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Abstract

Traditional compressed sensing (CS) approaches have been focused on the goal of

reducing the number of measurements while achieving satisfactory reconstruction.

Reducing the number of measurements can directly lead to reductions in costs in

some applications, e.g., the scanning time in fast magnetic resonance imaging (MRI)

or the sampling rate in analog-to-information conversion. However, in some other

applications, minimizing the number of measurements by itself does not provide a

better solution in terms of system complexity due to additional application-driven

constraints.

In general, those constraints affect the choice of either measurement basis or

sparsifying basis. For example, if the total cost of collecting measurements is a

crucial factor as compared to the reconstruction accuracy, reducing the number

of measurements does not guarantee better performance because the increase of

measurement cost can exceed the gain achieved by the increase of the number of

measurements. Thus, the design of an efficient measurement basis should consider

the total cost for measurements as well as the reconstruction accuracy. Also, in

coding applications where signals are first captured and then compressed, better

performance can be achieved by adaptively selecting a transform or sparsifying

basis and then signaling the chosen transform to the decoder. For instance, for

piecewise smooth signals, where sharp edges exist between smooth regions, edge-

adaptive transforms can provide sparser representation at the cost of some overhead.

xii



Thus, the design of sparsifying basis should be optimized with respect to a given

measurement basis, while the signaling overhead is minimized. These observations

motivated us to investigate efficient design schemes for CS that can provide better

reconstruction while minimizing the application-driven costs.

In this thesis, we study the optimization of compressed sensing in three different

applications, each of which imposes a different set of constraints: i) efficient data-

gathering in wireless sensor networks (WSN), ii) depth map compression using a

graph-based transform, and iii) fast target localization using a single-chip ultra-

wideband (UWB) radar. Under these application-driven constraints, we study how

to minimize application specific costs while minimizing the mutual coherence in

order to achieve satisfactory reconstruction using CS.

In sensor networks, we take explicitly into consideration the cost of each mea-

surement (rather than minimizing the number of measurements), and optimize the

measurement matrix that leads to energy efficient data-gathering in WSN. For

depth map compression, the constraint to consider is the total bitrate, including

both the number of bits for measurements and the bit overhead to code the edge

map required for the construction of graph-based transform (GBT). To improve

overall performance, we propose a greedy algorithm that selects for each block the

GBT that minimizes a metric accounting for both the edge structure of the block

and the characteristics of the measurement matrix. For fast localization of objects

using a UWB ranging system, we design an efficient measurement system that is

constructed using a low-density parity-check (LDPC) matrix, designed to satisfy

hardware-driven constraints. To enhance performance, we propose a window-based

reweighted L1 minimization that outperforms other existing algorithms in high

noise environments.
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Chapter 1

Introduction

Traditional compressed sensing (CS) approaches have been focused on reducing the

number of measurements while achieving satisfactory reconstruction. To achieve

satisfactory performance, two main conditions should be satisfied: (i) sparseness of

signal to be reconstructed and (ii) incoherence between measurement (sensing) basis

and sparsifying (sparsity-inducing) basis [12, 23]. Under these conditions, a reduc-

tion in the number of measurements can directly lead to lower complexity in some

applications, in terms of application specific metrics such as the scanning time in

fast magnetic resonance image (MRI) or the sampling rate in analog-to-information

conversion [53,55]. However, in other applications additional constraints should be

considered, because fewer measurements do not always provide better performances

when the trade-off between complexity and reconstruction quality is considered.

In this thesis, we investigate the optimization of compressed sensing under

application-driven constraints. There could be many possible applications but we

consider three specific examples: i) efficient data-gathering on wireless sensor net-

work (constrained sensing matrix), ii) depth map compression using graph-based

1



transforms (adaptive sparsifying basis), and iii) fast target localization using single-

chip UWB radar (hardware-driven constrains). Each application has its own con-

straints to satisfy and costs to minimize. Each problem can be addressed with a

design philosophy satisfying both application-driven and compressed sensing con-

straints, while providing satisfactory reconstruction accuracy. While the results

in this thesis are presented for specific applications, we expect that this design

philosophy can be applied to various scenarios.

Table 1.1 summarizes the choices of sensing and sparsifying basis for each ap-

plication. The bases to be optimized with respect to the application specific con-

straints are highlighted in the table. Table 1.2 describes the application specific

constraints or costs to minimize for each application.

Table 1.1: Choice of sensing / sparsifying basis for each application

Application Sensing Basis (Φ) Sparsifying Basis (Ψ)

WSN Sparse block-diagonal random Wavelet or GBT
Depth map Hadamard GBT
UWB radar Non-negative integer Spatial (Identity)

In the WSN application, the transport cost to collect sensor information should

be considered for efficient data-gathering of WSN data. Since the total cost of mea-

surements in WSN is closely related to the construction of the sensing matrix, the

challenge is to design a power-efficient sensing matrix, while preserving incoherence

with respect to a given sparsifying basis.

For depth map compression, the additional cost to consider is the total number

of bits to encode both measurements and edge map, where the edge map is closely

related to the construction of the sparsifying basis. In contrast to the WSN appli-

cation, the sensing matrix is fixed (the Hadamard matrix is chosen in our work) and

2



Table 1.2: Overview of application specific constraints / cost

Application Constraints / Cost

WSN Transport cost for measurement
Depth map Bits for measurements and edge map
UWB radar Scanning time under hardware-driven constraints

the goal is to optimize the sparsifying basis (graph-based transform) by minimizing

the number of bits required for the construction of the transform while achieving

satisfactory reconstruction.

For fast localization of objects using single-chip UWB ranging system, we need

to design an efficient measurement system satisfying hardware-driven constraints:

non-negative integer entries in the measurement (sensing) matrix, constant row-

wise sum of non-zero entries in the matrix, and a unique structure characterized

by Kronecker product. Also, a non-linear reconstruction technique for UWB signal

needs to be designed for better reconstruction.

Before discussing more details about our design for each application, we first

provide an overview of the basic mathematical results that provide guarantees for

robust recovery of sparse signals in CS.

1.1 Compressed Sensing (CS)

Compressed Sensing (CS) refers to a general class of systems where the goal is to

recover an N -dimensional sample signal (x) having a sparse representation in one

basis, the goal is to recover it from a small number of projections (smaller than N)

onto a second basis that is incoherent with the first [11,23].

3



=M ! 1 
measurement

y ! a

M " N

N " 1
K-sparse signal

K << M < N

#

N " N

Figure 1.1: General matrix formulation of compressed sensing.

More formally, if a signal, x ∈ <N , is sparse in a given basis, Ψ (i.e., the

sparsity inducing basis), x = Ψa, |a|0 = K, where K � N , then theoretically we

can reconstruct the original signal with M = O(K logN) measurements by finding

the sparsest solution to an under-determined, or ill-conditioned, linear system of

equations, y = Φx = ΦΨa = Ua, where U is known as the holographic basis as

shown in Fig. 1.1. Reconstruction is possible by solving the convex unconstrained

optimization problem:

min
a

1

2
‖y−Ua‖22 + γ‖a‖1. (1.1)

Multiple results have been derived to establish under what conditions x can be

successfully recovered (refer to [1, 6] for more details). Here we summarize some

of these results, which will be useful in deriving some of our approaches. As an

example, a unique solution can be obtained when Φ and Ψ satisfy the restricted

isometry property (RIP) [10].

Definition 1.1.1. K −RIP [10]

An M × N matrix U = ΦΨ has the K-restricted isometry property (K-RIP) with

constant δK ∈ [0, 1] if, given an integer K, we have that:

(1− δK)‖a‖22 ≤ ‖Ua‖22 ≤ (1 + δK)‖a‖22

4



holds for any K-sparse vector a.

The definition of K-RIP indicates that all submatrices of U of size M ×K are

close to an isometry, and thus distance preserving with a small margin, δK . While

the design of U satisfying the K-RIP is an NP-Complete problem, random sensing

matrices, Φ, lead to U (= ΦΨ) satisfying K-RIP with high probability. Random

matrices whose entries are i.i.d. Gaussian, Bernoulli, or more generally subgaussian,

universally satisfy K-RIP with any choice of orthonormal basis matrix, Ψ, leading

to perfect reconstruction with high probability when M = O(K log(N/K)) [10,13,

23].

Aside from the random matrix approach, the general problem of finding opti-

mal matrices satisfying K-RIP is an NP-Complete problem. Thus, mutual coher-

ence [8, 72] has been proposed as an alternative measure to characterize matrices

that are likely to meet the RIP condition. Mutual coherence serves as a rough

characterization of the degree of similarity between the sparsity and measurement

systems and is defined as follows:

Definition 1.1.2. Mutual coherence [8]

For two matrices with normalized row vectors(Φ) and column vectors(Ψ), mutual

coherence is defined as µ(U) = maxi,j |U(i, j)| = maxi,j |φ(i)ψ(j)|, where φ(i) is

a row vector of Φ and ψ(j) is a column vector of Ψ. Note that µ(U) ∈ [0, 1]

For µ to be close to its minimum value, each of the measurement vectors must

be spread out in the Ψ domain. A small value of µ(U) indicates that Φ and

Ψ are incoherent with each other, i.e., no element of one basis (Ψ) has a sparse

representation in terms of the other basis (Φ).

In the case when both Φ and Ψ are orthogonal, the minimum number of mea-

surements for perfect reconstruction can be computed as follows.

5



Theorem 1.1.3. Minimum number of measurements [8]

Let U = ΦΨ be an N ×N orthogonal matrix (UTU = I) with |U(i, j)| ≤ µ(U).

For a given signal x = Ψa, suppose that a is supported on a fixed (arbitrary) set

T with K non-zero entries, and assume that measurements, y = Φx, are retrieved

by random downsampling. Then, L1 optimization can recover x exactly with high

probability if the number of measurements M satisfies

M = O(Kµ2(U)N logN) (1.2)

The bound on the number of measurements provided by Theorem 1.1.3 de-

creases as Φ and Ψ become increasingly incoherent, i.e., the minimum number of

measurements for perfect reconstruction is determined by µ for given K and N .

In this thesis, we investigate how to reduce µ while satisfying application specific

constraints. In the applications of data-gathering in WSN and depth map com-

pression, the orthogonal bases, Φ and Ψ, are studied to find a better solution with

measurements obtained by a separate downsampling. But for the UWB applica-

tion, we investigate how to find the actual (rectangular) sensing basis without the

separate downsampling for a given Ψ = I.

1.2 Efficient data-gathering in WSN

In sensor networks, energy efficient data manipulation and transmission is very

important for data gathering, due to significant power constraints on the sensors.

This constraint has motivated the study of joint routing and compression for power-

efficient data gathering of locally correlated sensor network data. Most of the early
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works were theoretical in nature and, while providing important insights, ignored

the practical details of how compression is to be achieved [19,62,80]. More recently,

it has been shown how practical compression schemes such as distributed wavelets

can be adapted to work efficiently with various routing strategies [63, 75, 76]. The

existing transform-based techniques can reduce the number of bits to be transmitted

to the sink, thus achieving overall power savings. These transform techniques are

essentially critically sampled approaches, so that their cost of gathering scales up

with the number of sensors, which could be undesirable when large deployments are

considered. Although the number of measurements in CS, M , is also proportional

to the dimension of signal, N , the rate of increase is lower than that for the critically

sampled approaches because it is a logarithmic function of N , M = O(K logN) .

CS has been considered as a potential alternative in this context, as the number

of measurements required depends on the characteristics (sparseness) of the signal

and also the dimension of the signal [8, 11, 23]. With recent interest in WSN, re-

searchers have proposed various ways to apply CS to WSN in order to reduce the

gathering costs [26, 52, 60, 69]. But those approaches focused on the total number

of measurements rather than the total transport cost of measurements. In [83], it

was shown that CS could also operate using sparse random projections (SRP) but

this work does not consider transport cost to collect measurements in a multi-hop

network. In [47, 68], the potential benefits of CS for sensor network applications

have been recognized but significant obstacles remain for it to become competi-

tive with more established (e.g., transform-based) data gathering and compression

techniques. A primary reason is that CS theoretical developments have focused on

minimizing the number of measurements (i.e., the number of samples captured),

rather than on minimizing the cost of each measurement.
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In the WSN data-gathering application, the key observation is that an efficient

measurement system needs to be both sparse (few sensors contribute samples to

each measurement) and spatially-localized (the sensors that contribute to each mea-

surement are close to each other) in order to be competitive in terms of transport

cost. In [48], we introduced the use of a cluster-based measurement system for CS;

each measurement was obtained by a linear combination of samples captured within

a single cluster, and clusters were selected in order to contain sensor nodes that

are close to each other. Based on the clustering scheme, we extend this approach

by analyzing how the choice of spatial clusters affects the reconstruction accuracy,

for a given spatially-localized sparsity basis. Moreover, we propose novel cluster-

ing techniques that take into consideration both transport cost and reconstruction

quality [45].

More specifically, we have two main contributions in this thesis. First, we intro-

duce the concept of maximum energy overlap between clusters and basis functions,

which we denote β. If basis functions and clusters have similar spatial localization,

most of the energy of a given basis function is likely to be concentrated in a few

clusters, which means that only measurements taken from those clusters are likely

to contribute to reconstructing a signal that contains that specific basis function.

Since the measurement system is not aware a priori of where signals will be local-

ized, it needs to gather enough measurements to reconstruct signals with any spatial

localization, and since each cluster overlaps only a few such basis functions, it will

need to have a larger number of measurements. Conversely, for the same number

of measurements, as the energy of the basis functions is more evenly distributed

over clusters (smaller β), this could lead to better reconstruction. To verify this,
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we provide a proof that the minimum number of measurements for perfect recon-

struction is proportional to β. Therefore, for given basis functions, we can estimate

performance of different clustering schemes by computing β.

Second, we propose a centralized iterative algorithm with a design parameter,

λ, for joint optimization of the energy overlap and distance between nodes in each

cluster. A joint optimization is required because there exists a tradeoff between

β and the distance. To achieve smaller β (which leads to fewer required measure-

ments for a certain level of reconstruction accuracy), each basis function should be

overlapped with more clusters. This means that the nodes within a cluster tend

to be farther from each other because basis functions are localized in space. Since

total transport cost is a function of the number of measurements and transport cost

per measurement, the trade-off allows reducing the number of measurements at the

cost of increasing transport cost per measurement. By joint optimization using an

appropriately chosen λ, we can achieve a good trade-off between transport cost and

reconstruction accuracy. Compared with another CS technique (which showed the

best performance in [48]), our simulation results show that our proposed approach

with joint optimization achieves almost 50% reduction in transport costs at the

same level of mean squared error in the reconstruction.

Also, we extend our work to a practical situation where the sensors are randomly

deployed. In order to sparsify the sensor data measured at randomly positioned

sensors, we propose to use graph-based transform (GBT) that can achieve a sparse

representation of the sensor data [78]. We first represent the random topology as

a graph then construct a sparsifying basis by placing eigenvectors of the Laplacian

matrix of the graph. With the GBT, we propose a heuristic design of the data-

gathering that the aggregations happen at the sensors with fewer neighbors in

the graph than a empirically chosen threshold. In our simulations, compared to
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other methods, our proposed approach shows better performance in the total power

consumption at the same level of MSE in the reconstruction.

1.3 Depth map compression for 3D-TV

In the problem of depth map compression for 3D-TV, the performance gain with

standard image or video coding techniques is limited because the depth map has

different characteristics from other natural images or standard video sequences.

We can characterize a depth map as i) a gray-scale video, ii) containing piecewise

smooth signals, and iii) with sharp edges where depth changes across different

objects or around objects-to-background (background-to-objects) transitions. It

has been shown that edges play a crucial role in the rendered views; errors in edge

information translate into geometry errors in the interpolated view, which leads to

significant quality degradation [39,40].

These characteristics have motivated edge-adaptive coding tools that apply

transforms within smooth regions without filtering across edges. Examples include

edge-aware DCTs [31,66,89,90] or wavelets [7,21,65,67,79]. The edge-aware DCT

approaches require that the transform block size be adaptive to edge location or

the pixel values be rearranged in order to be aligned with the dominant direction

of edges in a block. The wavelet-based approaches are not appropriate to block

based coding architectures, which are dominant in image and video coding stan-

dards such as JPEG and H.264/AVC. CS based methods have also been proposed

recently [25,73]. These methods sparsify depth map data using the DCT, which has

been widely used for block-based image and video compression, but is inefficient

for coding blocks containing arbitrary shaped edges. This motivates us to consider

similar CS architectures but using better sparsifying basis.
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To improve the efficiency of depth map coding, we propose a new CS framework

based on a graph signal representation [46]. The graph based transform (GBT) has

been shown to be better for sparse representation of depth map data, especially

when arbitrary edges such as diagonal or mixture of horizontal and vertical edges

exist in the block [38, 74]. The basic idea is that for each block an edge structure

can be identified, and from it an edge adaptive graph transform can be derived.

We first investigate the tradeoff between the cost (related to the overhead required

to encode edge map) and the reconstruction quality (related to the incoherence

between GBT and Hadamard sensing matrix). As more edges are used as a part of

the transform, the coherence decreases, so that we can achieve better reconstruction

with a fixed number of measurements, but the amount of overhead information

required to represent the edge map also increases.

To find a better edge map, we propose a greedy algorithm to minimize a cost

function that takes into account the mutual coherence. Since computing the mu-

tual coherence at every iteration of the algorithm is computationally expensive, we

approximate the average mutual coherence between the Hadamard sensing matrix

and GBT with a technique that does not require the explicit construction of GBT.

At every iteration of the algorithm the cost function can be computed using only

the edge map and Hadamard sensing matrix. In our proposed algorithm, the com-

plicated construction of the GBT is only required once the optimized edge map

is found. Also, since our approach applies to blocks of arbitrary size, we apply

our block-based approach to H.264/AVC reference software JM17.1 and compare

the performance to the case where H.264/AVC is used for depth map compression.

With the proposed method, a 3.7 dB PSNR gain or 38% bitrate saving is observed

on average when applied to three depth map sequences.
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1.4 Fast localization using UWB radar

For fast localization of objects using an ultra-wideband (UWB) ranging system,

we propose a CS framework based on a recently developed hardware [15]. This

hardware utilizes a ranging technique by sending multiple pulses, then averaging

the received pulses in short time intervals (windows), each corresponding to a cer-

tain roundtrip time of the reflected pulse. Assuming the environment is relatively

static, the receiver can localize an object at a specific distance by selecting a cor-

responding window and determining if the window contains reflected signal. The

averaging within a chosen window provides robustness to noise. It also requires

less power consumption, because power is only consumed during the measurement

window, which can represent a small percentage of time. However, a limitation of

this scheme comes from sequential sampling, i.e., candidate object locations have to

be probed in sequence, so that the time required to locate an object will be propor-

tional to the number of measurement windows. In this work, we propose techniques

that can significantly reduce the scanning time, with no increase in overall power

consumption, and can also operate in high noise environments. The key observa-

tion is that in many situations the number of objects that can be localized in the

environment is small relative to the number of locations that are probed. In a static

environment, this allows us to probe several locations simultaneously, so that each

measurement combines reflections at several distances. Processing can then be used

to extract the actual position information from the combined observations.

In the context of radar applications, many CS-based approaches have been pro-

posed that exploit the sparse structure of UWB signals [12,23]. In [2], it was shown

that the received signal can be digitized at a rate much lower than the Nyquist rate,

but the high noise case scenarios and total power consumption constraints that we
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mainly focus on in this work are not considered. Also, a precise CS-UWB position-

ing system was proposed that exploited the redundancy of UWB signal captured

at multiple receivers in order to localize a transmitter [84,85], but the ADC rate is

still higher than what can be achieved with the UWB hardware platform we build

upon [15]. As a CS approach tightly coupled to hardware, a Random-Modulation

Pre-Integrator (RMPI) was proposed to achieve low-rate ADC by random modula-

tion in analog domain [86–88] but the random modulation of signals contaminated

by powerful noise in analog domain does not provide robust signal recovery.

To design a system that is robust to high noise and consumes less power while

providing reliable localization, we propose a CS technique [44] tightly coupled to the

capabilities of recently developed hardware [15]. First, we observe that the UWB

signal is sparse if few object exists since the UWB signal is highly localized in time.

Combined with the UWB ranging system, this leads to a special structure where

sparse non-zero entries are clustered into a few groups (windows). The number

of groups is equal to the number of objects in the region of interest. Second,

we design an efficient measurement system subject to several constraints imposed

by the hardware. The constraints include (i) non-negative integer entries in the

sensing matrix (ii) constant row-wise sum of entries in the matrix (iii) non-zero

entries of each row can exist only at the positions with a constant shift, which leads

to unique structure characterized by a Kronecker product. Under these constraints,

we construct a sensing matrix by using a low-density parity-check (LDPC) matrix

that has recently been shown to be a good measurement system in [20,50]. Third, to

enhance the localization performance, we propose a window-based reweighted L1

minimization that shows good performance for aforementioned signal model and

measurement system. In our simulations, we compare our proposed method with

other existing reconstruction algorithms with respect to several metrics evaluating
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localization performance. Our simulation results show that our proposed method

can achieve reliable target-localization while using only 40% of the sampling time

required by the corresponding sequential scanning scheme, even in a highly-noisy

environment.

The rest of the dissertation is organized as follows. The efficient data-gathering

for WSN using spatially-localized CS is described in Chapter 2. The depth map

compression exploiting optimized GBT with CS-related constraint is proposed in

Chapter 3. The fast localization of UWB radar by CS is presented in Chapter 4.

Conclusions and future work are discussed in Chapter 5.
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Chapter 2

Spatially-Localized Compressed Sensing for

Efficient Data-gathering in Multi-Hop Sensor

Networks

In sensor networks, energy efficient data manipulation / transmission is very im-

portant for data gathering, due to significant power constraints on the sensors. CS

has been proposed as a potential solution because it requires capturing a smaller

number of samples for successful reconstruction of sparse data. Traditional CS

does not take explicitly into consideration the cost of each measurement (it sim-

ply tries to minimize the number of measurements), and this ignores the need to

transport measurements over the sensor network. In this chapter, we study CS

approaches for sensor networks that are spatially-localized, thus reducing the cost

of data gathering. In particular, we study the reconstruction accuracy properties

of a new distributed measurement system that constructs measurements within

spatially-localized clusters. We first introduce the concept of maximum energy

overlap between clusters and basis functions (β), and show that β can be used to

estimate the minimum number of measurements required for accurate reconstruc-

tion. Based on this metric, we propose a centralized iterative algorithm for joint
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optimization of the energy overlap and the distance between sensors in each cluster.

Our simulation results show that we can achieve significant savings in transport cost

with small reconstruction error. We also extend our work to the case of sensors

placed at random positions. We show that smooth sensor data can be sparsified

using a GBT based on the network topology and propose a heuristic design of the

sensing matrix that takes into account the number of neighbors of the sensors in

the graph. In our simulations, compared to other methods, our proposed approach

shows better performance in the total power consumption at the same level of MSE

in the reconstruction.

The rest of this chapter is organized as follows. We first introduce previous work

related to WSN data gathering in Section 2.1 then formulate it in a CS framework

in Section 2.2. Based on this problem formulation, we propose a spatially localized

projection scheme associated with an energy overlap between projection basis and

sparsifying basis in Section 2.3. Then we provide a mathematical proof that the

energy overlap is a good metric to determine the number of measurements for

perfect reconstruction in Section 2.4. Techniques to find a power-efficient clustering

scheme are discussed in Section 2.5 and verified by our simulations in Section 2.6.

We also extend our work to the case where sensors are placed at random positions

and provide preliminary results in Section 2.7.

2.1 Related Work

Joint routing and compression has been studied for efficient data gathering of lo-

cally correlated sensor network data. Most of the early works were theoretical in

nature and, while providing important insights, ignored the practical details of how

compression is to be achieved [19, 62, 80]. More recently, it has been shown how
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practical compression schemes such as distributed wavelets can be adapted to work

efficiently with various routing strategies [16,63,75,76].

Existing transform-based techniques, including wavelet based approaches [16,75,

76,81] and the distributed KLT [33], can reduce the number of bits to be transmitted

to the sink thus achieving overall power savings. These transform techniques are

essentially critically sampled approaches, so that their cost of gathering scales up

with the number of sensors, which could be undesirable when large deployments

are considered.

CS has been considered as a potential alternative in this context, as the number

of samples required (i.e., number of sensors that need to transmit data), depends on

the characteristics (sparseness) of the signal [8,11,23]. In addition, CS is also poten-

tially attractive for wireless sensor networks because most computations take place

at the decoder (sink), rather than at the encoder (sensors), and thus sensors with

minimal computational power can efficiently encode data. Also, CS potentially in-

creases the security of data transmission because partial measurements intercepted

by malicious users are not sufficient for decoding (i.e., global information about all

measurements is needed).

With recent interest in WSN, researchers have proposed various ways to apply

CS to WSN. In [69], the authors studied a scenario where ultimately every sen-

sor has an approximation of the network data by using gossip algorithms. But,

this work assumes a single-hop network communication and does not consider the

transmission cost of pre-distribution phase (gossiping phase). Also, an innovative

CS approach was proposed that makes it possible to gather sensor data without

any inter-sensor communication, based on a distributed compressed sensing ap-

proach [4, 26]. But, if a signal does not fit the corresponding signal model (joint
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sparsity model), overall performance may not be good. More specifically, the as-

sumption that there exists common information such as common data supports (i.e.,

the locations of the nonzero coefficients) among sensor measurements is unrealistic.

Some other work exploits the spatial correlations among data measured in each

sensor with CS. In [83], it was shown that CS could also operate using sparse

random projections (SRP). The implication for a single-hop sensor network is that

good field reconstruction can be obtained even when only a small, randomly chosen

fraction of sensors report their measurements. But this work does not consider the

transport cost required to collect measurements in a multi-hop network. In [52],

CS was proposed to detect abnormal sensor data or uncorrelated data in adjacent

neighboring sensors, but the performance of this approach in terms of reconstructing

all sensor data is likely to be limited. For the large scale networks, inter-flow network

coding was combined to address high link failure in sensor networks [60]. But this

approach results in much larger delay in the measurement transmission as compared

to other CS approaches.

In [47,68], the potential benefits of CS for sensor network applications have been

recognized but significant obstacles remain for it to become competitive with more

established (e.g., transform-based) data gathering and compression techniques. A

primary reason is that CS theoretical developments have focused on minimizing

the number of measurements (i.e., the number of samples captured), rather than

on minimizing the cost of each measurement. Thus, in this work, we propose to

optimize CS to minimize the transport cost of measurements while providing sat-

isfactory reconstruction accuracy [45].
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2.2 Problem Formulation

In this work, we assume that x ∈ <N is a vector containing measurements obtained

by N sensors in a 2D region at a given time and x is K-sparse in a given sparsi-

fying basis Ψ̃. The N -sample signal (x) can be recovered from M measurements

or projections (M < N) onto a sensing (measurement) basis, Φ if Φ and Ψ are

incoherent [11,23] as explained in Chapter 1. For efficient data-gathering from sen-

sors spread over space to the sink located at the center of the network, we consider

distributed measurement strategies that are both sparse and spatially localized.

2.2.1 Low-cost sparse projection based on clustering

In order to design distributed measurements strategies that are both sparse and

spatially localized, we propose dividing the network into clusters of adjacent nodes

and forcing projections to be obtained only from nodes within a cluster. As an ex-

ample, we first consider two simple clustering approaches. Assume that all clusters

contain the same number of nodes. When Nc clusters are used, each cluster will

contain N
Nc

nodes. In “square clustering”, the network is partitioned into a certain

number of equal-size square regions. Alternatively, in “SPT-based clustering”, we

first construct the shortest path tree (SPT) then, based on that, we iteratively

construct clusters from leaf nodes to the sink. These clustering schemes are first

applied to equally spaced sensors on a 2D regular grid, then extended to the sensors

positioned at irregular positions at the end of this chapter.

Any chosen clustering scheme can be represented in CS terms by generating

the corresponding measurement matrix, Φ, and using it to reconstruct the original

signal. As shown in Fig. 2.1, each row of Φ represents the aggregation corresponding

to one measurement: we place non-zero (e.g., random) coefficients in the positions
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corresponding to sensors that provide their data for a specific measurement and

the other positions are set to zero. Thus, the sparsity of a particular measurement

in Φ depends on the number of active nodes participating in this aggregation. We

expect this approach to be more efficient than traditional CS because the sensors

in each cluster are relatively close to each other (leading to a spatially-localized

projection) and the number of sensors in each cluster is only a small fraction of the

number of sensors in the network (leading to a sparse projection).
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Figure 2.1: Link between CS measurements and data aggregation in WSN

In order to make the design simpler, we consider non-overlapped clusters, which

leads to a block-diagonal structure for Φ. Note that recent work [22,32], seeking to

achieve fast CS computation, has also proposed measurement matrices with a block-

diagonal structure, with results comparable to those of dense random projections.

Our work, however, is motivated by achieving spatially localized projections so that

our choice of block-diagonal structure will be constrained by the relative positions

of the sensors (each block corresponds to a cluster).
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2.2.2 Sparsity-inducing basis and cluster selection

While it is clear that localized gathering leads to lower communication costs, it is

not obvious how it may impact reconstruction quality. Thus, an important goal of

this work is to study the interaction between localized gathering and reconstruction.

A key observation is that in order to achieve both efficient routing and adequate

reconstruction accuracy, the structure of the sparsity-inducing basis should be con-

sidered. As an example, consider the case where signals captured by the sensor

network can be represented by a “global” basis, e.g., DCT, where each basis spans

all the sensors in the network. Then the optimally incoherent measurement matrix

will be the identity matrix, I, and thus a good measurement strategy is simply

to sample K logN randomly chosen sensors and then forward each measurement

directly to the sink (no aggregation). Alternatively, for a completely localized basis,

e.g., Ψ = I, a dense projection may be best for reconstruction accuracy. However,

once the transport costs have been taken into account, the best solution is to just

transmit the non-zero samples to the sink via the SPT. In other words, even if CS

theory suggests a given type of measurements (e.g., dense projection for the Ψ = I

case), applying these directly may not lead to an efficient routing and therefore

efficient distributed CS may not be achievable.

In this work, we first consider intermediate cases, in particular those where

localized bases with different spatial resolutions are considered (e.g., wavelets).

In [8] it was shown that a partial Fourier measurement matrix is incoherent with

wavelet bases at fine scales. However, such a dense projection is not suitable for low-

cost data gathering for the reasons discussed above. Next we explore appropriate

spatially-localized gathering for data that can be represented in localized bases such

as wavelets.
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2.3 Efficient clustering for spatially-localized CS

2.3.1 Independent vs. Joint reconstruction

To help us understand how to select a clustering scheme that is appropriate for

CS, we first compare two types of reconstruction: independent reconstruction and

joint reconstruction. Suppose that we construct a series of clusters of nodes and

collect a certain number of local measurements from each cluster. As an example,

consider 2 clusters and the corresponding localized projections, φ1 and φ2, with a

given sparsifying basis, Ψ:

U = ΦΨ =

φ1 0

0 φ2


ψ1 ψ2

ψ3 ψ4

 , where U =

U1

U2

 =

φ1ψ1 φ1ψ2

φ2ψ3 φ2ψ4

 . (2.1)

Since the two clusters do not overlap with each other, the measurement matrix,

Φ in (2.1), has a block diagonal structure. For joint reconstruction, the original

sparsifying basis, Ψ, is employed. But, for independent reconstruction, data in the

first cluster are reconstructed with partial basis functions, ψ1 and ψ2, and those

in the second cluster are with ψ3 and ψ4 thus, when Nc clusters are involved,

independent reconstruction should be performed Nc times, once for each cluster.

Joint reconstruction is expected to outperform independent reconstruction be-

cause measurements collected from a cluster can also convey information about

data in other clusters, since basis functions that overlap with more than one clus-

ters can be identified with measurements from those clusters. For example, the

measurements from the first cluster can help to reconstruct the signal in the second

cluster if there exists a basis function overlapped with both clusters.
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Based on this observation the key intuition in our work is that clustering schemes

that have overlap with more basis functions should be preferred. The degree of over-

lap between basis functions and clusters can be measured in many different ways.

In this work, we propose to use as a metric the energy of the basis functions cap-

tured by each cluster. We will discuss the energy overlap in more detail in Section

2.3.3 and verify that joint reconstruction outperforms independent reconstruction

through our simulations.

2.3.2 Spatially-Localized Projections in CS

An aggregation path in a sensor network can be represented by a row of the measure-

ment matrix, Φ. We place non-zero (possibly random) coefficients in the positions

corresponding to active sensors that provide their data for a specific measurement,

while the other positions are set to zero, which means that the sparsity of a partic-

ular measurement in the matrix depends on the number of nodes participating in

each aggregation.

To express M measurements algebraically, we consider a down-sampling matrix,

Q, that chooses M measurements out of N with equal probability. This can be

expressed as:

yM×1 = QM×NΦN×NxN×1 (2.2)

With respect to standard CS approaches, the actual (rectangular) measurement

matrix is QΦ but, in this work, we explicitly separate the actual measurements as

a combination of projections onto an orthogonal matrix, Φ, followed by downsam-

pling, Q. This will be needed for our proof in Section 2.4.3.

Similarly, the aggregations within a cluster can be expressed as a set of rows of Φ.

Since Nc non-overlapped clusters are considered, we can express the measurement
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system as a block diagonal matrix that contains Nc square sub-matrices, Φi on

its diagonal, so that Φi represents the aggregation scheme used for the ith cluster

in the network. Therefore, the dimension of Φi is determined by the number of

sensors contained in the ith cluster.

Let us define x as an original input signal and xi
p as a vector of samples measured

in the ith cluster. To associate Φi with xi
p, we introduce a permutation matrix, P ,

whose output is xp =[x1
p . . .x

i
p . . .x

Nc
p ]T = Px. Thus, by multiplying Φ with the

output of Px, we have

y = QΦPx, where Φ =



Φ1

Φ2

. . .

ΦNc


. (2.3)

The square block-diagonal matrix, Φ, is the measurement matrix and the clusters

are uniquely defined by, P , the clustering matrix. A different permutation P can be

defined for each clustering method, so that in any clustering method we can write

the projection as in (2.3). Note that P by itself does not determine clustering,

what produces clustering is the block diagonal matrix, Φ.

We now discuss how the clustering matrix is related to the sparsifying basis

matrix. Since a K-sparse signal is represented by K non-zero coefficients in a given

basis Ψ̃, x = Ψ̃a, the measurements are obtained by

y = QΦPx = QΦ
(
P Ψ̃

)
a = QΦΨa, (2.4)
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where we define Ψ = P Ψ̃ as a permutation of Ψ̃ After permutation by the cluster-

ing matrix, the measurement matrices for each cluster, Φi, are correctly associated

with data measured by sensors in the corresponding clusters, xi
p.

In summary, a cluster-based measurement system leads to a block diagonal mea-

surement matrix with appropriate permutation, P , related to the physical positions

of sensors. Note that recent work [22,32], seeking to achieve fast CS computation,

has also proposed measurement matrices with a block-diagonal structure, with re-

sults comparable to those of dense random projections. Our work, however, is

motivated by goal of achieving spatially localized projections, so that our choice of

block-diagonal structure will be constrained by the deterministic positions of the

sensors, instead of using a uniformly random permutation as proposed in [22].

2.3.3 Average Energy Overlap

To characterize the distribution of energy of the basis functions with respect to the

clusters, we present a metric, Eoa, and an analysis of the worst-case scenario. Given

Ψ = P Ψ̃, for a given P , suppose that Nc is the number of clusters and Ci is a set

of nodes contained in the ith cluster. The energy overlap between the ith cluster

and the jth basis vector, Eo(i, j), can be defined as:

Eo(i, j) =
∑
k∈Ci

ψ(j, k)2. (2.5)

Then, the average energy overlap per overlapped basis can be a good indicator

of distribution of energy of a basis function across multiple clusters. Since the basis
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functions are normalized, the maximum overlap is 1. For each cluster, Eoa(i) is

computed as

Eoa(i) =
1

N

N∑
j=1

Eo(i, j), ∀i ∈ {1, 2, · · · , Nc} , (2.6)

Eoa(i) is the average energy localized in the ith cluster. Intuitively, this metric

shows how much the average energy of the basis functions is localized in each

cluster. Thus, as energy of the basis functions is more evenly distributed over the

clusters, Eoa decreases, which leads to better reconstruction performance with joint

reconstruction. While this metric is a good indicator of the average distribution of

basis functions, our results indicated that the worst case overlap may be better at

predicting reconstruction performance.

It would be useful to have a metric to determine the number of projections

required from each local cluster in order to achieve a certain level of reconstruction

performance. We first define what the worst-case is, then propose a method to

characterize the ‘worst-case scenario’ performance. If the global sparsity is K, the

worst case scenario is when all K basis vectors supporting data are completely

contained in a single cluster. In this case, O(K) projections would be required

from each cluster. There are two reasons for this. First, since the identity of

the cluster where bases are concentrated is not known a priori, it is not possible

to concentrate projections within that cluster without measuring information in

the others. Second, projections from other clusters not overlapped with those basis

vectors do not contribute to reconstruction performance as much as projections from

the overlapped cluster. Thus, instead of the average energy overlap, we consider

the maximum energy overlap as a metric of reconstruction quality in a spatially

localized measurement system. The derivation of the number of measurements for
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perfect reconstruction in terms of the maximum energy overlap will be discussed in

Section 2.4.

2.3.4 Maximum Energy Overlap

To quantify the distribution of energy overlap over clusters, we define the maximum

energy overlap for the basis Ψ, β(Ψ), as follows:

Maximum energy overlap, β(Ψ)

β(Ψ) = β(P Ψ̃) = max
i,j

∑
l

Ψ2
i (l, j) , β(Ψ) ∈ [0, 1]

β represents the maximum amount of energy of a basis functions captured by

a single cluster. The matrix Ψi is the rectangular sub-matrix corresponding to the

ith cluster. For example, as depicted in Fig. 2.2 (b), we first compute the sum of

squared entries (colored cells) for each pair of (Bi,Cj); For B1, energy overlap is 1

with C1 and zero with the other clusters. Then we take the maximum value of the

computed sums. If β is 1 (maximum value), it indicates that there exists at least

one basis function completely covered by a cluster in space such as the overlap

between B1 and C1 in Fig. 2.2 (a). In contrast, small β means that most basis

functions are overlapped with multiple clusters in space.

Intuitively, measurements taken from a cluster can also convey information

about data in other clusters when basis functions overlap with more than one

cluster, e.g., B2 in Fig. 2.2 (a) can be identified with measurements from those

clusters (C1 and C2). This is one of the reasons why, as will be shown experimen-

tally in Section 2.6.1, joint reconstruction outperforms independent reconstruction.
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Figure 2.2: (a) Illustration of energy overlap for a 4× 4 grid network of 16 sensors.
The network is divided into 4 square clusters and 3 basis functions are considered.
The bases have spatial resolution of 1, 3 and 9 sensors, for B1, B2 and B3, respec-
tively. (b) Permuted sparsifying basis matrix, Ψ = P Ψ̃. The entries of each basis
function (column vector of Ψ) is filled with colors if non-zero coefficients exist and
white otherwise. Note that 13 more basis functions exist but are omitted here. The
maximum energy overlap is 1 in this case, since B1 is completely contained in C1.

If a specific basis function is completely contained within a cluster, e.g. B1, then

only measurements from C1 are likely to contribute to reconstructing a signal that

contains B1. Thus, as discussed in Section 2.3.3, the worst case scenario where

all K basis functions supporting data are completely contained in a single cluster,

e.g., B1 in Fig. 2.2 (a) significantly increases the number of measurements required

to achieve a good reconstruction. Thus, as basis functions are overlapped with

more clusters, we will have a potentially higher chance to reconstruct the signal

correctly. To further improve localized CS performance, a clustering scheme that

minimizes overlap should be chosen. In the next section, we will show how β affects

reconstruction accuracy and determines the minimum number of measurements for

perfect reconstruction.
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2.4 Theoretical Result

As shown in previous sections, the maximum energy overlap, β, is determined for

given sparsifying basis, Ψ̃, block-diagonal matrix, Φ, and a clustering scheme, P .

Here, we show how β affects reconstruction accuracy by deriving the minimum

number of measurements for perfect reconstruction as a function of β.

2.4.1 Definitions and Assumptions

We assume that Nc non-overlapped clusters contain the same number of sensors.

Thus, Φ has Nc square sub-matrices with size of N/Nc ×N/Nc along its diagonal.

Therefore, if each sub-matrix, φi, is orthogonal, then Φ is also orthogonal. Based

on the problem formulation, our main result is based on three assumptions. First,

the sparsifying basis, Ψ̃, is orthogonal. Second, the maximum absolute value of

entries in the sparsifying basis is bounded, maxi,j |Ψ̃(i, j)| ≤ 1/
√

logN , so that

we do not consider degenerate cases, such as the canonical basis in spatial domain

(Ψ̃ = I). This assumption is satisfied by bases such as the DCT or the Daubechies

wavelets with a sufficient number of levels of decomposition [22]. Lastly, the sub-

measurement matrix, φi, is an orthogonalized i.i.d. Gaussian matrix: φi(j, k) ∼

N(0, Nc/N). Thus ΦTΦ = IN since the clusters are disjoint. In order to evaluate

the coherence between the measurement matrix, Φ, and the permuted sparsifying

basis matrix, Ψ(= P Ψ̃), we define an N ×N matrix U :
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UN×N =



Φ1

Φ2

. . .

ΦNc





Ψ1

Ψ2

...

ΨNc


,

=


Φ1Ψ1

...

ΦNcΨNc

 , (2.7)

=


U1

...

UNc

 . (2.8)

By assumption, all square sub-matrices Φi have the same size, and therefore all

the Ui also have the same size. But our work can be extended to the case that the

clusters have different sizes. Moreover U is an orthogonal matrix because Φ and

Ψ̃ are orthogonal by assumption and the clustering matrix, P , is a permutation

matrix, so that:

UTU = (ΦP Ψ̃)T (ΦP Ψ̃) = (Ψ̃TP TΦT )(ΦP Ψ̃) = IN (2.9)

The mutual coherence, µ, can be computed using Definition 1.1.2 then we can

apply it to Theorem 1.1.3 because U is orthogonal. This helps us to derive the

minimum number of measurements in terms of the number of clusters, Nc, sparsity,

K, and the number of sensors, N .
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2.4.2 Main Result

To obtain a bound on the number of measurements, we first derive an asymptotic

upper bound on mutual coherence. With this bound, we can attain the minimum

number of measurements for perfect reconstruction by using Theorem 1.1.3 if the

aforementioned conditions are satisfied.

Proposition 2.4.1. If all the sub-measurement matrices, φi, are orthogonalized

i.i.d. Gaussian, N(0, Nc

N
), and the orthogonal sparsifying basis, Ψ̃, and the cluster-

ing matrix, P , are known a priori, then µ(U) is asymptotically bounded by

Pr

[
µ(U) ≤ O

(√
β
Nc

N
logN

)]
= 1−O

( 1

N

)
. (2.10)

Proposition 2.4.1 quantifies the probability that coherence exceeds a certain

bound. The probability that coherence is not bounded by O
(√

βNc

N
logN

)
is close

to 0 as N increases. For the proof, the main technical tools are large deviation in-

equalities of sum of independent random variables. Specifically, the result is derived

from Bernstein’s deviation inequality [51] and a union bound for the supremum of

a random process. Refer to Section 2.4.3 for details of proof.

With aforementioned assumptions and Proposition 2.4.1, we can characterize

the impact of β on reconstruction accuracy in terms of the number of measurements.
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Theorem 2.4.2. For a given signal x = Ψa with |a|0 = K and a clustering

scheme with parameter β ∈ [0, 1], the L1 optimization can recover x exactly with

high probability if the number of measurements M satisfies

M = O(KβNc log2N). (2.11)

Based on the bound on coherence of Proposition 2.4.1, we can derive Theorem

2.4.2, the minimum number of measurements for perfect reconstruction, by using

Theorem 1.1.3 and the fact that U is orthogonal by (2.9).

Note that the bound in Theorem 2.4.2 is nearly identical to the bound obtained

for the SRM case in [22], where clusters are defined based on random permutation

matrices (i.e., O(KβNc log2N) vs. O(KNc log2N)). Our result shows that random

permutation matrices can be further optimized to have smaller β, which leads to

smaller number of measurements for the same level of reconstruction accuracy.

In general, the number of measurements is proportional to the maximum energy

overlap because basis functions with more uniformly distributed energy increase

the probability of correct reconstruction. Also, the number of measurements is

proportional to the number of clusters, Nc. This implies that a sparser measurement

matrix (larger Nc) requires more measurements for the same level of reconstruction,

as also shown in previous work [22,83].

Note that there exists a tradeoff between β and the distance between nodes

belonging to the same cluster. A decrease in β can be achieved when each basis

function overlaps a larger number of clusters. Since basis functions are spatially

localized, that means that nodes within a cluster will tend to be farther from each

other, so that they can cover more different basis, which in turn leads to an increase
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of transport cost per measurement. Since total transport cost is a function of both

the number of measurements and the transport cost per measurement, this trade-

off allows reducing the number of measurements at the cost of increasing transport

cost per measurement. In order to construct clusters that take into consideration

both reconstruction quality and transport costs, we propose a centralized iterative

algorithm, which will be presented in Section 2.5.

2.4.3 Proof of Proposition 2.4.1

In this section, we present the details of the proof of Proposition 2.4.1. The goal is

to bound the coherence in terms of β with high probability. The sketch of proof is

similar to that of SRM in [22] but the details are different. First, in our problem, the

randomness is due to the coefficients of the measurement matrix, Φ(i, j), rather than

the uniform permutation as in SRM. Second, we consider an additional quantity,

β, as well as the number of clusters, Nc.

Before going into the details of proof, we first approximate a bound related to

E[U2
i (j, k)]. Basically, Ui(j, k) is the inner product between the jth row of Φi and

kth column of Ψ as shown in (2.8). Denote Xl = Φi(j, l)Ψi(l, k) so that Ui(j, k) =∑
l Φi(j, l)Ψi(l, k) =

∑
lXl. Define γ = maxi,j |Ψ(i, j)| ≤ 1/

√
logN by assumption

and let Φ(j, k) ∼ N(0, Nc/N). Therefore, |Xl| can be bounded by the product of γ

and three times of the standard deviation of Φ(j, k) with high probability, i.e.,
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|Xi| = |Φi(j, l)Ψi(l, k)|

≤ 3σγ

≤ 3

√
Nc

N logN
.

The next approximation is concerned with E[U2
i (j, k)]. Note that V ar(Ui(j, k))

is equal to E[U2
i (j, k)] because E(Ui(j, k)) = 0. V ar(Ui(j, k)) can be approximated

as a function of β as follows:

V ar(Ui(j, k)) = E[Ui(j, k)2]

= E

(

N/Nc∑
l=1

Φi(j, l)Ψi(l, k))2

 (2.12)

= E

N/Nc∑
l=1

Φ2
i (j, l)Ψ

2
i (l, k)


=

N/Nc∑
l=1

E[Φ2
i (j, l)]Ψ

2
i (l, k) (2.13)

=

N/Nc∑
l=1

Nc

N
Ψ2
i (l, k)

≤ Nc

N
β (by definition of β)

In (2.12), the cross terms are zero since E(Φi(j, l)) = 0 and the Φi(j, l)’s are inde-

pendent.

Now, we present the details of the proof of Proposition 2.4.1. The main technical

tools are large deviation inequalities of sum of independent random variables. More
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specifically, the proof is derived from Bernstein’s deviation inequality [51] and a

union bound for the supremum of a random process. We first approximate the

probability that mutual coherence is bounded by α using a union bound for the

supremum of a random process:

Pr[µ ≤ α]

= Pr[max
j,k
|U(j, k)| ≤ α]

= 1− Pr[max
j,k
|U(j, k)| > α]

= 1− Pr[
⋃
i

(max
j,k
|Ui(j, k)| > α)]

≥ 1−
Nc∑
i=1

N/Nc∑
j=1

N∑
k=1

Pr[|Ui(j, k)| > α] (by Union Bound)

Then we use Bernstein’s deviation inequality (Theorem 2.4.3) to approximate

the bound of the tail probability of Ui(j, k). Note that the Ui(j, k)’s are independent

random variables because, by assumption, the Φ(i, j)’s are i.i.d. Gaussian random

variables with zero mean.

Theorem 2.4.3. Bernstein’s inequality [51]

If X1, X2, . . . , Xn are independent (not necessarily identical) and zero-mean random

variables, and |Xi| ≤ C, ∀i, then

Pr

[∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ α

]
≤ 2 exp

(
− α2/2∑i=n

i=1 E[X2
i ] + Cα/3

)
(2.14)
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Denoting again Xl = Φi(j, l)Ψi(l, k), by the approximation, we have

C = 3

√
Nc

N logN
(2.15)

and ∑
E[X2

i ] = V ar(Ui(j, k)) ≤ Nc

N
β (2.16)

By substituting (2.15) and (2.16) in Bernstein’s inequality,

Pr[µ ≤ α]

≥ 1−
Nc∑
i=1

N/Nc∑
j=1

N∑
k=1

2 exp

(
− α2/2

V ar(Ui(j, k)) +Mα/3

)
(by Berstein’s inequality)

≥ 1− 2N2 exp

(
− α2/2

(βNc/N) + (3
√
Nc/N logN)α/3

)
(by approximation)

= 1− exp

(
log 2N2 − α2/2

(βNc/N) + (
√
Nc/N logN)α

)

We need to find the minimum α, denoted α∗, such that the probability, Pr[µ ≤

α∗], asymptotically goes to ‘1’. To achieve the asymptotic behavior, the 2nd term

(exp term) in the last inequality should be zero with large N , which means that

the 2nd order polynomial inside the exp term should be negative. The polynomial

can be expressed as a function of α as:

f(α) = −α2/2 +

√
Nc

N logN
log 2N2α +

βNc

N
log 2N2 (2.17)
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To find α∗ for large N , we first check the characteristics of f(α). Since f(0) > 0,

f ′(0) > 0, and f ′′(0) < 0, the larger root of f(α) is the minimum α such that

Pr[µ ≤ α∗] = 1 for large N . Algebraically, from the computation of the larger root

of f(α) in (2.17), we can conclude that

Pr[µ ≤ α∗] = 1−O(1/N),

where α∗ = O(

√
β
Nc

N
logN)

�

With the asymptotic bound of coherence above, we can derive Theorem 2.4.2,

the minimum number of measurements for perfect reconstruction, by Theorem 1.1.3.

2.5 Centralized iterative clustering algorithm

To achieve a good tradeoff between transport cost and reconstruction accuracy,

we need to jointly optimize β and the distance between nodes in a cluster. This

motivated us to design a centralized iterative algorithm that can generate clusters

based on a cost function taking into consideration both β and distance within

cluster.

2.5.1 Cost function

For a given undirected graph G = (V,E), we assume that the sparsifying basis, Ψ,

is known a priori and all the basis functions (columns of Ψ) are normalized to 1

so that β ∈ [0, 1]. Also, N nodes are placed along a square grid in a field.
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In order to construct Nc clusters that minimize transport costs, while guar-

anteeing perfect reconstruction for sparsity K. To achieve the goal, we design a

greedy algorithm based on our propose cost function. The algorithm starts from

(i) Nc initial nodes, one for each cluster, then (ii) at every iteration, we find edges

connected to each of the clusters and compute the weights, (iii) to find the edge

with the minimum weight, and (iv) we add the edge to the cluster. In short, at

each iteration, we want to decide what node to be added to which cluster among

all nodes not assigned to one of clusters in previous iterations.

We first assume that the transport cost depends on the distance between nodes

and define the distance in hops as D(e) for an edge, e ∈ E, connecting two nodes,

i.e., the smallest number of hops between two nodes in a multi-hop network. But β

cannot be defined based on just nodes only since it depends on the clusters. Thus,

we need to define β(e, Ci) with respect to an edge, e ∈ E, and a given cluster,

Ci ∈ {C1, C2, · · · , CNc}. Assume that the edge e is not an edge connecting two

nodes in the same cluster, Ci.

We first define a cost function with respect to an edge e and the ith cluster Ci

as:

W (e, Ci) = D(e) + λβ(e, Ci), λ > 0, (2.18)

where β(e) is the maximum energy overlap when an edge, e, is connected to the

cluster Ci. Thus, once a node is added to a cluster, energy overlap of the edges

connected to the cluster changes so that the edge weights should also change. As

an example, from Fig. 2.3 (a) to (b), the weight of an edge, e = (v1, v3), changes

from 3 to 5 because v3 and the cluster, {v1, v2} is overlapped with the same basis

function, B1, which leads to the increase of the corresponding β. The cost function,
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W (e, Ci), will be used in our proposed algorithm to find an optimized clusters in

Chapter 2.5.2

B2
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V5
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W=2
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W=4

(a) the ith iteration
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W=3

W=2

W=5

W=4

(b) the (i+ 1)th iteration

Figure 2.3: Illustration of update of edge weights from (a) to (b). There exist
4 square basis functions (Bi) and 5 nodes (vi) connected by edges, (vi, vj), with
different weights. Assume that the initial node for clustering is v1. At the ith step,
a cluster is formed by {v1, v2} because (v1, v2) has the minimum weight of 1. Since
the cluster changes, we need to update the weights if necessary. For example, the
weight of an edge, (v1, v3), changes from 3 to 5 because v3 and the cluster, {v1, v2}
is overlapped with the same basis function, B1, which increases the β with respect
to the cluster.

2.5.2 Algorithm details

The goal of the algorithm is to construct Nc clusters that minimize transport costs,

while guaranteeing perfect reconstruction for sparsityK. Transport costs depend on

the distance between nodes and the number of measurements transmitted, which in

turn depends on β. Thus we need joint optimization of β and the distance between

nodes. For joint optimization, our proposed algorithm iteratively grows the clusters

by finding an edges with minimum cost and adding to one of clusters.
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To find a set of edges to form Nc clusters such that the total weight of the

edges, W (e, Ci) ∀i, is minimized, we design an algorithm based on a greedy local

heuristic. The algorithm starts from Nc initial nodes, one for each cluster; we

deterministically chose Nc nodes located on the grid with equal distance to the

adjacent starting nodes. At every iteration, we find edges connected to each of

the clusters and compute the weights, W (e, Ci). Then, the edge with the minimum

weight is added to the cluster. This procedure continues until every node is assigned

to one of the Nc clusters. Refer to Algorithm 1.

Algorithm 1 Joint Optimization of β and D

Given an undirected graph, G(V,E), such that |V | = N .
Assign Nc nodes to clusters; one for each cluster, VCi

.
ECi

= ∅, ∀i.
for k = 1 to N −Nc do

Find En = {(v1, v2) | v1 ∈ V, v2 ∈ VCi
,∀i}

Compute W (e, Ci) = D(e) + λβ(e, Ci), ∀e ∈ En and ∀Ci
(Cimin

, emin) = arg min∀Ci, e∈En
W (e, Ci)

vmin =
{
v1 | emin = (v1, v2), v2 ∈ VCimin

}
Add emin to ECimin

and vmin to VCimin
.

Remove edges ∈ {e | e = (vmin, v),∀v ∈ VCi
∀i} from E.

Remove vmin from V .
end for

The algorithm is similar to Prim’s algorithm [43] for finding minimum spanning

trees (MSTs). Given weights of edges, we choose an edge with minimum weight

at every step as in Prim’s algorithm. However, we have additional requirements as

compared to Prim’s algorithm. First, our algorithm finds Nc clusters with minimum

total edge weights instead of an MST. Thus, an edge with the minimum weight is

added to one of clusters to which the edge is connected rather than to a tree.

Second, Prim’s algorithm runs under the assumption that the weights of the edges

do not change but, in our problem, the edge weights should be updated at every

step.
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Figure 2.4: Joint optimization of different λ. By running the algorithm with
Daubechies 4 basis with 2nd level of decomposition, 256 sensors are separated into
16 clusters. Different choices of λ generate different results; as λ increases, the edge
weights are more sensitive to the change of β so that β decreases at the cost of
increasing D.

Given a sparsifying basis and the positions of sensors, Algorithm 1 generates a

set of Nc clusters by minimizing edge weights associated with a λ. Since edge weight

W (e, Ci) = D(e) + λβ(e, Ci), the design parameter λ controls the balance between

two competing terms: β(e, Ci) and D(e). As λ increases, β(e, Ci) is a more dom-

inant factor than D(e) so that the edges with smaller β(e, Ci) have higher chance

to be added to a cluster, which means that the spatial extent of clusters increases.

As shown in Fig. 2.4, as λ increases, the final β (Definition 2.3.1) decreases but

the average distance per measurement increases. However, it is not clear how to

determine the best λ with respect to both reconstruction accuracy and transport

cost.

The minimum number of measurements, M , decreases thanks to the decrease

of β while the distance between nodes within the same cluster, D, increases. Since

transport cost is determined by C = MD, different λ affects the overall transport

cost and there could exist a (or a range of) good λ∗ that achieves large energy

41



savings with the similar level of reconstruction accuracy. Thus, given a target

reconstruction accuracy, we experimentally search for the minimum transport cost

that provides that desired accuracy.

2.6 Simulation Result

The simulation consists of four parts. First, we compare performance between inde-

pendent reconstruction and joint reconstruction. Second, we compare performance

between two different routing schemes without the optimization of the maximum

energy overlap, then compare the performance of SPT-based clustering to other

CS techniques. Third, we verify Theorem 2.4.2 by examining the correlation be-

tween the estimated Mest by Theorem 2.4.2 and the minimum Msim measured by

simulation. Fourth, we evaluate the performance of the joint optimization in terms

of transport cost and reconstruction quality. The details of different simulation

environments will be described in following subsections.

2.6.1 Joint reconstruction vs. independent reconstruction

For the simulation, we used 500 realizations generated with sparsity K = 55, where

non-zero coefficients were randomly selected. In the network, 1024 nodes are de-

ployed on the square grid and error free communication is assumed. We do not

assume any priority is given to specific clusters for measurements, i.e., we collect

the same number of localized measurements for each cluster. With localized pro-

jection within each cluster, data is reconstructed jointly and independently with

Gradient Pursuit for Sparse Reconstruction (GPSR) [29]. To evaluate performance,

SNR is used to evaluate reconstruction accuracy. In this simulation, we focus on

the reconstruction accuracy with increasing measurements.
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Figure 2.5: Independent reconstruction vs. joint reconstruction when the spar-
sifying basis is Haar basis with decomposition level of 5. For comparison, the
square-clustering scheme with two different number of clusters (4 and 16 clusters)
are used.

To compare independent reconstruction with joint reconstruction, we used a

square-clustering scheme with two different number of clusters (4 and 16 clusters)

and data sparse on the Haar basis with 5 levels of decomposition. In Fig. 2.5, dense

random projection (DRP) corresponds to the case where 256 global measurements

(i.e., each measurement is an aggregate of data from all the nodes in the network)

are transmitted to the sink and then data is reconstructed using joint reconstruc-

tion. Other curves are generated from localized measurements in each cluster and

the two types of reconstruction are applied.

Fig. 2.5 shows that joint reconstruction outperforms independent reconstruction

as expected based on the discussion of Section 2.3.1. In all following simulations

only joint reconstruction is used.
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2.6.2 SPT-based clustering

For the simulation, we used the same setup as in Section 2.6.1. But, in this sim-

ulation, we consider two types of clustering with different number of clusters (16,

64, and 256 clusters): square-clustering and SPT-based clustering. For cost eval-

uation, transmission cost is estimated as
∑

(bit)× (distance)2, as was done in

[75,76], although this could be extended to use more realistic cost metrics. We plot

reconstruction SNR as a function of the rate of the transport cost of each scheme

with respect to the transport cost in the raw data gathering without compression.

While we use the cost ratio for evaluation, this simulation is mainly focused on the

comparison between square and SPT-based comparison.
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Figure 2.6: Cost ratio to raw data gathering vs. SNR with different number of
clusters and clustering schemes when the sparsifying basis is Haar basis with de-
composition level of 5.
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With joint reconstruction and Haar basis, Fig. 2.6 shows that SPT-based clus-

tering outperforms square clustering for different number of clusters (Nc). As Nc

increases, reconstruction accuracy decreases because the measurement matrix be-

comes sparser as network is separated into more equal-size clusters. However, once

the transport costs have been taken into account, more clusters show better perfor-

mance because cost per measurement decreases and SPT-based clustering always

outperform square clustering. Since we also observed this trend for different bases,

we will focus on SPT-based clustering in following simulation.
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Figure 2.7: Performance comparison in terms of cost ratio with respect to raw data
gathering vs. SNR for different basis functions and 64 SPT-based clusters.

In order to investigate effects of the spatial localzation of signals (determined

by the spatial extent of basis functions), we generate data with the same sparsity

in different bases and fix SPT-based clustering with 64 clusters. For comparison,

we consider three different cases: (i) DCT basis, where each basis vectors have
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Figure 2.8: Performance comparison in terms of cost ratio with respect to raw data
gathering vs. SNR for 256 SPT-based clusters with other CS approaches with Haar
basis with level of decomposition of 5.

high overlaps in energy which distributed throughout the network, (ii) Haar basis,

where the basis vectors have less overlap and the energy distribution of each basis

varies from being very localized to being spread out over the whole field for different

basis functions at a level, and (iii) Daubechies (DB6) basis, where the overlaps and

distribution are intermediate between DCT and Haar. The result in Fig. 2.7 shows

that, for the same clustering scheme and data with the same sparsity in a given

basis, the gains from joint reconstruction depend on how“well-spread” the energy in

the basis vectors is, that is, results are better when data is sparse in more “global”

bases.

Fig. 2.8 shows that our approach outperforms other CS approaches [68,83]. APR

corresponds to a scheme where aggregation occurs along the shortest path to the
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sink and all the sensors on the paths provide their data for measurements [68]. SRP

with different parameter, s′ = s× n, represents a scheme that randomly chooses s′

nodes without considering routing, then transmits data to the sink via SPT with

opportunistic aggregation [83].

In the comparison, SRP performs worse than the others because, as we ex-

pected, taking samples from random nodes for each measurement significantly in-

creases total transmission cost. Our approach and APR are comparable in terms

of transmission cost but our approach shows better reconstruction.

2.6.3 Reconstruction accuracy and β

In this simulation, we consider 3 different 2-D Daubechies basis with 2 levels of

decomposition: DB4, DB6, and DB8. For each of the basis, we generate 1000 real-

izations with three different sparsity levels (K): 20, 38, and 55. In each realization,

K basis functions are chosen at random and assigned random coefficients. In the

network, 1024 nodes are deployed on a square grid in a region of interest and a sink

is located at center of the field collecting measurements from sensors with error

free communication. With M measurements, data is jointly reconstructed using

the GPSR [29].

To verify Theorem 2.4.2, we first measure the minimum number of measure-

ments, Msim, required for perfect reconstruction in our simulation. To measure

Msim, we first evaluate reconstruction accuracy using the perfect reconstruction rate

(Prr). We consider that for a given realization perfect reconstruction is achieved if

max |x− x̂| < 10−3. For 1000 synthesized sparse data, Prr is defined as a ratio of

the number of data perfectly reconstructed to 1000. The minimum Msim for perfect
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Table 2.1: Correlation coefficient, r ∈ [−1, 1], between Mest and Msim

N = 1024, Nc = 16
DB4 DB6 DB8

K=20 0.49 0.44 0.50
K=38 0.59 0.52 0.61
K=55 0.68 0.57 0.63

reconstruction is the smallest M that satisfies a perfect reconstruction rate larger

than 0.99.

To collect spatially-localized projections, N sensors are separated into Nc non-

overlapped clusters with the same size; every cluster contains N/Nc sensors. We

consider 20 different clustering schemes. For each clustering scheme, we divide N

sensors in the field into 16 localized clusters with radial shape going from the sink

to the boundary of the network. To generate 20 different clustering schemes, we

rotate the 16 clusters with a certain angle for each clustering scheme.

To estimate Mest, for given Ψ and K, we first compute β for each clustering

scheme so that we have 20 different values of β, one for each clustering scheme.

Then, Mest is computed following Theorem 2.4.2. To check if Mest and Msim are

correlated to each other, we use Pearson’s linear correlation coefficient, r ∈ [−1, 1],

which measures the linear dependence between two variables [64].

As shown in Table 2.1, the correlation value is around 0.55 for different K and

Ψ, which shows that β affects reconstruction accuracy in terms of the minimum

number of measurements for perfect reconstruction. However, our bound is not

tight enough to estimate the exact number of measurements because there exists

a gap between Mest and Msim. However, β is a useful metric because, based on β,

we can compare different clustering schemes and also design a clustering scheme by

optimizing β as discussed in Section 2.5.
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Since the maximum energy overlap is a worst case measure, β can be mislead-

ing. For example, suppose there exists a basis function and cluster for which the

energy overlap is 1 (perfect overlap), but the others are relatively small; in this

case by definition β = 1. However, successful reconstruction is possible with high

quality if the basis function associated to the large energy overlap is not in the data

support. Therefore, it would be meaningful to examine the impact of maximum

energy overlap of each basis function and clusters on the level of error observed for

that basis function.

For each basis function, we define βi by measuring the maximum energy over-

lap between the ith basis function and all clusters. Thus, the βi characterizes the

distribution of energy of individual basis functions. Table 2.2 shows the average

correlation between βi and the error related to the corresponding basis function.

The simulation results show that basis functions with larger βi generate more er-

rors. This implies that basis functions with concentrated energy on fewer clusters

have lower probability to be identified by spatially-localized measurements. While

the results do not show very high correlation; sufficient to reliably estimate the

number of measurements required for perfect reconstruction, is well estimated, β

can be a useful metric to find a better clustering scheme, which will be discussed

in Section 2.6.4.

Table 2.2: Correlation coefficient, r ∈ [−1, 1], between maximum energy overlap
and MSE for each basis

N = 1024, Nc = 16,M = 410
DB4 DB6 DB8

K=20 0.31 0.58 0.52
K=38 0.48 0.62 0.55
K=55 0.47 0.63 0.64
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Figure 2.9: β vs. average number of hops per measurement. Each point corresponds
to the result of Algorithm 1 with different λ. The points with red circle are chosen
for the evaluation of transport cost and MSE in Fig. 2.10

2.6.4 Joint optimization

To evaluate the joint optimization, we use mean squared error (MSE) as a metric

for reconstruction accuracy. This is because, in practice, we are more interested in

the level of error associated to a specific transport cost. Since we allocated the same

number of bits for each measurement, transmission cost,
∑

(bit)× (number of hops),

depends on the product of the number of measurements with the distance in hops.

In our simulation, we consider a signal with sparsity K = 38 in 2D Daubechies-4

basis with 2 levels of decomposition. Located at center of the field, a sink collects

M measurements from 64 clusters. For energy efficiency, measurements from each

cluster are routed to the sink along shortest path. For comparison with other CS
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Figure 2.10: Transport cost ratio vs. MSE. The x-axis is the ratio of total trans-
port cost of spatially-localized CS to the cost for raw data gathering without any
manipulation. We compare performance of results by joint optimization with two
different λ’s with that of SPT64 in [48]

approaches, we consider a clustering scheme based on shortest path tree (SPT) that

showed the best performance in Section 2.6.2

As discussed in Section 2.5, in general, smaller β can be achieved by increasing

distance between nodes in the same cluster. The tradeoff can also be observed in

Fig. 2.9; as λ increases, we can achieve smaller β but this increases hop distance

per measurement as discussed in Section 2.5. In addition, Fig. 2.9 shows that, as

λ increases, β decreases quickly but becomes saturated at some point. After that,

transport cost increases without improvement of β. Thus, we can expect that one of

λ’s around the saturation point will correspond to a good operating point showing

better performance in terms of total transport cost and reconstruction accuracy.
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Fig. 2.10 shows the overall performance with different λ. Each curve shows the

average MSE over 100 realizations and the variation in reconstruction accuracy is

expressed as three times of standard deviation. As expected, a λ with the value of

16 located at the sharp transition in Fig. 2.9 shows the best performance. With the

best λ and 1024 sensors divided into 64 clusters, we can achieve 40% cost saving

with respect to raw data-gathering with small mean squared error (≤ 1 × 10−4).

Compared with SPT-based clustering scheme in [48], our clustering scheme with

joint optimization achieves almost 50% reduction in transport costs at the same

level of mean squared error in the reconstruction. Also, Fig. 2.10 confirms that

for a given transport cost β is a good predictor of reconstruction quality; lower β

leads to better reconstruction quality. The clusters in the SPT-based clustering

scheme consume less energy to construct a measurement. However, the savings in

transport cost is compensated by a larger number of measurements required for

the same level of reconstruction quality which can be explained by large value of

β(= 0.83).

2.7 Extension to irregularly positioned sensors

Up to this point, we have proposed an energy-efficient data gathering scheme in

WSN. This approach has two major limitations in practice: (i) regular positions

of sensors on the 2D grid and (ii) K-sparse synthesized data in a given sparsifying

basis Ψ. The regular topology is useful for monitoring buildings, bridges, or power

plants but is not appropriate for many other applications such as monitoring of

habitat, wild fire, or battle field. This motivate us to study how the CS-based

approach can be extended to data-gathering with irregularly positioned sensors.

Also, k-sparse data in a given Ψ is unlikely to happen in reality. Most signals
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are compressible in irregular bases, which encourages us to investigate the use of

graph-based transforms (GBT) that can provide a sparse representation of realistic

sensor data.

100 200 300 400 500 600

100

200

300

400

500

600

Figure 2.11: 256 sensors in irregular positions and the corresponding graph. The
communication range is set as the minimum distance that results in a connected
graph.

In this work, we consider a realistic data model with irregularly positioned

sensors. We first generate data that is independent of the sparsifying basis, using a

second order AR model as shown in Fig. 2.11. In the noise-free data, the correlation

of data between two nodes increases as the distance between them decreases. On

the smooth field of data, 256 sensors are randomly deployed, and we measure then

transmit the data to the sink positioned at the center of the field along the SPT.
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Under these realistic assumptions, we use graph-based transforms (GBT) as a

sparsifying basis because the transform can be applied to various deployments of

sensors if the topology is represented by a graph. For the construction of GBT,

we first represent the WSN as a graph, G(V,E) with nodes (sensors) and links

(connections) between sensors as illustrated in Fig. 2.11. Note that the links can

exist only if the two sensors are within a specific range. In this work, we set the

range as the minimum such that the resulting graph is connected (i.e., there are no

disconnected subgraphs) as shown in Fig. 2.11. Since the sensor data is likely to be

highly correlated between adjacent sensors, the links between distant sensors that

are farther apart can be disconnected for a sparser representation. Note that the

GBT is only required at the sink to reconstruct the received signal, so that sensors

in the field do not need to know the complete topology of the network in order

to transmit data. In addition, It is possible for nodes to decide locally on how to

transmit data, so that centralized coordination is not required.

From the graph, the adjacency matrix A is formed, where A(i, j) = A(j, i) = 1

if the distance between sensor i and j is smaller than the minimum communication

range. OtherwiseA(i, j) = A(j, i) = 0. Then we define the degree matrixD, where

D(i, i) is the number of links connected to the ith sensor and D(i, j) = 0, ∀i 6= j.

Finally, the Laplacian matrix can be defined as:

L = D −A =


−1, if (i, j) ∈ E

di, if i = j

0, otherwise

(2.19)

After the eigenvalue decomposition, we use the eigenvector matrix as a spar-

sifying basis, Ψ, whose columns are the eigenvectors of the Laplacian matrix, L.

Note that Ψ is orthogonal because L is symmetric, leading to real eigenvalues and
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a set of orthogonal eigenvectors (refer to [34,78] for more details). Fig. 2.12 shows

the performance of the GBT as a sparsifying basis. Although the sensor data is

not perfectly sparse, the GBT shows a good compressibility, i.e., more than 99% of

energy is compacted in a few GBT coefficients.

0 50 100 150 200 250 300
0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

N
or

m
al

iz
ae

d 
C

um
m

ul
at

iv
e 

En
er

gy

sorted GBT coeff idx

Figure 2.12: Compressible WSN data in the GBT. The x-axis shows the indices
of GBT coefficients and the y-axis shows the cumulated sum of normalized energy
of GBT basis functions. As shown in Fig. 2.11, the data is generated by a 2nd

AR model with the AR filter H(z) = 1
(1−ρejw0z−1)(1−ρe−jw0z−1)

, where ρ = 0.99 and
w0 = 359

For CS-based data-gathering, we consider two approaches: SPT aggregation and

GBT-aware aggregation. For the SPT aggregation (same as APR in Section 2.6.2),

we randomly choose a certain number of sensors, and aggregate data of all the

sensors on the SPT. Then, the linear combinations of data with Gaussian random

coefficients are transmitted along the SPT [68]. Alternatively, the GBT-aware
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aggregation selectively chooses the sensors by considering the number of the links

connected to the sensors in the graph that is used for GBT construction as in

Fig. 2.11. From a certain number of randomly chosen sensors, the aggregation

happens along the SPT as in the first approach. But, an aggregation takes place at

a sensor if the number of neighbors connected to the sensor is less than a threshold.

Otherwise, the sensor relays the received data to its parent sensor along SPT.

Since the GBT can be interpreted as a spectral decomposition over the links, the

aggregation over the sensors with fewer neighbors in the graph increases the amount

overlap, which leads to better reconstruction as discussed in Section 2.4. The

threshold is empirically chosen in this work. Once the threshold is determined, we

do not need to update it if the topology remains the same and the sensor data is

sparsely represented by the constructed GBT, so that our propose approach does

not require a lot of coordination if the topology is known locally. Also, since the

aggregation decision depends on a characteristic of local network, this approach can

be done in a decentralized way.

In this simulation, a second order AR model is used to generate 50 realizations

with high spatial data correlation as shown in Fig. 2.13. More specifically, the

AR filter H(z) = 1
(1−ρejw0z−1)(1−ρe−jw0z−1)

, where ρ = 0.99 and w0 = 359. For the

simulation, 256 sensors are randomly positioned in the 600× 600 grid and the data

measured at each sensor is represented using 12 bits. Also, the measurements (or

down-sampled data) are transmitted along the SPT as shown in Fig. 2.13. Note that

the locations of the sensors do not change throughout our simulations. Also, for

measuring energy consumption, we adopt a realistic cost model proposed in [35,82].

Energy in the sensors is dissipated when both transmitting, ET (k,D), and receiving

data, ER(k). The energy consumption in k bit transmission over a distance D is
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Figure 2.13: 256 sensors in irregular positions and the corresponding SPT.

ET (k,D) = Eeleck + εampkD
2 Joules and the consumption in k bit reception is

ER(k) = Eeleck.

In our simulation, we compare four different approaches: (i) SPT aggregation

(CSSPT ) [68], (ii) GBT interpolation(itplGBT ) [58], (iii) raw transmission without

any compression, and (iv) our proposed method (CSGBT ). For itplGBT , we ran-

domly choose a certain number of sensors and transmit the sampled data to the

sink along the SPT. Then, data is reconstructed by the graph interpolation tech-

nique proposed in [58]. The curve for the raw data transmission is generated with

different levels of quantization, but the other curves use a fixed quantization step

size. For CSGBT , we empirically choose the threshold as 5, thus the aggregation

happens at the nodes on SPT if the nodes have fewer than 5 neighbors in the graph

in Fig. 2.11. The result in Fig. 2.14 shows that our proposed approach outperforms
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Figure 2.14: Total energy consumption vs. MSE. The x-axis is the total energy
consumption in Joules and the y-axis is MSE. The curves are generated by taking
averages over 50 realizations of the sensor data.

the other methods in terms of the energy consumption and the reconstruction ac-

curacy. The GBT interpolation technique shows worse performance because it

assumes a bandlimited graph signal supported only at frequencies [0, w], but the

cutoff frequency,w, in the graph is not small enough with respect to the downsam-

pling rate (i.e., the ratio of the number of sensors providing samples with respect

to the total number of sensors), so that the reconstruction quality is degraded.

2.8 Conclusion

To achieve energy efficient data gathering in WSN, we exploit a sparse and spatially-

localized CS measurement system that is aware of transport cost per measurement
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by constructing measurements within spatially-localized clusters. However, while

the spatially-localized measurement system leads to lower transport cost, it is not

obvious how it affects reconstruction accuracy. Thus, we first introduce a metric

to measure the maximum energy overlap between clusters and basis functions, β.

Then we show that the metric has an impact on reconstruction accuracy with

respect to the number of measurements for perfect reconstruction. By exploiting

the tradeoff between β and distance between sensors in clusters, we propose a

centralized iterative algorithm with a design parameter, λ, to construct clusters that

are jointly aware of energy efficiency and reconstruction quality. Our simulation

results show that, with an an appropriately chosen λ, we can achieve significant

savings in transport cost with small reconstruction error. Also, we extend our

work to a WSN that consist of sensors in irregular positions. This work shows a

preliminary result that the sensor data can be sparsely represented by GBT and

our proposed approach shows a promising performance compared to other existing

methods.
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Chapter 3

Adaptive Compressed Sensing for Depth map

Compression Using Graph-based Transform

3.1 Introduction

Standard compressed sensing (CS) theory prescribes that robust signal recovery is

possible when a signal is sparse in a given sparsifying basis. Based on the signal

characteristics, the sparsifying basis is often assumed to be known a priori at the

decoder. However, for coding applications where signals are first captured and then

compressed, better performance can be achieved by adaptively selecting a transform

or sparsifying basis and then signaling the chosen transform to the decoder. For

instance, for piecewise smooth signals, where sharp edges exist between smooth

regions, edge-adaptive transforms can provide sparser representation at the cost of

some overhead.

In this work, we consider block-based depth map compression as an example

application. Previous work has shown that edge adaptive transforms can be more

efficient than standard transforms (e.g., DCT) due to the piecewise smooth nature

of these signals [74]. Moreover, correct representation of edges is important be-

cause errors in edge information lead to significant degradation of the quality of
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interpolated views in 3-D TV applications [39, 40]. For depth map compression,

CS-based methods have been recently proposed. CS is applied by either projecting

the depth map on a random sensing matrix (Cartesian grid sampling technique) [73]

or down-sampling 2D-DCT coefficient [25]. However, performance gains achieved

by these techniques are limited because the standard DCT is chosen as the spar-

sifying basis, which is inefficient for coding blocks containing arbitrarily shaped

edges (i.e., neither vertical, nor horizontal) separating smooth regions. To preserve

the edge information, many researchers have investigated efficient transforms for

depth map, that avoid filtering across edges [54,56]. However, these methods have

limitations. For example, Platelets [56] have a fixed approximation error because

depth maps are not exactly piece-wise planar. Shape-Adaptive Wavelets [54] are

not amenable to a block based coding architecture, which has been widely adopted

in international standards for image and video coding such as H.264/AVC.

To overcome those limitations of existing transforms, a graph based transform

(GBT) has been proposed [74] that can achieve a sparse representation, even when

arbitrary edges exist in a block. It also has the advantage that it can be easily

applied within a block-based coding architecture. GBT is based on representing

each block as a graph, where each vertex corresponds to a pixel, and vertices are

linked only when no strong edges are present between the corresponding pixels.

For any given block with arbitrary size, different graphs can be chosen, leading to

different transforms, which depend on the edge structure and therefore require that

overhead bits be sent to the decoder. In [74] it was shown that these adaptive GBTs

improved performance as compared to DCT-only methods, even when the overhead

was taken into account. This work was further extended in [38], which proposed a

simple cost function and a search technique to optimize the GBT selection for each
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block, balancing the increased sparseness achievable if more edges are considered

with the added overhead required for transmitting this information to the decoder.

In this thesis, we propose a novel CS framework where the adaptive GBT is used

as a block-adaptive sparsifying basis. We consider the problem of, given a specific

sensing matrix, optimizing the sparsifying basis. In this work, we first fix the sensing

matrix as a Hadamard matrix because (i) the retrieval of measurements is computa-

tionally simple at the encoder and (ii) the computation of our approximated mutual

coherence in Section 3.3 can be greatly simplified. Then, we optimize the choice of

GBT by taking into account the reconstruction quality and the overhead required

to specify the GBT. Note that the approach in [38] aims at selecting a GBT that

provides maximum sparsity for a block, without requiring excessive overhead. A

key result in our work is to show that maximum sparsity does not guarantee opti-

mal performance when using CS. As studied in [8, 45], CS reconstruction depends

not only on the sparsity of signal representation but also on the mutual coherence

between sensing matrix and sparsifying basis. Therefore, a GBT providing the

sparsest representation of depth data is not necessarily maximally incoherent with

a given Hadamard sensing matrix. Thus, joint optimization is required to select

the best GBT for a given depth map, taking into account rate overhead (to specify

the transform), sparsity of the representation and mutual coherence. We propose a

greedy iterative algorithm that evaluates a metric for different edge configurations

before selecting one. This algorithm uses a low-complexity estimate of the mutual

coherence, so that explicit construction of the GBT at the encoder is only required

once the edge map has been selected (i.e., it is not required in the iterative process

leading to this selection). The proposed block-adaptive CS approach is integrated

within an H.264 codec. When evaluating its intra coding performance on three
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depth map sequences, we observe 3.8 dB PSNR gain in the quality of interpolated

views obtained from the decoded depth map, or an average of 39% bitrate savings.

The rest of this chapter is organized as follows. We first formulate the problem

in Section 3.2. Then we provide a theoretical result showing that a good GBT

can be found by an approximation of mutual coherence in Section 3.3 and the

performance is verified by our simulation results in Section 3.4.

3.2 Problem Formulation

For the construction of GBT, we first represent each depth block as a graph, G(V,E)

with nodes (pixels) and links (connections) between nodes as illustrated in Fig. 3.1.

Note that we use the term “edge” to refer to image edges in order to avoid confusion

with the links in the graph. A link is present in the graph only when no edge

was selected between the two corresponding pixels. Later in this chapter, we will

discuss how edges between pixels will be identified, which is closely related to the

optimization of GBT.

In this work, we assume 4-neighbor connectivity for the pixels, so that each

node, V , can have at most 4 links. From the graph, the adjacency matrix A

is formed, where A(i, j) = A(j, i) = 1 if pixel positions i and j are immediate

neighbors not separated by an edge. Otherwise A(i, j) = A(j, i) = 0. Then we

define the degree matrix D, where D(i, i) is the number of links connected to the

ith pixel and D(i, j) = 0, ∀i 6= j. Finally, the Laplacian matrix can be defined as:

L = D −A =


−1 if (i, j) ∈ E

di if i = j

0 otherwise

(3.1)
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Note that L is symmetric, leading to real eigenvalues and a set of orthogonal eigen-

vectors. Thus we define the GBT for a given graph as the eigenvector matrix, Ψ,

whose columns are the eigenvectors of the Laplacian L of the graph. Since Ψ is

orthogonal, its inverse is ΨT .
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(a) Example 1
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Figure 3.1: 2-by-2 block examples: we have four pixels (nodes) in the block and
assume that there exists one edge between pixels. (a) the edge separates those
pixels into two partitions. Since the links between nodes in the graph are assumed
not to go across the edge, we have two sub-graphs where 2 nodes are connected to
each other by a link. (b) while an edge exists, the edge does not separate pixels
into two partitions, generating only one graph.

As an example, consider the four pixels separated by an edge as shown in

Fig. 3.1. By considering the pixels as nodes and assuming the links between pixels

cannot go across an edge, the block can be represented as a graph, G(V,E). To

construct the GBT from the graph in Fig. 3.1 (a), we first construct the adjacency

matrix, A1, and the degree matrix, D1, which has only 1’s on its diagonal because

each pixel is connected to only one other pixel, due to the existence of an edge:
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A1 =



0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


, D1 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


. (3.2)

From D1 and A1, the Laplacian matrix, L1, is defined as in (3.1). To construct

the GBT, Ψ1, from L1, we first apply the eigenvalue decomposition to L1 then we

form Ψ1 with column vectors corresponding to the eigenvectors of L1:

L1 =



1 −1 0 0

−1 1 0 0

0 0 1 −1

0 0 −1 1


, Ψ1 =



1√
2

0 − 1√
2

0

1√
2

0 1√
2

0

0 1√
2

0 − 1√
2

0 1√
2

0 1√
2


. (3.3)

Similarly, the GBT for the example of Fig. 3.1 (b), Ψ2, can be generated as

follows.

A2 =



0 1 0 0

1 0 0 1

0 0 0 1

0 1 1 0


, D2 =



1 0 0 0

0 2 0 0

0 0 1 0

0 0 0 2


, (3.4)

L2 =



1 −1 0 0

−1 2 0 −1

0 0 1 −1

0 −1 −1 2


, Ψ2 =



0.5 0.65 −0.5 0.27

0.5 0.27 0.5 −0.65

0.5 −0.65 −0.5 −0.27

0.5 −0.27 0.5 0.65


. (3.5)
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For better visualization, the jth basis function of Ψi, Ψj
i , can be shown as 2× 2

matrices corresponding to the pixel locations in Fig. 3.1, so that we have:

Ψ1
1 =

 1√
2

0

1√
2

0

 , Ψ2
1 =

0 1√
2

0 1√
2

 , (3.6)

Ψ3
1 =

− 1√
2

0

1√
2

0

 , Ψ4
1 =

0 − 1√
2

0 1√
2

 , (3.7)

Ψ1
2 =

0.5 0.5

0.5 0.5

 , Ψ2
2 =

0.65 −0.65

0.27 −0.27

 , (3.8)

Ψ3
2 =

−0.5 −0.5

0.5 0.5

 , Ψ4
2 =

 0.27 −0.27

−0.65 0.65

 . (3.9)

One observation from the two examples in Fig. 3.1 is that the bases (column vectors

in Ψ1 and Ψ2) can take arbitrary values across an image edge. That is, there is no

need for one of the basis functions to provide a smooth approximation to an image

discontinuity. Since the edge in the 2nd example does not separate 4 nodes into more

than one partitions, all the basis functions in Ψ2 are global bases that are completely

different from those in Ψ1. These show that the different edges (edge map) lead

to different GBTs that provide different sparsity in the representation. A spectral

decomposition, defined as the projection of a signal onto the eigenvectors of L

(equivalently, projection onto Ψt), can be interpreted as providing the “frequency”

contents of the graph signal [34, 78]. Note that in the example of Fig. 3.1(b) the

corresponding bases in (3.8) and (3.9) behave as 1-D bases of increasing frequency

(more zero crossings) as we follow the links from node 1 to node 3, avoiding the

edge between them.
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In our depth map compression application, block-adaptive GBTs are applied to

residual blocks obtained after intra/inter prediction, where the graph from which

the GBT is derived is chosen based on the edges present in each residual block. For

each block, these edges could be detected by applying a simple threshold to the

difference between neighboring residual pixel values [74]. However, using the same

threshold for all blocks does not take into account the overhead required to transmit

the chosen edge map to the decoder, which tends to increase with the number of

edges. Thus, two blocks may achieve similar levels of sparsity for a given threshold,

but the block where more edges are identified may require a higher overall rate.

As an alternative, the work in [38] seeks to find the optimized edge map for each

block by considering this overhead. In this work, we also investigate the selection

of edge maps that are optimized in order to consume fewer bits, while providing

satisfactory reconstruction by compressed sensing.

A key observation in our work is that the optimized GBT (which [38] attempts

to obtain) may not provide optimal performance if CS is used. This is because

performance depends both on the level of sparsity in the representation and on

the incoherence between the sparsity basis and the measurement matrix, which

is very important for reconstruction, as studied in [8, 45]. For any GBT cho-

sen as the sparsifying basis, Ψ, we can compute the mutual coherence with a

fixed Hadamard sensing matrix, Φ, µ(ΦΨ). Based on the mutual coherence, the

minimum number of measurements for perfect reconstruction can be computed as

M = O(Kµ2(U)N logN) [8]. The lower bound on the number of measurements

decreases as Φ and Ψ become increasingly incoherent. Thus, if we can estimate

how µ varies as a function of the chosen GBT, then we can also compute a bound

on the number of measurements needed, which will predict achievable performance.
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With this, and with an estimate of the cost required to encode the corresponding

edge map, it becomes possible to design a good GBT.

3.3 Optimizing GBT for CS

3.3.1 Bound on the mutual coherence

We first derive a bound on the mutual coherence for a given GBT matrix, Ψ,

and the Hadamard matrix, Φ. Since both matrices are deterministic, the mutual

coherence is also deterministic, and could be computed for each candidate GBT.

However, GBT construction is a complex operation as it requires finding all the

eigenvectors of the Laplacian matrix. The complexity grows as the size of graph

(equivalently, the block size in depth map compression) increases. Even if there

exist only a few GBTs that are truly useful and for those we could precompute the

mutual coherence, the number of useful GBT candidates also increases with the

graph size, which leads to larger memory requirements. Thus it would be desirable

to avoid having to construct GBTs at every stage of the search for the optimized

GBT. In what follows, we derive upper and lower bounds on the mutual coherence

then use their average to estimate the mutual coherence of the block.

We first derive the upper bound of the mutual coherence.

Theorem 3.3.1. For a given graph G(V,E), the mutual coherence, µ, between the

Hadamard sensing matrix, Φ, and a graph-based transform matrix, Ψ, satisfies

µ(E) ≤
√

max∀iNGi

N
,
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where NGi
denotes the size of the ith sub-graph (equivalently, the number of pixels

in the sub-graph).

If a graph is connected, then the mutual coherence is bounded by 1 because the

DC component of the Hadamard basis is identical to the eigenvector corresponding

to the zero eigenvalue of the graph Laplacian. In contrast, a fully disconnected

graph where all the pixels are separated by edges can achieve the minimum bound

for the mutual coherence. However, this increases the overhead to encode the edge

map so that the coding gain is limited. The proof is trivial because all the entries of

the Hadamard matrix are ±1/
√
N and all the basis functions of GBT (columns of

Ψ) are normalized to 1, so that the maximum absolute value of the inner-products

is bounded by the maximum size of a group normalized by N . Next, a lower bound

on mutual coherence is derived.

Theorem 3.3.2. For a given graph G(V,E), mutual coherence, µ, between an

arbitrary sensing matrix, Φ and a graph-based transform, Ψ, satisfies

µ(E) ≥ max
∀k

√∑
(l,m)∈E (Φ(k, l)−Φ(k,m))2

2|E|
,

where |E| is the total the number of links between nodes.

Since we consider 4 × 4 blocks with 4-neighbor connectivity in this work, the

maximum |E| is equal to 24 if G(V,E) is a fully-connected graph. The numerator

of the bound is a sum of squared differences of Φ(i, j) corresponding to connected

pixels. The bound indicates that the lower bound of the mutual coherence increases

as more pixels corresponding to high variation of Φ are connected. Since Φ is a
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Hadamard matrix in this work, this corresponds to counting the number of zero

crossings in the graph for all Hadamard bases.

The proof is based on the fact that xTLx =
∑

(i,j)∈E(x(i) − x(j))2, for any

x ∈ <V . Let xT = Φ(i, :). Since L = ΨΛΨT ,

xTLx = Φ(i, :)(ΨΛΨT )Φ(i, :)T (3.10)

=
∑

(l,m)∈E

(Φ(i, l)−Φ(i,m))2 , i ∈ {1, 2, . . . , N} (3.11)

(3.10) can be rewritten as follows:

xTLx = Φ(i, :)(ΨΛΨT )Φ(i, :)T (3.12)

= U(i, :)ΛU(i, :)T (3.13)

=
∑
j

λjU(i, j)2, (3.14)

where U = ΦΨ and λj is the jth eigenvalue of L. From (3.11) and (3.14):

∑
(l,m)∈E

(Φ(i, l)−Φ(i,m))2 =
∑
j

λjU(i, j)2 (3.15)

≤

(∑
j

λj

)
max
∀j

(
U(i, j)2

)
, (3.16)

where
∑

i λi = Trace(L) = 2|E| because the total sum of diagonal entries in L is

the twice of the total number of links between pixels. From (3.16), we have
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max
∀j
|U(i, j)| ≥

√∑
(l,m)∈E (Φ(i, l)−Φ(i,m))2

2|E|
. (3.17)

Thus, the lower bound of the mutual coherence is derived:

µ(E) = max
∀(i,j)
|U(i, j)| = max

∀i

(
max
∀j
|U(i, j)|

)

≥ max
∀i

√∑
(l,m)∈E (Φ(i, l)−Φ(i,m))2

2|E|
. (3.18)

Note that both lower bound, µlower, and upper bound, µupper, can be computed

without constructing the GBT. The upper bound is determined by the maximum

size of a disconnected sub-graph in the graph and the lower bound by the edge map

and the given Hadamard sensing matrix. To approximate the mutual coherence

between the two bases for a given graph, G(V,E), we take the average µavg(E) =

µlower(E)+µupper(E)

2
. Since the mutual coherence is the maximum correlation between

two bases, the mutual coherence can be misleading, especially when only a few

correlations are large but the others are small. Thus, instead of looking at the

maximum correlation, the average correlation provides a better estimate for the CS

performance as studied in [27]. Thus, µavg can be used as an alternative metric

instead of the original mutual coherence. The averaged mutual coherence will be

used to approximate the rate for CS measurements to find optimized adjacency

matrix, which will be covered in the following section.
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3.3.2 Iterative GBT construction for CS

To find the best sparsifying basis, Ψ, we iteratively evaluate a series of adjacency

matrices using their average mutual coherence, µavg. We assume 4-neighbor con-

nectivity in 4 × 4 block, so that there exist 12 horizontal edges and 12 vertical

edges. Instead of searching the whole space of 224 possible adjacency matrices, we

propose a greedy algorithm to find an optimized adjacency matrix (Algorithm 2).

By defining a cost function, the cost for removing each edge can be calculated.

Algorithm 2 Optimization of adjacency matrix, A

Given an undirected graph, G(V,E), such that |V | = 16 and |E| = 0.

Construct G0(V,E0) such that ei,j ∈ E0, ∀ei,j = {(vi, vj)|vi == vj}.

Emax = 24, Es = E − E0

Cmin = log2(
(
∑
∀(i,j)∈E0

(vi−vj)2)µ2avg(E0)

2Q2 ) + λ ·m(E0)

for k = 1 to Emax − |E0| do

emin = arg min∀e=(vi,vj)∈Es
|vi − vj|

Remove emin from Es

Ek = Ek−1

Add emin to Ek.

Ck = log2(
(
∑
∀(i,j)∈Ek

(vi−vj)2)µ2avg(Ek)

2Q2 ) + λ ·m(Ek).

if Ck ≤ Cmin then

Cmin = Ck

else

Remove emin from Ek

end if

end for

return Eout = Ek
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The basic idea of Algorithm 2 is as follows. In the initial graph, there are

only links between pixels that have the same value. This would be equivalent

to having a very small threshold to determine whether two pixels have an edge

between them. At each iteration, the algorithm finds the link with the minimum

pixel difference among those that have not been examined in previous iterations.

This link is added if the updated cost is smaller than the one in the previous

iteration. The algorithm repeats the same procedure until all the links have been

searched excluding the links in the initial state. Thus, for 16 nodes on the 4 × 4

grid with 4-neighbor connectivity, the maximum number of iterations is 24 if no

link exists at the initial graph. Algorithm 2 optimizes the graph in order to find a

good set of links providing better performance in terms of the number of bits for

encoding and the reconstruction quality estimated by the average mutual coherence

in Section 3.3. The set of links to be found by the algorithm, Eout, can be uniquely

represented by adjacency matrix or edge map.

The cost function of a given graph, G(V,E), is defined as:

C(E) = Costmeasurement rate + λ · Costedge rate

= log2


(∑

∀(i,j)∈E(vi − vj)2
)
µ2
avg(E)

2Q2

+ λ ·m(E), (3.19)

The edge rate, m(E), is the number of bits required to code E (equivalently,

the corresponding adjacency matrix or edge map), which can be represented using

24 bits with 4-neighbor connectivity, and then compressed further using entropy

coding. The scaling factor λ can be applied to control the trade-off between the

coefficient rate and edge rate, which is empirically determined in our simulation.

v is a vector representing the input depth map block and thus vi is the value of
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pixel i. aij is the element in the adjacency matrix that correspond to the link

between pixels i and j. Thus,
∑
∀(i,j)∈E(vi − vj)2 is the sum of squared differences

between connected pixels, which provides an estimate the cost transmitting the

GBT coefficients and approximates their sparseness. Then, we divide this with the

square of quantization step size, Q. Note that the cost function is identical to the

one proposed in [38] except for µ2
avg(E).

For an intermediate graph, G(V,Ek) in Algorithm 2, the cost function, C(Ek)

is defined as:

C(Ek) = log2


(∑

∀(i,j)∈Ek
(vi − vj)2

)
µ2
avg(Ek)

2Q2

+ λ ·m(Ek) (3.20)

The average mutual coherence, µavg(E), is needed to estimate the rate required to

transmit the measurements, since the number of measurements is proportional to

Kµ2 logN as studied in [8]. Note that we can ignore the logN term because total

number of pixels in each block does not change during the algorithm.

3.4 Simulation Results

The simulation is based on H.264/AVC reference software JM17.1. For simplicity,

only a 4× 4 blocksize is used in our simulation for the transform, although this can

be easily extended to other block sizes. As test sequences in our simulation, we use

only intra-frames of depth map sequences Ballet, Newspaper, and Mobile. With RD

optimization with respect to H.264/AVC, GBT and CS-GBT, the encoder chooses

the best mode and transmits extra bits to signal the transform mode for each block.

For CS-GBT, the encoder encodes 4 Hadamard measurements corresponding to the
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Methods RD Optimization Overhead

H.264/AVC DCT None
GBT DCT + GBT Optimized A [38]

CS-GBT-1 DCT + GBT + CS Optimized A [38]
CS-GBT-2 DCT + GBT + CS Optimized A for CS

Table 3.1: For comparison, four different methods are considered. First, with
H.264/AVC, only 4 × 4 DCT is enabled, thus no overhead exists. Second, DCT
and GBT are enabled in RD optimization and, for GBT, the adjacency matrix,
A, is optimized as in [38] with overhead transmitted to the decoder for each block
that uses GBT. Third, with the same A, an additional transform mode, CS, is
considered. Lastly, DCT, GBT, and CS are considered in RD optimization as
before but the adjacency matrix, A, is optimized as discussed in Section 3.3.2.

4 lowest frequency bases then scalar quantization is applied to the measurements

associated with a QP value. In this work, we do not consider an adaptive choice

of measurements because the encoder is required to signal the indices of the cho-

sen measurements to the decoder, which increases the overhead bits. It may be

possible to optimize the choice of Hadamard projections while taking into account

the overhead, but this is left for future work. To reconstruct the depth map from

the Hadamard measurements, MOSEK C-library [5] is employed to solve the L1

minimization, which is then integrated into H.264/AVC reference software JM17.1.

For comparison, we construct the GBT matrix using two different greedy al-

gorithms with different cost metric as shown in Table 3.1: i) GBT construction

without mutual coherence [38] (GBT and CS-GBT-1) ii) GBT construction with

mutual coherence discussed in Section 3.3.2 (CS-GBT-2). The scaling factor λ in

(3.19) is empirically chosen as 0.03 which equals to the one in the cost function

of [38] because, in our simulation, the change of the scaling factor does not affect

much the overall performance. For both cases, the resulting adjacency matrices
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are entropy coded and sent to the decoder. The decoder can construct the equiva-

lent GBT matrix from the losslessly-encoded adjacency matrix (equivalently, edge

map).

For CS-GBT-1 and CS-GBT-2, one can choose between DCT, GBT, and CS

to achieve the best performance. For example, for each block, the RD cost can be

calculated for DCT, GBT, and CS, and the best approach with the smallest RD cost

can be selected. The overhead indicating the chosen transform is encoded into the

bitstream for each block, and the optimized adjacency matrix is provided only for

blocks coded using GBT or CS. Similarly, for GBT, DCT and GBT are considered

in the RD optimization and the optimized adjacency matrix is transmitted to the

decoder only for blocks coded using GBT. We consider QP values of 24, 28, 32,

and 36 to encode depth maps. As a reference, we also compare those approaches to

H.264/AVC for the depth map compression. The reconstruction quality is evaluated

using PSNR calculated by comparing the ground truth video and the synthesized

video using the decoded depth maps.

From the RD curves in Fig. 3.2, it is shown that the CS-GBT-2 outperforms

H.264/AVC. Also, our proposed approach shows better performance than GBT and

CS-GBT-1. This indicates that taking into account explicitly the mutual coherence,

as we propose, leads to improvements over simply optimizing the GBT for sparsity

(with the metric from [38]). Noticeable PSNR improvements over other methods

Sequence BD-PSNR (dB) BD-bitrate (%)

Ballet 0.9 dB -49.4 %
Newspaper 1.5 dB -26.8 %

Mobile 9.2 dB -42.8 %
Average 3.9 dB -39.7 %

Table 3.2: BD-PSNR/bitrate results of CS-GBT-2 compared to H.264/AVC.
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Sequence BD-PSNR (dB) BD-bitrate (%)

Ballet 0.3 dB -7.8 %
Newspaper 0.9 dB -16.1 %

Mobile 2.4 dB -9.7 %
Average 1.2 dB -11.2 %

Table 3.3: BD-PSNR/bitrate results of CS-GBT-2 compared to GBT.

are observed because, with our optimized adjacency matrix for CS, more blocks

are chosen to be coded using Hadamard measurements. The performance also

depends on the number of strong edges in a frame and the level of noise around

the edges. Among three sequences in our simulation, the Mobile sequence contains

stronger edges along the object boundary with relatively less noise. Thus depth

edges are better preserved than those in the other sequences, which leads to the

best performance in Fig. 3.4. Also, the perceptual improvement in Ballet sequence is

shown in Fig. 3.3. As marked by blue circles, we can notice clear edges reconstructed

by our proposed approach. The results for three different sequences are shown in

Tables 3.2 and 3.3 in terms of BD-PSNR and BD-bitrate.

3.5 Conclusion

For depth map compression, we propose a novel CS approach where the adaptive

GBT is used as a block-adaptive sparsifying basis. Based on the observation that

maximum sparsity does not guarantee optimal performance when using CS, we

propose a greedy algorithm that selects for each block a GBT that minimizes a

metric that takes into consideration both the edge structure of the block and the
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characteristics of the CS measurement matrix, using an estimate of average mu-

tual coherence. As compared to coding using H.264/AVC, the proposed approach

applied to intra-frames shows a significant gain for interpolated views.
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Figure 3.2: RD performance comparison between i) H.264/AVC, ii) GBT [38], iii)
CS-GBT-1, and iv) CS-GBT-2 for different sequences: (a) Ballet (b) Newspaper
(c) Mobile.
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(a) H.264/AVC

(b) GBT

(c) CS-GBT-2

Figure 3.3: Perceptual improvement in Ballet sequence (QP 24): comparison of i)
H.264/AVC, ii) GBT, and iii) CS-GBT-2
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(a) H.264/AVC

(b) GBT

(c) CS-GBT-2

Figure 3.4: The absolute difference between the synthesized view with and without
depth map compression in Mobile sequence (QP 24): comparison of i) H.264/AVC,
ii) GBT, and iii) CS-GBT-2
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Chapter 4

Hardware-driven Compressive Sampling for Fast

Target Localization using Single-chip UWB

Radar Sensor

4.1 Introduction

Ultra-wideband (UWB) systems have been utilized for important applications such

as radar tracking of objects and monitoring breathing or heartbeats of humans [14,

18]. For example, breathing monitoring can be achieved by localizing the subject’s

chest movement, which is critical for people who are under severe injury or sedation

after surgery. This requires a precise and fast localization of objects with high

resolution. Compared to available solutions using video camera techniques, UWB

provides benefits of higher spatial depth resolution [49].

In general, UWB radar sensors employ two types of detection schemes: (i) en-

ergy detection [42] or (ii) direct sampling [15, 24]. Energy detection achieves low

power consumption and has a simple architecture due to the nature of correlator-

based detection circuitry. At the expense of higher power consumption, direct

sampling enables reconstruction of the reflected waveform in the whole detection
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range and therefore provides an opportunity for advanced signal processing to ex-

tract additional information [14]. A practical challenge for UWB radar design is to

overcome the low SNR from each received pulse due to the UWB emission spectrum

mask posed by Federal Communications Commission (FCC) [17].

A recently developed hardware [15, 24] combines the direct sampling approach

with a ranging technique (we will call the combined technique sequential sampling

in the rest of this chapter). The ranging technique works by sending multiple

pulses then averaging the received pulses in short time intervals (windows), each

corresponding to a certain roundtrip time of the reflected pulse. Assuming the

environment is relatively static, the receiver can localize an object at a specific

distance by selecting the window corresponding to that distance and determining

if the window contains reflected signal. The averaging within a chosen window

provides robustness to noise. It also requires less power consumption, because

power is only consumed during the measurement window, which can represent a

small percentage of the overall operating time. However, a limitation of this scheme

comes from sequential sampling, i.e., candidate object locations have to be probed

in sequence, so that the time required to locate an object will be proportional to

the number of measurement windows.

In this work we propose a novel technique that can significantly reduce the

scanning time, with no increase in overall power consumption. The key observation

is that in many situations the number of objects that can be observed is small

relative to the number of locations that are probed. This allows us to probe several

locations simultaneously, so that each measurement combines reflections at several

distances. Processing can then be used extract the actual position information

from the combined observations. Our approach is based on applying compressed
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sensing (CS) principles with a design that is tightly coupled to the UWB hardware

platform.

In the context of radar applications, many researchers have proposed CS-based

approaches that exploit the sparse structure of UWB signals [12, 23]. In [2], au-

thors showed that the received signal can be digitized at a rate much lower than

the Nyquist rate, without a need for matched filters. But important issues, such

as performance in the high noise case and total power consumption are not consid-

ered. Similarly, CS was applied to UWB detection applications, but with a mostly

theoretical focus [36, 57, 61] or with experiments in a relatively simple environ-

ment [77]. Also, a precise CS-UWB positioning system was proposed by exploiting

the redundancy of UWB signal captured at multiple receivers to localize a trans-

mitter [84, 85]. While this work achieved low ADC sampling rate, the rate is still

higher than what can be achieved with the UWB hardware platform we build upon,

and its performance is not as robust in high noise environments. As a CS approach

tightly coupled to hardware, the Random-Modulation Pre-Integrator (RMPI) was

proposed to achieve low-rate ADC by random modulation in analog domain [86–88]

but the random modulation of signals contaminated by powerful noise in analog do-

main does not provide robust signal recovery. Also, the analog random modulation

does not provide the flexibility to accommodate different sampling algorithms.

In this work, we propose a CS technique tightly coupled to the capabilities of

recently developed hardware [15,24] with the goal of achieving robustness to noise

and low power consumption while providing reliable localization. To the best of

our knowledge, this is the first work that exploits UWB sparsity in the context of

a ranging technique for an object localization application. More specifically, there

are three main contributions in this work.
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First, we formulate the sparse structure of the signal of interest. The UWB

signal is sparse if few objects are present because the UWB signal is highly localized

in time. Combined with the UWB ranging system, this leads to a special structure

where sparse non-zero entries are clustered into a few groups (windows). The

number of windows where non-zero entries occur is equal to the number of objects

in the region of interest. More details about our representation of UWB signals will

be discussed in Section 4.2.2.

Second, we design an efficient measurement system subject to several constraints

imposed by the hardware. The constraints include (i) non-negative integer entries in

the sensing matrix (ii) constant row-wise sum of entries in the matrix (iii) non-zero

entries of each row can exist only at positions with a constant shift, which leads to

a unique structure characterized by a Kronecker product. Under these constraints,

we construct a sensing matrix by using a low-density parity-check (LDPC) matrix

that was recently shown to lead to a good measurement system in [20,50].

Third, in order to enhance the localization performance, we propose a window-

based reweighted L1 minimization and show that it provides good performance for

the abovementioned signal model and measurement system. In our simulations,

we compare our proposed method with other existing reconstruction algorithms

in terms of several metrics for evaluating localization performance. Our simula-

tion results show that our proposed method can achieve reliable target-localization

while using only 40% of the sampling time required by the corresponding sequential

scanning scheme, even in a highly-noisy environment.

The rest of this chapter is organized as follows. In Section 4.2, we formulate

the UWB ranging system in CS framework and provide how to approximate the

total scanning time. Then we describe our proposed approach in Section 4.3 and

the result is verified in our simulation in Section 4.4.
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4.2 Problem Formulation

4.2.1 UWB Ranging System and Assumptions

We start by describing the hardware design in [15, 24], which serves as the basis

for our design. This system can probe the presence of objects in a certain distance

from the receiver as illustrated in Fig. 4.1. In this approach, short-time pulses

are transmitted periodically. Assume that we would like to determine whether an

object is present at a given distance range from the receiver. Given such a range of

distances, we know that the reflected pulse will have a certain roundtrip time that

will fall into a short time interval (window). Denoting cycle the interval between

successive transmitted pulses, as shown in Fig. 4.1, we divide a cycle into windows,

each corresponding to a small distance range.

Figure 4.1: Basic motivation for UWB ranging system. After a pulse is transmitted,
the observation time for the receiver can be divided into non-overlapped windows.
Since the pulses and their reflections are narrow, we assume that the reflection
localized in one of the windows. If a range is chosen, the receiver is able to measure
a reflected signal during a specific window corresponding to the roundtrip time for
that range. Within each cycle, the receiver only consumes power during a window,
leading to low overall power consumption.

This hardware design for object localization application is based on two assump-

tions; (i) the environment and the objects of interest remain stationary within the

time that multiple short-time pulses are transmitted, and (ii) the reflected pulses
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reside within one of the windows. The first assumption is valid in practice because

the hardware operates at picosecond scale for measuring the reflection in each cycle

thus scanning more than 100 windows over multiple cycles can finish in the order

of nanoseconds [24]. This fine-scale operation in time enables us to apply our pro-

posed approach to practical applications such as breathing monitoring. The second

assumption is from the observation that the transmitted pulses and their reflections

are narrow compared to the time period of each window.

Under the aforementioned assumptions, the hardware design has several advan-

tages: low power consumption, robustness to noise, and flexibility to accommodate

different sampling algorithms. By selecting a specific range, the system cannot ob-

serve objects at other distances, because measurements are performed only within

the chosen window. But, as a consequence, power consumption is significantly re-

duced, since no power is consumed during other window intervals, while averaging

over multiple cycles increases robustness to noise, e.g., thermal noise from circuits,

reflection from objects that are not of interest, etc. Note that noise can be signif-

icant in these scenarios. For example, the lower bound of SNR with the hardware

design is about −21dB based on the discussion in [41]. Note that the system does

not consume extra energy when the sampling switches from one window to another.

This is an important fact which allows us to combine measurements over multiple

windows as we propose next.

4.2.2 Window-based Sparse UWB Signal Model

Without noise, the sampled signal, x, will be sparse because of two main reasons.

First, UWB pulses are very narrow in time, so that the received signals are them-

selves sparse in the time domain, i.e., reflected pulses corresponding to an object
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of interest are present in a short time interval. Second, the number of objects of

interest is small compared to the number of windows. Thus, x has a special struc-

ture such that sparse non-zero entries are clustered within a few windows, with

the number of windows where reflections are present being equal to the number of

objects in the region of interest. In this work, we mainly focus on the second source

of sparsity, leading to window-based sparse signal model.

Tx 

Rx 

window Nw 

cycle 1 

window 1 

… 

window Nw 

cycle 2 

window 1 

… … 

window Nw 

cycle Nc 

window 1 

… 

Figure 4.2: Illustration of the UWB sampling system with the parameters:NC and
NW . Throughout NC cycles, one pulse is periodically transmitted at the beginning
of each cycle which consists of NW non-overlapped windows. After taking summa-
tion of the reflections during NC cycles in analog domain, NS samples are collected
in each window.

Let NS be the number of samples in each window, and assume that the UWB-

ranging system has NW non-overlapped windows in each cycle as shown in Fig. 4.2.

Assume that each cycle is long enough that it can capture all reflections of interest.

For example, this would mean that, in an indoor environment, the cycle would be

long enough to receive a reflection from the furthest point in the environment.

To introduce a signal to be reconstructed for the object localization, we first

define the signal in noise-free environment then we will extend it to the actual

measured signal with noise in Section 4.2.3. Suppose that we observe a noise-free

signal xi,j in the ith window during the jth cycle, where xi,j is a vector with NS

samples. Under the assumption that the environment and the objects of interest
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are stationary, we can approximate that the signals (i.e., xi,j , ∀j ∈ {1, 2, · · · , NC})

observed in the ith window over NC cycles are identical to x[i]:

x[i] = xi,1 = xi,2 = · · · = xi,NW
, ∀i ∈ {1, 2, · · · , NW} (4.1)

Thus, define a signal, x, by concatenating NW sub-signals, x[i], i ∈ 1, ..., NW :

xT = [x1, . . . , xNS︸ ︷︷ ︸
x[1]

, . . . , xN−NS+1, . . . , xN︸ ︷︷ ︸
x[NW ]

]T (4.2)

Since every x[i] has length NS, the dimension of x is N = NSNW . Our window-

based signal model is similar to models such as block-sparsity, cluster-sparsity, or

multiple measurement vector (MMV) model [3, 28, 70]. Compared to those signal

models, our sparse signal, x, has a common characteristic such that non-zero entries

are grouped into a few (sparse) blocks, but the blocks are not overlapped with

each other and their sizes are identical. Note that, to the best of our knowledge,

this signal model has not been applied to a realistic UWB hardware with ranging

capability.

4.2.3 UWB Measurement System and Matrix Formulation

In this work, we propose hardware-driven compressive sampling (HDCS) as an

alternative to the sequential sampling scheme presented in [15]. The sequential

sampling scheme scans the same window in each of the NC cycles. This is repeated

for every window until all the windows are scanned. In contrast, the HDCS scheme

collects information about multiple windows over the same NC cycles by scanning

one window per cycle but switching the window to be scanned over the course of

NC cycles.
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Before deriving a general formulation, we first consider the sequential sampling

scheme. Let NC be the number of cycles over which the receiver integrates before

the ADC is activated. After the integrated analog waveform is sampled by the

ADC, the measurements obtained from the ith window, yi, can be represented as

a linear combination of xi,j with i.i.d. Gaussian noise, nj :

yi =

NC∑
j=1

(xi,j + ni,j) , ∀i ∈ {1, 2, · · · , NW} (4.3)

Since we assume a stationary environment where the signal to be reconstructed

does not change over time and the sequential sampling scans each window over NC

cycles, we can simplify (4.3) by using (4.1):

yi = NC · x[i] + ni, (4.4)

where ni, is a summation of random variables following i.i.d. Gaussian distribution:

ni =
∑NC

j=1 ni,j, ni,j ∼N(0, σ2
N). This process can be interpreted as a diagonal

sensing matrix with diagonal term NC by concatenating yi as follows:

y =



y1

y2

...

yNW


=



NCI 0 · · · 0

0 NCI · · · 0

...
...

. . .
...

0 0 · · · NCI


N×N



x[1]

x[2]

...

x[NW ]


+



n1

n2

...

nNW


(4.5)

The sequential sampling of (4.5) involves a diagonal matrix (because each win-

dow is separately sampled) with equal diagonal terms because all windows are

observed the same number of times (NC). However, with our proposed HDCS

scheme, the matrix does not necessarily have zero off-diagonal terms, since one
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measurement, yi, can include information from multiple windows. Thus, a general

HDCS scheme can be represented as follows:

y =



y1

y2

...

yMW


=



N
(1,1)
C I N

(1,2)
C I · · · N

(1,NW )
C I

N
(2,1)
C I N

(2,2)
C I · · · N

(2,NW )
C I

...
...

. . .
...

N
(MW ,1)
C I N

(MW ,2)
C I · · · N

(MW ,NW )
C I


M×N



x[1]

x[2]

...

x[MW ]


+



n1

n2

...

nMW


,

(4.6)

where
∑NW

j=1 N
(i,j)
C = NC , ∀i ∈ {1, 2, · · · ,MW} and MW < NW (equivalently, M <

N). N
(i,j)
C represents the number of times information from window j is included

in measurement i. In general, MW < NW because we can reduce the number of

measurements by aggregating information from multiple windows. Both sampling

schemes can be represented by a sensing matrix, Φ and a noise vector, n:

y = Φx+ n (4.7)

Since the UWB ranging hardware of interest obtains measurements under the as-

sumption that the whole reflection is always captured in a window, we can formulate

Φ as a matrix containing blocks with dimension NS-by-NS, each corresponding to

a specific “ranging” window in the sequential sampling or a specific “measurement”

window in the HDCS sampling. Note that there exist two kinds of windows. In

HDCS, a “measurement” window aggregates information from multiple “ranging”

windows. Also, Φ contains non-negative integer entries indicating the number of

cycles to be integrated in order to obtain measurements. More specifically, Φ(i, j)

indicates the number of cycles over which x(j) is integrated in order to obtain y(i).
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Thus, we can easily compute the total scanning time by taking summation of all

the entries in Φ:
∑
∀i,j Φ(i, j).

W1 W1 W1 W1 W1 W2 ... ... ... W2

W1 W2 W2 W2 W3 W2 W3 W3 W3 W4

... W4 ... ... ... W4

W1 W3 W4 W4 W4

...

5 cycles

time

Sequential sampling

Reduced Sampling Time !!

...

HDCS sampling

Figure 4.3: Advantage of HDCS scheme. This shows comparison of two different
samping schemes formulated as two matrices in (4.8). While Sequential sampling
scans a single window during 5 cycles, HDCS collects information from multiple
windows during 5 cycles, which could lead to power savings.

The sequential sampling scheme scans a window over NC cycles until all win-

dows have been scanned. Thus, this process can be interpreted as a diagonal

sensing matrix with the NC on its diagonal as in (4.5) whose total scanning time

is NCN(= NCNSNW ). On the contrary, the HDCS scheme collects information

about multiple windows from a measurement by scanning a certain combinations

of windows during NC cycles. Note that the intuition of HDSC is similar to that

in Chapter 2, where energy-efficient data gathering can be achieved by collecting

measurements from multiple clusters in a wireless sensor network. Thus, the HDCS

can expedite the scanning procedure by reducing the number of measurements as

illustrated in Fig. 4.3.

For better understanding, we provide an example illustrated in Fig. 4.3, as-

suming that we obtain a measurement from 4 windows consisting of 4 samples
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throughout 5 cycles: NS = 4, NW = 4, and NC = 5. This leads to two sensing

matrices, Φ1 and Φ2 with sequential sampling and HDCS sampling, respectively:

Φ1 =



5I 0 0 0

0 5I 0 0

0 0 5I 0

0 0 0 5I


16×16

, Φ2 =


1I 3I 1I 0

0 1I 3I 1I

1I 0 1I 3I


12×16

(4.8)

Both Φ1 and Φ2 contain 4-by-4 identity matrices because we consider 4 samples

in each window. As discussed earlier, the sequential sampling scheme generates a

diagonal sensing matrix, Φ1, with 5 (=NC) on its diagonal. However, with HDCS

scheme, Φ2 has non-zero off-diagonal terms. If Φ2 can give us the same level of

reconstruction as Φ1, we can achieve 0.75 scanning time reduction because, with

HDCS, more windows are measured during 5 cycles for each measurement as shown

in Fig. 4.3. The decrease of scanning time leads to the same amount of total power

reduction.

Now, the challenge is how to design a good sensing matrix satisfying the con-

straints imposed by the hardware. In other words, arbitrary combinations of win-

dows in the HDCS are not guaranteed to provide a reliable localization performance

because CS reconstruction performance depends on the coherence of the sensing

matrix. For example, there can be a better combination of the windows than the

[1, 3, 1] combination in Φ2 in (4.8). Thus, we propose to optimize a sensing matrix

for the HDCS in order to provide both faster and more reliable localization of the

objects. The optimization for better performance will be discussed in more detail

next.

93



4.3 Proposed Approach

4.3.1 LDPC Measurement System

In order to reduce the scanning time, the challenge is how to design a measurement

mechanism that can achieve successful reconstruction with fewer measurements.

With traditional CS, the random matrices, such as Gaussian random matrix and

(uniform randomly) down-sampled Fourier matrix, have been exploited as sensing

matrices because they satisfy the restricted isometry property (RIP) with high

probability [23].

However, combined with UWB ranging system [15], these popular sensing ma-

trices are no longer appropriate due to additional constraints: i) all the entries of

the matrix should be non-negative integers because the entries indicate the num-

ber of cycles. This condition rules out popular sensing matrices such as random or

Fourier matrices that have real entries. ii) the sum of entries in each row is fixed as a

constant number of cycles, NC . Thus, the scanning time is directly proportional to

the number of rows in the sensing matrix. iii) non-zero entries of each row can exist

only at the positions with constant shift of NS. Thus, sensing matrix, Φ, can be

formulated as a Kronecker product of the identity matrix with a matrix containing

coefficients at the corresponding positions, A (generating sensing matrix):

ΦM×N =


a(1,1)I . . . a(1,NW )I

...
. . .

...

a(MW ,1)I . . . a(MW ,NW )I

 = AMW×NW
⊗ INS

(4.9)

For example, the matrices in (4.8) can be represented following (4.9) as:
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Φ1 =



5 0 0 0

0 5 0 0

0 0 5 0

0 0 0 5


4×4

⊗ I4×4 (4.10)

Φ2 =


1 3 1 0

0 1 3 1

1 0 1 3


3×4

⊗ I4×4 (4.11)

To satisfy these constraints, we propose to adopt low-density parity-check (LDPC)

measurement system recently studied in [20,50]. In [20], the authors provide strong

theoretical results showing that parity-check matrices corresponding to good chan-

nel codes can be used as provably good measurement matrices using basis pursuit

reconstruction. In [50], the authors show that LDPC matrices significantly outper-

form other current CS matrices. Thus, by using an LDPC matrix as the generating

sensing matrix, A, we can construct a good sensing matrix, Φ, using (4.9), because

the coherence of sensing matrix, Φ, is the same as that of the generating sensing

matrix, A. This can be easily shown as

UΦ = ΦTΦ = (A⊗ I)T (A⊗ I) = ATA⊗ I = UA ⊗ I

Thus, if A is a good CS measurement matrix, then Φ in (4.9) is also a good

sensing matrix. Also, since the LDPC matrices, A, have the same number of 1’s in

each row, the resulting measurement matrices, Φ = A⊗ I, also satisfy the second

condition.
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4.3.2 Window-based Reweighted L1 Minimization

As discussed earlier, our goal is to localize the objects in space. Equivalently, this

means that we want to identify the data support (DS) which contains the non-zero

entries, since this data support directly corresponds to the locations of objects in

space. To identify data support with the sequential sampling scheme in [15], we

first reconstruct a signal, x̂, by dividing integrated measurements by the number of

cycles, NC . Then, thresholding is applied with an empirically chosen threshold in

order to determine data support. As shown in Fig. 4.4, we can achieve higher SNR

by increasing the number of cycles, because the noise can be approximated as i.i.d.

Gaussian noise as in [30, 37]. However, a larger number of cycles results in longer

acquisition time (or higher power consumption) and lower temporal resolution if

objects are moving.
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Figure 4.4: Effect of averaging in the sequential sampling scheme [15]: (a) The red
plot indicates the original signal (ground truth) and the blue indicates measured
signal including the ground truth plus strong noise, SNR=−21.5dB (b) Result of
sequential sampling after averaging over 500 cycles.
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Figure 4.5: Effect of averaging in a sequential sampling scheme [15]. SNR increases
as more samples are averaged (i.e.,the number of cycles increases) with high noise
level (σN = 30) and system parameters (NS = 16, NW = 155). Note that even
after 500 averaging operations, SNR is −0.63dB in this example.

With the HDCS scheme discussed in Section 4.3.1, we propose a two-phase lo-

calization process comprising: (i) non-linear signal reconstruction and (ii) thresh-

olding. First, we reconstruct signal, x̂, from M measurements then we identify

the data support by a simple thresholding. For signal reconstruction, we solve a

non-linear optimization problem to find a solution to the under-determined system.

For thresholding, a window is chosen as one of the possible data supports if the

energy of the window is greater than a small value, ‖x̂[k]‖2 > 0.001. Note that the

threshold is fixed throughout this work, and is not changed according to different

noise level or different M .

For successful reconstruction of the signal, several previous works show promis-

ing results (refer to [70] for details). In [28] L2/L1 minimization was based on a
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block-sparsity model. This approach seeks to minimize the sum of the L2 norm of

the signal over several windows subject to the data-fitting constraint:

min

NW∑
i=1

‖x[i]‖2 s.t. ‖Φx− y‖2 ≤ δ.

Theoretical results in [28] show that signals with block-sparsity can be success-

fully reconstructed with a sensing matrix satisfying block RIP. The signal model

in [28] can also be applied to our problem because the reflection signal has a few

non-zero entries which are clustered within a few windows. However, noisy mea-

surements or integer sensing matrices are not considered in [28]. Another approach

is iterative reweighted L1 minimization (RL1) [9, 71]. For the ith iteration, this

approach minimizes the L1 norm of weighted sum of intermediate xi, subject to

data-fitting constraint:

min ‖
N∑
j=1

Wi(j)xi(j)‖1 s.t. ‖Φx− y‖2 ≤ δ.

The weight at (i+ 1)th iteration, Wi+1, is computed as the inverse of the absolute

value of xi at previous iteration:

Wi+1(j) =
1

|xi(j)|+ ε
, j ∈ {1, . . . , N}

Here, ε is a small regularization term that prevents an infinite weight term from

occurring when xi is zero. The weight increases as the intermediate result becomes

smaller, thus this leads to a solution closer to that of L0 minimization because

large values of xi contribute to the metric as much as smaller values. However,

since the weight update is an entry-wise operation, the windows of interest are not

successfully identified when noise levels are high.
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This intuition encouraged us to use an iterative window-based reweighted L1

minimization (WRL1). The algorithm uses the reweighting technique that has been

used in iterative reweighted L1 minimization with the only difference being that the

weight is computed by window-wise operation; the weights for the entries belonging

to the kth window are computed as the L1 norm of the partial intermediate signal,

x[k], within that window. The weight vector of the kth window at the ith iteration,

Wi[k], is

Wi[k] = 1
1

‖xi−1[k]‖1 + ε
, k ∈ {1, . . . , NW} (4.12)

Here 1 is a vector of dimension NS with all entries equal to 1. The weights for the

entries in the same window are updated with the same value. This window-based

updating scheme was proposed as the adaptive group Lasso algorithm in [91] or

reweighted M-Basis Pursuit in [70], but, to the best of our knowledge, we are the

first to apply this reconstruction technique to UWB signal reconstruction.

4.4 Simulation Results

In our simulations, we consider realistic parameters such that 155 windows contain-

ing 16 samples in each window (NS = 16, NW = 155), which are similar to those

used in the design of UWB radar hardware that we take as a starting point [15,24]

(16 samples in each of 128 windows). In [15, 24] it was shown that the entire de-

tectable range is 15m and the range can be divided to a specific number of windows

depending on the requirements of applications. With 155 windows in UWB radar

hardware, the maximum spatial depth resolution is 9.6cm, which is desirable for

object localization applications in an indoor environment.

Also we assume that each measurement is obtained from 500 cycles: NC = 500.

In the simulation, the goal is to localize three objects in the region of interest, which
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is the same as finding three windows in signal, x. We generated a data set of 80

realizations and each data contains three windows with non-zero entries indicating

three objects in space; those windows are chosen randomly with a uniform distri-

bution and the values of non-zero entries are generated by Gaussian distribution.
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Figure 4.6: Cost ratio vs. MSE: For CS sampling schemes, cost is the total sampling
time to collect M measurements. Since we fix the number of cycles, NC , for every
measurement as 500 in the simulation, the cost ratio is a ratio of the number
of measurements to the dimension of signal, M/N . But, for sequential sampling
scheme (noted ’SEQ’ in the figure), we take N measurements with reduced NC .

For the measurement system, we adopt an LDPC matrix as discussed in Sec-

tion 4.3.1. For simulation, we first construct the generating sensing matrix, A,

using LDPC matrices with different number of rows, Mw, by changing the number

of 1’s in each column from 1 to 3 with that in each row fixed as 5. Then, the

measurement matrix, Φ, is constructed by Φ = 100A⊗ INS
as in (4.9), where the

constant multiplier is NC/5 = 100.

Also, we consider noisy measurements with three different noise levels, σN ∈

{10, 20, 30}, which generates very low SNR (approximately −16.5dB, −22.6dB and

−26.1dB respectively on average over our data set). For object localization, we
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first reconstruct x̂ using L1 minimization techniques then identify the data sup-

port by examining L2 norm of signals within each window, x̂[k], as discussed in

Section 4.3.2. For reconstruction, we compare window-based reweighted L1 mini-

mization (HDCSWRL1), with three other algorithms: traditional L1 minimization

(HDCSL1), L2/L1 minimization (HDCSL2/L1), and reweighted L1 minimization

(HDCSRL1).

To evaluate performance, we need to measure localization quality as well as

scanning time. The scanning time can be easily computed by counting the num-

ber of rows of sensing matrix, Φ, because the number of cycles is the same for all

approaches (NC = 500). Thus, the cost ratio is a ratio of the number of measure-

ments to the dimension of signal, M/N . To evaluate localization quality, Mean

Squared Error (MSE) can be used by measuring the entry-wise difference of values

between x and x̂. Fig. 4.6 shows the comparison of performance between our pro-

posed reconstruction technique, HDCSWRL1 , and other reconstruction techniques,

in terms of MSE and scanning time. Note that for the sequential sampling scheme

(noted ’SEQ’ in Fig. 4.6), we collect N measurements with the reduced number of

cycles, N ′C in order to compare to HDCS sampling at different total scanning time.

Since the sequential sampling scheme requires to scan all the windows, we reduce

the number of cycles, NC , to N ′C = round(NC
M
N

) then construct a measurement

matrix as:

Φseq = N ′C



I 0 · · · 0

0 I 0 0

... 0
. . .

...

0 0 · · · I


N×N

(4.13)

Since we consider three different sampling time ratios, M/N ∈ {0.2, 0.4, 0.6}, in

Fig 4.6, the resulting N ′C ∈ {100, 200, 300}. Fig. 4.6 shows that HDCS schemes with
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different reconstruction techniques achieve about five times better reconstruction

quality with similar scanning time.

Although MSE is one of the most generic metric for reconstruction evaluation,

it can be misleading because smaller MSE does not always guarantee better window

identification. For example, perfect identification of data support (DS) can result

in large MSE if a large difference exists between x and x̂ within the DS.

HDCSL1 HDCSL2/L1 HDCSRL1 HDCSWRL1

avg. mismatch (a) 537.539 132.629 160.562 4.258
avg. no. of DS (b) 26.461 8.124 10.562 3.067
mismatch / DS (a/b) 20.378 16.090 15.065 1.197
max. mismatch 18.371 5.202 5.910 0.989
F-measure 0.206 0.546 0.442 0.943

Table 4.1: Performance evaluation of identification of data support (DS): The acqui-
sition time is reduced to 0.4 compared to sequential sampling scheme, M/N = 0.4,
with noisy measurements, σN = 30.

Thus, we consider additional metrics to evaluate mismatch of data support

(DS). In the comparisons, we rule out the averaging method in sequential sampling

scheme because it requires a good threshold which should be adaptive to param-

eters such as the level of noise and number of cycles, NC . First, we compute the

number of candidates for DS in terms of the number of windows. As discussed

earlier, the windows containing non-zero entries are formed as candidates for the

estimated DS. Second, for each candidate, we compute minimum distance to any of

the correct DS (ground truth). The distance is computed in terms of the number of

windows. Then, the average of minimum distances can be interpreted as a metric

to evaluate the error in object location in space. Third, we also consider the maxi-

mum mismatch of data support by taking the maximum of the minimum distances
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HDCSL1 HDCSL2/L1 HDCSRL1 HDCSWRL1

avg. mismatch (a) 345.94 42.28 94.48 5.15
avg. no. of DS (b) 25.30 6.30 10.91 3.21
mismatch / DS (a/b) 13.56 6.74 8.45 1.59
max. mismatch 116 93 95 78
F-measure 0.16 0.23 0.27 0.32

Table 4.2: Performance evaluation of identification of data support (DS): The acqui-
sition time is reduced to 0.2 compared to sequential sampling scheme, M/N = 0.3,
with noisy measurements, σN = 20.

between the candidates and the ground truth to evaluate the performance in the

worst case. Lastly, we compute F-measure discussed in [70] as

2
|supp(x) ∩ supp(x̂)|
|supp(x)|+ |supp(x̂)|

, (4.14)

where supp(x) = {i ∈ [1, . . . , NW ] : ‖x[i]‖2 > 0.001}. Note that the F-measure is

equal to 1 when the data support of the reconstructed signal coincides exactly with

the ground truth.

Table 4.1 shows the performance with respect to the metrics evaluating the

ability to identify data support (DS). In the result, HDCSL1 and HDCSL2/L1 ap-

proaches are non-iterative methods while the others are iterative algorithms, where

the results after three iterations are presented. As shown in Tables 4.1 and 4.2, our

proposed reconstruction technique outperforms all the other methods with respect

to all the metrics we consider. Especially, the maximum mismatch of data support

shows the performance in the worst case. In Table 4.1, HDCSWRL1 achieves a

maximum mismatch of 0.98 windows on average, with only 40% of acquisition time

needed for sequential sampling. This means that the average error in location is of

the distance represented by a window in the worst case scenario.
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Figs. 4.7 and 4.8 compare performance with respect to abovementioned two

metrics. In Fig. 4.7(a), HDCSWRL1 shows very small maximum mismatch at every

noise level which is almost equal to 1. This indicates that our identified windows

are mismatched at most by one window on average over 80 data. Also, HDCSWRL1

shows very stable performance at different noise levels. Fig. 4.7(b) shows that, in

the highest level of noise we tested, HDCSWRL1 shows the best performance and

it reaches to almost perfect reconstruction at 0.6 sampling time ratio. Similarly,

in Fig. 4.8(a), HDCSWRL1 shows the highest F-measure at every noise level which

is very close to 1. Also, it does not drop as the noise level increases as shown in

Fig. 4.8(b).

4.5 Conclusion

To design an energy-efficient UWB ranging system, we propose a CS approach

combined with a novel hardware architecture. we first formulate UWB signal rep-

resentation with a special structure such that sparse non-zero entries are clustered

into a few groups. Also, we design an efficient measurement system that is con-

structed by an LDPC matrix, which satisfies several constraints imposed by the

hardware. To enhance performance, we propose a window-based reweighted L1

minimization which outperforms other existing algorithms in our simulation. The

result shows that our proposed method can achieve reliable target-localization while

requiring only 40% of sampling time of the sequential sampling scheme in highly-

noisy environment.
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Figure 4.7: Performance comparison with respect to maximum mismatch of data
support: (a) Fix sampling time ratio as 0.4 and compare performance at different
noise levels. (b) Fix noise level as 30 and compare performance at different sampling
time ratios.
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Figure 4.8: Performance comparison with respect to F-measure: (a) Fix sampling
time ratio as 0.4 and compare performance at different noise levels. (b) Fix noise
level as 30 and compare performance at different sampling time ratios.
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Chapter 5

Conclusions and Future Work

5.1 Conclusion

We propose to optimize Compressed Sensing (CS) design choices under the con-

straints driven by various applications. Unlike in traditional CS approaches, we

consider additional constraints driven by different application requirements such

as transport cost in wireless sensor network, total bitrate in depth map compres-

sion, or scanning time in UWB ranging system. In these applications, reducing the

number of measurements does not always provide a better solution if application

specific constraints are not considered.

As we discussed earlier, in the application of WSN, the transport cost to collect

the information from the sensors should be considered for the overall performance of

data gathering system and this is closely related to the construction of measurement

matrix. Thus, we propose to optimize the measurement matrix with respect to

the given sparsifying matrix for the joint optimization of the transport cost and

the reconstruction accuracy of sensor data for the data gathering. Our proposed

approach achieves better performance, as compared to other existing CS techniques

related to data gathering of sensor data in wireless sensor network. We also propose

107



a heuristic approach applied to a practical situation where sensors are randomly

deployed over a field of interest.

For depth map compression, the additional cost we need to consider is the bit

overhead to code the edge map required for the construction of graph-based trans-

form (GBT). In contrast to the WSN application, we fix the sensing matrix as a

Hadamard matrix and we optimize the sparsifying matrix to reduce the number

of bits to represent depth map signal while achieving satisfactory reconstruction.

We propose a greedy algorithm to optimize the joint optimization of the bit over-

head and the reconstruction quality of depth map data and achieve a significant

improvement over H.264/AVC.

For fast localization of objects using a UWB ranging system, we propose the

design of an efficient measurement system that is constructed using low-density

parity-check (LDPC) matrix, designed to satisfy several hardware-related con-

straints: non-negative integer entries in measurement (sensing) matrix, constant

row-wise sum of non-zero entries in the matrix, and a unique structure character-

ized by Kronecker product. To enhance performance, we propose a window-based

reweighted L1 minimization that outperforms other existing algorithms in our sim-

ulation. The result shows that our proposed method can achieve reliable target-

localization, while using only 40% of the scanning (sampling) time required by the

sequential scanning scheme, even in high noise environments.

5.2 Future Work

The approaches for WSN and depth map compression are related to optimization

of compressed sensing with respect to different constraints. Although we extended

our work to a more general situation where the sensors are deployed at arbitrary
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positions, the heuristic solution needs to be further investigated in order to gen-

eralize the approach by optimizing spatially-localized projection with respect to a

given GBT. Since GBT is a tool to sparsify any generic signal defined on arbitrary

graph, the generalized approach can also be applied to simplified cases such as both

WSN and depth map compression.

Furthermore, the generalized framework can be extended to local construction

of GBT as shown in [59]. Instead of global construction of GBT, GBT can be

constructed with partial information about neighboring nodes in the graph. Thus,

investigating how to optimize spatially-localized projection combined with localized

GBT will be meaningful, which will lead to localized optimization of the general

framework with less complexity.

While UWB radar results are promising, many questions remain. In practice,

reconstruction techniques with less complexity will be required, so that they can

run in real-time. Also, in order to verify the performance, integration with the

hardware will be needed in practice. In addition, a theoretical analysis of the

system to evaluate the potential localization performance by this reduced number

of measurements or different LDPC matrices will be meaningful.
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