from what would

be expected for a renewal process. More specifically, the authors of [40] state that the

inter-arrival distribution consists of two portions: “one that can contain back-to-back

packets and the other for packets that are guaranteed to be separated by idle time”.

While the “multiple-packet deterministic sequences” create deviations in the inter-

arrival time (or partial sum) distributions for low orders, the length of each back-to-

back packet sequence is relatively short. Because the deterministic sequences are

short their impact on higher order partial sum distributions is less apparent. Herein

lies the problem with attempting to estimate higher order partial sum distributions

via the first order partial sum distribution, as in the first method. Taking the n-fold

convolution of the first order partial sum distribution would generate an estimate of

the n-th order partial sum distribution that is heavily biased towards having very

long deterministic sequences, i.e., many consecutive back-to-back packets.

Since the anomaly could not be removed using the convolution technique we chose

to apply a filtering method directly to the renewal density estimate, r̃(j), itself. The

filtering method selected is called the trimmed mean and is particularly suited for for

computing the mean value of data even in the presence of outliers [72]. The trimmed

mean is a technique that removes spurious data before computing the average value,

which makes it possible for us to compute an anomaly free distribution from the

84

renewal density estimate even when there are sharp peaks in the data near t = P .

To derive the smooth approximation, s̃(j), of the renewal density the trimmed

mean is computed using the renewal density estimate, r̃(j), at each value of j. To

compute the trimmed mean at a given j, we use the following algorithm on the the

±J neighboring values of r̃, i.e.,

{r̃(j − J), r̃(j − J + 1), ..., r̃(j − 1), r̃(j + 1), ..., r̃(j + J − 1), r̃(j + J)} (3.37)

(note: that r̃(j) is not used).

1. Order the neighboring values (either ascending or descending), such that {r̃(j−

J(1)) > r̃(j − J(2)) > ... > r̃(j − J(2 · T))} for some ordering of J(i) ∈

[−J,−1], [1, J].

2. Remove the top and bottom Trim% of the values.

3. s̃(j) is the mean of the remaining values.

The length J is user-selectable, however, a good choice is to set J = h · Nbin/2,

i.e., compute the trimmed mean on an interval equal to the width of a sub-density.

Typical values for Trim are 5− 25% [72]. However, in practice the anomalous events

may experience jitter and therefore can impact many neighboring values of j. Thus

a larger value is used, Trim = 40%, and has shown to provide a robust smooth

approximation.

3.3.4 Jumping Windows

In Section 3.3.2 the operation of the detection method was described as it is applied

to a particular sub-density. To implement the detection system shown in Figure 3.4 it

85

is desirable that each sub-density be able to output detection decisions at some fixed

interval, for example TFix. The problem with this scenario, however, is that each sub-

density requires a different amount of time to gather enough measurements, including

anomalous events, in order to determine with confidence that indeed an anomaly is

present. We denote the amount of time required to gather enough anomalous events

the time-to-detection, TD(j), where j indicates the sub-density. In Sections 4.3.1.1

and 4.4.1 we discuss how to determine TD(j) in various anomaly detection examples.

To implement our system such that each sub-density outputs detection decisions

at a fixed interval we propose to use jumping windows with varying length. To obtain

the variable length we group measurements in time windows equal to the detection

decision reporting interval TFix. We call these time windows observation windows and

denote them W (i). Then each sub-density, j, uses a different number of observations

windows, denoted NumW (j), to perform detection on, which is a function of the

time-to-detection, TD(j), in that sub-density and is given by:

NumW (j) ≥ TD(j)

TFix

(3.38)

The jumping window implementation is shown in Figure 3.6. For each observation

window, W (i), an estimate of the renewal density is generated using the inter-arrival

times computed from the measurements that arrive during this window. In other

words only partial sum sequences, Sn(M(j)), are computed where M(j) ∈ W (i), the

current observation window. Note that measurements from previous windows, i.e.,

M(j−n) ∈ W (i−1), are used in the computation of these inter-arrival times, however,

the starting measurement must occur within the current observation window.

86

Figure 3.6: Jumping Window Implementation of Detection System

When the current observation window ends, signaling the system to output de-

tection decisions, detection is performed in sub-density j by taking the sum of re-

newal density estimates from the past NumW (j) observation windows. For example,

in Figure 3.6 renewal density estimates from the last four observation windows are

summed to create the combined renewal density estimate that is used in the Pearson

Chi-Square test.

When an observation window is no longer needed for detection the measurements

and renewal density estimate are forgotten, and replaced by data from the next ob-

servation window.

3.3.5 System Parameter Selection

In this section methods for selecting some of the detection system parameters are dis-

cussed in a general context, and in Sections 4.3 and 4.4 system parameter selection

will be discussed as it applies to specific detection problems. The detection system

87

parameters to be determined, which are shown in Figure 3.7, include: Maxx - maxi-

mum inter-arrival time, h - histogram bin width, H - sub-density width, and Nsub -

number of sub-densities.

Figure 3.7: Selecting Detection System Parameters

3.3.5.1 Width of Sub-Density

As stated in Section 3.3.1, detection is performed independently in sub-densities.

Selecting the proper width of the sub-density, H, is important because it affects

detection performance. For example, if the width of the sub-density is selected too

large then the impact of the periodic anomaly, which we assume occurs at or near

t = P , on the Chi-Square score will be lessened. This occurs because the surrounding

histogram bins do not contain the anomaly, and the Chi-Square score in histogram

bins not containing the anomaly is approximately zero, as indicated by (3.25). In

practice, however, the anomalous events are not exactly periodic due to jitter created

88

by queuing in routers as the packets traverse the Internet. Because of jitter the peak

in the renewal density caused by the periodic events does not occur only at t = P .

Instead the peak is spread over a range of inter-arrival times t = P ±∆, where ∆ is

determined by the amount of jitter encountered in the network. If the periodic events

are jittered we must select the width of the sub-density such that it captures as much

of the periodic events as possible.

Therefore, in a general context the optimal size for the width of the sub-density,

H, should be as small as possible as long as it captures the majority of the anomaly

in a single sub-density. We define the width of the anomaly, HA, to be the range

of inter-arrival times that the anomaly impacts in the renewal density. The range

of inter-arrival times impacted depends on the type of anomaly being detected. For

example, in the jitter scenario discussed aboveHA = 2·∆ (estimating the value of ∆ is

discussed in Section 4.2.3), or for the so called shrew attack, discussed in Section 4.4,

HA depends on the burst interval of the attack. In Sections 4.3 and 4.4 we discuss

methods to determine HA for the detection examples considered.

In a practical scenario we recommend that the width H be selected to be two to

four times HA because we cannot know that the anomaly is centered in a sub-density

and this added margin ensures the majority of the anomaly is captured.

3.3.5.2 Histogram Bins per Sub-Density and

Width of Histogram Bin

In addition to the parameters shown in Figure 3.7 one additional parameter, Nbin,

which is the number of histogram bins per sub-density also must be determined. Nbin

is related to H and h by, H = h · Nbin. Since H has already be determined we are

left with selecting h or Nbin. Which one of the two parameters is determined first is

a matter of practicality.

89

Theoretically it is easier to select h using (3.22) or (3.23) to guarantee convergence

of the histogram bins. However, in practice it is easier to select H and Nbin and

let h be determined. Selecting H and Nbin is easier due to the way the system

is implemented. As described in Section 3.3.2, to reduce computational cost, the

selection of a hypothesis, whether an anomaly is present or not, is done by comparing

the value of the chi-square score computed, χ2
i , against the threshold, χ

2
D. The value

of the χ2
D is determined by PFA and Nbin. There is no simple closed form expression

for χ2
D in terms of PFA and Nbin. Instead for the system implementation, values of χ2

D

are pre-computed for a selection of PFA and Nbin combinations. Thus, because χ2
D is

precomputed it limits the possible values of Nbin, and because of this in a practical

system we select the value of Nbin and allow the value of h to be determined.

To ensure that the value of h, determined by h = H/Nbin, meets the criteria for

convergence given in Section 3.2.3.2, we pre-compute the value of χ2
D with multiple

values of Nbin for each value of PFA we desire to use. Then when conducting an

experiment, based on the characteristics of the Internet traffic we select the value of

Nbin such that h meets the convergence criteria given by (3.23).

3.3.5.3 Maximum Inter-Arrival Time

Selecting the maximum inter-arrival time depends on the the maximum period of

the anomalous events being detected. Clearly, Maxx > P , is required in order for

detection to be possible. Since the value of P is not know a priori the user can select

Maxx based on the period of anomaly they determine important. For example, from

a system administrator perspective, on a network with a capacity of 10 Gbps a 1

Mbps periodic anomaly might not be a concern, however, on a 100 Mbps network a 1

Mbps anomaly is a major concern. Therefore, from a practical perspective selecting

the value ofMaxx should be done by the system administrator based on what period

90

of anomaly is important to detect on their system. If we define, PSAvg, to be the

average packet size in the network (which can be easily determined using standard

system administrator tools), then we can relate P to the rate of the anomaly, R Mbps

by, P =
PSAvg ·10e6

R
. Finally, the system administrator can select Maxx using either,

Maxx > P or Maxx >
PSAvg ·10e6

R
.

Selecting Maxx using this criterion works for the general periodic anomaly detec-

tion scenario. However, assuming the detection system can maintain the computation

and data storage burden it is desirable to select Maxx � P to detect harmonics of

the fundamental anomalous period. In particular, in Section 4.3.3, we show that in

order to detect quasi-periodic anomalies, when the fundamental period is obscured

due to a smart-adversary, detecting harmonics is a more reliable and potentially the

only feasible method to detect the anomaly.

3.3.5.4 Maximum Inter-Arrival Order

The theoretical method to select the maximum inter-arrival order is to select n such

that Fn(Maxx) < φ, where Fn is the cdf of the n-th order inter-arrival time dis-

tribution and φ is a small value which indicates the probability of an n-th order

inter-arrival occurring before Maxx to be negligible.

In practice, determining the maximum inter-arrival order to be computed between

measurements in order to estimate the renewal density can be done by assuming

a Poisson process model for the Internet traffic measurements. Given the Poisson

process model the first order inter-arrival times, f1(t), are exponentially distributed

with mean inter-arrival time λ. Under the same assumption the distribution of the

n-th order inter-arrival times, fn(t), given by (3.5) is the n-th order convolution of

the first order inter-arrival distribution and follows an Erlang distribution with scale

parameter n · λ.

91

To determine the value n such that Fn(Maxx) < φ exactly requires that we

compute the cdf of the Erlang distribution, which is impractical because it involves

computing the factorial of n. Instead of computing the exact cdf of the Erlang

distribution we use the Normal approximation to the Gamma distribution that we

used in Section 3.2.3.2, i.e., for large n the pdf of the Erlang (or Gamma) distribution

(with scale parameter λ) is approximated by, fn(t) ∼ N(n · λ, n · λ2). Using the

Normal approximation the cdf can be expressed in terms of the error function, erf ,

by the following well known expression [30]:

F
(
x, µ, σ2

)
=

1

2

[
1 + erf

(
x− µ

σ
√
2

)]
(3.39)

and inserting the values from our Normal approximation:

F
(
Maxx, n · λ, n · λ2

)
=

1

2

[
1 + erf

(
Maxx− n · λ

λ
√
2 · n

)]
(3.40)

Next, we can express our constraint condition Fn(Maxx) < φ using (3.40) as:

erf

(
Maxx− n · λ

λ
√
2 · n

)
< 2 · φ− 1 (3.41)

The user then selects a desired value for φ and using a table that gives values for

erf(θ√
2
), where in our scenario:

θ =
Maxx− n · λ

λ
√
n

(3.42)

the value of n can be determined. Tables of values for erf can commonly be found

in probability references such as [30].

The selection of n is important because computing the inter-arrival times between

92

measurements, which is done up to order n, is the computational bottleneck in our

detection method. Discussed in detail in Section 5.1.2, the computational cost of our

detection system is on the order of n2. Therefore, to minimize computational costs

selecting n as small as possible is desirable. If computational cost is not a concern,

then less precise yet simpler methods to select n can be used. For example, using the

Erlang approximation used above, the average inter-arrival time at order n is n · λ.

Selecting n such that n · λ > k ·Maxx, where k is some integer multiple (e.g., k = 5

or k = 10), would be one simple method to select the value of n.

3.4 Conclusion

In this chapter the design of a low-rate periodic event detection system, IA2D, was

discussed. IA2D uses an estimate of the renewal density, which it breaks down into

segments called sub-densities that are processed individually yet by using jumping

windows of varying length all sub-densities report detection decisions at a fixed user

defined time interval, Tfix. In the following chapter, IA2D will be used in two different

detection scenarios. Detecting low-rate periodic events in Internet traffic, resembling

a DoS attack, using IA2D is the subject of Section 4.3, and in Section 4.4 the task of

detecting Shrew attacks is attempted using IA2D.

93

Chapter 4:

Detection Examples using IA2D

4.1 Introduction

In this chapter we consider detection of periodic events in aggregate collections of mea-

surements. More specifically we consider detection of very low-rate periodic packet

arrivals mixed with random background Internet traffic. These periodic packet ar-

rivals potentially represent malicious behavior, e.g., denial-of-service (DoS) attack

traffic [34, 36] or benign yet undesirable network behavior like under-performing or

”bottleneck” links [9, 41,77].

Bottleneck links, as shown in Figure 4.1, output packets back-to-back at their

maximum rate, R1. The time, say P , between back-to-back packets is determined by

the link rate and the packet size, L, i.e., P = L/R1 [48]. According to [71] the majority

of packets flowing through the Internet have packet sizes of one of few dominate sizes.

Therefore, in a bottleneck link with limited output rate R1, the majority of packets

are output back-to-back and the inter-arrival times between packets correspond to the

P times associated with these common packet sizes. Further, even when the back-

to-back packets flow into a network with a higher link speed, the time between the

packets will remain equal to P even though the packets are no longer back-to-back.

94

Figure 4.1: Bottleneck Link Creates Periodic Inter-Arrival

Like bottleneck links, packets from a DoS attack can arrive at the target period-

ically spaced. There are two main scenarios where DoS attack traffic can manifest

itself as periodically spaced traffic. The first scenario occurs due to limitations in the

system generating the DoS attack. For example, the algorithm used in the attack

outputs packets at a fixed period. Alternatively, the system used in the attack at-

tempts to output packets as fast as possible, yet the host operating system or central

processing unit limits the output rate causing the attack packets to be output period-

ically [35]. While DoS attacks may not typically be low-rate, consider the case of an

individual stream of attack packets in a Distributed Denial-of-Service (DDoS) attack.

For a DDoS attack the combination of multiple attack streams might be noticeable

near the target, however, at other points in the network the individual streams are at

a lower rate and are less obvious. It is the goal of our system to detect these low-rate

periodic anomalies. The second DoS scenario that produces periodic anomalies is

called low-Rate, TCP-targeted DoS attacks (so called shrew attacks) [46], a recent

addition to the arsenal of DoS attacks. The goal of the shrew attack is not to over-

whelm the target, but to interfere with the targets normal operation by disrupting

TCP congestion avoidance algorithms. This interference negatively impacting the

throughput of the target, and represents a potential loss of income in commercial

systems.

In this chapter we apply the IA2D detection system that we designed in Chapter 3

95

in two different detection scenarios. The first scenario (Section 4.3) is to detect very

low-rate periodically spaced packet arrivals that are merged with background Internet

traffic. The second scenario considered (Section 4.4) is detecting a low-rate, TCP-

targeted shrew attack.

These applications of our detection system provide good opportunities to showcase

the use of a Poisson model of Internet traffic that we use to analyze the detection sys-

tem and help in selecting actual measurement system parameters. Using the Poisson

model we can derive theoretical values for the system parameters. Further, because

the applications are disparate it shows the applicability of our system to a variety of

detection scenarios. In particular in Sections 4.3.1 and 4.4.1 we analyze our detection

system using a Poisson process for both detection scenarios in order to determine the

time-to-detection, TD. Recall from Section 3.3.4 that TD indicates the time required

to gather enough measurements, anomalous events, to determine with confidence

that indeed an anomaly is present. Thus, by computing TD we know the required

observation window length that must be considered when performing detection.

While the system analysis using the Poisson process is helpful to determine TD, in

practice Internet traffic measurements do not follow a Poisson process. Therefore, in

Sections 4.3.2 and 4.4.2 we consider methodologies to modify the system parameter

settings determined using our Poisson process analysis in order to make IA2D perform

reliably on real Internet traffic. Two modifications are used in particular. The first

is the use of subsampling to make the Internet traffic measurements more like the

Poisson process. Why subsampling works to make Internet traffic more like a Poisson

process is described in Section 4.2.1. The second modification is to the value of TD,

where we recommend the use of what we call the “worst case scenario” value of TD.

The worst case value of TD accounts for the fact that while traversing the Internet

the periodic traffic encounters delays at routers, which cause the inter-arrival times

96

between consecutive periodic packets to be jittered. The jitter of the periodic inter-

arrival times causes the peak in the renewal density near t = P to be smoothed.

Thus the difference γP in (3.32) is decreased, and a longer TD is required in order to

achieve the χ2 score need for detection. Computation of the worst case values of TD

are described in Sections 4.3.1 and 4.4.2.

Using these modifications we show in Sections 4.3.2 and 4.4.2 that we can reliably

detect the two different types of periodic traffic when merged with real Internet traffic.

The experiments conducted here are designed to verify that the system parameters

selected using the Poisson process analysis produce reliable results, in terms of PFA

and PFN . In a practical system it is desirable to limit user interaction, e.g., checking

whether a positive detection is due to an actual anomaly or a false positive. Methods

to reduce user interaction, including post-processing of positive detection results and

reducing PFA by increasing TD, are discussed in Section 4.5.

4.1.1 Related Work

A number of different techniques have previously been applied to the task of de-

tecting periodic packet arrivals in Internet traffic. Most methods use a time series

representation for the Internet traffic measurements, where the signal represents the

number of packet arrivals in uniform time intervals. Working with the time series

representation Katabi et al. used wavelets to detect traffic congestion due to bottle-

neck links in the network [41]. Similarly, in [34] He used spectral based techniques to

detect bottleneck links using aggregate network traffic measurements. Both of these

methods successfully detected periodic traffic caused by bottleneck links, however,

the periods that were considered were much shorter than those we focus on in our

work, i.e., higher rate problems were studied. In order for these methods to be able

97

to detect the longer periods that we focus on, the length of the observation window

upon which their time-frequency transform is performed would have to be increased.

The increased window length is required because for longer periods the length of time

needed to observe the same amount of periodic events, as for the shorter periods,

increases. Computing the time-frequency transforms used in [41] and [34] on the in-

creased window length significantly increases computational complexity. The benefit

of our method over these methods is that the computation cost is determined by the

maximum inter-arrival order n used to estimate the renewal density, and therefore we

can increase the observation window length without increasing computation cost.

The point process signal representation that we use has also been used to detect

anomalies in Internet traffic. In [42], Katabi et al. analyzed the entropy of packet

inter-arrival times in order to detect congestion at network links. In congested links

the inter-arrival times take on only a few values (related to the packet sizes) and have

a low entropy. Instead, in uncongested links the inter-arrival times are random and

have a higher entropy. The congested link in this example is similar to a bottleneck

link and the packets output from a congested link have inter-arrival times that are

essentially periodic. The main difference between this method and ours is that this

method only looks at first order inter-arrival timing information. Thus, this method

cannot be used to detect low-rate periodic packet arrivals in aggregate traffic because,

as we assumed, the periodic packet arrivals are rarely back-to-back. In another work,

Ma and Hellerstein [49] used the point process signal representation to detect periodic

packet arrivals in Internet traffic. This method is similar to ours in that it applies

the Pearson Chi-Square test to the distribution of inter-arrival times. However, as in

Katabi’s work, Ma and Hellerstein only consider the first order inter-arrival informa-

tion. Again this method would not work for our task of detecting low-rate periodic

packet arrivals because the periodic packets do not occur back-to-back in Internet

98

traffic. Further, this method uses an exponential distribution to model the first or-

der inter-arrival times for comparison in the Pearson test, which as we will show in

Section 4.2.1 is not a reliable model for real Internet traffic.

The detection method that is most similar to ours, in terms of application, is

the bivariate Parametric Detection Mechanism (bPDM) [75]. bPDM was designed to

detect constant rate anomalies even at very low rates, where constant rate means that

there is a constant number of anomalous packets per unit time. bPDM is a model

based method that uses a time series signal representation, and analyzes the incoming

traffic measurements to determine whether or not the traffic is random or random

plus a constant component. Constant rate includes periodic anomalies, therefore,

this method works on a more general class of anomalies compared to IA2D. However,

our method has the additional benefit that it can detect and distinguish between

multiple periodic events that occur in the same set of measurements. Since bPDM is

rate based it can detect the multi periodic events as a combined anomaly, however, it

is unable to distinguish between the two periods. Being able to distinguish different

periodic events is desirable because real Internet traffic does contain some inherent

periodicities. For example, the round trip time to transmit packets between two

computers is typically a fixed time (assuming the network is not highly congested).

When two computers are in the middle of a session, e.g., streaming a video from a

movie web site, packets being sent between the two computers can create a periodic

stream, which clearly is not an anomaly. Therefore, it would be desirable to be able

to determine whether a periodic stream is legitimate (not requiring mitigation), and

still be able to detect additional, potentially malicious periodic traffic streams. This

is possible with IA2D and not with bPDM.

Because bPDM is the only technique we have found in literature capable of de-

tecting periodic events at the low-rates we consider, it is the only method we use for

99

comparison to our method (see Section 4.3).

4.2 Preliminaries

Before proceeding to the applications of the IA2D detection system we present some

preliminary analysis and parameter selection that is universal to all scenarios.

4.2.1 Renewal Process Assumption

Modeling Internet traffic as having independent arrivals or as a Poisson process is a

debated point. For example, in [58] Paxson shows that a Poisson model for Internet

traffic fails to capture the self-similarity of Internet traffic at very long time scales.

However, we support the use of a renewal process model based on the result from

Karagiannis [40], which states that “(p)acket arrivals appear Poisson at sub-second

time scales,” assuming that measurements are recorded at systems seeing “a vast

number of different multiplexed flows.” The low-rate detection task we consider in

our work coincides with the observations in [40] because we examine aggregate traffic

so our measurements represent a collection of multiplexed flows, and in most scenarios

we consider sub-second time scales. For example, in Section 4.3 the periods we detect

are on the order of milliseconds, and is Section 4.4 the periods are larger, in the

range of .5 to 2 seconds. We note that even at longer time scales, or even when the

renewal process model does not hold the techniques we use, i.e., estimating the renewal

density, etc., are still valid. However, the analysis we perform using Poisson process

tends to underestimate some of the system parameters that we use the analysis for.

Therefore, we scale these estimates based on characteristics of the traffic in order for

our detection system to achieve the desired PFA and PFN values.

100

Even if the Poisson process model is adopted there may be problems with “multiple-

packet deterministic sequences”, created by back-to-back packets, which causes the

packet inter-arrival distribution to deviate from an exponential distribution [40]. More

specifically, the authors state that the inter-arrival distribution consists of two por-

tions: “one that can contain back-to-back packets and the other for packets that are

guaranteed to be separated by idle time.” In their analysis they found that the inter-

arrival distribution deviated from the exponential distribution at short inter-arrival

times because of the back-to-back packets. However, they found that this deviation

was small in networks where the links were not heavily utilized.

For our work these “multiple-packet deterministic sequences” create false periodic

peaks in the renewal density, and were a significant cause of false positives. To combat

the deterministic sequences we use subsampling and back-to-back packet filtering to

reduce the effect of these sequences, i.e., remove the periodic peaks they create in the

renewal density.

4.2.2 Subsampling and Back-to-Back Packet Filtering

In this section we present two methods to reduce the effect of “multiple-packet deter-

ministic sequences” and to make Internet measurements more like a Poisson process.

The first method is related to the result from Rényi discussed in Section 3.2.1.1, which

stated that the process obtained from thinning a general renewal process converges

to a Poisson process as the thinning rate goes to ∞. Relating this idea to that of

Karagiannis et al. (from the previous section), if we subsample (or thin) Internet

traffic measurements we remove many of the back-to-back inter-arrival times leav-

ing primarily inter-arrivals which are separated by an amount of idle time. Thus,

101

subsampled Internet measurements are actually more accurately modeled by a Pois-

son or renewal process. The second method more specifically addresses the problem

of “multiple-packet deterministic sequences” by removing, or filtering back-to-back

measurements. This method is quite a useful alternative to subsampling in scenarios

when a low subsampling rate is desired because it can also produce “Poisson-like”

measurements, but with lower subsampling rates. A lower subsampling rate is de-

sirable because subsampling increases the time required to gather enough periodic

events in order to detect the presence of an anomaly.

In order to show the effect of subsampling on Internet traffic measurements, in

terms of making the measurements more like an ideal Poisson process, we performed

the following experiment. We begin with typical Internet traffic, which has non-

Poisson characteristics (as explained previously). These characteristics impact the

renewal density that we estimate from the background traffic, and consequently im-

pacts our detection reliability. By applying back-to-back packet filtering or subsam-

pling we improve the fit of our measurements to a Poisson distribution, and improve

the reliability of our detection system with the associated trade-off of a longer TD.

Thus, in our experiment we randomly subsample, using our subsampling technique

derived in Section 2.3, a typical Internet traffic measurement trace [1] at multiple

rates, µ = {1, 5, 10}. For each subsampled trace inter-arrival distributions, f̂n(t),

at orders n = [1 : 500] are estimated using the method in Section 3.2.3. For each

order n the average inter-arrival time λn is computed, and an Erlang distribution,

Erl(n, λn/n) is generated. Finally, the KL divergence is computed between the Er-

lang distribution and the estimated inter-arrival distribution at each order n and for

each subsampling rate µ. Smaller values of the KL divergence indicate that the esti-

mated distribution f̂n(t) are more like the Erl(n, λn/n) distribution, which is what a

Poisson process would generate at order n.

102

The values of the KL divergence are shown in Figure 4.2 and clearly show that as

subsampling is increased inter-arrival time distributions estimated from the resulting

measurements are indeed more like those of a Poisson process. This result coincides

with the result of Rényi from thinning a renewal process and will become important

in Section 4.3.2 when we attempt to use IA2D on measurements obtained from a

real Internet measurement system. In particular we see that the largest improvement

(i.e., biggest differences in KL divergence compared to no subsampling) occur at large

inter-arrival orders. This is beneficial for our detection problem because we try to

detect low-rate events, which typically occur at higher inter-arrival orders. At low

inter-arrival orders the presence of the “multiple packet deterministic sequences” still

exists causing the KL divergence values at these orders to remain large compared to

the value at higher inter-arrival orders.

Next, to show that by removing measurements corresponding to back-to-back

packets it is possible to achieve ’Poisson-like’ measurements with a lower subsampling

rate we repeated the above experiment and for comparison show the KL divergence of

measurements generated using a few subsampling rates, µ = {1, 1.2}. The value of 1.2

is selected because it equaled the equivalent subsampling rate of the back-to-back fil-

tered measurements, for this experiment. Removing the back-to-back measurements

requires knowledge of the packet size of the measured packets. Assuming this infor-

mation is known, back-to-back packet filtering works as follows, here PackSize(k) is

the size of the kth packet in bits, and BitRate is the bit rate of the incoming network

link in bits per second bps. Note, that the timestamp of the filtered measurement is

the first measurement in the collection of back-to-back measurements. We make this

choice because the first measurement is the only one which reflects the actual arrival

time of a packet; the other timestamps are determined by the packet size.

The KL divergence results comparing back-to-back packet filtering to subsampling

103

50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Inter−Arrival Order

K
L−

D
iv

er
ge

nc
e

(B
its

)

KL Divergence − Internet Measurements vs. Poisson Process

Subsampling Rate = 1
Subsampling Rate = 5
Subsampling Rate = 10

Figure 4.2: KL divergence results comparing subsampled Internet measurements to ideal Poisson

process

are shown in Figure 4.3 (note that the maximum inter-arrival order is less in Figure 4.3

than in Figure 4.2). In this example we focus on the lower inter-arrival orders to

show that by removing back-to-back packets there is a large improvement in KL

divergence, especially at the lower inter-arrival order, between 5 − 20 in the figure.

The difference in KL divergence between non-subsampled measurements and the back-

to-back packet filtered ones correlates with the idea from Karagiannis et al. that

multi-packet deterministic sequences cause deviations from a Poisson approximation

in inter-arrival time distributions from Internet traffic measurements. For comparison,

the KL divergence of measurements subsampled by the equivalent rate, 1.2, is also

shown, and we see that the result due to back-to-back filtering is an improvement

over standard subsampling. This indicates that by using back-to-back packet filtering

104

Algorithm 1 Back-to-Back Packet Filtering

Require: input: measurements X(k) = M(k), 1, PackSize(k)
loop
i = 0
while M(k+(i+1)) ¡ (M(k+i)+PackSize(k+i) * BitRate) do
i++

end while
Y(n) = {M(k), i};
k = k + i + 1

end loop
return measurements Y(n)

we can still obtain Poisson like measurements, yet because of the lower subsampling

rate we do not have to sacrifice our time-to-detection as much as with standard

subsampling. In particular we notice that the back-to-back packet filtering has a

substantial gain over standard subsampling at lower inter-arrival orders indicating

that it does a better job of removing the “multiple packet deterministic sequences”.

Therefore, if we have access to the packet lengths that are required for back-to-back

packet filtering this method is more practical than standard subsampling.

4.2.3 Packet Delay Variation

For periodic detection, although it is assumed that the attack packets are at one point

periodic, the task is to detect them in aggregate traffic. This involves merging the

periodic events with background Internet traffic, which does not preserve the exact

periodic structure of the attack packets. The merging process is done by routers which

are only able to output one packet at a time. Packets received while the router is

busy outputting another packet are queued and serviced by the router at the earliest

possible time. If an attack packet is queued while the router processes a background

Internet packet the periodic spacing between that attack packet and the attack packets

before and after it will be altered. Merging attack and background traffic creates

105

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Inter−Arrival Order

K
L

D
iv

er
ge

nc
e

(B
its

)

KL Divergence − Internet Measurements vs. Poisson Process

Subsampling Rate = 1
Subsampling Rate = 1.2
B2B Packet Filtering

Figure 4.3: KL divergence results showing use of back-to-back packet filter to improve Internet

measurements

variations in the periodic structure of the attack traffic, complicating the detection

process. This variation is generally called packet delay variation, however, throughout

this chapter we use the term jitter interchangeably. Methods to estimate the packet

delay variation exist, see [22] for example, and we assume that when the periodic

detection system is implemented a measure of the nominal packet delay variation is

known or can be estimated. Assuming this quantity is known we can modify our

detection system, by adjusting the time-to-detection TD in order to take into account

such delays. One simple method to estimate the packet delay variation between a

given source (SRC) and destination (DST) is based on the following process [22]:

1. SRC sends packet to DST with timestamp indicating when packet was sent

106

2. DST receives packet, records timestamp when packet was received, and com-

putes packet delay (PD) by taking the difference between timestamps (TSrec −

TSsent)

3. Repeat 1 and 2 to compute multiple PD values, and generate packet delay

variation (PDV) statistics from the PD values

In our model, assume that jitter will impact the periodic packets by delaying

them by an amount of time that is uniformly distributed in the interval [0, AvgJitter].

Therefore the jitter causes the peak in the renewal density at t = P to be spread out in

a triangular distribution around the period, with maximum deviation of ±AvgJitter.

4.3 Periodic Event Detection

Our first detection scenario is detecting periodic events, packet arrivals, in aggregate

Internet traffic measurements. Figure 4.4 shows an example of this scenario, where we

can see that the inter-arrival time between consecutive anomalous events is equal to

P . However, because the background traffic is non-deterministic the number of back-

ground packets between pairs of consecutive periodic packets is random. Therefore

the periodic inter-arrival times appear in the higher order inter-arrival distributions,

i.e., the fn(t), at many different orders n. Further, we cannot simply search for pe-

riodic activity in one, or a few inter-arrival distributions, i.e., a specific fn(t), as the

amount of periodic inter-arrivals in each would be small. However, with our renewal

density based detection system it is possible to search within all inter-arrival distri-

butions, fn(t) for all n, simultaneously. The presence of a periodic anomaly manifests

itself in the renewal density, or the estimate, as peaks located at inter-arrival times

corresponding to the period of the anomaly, P , and at harmonics of the fundamental

107

Figure 4.4: Example of Periodic Events Mixed with Other Measurements

period as well, i.e., k ·P ; something we will exploit in Section 4.3.3. Figure 4.5 shows

an example renewal density estimate with peaks created by a periodic anomaly at

multiples of one second.

Figure 4.5: Example of Renewal Density Estimate with Periodic Event Peaks

We begin this section by continuing our analysis (from Section 3.3) of the system

using Poisson processes, and from this analysis we derive an expression for the time-

to-detection TD. We compare the theoretic results against the bivariate Parametric

Detection Mechanism (bPDM) [75], to show that our system is comparable to the

108

state of the art. Further, we show an additional benefit that our method can detect

and distinguish multi-period attacks; something bPDM cannot do.

Then, starting in Section 4.3.2 we apply our system to measurements of real

Internet traffic. Some modifications to the TD calculation are required to achieve the

desired performance, however, following these adjustments our system is capable of

reliably detecting very low rate periodic anomalies.

4.3.1 System Analysis with Poisson Process

In this section we continue our analysis of the detection system, from Section 3.3, using

a Poisson process in to determine an explicit expression for the time-to-detection, TD

Intuitively, TD, can be thought of as the length of time required until enough evidence,

i.e., anomalous events, is gathered to decide whether an anomaly is present for a given

PFA and PFN .

4.3.1.1 Determining Time-to-Detection

In order to determine TD we use two of the parameters that were determined in

Section 3.3.2. The first parameter we need is χ2
D from (3.34), which is the chi-

square score necessary to decide that r̃s(j) and s̃s(j) deviate sufficiently, statistically

speaking, to indicate an anomaly. The second parameter is βi from (3.35), which is

the shift parameter of the χ2
NC distribution. Recall, that when r̃s(i)(j) and s̃s(i)(j) are

from different distributions then the chi-square score follows a non-central chi-square

distribution, i.e., χ2
i ∼ χ2

NC(Nbins, βi).

Next, to determine TD we use the above parameters to compute βD, which is

the shift in the χ2
NC distribution required to achieve a desired PFN as described in

Section 3.3.2. The value of βD is given by,

109

βD = min
βD

(
PFN > F

(
χ2
NC(Nbin, βD), χ

2
D

))
(4.1)

i.e., βD is the minimum shift parameter such that the cdf of χ2
NC with Nbin degrees

of freedom, evaluated at χ2
D, is less than PFN .

To determine an explicit expression for TD in terms of βD requires an exact ex-

pression for the renewal density. For this we assume that the background traffic is

Poisson, and that combining a Poisson process with periodic events does not signifi-

cantly impact the statistics of the Poisson process, i.e., it remains a Poisson process,

but with a new inter-arrival time parameter. This assumption is valid for low-rate

periodic events, such that multiple Poisson events occur between periodic ones. For

a Poisson process with mean inter-arrival time λ combined with periodic traffic of

period P , the new combined mean inter-arrival time λ̂ is:

λ̂ =
λ · P
λ+ P

(4.2)

As mentioned in Section 3.2.2 for a Poisson process, with mean inter-arrival time

λ̂ the renewal density is simply equal to r(t) = 1/λ̂. Similarly, for the same Poisson

process the value of the renewal density estimate r̃(j), using histogram bins h seconds

wide, is:

r̃(j) =
h

λ̂
(4.3)

For the Pearson’s Chi-Square test we need to estimate the number of observed

inter-arrival times equal to t, or more precisely the number of inter-arrivals that fall

in the jth histogram bin, where the jth histogram bin includes all t ∈ {j · h, (j +

1) · h}. This is computed by multiplying the probability of such an inter-arrival time

110

occurring, given by r̃(j), by the total number of observed inter-arrival times, which

for T seconds of measurements is:

E[r̃(j)] =
T

λ̂
· h
λ̂
=
T · h
λ̂2

(4.4)

Further, using method 1 (from Section 3.3.3.1) to derive the “smooth approximation”

for an ideal renewal process (Section 3.3.3.1) we assume that s̃(j) = E[r̃(j)], therefore,

the value of s̃s(i)(j) is constant and given by (4.4).

The value of γj depends on the period of the anomalous traffic, which for this

analysis is assumed known and equal to P . Assuming none of the periodic events

are delayed or jittered when combined with the renewal process, then all of the inter-

arrival times due to the periodic events are exactly equal to P . In this case the

difference, γj between the renewal density estimate and the smooth approximation is

zero except in the histogram bin containing the period P , i.e.,

γj =

 0 for j 6= P

T/P for j = P
(4.5)

Finally, combining the results, the value of βD using (3.35) is given by:

βD ≤
∑ γ2j

s̃s(i)(j)
≤
(
T

P

)2

·

(
λ̂2

T · h

)
. (4.6)

Then we can solve for the value T that satisfies the inequality:

TD ≥ βD ·
(
P 2 · h
λ̂2

)
, (4.7)

where we replace T with TD to indicate that it represents the time-to-detection for

the sub-density containing the period P . From (4.7) we see that the time-to-detection

111

depends on the period of the anomaly P , the width of the histogram bin h, and is

inversely proportional to the combined traffic rate λ̂. h appears in this inequality

because we assume that the inter-arrival time P is exact and there is no jitter. In

this case selecting h to be very wide allows more background inter-arrivals, those that

fall in the same range t ∈ {j · h, (j + 1) · h} as P , to be in the same histogram bin as

P . This increases the value of ss(i)(P) and reduces the value of βP = γP
ss(i)(P)

. Thus,

selecting a small value of h is desirable.

Rather than assuming all of the inter-arrival times between periodic packets are

exactly equal to P , a more reasonable expectation is that the periodic traffic does

experience some packet delay variation or jitter. Jitter in the timing of periodic packet

arrivals causes the the inter-arrival times between periodic packets in the renewal

density to vary around the exact value of P . The effect of jitter was described in detail

in Section 4.2.3, where we described methods to estimate the width of the anomaly,

denoted HA based on the packet delay variation experienced as the anomaly traverses

the Internet. A worst-case scenario would be that the jitter spreads the inter-arrival

times, computed for the renewal density, generated from the periodic traffic uniformly

across the entire width of the anomaly, HA. In this case γ would be γj = T/(P ·HA)

for all j ∈ [−HA/2, HA/2].

If we assume the worst case scenario then the time-to-detection increases:

βD ≤
P+HA/2∑

j=P−HA/2

γ2j
s̃s(i)(j)

(4.8)

where we can replace γj by its value given the worst case scenario:

βD ≤
P+HA/2∑

j=P−HA/2

(
T

HA · P

)2

·

(
λ̂2

T · h

)
(4.9)

112

Again solving for the value of T that satisfies this inequality (and renaming it TD)

we have:

TD ≥ βD ·
(
HA · P 2 · h

λ̂2

)
(4.10)

Conveniently, the respective TD’s in the best case and worst case scenarios are

related by a factor corresponding to the anomaly width, HA.

Finally, the derivations of TD given by (4.7) and (4.10) are determined for a

specific period, P . In order to implement the detection system with the jumping

window design described in Section 3.3.4 we need to determine a candidate time-to-

detection for each sub-densities. Since the period of the actual anomalies is unknown

a priori we select the largest time value (i.e., maximum period) that falls in the given

sub-density. We use this maximum period to compute the value of TD in a given

sub-density. For instance, the maximum period of an anomaly in the first sub-density

would be P1 = Nbin · h. Therefore, the base time-to-detection, TD(1), which is the

time-to-detection in the first sub-density is found by substituting P1 = Nbin · h into

(4.7) or (4.10).

For the ith sub-density the period of the anomaly would be Pi = i·(Nbin ·h) = i·P1.

Substituting, i · P1 into either equation for time-to-detection it can be shown that

TD(i) = i2 · TD(1). Thus, the time-to-detection for the ith sub-density is i2 times as

long as the time-to-detection in the first sub-density.

4.3.1.2 Time-to-Detection for Subsampled Data

In the previous section the analysis assumed that subsampling was not applied to

the measurement data. When subsampling is applied the expressions for the renewal

density estimate, r̃(j), and the smooth approximation, s̃(j), must be modified to

include the subsampling rate.

113

Combining the result from (3.24), giving the change in the renewal density due to

thinning, with the expression in (4.3), the estimated renewal density for measurements

from a Poisson process, when subsampling by a factor µ is:

r̃µ(j) =
h

µ · λ̂
(4.11)

Similar to the case in (4.4), we need to find the number of observed inter-arrival

times equal to t, or more precisely the number of inter-arrivals that fall in the jth

histogram bin. This is computed by multiplying the probability of such an inter-

arrival time occurring, given by r̃µ(t), by the total number of observed inter-arrival

times. The total number of observed inter-arrival times is affected by subsampling

as well because after subsampling the Poisson process has modified scale parameter

µ ·λ. Thus, combining (4.11) with the subsampled Poisson process the expected value

of the estimate of the renewal density from (4.4) is modified to:

E[r̃µ(j)] =
T

µ · λ̂
· h

µ · λ̂
=

T · h
µ2 · λ̂2

(4.12)

The value of γP was determined in the previous section to be γP = T/P . Following

subsampling the number of periodic events sampled affects the value of γP . The

probability that consecutive periodic events, which create an inter-arrival time equal

to P , are both sampled is equal to 1/µ2 because each of the periodic packets is sampled

with probability 1/µ. Therefore after subsampling we have γP = T/(P · µ2).

Using the same analysis as for the non-subsampled case we can determine the

value of TD when subsampling is used to be:

βD ≤
∑ γ2m

s̃s(i)(m)
≤
(

T

P · µ2

)2

·

(
λ̂2 · µ2

T · h

)
(4.13)

114

Therefore the time-to-detection TD is such that:

TD ≥ βD ·
(
P 2 · µ2 · h

λ̂2

)
(4.14)

Thus, we see that subsampling increases the time-to-detection by a factor of µ2.

Similarly, for the worst case scenario then the time-to-detection increases by a

factor of HA · µ2:

βD ≤
P+HA/2∑

m=P−HA/2

γ2m
s̃s(i)(m)

(4.15)

where we can replace γj by its value given the worst case scenario:

βD ≤
P+HA/2∑

m=P−HA/2

(
T

HA · P · µ2

)2

·

(
λ̂2 · µ2

T · h

)
(4.16)

So that the time-to-detection is:

TD ≥ βD ·
(
HA · µ2 · P 2 · h

λ̂2

)
(4.17)

4.3.1.3 Theoretical Comparison

Using the analysis conducted in Section 4.3.1 we compare the theoretical time-to-

detection for IA2D using (4.7) and the bPDM algorithm using the average sample

number (ASN) calculation given in [75]. The bPDM algorithm uses two separate

statistical tests on the Internet traffic. The first test is based on the incoming packet

rate, while a second test, based on packet size entropy, is used to prevent false pos-

itives. The ASN for the bPDM algorithm indicates the average number of samples

before a detection decision can be made, where a sample is data from one uniform

sampling interval. Therefore, the ASN multiplied by the sampling interval gives the

115

average time-to-detection for the bPDM algorithm. While the ASN for the bPDM

method can be computed for a more general class of Poisson processes, called the

Generalized Poisson process [75], in this comparison we compute the ASN for the

standard Poisson process. The ASN can only be calculated for the packet rate test,

not the packet size entropy test. Thus, comparing our time-to-detection with the

time-to-detection value for bPDM based on the ASN is fair since both both tests

are based on packet timing, and by not using the packet size entropy test in the

comparison neither method requires packet header information.

To compare the detection methods, multiple values of λ = {10, 13.3, 20, 40} µsec-

onds are selected, representing mean inter-arrival times for a Poisson process, as

well as a range of periods, P = {200, 250, 333, 500, 1000, 1333, 2000} in µseconds,

to represent the periodic events. These inter-arrival times and anomaly periods are

selected to simulate values commonly encountered in Internet traffic, and similar to

those used in [75]. The probability of false alarm and probability of false negative are

set to PFA = PFN = 1% for both methods. For our method we select h = 1 µsecond

in order to match the time resolution for common Internet measurement systems,

and select Nbin = 50. For the bPDM a uniform sampling interval of 1 millisecond is

used, the value used in [75], except when this value produces less than one periodic

event per sampling interval. In these cases, namely P = {1333, 2000} µseconds the

sampling interval is selected to be 1.5 and 2 milliseconds respectively. While this does

bias the comparison in the favor of bPDM, since additional information is used in the

selection of parameters, this modification is necessary otherwise the ASN calculation

will not converge.

Figure 4.6 shows the theoretical time-to-detection curves for the two detection

methods. Note that for λ = {10, 13.3} and P = {1333, 2000} the average sam-

ple number computation from [75] does not converge, so data points corresponding

116

200 400 600 800 1000 1200 1400 1600 1800 2000

10
1

10
2

10
3

Anomaly Period (µSec)

T
D

 (
M

ill
iS

ec
)

Theoretical Time to Detection

IA2D λ=10µS
bPDM λ=10µS
IA2D λ=13.3µS
bPDM λ=13.3µS
IA2D λ=20µS
bPDM λ=20µS
IA2D λ=40µS
bPDM λ=40µS

Figure 4.6: Comparing Theoretical TD for IA2D versus bPDM

to these values are omitted for both methods. In all scenarios time-to-detection is

smaller for our method than for bPDM. In particular, when the period of the anomaly

is on the order of bPDM’s sampling interval, i.e., only one periodic event per sam-

ple, our method shows the largest gain over bPDM. Also, as mentioned previously,

since bPDM required additional information about the anomaly being detected, our

method has the advantage of still being able to detect the periodic anomaly when

this additional information is unknown.

While IA2D does show improvements over bPDM in time-to-detection, the main

advantage of the method is it’s ability to distinguish multi-period anomalies, which

will be discussed in Section 4.3.3.

117

4.3.1.4 Experiments with Poisson Process

To support the theoretical analysis of the previous section here we conduct exper-

iments that show IA2D can detect multiple simultaneous periodic anomalies. For

the experiments we generated random traffic with exponentially distributed inter-

arrival times taking mean values of λ = {10, 13.3, 20, 25} µseconds. We combined

the random traffic with two periodic streams, labeled P1 and P2, taking values

P1 = {400, 800, 1333} and P2 = {1000, 2000} µseconds. To prevent overlap the

periodic stream starting times were given a random offset and no timing jitter was

introduced.

Table 4.1 shows the average PFA and PFN for some P1, P2 combinations. The

average PFA, PFN values were computed, for each P1, P2 combination, by running

individual experiments with each value of λ and averaging the resulting PFA, PFN

values. PFA indicates the probability that the detector decides an anomaly is present

in any of the sub-densities not containing one of the two periodic inter-arrival times

or their harmonics, i.e., k ·P1, k ·P2. PFN is the probability that the detector decides

no anomaly is present in a sub-density containing one of the periodic inter-arrival

times or their harmonics. The detection decisions were made in each sub-density

after waiting TD(i) seconds, which was calculated using (4.7).

TD(i) was designed for PFA = PFN = 1%, however, as shown in the table these

exact values were not achieved. The cause for the deviation is primarily due to the

variance in the histogram bin values, r̃s(j). The parameters used in calculating TD(i)

are based on E[r̃s(j)], however, the actual r̃s(j) varies around the expected value,

with variance V ar[r̃s(j)]. V ar[r̃s(j)] impacts both PFN by altering the value of γ,

used in (4.7) and PFA by making the assumption r̃s(j) = s̃s(j), which we assumed

true for random traffic, false. The effect of V ar[r̃s(j)] is most prevalent when the

118

P1 (µSec) P2 (µSec) Avg PFA(%) Avg PFN(%)

400 1000 6.44 1.39
800 1000 1.29 0.75
1333 2000 0.82 0.98

Table 4.1: PFA and PFN results averaged over values of λ = {10, 13.3, 20, 25} µseconds

number of measurements per histogram bin is small, which occurs when TD is short,

e.g., in the lower subdensities or when the traffic rate is small. This is evident from the

results, where PFN for P1 = 400 is larger than the other cases because TD is shorter

for P1 = 400. To combat the effect of V ar[r̃s(j)] it is possible to increase TD, which

would decrease PFN , as indicated by the results in Table 4.1, where the experiments

with P1 equal to 800 and 1333 have lower Avg PFN than when P1 = 400. Another

possible way to mitigate the effect of V ar[r̃s(j)] would be to change the width of

the histogram bin h. Based on the expressions in (3.19) and (3.20) the variance in a

histogram bin is inversely proportional to the width of the histogram bin, therefore,

increasing the width h would decrease the variance in r̃s(j).

Finally, the very large value of PFA for the experiments with P1 = 400 and P2 =

1000 is due to 400 and 1000 having similar harmonics, e.g., 800 and 1200 are harmonics

of 400 and when combined with P2 = 1000 the two periodic traffic streams produce

inter-arrival times around 200 (depending on the initial alignment of the streams).

Thus, the increase in PFA is actually due to the periodic traffic, yet because the

additional inter-arrival times are not harmonics of P1 or P2 the detections are counted

as false positives. After removing the false positives created by the interaction of the

two periodic traffic streams the PFA values for the first experiment were more in-line

with expectations, i.e., PFA = 1.1%.

119

4.3.2 Detection with Real Internet Traffic

In this section periodic event detection is examined using real Internet traffic. We

use the results from the ideal Poisson analysis, TD from (4.7), as a starting point in

selecting the parameters of our system, and propose methods to modify the param-

eters in order to achieve reliable detection performance for the real Internet traffic

case.

We begin by applying IA2D in a detection simulation using real Internet traffic

as the background traffic, with which we merge synthetic periodically-spaced traffic

using the Stream Merger application [39]. Synthetic periodic traffic is used so that

we can control the ratio of background to periodic traffic, and to have control over

the amount of jitter in the periodic inter-arrival times. The background Internet

traffic measurements we use in our simulations were collected at the LANDER Los

Nettos trace collection system [20], and achieve an average data rate of around 300

Mbps and mean packet inter-arrival time of 13.18 µseconds. The periodic rates we

use were P = {1.214, 1.735} milliseconds. To simulate packet delay variation we

add jitter to the periodic packet timestamps ranging uniformly over the interval of

[0, 12.5] µseconds for P = 1.735 milliseconds and jitter of [0, 25] for P = 1.214. The

jitter range only takes positive values because it simulates the packet being queued

in a router, therefore, the packet is only delayed and never advanced. The additional

systems parameter values are determined based on the methodology described in

Section 3.3.5 and the selected values are: H = 50 µseconds, h = 1 µseconds,Maxx =

2.5 milliseconds giving Nsub = 50. Note that the value of H is based on 2 to 4 times

the width of the anomaly HA. As described in Section 3.3.5.1, for the periodic event

detection we assume the width is equal to the packet delay variation.

The resulting PFA and PFN values obtained using TD from the ideal Poisson

120

analysis in (4.7) are shown in Table 4.2. Based on these results we can determine

Subsampling Rate Period mSec TD(P) Sec PFA(%) PFN(%)

1 1.214 .565 6.54 85.61
1 1.735 1.1514 6.41 9.3

Table 4.2: PFA and PFN using TD based on ideal calculations

that using TD based on the ideal calculation will not work, primarily because of the

presence of jitter in the periodic events. In particular, we note that jitter largely

impacts the value of PFN considering the large increase in false negatives when the

jitter was increased for the P = 1.214 trial. To fix this problem we propose using the

TD calculation based on the worst case scenario described in Section 4.3.1. The worst

case scenario calculation, given by Equation (4.10), is based on a uniform distribution

of the periodic inter-arrival times, yet, according to the discussion in Section 4.2.3,

the periodic inter-arrival times more closely follow a triangular distribution. However,

we still propose using TD based on (4.10) and consider it to be over dimensioning the

system, i.e., we sacrifice detection time for detection accuracy. Using the proposed

modification produces the results shown in Table 4.3.

Subsampling Rate Period mSec TD(P) Sec PFA(%) PFN(%)

1 1.214 28.25 10.29 0
1 1.735 28.75 9.16 0

Table 4.3: PFA and PFN using TD based on worst case scenario

Therefore, by increasing TD according to the worst case scenario we can reliably

detect periodic anomalies, however, the value of PFA is still to high for the system to

be implemented in practice. The false positives in the detection system are created

because as mentioned in Section 4.2.1 Internet traffic is not an ideal Poisson process

so that the presence of “multi-level deterministic sequences” increases PFA. To reduce

the number of false positives we propose the use of back-to-back packet filtering as

121

described in Section 4.2.2. Filtering out the back-to-back measurements in our ex-

perimental data sets produces the equivalent subsampling rate of approximately 1.2.

Using this value as our subsampling rate we determine TD based on the worst case

scenario calculation for subsampled data, given by Equation (4.17). Note that the

equivalent subsampling rate due to back-to-back packet filtering is data dependent.

Therefore, when back-to-back packet filtering is used in practice the equivalent sub-

sampling rate will have to be computed from the measurements, i.e., taking a time

average of the number of packets per measurement C(k). The equivalent subsampling

rate can then be used for µ in (4.17). Using the new TD and applying IA2D to the

filtered measurements the system achieves the results shown in Table 4.4.

Subsampling Rate Period mSec TD(P) Sec PFA(%) PFN(%)

B2B 1.214 40.68 1.33 0
1.2(*) 1.214 40.68 6.35 0
6(*) 1.214 1017 1.13 0
B2B 1.735 41.4 1.38 0
1.2(*) 1.735 41.4 6.29 0
6(*) 1.735 1035 1.16 0

Table 4.4: PFA and PFN using back-to-back (B2B) packet filtering and worst case TD

For comparison we include in Table 4.4 the results using standard subsampling,

with the (*) at the same rate achieved by the back-to-back filtering. While standard

subsampling does improve PFA compared to no subsampling, the performance of back-

to-back packet filtering is significantly better and nearly in line with the design goal

of PFA = 1%. Finally, we also include the result based on subsampling by a factor

of 6, which shows that if one desires even better performance than that achieved by

back-to-back packet filtering, it is possible to achieve it via subsampling, however,

this comes at a cost of a significant increase in TD.

Finally, similar to the results shown for a Poisson process we now show some results

122

µ P1 (µSec) P2 (µSec) Avg PFA(%) Avg PFN(%)

1 800 1333 10.91 0
1.2 800 1333 7.86 0
B2B 800 1333 1.86 0
1 1333 2000 12.31 0
1.2 1333 2000 9.91 0
B2B 1333 2000 3.18 0

Table 4.5: PFA and PFN results for µ = {1, 1.2, B2B}

of applying IA2D to real Internet traffic combined with multiple periodic events. For

this simulation we selected two period combinations, {P1 = 800, P2 = 1333} µseconds

and {P1 = 1333, P2 = 2000} µseconds, which are identical to the two of the values used

in Section 4.3.1.4. TD was selected using the worst case scenario value in (4.17) and

we show results for subsampling rates µ = {1, 1.2} and back-to-back packet filtering.

The results for multi-period detection are shown in Table 4.5. Note that the value

of PFN is computed at both the fundamental periods, P1 and P2, and any of their

harmonics. Also, the value of PFA is determined from any subdensity not containing

a harmonic of one of the periodic components. As discussed in Section 4.3.1.4 when

multiple periodic events exist they create additional periodicities related to the sum

and difference of their periods. Because of this the values of PFA are marginally higher

than was the case in the single periodic event case. As was done in Section 4.3.1.4

when we remove the false positives that are due to the interaction of the two periodic

traffic streams the value of PFA decreases to similar values as were achieved in the

single periodic stream experiment, i.e., approximately 1.3 (Table 4.4).

4.3.3 Quasi-Periodic Anomaly Detection

In the previous section we considered anomalies which were generated at a fixed period

P . Here we consider a slight variation that could potentially occur if the attack was

123

launched by a smart adversary, i.e., someone who knew the operation of the detection

mechanism.

We define a quasi-periodic anomaly as one that has a base period, P , yet the actual

events occur at random multiples of this period, i.e., the time difference between

consecutive events in the attack is α · P for some randomly generated value α. For

simplicity we only consider the case where α is geometrically distributed with mean

value 1/q. We consider this case because from the attackers viewpoint it is easy to

implement, yet because the geometric distribution creates a uniform distribution of

inter-arrival measurements in the renewal density (as described with respect to our

subsampling optimization method in Section 2.3) this type of quasi-periodic structure

is the most difficult for our method to detect. α ∼ Geo(q) is obtained if every

P seconds the attacker decides to output an attack packet with probability q or

decides to not output an attack packet with probability 1−q. Given this scenario the

probability of having an inter-arrival equal to P is only q, which clearly will create

problems in our system since this was not considered in the selection of TD. However,

given that our system performs detection on sub-densities we can instead detect a

harmonic, or a series of harmonics of the base period without having to redesign the

selection of TD.

The analysis presented here works for any value P and any value of q. In other

words the attack could select a very short P and make q very small, or the attack

could choose both P and q to be large. Both of these choices would produce a

similar average attack packet rate, yet the structure of the attack would be different.

However, using the methodology presented in the following analysis works for any

value for P and q.

In order to show that our system can detect quasi-periodic attacks using harmonics

without having to redesign the selection of TD we present the following analysis. First,

124

consider the value of γ at harmonics of P . For the non-random periodic attack case,

let N(t) be the number of inter-arrivals, in t seconds equal to P due to the periodic

attack. The value of γ (3.32) at P , which we defined in Section 3.3.2 as the component

of the renewal density estimate due to the anomaly, is given by N(t). For the mth

harmonic of P the number of inter-arrivals equal to m · P is equal to N(t) − m or

approximately N(t) if N(t) is large. Therefore, the value of γ at harmonics of P is

approximately equal to γ at P itself, i.e., γmP ≈ γP . Because the value of γ remains

the same at harmonics of the base period the time-to-detection should be the same

in the sub-density containing the base period P as it is for the sub-density containing

a harmonic. However, the actual time-to-detection, calculated using (4.7) or (4.10),

for the sub-density containing the harmonic is equal to TD(mP) = m2 · TD(P), i.e.,

the TD at the mth harmonic is m2 times TD at the base period. In other words, the

value of TD at a the mth harmonic is m2 times what it actually needs to be, i.e., it is

over-dimensioned.

Next we consider the case of the quasi-periodic attack. If N(t) is as defined above,

and if α is geometrically distributed, then the probability of an inter-arrival equal to

P is equal to q. Therefore, the number of inter-arrivals, in the renewal density, equal

to P in the quasi-periodic case is q · N(t). Given this the value of γP when the

probability of an inter-arrival equal to P is equal to q is equal to γP (q) ≈ q · γP . This

decrease in γ requires a corresponding increase in TD equal to TD(Pq) = TD(P)/q
2.

In other words, the decrease in γ would require that we over-dimension by a factor

of 1/q2, if the value of q was know a priori (which it is not).

In order to determine the probability of having an inter-arrival equal to a specific

harmonic, i.e., m · P we can reuse the inter-arrivals retained function I(n), given in

(2.4) (Section 2.3.2) that was used to determine the inter-arrivals retained at a specific

order based on the method of interrupt coalescence used. We can use I(n) because

125

essentially what the attacker is doing by randomly selecting a multiplier α for the base

period is subsampling the periodic events, so the calculation using I(n) is the same

for both cases. Similar to the result in Section 2.3.2 by using a geometric distribution

for α, the inter-arrivals retained function is constant for all n and equal to q. Thus,

the number of inter-arrivals equal to any harmonic of P will be q ·N(t). Finally, as

was the case for the base period the value of γ at the mth harmonic is approximately

equal to γmP (q) ≈ γP (q) ≈ q · γP . Similarly, the corresponding increase in TD is

TD(mPq) = TD(mP)/q
2 However, as was shown previously the value of TD(mP) is

actually over dimensioned by a factor of m2 automatically for harmonics of the base

period. Thus, at the m = 1/qth harmonic, the necessary increase in TD due to the

quasi-periodic behavior of the anomaly is offset by the automatic over dimensioning

due to the harmonics of the base period. Note that 1/q represents the subsampling

rate generated by selecting α ∼ Geo(q), i.e., 1/q = E[α]. This result indicates that

if an attacker generates a periodic attack using randomly selected multiples of the

base period, i.e. α · P , where α ∼ Geo(q), then we can detect the anomaly using in

the m = E[α]th harmonic without modification to the existing TD calculations. In

other words, the over-dimensioning of TD at the harmonics of P correspond to the

necessary increase in TD because of the quasi-periodicity of the attack. Further, this

over-dimensioning is done automatically because of how the detection system operates

and does not require any knowledge about the structure of the quasi-periodic attack.

While we only considered here the case where α ∼ Geo(q) the result that we

can detect a quasi-periodic anomaly using one, or a series of its harmonics without

modification to the TD value applies to more general distributions of α. This results

holds for a more general distribution of α because the inter-arrivals retained function,

I(n), converges to the reciprocal of the the subsampling rate, i.e., 1/E[α], as n gets

large for most distributions of α. A suitable condition on the distribution of α is

126

that all values in the support of α have a non-negligible probability mass, i.e., p(α) >

0 ∀α ∈ [0, ψ] for some value ψ. This condition is suitable because I(n) for large n

is the sum of many terms, where each term is the product of multiple probability

mass weights, i.e., each term is p(α1) · p(α2) · · · p(αj). Even if the p(αj) are given

different weights, as they are for different distributions of α, when the product of

many p(αj)s is taken, as is the case for large n, the result is similar. However,

this condition does not hold when some of the p(αj) are zero because the product

of multiple terms would then be zero, thus our condition that p(α) > 0 over some

support is suitable. Therefore, each term in the sum for I(n) is similar regardless

of the distribution of α, and the sum of these similar terms gives a similar value for

I(n) regardless of the distribution of α. The convergence of the I(n) regardless of

distribution of α can be seen in Figure 2.11, where as n increases the KL divergence

for the different subsampling methods converges. The value of the KL divergence

converges because the inter-arrivals retained for each subsampling method converges

as n increases. Further, we note that it was observed that the value of I(n) begins to

converge quickly for n > ψ, i.e., for n larger than the support of α. Therefore, we can

use the result obtained in this section, that we can detect quasi-periodic anomalies

using themth harmonic of the base period P without modification of TD, for a general

distribution of α assuming that m > ψ. The condition m > ψ will be to strong for

most distributions of α, however, it gives a general sufficient condition.

To verify this result we conducted an experiment by generating a quasi-periodic

anomaly with base period P = 1.333 milliseconds, and using the value of q = .33

indicating that we should be able to detect the anomaly in the 3rd harmonic using

the standard calculation of TD. The results of the experiment at various subsampling

rates are shown in Table 4.6. Notice from the results how the value of PFN is initially

very high at the base period, and continually decreases until the third harmonic where

127

PFN

µ P (µSec) E[k] Avg PFA(%) P 2 · P 3 · P
1 1333 3 16.63 72.5 1.17 0
1.2 1333 3 13.6 76.19 13.03 0
B2B 1333 3 6.37 94.56 14.61 0
3 1333 3 9.99 95.4 0.31 0.31

3 (B2B) 1333 3 1.40 96.31 26.34 0.98

Table 4.6: PFA and PFN results detecting quasi-periodic attack

the attack is detected with near perfect accuracy.

One important thing to note about this experiment is that because we have to

perform detection looking for harmonics of the base period we had to select Maxx to

be larger as well. This led to increased PFA because at larger inter-arrival times the

deviation of the Internet traffic from the Poisson process becomes more apparent. We

can compensate for this deviation however, by increasing the rate of subsampling, and

combining subsampling with using back-to-back packet filtering. The best result was

obtained using back-to-back packet filtering combined with additional subsampling

such that the combined subsampling rate was 3. From the table we see that this

combination produces a reasonable PFA of around 1.4% with PFN < 1%.

Thus, we have shown that our IA2D detection system can be used even when the

attacker uses counter measures to prevent their attack from being detected.

4.4 TCP-Targeted Anomaly Detection

The second detection application we propose to use IA2D for is to detect low-rate

TCP-targeted DoS, or shrew attacks for short. A shrew attack is very different from

the periodic anomaly case, in that it consists of periodically spaced bursts of packets.

The spacing of packets inside a burst is entirely random. Therefore, our system aims

at detecting the periodic characteristic of the bursts and not the packets themselves.

128

Figure 4.7 shows an example of how a shrew attack operates. The figure shows the

0 1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5
x 10

4

Time (Sec)

P
ac

ke
t R

at
e

(P
ac

k/
S

ec
)

Packet Rate for Random Traffic with Periodic Bursts

T
Int

R

T
On

Figure 4.7: Instantaneous Packet Rate with Periodic Bursts due to Shrew Attack

instantaneous packet rate measured on the link where the attack is being detected.

The large, and short-lived, increase in the packet rate is the signature of the shrew

attack. The shrew attack has three parameters: R is the packet rate of the attack

when it is active, Ton is the duration of the attack burst, and TInt is the interval

between packet bursts. We do not assume that the attack packets within a burst

are periodic, instead we assume that the packets are uniformly distributed within the

burst. Within the renewal density estimate, using the above assumptions, the shrew

attack manifests itself as triangular shaped distributions with width 2 · Ton located

around multiples of TInt as shown in Figure 4.8. Note that the triangular distribution

of the shrew attack inter-arrival times is due to the uniform distribution of the packets

129

within a burst. For a different distribution of the packets the distribution of the inter-

arrival times will be different as well. Different distributions of inter-arrival times in

the renewal density can potentially increase the time-to-detection from the values

we compute using our ideal analysis. However, by over-dimensioning the value of

TD using a “worst-case scenario”, as was done for the periodic event detection, our

method should be able to detect anomalies with a variety of inter-arrival distributions.

Note that the examples in Figures 4.7 and 4.8 were generated using ideal randomly

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65
x 10

5

Inter−Arrival Time (Sec)

N
um

be
r

of
 In

te
r−

A
rr

iv
al

s

Renewal Density Estimate of Random Traffic plus Shrew Attack

Figure 4.8: Example of Renewal Density Estimate with Shrew Attack Triangular Peaks

generated measurements. In real traffic the peaks in the renewal density estimate are

not as clearly defined.

We begin, in Section 4.4.1, with an analysis of the system using a Poisson process

to model the Internet traffic. This is combined with periodic bursts of higher rate

130

uniformly distributed traffic to model the shrew attack. As before we use this analysis

to derive an expression for the time-to-detection TD, which in the case of a shrew

attack depends on the attack parameters, R, Ton. In practice we cannot assume

that these parameters will be known a priori, however, the user implementing the

system can determine, based on the capabilities of their network what would be

minimal values of R and TOn which would disrupt their network operation. These

values could then be used to determine base parameters for the system, which would

automatically detect attacks with higher R or longer TOn as well.

The structure of the shrew attack is quite different from the periodic events de-

tected in Section 4.3, and presents some unique challenges when we attempt to per-

form detection using real Internet traffic. These challenges, which include the longer

time scale between periodic events, i.e., bursts, are discussed in Section 4.4.2 along

with some techniques to ameliorate these problems.

4.4.1 Ideal Analysis

In this section we present an analysis of detection based on using a Poisson process to

model the Internet traffic. This analysis leads to ideal and worst case expressions for

the time-to-detection which in the case of a shrew attack depends on the parameters

of the attack, i.e., TD(R, Ton, TInt).

Much of the analysis is the same as that of Section 4.3.1, so we will refer to many of

equations derived there. However, unlike the periodic event detection scenario where

we were able to use the smooth approximation for renewal process (Section 3.3.3.1),

here we must rely on the smooth approximation technique for non-renewal processes

(Section 3.3.3.2), i.e., the trimmed mean filtering approach. We must use the trimmed

mean method because due to the structure of the shrew attack we cannot guarantee

131

that the first order inter-arrival distribution, f̃1(j) will be anomaly free, in fact during

the high-rate bursts back-to-back attack packets are common. Also, because the shrew

attack appears in the renewal density as a triangular distribution, this requires that

we increase the width of trimmed mean filter. Previously the width of the filter, 2 ·J ,

was selected to be equal to width of the sub-density, h · Nbin, yet the width of the

sub-density is selected to be 2 to 4 times the width of the anomaly HA. Keeping

the width of the trimmed mean filter to be 2 to 4 times the width of the anomaly

often times does not completely remove the presence of the shrew attack from the

smooth approximation. Therefore, we recommend selecting the width of the filter

to be 2 · h · Nbin to sufficiently remove the presence of the shrew attack from the

smooth approximation. As mentioned in Section 3.3.5.1 the width of the anomaly

for the shrew attack depends on the value of TOn, and because we do not know the

actual value of TOn we select HA to be equal to the maximum value of TOn that was

shown in [10,46] to be the used in practical TCP-targeted DoS attacks which was 100

milliseconds.

The following ideal analysis assumes that we are able to remove the triangular

peak in the renewal density due to the anomaly using the trimmed mean filtering

approach. In our work we use the trimmed mean filtering method to generate the

smooth approximation primarily because that is what was used for periodic event

detection. Other methods could be used that are better suited to remove the presence

of the triangular peak in the renewal density.

Consider detection in subdensity i, the value of the smooth approximation at

index m in the subdensity, s̃s(i)(m), is given by Equation (4.4) where in this case λ̂

132

represents the average inter-arrival time of the combined traffic (Internet traffic plus

shrew traffic). The value of λ̂ is given by:

λ̂ = λ+
TInt

R · TOn

(4.18)

Next we determine the value of γ(m), which represents the difference between the

renewal density estimate, r̃s(i)(m), and the smooth approximation, s̃s(i)(m), for his-

togram bins where the presence of the attack occurs. Since the shrew attack manifests

itself differently in the renewal density estimate, as shown in Figure 4.8, determining

γm is not as straight-forward as it was for the periodic event case. Since γm is the

difference between the smooth approximation and the renewal density estimate its

value is equal to the value of the triangular distribution shown in the figure, and

determining the value of γm is done as follows. The number of packets per burst in

a shrew attack is given by, R · TOn/µ, where µ is the subsampling factor (µ = 1 if

subsampling is not used). The total number of inter-arrival times generated by a pair

of packet bursts is approximately, (R · TOn/µ)
2. The number of bursts per second is

given by T/TInt, and combining with the number of inter-arrivals per burst gives the

number of inter-arrivals per second due to the attack:

T · (R · TOn)
2

µ2 · TInt
(4.19)

This total number of inter-arrival times is spread across the triangle distribution in

the renewal density estimate, centered at multiples of TInt, as depicted in Figure 4.8.

The width of the triangle distribution depends on the width of the histogram bins,

133

and is equal to 2 · TOn/h. The maximum value of the triangle distribution, which

occurs at the inter-arrival time equal to TInt, is given by:

γT int(T) =
T · h · (R · TOn)

2

µ2 · TInt · TOn

(4.20)

The value of γ at index TInt ± k where k ∈ [−TOn, TOn] is given by the following

expression:

γTint+k(T) =

(
1− |k|

TOn

)
T · h · (R · TOn)

2

µ2 · TInt · TOn

(4.21)

From (4.7) we can determine the time-to-detection for the subdensity containing

TInt by,

βD ≤
−TOn∑

k=−TOn

γTint+k(T)
2

s̃s(i)(TInt + k)
(4.22)

substituting the values of γ from (4.20) and (4.21):

βD ≤
−TOn∑

k=−TOn

[(
1− |k|

TOn

)
T · h · (R · TOn)

2

µ2 · TInt · TOn

]2
·

(
µ2 · λ̂2

T · h

)

βD ≤ T · h · λ̂2 ·R4 · T 3
On

µ2 · T 2
Int

·
−TOn∑

k=−TOn

(
1− |k|

TOn

)2
(4.23)

Replacing T with the time-to-detection TD and solving for TD:

TD ≥ T 2
Int ·

µ2 · βD

h · λ̂2 ·R4 · T 3
On ·

∑−TOn

k=−TOn

(
1− |k|

TOn

)2 (4.24)

Similar to the periodic event detection analysis when subsampling is applied TD

increases by a factor of µ2.

The implementation the jumping window mechanism in IA2D using TD from (4.24)

is done in the same way as was done for the periodic event detection system except

134

that in (4.24) TInt replaces P . TD(1), the time-to-detection in the first subdensity,

is determined from (4.24) by using TInt(1) = Nbin · h. As before time-to-detection in

the ith subdensity is related to TD(1) by TD(i) = i2 ·TD(1), which makes determining

jumping window lengths for the implementation of IA2D convenient.

4.4.2 Actual Traffic

Using IA2D to detect low-rate TCP-targeted DoS attacks in practice has many more

complications that were encountered for the periodic event detection. The first issue is

that the values of R and TOn are not known a priori. As mentioned in Section 3.3.5.1

we select the width of the subdensities based on the maximum value of TOn that is

commonly encountered in real life shrew attacks, which is equal to 100 milliseconds

according to [10,46]. Then the value of R can be determined by the user based on the

minimum attack rate per burst that would compromise their network, where attack

rate per burst is given by R · TOn. By using the minimum value of attack rate per

burst, and the minimum value of the burst interval the system is over dimensioned

and therefore will detect attacks at higher rates as well.

In the following experiments instead of using the minimal attack rate we use the

actual values of R and TOn, which are known because we generate the shrew attacks.

This is done such that we can test the expression derived for time-to-detection in

(4.24). For this experiment we use background traffic from the Abilene-III Internet

trace dataset from the WAND research group at the University of Waikato [1], which

was also used in simulations by another TCP-targeted DoS attack detection system

in [10]. The average traffic rate for this dataset was approximately 82, 000 packets

per second. For our simulations we generated two shrew attacks with the following

parameters:

135

1. R = 31250, TOn = 50 milliseconds and TInt = .95 seconds

2. R = 31250, TOn = 30 milliseconds and TInt = 1.9 seconds

These values we selected to be similar to the values used in [10]. Just as was done

when generating traces for the periodic event simulation the real Internet traffic was

merged with the simulated shrew attacks using the Stream Merger application [39].

The additional systems parameter values are determined based on the methodol-

ogy described in Section 3.3.5. As mentioned previously the width of the anomaly HA

is selected to be 100 milliseconds, and the subdensity width was selected to be twice

this value, i.e.,H = .2 seconds. We used Nbin = {50, 25, 10} corresponding to values

of h = {4, 8, 20} milliseconds respectively. The different choices for Nbin/h did not

show a significant difference, therefore, the results from each are averaged together in

the tables below. We use a trimmed mean filter with a width of 2 ·H = .4 seconds in

order to remove the majority of the triangular distribution.

In our simulations we apply subsampling to the datasets for two reasons. The first

reason is practical, in that for detecting shrew attacks the order of the inter-arrivals

computed to estimate the renewal density is larger than for periodic event detection.

For periodic event detection the maximum inter-arrival time Maxx was on the order

of milliseconds, however, to detect shrew attacks requiresMaxx > TInt, which means

Maxx must be of the order of seconds for our simulations. With 82, 000 packets per

second, on average, this requires computing inter-arrivals of order at least 300, 000

(twice the value of 1.9 · 82, 000), which is approximately 1000 times larger than the

inter-arrival order required for periodic event detection. The second reason, discussed

in Section 4.2.1, is that as the inter-arrival order and times increase the deviation of

the Internet traffic from the Poisson process assumption become exaggerated and

higher subsampling rates are required to minimize this deviation. The subsampling

136

rates applied in the following simulations were µ = {10, 25, 50, 100}.

The first set of simulations run on the trace datasets used the value of TD deter-

mined by (4.24) and the values of PFA and PFN for the varying subsampling rates

are shown in Table 4.7

Subsampling Rate TOn mSec TInt Sec TD(TInt) Sec PFA(%) PFN(%)

10 50 .95 .3 57.65 3.89
25 50 .95 1.82 25.36 4.98
50 50 .95 7.26 9.91 7.65
100 50 .95 29.04 2.43 8.23
10 30 1.9 6.81 86.17 4.68
25 30 1.9 42.54 31.51 5.68
50 30 1.9 170.14 11.18 8.47
100 30 1.9 680.54 2.80 9.32

Table 4.7: PFA and PFN using TD based on ideal calculation

Two things are evident from this experiment. First the value of TD based on the

ideal calculation is insufficient to produce reliable detection results, and second higher

subsampling rates are required to maintain values of PFA for a usable system.

In order to reduce the value of PFN we propose the following modification to the

calculation of TD: remove the triangle distribution assumption and instead use just

the maximum value of γ which occurs when k = 0 or at TInt in (4.21). Using this

assumption and including the subsampling rate parameter µ the new value of TD is

given by:

TD ≥ T 2
Int ·

µ2 · βD
h · λ̂2 ·R4 · T 2

On

(4.25)

Using TD determined by (4.25), the previous simulations were repeated and the

results are shown in Table 4.8. From these results we see that the increased time-

to-detection is sufficient to provide reliable detection while only increasing PFA neg-

ligibly. Note that we do not show the results for subsampling rates 10 and 25 as

they generate large values of PFA, which makes these rates unusable in a practical

137

Subsampling Rate TOn mSec TInt Sec TD(TInt) Sec PFA(%) PFN(%)

50 50 .95 18.15 10.25 0
100 50 .95 72.60 2.97 0
50 30 1.9 255.20 10.43 0
100 30 1.9 1020.80 3.18 0

Table 4.8: PFA and PFN using TD based on the modified calculation

detection system. If it is necessary to use the lower subsampling rates, for faster

time-to-detection, a two-stage detection method could be implemented. IA2D could

be used as the first stage, and then a second stage to filter the detection results could

be used to reduce false positives. The filtering could be done based on properties of

the anomaly, i.e., the triangular distribution shown in Figure 4.8, which is unique to

the anomaly and would likely not appear due to Internet traffic. The triangular dis-

tribution of the shrew attack means that the difference r̃(j)− s̃(j) is mainly a positive

value in histogram bins containing the shrew attack. In other histogram bins the same

difference, due to Internet traffic alone, would range both positive and negative. A

potential filtering technique would be to examine the sub-densities where an anomaly

was detected and determine if the detection was due to differences, r̃(j)− s̃(j), that

were mainly positive, indicating a shrew attack, or differences that were randomly

distributed positive and negative, indicating a false alarm.

Therefore, by modifying the ideal TD calculation and using the over dimensioned

value determined in (4.25) our detection system is capable of reliably detecting shrew

attacks when large subsampling rates are selected. While the larger subsampling rate

significantly increases TD its use is necessary to reduce PFA, as shown in the results,

as well as beneficial because it reduces computation time and storage cost for the

measurements recorded for detection. Thus we have shown that IA2D can potentially

be used in the detection of another kind of periodic anomaly commonly found in

Internet traffic.

138

4.4.3 Comparison to Related Work

Most methods to detect shrew attacks require separating Internet traffic into flows,

which are collections of packets with identical source/destination IP addresses; for

example, representing a connection between a client and server in single TCP session.

One method using flow separation, described in [10, 11], filters out shrew attacks us-

ing a sequential hypothesis test that decides if a flow is a shrew attack by examining

the spectral characteristics, which are different for shrew and standard TCP flows.

Results reported in [10] indicate detection rates for shrew attacks of 99.7%, while

falsely reporting regular flows as attacks < 3% of the time. Therefore, our results for

shrew detection are comparable to those of [10]. However, our detection has some

advantages. The clear advantage is that our method can detect shrew attacks, in

aggregate traffic, with the same accuracy as the method in [10], which requires flow

separation. This ability to work with aggregate traffic comes at a cost of increased

time-to-detection. As shown in the previous section due to the high rate of sub-

sampling required in practice the time-to-detection of our system for shrew attacks

is longer than it was for periodic event detection. The authors of [10], however, do

not report the performance of their system in terms of time-to-detection, nor do any

of the other works on shrew detection, therefore we cannot speculate on how our

time-to-detection relates to that of comparable systems.

The other advantage our method has is that by working with aggregate traffic we

can perform detection even when IP addresses are encrypted or spoofed, which makes

flow separation inaccurate or impossible, impacting the performance of the detection

method from [10]. In fact, the authors in [10] acknowledge that source IP address

are often spoofed in attack packets, yet declare that this is not a problem for their

system; this is a questionable assertion if the attack uses smart adversary techniques

139

such as random generation of source IP addresses.

4.5 Practical System Implementation

The experiments conducted in this chapter were designed and performed to verify

that our analysis, with modification for real Internet traffic, could be used to calcu-

late the time-to-detection for desired values of PFA and PFN . In a practical system

implementation, however, the most crucial factor is the probability of false alarm since

an alarm being asserted requires user intervention to verify that indeed an anomaly

is present. A false alarm rate of 1% is too high if the system is outputting detection

decisions from many sub-densities, e.g., 100, on the order of once per second, i.e., one

false alarm per second.

Being that our system is designed to detect very low-rate anomalies, it is more

realistic that the user would be willing to sacrifice time-to-detection in order to lower

the probability of a false alarm. In other words, detecting a very low-rate anomaly in

seconds is not as crucial as detecting it in minutes, while having the user only have to

check on a false alarm once per 30 minutes rather than once per 30 seconds is much

more important.

We can lower the false positive rate in a number of different ways. The first

way to lower the false positive rate is to simply set the value of PFA to be very

low, e.g., PFA = 0.001%. Changing PFA affects the value of the threshold χ2
D (see

(3.34)) which impacts the value of βD (see (4.1)) and finally increases the time-

to-detection, TD. In Figure 4.9 we show the percentage increase in βD plotted for

PFA = {.01, .005, .001, .0005, .0001, .00001} on a logarithmic scale. The values of βD

are normalized by the value of βD when PFA = .01, and then multiplied by 100 to

express them as percentages. We use βD when PFA = 0.01 as the baseline value since

140

this is the value we used for the experiments in this chapter. Since TD is directly

proportional to the value of βD (for instance in (4.7) or (4.24)) the increase in βD also

indicates the increase in TD.

In Figure 4.9, we also plot the βD curves for multiple values of Nbin. When the

value of Nbin is increased the percent change in βD due to lowering PFA is actually

lessened. Note that the actual value of βD is larger for larger Nbin, but the percent

increase from the baseline βD in each trial is lower. Therefore, even when large values

of Nbin are used the percentage increase in βD (and subsequently TD) are small.

We see from Figure 4.9 that lowering the false positive rate does not produce a

significant increase in the time to detection. For example, lowering PFA from 0.01 to

0.001, a factor of 10, only corresponds to an increase in TD of around 160% or 1.6

times. Using the result in Table 4.4, where TD was around 40 seconds when using

back-to-back packet filter, the new TD for PFA = 0.001 would only be around 65

seconds.

To verify the results shown in Figure 4.9 we ran the same experiment from Sec-

tion 4.3.2 using back-to-back packet filtering and TD based on the worst case scenario,

however, we changed the desired PFA from 0.01 to 0.0001. This increased the TD value

(from Table 4.4) from approximately 41 seconds to 76.67 seconds, an increase of 187%.

After running the simulation for both periodic anomalies considered in Section 4.3.2

the average PFA obtained was 0.0007, which is higher than our desired value.

To look at the cause of this result we consulted the data, and discovered that

multiple false positives in a particular sub-density typically occurred in consecutive

detection decision intervals. In other words, the same sub-density was reporting a

false positive multiple times in a row. This discovery makes intuitive sense given

that detection is performed using a jumping window. Therefore, if there is some

spurious inter-arrival data that causes the false positive it will actually appear in

141

all detection decisions until the jumping window has shifted beyond the spurious

data. By removing the multiple false positive values from our detection results, and

considering only the initial detection of a false positive in each sub-density the value

of PFA dropped below 0.0001 to approximately 0.00008. Removing the multiple false

positive values is not something that was considered in the previous experiments, in

Sections 4.3.2 and 4.4.2.

10
−5

10
−4

10
−3

10
−2

100

120

140

160

180

200

220

240

260

P
FA

β D
 −

 P
er

ce
nt

ag
e

In
cr

ea
se

 (
%

)

P
FA

 versus Percentage Increase in β
D

N

bins
=10

N
bins

=20

N
bins

=30

Figure 4.9: Change in βD as PFA decreases

Lowering the false positive rate by modifying the value of χ2
D, as done above, can

work well when the initial TD is low. However, as we saw in the shrew attack scenario

the values of TD were quite large due to high subsampling rates, and longer periods

being detected. When TD is already large increasing it further to reduce the false

positive rate is not a useful option. For example, from Table 4.8 one of the values of

TD was 1020 seconds, multiplying this value by 1.6 to lower PFA from 0.01 to 0.001

(as done above) would increase TD to 1632 seconds, an increase of 10.5 minutes.

142

An alternative to increasing TD to reduce the probability of false alarm is to use

post processing on the detection decisions to reduce the number of false positives

and the subsequent user interaction. For example, when we are detecting periodic

anomalies, harmonics of the anomalies should also be detected. Sub-densities that

produce a false positive are unlikely to have a harmonic multiple that also produces a

false positive. Therefore, by checking that a sub-density and its harmonic both detect

the anomaly we can potentially reduce false positives without any user interaction.

Another possible method for post processing is to use some known characteristics

of the anomaly, specifically how the anomaly manifests in the renewal density. As

shown in Figures 4.5 and 4.8 both of the anomalies produce peaks in the renewal

density. Therefore, a potential post processing technique would be to examine the

values in sub-densities where an anomaly was detected. If detection was triggered by

values in the renewal density estimate that were greater than the smooth approxima-

tion, then this is likely due to an anomaly. However, if the differences between the

renewal density estimate and smooth approximation are both positive and negative

this is more likely a false positive caused by Internet traffic alone.

Therefore, by using a combination of altering system settings (χ2
D and TD) and

post processing on detection decisions it is possible to reduce the amount of false pos-

itives generated by our system, which makes our system require less user interaction

to check the accuracy of our detection decisions.

4.6 Conclusion

In this chapter we examined three different applications of the IA2D detection system.

The first was detecting periodic events mixed with Internet traffic measurements. In

this application we used renewal theory to present a thorough analysis of the detection

143

system leading to an expression for the time-to-detection of a periodic event with

period P . We then showed that the time-to-detection of our system was comparable

to the state of the art bPDM system using theoretic analysis, and further showed that

our system was capable of something bPDM was not, distinguishing between multiple

period events. Finally, we applied IA2D to real Internet traffic in a different scenario,

and showed that, with some modification to the time-to-detection to account for the

difference between a Poisson process and real Internet traffic, our system was able to

reliably detect various periodic anomalies.

The second application we considered was detecting low-rate TCP-targeted DoS

attacks, or shrew attacks. This type of attack was quite different from the periodic

events we detected in the first application. In particular the period of a shrew attack

is much longer than those we considered for the periodic event detection, however,

since the shrew attack is designed to send bursts of packets at these periodic intervals

we were still successful in detecting them in a reasonable amount of time. Another

difference was that the longer inter-burst period presented a different challenge for

estimating the renewal density used in detection. Namely, much higher downsampling

rates were required to prevent false positives, this being a consequence of the Internet

traffic not being an ideal Poisson process which was exaggerated at the longer inter-

arrival times.

144

Chapter 5:

Multi-level IA2D System

In this chapter we consider a different system architecture for our IA2D detection sys-

tem that we call the multi-level detection system. In this implementation, multi-level

describes how detection is applied to the same Internet traffic measurements repeat-

edly, however, using different subsampling rates at each application. The purpose

of the first level is to quickly determine if the Internet traffic measurements “likely”

contain an anomaly. We use the term likely because at the first level the focus is on

quickly processing the data, therefore, high subsampling rates are used and we use

a lower threshold, χ2
D, which generates more false positives results. If the measure-

ments at the first level were determined to likely contain an anomaly then detection

proceeds to the second level. At the second level we use a lower subsampling rate,

and after reapplying IA2D to the same measurements we are able to increase the con-

fidence that indeed the measurements contain an anomaly and the result at the first

level was not a false positive. By lowering the subsampling rate at the second level

reprocessing the same measurements takes more processing time, however, the goal

of the multi-level system is that by quickly performing analysis at the first level and

only reprocessing at the second level infrequently the overall processing requirement

is lowered.

145

Therefore, in this chapter we begin with a description of the multi-level detec-

tion system and discuss some potential applications in Section 5.1. Then starting in

Section 5.2 we present a detailed case study of one particular application of the multi-

level detection system, which we call the distributed forensic detection system. The

distributed forensic detection system is motivated by the fact that much success has

been achieved in detecting Distributed Denial-of-Service (DDoS) attacks at the target

where multiple attack streams converge, however, methods attempting to trace the

individual attack streams back toward their source have thus far been unsuccessful.

In order to trace individual attack streams it is necessary to obtain measurements

at multiple locations in the network, therefore, we propose a distributed measure-

ment system. The distributed measurement system uses subsampling to reduce the

storage cost to store measurements of the incoming packet stream. We combine the

distributed measurement system with the multi-level version of our IA2D detection

system, which allows the data from the multiple measurement locations to be pro-

cessed quickly at the first level, and only measurements from locations deemed to

contain an attack will be reprocessed at the second level. Therefore, using our multi-

level implementation we can increase the efficiency of having to process data from

multiple recording nodes that is required to trace the individual DDoS attack streams

back towards their source.

5.1 Multi-level Detection Approach

A diagram of the multi-level detection system is shown in Figure 5.1. Rather than

discuss how the multi-level system operates on a single stream of input measurements,

we present the system operation on the more general case, shown in Figure 5.1, where

there are multiple recording nodes and that recording and processing occur in two

146

separate locations. We analyze this implementation because it is the one we use in

Section 5.2 to implement our distributed forensic detection system. Conveniently,

analyzing the multi-level system in this configuration is actually quite general. For

example, assume that instead of having multiple recording nodes our system only

has a single recording node. With this assumption we can think of the data from

each recording node in Figure 5.1 as representing a different recording period from

our single recording node, e.g., recording node i records data from hour i in a 24

hour period. We do not assume that anomalies will be constant during an entire

24 hour period, so the anomalies will not appear in the data from all the recording

nodes (during a single 24 hour period, that is, we do not assume that anomalies occur

only a certain times of day). This scenario is similar to our forensic detection system

where we assume that anomalies will not be present in all recording nodes at once.

Therefore, all the analysis that we conduct in this section, while it is derived for

multiple recording nodes, can be interpreted for a single recording node. Also, note

that recording and processing can be done in the same machine. In this case no data

transmission between recording and processing nodes is needed, and the analysis of

the reduction in data transmission cost considered below would not apply.

We also assume throughout this section that the length of the data being pro-

cessed at each level of the multi-level system is the same. As was shown in Sec-

tion 4.3.1.1, normally when we increase the subsampling rate we also increase the

time-to-detection, i.e., the length of data being processed. In the multi-level scenario,

however, we increase subsampling to speed processing, and if we increased the length

of the data being processed all the gains achieved by subsampling would be lost.

Therefore, we fix the length of data being processed, which consequently lowers our

confidence in detection at the first level of detection. This lower confidence in detec-

tion generates more false positives at the first level, however, we use the second level

147

of detection to increase our confidence in detection and remove the false positives

that passed the first level of detection.

Figure 5.1: Transmission of data between recording and processing nodes in multi-levelscheme

Detection in the multi-level system proceeds as follows. We assume that the

recording nodes record incoming packets measurements using some base subsampling

rate, 1
r
in Figure 5.1. Then for the first level additional subsampling is applied.

Increasing the subsampling rate, given that the signal was originally subsampled using

the method derived in Section 2.3, i.e., random subsampling, can be accomplished

by applying the same subsampling procedure to the measurements already recorded.

For example, if the incoming packets are initially subsampled by using the probability

profile l ∼ Geo(r) to generate the measurements X[k], which have a subsampling rate

equal to 1/r. Then a new set of measurements, X̂[m] is obtained by subsampling the

measurements X[k] using a new pmf, l̂ ∼ Geo(q), with corresponding subsampling

rate 1/q. The overall subsampling rate, from the input traffic to the measurements

148

X̂[m], is the product of the two subsampling rates, i.e., 1
q·r .

The measurements, X̂[m], are transmitted to the processing node (assuming

recording and processing is done separately) and then processed by the detection

system. After detection is performed the output is what we term the “confidence

in detection”, which is given by the Pearson statistic, p, described in Section 3.3.2.

The Pearson statistic is related to the probability of false alarm by the relation,

p = 1 − PFA. In other words if one accepts the alternative hypothesis, that an

anomaly is present, based on a particular value of p then the probability of a false

positive is 1 − p. Note that we actually have a vector of Pearson statistics, one for

each sub-density. After processing, the vector of Pearson statistics is sent back from

the processing node to the recording nodes. If, for the data in recording node i, the

value of p in any sub-density exceeds some threshold Th, then that recording node

retransmits the data back to the processing node at a lower subsampling rate µ = 1
r
,

and the data is reprocessed at the second level to increase the confidence that an

anomaly is present.

With the multi-level implementation savings can be achieved in the two areas: (i)

data transmission, and (ii) data processing. In the following sections we analyze the

potential savings in these areas.

5.1.1 Data Transmission

The first savings is in the cost to transmit the data from the recording node to the

processing node, assuming that processing is not done locally. Assume that each

recording node records measurements with the base subsampling rate, 1
r
, and this

results in blocks of data to be processed that are Υ gigabytes (GB) each. A block

of data represents some fixed length of time T , so for each length of time T each

149

measurement node transmits its block of data. If, as shown in Figure 5.1, we have M

recording nodes then the cost to transmit the data, for one length of time T , is M ·Υ

without additional subsampling, and q ·M · Υ with additional subsampling, i.e., for

level one of the multi-level implementation. The total cost to transmit the data from

the recording nodes to the processing node for both levels of detection, during one

length of time T , depends on the number of nodes that require additional processing,

Ntot, where Ntot is the combination of nodes that contain an anomaly, Nanom and

those that are due to false positives at the first level:

Ntot = Nanom + (M −Nanom) · PFA (5.1)

and the total transmission cost, Υtot, for both stages is then given by:

Υtot = q ·M ·Υ+Ntot ·Υ (5.2)

To analyze the potential savings in data transmission we first consider the scenario

when none of the recording nodes have anomalies, i.e., Nanom = 0. In this scenario

the value of Υtot completely depends on the value of PFA caused by processing data

at the first level with a high subsampling rate. With Nanom = 0 the value of Υtot

becomes:

Υtot = q ·M ·Υ+M · PFA ·Υ =M ·Υ(q + PFA) (5.3)

Therefore, in this scenario, we achieve a savings in transmission cost as long as Υtot <

M ·Υ which occurs when PFA + q < 1 or 1− q > PFA.

The converse scenario, where all nodes contain an anomaly in the same block of

time T , i.e., Nanom =M , actually increases the data transmission cost because in this

case Υtot = (q+1) ·M ·Υ. However we assume this scenario is unlikely, and instead we

150

can determine the maximum value of Nanom for which we still achieve transmission

savings. Rearranging the terms in (5.2) we get the expression:

Υtot = q ·M ·Υ+ (Nanom + (M −Nanom) · PFA) ·Υ

Υtot = Υ · [M · (q + PFA) +Nanom · (1− PFA)] (5.4)

We achieve transmission gains as long as the term in brackets is less than M , which

after some manipulation we can express as:

M > M · (q + PFA) +Nanom · (1− (q + PFA) + q)

Nanom < M

(
1− (q + PFA)

1− PFA

) (5.5)

Thus, for a given detection scenario we know the values of q and PFA, and can

determine the maximum value of Nanom, i.e., the maximum number of recording nodes

per length of time T that can contain an anomaly, where we still achieve savings in

the cost to transmit the data.

5.1.2 Data Processing

The second area where we can make potential savings by using the multi-level im-

plementation is in terms of data processing. Algorithmically the bottleneck in our

detection algorithm is computing the inter-arrival times for the renewal density es-

timate, so this is where we will measure the data processing load. For each mea-

surement, inter-arrival times between measurements must be computed until either

the maximum inter-arrival time, Maxx, or the maximum inter-arrival order, n, has

been reached. When we subsample by a factor µ this reduces the total number of

151

measurements by the same factor µ. Further, the number of of inter-arrival times

that must be computed before we reach either the maximum inter-arrival time or the

maximum inter-arrival order is reduced again by a factor of µ. Overall, subsampling

leads to an order of µ2 reduction in the number of inter-arrival computations and

thus roughly the same reduction in overall processing costs.

Following a similar derivation as was done for the data transmission cost, we as-

sume that the number of processing operations required to process the measurements,

for one block of time T , with the base subsampling rate, 1
r
, is equal to ξ operations

(OPS). Therefore to process the data from theM recording nodes the processing cost

is M · ξ OPS without additional subsampling, and q2 ·M · ξ OPS with additional

subsampling, i.e., for level one of the multi-level implementation. The total cost of

processing the data from the recording nodes for both levels depends on the number

of nodes that require additional processing, Ntot, which was given in (5.1). The total

computation cost, ξtot, is then given by:

ξtot = q2 ·M · ξ +Ntot · ξ (5.6)

Notice that the total computational cost (5.6) is nearly identical to data transmission

cost (5.2) except for the fact that the subsampling term is now squared, i.e., q2.

As was done previously to analyze the potential savings in computational cost

we first consider the scenario when none of the recording nodes have anomalies, i.e.,

Nanom = 0. Since the value of q2 is the only difference in equations (5.6) and (5.2)

we can omit the details of the derivation (see (5.3)) and conclude that we achieve a

savings in computational cost as long as PFA + q2 < 1 or 1− q2 > PFA.

Just as in the data transmission case the converse scenario, where all nodes contain

an anomaly, Nanom =M , increases the computational cost. So we will determine the

152

maximum value of Nanom for which we still achieve computational savings. Following

the derivation in (5.4) using q2 and we arrive at the following result for the restriction

on Nanom where we still accomplish computational savings.

Nanom < M

(
1− (q2 + PFA)

1− PFA

)
(5.7)

Just like when computing the transmission cost we can, for a given detection

scenario with known values of q and PFA, determine the maximum value of Nanom

where we still achieve savings in data processing.

Unfortunately, because of there is no closed form expression that relates PFA to

q we are unable to determine the optimal operating point for our system. However,

under normal operation conditions we would expect anomalies to occur infrequently,

so it is more important to consider the transmission and processing cost when no

anomalies are present. Since the values of q and PFA are linked, i.e., selecting a

smaller value of q (corresponding to a larger subsampling rate 1/q) increases PFA, if

given multiple choices for the value of q and PFA in a detection scenario we select

the values of q and PFA that minimize the transmission cost PFA + q < 1 and the

processing cost PFA + q2 < 1. Then when an attack occurs we can use equations

(5.5) and (5.7) to determine the value of Nanom when we have to begin modifying our

implementation, i.e., when to modify the subsampling rate 1/q or when to stop the

multi-level implementation in favor of the standard IA2D implementation.

5.2 Distributed Forensic Detection System

For the rest of the chapter we consider the use of our multi-level version of IA2D in a

particular detection scenario that we call distributed forensic detection. Anomaly and,

153

in particular, Denial-of-Service (DoS) attack detection at or near the target has been

studied extensively [6,27,52,74]. Traffic or flow statistics, e.g., traffic volume or flow

entropies [27, 74], near the target are altered sufficiently to signal a change in traffic

behavior indicating the presence of DoS traffic. Many detection schemes are currently

available that can quickly detect anomalies at the target and allow rapid action to

be taken limiting the damage done by the attack. However, once an attack has been

discovered most detection systems return to normal functioning waiting for the next

attack to occur. Forensic analysis, looking to answer when and where the attacks

originated, is typically left up to network managers to search through network logs or

measurements of network traffic near the target. Such analysis is time consuming, and

even if it is possible to determine which measured packets contributed to the attack,

information about its source, e.g, IP address, is generally unreliable [68]. Thus tracing

the attack traffic back towards its source is difficult.

Tracing the path of attack traffic is even more challenging for Distributed DoS

(DDoS), and low-rate TCP-targeted DoS attacks [46]. Tracing these attacks is difficult

because, while the combination of multiple streams might be noticeable near the

target, at other points in the network the individual streams are at a lower rate and

are less obvious. Detecting the individual streams generally requires more data to

be collected over a longer duration before enough attack packets are observed to be

detectable. Additionally, while the combined attack might be detected quickly, some

of the individual streams might be active for much longer durations going unnoticed.

Therefore tracing multiple attack streams requires a system where multiple nodes

record packet information over long durations, not just when an attack is detected,

in order to increase the likelihood of detecting the low-rate individual streams. As an

example consider Figure 5.2, where the DDoS attack might be easily discoverable at

the target due to the convergence of multiple streams of attack traffic (labeled Ai), all

154

much smaller than the combined stream. Following the detection of the DDoS attack

it would be desirable to trace the path of the individual attack streams (the Ai)

back through the network as close as possible to their origin (the zombies). However,

the high cost of storing measured packet information makes storing long segments of

traffic data prohibitively expensive.

Figure 5.2: DDoS attack converging at target

Motivated by this, we propose a distributed measurement system designed for

forensic anomaly detection. The main contribution is a system design which mini-

mizes the storage size of trace data by using our SigVec signal representation (Sec-

tion 2.2.4), and employing our optimized subsampling technique (Section 2.3) to only

record measurements for a subset of incoming packets. The signal representation re-

duces the storage rate by at least 80% per packet over standard ERF or PCAP file

types, while subsampling further reduces storage cost by a factor equal to the sub-

sampling rate. As an example, for the dataset we used in our simulations, which is

the same LANDER dataset used in Section 4.3.2, the average data rates were around

300 Mbps [20]. Storing PCAP measurements for 60 seconds worth of traffic requires

155

approximately 1 GB of storage (more for ERF). Using standard GZIP compression

reduces the storage requirement for the PCAP data by a factor of around 5, yet this

still requires 12 GB worth of data per hour. Our signal representation, SigVec derived

in Section 2.2.4, reduces storage by a factor 5 in both compressed and uncompressed

formats over PCAP (a factor of 6 over ERF), with savings of an additional factor of

10 or more possible via subsampling. Moreover, we show that these storage savings

can be achieved with essentially no penalty on detection accuracy.

To enhance the efficiency of our distributed measurement system, we also pro-

pose to use the multi-level version of IA2D to expedite anomaly detection Thus the

main contribution of this work is to combine the multi-level detection mechanism that

we described in Section 5.1 with a distributed measurement system that minimizes

storage cost as discussed in Section 5.3. Experiments in Section 5.4 show that the

multi-level detection method can be used at high subsampling rates to expedite pro-

cessing of long segments of measured data while still detecting low rate DoS attacks.

5.2.1 Related Work

Compared to most previous work on tracing network attacks back to their source the

key novelty in our work is to focus explicitly on reducing the amount of resources

needed for these tasks in a distributed setting. Specifically we consider reductions

in the cost of storage (which reduces the cost of each measurement node and allows

more to be deployed), processing and transmission (since our multi-level processing

allows only important data to be fully transmitted or processed). Some authors [5]

proposed systems where routers store information about packets they forward, e.g.,

source MAC addresses, so that, after an attack is detected, the path of the attack

can be traced by comparing the stored information with that in neighboring routers

156

to find the path of the attack packet. Our system is different and, we claim, more

general because we do not require being able to distinguish between attack packets

and regular background traffic, which allows us to operate in situations, e.g., with

encrypted traffic, where it is not possible to differentiate among the packets. Further,

in our method processing is independent at each recording node, while other systems

such as [5] require information to be stored at all routers, which for security and

privacy reasons might not be possible.

There are a few existing methods which use time domain detection schemes sim-

ilar to ours, but unlike in our work, limiting overall storage requirements is not a

major concern. In [56], the authors find the strongest correlation of the data between

the current router and the possible routers which could have forwarded the attack.

Similar to our work this method must contend with the size of the attack traffic be-

ing very small compared to the background traffic at a router, which means that the

correlation the attack traffic creates between routers will be small as well. Therefore,

like our method, this technique likely requires very long segments of data in order to

produce reliable results. One disadvantage of the system in [56] is that it requires

measurements to be recorded at all routers, in order to find the largest correlation,

whereas ours can operate independently at any router which records measurements.

Another similar system is the distributed low-rate TCP attack detection system

discussed in [73]. Like our method, the detection scheme in [73] uses time domain sig-

nal processing methods (autocorrelation) to detect periodic behavior linked to certain

anomalous TCP flows. Also, their method samples the incoming packet stream for

efficiency, however, they generate a uniformly sampled signal representation, which as

discussed in Section 2.2.4 is inferior to our signal representation for anomaly detection.

Both of these time domain detection systems use signal representations that are

different from the one presented here. Potentially these systems could be modified

157

to use measurements from our system allowing them to benefit from the reduced

storage costs. Thus, while we present one specific detection method, the distributed

measurement system is general and can potentially be used with alternate forensic

detection methods.

5.3 Distributed Measurement and Processing

System Architecture

Our measurement and processing system architecture is designed to be flexible in

how it is implemented. One of the fundamental building blocks of our system are

recording nodes, which are located at routers and record measurements of packets

that are forwarded by that router. The other component of our system are one or

more processing nodes, which receive data from the recording node and implement

our detection strategy. Since our system is designed for forensics it is possible that

a node could be recording incoming packets until an attack is detected elsewhere

in the network, at which time the node could switch into a processing mode and

perform detection on its own previously recorded data. It is also important to note

that this system is designed to be compatible with the recommendations of the IETF

PSAMP working group [3] for creating a flexible measurement system architecture.

For instance, our recording node is designed to follow the recommendation for a

PSAMP device. It includes an appropriate selection process (our sampling technique),

and could follow the PSAMP recommendations on how to transfer packet information

(exporting process) to a collector (our processing node). Therefore, implementation

of our distributed measurement system should be possible in devices meeting the

PSAMP recommendations. In addition to the up and coming PSAMP architecture,

158

our system can also be implemented using hardware measurement systems such as

those from ENDACE [24], or using lower cost alternatives like the software based

measurement systems described in Section 2.2.

Given the building blocks of our system, the architecture with which the system is

implemented is flexible to the constraints of the network under observation. Similar to

the work in [73] the ideal implementation would be to have measurements recorded

at each hop between the attack origin and the target. However, this may not be

possible in general; certain operators may not allow measurements in all or part of

their networks, while the large amounts of storage needed for measurements can limit

the practicality of these approaches. Since we cannot guarantee access to data at all

nodes, our detection mechanism is designed to work independently of data from other

recording nodes, and thus can be used at any accessible observation points along the

path from source to target. While this might not allow us to always trace the attack

all the way back to the source it can, for instance, be used to trace the attack as far

back as to an edge router of a local network as in [70].

5.4 Distributed Measurement and

Multi-level Detection Simulation

To show the advantages of our combined distributed measurement system and multi-

level detection we present the following detection scenario as a case study. Assume,

as in Figure 5.2, that a DDoS attack has been detected at a link in the local network.

Our goal is to trace the particular components of the attack (the Ai) at the edge

routers of the local network. In this experiment the traffic at the edge routers will be

simulated using a 25 minute long trace obtained by the LANDER Los Nettos trace

159

collection system [20]. In practice each router experiences different traffic, however,

we use one trace here to make the example simple. The average bit rate for the

segment is 300 Mbps.

For our experiment assume that there are 10 edge routers, each receiving the 300

Mbps average bit rate. Further, we assume that some of our edge routers encounter

very low-rate attacks with bit rates of 15 and 10 Mbps respectively. This corresponds

to the attacks being less than 5% and 3.3% of the total combined bit rate, respectively.

Note, these attack rates are small compared to those considered in the literature

(e.g., [74]). These bit rates could correspond to the traffic generated by the zombie

encountering a bottleneck, a 10 Mbps Ethernet link for instance, or could be due to

limits in the maximum output rate from the zombie. If the attacks are generated

using 1518 byte packets then the associated packet rate of the attacks are 1.6% and

1.1% of the total packet rate, respectively. The packet delay variation that occurs as

the attack traverses the network from origin to target is replicated by adding jitter

to the ideally periodic timing of the attack packets. The amount of jitter used in our

simulations is approximately 25 microseconds.

5.4.1 Data Reduction via Subsampling and SigVec

Since our proposed system is designed to be deployed in a distributed manner the data

storage requirement for collecting packet measurements increases with the number of

recording nodes. Detecting low-rate anomalies requires very long segments of mea-

surements to be recorded to gather enough evidence to reliably detect the anomaly,

further increasing the required data storage cost.

To reduce the cost of data storage compared to standard PCAP and ERF data

160

formats we propose the use of our signal representation, SigVec, discussed in Sec-

tion 2.2.4 combined with the subsampling technique we derived in Section 2.3.

To show the benefit of our data reduction methods consider the storage and trans-

mission requirements associated with the experiment described above. In Table 5.1

we compare the requirement to store, per recording node, a 25 minute trace segment

in various formats. Compared to uncompressed PCAP format just using SigVec re-

sults in a reduction by a factor of 5, and compared to ERF using SigVec reduces

data storage size by a factor of 6. Recording data at all 10 nodes using SigVec would

reduce storage by 200 GB before downsampling. If we further downsample the mea-

surements by a factor of 10, this reduces storage cost by a factor of 50 over PCAP,

with minimum impact of detection.

Storage Format Size - GB Size - GB
Uncompressed Compressed

ERF 29.97 7.90
PCAP 24.88 5.69
SigVec No SS 4.51 0.93
SigVec µ = 10 0.46 0.14
SigVec µ = 25 0.18 0.06

Table 5.1: Storage requirements for detection example measurements

5.4.2 Multi-Level Detection Results

Figure 5.3 shows confidence in detection, or Pearson statistic p, for the three different

attack scenarios plotted for various subsampling rates. In [52] it was shown that the

background traffic generally scores below 50% for confidence in detection, so a value

of 65% is a reliable threshold for p at the first level yet not good enough to guarantee

detection. From Figure 5.3 we see that given the subsampling rate of 25 both the

5% and 3.3% attacks are detected with a confidence greater than 65%. Further, we

161

can detect the attacks with a confidence greater than 99% with a subsampling rate

of 10, therefore, we will use p = .99 as the threshold at our second level of detection.

Therefore we choose to implement our multi-level detection system using the following

parameters, as shown in Figure 5.1:

• Base subsampling rate - 1/r = 10

• Additional subsampling rate - 1/q = 2.5

• Threshold - Th = 65%

With these parameters we have that the probability of false alarm at the first level

of detection is PFA = 1− p = 1− Th = .35 and q = .4.

Using the expressions we derived in Section 5.1 we can analyze the potential

savings of our distributed detection system when no anomalies are present, and de-

termine the maximum number of nodes that can contain an anomaly for us to still

achieve savings. First, when no anomalies are present, we know from (5.3) that the

data transmission savings achieved using the multi-level implementation compared to

sending the data at the lower subsampling rate is given by 1− (q + PFA), which for

our example is .25 or 25%. Using the data from Table 5.1 for 10 recording nodes the

cost to transmit the data at a subsampling rate of 10 is 10 · 0.14 = 1.4 GB. With the

multi-level implementation we transmit .25 · 1.4 = .35 GB less data. Next using (5.6)

we determine that the that the computational cost savings is given by 1− (q2+PFA),

which in this example is 1− (.42 + .35) = .49 or 49%, a significant reduction.

Next, if we assume that anomalies are present in our system we can determine

the maximum number of nodes, Nanom, that can contain an anomaly for us to still

162

achieve savings in transmission and processing cost. Using (5.5) we compute the value

of Nanom to be:

Nanom < M

(
1− (q + PFA)

1− PFA

)
< 10

(
1− .75

1− .35

)
< 10 · .38 < 3.8 (5.8)

and using (5.7) the value of Nanom is given by:

Nanom < M

(
1− (q2 + PFA)

1− PFA

)
< 10

(
1− .51

1− .35

)
< 10 · .75 < 7.5 (5.9)

Thus we see that we can still achieve savings in data transmission when up to 3 nodes

have anomalies in them, and we save on computational cost even when 7 nodes have

anomalies present.

15 20 25 30 35
55

60

65

70

75

80

85

90

95

100
Downsampling Rate vs. Confidence in Detection

D
et

ec
tio

n
C

on
fid

en
ce

 (
%

)

Downsampling Rate

5% Attack
5% Attack, 66% Duration
3.3% Attack

Figure 5.3: Downsampling rate vs. confidence in detection

163

In the previous experiment the attack traffic was active for the entire length of

the recording, which in practice is highly unlikely especially given the long duration

traces that the measurement system records. If the attack is only present during a

portion of the analyzed trace the effect is similar to decreasing the attack rate by a

proportion equal to the attack duration. For example, if the 5% attack is only active

during 66% of the recorded trace, then our ability to detect the attack by analyzing

the entire trace is similar to our ability to detect a .66 · 5% = 3.3% attack. This

example is shown in Figure 5.3, and we see that our ability to detect the 5% attack

with 66% duration is similar to the 3.3% attack. Therefore even if the attack is not

present during the entire trace we retain the ability to detect the attack.

5.5 Conclusion

In this chapter we modified our IA2D detection system and derived a different imple-

mentation that we called the multi-level detection strategy. The multi-level detection

method processes recorded measurements at two levels. At the first level the data is

highly subsampled, this allows IA2Dto process the measurements efficiently and the

goal of the first level is to determine measurements that ’likely’ contain an attack.

On traces determined to likely contain an attack more reliable detection is performed

using a second level of the multi-level system with a lower subsampling rate. In Sec-

tion 5.1 we determined expressions for the potential data savings and determined the

system operating point when it was better to use the standard IA2D implementation

instead of the multi-level version.

As an example application we consider a distributed forensic analysis system that

included multiple measurement nodes and a single processing node that implemented

the multi-level version of IA2D. We showed our measurement system could achieve an

164

80% reduction in storage cost compared to the more commonly used PCAP and ERF

file formats. Finally, we showed that using our multi-level implementation we could

detect very low-rate periodic anomalies with data transmission savings up to 25%

and a 49% reduction in processing cost compared to the standard implementation of

IA2D.

165

Chapter 6:

Conclusions and Future Work

A method to integrate Internet measurement and analysis has been proposed by con-

structing a flexible signal representation, SigVec. The benefits of the SigVec signal

representation are: (i) it is general, i.e., can be implemented in any existing measure-

ment systems, (ii) allows for subsampling, which can be useful to reduce data storage,

transmission and processing costs. This signal representation is the most natural for

typical measurement systems, however, it is typically not used for analysis as most

analysis techniques convert the event based measurements to a more common time

series representation, in order to be compatible with standard signal processing tech-

niques (e.g., fast Fourier transform, power spectral density, etc.). However, we showed

that analysis techniques based on the SigVec signal representation could be designed

to perform as well as existing techniques with some additional benefits, such as de-

tecting anomalies in aggregate traffic without separating the traffic into flows.

In Chapter 2 we analyzed and derived a set of timing error models to represent a

software based measurement system. The SigVec signal representation was selected

because it was the natural method to mitigate the effect of these timing errors when

combined with subsampling. Methods to optimize subsampling in the measurement

system where discussed in Section 2.3. By optimizing subsampling it is possible to

166

preserve the desired characteristics of the Internet traffic that are important for a

specific type of analysis.

Using the signal representation and a formulation from renewal theory, called the

renewal density, we derived a low-rate periodic detection system, IA2D, in Chap-

ter 3. The design of this system showed that it was possible to use the natural signal

representation for Internet traffic analysis without having to convert to a time series

representation. Additional benefits of our system design were its ability to distinguish

between multiple periodic anomalies, something that is not possible in many existing

systems.

Then in Chapter 4 we consider a number of applications of IA2D. In each of

these applications we used renewal theory to parameterize the system, and showed

that, with modifications based on measurable Internet traffic characteristics, we could

reliably select parameters for the detection system that produced reliable detection

results for real Internet traffic.

Finally, in Chapter 5 we modified our IA2D detection system to derive our multi-

level detection system. The multi-level detection method processes recorded mea-

surements at two levels. At the first level the data is highly subsampled, allowing

measurements to be processed efficiently to determine collections of measurements

that ’likely’ contain an attack. Traces that were determined to likely contain an at-

tack are then processed at a second level, with a lower subsampling rate, to increase

detection reliability.

Thus, by selecting the natural signal representation, SigVec, and designing analysis

methods that make use of this representation we showed that it is possible to integrate

systems for the measurement and analysis of Internet traffic.

167

6.1 Future Work

Given our general SigVec signal representation and the design of IA2D based on

renewal theory much of the work contained herein can be applied to a wide range of

signals interesting to scientific researchers, namely those that occur naturally as point

processes. Examples of some naturally occurring point processes include the firing

of neurons in the human brain, various forms of financial data (i.e., purchase and

sale times of in the stock market), and computer network events not considered here,

such as network alarms or flow arrivals [41, 60]. Typical behavior for many of these

signals is often modeled by a renewal process, and deviations from typical behavior,

i.e., anomalies, can signify health concerns in biological signals or potential malicious

activity in stock market and computer network data, making their detection crucial.

Two signals of interest that are particularly relevant to our work are the timing

of tweets on the popular social networking site ’Twitter’, and network flow start

times. The second case has been considered in detail, and in a similar context,

in [7], where the goal of that work was to discover very low-rate periodic flows in an

aggregate collection of flows. Periodic flows could be generated by normal computer

user behavior, such as RSS feed aggregators polling sites periodically searching for

new content, however, the periodic flows could also represent malicious behavior like

zombies computers in a Botnet periodically checking for instructions from the zombie

master waiting for an attack to be unleashed. Given that our detection system is

designed to detect long-term periodic activity this application is a good fit for IA2D.

On this application we have performed some preliminary analysis. The analysis

was done by taking existing Internet traffic measurements, and filtering the measure-

ments such that we were left with only packets with both the “SYN” and “ACK”

flags set to 1. The SYN and ACK flags should only be set to 1 in a packet header

168

when the server is responding to a client who has initiated a TCP session; this is the

second step of the three-way handshake used by the TCP protocol [7]. Packets with

both the SYN and ACK flags set to 1 are a good indication of the start of a TCP

session, or a flow.

We examined the renewal density estimate obtained from the filtered set of In-

ternet traffic measurements, and observed periodic activity. However, certain prob-

lems exist with the periodic activity observed that require more research before this

scenario can be studied further. One problem is that the level of periodic activity

observed does not correspond to the observation window. In other words the num-

ber of periodic inter-arrivals observed do not correspond to how many intervals of

that period occur during the observed time period. The likely cause of this is either

the periodic activity is quasi-periodic (random multiple of the base period, see Sec-

tion 4.3.3), or the source of the periodic activity was only active during a portion of

the observation window. Another problem is that we have yet to determine the cause

of the observed periodic activity. Therefore, while we have observed periodic inter-

arrival times in measurements of flow start times more research needs to be done to

determine the cause of the observed periods as well as to determine a suitable method

to determine the time-to-detection for the periodic activity observed.

Recently, Twitter has become increasingly popular and increasingly lucrative as

companies and advertisers find new ways to utilize the micro-blogging site. However,

with the increase in legitimate users and revenue being generated comes the increase

in malevolent use on the site as well. A large percentage of user accounts are created

each day by spammers, who flood the site with links to advertisements or even worse,

like sites that attempt to install computer viruses on unsuspecting users. The site

managers spend considerable time and resources attempting to sort out spammer

accounts from legitimate users, and even when a spammer account is shut down

169

another quickly takes its place. If the behavior of spammer activity on the site

can be distinguished from regular user activity then the detection of spam could be

automated saving the site managers time and money. We have recently looked into

methods to identify spammer behavior on Twitter, and preliminary analysis indicates

that some high volume accounts tend to generate tweets at periodic intervals. For

example, we generated a Twitter account and followed approximately 150 normal

users, and 1 high volume account that was selected because it was used primarily

to sell real estate. After recording the timestamps for all the tweets received on

the generated Twitter account during a 200 hour interval, we estimated the renewal

density from the data, which is shown in Figure 6.1. Clearly, there is a strong periodic

component in the renewal density at intervals of 300 seconds (5 minutes). It was

verified that the periodic component was largely due to the high volume, real estate

salesperson’s Twitter account. Therefore, Twitter could represent another potential

application of our IA2D detection system.

One concern with using IA2D to detect periodic messages on Twitter is that

detecting periodic tweets alone might not be enough to determine spammer activity.

For example, certain automated yet legitimate users, i.e., news websites, could gen-

erate tweets at periodic intervals and not be considered spam at all. Therefore, in

order to reliably sort spam from the mountains of legitimate user data will require

additional metrics beyond what IA2D can offer, however, its use in combination with

post-processing methods could from a powerful automated detection system.

170

0 200 400 600 800 1000 1200

100

150

200

250

300

350

Renewal Density Estimate using Twitter Data

Inter−Arrival Time (Sec)

N
um

be
r

of
 In

te
r−

A
rr

iv
al

s

Figure 6.1: Renewal density estimate from Twitter data

171

References

[1] Abilene-III trace dataset. Provided Online by WAND Research Group, Univer-
sity of Waikato - http://www.wand.net.nz/wits/ipls/3/.

[2] IETF IPFIX Working Group. charter available online at
http://datatracker.ietf.org/wg/ipfix/charter.

[3] IETF PSAMP Working Group. charter available online at
http://datatracker.ietf.org/wg/psamp/charter.

[4] P.D. Amer and L.N. Cassel. Management of sampled real-time network mea-
surements. In Local Computer Networks, 1989., Proceedings 14th Conference
on, pages 62–68, Oct 1989.

[5] T. Baba and S. Matsuda. Tracing network attacks to their sources. IEEE Inter-
net Computing, 6(2):20–26, 2002.

[6] P. Barford, J. Kline, D. Plonka, and A. Ron. A signal analysis of network traffic
anomalies. In IMW ’02: Proceedings of the 2nd ACM SIGCOMM Workshop on
Internet measurment, pages 71–82, New York, NY, USA, 2002. ACM.

[7] G. Bartlett, J. Heidemann, and C. Papadopoulos. Using low-rate flow peri-
odicities for anomaly detection: Extended. Technical Report ISI-TR-2009-661,
USC/Information Sciences Institute, August 2009.

[8] L.S. Brakmo and L.L. Peterson. TCP vegas: End to end congestion avoidance
on a global internet. IEEE Journal on Selected Areas in Communications, 1995.

[9] R. L. Carter and M. E. Crovella. Measuring bottleneck link speed in packet-
switched networks. Technical report, Performance Evaluation, 1996.

[10] Y. Chen and K. Hwang. Tcp flow analysis for defense against shrew ddos attacks.
In IEEE International Conference on Communications 2007 ICC 07, pages 1–8,
2007.

[11] Y. Chen, K. Hwang, and Y.-K. Kwok. Filtering of shrew ddos attacks in fre-
quency domain. In The IEEE Conference on Local Computer Networks, pages 8
pp. –793, Nov 2005.

172

[12] C.M. Cheng, H.T. Kung, and K.S. Tan. Use of spectral analysis in defense
against dos attacks. In Global Telecommunications Conference, 2002. GLOBE-
COM ’02. IEEE, volume 3, pages 2143–2148 vol.3, Nov. 2002.

[13] J. Cheng, D.X. Wei, and S. H. Low. FAST TCP: Motivation, architecture,
algorithms, performance. In Proceedings of IEEE INFOCOM, pages 2490–2501,
2004.

[14] S. Y. Chun and A. Shapiro. Normal versus noncentral chi-square asymptotics of
misspecified models. Multivariate Behavioral Research, 44:803–827, 2009.

[15] Cisco Systems, Inc. Introduction to Cisco IOS NetFlow. Technical report, Avail-
abile online at http://www.cisco.com/, 2007.

[16] K. Claffy, G. Polyzos, and H.W. Braun. Application of sampling methodolo-
gies to network traffic characterization. SIGCOMM Computer Communication
Review, 23(4):194–203, 1993.

[17] D. Cousins, C. Partridge, K. Bongiovanni, A.W. Jackson, R. Krishnan, T. Sax-
ena, and W.T. Strayer. Understanding encrypted networks through signal and
systems analysis of traffic timing. In Aerospace Conference, 2003. Proceedings.
2003 IEEE, volume 6, pages 2997–3003, 8-15 2003.

[18] D. Cousins, C. Partridge, A. W. Jackson, R. Krishnan, T. Saxena, and W. T.
Strayer. Using signal processing to analyze wireless data traffic. In Proc. ACM
workshop on Wireless Security, pages 67–76, 2002.

[19] M. Dashtbozorgi and M.A. Azgomi. A high-performance software solution for
packet capture and transmission. Computer Science and Information Technol-
ogy, International Conference on, 0:407–411, 2009.

[20] Scrambled Internet Trace Measurement dataset. PREDICT ID USC-
LANDER/lander sample-20080903. Provided by the USC/LANDER project.
http://www.isi.edu/ant/lander, Traces taken for the full day on 2008-09-03.

[21] L. R̊ade. Theorems for thinning of renewal point processes. Journal of Applied
Probability, 1972.

[22] C. Demichelis and P. Chimento. IP packet delay variation metric for ip perfor-
mance metrics IPPM. Technical Report RFC 3393, The Internet Society, 2002.

[23] S. Donnelly. High Precision Timing in Passive Measurements of Data Networks.
PhD thesis, The University of Waikato, 2002.

[24] S. Donnelly. Endace DAG time-stamping whitepaper. Technical report, Endace
Technology Ltd., 2007.

173

[25] A.B. Downey. Using pathchar to estimate internet link characteristics. In SIG-
METRICS ’99: Proceedings of the 1999 ACM SIGMETRICS international con-
ference on Measurement and modeling of computer systems, pages 222–223, New
York, NY, USA, 1999. ACM.

[26] N. Duffield, C. Lund, and M. Thorup. Estimating flow distributions from sam-
pled flow statistics. IEEE/ACM Trans. Netw., 13(5):933–946, 2005.

[27] L. Feinstein, D. Schnackenberg, R. Balupari, and D. Kindred. Statistical ap-
proaches to DDoS attack detection and response. In DARPA Information Sur-
vivability Conference and Exposition, 2003. Proceedings, volume 1, pages 303–314
vol.1, April 2003.

[28] D. Freedman and P. Diaconis. On the histogram as a density estimator: l2 theory.
Probability Theory and Related Fields, 57:453–476, 1981. 10.1007/BF01025868.

[29] E. Frees. Nonparametric renewal function estimation. The Annals of Statistics,
14, 1986.

[30] Alberto Leon Garcia. Probability and Random Processes for Electrical Engineer-
ing. Addison Wesley, 2nd edition, 1994.

[31] P.E. Gill, W. Murray, and M.H. Wright. Practical Optimization. Academic
Press, 1981.

[32] A. Grad and H. Solomon. Distribution of quadratic forms and some applications.
The Annals of Mathematical Statistics, 26:464–477, 1955.

[33] P. Greenwood and M. Nikulin. A Guide to Chi-Square Testing. Wiley Series in
Probability and Statistics, 1996.

[34] X. He. Detecting Periodic Patterns in Internet Traffic with Spectral and Statis-
tical Methods. PhD thesis, University of Southern California, 2006.

[35] A. Hussain, J. Heidemann, and C. Papadopoulos. Identification of repeated
DoS attacks using network traffic forensics. Technical Report ISI-TR-2003-577b,
USC/Information Sciences Institute, August 2003. Originally released August
2003, updated June 2004.

[36] A. Hussain, J. Heidemann, and C. Papadopoulos. Identification of repeated
denial of service attacks. In Proceedings of the IEEE Infocom, Barcelona, Spain,
April 2006.

[37] Intel. Interrupt moderation using Intel gigabit ethernet controllers. Technical
report, Intel Corporation, April 2007.

174

[38] Sunita Jain. Spartan-6 FPGA connectivity targeted reference design perfor-
mance. Technical report, Xilinx, 2010.

[39] P. Kamath, K.-C. Lan, J. Heidemann, J. Bannister, and J. Touch. Generation of
high bandwidth network traffic traces. In Proceedings of the 10th International
Workshop on Modeling, Analysis, and Simulation of Computer and Telecommu-
nication Systems, Fort Worth, TX, 2002.

[40] T. Karagiannis, M. Molle, M. Faloutsos, and A. Broido. A nonstationary Poisson
view of internet traffic. In INFOCOM 2004. Twenty-third AnnualJoint Confer-
ence of the IEEE Computer and Communications Societies, volume 3, pages 1558
–1569 vol.3, 7-11 2004.

[41] D. Katabi, I. Bazzi, and Y. Xiaowei. A passive approach for detecting shared
bottlenecks. Proceedings of the Tenth International Conference on Computer
Communications and Networks, 2001., pages 174–181, 2001.

[42] D. Katabi and C. Blake. Inferring congestion sharing and path characteristics
from packet interarrival times. Technical report, LCS, 2001.

[43] K. Keys, D. Moore, R. Koga, E. Lagache, M. Tesch, and K. Claffy. The ar-
chitecture of coralreef: An internet traffic monitoring software suite. Technical
report, CAIDA: Cooperative Association for Internet Data Analysis, University
of California San Diego, 2001.

[44] I. Kim, J. Moon, and H. Y. Yeom. Timer-based interrupt mitigation for high
performance packet processing. In Proc. 5th International Conference on High-
Performance Computing in the Asia-Pacific Region, Gold, 2001.

[45] S. Kullback and R. A. Leibler. On information and sufficiency. The Annals of
Mathematical Statistics, 1951.

[46] A. Kuzmanovic and E. W. Knightly. Low-rate TCP-targeted denial of service
attacks: the shrew vs. the mice and elephants. In Proceedings of SIGCOMM,
pages 75–86, New York, NY, USA, 2003. ACM.

[47] K. Lai and M. Baker. Measuring bandwidth. In INFOCOM ’99. Eighteenth
Annual Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, volume 1, pages 235 –245 vol.1, mar 1999.

[48] K. Lai and M. Baker. Nettimer: A tool for measuring bottleneck link bandwidth.
In Proceedings of the USENIX Symposium on Internet Technologies and Systems,
pages 123–134, 2001.

[49] S. Ma and J.L. Hellerstein. Mining partially periodic event patterns with un-
known periods. pages 205 –214, 2001.

175

[50] C. L. T. Man, G. Hasegawa, and M. Murata. ICIM: An inline network mea-
surement mechanism for highspeed networks. In 4th IEEE/IFIP Workshop on
End-to-End Monitoring Techniques and Services, pages 66–73, 2006.

[51] N. Markovich and U. Krieger. Nonparametric estimation of the renewal function
by empirical data. Stochastic Models, 22, 2006.

[52] S. McPherson and A. Ortega. Analysis of internet measurement systems for
optimized anomaly detection system design. Technical Report 0907.5233, Arxiv,
July 2009.

[53] S. McPherson and A. Ortega. Improved internet traffic analysis via optimized
sampling. In Proceedings of IEEE International Conference on Acoustics, Speech,
and Signal Processing, 2010.

[54] U. Mitra, A. Ortega, J. Heidemann, and C. Papadopoulos. Detecting and identi-
fying malware: A new signal processing goal. IEEE Signal Processing Magazine,
23(5):107–111, September 2006.

[55] Randolph Nelson. Probability, Stochastic Processes and Queuing Theory: The
Mathematics of Computer Performance Modeling. Springer-Verlag, 1995.

[56] K. Ohta, G. Mansfield, Y. Takei, N. Kato, and Y. Nemoto. Detection, defense,
and tracking of internet-wide illegal access in a distributed manner. In Proceed-
ings of INET 2000, 2000.

[57] V. Paxson and M. Allman. Computing TCP’s retransmission timer. Technical
Report RFC 2988, The Internet Society, 2000.

[58] V. Paxson and S. Floyd. Wide-area traffic: The failure of poisson modeling.
IEEE Transactions on Networking, 61(4):215–225, 1995.

[59] S. Pemmaraju and S. Skiena. Computational Discrete Mathematics. Cambridge
University Press, 2003.

[60] Donald H. Perkel, George L. Gerstein, and George P. Moore. Neuronal spike
trains and stochastic point processes. II. simultaneous spike trains. Biophys. J,
7:419–440, 1967.

[61] R. Prasad, M. Jain, and C. Dovrolis. Effects of interrupt coalescence on network
measurements. In Proceeding of Passive Active Measurement (PAM) Workshop,
pages 247–256, 2004.

[62] A. Rényi. A characteristization of poisson processes. Magyar Tud. Akad. Mat.
Kutaló Int. Közl, 1956.

176

[63] K. Salah. On the accuracy of two analytical models for evaluating the perfor-
mance of gigabit ethernet hosts. Information Sciences, 176:3735–3756, 2006.

[64] K. Salah. To coalesce or not to coalesce. International Journal of Electronics
and Communications, 61(4):215–225, 2007.

[65] K. Salah and K. El-Badawi. On modeling and analysis of recieve livelock and
CPU utilization in high-speed networks. Internation Journal of Computers and
Applications, 2006.

[66] K. Salah, K. El-Badawi, and F. Haidari. Performance analysis and compar-
ison of interrupt-handling schemes in gigabit networks. Comput. Commun.,
30(17):3425–3441, 2007.

[67] M. Sankaran. On the non-central chi-square distribution. Biometrika, 46:235–
237, 1959.

[68] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical network support
for ip traceback. SIGCOMM Comput. Commun. Rev., 30(4):295–306, 2000.

[69] J. Shafer and S. Rixner. A reconfigurable and programmable gigabit ethernet
network interface card. Technical Report TREE0611, Rice University - Depart-
ment of Electrical and Computer Engineering, 2006.

[70] A. Shevtekar, K. Anantharam, and N Ansari. Low rate TCP denial-of-service
attack detection at edge routers. IEEE Communications Letters, 9(4), 2005.

[71] R. Sinha, C. Papadopoulos, and J. Heidemann. Internet packet size distribu-
tions: Some observations. Technical Report ISI-TR-2007-643, USC/Information
Sciences Institute, May 2007. Orignally released October 2005 as web page
http://netweb.usc.edu/ rsinha/pkt-sizes/.

[72] S. M. Stigler. The asymptotic distribution of the trimmed mean. The Annals of
Statistics, 1(3):pp. 472–477, 1973.

[73] H. Sun, J. C.S. Lui, and D. K.Y. Yau. Defending against low-rate TCP attacks:
Dynamic detection and protection. In Proceedings of ICNP, pages 196–205, 2004.

[74] G. Thatte, U. Mitra, and J. Heidemann. Detection of low-rate attacks in com-
puter networks. In Proceedings of the 11th IEEE Global Internet Symposium,
pages 1–6, Phoenix, Arizona, USA, April 2008. IEEE.

[75] G. Thatte, U. Mitra, and J. Heidemann. Parametric methods for anomaly detec-
tion in aggregate traffic. ACM/IEEE Transactions on Networking, page accepted
to appear, August 2010. (Likely publication in 2011).

177

[76] G. Varenni, M. Baldi, L. Degioanni, and F. Risso. Optimizing packet capture
on symmetric multiprocessing machines. In Proceedings of 15th Symposium on
Computer Architecture and High Performance Computing, pages 108–115, Nov.
2003.

[77] P. Varga. Analyzing packet interarrival times distribution to detect network bot-
tlenecks. In EUNICE 2005: Networks and Applications Towards a Ubiquitously
Connected World, pages 17–29, 2006.

[78] T. Wolf, Y. Cai, P. Kelly, and W. Gong. Stochastic sampling for internet traffic
measurement. In IEEE Global Internet Symposium, 2007, pages 31–36, May
2007.

178

