
CRITICALLY SAMPLED WAVELET FILTERBANKS ON GRAPHS

by

Sunil K. Narang

A Dissertation Presented to the
FACULTY OF THE USC GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the
Requirements for the Degree

DOCTOR OF PHILOSOPHY
(ELECTRICAL ENGINEERING)

August 2012

Copyright 2012 Sunil K. Narang

Dedication

To my teachers who taught me to be honest and hardworking.

ii

Acknowledgements

It is a pleasure to thank those who made this dissertation possible: my teachers, collaborators,

family and friends. First and foremost, I would like to thank my advisor, Professor Antonio

Ortega, whose expertise, continuous guidance, and understanding helped me evolve from a naive

undergraduate student into a practitioner of critical thinking. The best thing I liked about Antonio

is that he gave me the freedom to explore on my own, and at the same time guidance to remain

focused on the big picture and not getting lost in minor details. I could not have wished for a

better or friendlier supervisor. I would also like to thank Professor Bhaskar Krishnamachari and

Professor Yan Liu for serving on my dissertation committee, as well as to Professor C.-C. Jay Kuo

and Professor Srikanth Narayanan for being members in my qualifying exam committee. It is a

privilege to have their advice on my work.

I am also indebted to my colleagues in the Compression Research Group, who taught me many

things through various interactions and discussions. Specially, I owe my gratitude to Dr. Godwin

Shen from whom I learnt so much about distributed compression, and whose PhD research became

the foundation and motivation for my own research. Your friendship both within and outside of

our research world has been a great source of strength for me. Special thanks is also due to Dr.

Woo-Shik Kim, with whom I had a lot of memorable collaborations and who first introduced me

to the Korean cuisine. I would also like to acknowledge the inputs and collaborations of Sungwon

Lee, Yenting (Greg) Lin, Yung-Hsuan (Jessie) Chao, and Akshay Gadde, without which this thesis

would have been incomplete.

Furthermore, I owe special thanks to Professor Urbashi Mitra, Professor Bhaskar Krishna-

machari and Dr. Marco Levorato, for giving me a wonderful opportunity to collaborate with you.

The time spent in our joint efforts has truly enriched my experience at USC. I would also like to

thank Dr. Grzegorz M Swirszcz, and Dr. Tomasz Nowicki from IBM Watson research lab, for

our discussions on distributed compression during my summer internship in New York. I am also

iii

grateful to Xavier Perez Trufero from Polytechnic University of Catalonia and Apostol T. Gjika

from Politecnico Di Torino, for all the wonderful discussions and collaborations.

Finally, and most importantly, I would like to thank my wife Shanu, whose encouragement,

quiet patience and unwavering love has been the driving force throughout my PhD, and before.

A big hug and a heartfelt “thanks” to you. I also thank my dad, Rambeer Singh, for his faith in

me and for allowing me and supporting me in every way to be as ambitious as I wanted.

iv

Table of Contents

Dedication ii

Acknowledgements iii

List of Tables viii

List of Figures ix

Abstract xii

Chapter 1: Introduction 1
1.1 Motivation . 1
1.2 Background . 2
1.3 Contributions . 3

1.3.1 Sampling operations in graphs . 4
1.3.2 Two-channel wavelet filterbanks on bipartite graphs 4
1.3.3 Bipartite subgraph decomposition . 6

1.4 Thesis Statement and Research Questions . 6
1.5 Publications . 7
1.6 Summary . 8

Chapter 2: Basic Theory 9
2.1 Spatial Representation of Graph Signals . 10
2.2 Spectral Representation of Graph Signals . 11
2.3 Downsampling in Graphs . 12
2.4 Two-Channel Filterbanks on Graph . 14
2.5 Literature Review . 16

2.5.1 Spatial Designs . 16
2.5.1.1 Random transforms . 16
2.5.1.2 Graph wavelets . 17
2.5.1.3 Lifting wavelet transforms . 18

2.5.2 Spectral Designs . 19
2.5.2.1 Diffusion wavelets . 19
2.5.2.2 Spectral graph wavelets . 19

2.6 Summary . 20

Chapter 3: Lifting wavelet filterbanks on graphs 22
3.1 Problem Formulation . 24
3.2 Maximum Bipartite Subgraph Approximation . 26

3.2.1 Example: graph denoising . 29
3.3 Dominating Set Approximation . 31

v

3.3.1 Example: data gathering in WSN . 33
3.4 Summary . 36

Chapter 4: Downsampling in Graphs using Spectral Theory 41
4.1 Problem Formulation . 42
4.2 Downsampling in kRBG graphs . 44
4.3 Extension to non-regular bipartite graphs . 47
4.4 Example: Images as kRBG . 50
4.5 Summary . 52

Chapter 5: Two-channel Wavelet Filterbanks on Bipartite Graphs 53
5.1 Problem Formulation . 54
5.2 Two-Channel Filterbank Conditions for Bipartite Graphs 56

5.2.1 Aliasing cancellation . 58
5.2.2 Perfect reconstruction . 58
5.2.3 Orthogonality . 59

5.3 Graph-QMF Filterbanks . 61
5.3.1 Chebychev polynomial approximation . 62

5.4 One-hop Localized Spectral Filterbanks . 65
5.4.1 One-hop localized designs for arbitrary graphs 66
5.4.2 One-hop localized designs for bipartite graphs 67

5.5 Graph-Bior Filterbanks . 69
5.5.1 Designing half-band kernel p(λ) . 71
5.5.2 Spectral factorization of half-band kernel p(λ) 74
5.5.3 Nomenclature and design of graph-Bior filterbanks 75

5.6 Filterbank designs using asymmetric Laplacian matrix 77
5.6.1 Perfect Reconstruction . 80
5.6.2 Orthogonality . 80

5.7 Summary . 81

Chapter 6: Separable Multi-dimensional Wavelet Filterbanks on Graphs 84
6.1 Proposed Design . 86

6.1.1 Graph after downsampling . 89
6.2 Bipartite Subgraph Decomposition . 90

6.2.1 Harary’s decomposition algorithm . 91
6.2.2 Min-cut weighted max-cut (MCWMC) algorithm 92

6.3 Experiments . 93
6.4 Summary . 96

Chapter 7: Examples and Applications of Graph Wavelet Filterbanks 97
7.1 Multi-resolution Decomposition of Graphs . 97

7.1.1 Bipartite subgraph decomposition . 98
7.1.2 Spectral wavelet filterbank implementation 99

7.2 Edge Aware Image Processing . 102
7.2.1 Graph representation of images . 104
7.2.2 Graph Filter-banks on Images . 105
7.2.3 Edge-aware graph representations . 107
7.2.4 Downsampling image graphs . 108

7.3 Experiments . 109
7.3.1 Image non-linear approximation . 110

7.4 Summary . 110

vi

Chapter 8: Conclusions and Future Work 113
8.1 Main Contributions . 113
8.2 Future Work . 115

References 117

vii

List of Tables

2.1 Evaluation of graph wavelet transforms. CS: Critical Sampling, PR: Perfect Re-
construction, Comp: compact support, OE: Orthogonal Expansion, GS: Requires
Graph Simplification. 21

5.1 Comparison between graph-QMF filterbanks and graph-Bior filterbanks 77

5.2 Polynomial expansion coefficients (highest degree first) of graphBior (k0, k1) filters
(approximated to 4 decimal places) on a bipartite graph. 77

5.3 Comparison of proposed two-channel filterbank designs on bipartite graphs. DC:
subspace corresponding to lowest eigenvalue, CS: Critical Sampling, PR: Perfect
Reconstruction, Comp: compact support, OE: Orthogonal Expansion 81

6.1 Comparison of bipartite subgraph decomposition schemes 95

8.1 Evaluation of graph wavelet transforms. CS: Critical Sampling, PR: Perfect Re-
construction, Comp: compact support, OE: Orthogonal Expansion, GS: Requires
Graph Simplification. 114

viii

List of Figures

1.1 Lifting Scheme: Downsampling followed by filtering 5

1.2 Spectral Scheme: Filtering followed by downsampling 6

2.1 Block diagram of a two-channel wavelet filterbank on graph. 14

2.2 Block diagram of two-channel lifting wavelet filter-banks 18

3.1 Even Odd Assignment in routing trees designed in [38].The dashed lines show the
edges not used by the transform though they are within radio-range 24

3.2 Even-Odd assignment on Zachary Karate Data [50] using CFP algorithm. 29

3.3 (a)Similarity graph with 200 sampled points from the underlying distribution.The
nodes in shaded region are N (µ1, σ

2) and the nodes in white region are N (µ2, σ
2)

(b)-(f) Voronoi Plots . 38

3.4 STD of the original and denoised samples . 39

3.5 PSNR of the original and denoised samples . 39

3.6 Cost Comparison of Different Lifting Schemes (1: Haar-like lifting transform with
first level of even/odd split on trees 2: With 3 levels of even/odd split on trees 3:
Proposed unweighted set cover based even/odd split on graph 4: Proposed weighted
set cover based even/odd split on graph). 39

3.7 Number of raw data transmissions taking place in transform computations of
different lifting schemes. The numbers are averages over Ns = 10 realizations of
each size graphs. 40

3.8 Transform definition on SPT and on graph. Circles denote even nodes and x’s
denote odd nodes. The sink is shown in the center as a square. Solid lines represent
forwarding links. Dashed lines denote broadcast links. 40

3.9 Performance comparisons. 40

4.1 Block diagram of DU operations in graphs . 43

4.2 Graph-formulations of a 2D image . 50

4.3 Fourier frequency responses of ideal spectral filters Hideal
0 51

ix

5.1 (a) Ideal kernel (blue) vs. Meyer’s wavelet kernel (red). It can be seen that Meyer’s
wavelet has smoother transition at λ = 1 than the ideal kernel, (b)-(f) the recon-
struction error magnitudes between original kernels and their polynomial approxi-
mations of order 2, 4, 6, 8 and 10 respectively: ideal kernel (blue curves) and Meyers
kernel(red curve). 64

5.2 Proposed 1-hop spectral kernels for bipartite graphs. 69

5.3 The spectral distribution of p(λ) with K zeros at λ = 0 74

5.4 Spectral responses of graphBior(k0, k1) filters on a bipartite graph. In each plot,
h0(λ) and h1(λ) are low-pass and high-pass analysis kernels, C(λ) and D(λ) con-
stitute the spectral response of the overall analysis filter Ta, as in (5.65). For
near-orthogonality D(λ) ≈ 0 and C(λ) ≈ 1. Finally, (p(λ) + p(2− λ))/2 represents
perfect reconstruction property as in (5.51), and should be constant equal to 1, for
perfect reconstruction. 83

6.1 Block diagram of a 2D Separable two-channel Filter Bank: the graph G is first
decomposed into two bipartite subgraphs B1 and B2, using the proposed decom-
position scheme. By construction B2 is composed of two disjoint graphs B2(L)
and B2(H), each of which is processed independently, by one of the two filter-
banks at the second stage. The 4 sets of output transform coefficients, denoted as
yHH ,yHL,yLH and,yLL, are stored at disjoint sets of nodes. 86

6.2 Example of 2-dimensional separable downsampling on a graph: (a) original graph
G, (b) the first bipartite graph B1 = (L1, H1,E1), containing all the links in G be-
tween sets L1 and H1. (c) the second bipartite graph B2 = (L2, H2,E2), containing
all the links in G− B1, between sets L2 and H2 . 87

6.3 Example of a bipartite graph-cut . 93

6.4 Histogram of absolute difference in similarity between node-pairs in two bipartite
subgraphs . 95

7.1 (a) The Minnesota traffic graph G, and (b) the graph-signal to be analyzed. The
colors of the nodes represent the sample values. (c)(d) bipartite decomposition of
G into two bipartite subgraphs using Harary’s decomposition. 98

7.2 Output coefficients of the proposed graph-QMF filterbanks with parameter m =
24. The node-color reflects the value of the coefficients at that point. Top-left:
LL channel wavelet coefficients, top-right: absolute value of LH channel wavelet
coefficients, and bottom-right: absolute value of HH channel wavelet coefficients . 100

7.3 Reconstructed graph-signals from the graph-QMF wavelet coefficients of individual
channels. As before the node-color reflects the value of the coefficients at that node.
Top-left: reconstruction from LL channel only, top-right: reconstruction from LH
channel only, and bottom-right: reconstruction from HH channel only. Since, HL
channel is empty the reconstruction is an all-zero signal (bottom-left figure). The
reconstruction SNR of sum of all four channels is 50.2 dB. 101

7.4 Output coefficients of the graph-Bior filterbanks with parameter (k0, k1) = (7, 7).
The node-color reflects the value of the coefficients at that point. Top-left: LL
channel wavelet coefficients, top-right: absolute value of LH channel wavelet coef-
ficients, and bottom-right: absolute value of HH channel wavelet coefficients . . . 102

x

7.5 Reconstructed graph-signals from the graph-Bior wavelet coefficients of individual
channels. As before the node-color reflects the value of the coefficients at that node.
Top-left: reconstruction from LL channel only, top-right: reconstruction from LH
channel only, and bottom-right: reconstruction from HH channel only. Since, HL
channel is empty the reconstruction is an all-zero signal (bottom-left figure). The
reconstruction SNR of the sum of four channels is 168.57 dB. 103

7.6 Two dimensional decomposition of 8-connected image-graph 104

7.7 Separable two-dim two channel graph filterbank on a toy image with both rectan-
gular and diagonal edges. 105

7.8 Reconstruction of binary image shown in Figure 7.7, using only 4th level LL-
channel wavelet coefficients, using (a) 2-D separable CDF 9/7 filterbanks, (b)
proposed graph-QMF filterbanks with filter length (m = 28), and (c) proposed
graph-Bior filterbanks with filter length (k0 = 20, k1 = 21). 106

7.9 Example demonstrating importance of edge-weighted graph formulation of images:
(a) input image (b) edge-information of the image and a highlighted pixel v, (c) un-
weighted 8-connected image-graph formulation (d) edgemap-weighted 8-connected
image-graph formulation . 107

7.10 (a) HH wavelet filter (dB scale) on the pixel v on the unweighted graph (b) HH
wavelet filter (dB scale) on the pixel v on the weighted graph, (c) undecimated HH
band coefficients using unweighted graph and (d) undecimated HH band coefficients
using edge-weighted graph. 108

7.11 The weighted-graphs computed for Lena image, in 4 levels of decomposition . . . 109

7.12 Performance comparison: non-linear approximation 111

7.13 Reconstruction of “Lena.png” (512× 512) from 1% detail coefficients 112

xi

Abstract

Emerging data mining applications will have to operate on datasets defined on graphs. Examples

of such datasets include online document networks, social networks, and transportation networks

etc. The data on these graphs can be visualized as a finite collection of samples, a graph-signal

which can be defined as the information attached to each node (scalar or vector values mapped to

the set of vertices/edges) of the graph. Major challenges are posed by the size of these datasets,

making it difficult to visualize, process, analyze and act on the information available. Wavelets

have been popular for traditional signal processing problems (e.g., compression, segmentation,

denoising) because they allow signal representations where a variety of trade-offs between spatial

(or temporal) resolution and frequency resolution can be achieved. In this research, we seek to

leverage novel basic wavelet techniques for graph data, and apply them to realistic information

analytics problems. The primary contribution of this thesis is to design critically sampled wavelet

filterbanks on graphs, which provide a local analysis in the graph (localized within a few hops of

a target node), while capturing spectral/frequency information of the graph-signals. The graphs

in our study are simple undirected graphs. We first design ”one-dimensional” two-channel filter-

banks on bipartite graphs, and then extend them to any arbitrary graph. The filterbanks come

in two flavors, depending upon the chosen downsampling method: i) lifting wavelet filterbanks

and ii) spectral wavelet filterbanks. For bipartite graphs we define a spectral folding phenomenon,

analogous to aliasing in regular signals, that helps us define filterbank constraints in simple terms.

For arbitrary graphs we propose two choices: a) to approximate the graph as a single bipartite

graph and apply “one-dimensional” filterbanks, or b) to decompose the graph into multiple bipar-

tite subgraphs and apply “multi-dimensional” filterbanks. All our proposed filterbanks designs

are critically sampled and perfect reconstruction. To the best of our knowledge, no such filter-

banks have been proposed before. The tools proposed in this thesis make it possible to develop i)

multiresolution representations of graphs, ii) edge-aware processing of regular signals, iii) anomaly

detection in datasets, and iv) sampling of large networks.

xii

Chapter 1

Introduction

1.1 Motivation

Our work is focused on constructing linear wavelet-like transforms for functions defined on the

vertices of an arbitrary finite weighted graph. Graphs provide a very flexible model for representing

data in many domains. Many networks such as biological networks [48], social networks [7, 13] and

sensor networks [38, 47] etc. have a natural interpretation in terms of finite graphs with vertices

as data-sources and links established based on connectivity, similarity, ties etc. The data on

these graphs can be visualized as a finite collection of samples, which we term graph-signals. For

example, graphs can be used to represent irregularly sampled datasets in Euclidean spaces such

as regular grids with missing samples. In many machine learning applications multi-dimensional

datasets can be represented as point-clouds of vectors and links are established between data

sources based on the distance between their feature-vectors. In computer vision, meshes are

polygon graphs in 2D/3D space and the attributes of the sampled points (coordinates, intensity

etc) constitute the graph-signals. The graph-signal formulation can also be used to solve systems of

partial differential equations using finite element analysis (grid based solution). The sizes (number

of nodes) of the graphs in these applications can be very large, which presents computational and

technical challenges for the purpose of storage, analysis etc. In some other applications such as

wireless sensor-networks, the data-exchanges between far-off nodes can be expensive (bandwidth,

latency, energy constraints issues). Therefore, instead of operating on the original graph, it would

be desirable to find and operate on smaller graphs with fewer nodes and data representing a

1

smooth1 approximation of the original data. Moreover, such systems need to employ localized

operations which could be computed at each node by using data from a small neighborhood of

nodes around it. Multi-channel wavelet filterbanks, widely used as a signal processing tool for

the sparse representation of signals, possess both these features (i.e. smooth approximations and

localized operations2). For example, a two channel wavelet transform splits the sample space into

an approximation subspace which contains a smoother (coarser) version of the original signal and

a detail subspace containing additional details required to perfectly reconstruct the original signal.

A discussion of the construction and analysis of wavelet filterbanks for regular signals can be found

in standard textbooks such as [44]. While wavelet transform-based techniques would seem well

suited to provide efficient local analysis, a major obstacle to their application to graphs is that

these, unlike images, are not regularly structured. For graphs, traditional notions of dimensions

along which to filter the data do not hold.

1.2 Background

Transform techniques for graph analysis can be broadly divided into a) global methods, e.g., those

using concepts of graph spectral theory, and b) wavelet like localized methods which are supported

on a local neighborhood around each node. Global methods are often based on the Laplacian

matrix, whose eigenvalues and eigenvectors contain global information about the shape of the

graph. Common applications of global methods include, graph partitioning (graph-cuts) [13],

simplification, graph based feature extraction [24] and graph matching [51]. A comprehensive

discussion of global methods can be found in [3] and [26]. In addition to uncovering mostly

global information, global methods usually do not scale well as the graph size increases, e.g., the

time required to perform the eigenvalue decomposition can be significant. The most expensive

component in the computation of global methods is eigenvalue decomposition(EVD) of graph

matrices, which normally requireO(N3) arithmetic operations. Note that, decentralized algorithm

have been proposed which can greatly simplify the computation of a partial set of principal

eigenvectors in graphs. For example, the algorithm proposed by Kempe [20], computes k principal

eigenvectors of the graph in O(τmixN
2) decentralized steps, where τmix is the mixing time of a

random walk on a network, and with O(k3) computations per node in each round. While these

1more generally, it could be any sparse approximation of the original data.
2In case of FIR wavelet filters

2

approaches are good for structural analysis of graph, requiring only a partial set of eigenvectors,

they have limited use in applications such as compression and denoising which require full spectral

decomposition of the graph.

Researchers have recently focused on developing localized transforms specifically for data de-

fined on graphs. Crovella and Kolaczyk [7] designed wavelet like functions on graphs which are

localized in space and time. These graph functions ψj,k are composed of either shifts or dila-

tions of a single generating function ψ. Wang and Ramchandran [47] proposed graph dependent

basis functions for sensor network graphs, which implement an invertible 2-channel like filter-

bank. There exists a natural spectral interpretation of graph-signals in terms of eigen-functions

and eigen-values of graph Laplacian matrix L. Maggioni and Coifman [6] introduced “diffusion

wavelets” as the localized basis functions of the eigenspaces of the dyadic powers of a diffusion

operator. Hammond et al. [14] construct a class of wavelet operators in the graph spectral do-

main, i.e., the space of eigenfunctions of the graph Laplacian matrix L. These eigenfunctions

provide a spectral decomposition for data on a graph similar to the Fourier transform for stan-

dard signals. A common drawback of all of these filterbank designs is that they are not critically

sampled : the output of the transform is not downsampled and there is oversampling by a fac-

tor equal to the number of channels in the filterbank. Unlike classical wavelet transforms which

have well-understood downsampling/upsampling operations, there is no obvious way in graphs to

downsample nodes in a regular manner, since the neighboring nodes vary in number. Lifting based

wavelet transforms have been proposed in [45, 18] for graphs in an Euclidean Space. However,

these transforms require a Euclidean embedding of the graph. Shen and Ortega [38, 40] have

applied wavelet lifting transforms on spanning trees for a wireless sensor network application,

where invertibility is guaranteed for any tree, as long as nodes in the tree are partitioned into two

sets (even and odd nodes) and the transform is structured by modifying even nodes based on odd

nodes (and vice versa).

1.3 Contributions

The objective of this thesis is to design critically-sampled wavelet-filterbanks on graphs. The

building blocks in our proposed designs are two channel wavelet filterbanks on bipartite graphs,

which provide a decomposition of any graph-signal into a low-pass (smooth) graph-signal, and a

3

high-pass (detail) graph-signal. These designs come in two flavors: i) lifting wavelet filterbanks,

and ii) spectral wavelet filterbanks. We choose bipartite graphs because they are a natural choice

for implementing lifting wavelet filterbanks, and provide easy-to-interpret perfect reconstruction

conditions for spectral wavelet filterbanks. For arbitrary graphs we have two choices: a) we can

either implement our proposed wavelet filterbanks on a bipartite graph approximation of the

original graph, which provides a “one-dimensional” analysis, or b) we can decompose the graph

into multiple edge-disjoint bipartite subgraphs, and apply our proposed filterbanks iteratively on

each subgraph, leading to a “multi-dimensional” analysis. Our contributions in this thesis can be

divided into three major part which we describe in what follows.

1.3.1 Sampling operations in graphs

One of the desired properties of wavelet transforms on graphs is critical sampling: the output

wavelet coefficients are equal in number to the input samples. The critical sampling can be

achieved by partitioning the set of vertices in the graphs into two subsets (say L and H), such

that nodes in L only sample the output of low-pass channel and nodes in H only sample the

output of highpass channel. Algebraically, we describe a linear downsample then upsample (DU)

operation on graphs, in which a set of nodes in the graph are first downsampled (removed) and

then upsampled (replaced) by inserting zeros. Especially, we show that for all undirected bipartite

graphs, the DU operations lead to a spectral decomposition of the graph-signal where spectral

coefficients are reproduced at mirror graph-frequencies around a central frequency. This is a

phenomenon we term as spectrum folding in graphs as it is analogous to the frequency-folding or

“aliasing” effect for regular one-dimensional signals. We utilize this property to define critically

sampled operations for implementing wavelet filterbanks on graphs. This is described in detail in

Chapter 4.

1.3.2 Two-channel wavelet filterbanks on bipartite graphs

We propose two-channel wavelet filterbanks on bipartite graphs which are critically sampled,

and perfect reconstruction. The filterbanks come in two flavors, depending upon the chosen

downsampling method: a) lifting wavelet filterbanks, and b) spectral wavelet filterbanks. The

block diagrams of these two designs are shown in Figures 1.1 and 1.2, respectively.

4

+

P

+

+

U

+

-

analysis side

+

synthesis side

+

-P

+

+

U-

+

-

+

Downsample Filter Filter Upsample

- -

Figure 1.1: Lifting Scheme: Downsampling followed by filtering

The lifting wavelet filterbanks are critically sampled and invertible by construction. These

transforms require splitting the vertex set into two disjoint sets, often called the even, and odd

sets, given which the transform is computed only on the links between nodes in different sets. The

previous splitting schemes for lifting transforms required either the coordinates of the nodes in

some Euclidean embedding (eg. in [45]), or a specific graph structure (eq., trees in [38, 40]). Our

contribution is that we formulate the problem of splitting nodes as a bipartite subgraph approx-

imation problem, and provide greedy heuristics to compute optimal subgraphs. We also apply

these graph-based lifting transforms in a data-gathering application in wireless sensor networks

(WSN).

Next, we propose spectral wavelet filterbanks, in which filtering and downsampling is chosen

so as to guarantee perfect reconstruction. We design spectral filters, and use the spectral fold-

ing phenomenon to provide necessary and sufficient conditions for aliasing cancellation, perfect-

reconstruction and orthogonality in these filterbanks. As a practical solution we propose a graph-

quadrature mirror filterbank (referred to as graph-QMF) design for bipartite graphs which has

all the above mentioned properties. However, the exact realizations of the graph-QMF filters

do not have compact support on the graph, and approximations of exact solutions as compactly

supported solutions incur small reconstruction error and loss of orthogonality. As an alternative,

we design biorthogonal wavelet filterbanks which have compact support and yet provide perfect

reconstruction of any graph signals.

5

analysis side synthesis side

filter downsample upsample filter

- -

Figure 1.2: Spectral Scheme: Filtering followed by downsampling

1.3.3 Bipartite subgraph decomposition

In order to extend two-channel wavelet filterbanks on bipartite graphs to arbitrary graphs, we

formulate a bipartite subgraph decomposition problem, which provides an edge-disjoint collection

of K bipartite subgraphs, each with the same vertex set V and whose union is the original graph.

Each of these subgraphs is then used as a separate “dimension” to filter and downsample, leading

to a K-dimensional separable wavelet filterbank design. The bipartite subgraph decomposition

of graphs is not unique, therefore, we propose metrics to identify optimal decompositions, and

propose algorithms to compute them.

1.4 Thesis Statement and Research Questions

It is possible to extend standard DSP techniques for data defined on graphs. In particular, criti-

cally sampled wavelet transforms can be designed on graphs which have a spectral interpretation,

and provide perfect reconstruction of any signal defined on the graph. The research questions

that we answer are:

1. How to define downsampling and upsampling operations on graphs?

2. How to design wavelet filters on graphs, given a set of spatial and spectral constraints?

6

3. Using these concepts, how to design critically sampled wavelet filterbanks on graphs?

1.5 Publications

The work in this thesis has resulted in following published articles:

• S. K. Narang and Antonio Ortega, “Perfect Reconstruction Two-Channel Wavelet Filter-

Banks For Graph Structured Data”, IEEE Transactions on Signal Processing, June 2012

• S.K. Narang, Y. H. Chao and A. Ortega, “Graph-wavelet filterbanks for edge-aware image

processing”, to appear in IEEE Statistical Signal Processing (SSP’12)

• S.K. Narang and A. Ortega, “Multi-dimensional separable critically sampled wavelet fil-

terbanks on arbitrary graphs”, IEEE Intl. Conf. on Acoustics, Speech and Signal Processing

(ICASSP’12)

• S.K. Narang and A. Ortega, “Downsampling Graphs Using Spectral Theory”, IEEE Intl.

Conf. on Acoustics, Speech and Signal Processing (ICASSP’11).

• J. P.-Trufero, S.K. Narang and A. Ortega, “Distributed Transforms for Efficient Data

Gathering in Arbitrary Networks”, Intl. Conf. on Image Proc. (ICIP’11).

• S.K. Narang and A. Ortega, “Local two-channel critically-sampled filter-banks on graphs”,

Intl. Conf. on Image Proc. (ICIP’10).

• S.K. Narang, G. Shen and A. Ortega, “Unidirectional Graph-based Wavelet Transforms

for Efficient Data Gathering in Sensor Networks”. IEEE Intl. Conf. on Acoustics, Speech

and Signal Processing (ICASSP’10).

• S.K. Narang and A. Ortega, “Lifting based wavelet transforms on graphs”, Asia-Pacific

Sig. and Information Proc. Association (APSIPA ASC’09).

• G. Shen, S.K. Narang and A. Ortega, “Adaptive Distributed Transforms for Irregularly

Sampled Wireless Sensor Networks”. In Proc. of 2009 IEEE Intl. Conf. on Acoustics,

Speech and Signal Processing (ICASSP’09).

7

1.6 Summary

In this chapter, we have described the objectives of this thesis, the motivation behind and a

summary of our contributions. The rest of the thesis is organized as follows: In Chapter 2, we

describe the basic framework required to understand wavelet filterbanks on graphs, and evaluate

some of the existing work on wavelet-like transforms on graph, based on the proposed framework.

In Chapter 3, we propose critically sampled lifting wavelet transforms on any arbitrary graphs,

and discuss a distributed data-gathering application, in which proposed lifting filterbanks are

useful. In Chapter, 4 we introduce the theory behind downsampling/upsampling operations on

graphs. In particular, we describe a spectral folding phenomenon in bipartite graphs which is

analogous to aliasing in standard regular signals. We use these concepts in Chapter 5, to design

two-channel critically sampled wavelet filterbanks on bipartite graphs. In this chapter, we first

propose graph-QMF filterbanks which are orthogonal and perfect reconstruction but do not have

compact support. Then, we considered 1-hop localized filterbanks in which the analysis filters are

exactly 1-hop localized, but synthesis filters do not have compact support. As an alternative,

we propose graph-Bior wavelet filterbanks on bipartite graphs in which are perfect reconstruction

and in which both analysis and synthesis filters have compact support. These filters are not

orthogonal but can be designed to mostly preserve energy. In Chapter 6, we extend the filterbank

designs proposed for bipartite graphs to arbitrary graphs via bipartite subgraph decomposition.

In Chapter 7, we discuss some applications of the proposed filterbanks. Finally, in Chapter 8, we

conclude and describe our future work.

8

Chapter 2

Basic Theory

In this chapter, we describe the basic theory, helpful to understand the construction of graph

wavelet filterbanks. We will use the following notations for the rest of the thesis: we represent

matrices and vectors with bold letters, mathematical sets with calligraphic capital letters and

scalars with normal letters. A graph can be denoted as G = (V,E) with vertices (or nodes)

in set V and links (or edges) as tuples (i, j) in E. The graphs considered in our research work

are undirected graphs without self-loops and without multiple edges between nodes. The edges

can only have positive weights. The size of the graph N = |V| is the number of nodes and

the geodesic distance metric is given as d(v,m), which represents sum of edge weights along the

shortest path between nodes u and v, and is considered infinite if u and v are disconnected . The

j-hop neighborhood Nj,n = {v ∈ V : d(v, n) ≤ j} of node n is the set of all nodes which are at

most j-hop distance away from node n. Algebraically, a graph can be represented with the node-

node adjacency matrix A such that the element A(i, j) is the weight of the edge between node i

and j (0 if no edge). The value di is the degree of node i, which is the sum of weights of all edges

connected to node i, and D = diag({di}) denotes the diagonal degree matrix whose ith diagonal

entry is di. The Laplacian matrix of the graph is defined as L = D −A. The Laplacian matrix

also has a symmetric normalized form L = I − D−1/2AD−1/2, and an asymmetric normalized

form La = I−D−1A, where I is the identity matrix. We denote < f1, f2 > as the inner-product

between vectors f1 and f2.

The rest of the chapter is organized as follows: In Section 2.1, we formally define graph signals

and graph transforms. In Section 2.2, we describe the spectral representation of graph signal

and graph-transforms in terms of eigenvalues and eigenvectors of graph Laplacian matrix. In

9

Section 2.3, we introduce downsampling upsampling operations as graph transforms on graphs,

and in Section 2.4 we utilize these concepts to define a general framework for two-channel wavelet

filterbanks on the graph. In Section 2.5 we compare and evaluate existing graph transforms based

on our proposed framework, and finally we conclude the chapter in Section 2.6.

2.1 Spatial Representation of Graph Signals

A graph signal is a real-valued scalar function f : V → R defined on graph G = (V,E) such that

f(v) is the sample value of function at vertex v ∈ V.1 On a finite graph, the graph-signal can

be viewed as a sequence or a vector f = [f(0), f(1), ..., f(N)]t, where the order of arrangement

of the samples in the vector is arbitrary and neighborhood (or nearness) information is provided

separately by the adjacency matrix A. Graph-signals can, for example, be a set of measured

values by sensor network nodes [47] or traffic measurement samples on the edges of an Internet

graph [7] or information about the actors in a social network. Further, a graph based transform

is defined as a linear transform T : RN → RM applied to the N -node graph-signal space, such

that the operation at each node n is a linear combination of the value of the graph-signal f(n) at

the node n and the values f(m) on nearby nodes m ∈ Nj,n, i.e.,

y(n) =< tn f >= T (n, n)f(n) +
∑

m∈Nj,n

T (n,m)f(m), (2.1)

where tn is the nth row of the transform T. In analogy to the 1-D regular case, we would sometimes

refer to graph-transforms as graph-filters and the elements T (n,m) for m = 1, 2, ...N as the filter

coefficients at the nth node 2 A desirable feature of graph filters is spatial localization, which

typically means that the energy of each basis (i.e., each row) of the graph filter is concentrated in

a local region around a node. Let us define ∆2
k(tn) given as:

∆2
k(tn) =

1

||tn||2
∑

l∈Nk,n

T (n, l)2, (2.2)

1The extension to complex or vector sample values f(v) is straightforward but is not considered in this work.
2Not every linear transform is a graph-transform, since graph-transforms, by definition, are defined along the

edges in the graph. For example, filter-coefficient T (n,m) can be non-zero only if nodes n and m are connected,
i.e., d(n,m) <∞, and the magnitude of T (n,m) usually decreases with increasing distance d(n,m).

10

to be the fraction of energy of nth basis function (i.e., nth row tn), in the k-hop neighborhood

around node n. A graph transform is said to be strictly k-hop localized, or having a compact

support in the spatial domain, if ∆2
k(tn) = 1 for all n = 1, 2, ..N . Note that spatial localization

can also be applied in a weaker sense in which ∆2
k(tn) is not exactly 1 but very close to it for all

n = 1, 2, ...N . Our focus in this thesis is to propose graph-filters with compact support. .

2.2 Spectral Representation of Graph Signals

The spectral decomposition of graph G is defined can be defined in terms of the set of eigenvalues

σ(G), and the corresponding eigenvectors uλ, λ ∈ σ(G) of the graph Laplacian matrix. The

Laplacian matrices L and L are both symmetric positive semidefinite matrices and therefore,

from the spectral projection theorem, there exists a real unitary matrix U which diagonalizes L,

such that UtLU = Λ = diag{λi} is a non-negative diagonal matrix. In our proposed designs,

we use the symmetric normalized form of Laplacian matrix L = D−1/2LD−1/2, which is more

closely related to random walks in the graphs, and is more appropriate in dealing with non-regular

graphs3. This leads to an eigenvalue decomposition of matrix L given as

L = UΛUt =

N∑
i=1

λiuiu
t
i, (2.3)

where the eigenvectors u1,u2, ...,uN , which are columns of U, form a basis in RN and {0 ≤ λ1 ≤

λ2... ≤ λN} are corresponding eigenvalues. Thus, every graph-signal f ∈ RN can be decomposed

into a linear combination of eigenvectors ui given as f =
∑N
n=1 f̄(n)un. It has been shown in [3, 26]

that the eigenvectors of Laplacian matrix provide a harmonic analysis of graph signals which gives

a Fourier-like interpretation. The eigenvectors act as the natural vibration modes of the graph,

and the corresponding eigenvalues as the associated graph-frequencies1. The spectrum σ(G) of a

graph is defined as the set of eigen-values of its normalized Laplacian matrix, and it is always a

3This is because Q = D−1A is the transition matrix of a Markov chain which has the same eigenvalues as
I−L. The eigenvalues of L are in “normalized” form, i.e, if λ ∈ σ(G) then 0 ≤ λ ≤ 2, and are thus consistent with
the eigenvalues in the stochastic processes. Further, the normalization reweighs the edges of graph G so that the
degree of each node is equal to 1. Refer to [3] for details.

1The mapping un → V associates the real numbers un(i), i = {1, 2, ..., N}, with the vertices V ofG. The numbers
un(i) will be positive, negative or zero. The frequency interpretation of eigenvectors can thus be understood in
terms of number of zero-crossings (pair of connected nodes with different signs) of eigenvector un on the graph G.
For any finite graph the eigenvectors with large eigenvalues have more zero-crossings (hence high-frequency) than
eigenvectors with small eigenvalues. These results are related to ‘nodal domain theorems’ and readers are directed
to [8] for more details.

11

subset of closed set [0, 2] for any graph G. For the purpose of this thesis, an eigenvector uλ is

either considered to be a “lowpass” eigenvector if eigenvalue λ ≤ 1, or “highpass” eigenvector if

λ > 1. The graph Fourier transform (GFT), denoted as f̄ , is defined in [14] as the projections of

a signal f on the graph G onto the eigenvectors of G, i.e.,

f̄(λ) =< uλ , f >=

N∑
i=1

f(i)uλ(i). (2.4)

Note that GFT is an energy preserving transform. A signal is considered “lowpass” (or “high-

pass”) if the energy |f̄(λ)|2 ≈ 0 for all λ > 1 (or for all λ ≤ 1). In case of eigenvalues with

multiplicity greater than 1 (say λ1 = λ2 = λ) the eigenvectors u1,u2 are unique up to a unitary

transformation in the eigenspace Vλ = Vλ1
= Vλ2

. In this case, we can choose λ1u1u
t
1 +λ2u2u

t
2 =

λPλ where Pλ is the projection matrix for eigenspace Vλ. Note that for all symmetric matrices,

the dimension of eigenspace Vλ (geometric multiplicity) is equal to the multiplicity of eigenvalue

λ (algebraic multiplicity) and the spectral decomposition in (2.3) can be written as

L =
∑

λ∈σ(G)

λ
∑
λi=λ

uiu
t
i =

∑
λ∈σ(G)

λPλ. (2.5)

The eigenspace projection matrices are idempotent and Pλ and Pγ are orthogonal if λ and γ are

distinct eigenvalues of the Laplacian matrix, i.e.,

PλPγ = δ(λ− γ)Pλ, (2.6)

where δ(λ) is the Kronecker delta function.

2.3 Downsampling in Graphs

A downsampling operation on the graph G = (V,E) can be defined as choosing a subset H of

vertex set V such that all samples of the graph signal f , corresponding to indices not in H, are

discarded. A subsequent upsampling operation projects the downsampled signal back to original

RN space by inserting zeros in place of discarded samples in Hc = L. Given such a set H we

define a downsampling function βH ∈ {−1,+1} given as

12

βH(n) =

 1 if n ∈ H

−1 if n ∈ L
(2.7)

and a diagonal downsampling matrix JβH = diag{βH(n)}.Note that, by definition βL(n) =

−βH(n), therefore everything we derive for βH can also be derived for βL with appropriate sign

changes. The overall ‘downsample then upsample’ (DU) operation , using βH can then be

algebraically represented as

fdu(n) =
1

2
(1 + βH(n))f(n)

=
1

2
(f(n) + βH(n)f(n)). (2.8)

Thus the signal after DU operation is the sum of the original signal and the signal modulated

with βH(n). We can write (2.8) in the matrix form as:

fdu =
1

2
(I + JβH)f

=
1

2
(f + JβH f) (2.9)

Note that JβH is a symmetric matrix such that J2
βH

= I (identity matrix). Since the graph-signal

after DU operation also belongs to RN space, it too has a GFT decomposition f̄du according to

(2.4). The relationship between the GFTs of f and fdu is given as:

f̄du(l) =< ul , fdu >=
1

2
(< ul , f > + < ul , JβH f >) (2.10)

The inner-product < ul , JβH f > can also be written as < JβHul , f >, which represents the

projection of input signal f onto a modulated eigenvector JβHul. We define this projection as a

modulated spectral coefficient f̄d(l) and (2.10) can be written as:

f̄du(l) =
1

2
(f̄(l)+ < JβHul , f >) =

1

2
(f̄(l) + f̄d(l)) (2.11)

We describe the effect of this modulation in the spectral domain of graph in Chapter 4. We

show that in case of bipartite graphs, the spectrum of the graph is symmetric, and the modulated

eigenvectors are also the eigenvectors of the same graph. This phenomenon, which we term as

13

spectral folding, forms the basis of our two-channel spectral filterbank framework, and will be

described in detail in Chapter 4.

2.4 Two-Channel Filterbanks on Graph

A two-channel wavelet filterbank on a graph provides a decomposition of any graph-signal into a

lowpass (smooth) graph-signal and a highpass (detail) graph-signal component. The two channels

of the filterbanks are characterized by the graph-filters {Hi,Gi}i∈{0,1} and the downsampling

operations βH and βL as shown in Figure 2.1. The transform H0 acts as a lowpass filter, i.e., it

transfers the contributions of the low-pass graph-frequencies, which are below some cut-off, and

attenuates significantly the graph-frequencies which are above the cut-off. The highpass transform

H1 does the opposite, i.e, it attenuates significantly, the graph-frequencies below some cut-off

frequency. The filtering operations in each channel are followed by downsampling operations βH

and βL, which means that the nodes with membership in the set H store the output of highpass

channel while the nodes in the set L store the output of lowpass channel. For critically sampled

output we have: |H| + |L| = N . Using (2.9), it is easy to see from Figure 2.1 that the output

analysis side synthesis side

L L

H H

L

H

Figure 2.1: Block diagram of a two-channel wavelet filterbank on graph.

signals in the lowpass and highpass channels after reconstruction are given as

f̂L =
1

2
G0(I + JβL)H0f

=
1

2
G0(H0f + JβLH0f), (2.12)

14

and

f̂H =
1

2
G1(I + JβH)H1f

=
1

2
G1(H1f + JβHH1f), (2.13)

respectively. Thus, f̂L is the sum of product of G0 with signal H0f and a modulated signal

JβLH0f . Similarly, f̂H is the product of G1 with signal H1f and a modulated signal JβHH1f .

Note that without the DU operations, the output of two channels are simply f̂L = G0H0f and

f̂H = G1H1f , respectively. Thus the modulated signals G0JβLH0f and G1JβHH1f in (2.12) and

(2.13), respectively, can be interpreted as producing distortion (or aliasing) in the two channels.

The overall output f̂ of the filterbank is the sum of outputs of the two channels, i.e., f̂ = f̂L+ f̂H =

Tf , where T is the overall transfer function of the filterbank. Combining (2.12) and (2.13) f̂ can

be written as:

f̂ =
1

2
G0(I + JβL)H0f +

1

2
G1(I + JβH)H1f . (2.14)

Separating out modulation terms in (2.14), we get

f̂ =
1

2
(G0H0 + G1H1)︸ ︷︷ ︸

Teq

f +
1

2
(G0JβLH0 + G1JβHH1)︸ ︷︷ ︸

Talias

f . (2.15)

where Teq is the transfer function of the filterbank without the DU operation and Talias is

another transform which arises primarily due to the downsampling in the two channels. For

perfect reconstruction T should be equal to identity which can be ensured by requiring Teq to be

a scalar multiple of identity and Talias = 0. Thus the two-channel filterbank on a graph provides

distortion-free perfect reconstruction if

G0JβLH0 + G1JβHH1 = 0

G0H0 + G1H1 = cI (2.16)

In order to design perfect reconstruction filterbanks we need to determine a) how to design

filtering operations Hi,Gi, i = {0, 1}, and b) the downsampling functions βL and βH . In Chapter

15

4, we show that the spectral folding phenomenon in bipartite graphs leads to an aliasing interpre-

tation of (2.16) and we design filterbanks which cancel aliasing and lead to perfect reconstruction

of any graph-signal.

2.5 Literature Review

There has been some work in the past few years on developing localized transforms for data defined

on graphs. While some of these works do not take into account the “filterbank perspective”,

our goal in this section is to place these designs in the common framework described so far in

this chapter. We broadly divide the existing graph-transform designs into two types, namely,

spatial and spectral designs. We first describe spatial wavelet transform designs which are based

on the spatial features of the graph, i.e., in terms of node connectivity and distances between

nodes. Next, we describe spectral wavelet transforms on graphs which are based on the spectral

features of the graph, i.e. in terms of the eigenvalues and eigenvectors of a matrix defined on the

graph. In order to understand these designs we introduce some additional notation. We define

∂Nh,k to be an h-hop neighborhood ring around node k (i.e., the set of all nodes v such that

the shortest hop distance between v and k is exactly equal to h), a j-hop adjacency matrix Aj

s.t. Aj(n,m) = 1 only if m ∈ Nj,n, a j-hop diagonal degree matrix with Dj(k, k) = |Nj,k| s.t.

dj,k = |Nj,k| and a j-hop uniform Laplacian matrix Lj = Dj − Aj . Similarly we define a ring

adjacency matrix ∂Ah such that ∂Aj(n,m) = 1 only if m ∈ ∂Nj,n and corresponding ring degree

matrix ∂Dh = diag{∂dj,k} s.t. ∂dj,k = |∂Nh,k|.

2.5.1 Spatial Designs

2.5.1.1 Random transforms

Wang and Ramchandran [47] proposed spatially localized graph transforms for sensor network

graphs with binary links (i.e., links which have weight either 0 or 1). The transforms proposed

in [47] either compute a weighted average given as

y(n) = (1− a+
a

dj,k + 1
)x(n) +

∑
m∈Nj,n

a

dj,k + 1
x(m), (2.17)

16

or a weighted difference given as

y(n) = (1 + b− b

dj,k + 1
)x(n)−

∑
m∈Nj,n

b

dj,k + 1
x(m), (2.18)

in a j-hop neighborhood around each node in the graph. The corresponding transform matrices

can be represented for a given j as

Tj = I− a(I + Dj)
−1Lj

Sj = I + b(I + Dj)
−1Lj .

(2.19)

This approach intuitively defines a two-channel wavelet filter-bank on the graph consisting of two

types of linear filters: a) approximation filters as given in (2.17) and b) detail filters as given in

(2.18). Note that these transforms are oversampled and produce output of the size twice that of

the input, since no downsampling is applied after filtering. Further none of the transforms can be

called a wavelet filter since both transforms have a non-zero DC response.

2.5.1.2 Graph wavelets

Crovella and Kolaczyk [7] designed wavelet like transforms on graphs that are localized in

space. They defined a collection of functions ψj,n : V → R, localized with respect to a range

of scale/location indices (j, n), which at a minimum satisfy
∑
m∈V ψj,n(m) = 0 (i.e. a zero DC

response). Each function ψj,n is constant within hop rings ∂Nh,n and can be written as:

y(n) = aj,0x(n) +

j∑
h=1

∑
m∈Nh,n

aj,h
∂dj,n

x(m) (2.20)

In matrix form the j-hop wavelet transform Tj can be written as:

Tj = aj,0I + aj,1∂D−11 ∂A1 + ...aj,j∂D−1j ∂Aj (2.21)

Further, the constants aj,h satisfy
∑h=j
h=0 aj,h = 0, which allows the wavelet filters to have zero

DC response. and can be computed from any continuous wavelet function ψ(x) supported on

the interval [0, 1) by taking aj,h to be the average of ψ(x) on the sub-intervals Ij,h = [h
j+1 ,

h+1
j+1].

Though these transforms are local and provide a multi-scale summarized view of the graph, they

17

do not have approximation filters and are not invertible in general.

2.5.1.3 Lifting wavelet transforms

Lifting based wavelet transforms have been proposed for graphs with a Euclidean embedding

in [45], and for arbitrary routing trees in [38]. In [18], lifting transform is designed in an iterative

way by lifting one coefficient at a time. These filterbanks provide a natural way of constructing

local two-channel critically sampled filter-banks on graph-signals. A block-diagram of lifting

wavelet filter-bank is shown in Figure 2.2. In this approach the vertex set is first partitioned into

f1
even

+

f0
even

f0
odd

Bi-
partition

Block

f0

DO

P

+

DE
+

U

+

-

+

f1
odd

To next level decomp

Figure 2.2: Block diagram of two-channel lifting wavelet filter-banks

sets of even and odd nodes V = O∪E . The odd nodes compute their prediction coefficients using

their own data and data from their even neighbors followed by even nodes computing their update

coefficients using their own data and prediction coefficient of their neighboring odd nodes. The

equivalent transform in matrix-form can be written as:

Tlift =

Ũ︷ ︸︸ ︷ IO 0

U DE


P̃︷ ︸︸ ︷ DO −P

0 IE

 (2.22)

where DO and DE are diagonal matrices of size |O| and |E| respectively. Thus, the lifting trans-

forms are critically sampled by design. However, the partitioning schemes for these lifting trans-

forms required either the coordinates of the nodes in some Euclidean embedding (eg. in [45]), or

specific structure of the graph (eq., trees in [38, 40]). In Chapter 3, we formulate the problem of

partitioning nodes as a bipartite subgraph approximation problem, and provide greedy heuristics

to compute optimal subgraphs.

18

2.5.2 Spectral Designs

2.5.2.1 Diffusion wavelets

Maggioni and Coifman [6] introduced diffusion wavelets, a general theory for wavelet decomposi-

tions based on compressed representations of powers of a diffusion operator. Their construction

interacts with the underlying graph or manifold space through repeated applications of a diffu-

sion operator T, such as the graph Laplacian matrix L. The localized basis functions at each

resolution level are orthogonalized and downsampled appropriately to transform sets of orthonor-

mal basis functions through a variation of the Gram-Schmidt orthonormalization (GSM) scheme.

Although this local GSM method orthogonalizes the basis functions (filters) into well localized

‘bump-functions’ in the spatial domain, it does not provide guarantees on the size of the support

of the filters it constructs. Further the diffusion wavelets form an over-complete basis and there

is no simple way of representing the corresponding transform T.

2.5.2.2 Spectral graph wavelets

Hammond et al [14] defined spectral graph wavelet transforms that are determined by the choice

of a kernel function g : R+ → R+. The kernel g(λ), is a continuous bandpass function in spectral

domain with g(0) = 0 and limλ→λmax g(λ) = 0, where λmax is the highest magnitude eigenvalue

of the Laplacian matrix L (or L). The corresponding wavelet operator Tg = g(L) = Ug(Λ)Ut

acts on a graph signal f by modulating each Fourier mode as

Tgf =

N∑
k=1

g(λk)f̄(k)uk (2.23)

The kernel can be scaled as g(tλ) by a continuous scalar t. For spatial localization, the authors

design filters by approximating the kernels g(λ) with smooth polynomials functions. The ap-

proximate transform with polynomial kernel of degree k is given by Tĝ = ĝ(L) =
∑k
l=0 alL

l and

is exactly k-hop localized in space. By construction the spectral wavelet transforms have zero

DC response, hence in order to stably represent the low frequency content of signal f a second

class of kernel function h : R+ → R+
is introduced which acts as a lowpass filter, and satisfies

h(0) > 0 and limλ→λmax h(λ) = 0. Thus a multi-channel wavelet transform can be constructed

from the choice of a low pass kernel h(λ) and J band-pass kernels {g(t1λ), ..., g(tJλ)} and it

19

has been shown that the perfect reconstruction of the original signal is assured if the quantity

G(λ) = h(λ)2 +
∑J
k=1 g(tiλ)2 > 0 for all eigenvalues λ in the spectrum of L. However, these

transforms are overcomplete, for example, a J-scale decomposition of graph-signal of size N pro-

duces (J + 1)N transform coefficients. As a result, the transform is invertible only by the least

square projection of the output signal onto a lower dimension subspace.

2.6 Summary

In this chapter, we formally introduced graph signals, graph transforms and their spectral domain

representation. Further, we introduced downsampling-upsampling (DU) operations on the graphs.

These concepts provide a framework for the design of critically sampled two-channel filterbanks

on the graphs, and we stated the necessary conditions for these filterbanks to provide perfect

reconstruction of any graph signal. Further, we analyzed and evaluated some of the existing

graph based transforms, by representing them using the framework introduced in Chapter 2. A

common drawback with most of the existing transforms, is oversampling, i.e., number of output

wavelet coefficients generated are more than the number of input coefficients. The lifting wavelet

transforms are exceptions to this, as they are critically sampled by construction. However, existing

lifting based transforms require graph simplification (i.e., approximation of graph to a bipartite

graph), which results in the loss of graph properties. In Chapters 5, we will describe two filterbank

designs, namely graph-QMF filterbanks, and graph-Bior filterbank, respectively which are critically

sampled and do not require any graph-simplifications. To conclude this chapter, Table 2.1 presents

a summary of existing methods and their properties.

4When designed using asymmetric normalized Laplacian matrix.
5The exact Graph-QMF solutions are perfect reconstruction and orthogonal, but they are not compact support.

Localization is achieved with a matrix polynomial approximation of the original filters, which incurs some loss of
orthogonality and reconstruction error. This error can be reduced to arbitrary small levels by increasing the degree
of approximation.

20

Method DC response CS PR Comp OE GS

Wang & Ramchandran [47] non-zero No Yes Yes No No

Crovella & Kolaczyk [7] zero No No Yes No No

Lifting Scheme [18, 38, 45] zero for wavelet basis Yes Yes Yes No Yes

Diffusion Wavelets [6] zero for wavelet basis No Yes Yes Yes No

Spectral Wavelets [14] zero for wavelet basis No Yes Yes No No

graph-QMF filterbanks (Sec: 5.3) zero for wavelet basis4 Yes Yes No5 Yes No

graph-Bior filterbanks (Sec: 5.5) zero for wavelet basis4 Yes Yes Yes No No

Table 2.1: Evaluation of graph wavelet transforms. CS: Critical Sampling, PR: Perfect Recon-
struction, Comp: compact support, OE: Orthogonal Expansion, GS: Requires Graph Simplifica-
tion.

21

Chapter 3

Lifting wavelet filterbanks on graphs

In this chapter, we describe the construction of two-channel lifting wavelet transforms on the

vertices of a graph.1 Lifting wavelet transforms, introduced earlier in Section 2.5, are comprised

of three steps, namely, splitting step, prediction step and update step. In the context of graphs, the

splitting step corresponds to splitting (labeling) the nodes in the graph into two sets, traditionally

called even set and odd set, respectively. Then in the prediction step, odd set of nodes compute

detail coefficients using data from their neighboring even nodes, and subsequently in the update

step, the even nodes compute update coefficients using detail coefficients from their neighboring

odd nodes. The overall lifting transform, written in matrix form in (2.22), is critically sampled

and invertible by design. A block-diagram of lifting wavelet filter-bank is shown in Figure 2.2.

There are two important choices involved in designing lifting filterbanks: a) how to compute

even-odd assignment of the nodes (i.e., splitting step), and b) how to design prediction and update

filters. For the latter, there exist many choices. The prediction filters, for example, can be designed

in a variety of ways, such as simple average filters [38], filters providing planar approximation [45],

filters based on spectral properties [29], or data-adaptive filters [36], etc. Similarly, the update

filters can be designed as simple smoothing filters [38], or filters providing orthogonality between

update and detail coefficients [39], etc. However, the choice in (a), i.e, the problem of choosing

even-odd assignment of the nodes, is relatively less studied in literature. While any even-odd

assignment strategy will guarantee invertibility of the resulting filterbank, it is not clear what is

an optimal split on the graph. An architecture for lifting wavelet analysis is introduced in [45]

for irregular grids in 2-D or 3-D Euclidean spaces. However, the even-odd assignment strategy

1Parts of this research are jointly conducted with Dr. Godwin Shen, and J. Perez-Trufero. See [31], and [32]
for details.

22

used there, requires location information of the nodes, and hence cannot be applied to general

graphs. In [18], Jansen et al., introduce lifting wavelet transforms on general graphs based on

the “lifting one coefficient at a time” theme. In this scheme a lifting filterbank is implemented

iteratively in N stages (N is the number of nodes in the graph), such that in each stage only one

node is assigned an odd parity, while the remaining nodes are all declared even nodes. Thus, the

algorithm produces only one wavelet (i.e., detail) coefficient at each scale, and this can be very

slow in decomposing graphs with a large number of nodes. Recently, Shen et al. [38] proposed

lifting transforms on trees, in which even-odd assignment at a node depends on the shortest hop

distance of the node from the root node. Their assignment strategy defines roughly 50% of nodes

as odd nodes, at each scale.

The starting point for this work is the observation, that the idea in [38] can be extended to

arbitrary graphs, no longer constrained to be planar and acyclic, as long as suitable even/odd

assignment algorithms on the graph can be identified. Our main contribution in this chapter is that

we formulate the even-odd assignment problem on the graph as a bipartite subgraph approximation

problem,which is to approximate the original graph as a single bipartite subgraph, or as a collection

of bipartite subgraphs. Each of these subgraphs is defined on the original set of vertices and a

subset of edges.. This formulation helps us define optimal even/odd assignment strategies for

various applications. The outline of the rest of the chapter is as follows: in Section 3.1 we

formulate the problem of even-odd assignment in lifting wavelet transforms on graphs as a bipartite

subgraph approximation. In Section 3.2, we propose an even-odd assignment based on maximum

bipartite subgraph approximation in the original graph, and propose a greedy heuristic based

algorithm to obtain such an assignment. This approach is appropriate for applications where we

want to minimize the loss in the quality of lifting filters due to bipartite subgraph approximation,

and we discuss a graph-denoising example where these lifting transforms are useful. In Section 3.3,

we propose an even-odd assignment based on finding a bipartite subgraph with a dominating set as

one of its natural partitions. This strategy is appropriate in compression applications, where the

data stored on the even nodes require more bits for storage or transmission than the data on odd

nodes, and therefore it is desired to have the minimum number of even nodes in the network. We

use it to implement lifting transforms in a data gathering application in wireless sensor networks

(WSN), and show performance gains. Finally, we summarize the chapter in Section 3.4.

23

3.1 Problem Formulation

The starting point of this work is the design of a unidirectional 2D lifting transform along arbitrary

trees in a wireless sensor network application, proposed by Shen and Ortega [38]. Given a tree

graph, the authors split the nodes into even and odd nodes based on their minimum hopping

distance from the root node (see the tree defined by solid lines in Figure 3.1 as an example). A

lifting transform is then applied locally on the tree using these assignments. Since trees are acyclic

planar graphs, the even-odd assignment of nodes is well-defined and no pair of directly connected

nodes is assigned identical (even/odd) parity. To apply this idea to arbitrary graphs (in general

cyclic and non-planar) would require selecting an even-odd assignment on these graphs. Referring

Figure 3.1: Even Odd Assignment in routing trees designed in [38].The dashed lines show the
edges not used by the transform though they are within radio-range

again to Figure 3.1 if we now consider a graph that includes both solid and dashed lines it can

be seen that nodes that are neighbors in the graph are no longer guaranteed to have opposite

parity (e.g., 4 is even and connected to 3 and 5 which are both even as well).Let P̃ and Ũ be the

transform matrices in the prediction and update step as defined in (2.22) and let E denote the set

of even nodes (blue nodes), and O denote the set of odd nodes (red nodes). Note that E and O

are disjoint sets and E ∪O = V. Given this even-odd assignment of nodes in the graph, the lifting

transform is implemented as follows: we define fO and fE as the components of input signal on

the sets O, and E , respectively, P̃O,E as the submatrix of P̃ containing prediction weights from

24

nodes in O to nodes in E , and ŨE,O as the submatrix of Ũ containing update weights from nodes

in E to nodes in O. The forward lifting transform is then given as:

dO = fO − P̃O,E fE

sE = fE + ŨE,OdO. (3.1)

This transform is invertible and the original values can be recovered by following inverse lifting

steps given as:

fE = sE − ŨE,OdO

fO = dO + P̃O,E fE . (3.2)

In some applications when we may want to have over-sampled transforms on the graph, we

compute one more lifting transform, with the parity of even and odd nodes swapped. In this case,

each node has one detail coefficient and one update coefficient value.

We observe that in the prediction step of lifting, odd nodes only use their even neighbors’

data to compute prediction coefficients. Similarly, in the subsequent update step, even nodes only

use their odd neighbors’ data to compute their update coefficients. Thus, nodes of the same

parity (even/odd), do not use each other’s data, even if they are neighbors in the graph. In other

words, links between any two even nodes or any two odd nodes, do not participate in computing

the lifting transform, and can be considered non-existent for the purpose of implementing the

filterbank. Therefore, the even-odd assignment problem can be formulated as a bipartite subgraph

approximation problem. A bipartite graph B = (L,H,E) contains two natural clusters L and

H, such that all the links connect nodes in L to nodes in H, and vice versa. The bipartite graphs

are also called two-colorable graphs, since they have no conflicting edges. Thus, given a graph

G = (V, E), and an even-odd assignment which splits the vertex set V into an even

set E and an odd set O, the graph which is actually used to compute prediction and

update filters is a bipartite graph B = (E ,O, Ê), where Ê ⊂ E is the subset of all those

edges, which connect an even node with an odd node.

Note that this formulation results in edge losses, since the edges in set E−Ê do not participate

in computing the transform. An alternative to this approach is to decompose the graph iteratively

25

into multiple bipartite subgraphs (say K), and implement the lifting transform in K stages,

restricting the splitting and filtering operations in each stage to only one bipartite graph. The

details of bipartite subgraph decomposition of a graph are presented in Chapter 6. In the present

chapter, we only focus on optimizing one stage of lifting transforms (i.e., by approximating the

original graph as a single bipartite graph). The optimality criteria for the bipartite approximation

depends on the application. In the next section, we discuss optimality in terms of the quality of

the lifting filters.

3.2 Maximum Bipartite Subgraph Approximation

Assume an even-odd assignment {E ,O}, which assigns an even or an odd parity to each vertex of

a graph G = (V, E) of size |V| = N . Given this assignment the adjacency matrix A of G can be

written as:

A =

AO,O AO,E

AE,O AE,E

 (3.3)

where the submatrix AO,O of A is adjacency matrix of a subgraph containing odd nodes only.

Similarly AE,E is a submatrix of a subgraph having even nodes only. These matrices contain edges

which have conflicts since they connect nodes of same parity. The block matrices AE,O and AO,E

contain edges which do not have conflicts. A lifting transform based on this even-odd assignment

utilizes only the AE,O and AO,E matrices of adjacency matrix, in which case the adjacency matrix,

actually used in computing filters is given as:

Â =

 0 AO,E

AE,O 0

 (3.4)

and corresponds to a bipartite subgraph B = (E ,O, Ê), as explained in Section 3.1. This bipartite

subgraph approximation affects the quality of the prediction and update filters. Therefore, we

define a metric that measures the loss in the quality of lifting filters due to the bipartite subgraph

decomposition, and choose optimization criteria to minimize this loss metric. In order to further

expand upon this, we would need to choose a specific design of prediction and update filters. Let

us choose prediction and update filters based on simple averages as defined in [38]. Using this

filter-design, the best quality prediction filter at node i is achieved, when i can use data from all

26

of its neighbors. As a result, the “best” case weight applied to node j by the prediction filter at

node i is given as:

wp(i, j) =

 1 if i = j

−A(i,j)
D(i,i) if i 6= j

(3.5)

where D(i, i) is the degree of node i (D(i, i) = 1 for isolated nodes). The operations in (3.5) can

be written in matrix form as:

wp = I−D−1A (3.6)

However, because of bipartite subgraph approximation some neighbors of each node can not be

used in computing filters, and the the “approximate” case weight applied to node j by the filter

node i, in the prediction step is given as:

ŵp(i, j) =

 1 if i = j

− Â(i,j)

D̂(i,i)
if i 6= j

(3.7)

and in the matrix form as:

ŵp = I− D̂−1Â (3.8)

Therefore, an optimal bipartite subgraph decomposition, in this case, is the one that minimizes

the difference between the best case filters and the approximate filters. Using (3.6) and (3.8), we

get:

||wp − ŵp||1 = ||D−1A− D̂−1Â||1 = ∆ (3.9)

where ∆ is the entry-wise 1-norm of the difference between wp and ŵp. The filtering operation

in the update step depends on the predict operations in the previous step, and therefore are

non-linear. However, to keep the optimization linear, we assume that the prediction coefficients

are computed according to the “best” case (i.e, by using data from all neighbors at each node).

Thus, we ignore the contribution of predict operations, and focus only on the update step. Then,

the update weight applied to the node j, by the update filter centered at node i is equal to

27

wu(i, j) = A(i, j)/(2D(i, i)) in the “best” case and is equal to ŵu(i, j) = Â(i, j)/(2D̂(i, i)) in

the “approximate” case. Similar to the prediction case, the entry-wise 1-norm of the difference

between best case filters and the approximate filters can be written as:

||wu − ŵu||1 =
∑
i

∑
j

|wu(i, j)− ŵu(i, j)|

=
∑
i

∑
j

| A(i, j)

2D(i, i)
− Â(i, j)

2D̂(i, i)
|

= ||1
2
D−1A− 1

2
D̂−1Â||1 =

1

2
∆ (3.10)

Thus, minimizing ∆ in (3.9), and (3.10) minimizes the norm of the difference of both prediction

and update operations. While this is applicable only for the average prediction and update filters,

in general ∆ provides a good measurement of loss in the quality of best case and approximate

filters. Further, since degree matrix D itself is derived from A, therefore if A ≈ Â then D̂ ≈ D

and ∆ = ||D−1A − D̂−1Â||1 ≈ 0. Thus, in order to minimize ∆, we minimize Θ = ||A − Â||1,

which using (3.3), and (3.4), can be written as:

Θ = ||A− Â||1 = ||AO,O||1 + ||AE,E ||1 (3.11)

According to (3.11), Θ is equal to the number of conflicting edges in the graph, i.e., number

of edges which have nodes of same parity on both its ends, and minimizing Θ corresponds to an

even-odd assignment which minimizes the number of conflicts in the graph. The problem can

also be formulated as a max-cut problem [1], for which many good centralized approximations

available. However, here we choose a decentralized, synchronous algorithms called conservative

fixed probability colorer (CFP) given in [12], which can be computed iteratively by using only 1-

hop communications at each step. The algorithm operates in a distributed manner which is more

efficient in the case of large graphs. The CFP colorer algorithm solves the corresponding problem

of 2 colors graph coloring problem (2-GCP) so as to minimize the conflicts. This algorithm is

based on a simple greedy local heuristics and gives competitive results as compared to other

k-GCP algorithms [12]. The algorithm starts with each node choosing a parity (even/odd) at

random. Then the nodes repeatedly update their colors in synchronized steps. In each step, each

node decides whether or not to activate by comparing a randomly generated number with some

28

activation probability p. If the node activates, then it chooses a color that minimizes the number

of conflicting edges that it has with its neighbors based on their parity in the previous step.

Those nodes that change color inform their neighbors: all of a node’s operations are thus based

on information that it has available locally. Figure 3.2(a) shows a sample even-odd assignment

for the Karate Data [50] and Figure 3.2(b) shows the reduction of conflicts with each iteration.

The convergence of solution has been discussed in [12]. If the solution converges, it ensures

(a) Even-Odd assignment on Graph (b) convergence of CFP algorithm. The x-axis is
number of iterations. The value on y-axis is the
fraction of conflicting edges.

Figure 3.2: Even-Odd assignment on Zachary Karate Data [50] using CFP algorithm.

in probability that there are no nodes having more than 50% neighbors of same parity. The

algorithm can be easily extended to weighted edge graphs, where we minimize the total weight of

the conflicting edges at each node, instead of the total number of edges.

3.2.1 Example: graph denoising

We address the even-odd assignment problem in the design of lifting transforms for a simple

graph denoising application. Graph denoising problem refers to denoising data, defined on the

vertices of a graph, using connectivity information, and may be applied as a preprocessing tool in

analyzing real world graphs, e.g., protein interaction networks [33]. The motivation behind graph

denoising is that if the original clean data is smooth, or piecewise smooth on the graph, then

the samples at any two nodes, which are connected directly by a link, are correlated. Hence the

sample at a node can be predicted using the samples of its 1-hop neighbors, and the prediction

error corresponds to the noise as well as transition between two smooth regions. The lifting

based wavelet transforms are useful in graph denoising, because the wavelet (detail) coefficients

29

obtained in the transforms are exactly these prediction errors. Thus, denoising can be performed

by transforming the noisy data into the wavelet domain, applying thresholding in the wavelet

domain, and inverse transforming the denoised wavelet coefficients. Since both forward and

inverse lifting transforms have compact support (1-hop localized support at each node), they

can be quite efficient in a distributed denoising application.

In this example, we use prediction and update filters based on simple averages as defined

in [38]. The toy graphs of our experiment are similarity graphs (see [26], Section 2.2) with N

uniformly sampled nodes from two partially overlapping Gaussian distributions. An edge {i, j}

between two vertices in the graph exists if the difference in the corresponding sample values is less

than some threshold. In order to get optimal quality prediction and update filters, we formulate

the even-odd assignment problem as a maximum bipartite subgraph approximation problem, and

apply CFP algorithm, described above, to obtain a solution. For thresholding we apply universal

threshold given by Donoho [10] thr =
√

2 log2(N) on the wavelet coefficients normalized to the

noise level [19]. An example graph with N = 200 sample values is shown in Figure 3.3(a). Figures

3.3(b)-(f) show Voronoi tessellations of the distribution field with N = 1500 sampled points as

Voronoi sites. For Figure 3.3(b) the value of each sample is the mean of the distribution from

which it is drawn. In Figure 3.3(c) sample values are the actual noisy values. The intensity of

each cell reflects the value of corresponding sample in the cell rescaled to the range between [0, 1].

Figure 3.3 (d),(e),(f) are the Voronoi tessellations of denoised samples. This problem can be seen

as a 2D version of denoising of a general M-dimensional discrete data. While our results are

preliminary they demonstrate promising performance as compared to simple, single-step methods

operating on the Laplacian matrix that have been proposed in the literature. We compare our

results to both short time and long time solutions of the diffusion heat equation ([3, 51]) on the

graphs . The Voronoi tessellations of the field constructed from denoised values of the samples

are drawn in Figure 3.3(c)-(f). The plots show that lifting transform based denoising results are

closer to original distribution in Figure 3.3(b) than diffusion based methods. To quantitatively

assess these results we use two quality metrics: peak signal to noise ratio (PSNR) and standard

deviation(STD) of samples. Results are in Figure 3.5 and 3.4. As can be seen in Figure 3.5, PSNR

achieved in lifting is higher than for diffusion based methods, with better results achieved with

the oversampled approach. Note that gains from oversampling are only significant for relatively

sparse graphs. In Figure 3.4 we can observe reduction STD with respect to the original signal and,

30

here too, we observe STD of oversampled transform to be lower than STD in critically sampled

case.

3.3 Dominating Set Approximation

In the context of compression schemes which use distributed spatial transforms, the main objective

is to compress the data into transform coefficients that require as few bits as possible. Note that

in the case of the lifting transforms, even nodes in the network must transmit raw (original)

data to their neighbors before any transform computations can take place. Moreover, the update

coefficients computed on the even nodes, are also very similar to the original data, and take as

many bits as required to encode the original data. Therefore, we also refer to even nodes as raw

data nodes. Odd nodes then use this even node data to compute detail coefficients, hence, odd

nodes can also be called aggregating nodes. Therefore, in this section we shall refer to even-odd

assignment as raw-aggregating node assignment, or simply RANA. If the sensed data is spatially

correlated and a “sufficient” amount of data is received at aggregating nodes, the decorrelated

data (i.e., the transform coefficients) at aggregating nodes will generally require significantly fewer

bits than those needed to represent raw data. In this case, the objective of even-odd assignment

is to minimize the number of even nodes as much as possible, and hence the maximum bipartite

subgraph approximation described in Section 3.2, may not be optimal.

Consider an in-network transform where RANA leads to raw nodes in set E and aggregating

nodes in set O. Suppose that we compute the transform in a distributed manner using the method

described above. For simplicity, suppose that data from each raw node m is encoded using Br

bits and that the transform coefficient from each aggregating node n is encoded using cBr bits

for some constant c ∈ (0, 1]. This could be the case in fairly dense networks since then each

aggregating node is likely to receive the same amount of data from raw nodes. Thus, the amount

of compression that can be achieved will be about the same for all aggregating nodes. Further,

let g(n) denote the cost of storing or transmitting a single bit at node n. The cost g(n) could,

for example, be the cost of transmitting a single bit from n to a single or multiple sinks in the

network, or could be inversely proportional to the bandwidth available to node n. Then, the total

31

cost to compute a given transform in a distributed manner and route the resulting coefficients to

the sink is simply

C(E) =
∑
m∈E

Brg(m) +
∑
n∈O

cBrg(n). (3.12)

Note that
∑
m∈V g(m) =

∑
m∈E g(m) +

∑
n∈O g(n) since V = E ∪ O and E ∩ O = ∅. Therefore,

(3.12) becomes

C(E) = (1− c)Br
∑
m∈E

g(m) + cBr
∑
n∈V

g(n). (3.13)

Since the graph G is fixed, Br is constant and c is constant, we have that both (1 − c) and

c
∑
n∈V Brg(n) are constant. Therefore, the only thing left to optimize is

∑
m∈E g(m), which is

nothing more than the sum of the routing costs of the raw nodes. Note that a given assignment

of E and O only makes sense if every aggregating node n has at least one raw data neighbor from

which it can transform its own data, i.e., for all n ∈ O, N1,n 6= ∅. This is equivalent to requiring

that every aggregating node be “covered” by at least one raw data node, or more precisely, that

∪m∈EN1,m = V. In other words, set E is a dominating set2 in graph G, and ∪m∈EN1,m provides

a set cover for the nodes in G. Thus, finding the minimum cost C(E) in (3.13) is equivalent to

finding an assignment of raw data and aggregating nodes which minimizes
∑
m∈E g(m) under the

constraint that ∪m∈EN1,m provides a set cover for G. This can be formulated as a minimum

weighted set cover (MWSC) problem described below.

Definition 1. Minimum Weight Set Cover Problem: For graph G = (V,E) denote closed

neighborhood n[v] = n[v] = {v} ∪ {u ∈ V : (v, u) ∈ E} as a disk centered at node v with corre-

sponding weight g(v) for all nodes v ∈ V. Given a collection N of all sets {n[v]} , a set-cover

C ⊆ N is a sub collection of the sets whose union is V . The MWSC problem is to find a set-cover

with minimum weights.

Set-covering problem for unweighted undirected graphs is NP-hard in general. However it

can be solved by a natural greedy algorithm that iteratively adds a set that covers the highest

number of yet uncovered elements. It provides a good approximation [4] and can be implemented

in a distributed way. The algorithm is same for directed graphs with the exception that sets with

highest outdegree of central node are added first to the cover. The algorithm for choosing a greedy

set cover in a graph is given in Algorithm 1.

2A dominating set for a graph G = (V, E) is a subset E of V such that every vertex not in E is joined to at least
one member of E by some edge.

32

Algorithm 1 Greedy Minimum Set Cover

Require: N = {n[v]}v∈V
1: Initialize C = φ. Define f(C) = |

⋃
n[v]∈C n[v]|

2: repeat

3: Choose vj ∈ V maximizing the difference [f(C ∪ {n[vj]})− f(C)]

4: Let C ← C ∪ {n[vj]}

5: until f(C) = f(N)

6: return C

However, these set covering problems do not take into consideration the fact that even if the

selected even nodes are small in number, the total cost
∑
m∈E g(m) of even nodes may be very

high. To avoid this we propose a minimum weighted set covering problem. In the weighted set-

covering problem, for each set n[v] ∈ N a weight wv ≥ 0 is also specified, and the goal is to find

a set cover C of minimum total weight. In the context of our problem weight wv = g(v) for node

v. The greedy algorithm for weighted set cover builds a cover by repeatedly choosing a a set

n[v] ∈ N that minimizes the weight wv divided by number of elements in n[v] not yet covered by

chosen sets. The algorithm for choosing a greedy weighted set cover is given in Algorithm 2.

Algorithm 2 Greedy Minimum Weight Set Cover

Require: N = {n[v]}v∈V ,W = {wv}v∈V

1: Initialize C = φ. Define f(C) = |
⋃
n[v]∈C n[v]|

2: repeat

3: Choose vj ∈ V minimizing the cost per element wvj/[f(C ∪ {n[vj]})− f(C)]

4: Let C ← C ∪ {n[vj]}

5: until f(C) == f(N)

6: return C

3.3.1 Example: data gathering in WSN

In this section, we discuss an application of lifting transforms in which, we optimize spatial

compression in wireless sensor networks (WSN) on arbitrary communication graphs. Since nodes

in a wireless sensor network (WSN) are severely energy-constrained devices, it is essential to

perform in-network compression for energy-efficient data gathering. The data gathering problem

33

in a single sink case is described as follows: suppose we have a network of N nodes and a sink

node (indexed by N+1), and suppose that each node has some data x(n) that it needs to forward

to the sink. Assume that each node (indexed by n ∈ I = {1, 2, · · · , N}) transmits using a radio

range of Rn and let G = (V,E) be the directed communication graph which results from these

choices of radio ranges. Let NRn(n) denote the set of nodes within Rn radio range of node n, i.e.,

NRn(n) is the set of all nodes that can hear transmissions from n. Furthermore, let T = (V,E′)

denote a routing tree rooted at the sink node and let g(n) denote the cost to route a single bit from

node n to the sink along T . The cost g(n) could, for example, be proportional to the number of

hops, or to the sum of the squared distances between all nodes along the path from n to the sink,

etc. Such a tree can be constructed using standard routing protocols such as the Collection Tree

Protocol (CTP) [42], in which case the cost g(n) is simply proportional to the number of hops to

the sink. The objective of data-gathering is then to transmit data from all nodes to the sink with

minimum transmission cost. For data-gathering application, the lifting transforms implemented

on the routing tree T have been shown to perform better than other existing approaches [38].

Here, we extend these lifting transforms to the overall communication graph, using the optimal

RANA strategy described above.

For this, we compute even and odd nodes E and O, respectively, using the greedy set cover

algorithms described in Algorithms 1 and 2. Given such sets, let the set of even neighbors that

odd node n overhears be given by Hn, i.e., Hn = {m ∈ E|n ∈ NRm(m)}. Then node n can

compute a prediction of its own data using data from nodes in Hn, producing detail coefficient

d(n), i.e.,

d(n) = x(n)−
∑
m∈Hn

an(m)x(m). (3.14)

Note that if the prediction
∑
m∈Hn an(m)x(m) is close to x(n), then d(n) will have small

magnitude and so can be encoded using fewer bits than that those that would be needed for raw

data x(n). This will ultimately lead to cost reduction for odd nodes since they transmit fewer bits

per coefficient. An update step can also be computed for data from each even node to produce

smooth coefficients, but the number of bits needed to encode smooth coefficients is typically the

same as the number of bits needed for raw data. Therefore, we do not use an update step in this

work. Distributed computation of this transform proceeds as follows. Since odd nodes predict

their data from even neighbors, it is only natural for the even nodes to transmit data first along

34

T . We assume that these raw data transmissions are broadcasted and that they are forwarded

all the way to the sink. In this way, odd nodes can utilize data received from all even neighbors

regardless of whether they are required to forward data from them. Odd nodes will then compute

detail coefficients, encode them and then transmit them to the sink along T . Since the lifting

transform is computed as the data flows towards the sink, it is termed as unidirectional lifting

transform.

We now compare the unidirectional transforms with graph-based splits presented here against

the transform with tree-based split (i.e., a 1-level transform) [38] and an extension of this transform

where odd nodes perform additional levels of decomposition on data received from their even

children (i.e., a multi-level transform). This multi-level transform is constructed in the same

manner as the multi-level transform proposed in [41]. For all transforms, we use the data adaptive

prediction filter design in [36]. Figure 3.7 compares the number of raw data transmissions

required by a Haar-like lifting scheme and our proposed scheme, for networks of different sizes.

It is clear that our proposed method leads to a significant reduction in raw data transmissions.

Assuming a nearly uniform deployment of sensors, the distances between nodes are roughly equal.

Hence reduction in the number of raw transmissions is directly proportional to the reduction in

transmissions costs as shown in Fig. 3.6. Further in Fig. 3.6 the cost of raw data transmissions

for weighted set cover based split is lower than the cost of raw data transmissions for unweighted

set cover based split. This is to be expected since even nodes selected by weighted set cover

algorithms now have lower costs of transmitting data to the sink.

We use an AR-2 model to generate (noise-free) simulation data with high spatial data corre-

lation, e.g., the amount of data correlation between two nodes increases as the distance between

them decreases. We also assume that raw measurements use 12 bits. A randomly generated 50

node network and a shortest path routing tree (SPT) is computed and used for routing. The SPT

is shown in Fig. 3.8(a) along with the even and odd splitting described in [38]. We use the trans-

mission schedule discussed in [41]. The structure of the graph-based transform presented here is

shown in Fig. 3.8(b). Note that although both Figs. 3.8(a) and 3.8(b) have the same underlying

routing structure (solid blue lines), the number of required even nodes is smaller for graph-based

transform than for tree-based transform. This leads to reduction in raw-data transmission costs.

Performance comparisons are shown in Fig. 3.9, which plots energy consumption versus re-

construction quality (in terms of Signal to Quantization Noise Ratio). Energy consumption is

35

computed using the cost model in [46]. Each point corresponds to a different quantization level

with adaptive arithmetic coding applied to blocks of 50 coefficients at each node. The transform

proposed here is the best overall. This is to be expected since it seeks to minimize the num-

ber of nodes that must transmit raw data to their neighbors, thereby reducing the total energy

consumed in the data gathering process. The 1-level and multi-level transforms with tree-based

split do outperform simple raw data gathering, and the multi-level transform does better than

the 1-level transform since more de-correlation is achieved in the network. However, both of these

methods have roughly 50% raw data nodes, hence, they are not as efficient as the two transforms

with graph-based splits (which have roughly 25% raw data nodes).

To see this distinction more clearly, consider the lossless coding numbers for this same network

shown in Fig. 3.6. The cost for raw data forwarding and the total cost are shown separately. As

we can see, the overall performance is greatly affected by the raw data forwarding cost in that

lower raw data forwarding leads to lower total cost. In particular, the methods proposed here

have the lowest raw data forwarding cost, hence, they also have the lowest overall cost.

Our proposed transform can be easily applied to any arbitrary WSN, since it is computed as

the data is routed towards the sink. The schedule of computation and the even-odd assignment of

nodes can be pre-fed into sensors at initialization. This transform design can be seen as precursor

to a new class of algorithms which would focus on minimizing raw data transmissions in a WSN by

jointly optimizing routing tree and even/odd partition (or raw nodes/aggregating nodes partition).

3.4 Summary

In this chapter, we proposed a novel lifting based wavelet transform for graphs. We extended the

lifting transforms proposed in [38] for routing trees to any arbitrary graph. For this, we formulated

the even-odd assignment problem in these transforms as a bipartite subgraph approximation

problem. The definition of optimal bipartite graph depends on the application. In particular, we

proposed two solutions: one based on maximum bipartite subgraph approximation and the second

based on finding a bipartite graph with a dominating set as one of its natural partitions. For the

former, we discussed a toy example of graph denoising, where lifting transform using proposed

even-odd assignment are useful. For the latter, we discussed a data-gathering application in WSN,

where proposed even-odd assignment leads to low number of raw data transmissions. These lifting

36

transforms provide a new way of applying signal processing tools on graph based data. In the

next chapter, we introduce a theory behind downsampling upsampling operations on graphs. This

will lead to the design of spectral wavelet filterbanks on graphs in Chapter 5.

37

Figure 3.3: (a)Similarity graph with 200 sampled points from the underlying distribution.The
nodes in shaded region are N (µ1, σ

2) and the nodes in white region are N (µ2, σ
2) (b)-(f) Voronoi

Plots

38

Figure 3.4: STD of the original and denoised samples

Figure 3.5: PSNR of the original and denoised samples

Costs for Different Schemes

1 2 3 4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Raw Data Cost

Total Cost

Figure 3.6: Cost Comparison of Different Lifting Schemes (1: Haar-like lifting transform with first
level of even/odd split on trees 2: With 3 levels of even/odd split on trees 3: Proposed unweighted
set cover based even/odd split on graph 4: Proposed weighted set cover based even/odd split on
graph).

39

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

Raw data transmissions in transform computation

Size of Network (# nodes)

#

r
a
w

d
a
t
a

t
r
a
n
s
m
i
s
s
i
o
n
s

Haar−like

Graph−based

Figure 3.7: Number of raw data transmissions taking place in transform computations of different
lifting schemes. The numbers are averages over Ns = 10 realizations of each size graphs.

0 100 200 300 400 500 600
0

100

200

300

400

500

600

Transform Structure on SPT

(a) Transform on SPT

0 100 200 300 400 500 600
0

100

200

300

400

500

600

Transform Structure on Graph

(b) Transform on Graph

Figure 3.8: Transform definition on SPT and on graph. Circles denote even nodes and x’s denote
odd nodes. The sink is shown in the center as a square. Solid lines represent forwarding links.
Dashed lines denote broadcast links.

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06
5

10

15

20

25

30

35

40

45

50

Total Energy Consumption (Joules)

S
N
R

(
d
B
)

SNR vs. Energy Consumption

Tree−based Split (1−level)

Tree−based Split (Multi−level)

Unweighted Graph−based Split

Weighted Graph−based Split

Raw Data

Figure 3.9: Performance comparisons.

40

Chapter 4

Downsampling in Graphs using Spectral Theory

In traditional signal processing applications, downsampling and upsampling operations are an

integral part of multi-rate wavelet filterbanks. An example of downsampling and upsampling in

one-dimensional signal x[n] is by a factor of 2, so that in the resulting signal every other sample

is zero. The resulting signal xdu[n] can be expressed as:

xdu[n] =
1

2
(x[n] + (−1)nx[n]) (4.1)

The discrete time Fourier transform of the resulting signal, xdu[n], contains the spectrum of the

original signal as well as a frequency shifted copy of the original signal, i.e.,

Xdu(ejω) =
1

2
(X(ejω) +X(ej(π−ω))) (4.2)

which results in aliasing if the signal X(ejω) and shifted copy X(ej(π−ω)) have overlapping regions

of support. This phenomenon is also termed as frequency folding, since the frequency components

of the original signal appear to fold across center frequency ω = π/2. As described in Chapter 2,

the data on graphs can be defined as graph-signals, which have a spectral interpretation given

by eigenvalues (and eigenvectors) of the graph Laplacian matrix, similar to Fourier transform for

regular signals. The focus of this chapter is to propose methods for downsampling graph-signals

by extending downsampling results for regular signals to graphs. In particular, we show that

for bipartite graphs, the effect of downsampling followed by upsampling can be seen as being

analogous to well known aliasing: the spectral representation of the resulting signal is the sum

of the spectrum of the original signal and that of a signal obtained by folding the frequency

41

information around the middle frequency (where we work with a spectral representation based on

the graph Laplacian). Although general graphs do not have this form, having a formal approach

to analyze downsampling in the bipartite graph case provides a tool to address general graphs,

by decomposing them into a series of bipartite graphs. This leads to a “multi-dimensional”

decomposition of graphs, in which each “dimension” refers to filtering/downsampling operations

restricted to only one bipartite subgraph. The bipartite subgraph decomposition is discussed in

Chapter 6. We choose 2-D images as one such example which can be represented as bipartite

graphs and for which downsampling/upsampling has a known interpretation. The images can be

represented as 4-regular graphs with either rectangular or diamond connectivity. We formulate

the problem of downsampling images as bipartizing the underlying graph, and show that common

downsampling methods such as rectangular and quincunx sampling can also be understood in

terms of spectral properties of these graphs. Then, we design new downsampling methods for

images by way of different representations of images into bipartite graphs.

This chapter is organized as follows, in Section 4.1, we formulate the problem of downsampling

graphs. In Section 4.2, we discuss downsampling results for k-regular bipartite graphs (k-RBG),

and in Section 4.3 we extend them to non-regular bipartite graphs. In Section 4.4 we approximate

2-D images as bipartite graphs, and compare the spectral properties of DU operations on these

bipartite graphs with the standard DU operations. Finally, we summarize the findings in this

chapter in Section 4.5.

4.1 Problem Formulation

The general formulation of downsampling is described in Section 2.3. In this formulation, we define

a downsampling function βH on the graph G = (V,E) as choosing a subset H ⊂ V such that all

samples of the graph signal f corresponding to indices not in H, are discarded. A subsequent

upsampling operation with βH projects the downsampled signal back to original RN space by

inserting zeros in place of discarded samples in L = Hc. A block diagram of the DU operation is

given in Figure 4.1.

Referring again to (2.11), the GFT coefficient f̄du(l) of graph signal, after DU operation with

βH , consists of GFT coefficient f̄(l) of original signal, and a modulated spectral coefficient f̄d(l),

42

Figure 4.1: Block diagram of DU operations in graphs

which can be interpreted as projection of f onto a modulated basis function JβHul. Similar mod-

ulation also occurs during DU operations in finite length 1-D signals, which can be represented in

terms of their Discrete Fourier Transform (DFT), given as W k
N (n) = exp(−2πjkn/N). Comparing

(2.8) and (4.1), we can write a downsampling function for finite length signals as β1D(n) = 1 if

index n is even and −1 otherwise. The basis functions in this case have the property:

β1D(n)W k
N (n) = (−1)nW k

N (n) = W
(k−N/2)N
N (n), (4.3)

where W
(k−N/2)N
N is the (k − N/2) modulo N basis function. In the matrix form (4.3) can we

written as:

Jβ1D
Wk

N = W
(k−N/2)N
N , (4.4)

where Jβ1D
= diag{β1D(n)} is the downsampling matrix for 1-D signals. Thus, the modulated

DFT basis function for finite length signals is also a DFT basis function with a different discrete

frequency. This phenomenon is known as aliasing in the regular finite length signal domain. We

would like to consider conditions for this to be true for graphs as well. This is important as it

will allow us to design “anti-aliasing” filters such that the distorted signal JβH f will be band-

limited and with spectral response disjoint from that of the original signal (after anti-aliasing has

been applied). Further, it will also help us design filterbanks which cancel aliasing, and provide

distortion free reconstruction.

For graph signals, the basis functions are GFT basis, which are eigen-vectors {uk}, k =

1, 2, ...N of the graph Laplacian matrix. Let us first consider regular graphs, which have same

degree at each node. For regular graphs, the eigenvectors of Laplacian matrix L and normalized

43

Laplacian matrix L are identical. Similar to finite length signal example we want modulated

eigenvector JβHuk to be an eigenvector of the Laplacian L, i.e.

LJβHuk = λ̂JβHuk (4.5)

This is true if

JβHLJβH︸ ︷︷ ︸
L̂

uk = λ̂J2
βHuk = λ̂uk (4.6)

where matrix L̂(i, i) = L(i, i)β2
H(i) = L(i, i) = di. Thus

L̂ = D− JβHAJβH︸ ︷︷ ︸
Â

(4.7)

Here Â is a modulated adjacency matrix given as:

Â(i, j) =

 A(i, j) if βH(i)βH(j) > 0

−A(i, j) otherwise
(4.8)

Clearly one way in which matrices Â and A will have the same eigen-vectors is if Â = −A. This

implies that A(i, j) = 0 whenever βH(i) = βH(j), which is only true if the graph is bipartite with

H and L as its bipartite sets. In the next section, we use this property to describe a spectral

folding phenomenon in k-regular bipartite graphs (k-RBG) analogous to well known aliasing in the

regular signal domain. Subsequently, we extend the results to general bipartite graphs by matrix

normalization.

4.2 Downsampling in kRBG graphs

A bipartite graph B = (L,H,E) is a graph whose vertices can be divided into two disjoint sets L

and H, such that every link connects a vertex in L to one in H. Bipartite graphs are also known

as two-colorable graphs since the vertices can be colored perfectly into two colors so that no two

connected vertices are of the same color. A k-regular bipartite graph B has the same degree k

at each of its vertices (i.e. D = kI). The following known results are useful to understand the

spectral properties of DU operations in k-RBG:

44

Lemma 1 ([17, Section 2]). The following statements are equivalent for any graph G:

1. B is k-RBG with bipartitions H and L.

2. B has an even number of nodes N = 2n with |L| = |H| = n nodes in each partition.

3. The spectrum of Laplacian matrix L(B) is symmetric about k and the minimum and maxi-

mum eigenvalues of L(B) are 0 and 2k respectively.

4. If u =

[
uT1 uT2

]T
is an eigenvector of L(B) with eigenvalue λ with u1 indexed on H and

u2 indexed on L (or vice-versa) then the modulated eigenvector û =

[
uT1 −uT2

]T
is also

an eigenvector of L(B) with eigenvalue 2k − λ.

Thus, given a k-RBG, B = (L,H,E) a downsampling function can be defined such that

β(n) = 1 if n ∈ L and β(n) = −1 if n ∈ H. This downsampling function has the property that

Â = JβAJβ = −A. Thus

L̂ = D + A = kI + A

L = D−A = kI−A
(4.9)

In this case both matrices L and L̂ have the same set of eigenvectors. This leads to following

proposition:

Proposition 1. Given a k-regular bipartite graph B = (L,H,E), let the downsampling function

be chosen as β = βH or β = βL, and let L be the graph Laplacian matrix. If uλ is an eigenvector

of L of a with eigenvalue λ then modulated eigenvector Jβuλ is also an eigen-vector of L with

eigenvalue 2k − λ.

Proof. By definition JβLJβuλ = (kI + A)uλ = (2kI− (kI−A))uλ = (2k − λ)uλ.

→ LJβuλ = (2k − λ)Jβuλ.

Thus Jβuλ is an eigenvector of L with eigenvalue 2k − λ.

Proposition 1 implies that if λ is a unique1 eigenvalue of L, then

Jβuλ = ±u2k−λ, (4.10)

1For eigenvalues with algebraic multiplicity greater than 1, the modulated eigenvector Jβuλ can be any vector
in the Vλ subspace. A general result dealing with non-unique eigenvalues is described in Proposition 2.

45

where the sign on the right side will change depending upon whether β = βH or β = βL. The

result in (4.10) is analogous to aliasing result for finite length signals in (4.3). Substituting this

in (2.11) we get for k-regular bipartite graphs:

f̄du(λ) =
1

2
(f̄(λ)± < Jβuλ , f >)

=
1

2
(f̄(λ)± < u2k−λ , f >)

=
1

2
(f̄(λ)± f̄(2k − λ)) (4.11)

where f̄(2k − λ) is an alias of f̄(λ) in the GFT domain. We term this phenomenon spectral

folding in k-RBG, since the spectrum of any signal after DU operations, consists of the original

spectrum and the spectrum folded across eigenvalue λ = k. This phenomenon leads to following

Nyquist-like sampling theorem for signals defined on k-RBG:

Theorem 1. A graph-signal f on a k-RBG, B = (L,H,E) can be completely described by only

half of its samples in the set L or H if the spectrum of f is band-limited by λ = k.

Proof. The spectrum of f , band-limited by λ = k, implies f̄(λ) = 0 for λ ≥ k. Since we keep only

samples in subset H, and discard everything else, fdu can be written as [f tH 0t]t, and using (4.11),

can be expanded as:

fdu =
∑
λ

f̄du(λ)uλ

=
1

2

∑
λ

(f̄(λ) + f̄(2k − λ))uλ

=
1

2

∑
λ

f̄(λ)uλ +
1

2

∑
λ

f̄(2k − λ)uλ, (4.12)

where the summation is over all eigenvalues λ. Discarding the terms with f̄(λ) = 0 in (4.12), we

get:

fdu =
1

2

∑
λ<k

f̄(λ)uλ +
1

2

∑
λ>k

f̄(2k − λ)uλ, (4.13)

46

Thus, f̄du(λ) = 0.5f̄(λ) for λ < k, and f̄du(λ) = 0.5f̄(2k − λ) for λ > k. In order to recover, f̄(λ)

from f̄du(λ), we define an anti-aliasing filter as:

Hideal
0 =

∑
λ

hideal0 (λ)uλu
t
λ (4.14)

where spectral kernel hideal0 is given as:

hideal0 (λ) =

 2 if λ < k

0 if λ ≥ k
(4.15)

Using (4.15) and (4.13), we get:

Hideal
0 fdu =

∑
λ,γ

hideal0 (λ).f̄du(γ)uλu
t
λuγ

=
∑
λ

hideal0 (λ).f̄du(λ)uλ

=
1

2

∑
λ<k

2.f̄(λ)uλ +
1

2

∑
λ>k

0.f̄(2k − λ)uλ

=
∑
λ<k

f̄(λ)uλ = f (4.16)

Thus, f can be recovered from fdu by applying anti-aliasing filter Hideal
0 .

4.3 Extension to non-regular bipartite graphs

The results obtained in the case of k-RBG cannot be extended to other non-regular bipartite

graphs, if using combinatorial Laplacian matrix L. The reason is that for non-regular graphs

the degree of nodes is not a constant, and therefore adjacency matrix A and the Laplacian

matrix L = D − A do not share the same set of eigenvectors. Therefore, for general bipartite

graphs, instead of operating on the unnormalized adjacency matrix A, we operate on a symmetric

normalized adjacency matrix A = D−1/2AD−1/2. The normalization reweighs the edges of graph

G so that the degree of each node is equal to 1. Further, we choose eigenvectors of the normalized

47

Laplacian matrix L = D−1/2LD−1/2, as the GFT basis functions2. To understand the spectral

interpretation of DU operations in bipartite graphs, the following properties of bipartite graphs

are useful:

Lemma 2 ([3, Lemma 1.8]). The following statements are equivalent for any graph B:

1. B is bipartite with bipartitions H and L.

2. The spectrum of L(B) is symmetric about 1 and the minimum and maximum eigenvalues of

L(B) are 0 and 2 respectively.

3. If u =

[
uT1 uT2

]T
is an eigenvector of L with eigenvalue λ with u1 indexed on H and u2

indexed on L (or vice-versa) then the modulated eigenvector û =

[
uT1 −uT2

]T
is also an

eigenvector of L with eigenvalue 2− λ.

Note that the results in Lemma 2 are similar to the results for k-RBG in Lemma 1. The primary

difference between these results is that the Laplacian matrix used for k-RBG is the combinatorial

Laplacian matrix L, while for bipartite graphs we use symmetric normalized Laplacian matrix L.

However, since k-RBG graphs are also bipartite graphs, the results in Lemma 2 are also applicable

to them. Therefore, from now on we only make use of symmetric normalized Laplacian matrix,

unless otherwise stated. This enables us to define the following spectral folding result, similar to

k-RBG graphs:

Proposition 2. Given a bipartite graph B = (L,H,E) with Laplacian matrix L, if we choose

downsampling function β as βH or βL as defined in (2.7), and if Pλ is the projection matrix

corresponding to the eigenspace Vλ, then

JβPλ = P2−λJβ . (4.17)

Alternatively, if uλ is an eigen-vector of L with eigenvalue λ then Jβuλ is also an eigen-vector of

L with eigen-value 2− λ.

Proof. Let λ be an eigenvalue of B with multiplicity k. This implies that there exists an orthogonal

set of k eigenvectors {ui}λi=λ of Laplacian matrix L with eigenvalue λ. The projection matrix Pλ

2Note that the eigenvectors of Laplacian matrix L and normalized Laplacian matrix L are identical for regular
graphs. The normalized Laplacian matrix popularized by Fan K. Chung [3] is found to be a more natural tool to
deal with non-regular graphs.

48

corresponding to λ is given by Pλ =
∑
λi=λ

ui.u
t
i. If the downsampling function β is chosen as βH

or βL, then the modulated eigenvector û in Lemma 2 is equal to Jβu, which is an eigen-vector of

L with eigen-value 2− λ. It can also be seen that if eigenvectors {ui}λi=λ are orthogonal to each

other then so are the modulated set of eigenvectors {Jβui}λi=λ and form basis of eigenspace P2−λ.

Therefore, LJβPλJβ =
∑
λi=λ

L.Jβui.(Jβui)
t =

∑
λi=λ

(2 − λ).Jβui.(Jβui)
t = (2 − λ)P2−λ,

therefore JβPλJβ = P2−λ which implies that JβPλ = P2−λJβ .

This phenomenon is termed as spectrum folding in bipartite graphs, as the modulated eigen-

vector (or eigenspace) for any λ ∈ σ(B) appears as another eigenvector (or eigenspace) at a mirror

eigenvalue around λ = 1. As a result, for any graph-signal f on B, the modulated signal

Jβf is an aliased (although frequency reversed) version of f . To understand it, let f be

an N -D graph-signal on bipartite graph B = (L,H,E) with eigenspace decomposition

f =
∑

λ∈σ(B)

Pλf =
∑

λ∈σ(B)

fλ, (4.18)

where fλ = Pλf is the projection of f onto the eigenspace Vλ. Similarly, we define (Jβf)λ as the

projection of Jβf onto the eigenspace Vλ. Using (4.17), we can write (Jβf)λ as:

(Jβf)λ = PλJβf = JβP2−λf = Jβf2−λ. (4.19)

Thus for bipartite graphs, (Jβf)λ, is same as modulated f2−λ. Further, using (4.19) and the fact

that J2
β = I, we can show that:

||(Jβf)λ||22 = ||Jβf2−λ||22 = (f2−λ)t.J2
β .f

2−λ = ||f2−λ||22, (4.20)

which implies that the energy of modulated signal in eigenspace Vλ is equal to the energy of

original signal in V2−λ eigenspace. Both (4.19) and (4.20) show that Jβf is an aliased version of

f . Using (4.19), the eigenspace decomposition of output signal fdu after DU operation can be

written as:

fdu =
1

2
(f + Jβf) =

1

2

∑
λ∈σ(B)

(fλ + Jβf2−λ) =
1

2
(f + falias) (4.21)

In other words, the output signal is the average of the original signal and a shifted and aliased

49

version of the original signal.

4.4 Example: Images as kRBG

In this section, we show some examples of how downsampling applied on the graph representation

of images leads to familiar results that could be derived from the standard frequency formulation.

Digital images are 2-D regular signals, but they can also be represented as graphs by connecting

every pixel (node) in an image with its neighboring pixels (nodes) and by interpreting pixel

values as the values of the graph-signal at each node. to apply downsampling in the image

Figure 4.2 shows some of the ways in which pixels in an image can be connected with other

pixels to formulate a bipartite graph representation of any image. The bipartite sets L and H on

the graphs are shown as nodes of different colors. Thus, the image after downsampling in each

graph case, would consist of samples of only one color set. The decision to choose a particular

graph representation can be compared with choosing various lattice-subsampling patterns [27]

in standard image processing. For example, we can choose Figure 4.2(a) to represent the image

which is equivalent to the quincunx downsampling scheme. Similarly, Figures 4.2(c) and 4.2(d) are

equivalent to rectangular downsampling schemes (V = [2 0; 0 1]) and (V = [1 0; 0 2]) respectively.

The advantage of using a graph representation of the images is that it provides flexibility of linking

pixels in arbitrary ways, leading to different filtering/downsampling patterns. For example, we

can represent images as bipartite graphs by connecting each pixel with its 4 diagonal neighbors.

This bipartization scheme is shown in Figure 4.2(b). In this scheme since the pixels are connected

along the diagonal axis, which can be useful for images with high frequency response in diagonal

directions

Figure 4.2: Bipartite graph representation of 2D images (a) a 4 connected rectangular image-
graph Gr (b) a 4-connected diagonal image graph Gd, (c) a 2-connected image-graph Gv with
vertical links only, and (d) a 2-connected image-graph Gh with horizontal links only.

50

Once we choose a graph representation of image, we can design filtering operations on graphs,

based on the theory developed in this chapter. In order to compare the spectral interpretation

of filtering operations based on graph, we implement ideal low-pass graph filters for different

graph representations of the images. Since, the image-graphs are bipartite graphs, the ideal

spectral lowpass filter Hideal
0 on these graph can be computed as in (4.14). In Figure 4.3, we

plot the DFT magnitude response of ideal lowpass spectral transforms on these bipartite image-

graphs. Because of the regularity and symmetry of the links, the resulting filters at each node,

are translated versions of each other (except at the boundary nodes), and so we can compute the

2-D DFT magnitude response of a spectral transform, by computing the DFT response of the

filtering operations at a single node. In particular, we choose a row of the ideal spectral lowpass

filter, corresponding to a pixel away from the boundary, reshape it into two dimensions as the

original image, and perform a 2-dimensional DFT.

Figure 4.3: DFT magnitude responses of the ideal spectral filters Hideal
0 on (a) Gr, (b) Gd and

(c) Gv.

We observe in Figure 4.2(a) that, the downsampling pattern (red/blue nodes) on the rectan-

gular subgraph Gr is identical to the the quincunx downsampling pattern, and in Figure 4.3(a),

it can be observed that the DFT magnitude response of Hideal
0 filter on Gr is same as the DFT

magnitude response of the standard anti-aliasing filter for quincunx downsampling. Similarly, we

observe that the spectral low-pass filter for Gv (or Gh) in Figure 4.2(c) (or 4.2(d)), have the same

DFT magnitude responses (Figure 4.3(c) (or Figure 4.3(d))) as the anti-aliasing filters for vertical

(or horizontal) factor-of-2 downsampling case. The graph formulation of images also allows us

to explore new downsampling patters, for example, the image pixels can be connected to their

diagonally opposite neighbors as shown in Figure 4.2(b). The DFT magnitude response of the

ideal spectral low-pass filter in this case, is shown in Figure 4.3(b) and has a wider passband in

the diagonal directions.

51

4.5 Summary

In this chapter, we have proposed a method for downsampling datasets defined on graphs. Espe-

cially, we have described a spectral folding phenomenon in bipartite graphs, which leads to aliasing

in the spectral domain of the graph. Further, we have shown that images can be represented as

bipartite graphs and shown some of the bipartization examples. The anti-aliasing filters on some

of these image-graphs have identical frequency response, as those designed using standard signal

framework. The results show that our proposed graph based method provide an alternative way

of interpreting downsampling filtering in images. In the next chapter, we use this property to

design critically sampled two-channel filterbanks on graphs.

52

Chapter 5

Two-channel Wavelet Filterbanks on Bipartite Graphs

In Chapter 4, we described downsampling/upsampling (DU) operations in bipartite graphs, which

produce a spectral folding phenomenon in graph signals. In this chapter, we utilize this property

of bipartite graphs to propose designs of critically sampled two-channel wavelet filterbanks for

analyzing functions defined on the vertices of any arbitrary finite weighted undirected graph. A

general framework for the design of two channel critically sampled filterbanks on graphs was in-

troduced in Section 2.4. In this chapter, we expand upon this framework for the special case of

bipartite graphs. We specifically design wavelet filters based on the spectral decomposition of the

graph, which helps us translate the aliasing-cancellation, and perfect reconstruction conditions

given in (2.16), in very simple terms. In addition, we state necessary and sufficient conditions

for orthogonality in these filterbanks. As a practical solution, we propose quadrature mirror

filterbanks (referred to as graph-QMF) for bipartite graph which have all the above mentioned

properties. While the exact graph-QMF designs satisfy all the above conditions, they are not

compactly supported1 on the graph . In order to design compactly supported graph-QMF trans-

forms, we perform a Chebychev polynomial approximation of the exact filters in the spectral

domain. This leads to some error in the reconstruction of the signal, and loss of orthogonal-

ity. As an alternative, we relax the conditions of orthogonality and design filters with compact

support, which satisfy the perfect reconstruction conditions. These biorthogonal designs are of

two types: the first type of filterbanks have 1-hop localized analysis filters. These filterbanks are

invertible, and we choose synthesis filters to guarantee perfect reconstruction. The second type

of designs, termed as graph-Bior, have both analysis and synthesis filters with compact support.

1see Section 2.1 for definition of compact support for functions defined on graphs.

53

This design is analogous to the standard Cohen-Daubechies-Feauveau’s (CDF) [5] construction

to obtain maximally half-band filters. Even though these filterbanks are not orthogonal, we show

that they can be designed to nearly preserve energy. In particular, we compute expressions for

Riesz bounds of the filterbanks, and choose graph-wavelets with the minimum difference between

upper and lower Riesz bounds. The rest of the chapter is organized as follows: in Section 5.1, we

formulate the problem of designing two-channel wavelet filterbank on graphs. In Section 5.2, we

describe the filterbank design specific to bipartite graphs and state necessary and sufficient condi-

tions for these filterbanks to provide perfect-reconstruction, aliasing cancellation and orthogonal

basis. In Section 5.3, we describe the proposed graph-QMF solution, which satisfies all the above

conditions. In Section 5.4, we describe the one-hop localized biorthogonal transforms on graphs.

In Section 5.5, we revisit the necessary and sufficient conditions for perfect reconstruction and

orthogonality, and pose them as solving a system of biorthogonal spectral kernels. This leads to

the proposed graphBior solution. Finally, we summarize the chapter in Section 5.7.

5.1 Problem Formulation

A general formulation of two-channel wavelet filterbanks is described in Section 2.4. A block

diagram of the two-channel critically sampled graph wavelet filterbanks is shown in Figure 2.1.

For designing wavelet filters on graphs, we exploit similar concepts of spectral decomposition as in

[14]. Because of this, it is useful to define analysis wavelet filters H0 and H1 in terms of spectral

kernels h0(λ) and h1(λ), respectively. In our analysis, we use the normalized form of the Laplacian

matrix L = D−1/2LD−1/2, which in the case of regular graphs has the same set of eigenvectors

as L. The normalization reweighs the edges of graph G so that the degree of each node is equal

to 1. Thus, given the eigen-space decomposition of Laplacian matrix L as in (2.5), the analysis

filters can be represented as:

H0 = h0(L) =
∑

λ∈σ(G)

h0(λ)Pλ

H1 = h1(L) =
∑

λ∈σ(G)

h1(λ)Pλ

(5.1)

Since the Laplacian matrix L is real and symmetric, the filters designed in (5.1) are also real

and symmetric. These filters have the following interpretation: the output of a spectral filter

54

with kernel h(λ) can be expanded as: fH = Hf =
∑
λ∈σ(G) hi(λ) Pλf , where fλ = Pλf is the

component of input signal f in the λ-eigenspace. Thus, filter H either attenuates or enhances

different harmonic components of input signals depending upon the magnitude of h(λ). For a

general kernel function, the filtering operations with Hi and Gi require spectral decomposition of

the Laplacian matrix, which is non-scalable and computationally expensive. However it has been

shown in [14] that when the spectral kernels are approximated as polynomial kernels of degree

k, the filters can be computed iteratively with k one-hop operations at each node. Thus, the

computational complexity of the filtering operations reduces to O(k|E|), which increases linearly

with the number of edges |E| of the graph, and the degree k of polynomial approximations.

Further, any spectral transform corresponding to a k degree polynomial kernel is exactly k-hop

spatially localized , and can be efficiently computed without diagonalizing the Laplacian matrix.

The degree of the polynomial kernels can be interpreted as the length of the corresponding spectral

filters, and one of the desirable feature of graph wavelets is to have shorter filter lengths. Referring

again to Figure 2.1, for graph G = (L,H,E), let βH = β be the downsampling function for H1

filter channel and let βL = −β be the downsampling function for H0 channel. Thus the nodes

in H only retain the output of highpass channel and nodes in L retain the output of the lowpass

channel. In our proposed design, we also choose the synthesis filters G0 and G1 to be spectral

filters with kernels g0(λ) and g1(λ) respectively 3. Let f be the graph signal on G, and fλ = Pλf

is the projection of f onto the eigenspace Vλ. Then by using (5.1), the perfect reconstruction

conditions in (2.16) can be rewritten as:

Teqf = (G0H0 + G1H1)f

=
∑

λ,γ∈σ(G)

(g0(λ)h0(γ) + g1(λ)h1(γ)) PλPγf

=
∑

λ∈σ(G)

(g0(λ)h0(λ) + g1(λ)h1(λ)) Pλf

=
∑

λ∈σ(G)

(g0(λ)h0(λ) + g1(λ)h1(λ)) fλ (5.2)

3In general, synthesis filters do not have to be based on the spectral design. A case is presented in our previous
work [29] with linear kernel spectral analysis filters and non-spectral synthesis filters.

55

Taliasf = (G1JβH1 −G0JβH0)f

=
∑

λ,γ∈σ(G)

(g1(λ)h1(γ)− g0(λ)h0(γ)) PλJβPγf

=
∑

λ,γ∈σ(G)

(g1(λ)h1(γ)− g0(λ)h0(γ)) PλJβfγ (5.3)

In (5.2), we use the orthogonality property of eigenspaces, given in (2.6), which reduces the

double summation over λ and γ in the expansion of Teq, into a single summation over λ. How-

ever, the same cannot be applied in (5.6), where projection fγ of signal f onto Vγ eigenspace, is

modulated with downsampling matrix Jβ before multiplication with Pλ. For an arbitrary graph,

modulated signal Jβfγ may not entirely belong to a single eigenspace (in fact it can have compo-

nents in all eigenspaces). This means that for arbitrary graphs alias-free perfect reconstruction

can be guaranteed for any graph-signal, if

g1(λ)h1(γ)− g0(λ)h0(γ) = 0

g0(λ)h0(λ) + g1(λ)h1(λ)) = c2, (5.4)

for some constant c and for all λ, γ ∈ σ(G). Note that the system of equations in (5.4) may not

have a solution for every graph G, since there are more constraints (O(N2)) than the number

of variables (O(N)). However for bipartite graphs, (5.4) can be simplified to O(N) constraints,

because of the spectral folding property. This is discussed in the next section.

5.2 Two-Channel Filterbank Conditions for Bipartite Graphs

We showed in Chapter 4 that, if the underlying graph is a bipartite graph B = (L,H,E), and if

we choose the downsampling function β to be either βH or βL, then Jβf is an alias of signal f .

Using the spectral folding property of bipartite graphs in (4.19), Jβfγ can be expressed as:

Jβfγ = (Jβf)2−γ , (5.5)

56

where (Jβf)2−γ , is the projection of modulated graph-signal Jβf , onto eigenspace V2−γ . This

implies that Jβfγ belongs to eigenspace V2−γ for bipartite graphs. This property, when combined

with (5.6) and orthogonality property of eigenspaces in (2.6), leads to:

Taliasf =
∑

λ,γ∈σ(B)

(g1(λ)h1(γ)− g0(λ)h0(γ)) PλJβfγ

=
∑

λ,γ∈σ(B)

(g1(λ)h1(γ)− g0(λ)h0(γ)) Pλ(Jβf)2−γ

=
∑

λ∈σ(B)

(g1(λ)h1(2− λ)− g0(λ)h0(2− λ)) (Jβf)λ (5.6)

Thus, in case of bipartite graphs, the double summation in the expansion of Talias over λ and

γ, reduces to a single summation over λ, as derived in (5.6), and perfect reconstruction in the

filterbanks can be guaranteed if

g1(λ)h1(2− λ)− g0(λ)h0(2− λ) = 0

g0(λ)h0(λ) + g1(λ)h1(λ)) = c2, (5.7)

for some constant c and for all λ ∈ σ(B). The system of equations in (5.7) can also be represented

in matrix form as:  h0(λ) h1(λ)

−h0(2− λ) h1(2− λ)


︸ ︷︷ ︸

Hm(λ)

g0(λ)

g1(λ)

 =

c
0

 , (5.8)

and will have atleast one solution for any bipartite graph, assuming full rank of Hm(λ) for all

λ ∈ σ(B) (i.e., det(Hm(λ)) 6= 0 , where det(.) is the determinant of a matrix). Before proposing a

solution of (5.7), we state necessary and sufficient conditions for a two-channel spectral filterbank

to be aliasing-cancellation, perfect reconstruction and orthogonal on any bipartite graph.

57

5.2.1 Aliasing cancellation

Combining (5.2) and (5.6) we can write the overall transfer function of the two-channel spectral

filterbank on any bipartite graph as:

y = Tf =
∑

λ∈σ(B)

(g0(λ)h0(λ) + g1(λ)h1(λ)) fλ

+
∑

λ∈σ(B)

(g1(λ)h1(2− λ)− g0(λ)h0(2− λ)) (Jβf)λ (5.9)

Taking projections of both LHS and RHS in (5.9) onto Vγ space, we get:

Pγy = yλ = (g0(λ)h0(λ) + g1(λ)h1(λ))︸ ︷︷ ︸
Teq(λ)

fλ

+ (g1(λ)h1(2− λ)− g0(λ)h0(2− λ))︸ ︷︷ ︸
Talias(λ)

(Jβf)λ. (5.10)

Thus, projection yλ of the output signal for all λ is a weighted linear sum of projections of input

signal f and alias signal Jβf onto the Vλ eigenspace. Therefore, an alias-free reconstruction using

spectral filters is possible if and only if the weight of alias signal in (5.10) is zero for all λ ∈ σ(B),

i.e.,

Talias(λ) = g0(λ)h0(2− λ)− g1(λ)h1(2− λ) = 0. (5.11)

5.2.2 Perfect reconstruction

Referring again to (5.5), (Jβf)λ = Jβf2−λ. Perfect reconstruction means that the reconstructed

signal f̂ is the same as (or possibly a scaled version of) the input signal f . This implies y = c2f

in (5.9), or equivalently yλ = c2fλ in (5.10) for some constant c and for all λ ∈ σ(B). Therefore,

in case of perfect reconstruction (5.10) can be written as:

yλ = c2fλ = Teq(λ)fλ + Talias(λ)Jβf2−λ, (5.12)

or

(c2 − Teq(λ))fλ = Talias(λ)Jβf2−λ, (5.13)

58

Since fλ and f2−λ are mutually orthogonal components of input signal f and hence are independent

of each other, the only way (5.13) holds for all signals is, if

Teq(λ) = c2,

Talias(λ) = 0. (5.14)

Thus, a necessary and sufficient condition for perfect reconstruction, using spectral filters, in

bipartite graphs filterbanks is that for all λ in σ(B),

g0(λ)h0(λ) + g1(λ)h1(λ) = c2,

g0(λ)h0(2− λ)− g1(λ)h1(2− λ) = 0. (5.15)

5.2.3 Orthogonality

The wavelet coefficient vector w produced in the filterbank shown in Figure 2.1 is given as:

w = Taf =
1

2
((I− Jβ)H0f + (I + Jβ)H1f)

=
1

2
(H1 + H0)f +

1

2
Jβ(H1 −H0)f (5.16)

Applying (5.1) in (5.16), we get:

w =
1

2

∑
λ∈σ(B)

(h1(λ) + h0(λ))Pλf +
1

2

∑
λ∈σ(B)

(h1(λ)− h0(λ))JβPλf . (5.17)

Using (4.17), and changing the variable λ to 2 − λ in the second summation term in (5.17), we

get:

w =
1

2

∑
λ∈σ(B)

(h1(λ) + h0(λ))︸ ︷︷ ︸
Cλ

fλ + (h1(2− λ)− h0(2− λ))︸ ︷︷ ︸
D2−λ

(Jβf)λ. (5.18)

Taking projections of both LHS and RHS in (5.18) onto Vλ space, we get:

wλ = Pλw =
1

2
(Cλf

λ +D2−λ(Jβf)λ). (5.19)

59

The filterbank provides an orthogonal decomposition for any graph signal if and only if ||w||22 =

||Taf ||22 = ||f ||22 for all f ∈ RN . For brevity we simply denote 2-norm of f as ||f ||. Since the

eigenspaces of L are orthogonal, the projections wλ are orthogonal and the energy ||wλ||2 can be

computed as sum of energy of w in each eigenspace, i.e.,

||w||2 =
∑

λ∈σ(B)

||wλ||2 =
∑

λ∈σ(B)

||1
2

(Cλf
λ +D2−λ(Jβf)λ)||2. (5.20)

With some algebraic manipulation ||wλ||2 in (5.20) can be written as:

||wλ||2 =
1

4

(
C2
λ||fλ||2 +D2

2−λ||(Jβf)λ)||2 + 2CλD2−λ < fλ (Jβf)λ >
)
. (5.21)

Using (4.19) and (4.20) in (5.21), we get:

||wλ||2 =
1

4

(
C2
λ||fλ||2 +D2

2−λ||f2−λ||2 + 2CλD2−λ < fλ Jβf2−λ >
)
. (5.22)

It can be seen from (5.22), that ||wλ||2 only depends on the fλ and f2−λ components of signal

f . Similarly, ||w2−λ||2 also depends on only the fλ and f2−λ components of signal f . Further, fλ

and f2−λ are only used to compute wλ and w2−λ. Therefore, for all λ ∈ σ(B), if f = fλ + f2−λ,

then w = wλ + w2−λ. Thus, orthogonality of filterbank is guaranteed if for all λ ∈ σ(B):

||wλ||2 + ||w2−λ||2 = ||fλ||2 + ||f2−λ||2 (5.23)

Using (5.22), and with some algebraic manipulation we can write:

||wλ||2 + ||w2−λ||2 =
1

4
(C2

λ +D2
λ)||fλ||2

+
1

4
(C2

2−λ +D2
2−λ)||f2−λ||2

+
1

2
(CλD2−λ + C2−λDλ) < fλ Jβf2−λ > . (5.24)

60

In (5.24), fλ and f2−λ are orthogonal to each other, and hence are independent of each other.

Therefore, for (5.23) to hold true for all λ ∈ σ(B) and for all signals f ∈ RN :

C2
λ +D2

λ = 4

CλD2−λ + C2−λDλ = 0. (5.25)

Expanding Cλ and Dλ in terms of h0(λ) and h1(λ), we get:

C2
λ +D2

λ = 2(h20(λ) + h21(λ)) = 4

CλD2−λ + C2−λDλ = h0(λ)h0(2− λ)− h1(λ)h1(2− λ) = 0. (5.26)

all λ. Thus, a necessary and sufficient condition for orthogonality in bipartite graph filterbanks

using spectral filters is :

h0(λ)h0(2− λ)− h1(λ)h1(2− λ) = 0

h20(λ) + h21(λ) = 2. (5.27)

Note that comparing (5.15) and (5.27), the orthogonality conditions can be obtained from the

perfect reconstruction conditions by selecting g0(λ) = h0(λ) and g1(λ) = h1(λ). This is analogous

to the case of standard filterbanks and leads to our proposed graph-QMF design as explained in

Section 5.3.

5.3 Graph-QMF Filterbanks

In this section, we extend the well-known quadrature mirror filter (QMF) solution to the case of

bipartite graphs. Our proposed solution, termed as graph-QMF, requires the design of a single

spectral kernel h0(λ), while the other spectral kernels are chosen as a function of h0(λ) as:

h1(λ) = h0(2− λ)

g0(λ) = h0(λ)

g1(λ) = h1(λ) = h0(2− λ)

(5.28)

61

Proposition 3 (QMF Filters on Graph). For a bipartite graph G = (L,H,E), let a two-channel

filterbank be as shown in Figure 2.1 with the downsampling function β = βH and with spectral

filters {H0,H1,G0,G1} corresponding to spectral kernels {h0(λ), h1(λ), g0(λ), g1(λ)} respectively.

Then for any arbitrary choice of kernel h0(λ), the proposed graph-QMF solution cancels aliasing

in the filterbank. In addition for solution h0(λ) such that h0(λ)2 +h0(2−λ)2 = c2 for all λ ∈ σ(B)

and c 6= 0 the filterbank provides perfect reconstruction and an orthogonal decomposition of graph-

signals.

Proof. Substituting (5.28) into (5.11) leads to g0(λ)h0(2−λ)− g1(λ)h1(2−λ) = 0 and aliasing is

indeed canceled. The reconstructed signal x̂ in this case is simply equal to (1/2)Teqx and can be

written as:

x̂ =
1

2

∑
λ∈σ(B)

(h20(λ) + h20(2− λ))xλ (5.29)

Thus for (h20(λ)+h20(2−λ)) = c2 and c 6= 0, the reconstructed signal x̂ = c2

2 x is a scaled version of

the original signal. Similarly applying the mirror design h1(λ) = h0(2−λ) in the conditions (5.27)

we get h0(λ)h0(2− λ)− h1(λ)h1(2− λ) = 0 and h20(λ) + h21(λ) = c2 and hence the corresponding

analysis side transform Ta is orthogonal.

5.3.1 Chebychev polynomial approximation

We now consider the design of kernels h0(λ) satisfying the design constraint of Proposition 3, i.e.,

for which h20(λ) + h20(2 − λ) = c2 for all λ ∈ σ(B). For maximum spectrum splitting in the two

channels of the filterbank, the ideal choice of kernel h0(λ) would be a lowpass rectangular function

on λ given as:

hideal0 (λ) =


c if λ < 1

c/
√

(2) if λ = 1

0 if λ > 1

(5.30)

The corresponding ideal filter is given by

Hideal
0 =

∑
λ<1

cPλ +
c√
2
Pλ=1 (5.31)

Note that the ideal transform has a non-analytic spectral kernel response with sharp peaks and is

therefore a global transform (i.e., the filters operations are not localized). Even analytic solutions

62

of the constraint equation h20(λ) + h20(2 − λ) = c2, such as h0(λ) = c
√

1− λ/2 or h0(λ) =

c cos(πλ/4), are not compactly supported in the spatial domain. By relaxing the constraints

one can obtain compact support solutions at the cost of some small reconstruction error and

near-perfect orthogonality. One such solution is the approximation of the desired kernel with

a polynomial kernel. We choose polynomial approximations of the desired kernel due to the

following localization property for corresponding transforms:

Lemma 3 ([14]). Let h0(λ) be a polynomial of degree k and let L be the normalized Laplacian

matrix for any weighted graph G, then the matrix polynomial H0 = h0(L) is exactly k-hop localized

at each node of G. In other words for any two nodes n and m if m /∈ Nk(n) then H0(n,m) = 0.

Further, we choose a minimax polynomial approximation which minimizes the Chebychev

norm (worst-case norm) of the reconstruction error since it has been shown in [14] that it also

minimizes the upper-bound on the error ||Hideal−Hpoly|| between ideal and approximated filters.

Thus, in order to localize the filters on the graph, we approximate hideal0 with the truncated

Chebychev polynomials (which are a good approximation of minimax polynomials) of different

orders. However since hideal0 is a rectangular function it projects a lot of its energy in the truncated

part of the polynomial expansions and as a result the polynomial approximation errors for hideal0

are high. A possible solution of this problem is to soften the ideal case, by finding a smooth

function that is low-pass and satisfies the constraint. An analogous construction in regular signal

processing is Meyer’s wavelet design which replaces the brick-wall type ideal frequency-response

with a smooth scaling function that satisfies the orthogonality and scaling requirements. By a

change in variable from ω ∈ [−1, 1] to λ ∈ [0, 2] we can extend Meyer’s wavelet construction in the

case of bipartite graph. The construction involves choosing a function ν(x) such that ν(λ) = 0

for λ ≤ 0 , ν(λ) = 1 for λ ≥ 1 and ν(λ) + ν(1−λ) = 1 everywhere. One such function is given as:

ν(λ) =


0 if λ ≤ 0

3λ2 − 2λ3 if 0 ≤ λ ≤ 1

1 if λ ≥ 1

, (5.32)

which leads to a smooth kernel given as:

hMeyer
0 (λ) =

√
ν(2− 3

2
λ) (5.33)

63

In Figure 5.1(a), we plot the ideal and Meyer wavelet kernels and in Figures 5.1(b)-(f) we plot the

reconstruction errors between desired kernels and their polynomial approximations of different

orders. It can be seen that Meyer’s wavelet approximations yield small reconstruction errors

0 1 2
0

0.5

1

1.5

0 1 2
0

0.2

0.4

0.6

0.8

1

0 1 2
0

0.2

0.4

0.6

0.8

1

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) (b) (c)

(d) (e) (f)

Figure 5.1: (a) Ideal kernel (blue) vs. Meyer’s wavelet kernel (red). It can be seen that Meyer’s
wavelet has smoother transition at λ = 1 than the ideal kernel, (b)-(f) the reconstruction error
magnitudes between original kernels and their polynomial approximations of order 2, 4, 6, 8 and
10 respectively: ideal kernel (blue curves) and Meyers kernel(red curve).

as compared to ideal-filter approximations. Thus by choosing h(λ) as the low-order polynomial

approximations of smooth low-pass functions (such as Meyer’s wavelets), we obtain near perfect

reconstruction QMF wavelet filters on any bipartite graph which are very well localized in spatial

domain. In order to obtain a bound on the reconstruction error due to polynomial approximation,

we apply graph-QMF kernels given in (5.28) to the overall transform in (2.15). We observe that

the graph-QMF filterbanks cancel aliasing term (i.e., term Talias) and the reconstructed signal

can be written as:

f̂ =
∑

λ∈σ(B)

h20(λ) + h21(λ)

2
f̄(λ)uλ (5.34)

Hence, the reconstruction MSE is given as:

MSE =
1

N
||f−f̂ ||22 =

1

N

∑
λ∈σ(B)

(
1− h20(λ) + h21(λ)

2

)2

f̄2(λ) ≤ 1

N
arg max

λ

(
1− h20(λ) + h21(λ)

2

)2

︸ ︷︷ ︸
MSEmax

||f ||22

(5.35)

64

where MSEmax is the square of maximum deviation of equivalent kernel response
h2
0(λ)+h

2
1(λ)

2

from 1. The SNR of reconstruction can thus be bounded from below using MSEmax as:

SNR = 10log10

1
N ||f ||

2
2

1
N ||f − f̂ ||22

≥ −20log10
√

(MSEmax) (5.36)

Table 5.2 shows the average SNR obtained using different polynomial approximations of graph-

QMF filterbanks. The average is computed by randomly generating 20 graph-signals on 10 random

instances of bipartite graphs, each with 100 nodes. We observe that increasing the degree of poly-

nomial approximations leads to higher reconstruction SNR, at the cost of increasing computational

complexity (i.e., longer filters). In the next section, we relax the condition of orthogonality, and

turn to compactly supported designs, which are perfect reconstruction and can be designed with

shorter polynomial spectral kernels.

5.4 One-hop Localized Spectral Filterbanks

We are interested in filterbanks which can be computed locally at each node (i.e., have com-

pact support), critically sampled and invertible. To achieve compact support, instead of finding

polynomial approximations of arbitrary kernel functions as described in Section 5.3, we propose

designing low-degree polynomial kernels which have localized support, and are invertible. In this

approach, we use analysis filters to be based on spectral kernels, similar to the ones defined in (5.1).

We specifically choose degree-1 polynomial kernels:

h0(λ) = a0λ+ b0

h1(λ) = a1λ+ b1, (5.37)

in which case the corresponding filters are given as:

H0 = a0L+ b0I

H1 = a1L+ b1I. (5.38)

Referring again to (5.16) the analysis wavelet transform Ta is given as:

65

Ta =
1

2
(H1 + H0) +

1

2
Jβ(H1 −H0). (5.39)

Thus, Ta corresponds to choosing m rows of lowpass transform matrix H0 for nodes in L and

N −m rows of highpass transform H1 for nodes in H.

5.4.1 One-hop localized designs for arbitrary graphs

Proposition 4 below states that transform Ta is invertible (non-singular) for any partition L∪H

of vertex set for our choice of degree-1 kernel functions h0(λ) and h1(λ).

Proposition 4. Let transforms H0 and H1 be two transforms on a graph G based on linear spectral

kernels h0 and h1 as defined above, and Ta is the overall analysis transform. Let V = L ∪H be

any partition of vertex set of G. Then for a0, a1 6= 0 and b1/a1, b0/a0 ≥ 0 with strict inequality

for at least one b, the matrix Ta is invertible.

Proof. Without loss of generality, let us assume Ta consists of first m rows of matrix H1 and

remaining l = N −m rows of matrix H0. Represent the Laplacian matrix L in block form as

L =

 (L1)m×m (L3)m×l

(L′3)l×m (L2)l×l

 . (5.40)

Using (5.39), Ta can be written as:

Ta =

 a1L1 + b1I1 a1L3

a0L
′
3 a0L2 + b0I2


=

 a1I1 0

0 a0I2


︸ ︷︷ ︸

A

 L1 + b1
a1

I1 L3

L′3 L2 + b0
a0

I2


︸ ︷︷ ︸

B

(5.41)

66

Since matrix A is full-rank for a1, a0 6= 0. Therefore rank(Ta) = rank(B). However, matrix B is

the sum of Laplacian matrix L and matrix E given as:

B = L+

 (b1/a1)I1 0

0 (b0/a0)I2


︸ ︷︷ ︸

E

(5.42)

which is positive semi-definite (for b1/a1, b0/a0 ≥ 0). Therefore B is positive semi-definite. Further

for (b1 = 0, b0 > 0) the null-space N (L) = {x = cD1/21 : c ∈ R} of matrix L and null-space

N (E) = {x ∈ RN : x(k) = 0 ∀k ∈ {m + 1...N}} of matrix E are disjoint (∀x 6= 0). Hence B is

positive definite and is therefore full rank. Same is true for the case when (b0 = 0, b1 > 0). Hence

matrix Ta is full-rank and invertible.

The advantage of the 1-hop localized design, described above, is that it can be applied to any

arbitrary graph and for any partition sets L and H. However, the design is valid only for linear

spectral kernels h0 and h1 with the constraints mentioned in Proposition 4, and does not hold for

larger filters.

5.4.2 One-hop localized designs for bipartite graphs

The constraints required to satisfy invertibility in 1-hop localized filterbanks can be more relaxed,

and easy to satisfy if the underlying graph is a bipartite graph. Let us consider the same 1-hop

localized spectral filters on bipartite graphs. Referring again to (5.8), the filterbanks on a bipartite

graph B with a pair of kernels h0(λ) and h1(λ) are invertible (i.e., have a solution of g0(λ) and

g1(λ)), if det(Hλ) 6= 0 for all λ ∈ σ(B). Using linear spectral kernels given in (5.37) in (5.8), we

get:

det(Hλ) = det


 a0λ+ b0 a1λ+ b1

−a0(2− λ)− b0 a1(2− λ) + b1


 (5.43)

This can be written as:

det(Hλ) = (a0λ+ b0)(−a1λ+ 2a1 + b1)− (a1λ+ b1)(a0λ− 2a0 − b0)

= −2(a0a1λ
2 − 2a0a1λ− a1b0 − a0b1 − b1b0)

= −2a0a1 (λ− (1− δa)) (λ− (1 + δa)) (5.44)

67

where

δa =

√
1 +

a1b0 + a0b1 + b0b1
a0a1

(5.45)

Thus, det(Hλ) is a quadratic polynomial in terms of λ with roots at 1− δa and 1 + δa. Therefore,

the filterbanks are invertible, as long as 1 − δa and 1 + δa are not the eigenvalues of B2. This is

a much more relaxed condition than the conditions in Proposition 4, but works only in case of

bipartite graphs. Let us take a specific design choice in which a1 = 1/2, a0 = −1/2, b1 = 0 and

b0 = 1. The kernels h0(λ) and h1(λ) in this case, are plotted in Figure 5.2(a). Here h0(λ) can be

considered a linear approximation of ideal lowpass kernel hideal0 in (5.30), and h1(λ) = h0(2−λ), is

the highpass kernel. The design does not satisfy the conditions in Proposition 4, since (b0/a0) < 0.

However for bipartite graphs, applying these values in (5.45), we get:

δa =

√
1 +

a1b0 + a0b1 + b0b1
a0a1

=
√
−1, (5.46)

which is imaginary. This implies that det(Hλ) does not have any real roots, i.e. det(Hλ) 6= 0 for

all λ ∈ [0 2]. Therefore, the filterbank is always invertible on any bipartite graph. Solving (5.8)

by applying the specific parameters we get:

h0(λ) = 1− λ

2

h1(λ) =
λ

2

g0(λ) =
1− 1

2λ

λ2 − 2λ+ 2

g1(λ) =
1

2

λ

λ2 − 2λ+ 2
(5.47)

To summarize this section, we have proposed 1-hop localized filterbanks on graphs which are

invertible and critically sampled. The conditions for invertibility on any arbitrary graph are given

in Proposition 4. These conditions are quite constrained. On the other hand, we presented analysis

of 1-hop localized filterbanks for bipartite graphs and showed that the invertibility conditions

in bipartite graphs are much more relaxed, and easy to find. One example of 1-hop localized

filterbanks is proposed in (5.47), which is perfect reconstruction on any bipartite graphs and for

all graph-signals. However, the synthesis kernels in the proposed design are not polynomials,

2As stated in Lemma 2, the eigenvalues of a bipartite graph occur symmetrically around λ = 1, i.e., if 1 + δa is
an eigenvalue of B then 1− δa is also an eigenvalue of B.

68

(a) analysis kernels (b) synthesis kernels

Figure 5.2: Proposed 1-hop spectral kernels for bipartite graphs.

which implies that they do not have compact support. In the next section, we consider designs

where both analysis and synthesis kernels have compact support.

5.5 Graph-Bior Filterbanks

We now revisit the perfect reconstruction conditions on bipartite graphs, described in Section 5.2

to design critically sampled perfect reconstruction filterbanks, in which both analysis and synthesis

filters are compactly supported. In our proposed designs, both analysis filters Hi and synthesis

filters Gi for i = 0, 1, of the two channels are graph transforms characterized by spectral kernels

hi(λ) and gi(λ) for i = 0, 1 respectively. The minimum constraints for designing biorthogonal

filters are to satisfy the perfect reconstruction conditions given in (5.15), which involves designing

four spectral kernels, namely lowpass analysis kernel h0(λ), highpass analysis kernel h1(λ), lowpass

synthesis kernel g0(λ), and highpass synthesis kernel g1(λ). If we choose analysis and synthesis

high-pass kernels to be:

h1(λ) = g0(2− λ)

g1(λ) = h0(2− λ), (5.48)

then, (5.15) reduces to a single constraint for all eigenvalues, given as:

h0(λ)g0(λ) + h0(2− λ)g0(2− λ) = 2. (5.49)

69

Further, define p(λ) = h0(λ)g0(λ), then (5.49) can be written as:

p(λ) + p(2− λ) = 2. (5.50)

In our approach, we first design h0(λ) and g0(λ), and then h1(λ) and g1(λ) can be obtained

using (5.48). Further, since p(λ) is the product of two low-pass kernels, it is also a low-pass kernel.

Therefore, the objective is to design p(λ) as a polynomial half-band kernel3, which satisfies (5.49),

and then obtain kernels h0(λ) and h1(λ) via spectral factorization. The following result is useful

in our analysis:

Proposition 5. If h0(λ) and g0(λ) are polynomial kernels, then any p(λ) = h0(λ)g0(λ), which

satisfies (5.48) for all λ ∈ [0 2], is an odd degree polynomial.

Proof. By changing the variable λ to 1− λ, we can write (5.48) as:

p(1 + λ) + p(1− λ) = 2, (5.51)

where p(1+λ) = h0(1+λ)g0(1+λ). If h0(λ) and g0(λ) are polynomial kernels, then the functions

p(1 + λ) and p(1− λ) are also polynomials and can be expressed as:

p(1 + λ) =

K∑
k=0

ck(λ)k.

p(1− λ) =

K∑
k=0

ck(−λ)k. (5.52)

Using (5.52) in (5.51), we get:

p(1 + λ) + p(1− λ) =

K∑
k=0

ck((λ)k + (−λ)k) = 2c0 +

K/2∑
k=1

c2kλ
2k. (5.53)

Thus p(1 + λ) + p(1 − λ) is an even polynomial function of λ. However, we need to design p(λ)

such that p(1 + λ) + p(1 − λ) = 2 for all λ ∈ [−1 1], which is true if and only if, c0 = 1 and all

3An half band kernel h(λ) in the spectral domain of a graph can be defined as a kernel with h(λ) ≈ 1 for λ ≤ 1
(i.e., less than Nyquist frequency.), and h(λ) ≈ 0 otherwise. Examples of half-band kernels are ideal spectral kernel
in (5.30), and Meyer’s kernel in (5.33).

70

other even power coefficients cn in the polynomial expansion of p(1 + λ) are 0. Therefore, the

solution p(1 + λ), expressed as:

p(1 + λ) = 1 +

K∑
n=0

c2n+1λ
2n+1, (5.54)

is an odd degree polynomial. Thus, ignoring the trivial case p(1 + λ) = 1, the highest degree of

p(1 + λ) (and hence p(λ)) is always odd.

5.5.1 Designing half-band kernel p(λ)

While the graph-QMF filters cannot be exact polynomials, there exist non-orthogonal filters that

satisfy (5.48), and (5.49). The following known results help us prove the existence of a polynomial

p(λ) that satisfy (5.49), and its spectral factorization:

Lemma 4 (Bezout’s identity [44, prop. 3.13]). Given any two polynomials a(λ) and b(λ),

a(λ)x(λ) + b(λ)y(λ) = c(λ), (5.55)

has a solution [x(λ), y(λ)], if and only if gcd(a(λ), b(λ)) divides c(λ), where gcd(a(λ), b(λ)) refers

to the greatest common divisor of polynomials a(λ) and b(λ).

Theorem 2 (Complementary Filters [44, prop. 3.13]). Given a polynomial kernel h0(λ), there

exists a complementary polynomial kernel g0(λ) which satisfies the perfect reconstruction relation

in (5.49), if and only if h0(1 + λ) and h0(1− λ) are coprime.

Proof. Let us denote a(λ) = h0(1 + λ), b(λ) = h0(1− λ), x(λ) = g0(1 + λ), y(λ) = g0(1− λ) and

c(λ) = 2. Then, (5.49) can be written in the same form as (5.55). Following the result of Lemma

4, given polynomial kernel h0(λ), a polynomial solution of g0(λ) exists if and only if gcd(h0(1 +

λ), h0(1−λ)) divides c(λ) = 2, which is a prime number. This implies gcd(h0(1 +λ), h0(1−λ)) is

either 1 or 2 for all λ ∈ [−1 1], which is true iff h0(1 + λ) and h0(1− λ) do not have any common

roots. This implies that h0(1 + λ) and h0(1− λ) are coprime.

Corollary 1 ([44, exercise. 3.12]). There is always a complementary filter for the polynomial

kernel (1 + λ)k, i.e.,

(1 + λ)kR(λ) + (1− λ)kR(−λ) = 2 (5.56)

71

always has a real polynomial solution R(λ) for k ≥ 0.

Proof. Let us denote a(λ) = (1 + λ)k, b(λ) = (1 − λ)k, x(λ) = R(λ), y(λ) = R(−λ) and c(λ) =

2. Then, (5.56) can be written in the same form as (5.55). Since a(λ) and b(λ), in this case

are coprime, therefore gcd(a(λ), b(λ)) = 1 divides c(λ) = 2. Hence, a polynomial R(λ), which

satisfies (5.56) always exists.

For a perfect reconstruction biorthogonal filterbank, we need to design a polynomial half-band

kernel p(λ) that satisfies (5.49), or equivalently (5.51). Following Daubechies’ approach [5], we

propose a maximally-flat design, in which we assign K roots to p(λ) at the lowest eigenvalue (i.e.,

at λ = 0). Subsequently, we select p(λ) to be the shortest length polynomial, which has K roots

at λ = 0 and satisfies (5.51). This implies that p(1 + λ) has K roots at λ = −1, and can be

expanded as:

p(1 + λ) = (1 + λ)K
k∑

m=0

rmλ
m.︸ ︷︷ ︸

R(λ)

(5.57)

where R(λ) is the residual k degree polynomial. By Corollary 1, there always exist such a poly-

nomial R(λ). On the other hand, Proposition 5 says that any p(1 + λ) that satisfies (5.51) has to

be an odd-degree polynomial. Hence, p(1 + λ) can also be expanded as:

p(1 + λ) = 1 +

M∑
n=0

c2n+1λ
2n+1. (5.58)

for a given M . Comparing (5.57) and (5.58), we get:

(1 + λ)K
k∑

m=0

rmλ
m = 1 +

M∑
n=0

c2n+1λ
2n+1. (5.59)

Comparing the constant terms in the left and right side of (5.59), we get r0 = 1. Further,

comparing the highest powers on both sides of (5.59) we get:

M =
K + k − 1

2
(5.60)

Further, the right side in (5.59) has M constraints c2n = 0 for n = {1, 2, ...K}, and the left side

72

in (5.59) has k unknowns rm for m = {1, 2, ...k}. In order to get a unique p(1 + λ) that satisfies

(5.51), we must have equal number of unknowns and constraints, i.e,

M = k =
K + k − 1

2
⇒ M = K − 1. (5.61)

Thus, (5.59) can be written as:

(1 + λ)K(1 +

K−1∑
m=1

rmλ
m) = 1 +

K−1∑
n=0

c2n+1λ
2n+1, (5.62)

and K − 1 unknowns can be found uniquely, by solving a linear system of K − 1 equations. Note

that given K, the length of p(λ) (i.e, highest degree) is K + M = 2K − 1. As an example, we

design p(λ) with K = 2 zeros at λ = 0. In this case p(1 + λ) can be written as:

p(1 + λ) = (1 + λ)2(1 + r1λ) = 1 + (r1 + 2)λ+ (1 + 2r1)λ2 + r1λ
3

Since p(1 + λ) is an odd polynomial, the term corresponding to λ2 is zero, i.e., 1 + 2r1 = 0 or

r1 = −1/2. Therefore, p(1 + λ) is given as:

p(1 + λ) = (1 + λ)2(1− 1

2
λ). (5.63)

which implies that:

p(λ) =
1

2
λ2(3− λ). (5.64)

We plot in Figure 5.3 p(λ) for various values of K, and it can be seen that by increasing K, we

get better ideal half band filter approximation of p(λ).

Note that for graph-QMF designs h1(λ) = h0(2 − λ), hence p(λ) = h20(λ) is a perfect square

of a polynomial. While graph-QMF designs satisfy constraints given in both (5.48) and (5.49),

they cannot be designed as exact polynomials. As proven in Proposition 5, any p(λ) which

satisfies (5.49) is an odd-degree polynomial. Using this result, we can prove the following:

Proposition 6. The kernels in the graph-QMF design cannot be exact polynomial functions.

Proof. For the graph-QMF solution in (5.28), the design was based on selecting g0(λ) = h0(λ)

73

Figure 5.3: The spectral distribution of p(λ) with K zeros at λ = 0

and we can write pQMF (λ) = h20(λ). Thus, if h0(λ) is a polynomial kernel then pQMF (λ) is

the square of a polynomial, and therefore should have an even degree. However as proved in

Proposition 5 above, pQMF (λ) is an odd degree polynomial and cannot be factored into the square

of a polynomial. Therefore, h0(λ) in the graph-QMF designs, cannot be an exact polynomial.

5.5.2 Spectral factorization of half-band kernel p(λ)

Once we obtain p(λ) by using above mentioned design, we need to factorize it into filter kernels

h0(λ) and g0(λ). Since p(λ) is a real polynomial of odd degree, it has at least one real root and all

the complex roots occur in conjugate pairs. Since we want the two kernels to be polynomials with

real coefficients, each complex conjugate root pair of p(λ) should be assigned together to either

h0(λ) or g0(λ). While any such factorization would lead to perfect reconstruction biorthogonal

filterbanks, of particular interest is the design of filterbanks that are as close to orthogonal as

possible. For this, we define a criteria based on energy preservation. In particular, we compute

the Riesz bounds of analysis wavelet transform Ta, which are the tightest lower and upper bounds,

A > 0 and B < ∞, of ||Taf ||2, for any graph-signal f with ||f ||2 = 1. For near-orthogonality,

we require A ≈ B ≈ 1. The analysis transform Ta can be expressed in terms of transforms H0

74

and H1 as in (5.39), and the Riesz bounds can be computed as the square-roots of the extreme

eigenvalues of Tt
aTa. By expanding Tt

aTa, using (5.39) and (5.1) we obtain:

Tt
aTa = 1/2

∑
λ∈σ(B)

(h2
0(λ) + h2

1(λ))︸ ︷︷ ︸
Cλ

Pλ

+ 1/2
∑

λ∈σ(B)

(h1(λ)h1(2 − λ) − h0(λ)h0(2 − λ))︸ ︷︷ ︸
Dλ

JβPλ (5.65)

In (5.65), the term D(λ) consists of product terms h0(λ)h0(2 − λ) and h1(λ)h1(2 − λ), which

are small for λ away from 1 (since it is the product of a low pass and a high pass kernel), and

approximately cancel out each other for λ close to 1 (see Figure 5.4). Therefore, we can ignore

D(λ) in comparison to C(λ), and (5.65) can be approximately reduced to (5.66).

Tt
aTa ≈ 1/2

∑
λ∈σ(B)

(h2
0(λ) + h2

1(λ))︸ ︷︷ ︸
Cλ

Pλ (5.66)

Thus, Tt
aTa is a spectral transform with eigenvalues 1/2(h20(λ) + h21(λ)) for λ ∈ σ(B), and the

Riesz Bounds can be given as:

A = inf
λ

1

2
(h2

0(λ) + h2
1(λ))

B = sup
λ

1

2
(h2

0(λ) + h2
1(λ)) (5.67)

We choose the ∆ = A/B, as the measure of orthogonality (for orthogonal filterbanks ∆ = 1). The

exact computation of ∆ requires all eigenvalues of the graph. In general, the eigenvalues can be

computed from the eigen-decomposition of the graph, if the graph is known. However, this incurs

additional computational complexity, something we have avoided so far in our designs. Therefore,

we compute an approximte ∆ as the difference of lowest and highest values of 1/2(h20(λ) + h21(λ))

at 100 uniformly sampled points from the continuous region [0 2]. We choose filters with

least dissimilar lengths, and compute ∆ for all such possible factorizations (which are
(
2K−1
K

)
in

number). Finally, we choose the factorization with the maximum magnitude ∆.

5.5.3 Nomenclature and design of graph-Bior filterbanks

The proposed biorthogonal filterbanks are specified by four parameters (k0, k1, l0, l1), where

k0 is the number of roots of low pass analysis kernel h0(λ) at λ = 0, k1 is the number of roots

of low pass synthesis kernel g0(λ) at λ = 0, l0 is the highest degree of low pass analysis kernel

75

h0(λ), and l1 is the highest degree of low pass synthesis kernel g0(λ), respectively. The other two

filters, namely h1(λ) and g1(λ) can be computed as in (5.48). Given these specifications, we design

p(λ) = h0(λ)g0(λ) as a maximally flat half band polynomial kernel with K = k0 + k1 number of

roots at λ = 0. As a result, p(λ) turns out to be a 2K − 1 degree polynomial, and we factorize

it into h0(λ) and g0(λ), with least dissimilar lengths (i.e., we choose l0 = K and l1 = K − 1).

We use ∆ to be the criteria to compare various possible factorizations, and choose the one with

the maximum value of ∆. This leads to a unique design of biothogonal filterbanks. We term our

proposed filterbanks as graphBior(k0, k1). We designed graphBior filterbanks for various values of

(k0, k1), and we observed that designs with k0 = k1 stand out, as they are close to orthogonal and

have near-flat pass-band responses. The low-pass and high-pass analysis kernels are plotted in

Figure 5.4, and their coefficients are shown in Table 5.2. A comparison between proposed graph-

Bior filterbanks and proposed graph-QMF filterbanks, in terms of perfect reconstruction error

(SNR) and orthogonality (∆) is shown in Table 5.1. The reconstruction SNR and orthogonality

∆ are computed as an average over 20 instances of randomly generated graph-signals on 10

random bipartite graphs with 100 nodes each. In this table, the filter length of graph-Bior designs

is chosen to be the maximum of the two filter lengths (i.e, K). It can be seen from Table 5.1 that

all graph-Bior designs provide perfect reconstruction (SNR > 100dB). The graph-QMF filters in

comparison are more orthogonal (i.e., ∆ closer to 1), but have considerably lower reconstruction

SNR. In Table 5.1, the value of ∆ for graph-Bior filterbanks seem far off from 1. However, this

is primarily because the lowpass and highpass kernels are not symmetric or even equal length.

As a result, the basis in the biorthogonal case (i.e., rows of analysis transform Ta) corresponding

to different kernels have different norms, and therefore the signal projected on to different basis

experiences different gains, leading to ∆ << 1. In order to see the orthogonality of the basis in

a practical case, we empirically compute the mutual coherence M of the transform matrix Ta,

which is defined as the maximum absolute value of the cross-correlation between the rows of Ta,

i.e.,

M = max
1≤i 6=j≤N

| < tai taj > |, (5.68)

and for orthogonal basis, M = 0. We observe in Table 5.1 that the value of mutual coherence M

is very close to 0 for biorthogonal filters, which we compute as the average mutual coherence over

10 instances of random bipartite graphs. This implies that the basis in Ta are nearly orthogonal.

76

In order to get a uniform gain over all basis, we need to adjust the gains of lowpass and highpass

basis in Ta, as done in the standard biorthogonal filterbanks. This is a part of our future work.

Filterlength Graph-QMF Graph-Bior
SNR (in dB) ∆ SNR (in dB) ∆ M

4 32.2107 0.9657 300.3649 0.5042 0.0946
10 42.1521 0.9856 245.691 0.5777 0.0634
14 48.0403 0.9902 173.5528 0.6528 0.0518
16 44.6852 0.9854 154.7572 0.6802 0.0445
18 45.1262 0.9876 123.9701 0.6864 0.0423
20 54.6041 0.9963 115.0719 0.7112 0.0378

Table 5.1: Comparison between graph-QMF filterbanks and graph-Bior filterbanks

graphBior(k0,k1) filter coefficients
k0 = 6, k1 = 6 h1 = [-0.3864 4.0351 -17.0630 36.5763 -39.8098 17.6477 0 0

0 0 0 0]
h0 = [0.4352 -4.9802 23.2396 -55.4662 67.2657 -29.0402
-13.0400 7.5253 9.5267 -4.8746 -2.0616 1.2633 1.2071]

k0 = 7, k1 = 7 h1 = [0.3115 -3.9523 21.0540 -60.3094 98.0605 -85.9222
31.7578 0 0 0 0 0 0 0]
h0 = [-0.4975 6.8084 -39.6151 126.2423 -234.3683 241.5031
-97.6557 -46.2635 62.1232 -19.3648 -2.0766 6.5886 -4.5632
0.5775 1.5614]

k0 = 8, k1 = 8 h1 = [-0.3232 4.7284 -29.7443 104.3985 -221.0705 282.7915
-202.6283 62.8477 0 0 0 0 0 0 0 0]
h0 = [0.4470 -6.9872 47.5460 -183.6940 440.0924 -670.0905
643.3979 -396.0713 209.9824 -154.0976 92.8617 -30.8228
16.6112 -12.7664 3.2403 -0.0284 1.3793]

Table 5.2: Polynomial expansion coefficients (highest degree first) of graphBior (k0, k1) filters
(approximated to 4 decimal places) on a bipartite graph.

5.6 Filterbank designs using asymmetric Laplacian matrix

A DC signal on a graph corresponds to a scalar multiple of the eigenvector of graph Laplacian

matrix corresponding to the lowest eigenvalue (i.e., λ = 0). So far in this chapter, we have used

the symmetric normalized Laplacian matrix L to design spectral filters, in which case, a DC vector

on a bipartite graph is of the form cD1/2f = c1, where 1 is a vector with all elements 1, and

D is the degree matrix. As described in Section 4.3, the normalization is necessary in order to

extend the downsampling results for k-RBG to other non-regular bipartite graphs. Further, the

matrix I − L has the same eigenvalues as the probability transition matrix D−1A of a random

77

walk defined on the graph, and thus is consistent with the stochastic properties of the graph.

However, in some applications, such as image-processing, a DC signal is defined as an all constant

signal f = c1, and a desired property of wavelet filters in this case is to have zero response (i.e.,

the wavelet coefficients are all zero) corresponding to f = c1. In order to make our filterbanks

compatible with these applications, we propose designing spectral filters using the asymmetric

Laplacian matrix La, which is defined as:

La = D−1L = D−1/2LD1/2 (5.69)

Since 1 is an eigenvector of L with eigenvalue λ = 0, it is also an eigenvector of La with eigenvalue

λ = 0. Further, matrix La is similar to L, and therefore has the same set of eigenvalues as L.

The eigenvector uλ,a of La is related to eigenvector uλ of L as:

uλ,a = D−1/2uλ (5.70)

Note that for non-regular graphs La is an asymmetric matrix, therefore the eigenvectors of La

are not orthogonal. The eigenvector decomposition of La is given as :

La = (D−1/2U)Λ(D−1/2U)−1. (5.71)

Therefore, similar to (5.1), a spectral filters using La, corresponding to spectral kernel h(λ) can

be defined as:

Ha = h(La) = (D−1/2U)h(Λ)(D−1/2U)−1

= D−1/2Uh(Λ)UtD1/2

= D−1/2HD1/2, (5.72)

where H is the spectral filter with the same spectral kernel h(λ), defined using normalized Lapla-

cian matrix L. To avoid confusion, we will refer to filters designed using asymmetric Laplacian

matrix as simply asymmetric filters, and filters designed using symmetric Laplacian matrix as

symmetric filters. According to (5.72) , any asymmetric filters Ha is similar to a symmetric filters

H with same spectral kernel. However, the advantage of using Ha instead of H in a filterbank

78

is that 1 is an eigenvector of Ha with eigenvalue h(0). Referring again to Figure 2.1, the overall

transfer function of an asymmetric filterbank can be written as:

f̂ =
1

2
G0a(I + Jβ)H0af +

1

2
G1a(I− Jβ)H1af

=
1

2
(G0aH0a + G1aH1a)f +

1

2
(G0aJβH0a −G1aJβH1a)f . (5.73)

Using the similarity relation given in (5.72), we can simplify (5.73) as:

f̂ =
1

2
(D−1/2G0D

1/2D−1/2H0D
1/2 + D−1/2G1D

1/2D−1/2H1D
1/2)f

+
1

2
(D−1/2G0D

1/2JβD−1/2H0D
1/2 −D−1/2G1D

1/2JβD−1/2H1D
1/2)f . (5.74)

In (5.74), the matrices D1/2,Jβ , and D−1/2 are diagonal matrices and hence commute with each

other. Therefore,

D1/2JβD−1/2 = JβD1/2D−1/2 = Jβ (5.75)

Thus, (5.74), can be simplified as:

f̂ =
1

2
(D−1/2G0H0D

1/2 + D−1/2G1H1D
1/2)f

+
1

2
(D−1/2G0JβH0D

1/2 −D−1/2G1JβH1D
1/2)f

= D−1/2TeqD
1/2f + D−1/2TaliasD

1/2f

= D−1/2(Teq + Talias)D
1/2f , (5.76)

where Teq and Talias correspond to the overall transfer function of symmetric filterbanks, as

defined in (5.2) and (5.3), respectively. Thus, the asymmetric filterbanks are equivalent

to symmetric filterbanks designed with same spectral kernels, in which the input

is normalized with D1/2 prior to filtering/downsampling operations, and the output

is de-normalized with D−1/2 after the filtering/downsampling operations. We use

this result to find out the perfect reconstruction conditions and orthogonality in asymmetric

filterbanks.

79

5.6.1 Perfect Reconstruction

If Teq+Talias = cI, then f̂ = D−1/2(cI)D1/2f = cf in (5.76), therefore the asymmetric filterbanks

are perfect reconstruction if the symmetric filterbanks designed using the same spectral kernels,

are perfect reconstruction. As a result, the conditions mentioned in (5.15), are also necessary and

sufficient conditions for perfect reconstruction in asymmetric filterbanks.

5.6.2 Orthogonality

Since the eigenvectors of La are not orthogonal, the asymmetric filterbanks using graph-QMF

kernels are also not orthogonal. The following analysis explains the frame property of asymmetric

filterbanks.

Similar to (5.16), the wavelet coefficient vector w produced in the asymmetric filterbanks can

be written as:

w = Taaf =
1

2
(H1a + H0a)f +

1

2
Jβ(H1a −H0a)f

=
1

2
D−1/2(H1 + H0)D1/2f +

1

2
D−1/2Jβ(H1 −H0)D1/2f

= D−1/2TaD
1/2 (5.77)

In (5.77), if we define fn = D1/2f , and wn = D1/2w, then (5.77) can be written as wn = Tafn.

Thus, if the corresponding symmetric filterbank is orthogonal, i.e., if the spectral kernels satisfy,

(5.27), then ||wn|| = ||fn|| (the 2-norm). However,

dmin

N∑
i=1

w2(i) ≤ ||wn||2 =

N∑
i=1

diw
2(i) ≤ dmax

N∑
i=1

w2(i)

dmin

N∑
i=1

f2(i) ≤ ||fn||2 =

N∑
i=1

dif
2(i) ≤ dmax

N∑
i=1

f2(i), (5.78)

where dmin is the minimum degree in the graph (1 if there is an isolated node), and dmax is the

maximum degree. Using (5.78), we obtain:

dmin||w||2 ≤ ||wn||2 = ||fn||2 ≤ dmax||f ||2

dmin||f ||2 ≤ ||fn||2 = ||wn||2 ≤ dmax||w||2, (5.79)

80

and

dmin
dmax

||f ||2 ≤ ||w||2 ≤ dmax
dmin

||f ||2 (5.80)

Thus, the asymmetric graph-QMF filterbanks define a frame in the graph-signal space, with lower

bound A =
√
dmin/dmax and upper-bound B =

√
dmax/dmin. Note that for regular graphs

dmin = dmax, hence A = B = 1, and the asymmetric graph-QMF filterbanks are orthogonal.

Similar analysis can be done for asymmetric graphBior filterbanks.

Thus, we can use both symmetric normalized and asymmetric normalized Laplacian matrices

to design spectral filters in any of our proposed filterbank designs. The decision about which

filterbank design and which Laplacian matrix to choose depends on the desired properties of the

filterbanks. In Table 5.3, we present a comparison of all of our proposed designs. Note that all of

these filterbanks are designed for bipartite graphs. The extension of these designs to any arbitrary

graph is presented in the Chapter 6.

Method Laplacian matrix DC CS PR Comp OE

Graph-QMF (exact) symmetric4 f = cD−1/21 Yes Yes No Yes
asymmetric5 f = c1 Yes Yes No No

Graph-QMF (approx.) symmetric4 f = cD−1/21 Yes No7 Yes No
asymmetric5 f = c1 Yes No Yes No

One-hop localized symmetric4 f = cD−1/21 Yes Yes Yes6 No
asymmetric5 f = c1 Yes Yes Yes6 No

Graph-Bior symmetric4 f = cD−1/21 Yes Yes Yes No
asymmetric5 f = c1 Yes Yes Yes No

Table 5.3: Comparison of proposed two-channel filterbank designs on bipartite graphs. DC:
subspace corresponding to lowest eigenvalue, CS: Critical Sampling, PR: Perfect Reconstruction,
Comp: compact support, OE: Orthogonal Expansion

5.7 Summary

In this chapter, we proposed the construction of critically sampled wavelet filterbanks for ana-

lyzing graph-signals defined on any undirected weighted bipartite graph. We designed wavelet

filters based on spectral techniques, and provided necessary and sufficient conditions for aliasing

cancellation, perfect reconstruction and orthogonality in these filterbanks. As a practical solution,

4designed using symmetric Laplacian matrix L
5designed using asymmetric Laplacian matrix La
6for analysis filters only.
7This reconstruction error can be reduced to arbitrary small levels by increasing the degree of approximation.

81

we have proposed a graph-QMF design for bipartite graphs which has all the above mentioned

features. The filterbanks are however, realized by Chebychev polynomial approximations at the

cost of small reconstruction error and loss of orthogonality. As alternatives to graph-QMF fil-

terbanks on graphs, we described two approaches for constructing two-channel filter-banks on

bipartite graphs. One of the approaches is to design spectral 2-channel filterbanks, where analysis

filters are designed using linear spectral kernels, and synthesis filters are chosen so as to guarantee

invertibility. The other approach is to design spectral 2-channel filterbanks, where both analysis

and synthesis filters are based on polynomial spectral kernels. These filters are not orthogonal, but

they have compact support, and provide perfect reconstruction. All these filterbanks are designed

to operate on a bipartite graph. In the next chapter, we describe a separable multi-dimensional

implementation of these designs to any arbitrary graph via bipartite subgraph decomposition.

82

Figure 5.4: Spectral responses of graphBior(k0, k1) filters on a bipartite graph. In each plot, h0(λ)
and h1(λ) are low-pass and high-pass analysis kernels, C(λ) and D(λ) constitute the spectral
response of the overall analysis filter Ta, as in (5.65). For near-orthogonality D(λ) ≈ 0 and
C(λ) ≈ 1. Finally, (p(λ) +p(2−λ))/2 represents perfect reconstruction property as in (5.51), and
should be constant equal to 1, for perfect reconstruction.

83

Chapter 6

Separable Multi-dimensional Wavelet Filterbanks on

Graphs

Both, the lifting wavelet filterbanks in Chapter 3 and the spectral wavelet filterbanks in Chap-

ter 5, are designed for bipartite graphs. This is because, bipartite graphs are a natural choice for

implementing lifting wavelet filterbanks, and provide easy-to-interpret perfect reconstruction con-

ditions for spectral wavelet filterbanks, in terms of simple functions of spectral kernels. However,

not all graphs are bipartite. For arbitrary graphs, the results applicable to bipartite graphs can be

extended in a variety of ways. One way is to approximate G with a bipartite subgraph Ĝ, and im-

plement designs proposed in Chapter 3 and Chapter 5 on the approximate graph. This approach

results in edge-losses, since the edges between nodes belonging to the same partition are discarded

while computing the transform coefficients. We refer to this approach as “one-dimensional” high

loss implementation. As an alternative, we decompose the graph G into K edge-disjoint bipar-

tite subgraphs whose union is G and implement filtering/downsampling operation in K stages,

restricting the filtering/downsampling operations in each stage to one bipartite graph. This way,

all the edges in the graphs participate in computing the wavelet transform. We refer to this

approach as “multi-dimensional” no loss implementation. However, the requirement of using all

edges in the graph may sometimes lead to very high-dimensional representation of graph-signals,

where most of the edges are contained in a few bipartite subgraphs, and the remaining subgraphs

are nearly empty (in terms of edges). Therefore, another alternative is to use a hybrid approach,

where we compute K edge-disjoint bipartite subgraphs whose union is G, but discard bipartite

subgraphs with very few edges. This way, some edges in G are not used in computing the wavelet

transform, but these edges constitute a very small fraction of the total number of edges. We refer

84

to this approach as “multi-dimensional” low-loss implementation.

In this chapter, we describe the properties of “multi-dimensional” implementations of proposed

two-channel filterbanks. In high-dimensional regular signals, filtering and downsampling is done

along the geometrical directions (horizontal, vertical etc) of the underlying regular lattice. The

subgraph decomposition in graphs can be interpreted in the same spirit as defining “graph dimen-

sions” for filtering and downsampling. Thus, a graph “dimension” can be interpreted as a subset

of links Ê ⊂ E for traversing the graph, starting at any node, and can also be represented as a sub-

graph (V, Ê) of graph (V, E). Further, two graph-dimensions may be considered “orthogonal”, if

the graph-filters implemented in these dimensions (i.e, on the corresponding subgraphs), measure

non-redundant information. This can be achieved if the sets of nodes discovered, while traversing

the graph starting at any node, in two different dimensions are mutually disjoint. Therefore, the

“dimensionality” of a graph G can be defined as the minimum K, for which the graph can be de-

composed into K subgraphs (V, Êp), p = 1, 2, ...K, such that the k-hop neighborhood sets {N p
k (n)},

centered at a node n, corresponding to all subgraphs (V, Êp), are pairwise disjoint for all k, and for

all nodes n. Further, since our proposed filterbanks operate only on bipartite graphs, we define

dimensionality in terms of decomposing the graph into K bipartite subgraphs. So, the question

that frames the rest of our discussion in this chapter is that of how to find these orthogonal

subgraph decompositions. A more relevant question, especially for the multi-dimensional low-loss

case, is to find “good” K-dimensional bipartite subgraph decompositions of a graph for a fixed

K.

In this chapter, we propose a separable downsampling and filtering approach to apply our

filterbank design to an arbitrary graph, G = (V,E), where our previously designed two-channel

filterbanks are applied in a “cascaded” manner, by filtering along a series of bipartite subgraphs of

the original graph. This is illustrated in Figure 6.1. We call this a “separable” approach in analogy

to separable transforms for regular multidimensional signals. For example in the case of separable

transforms for 2D signals, filtering in one dimension (e.g., row-wise) is followed by filtering of

the outputs along the second dimension (column-wise). In our proposed approach, a stage of

filtering along one “dimension” corresponds to filtering using only those edges that belong to the

corresponding bipartite subgraph. As shown in Figure 6.1, after filtering along one subgraph

the results are stored in the vertices, and a new transform is applied to the resulting graph

signals following the edges of the next level bipartite subgraph. We study the desired properties

85

Figure 6.1: Block diagram of a 2D Separable two-channel Filter Bank: the graph G is first
decomposed into two bipartite subgraphs B1 and B2, using the proposed decomposition scheme.
By construction B2 is composed of two disjoint graphs B2(L) and B2(H), each of which is processed
independently, by one of the two filterbanks at the second stage. The 4 sets of output transform
coefficients, denoted as yHH ,yHL,yLH and,yLL, are stored at disjoint sets of nodes.

of these bipartite subgraph decompositions, and propose metrics to quantitatively measure the

separations. Subsequently, we propose greedy heuristic to optimize these metrics and compare

the resulting decompositions with other non-optimized schemes.

The rest of the chapter is organized as follows: in Section 6.1, we describe our proposed

approach for implementing wavelet filterbanks on arbitrary graphs via bipartite subgraph decom-

position. In Section 6.2, we discuss the desired properties of bipartite subgraph decomposition

in the filterbank design, and define some metrics to compare various bipartite decompositions

based on these properties. In the same section we propose two algorithms, namely Harary’s

decomposition, and min-cut weighted max-cut (MCWMC) decomposition, to compute bipartite

subgraphs. In Section 6.3, we compare proposed algorithms in terms of desired properties. Finally

we conclude the chapter in Section 6.4.

6.1 Proposed Design

In what follows we will assume that G has been decomposed into a series of K bipartite subgraphs

Bi = (Li, Hi,Ei), i = 1 . . .K; how such a decomposition may be obtained will be discussed later.

The bipartite subgraphs cover the same vertex set: Li ∪Hi = V, i = 1, 2, ...K. Each edge in G

belongs to exactly one Ei, i.e., Ei ∩ Ej = ∅, i 6= j,
⋃
iEi = E . Note that for each bipartition we

need to decide both a 2-coloring (Hi, Li) and an assignment of edges (Ei). In order to guarantee

86

invertibility for structures such as those of Figure 6.1, given the chosen 2-colorings (Hi, Li), the

edge assignment has to be performed iteratively based on the order of the subgraphs. That is,

edges for subgraph 1 are chosen first, then those for subgraph 2 are selected, and so on. The

basic idea is that at each stage i all edges between vertices of different colors that have not been

assigned yet will be included in Ei. More formally, at stage i with sets Hi and Li, Ei contains

all the links in E −
⋃i−1
k=1Ek that connect vertices in Li to vertices in Hi. Thus E1 will contain

all edges between H1 and L1. Then, we will assign to E2 all the links between nodes in H2 and

L2 that were not already in E1. This is also illustrated in Figure 6.2. Note that by construction

G1 = G−B1 = (V, E −E1) contains now two disjoint graphs, since all edges between L1 and H1

were assigned to E1. Thus, at the second stage in Figure 6.1, B2 is composed of two disjoint graphs

B2(L1) and B2(H1), which each will be processed independently by one of the two filterbanks at

this second stage. Clearly, this guarantees invertibility of the decomposition of Figure 6.1, since

it will be possible to recover the signals in B2(L1) and B2(H1) from the outputs of the 2nd stage

of the decomposition. The same argument can be applied to the decompositions with more than

two stages. That is, the output of a two-channel filterbank at level i leads to two subgraphs, one

per channel, that are disconnected when considering the remaining edges (E −
⋃i
k=1Ek). The

output of a K-level decomposition leads to 2K disconnected subgraphs.

HH LH

HL LL

= +

L

L

1

2

H1

H2

(a) (b) (c)

Figure 6.2: Example of 2-dimensional separable downsampling on a graph: (a) original graph G,
(b) the first bipartite graph B1 = (L1, H1,E1), containing all the links in G between sets L1 and
H1. (c) the second bipartite graph B2 = (L2, H2,E2), containing all the links in G−B1, between
sets L2 and H2

We now derive expressions for the proposed cascaded transform along bipartite subgraphs.

Using theK = 2 case as an example, assuming that the original graph can be approximated exactly

87

with two bipartite subgraphs as shown in Figure 6.2, we choose βi = βHi as the downsampling

function for bipartite graph Bi, for i = 1, 2. Further, let us denote Jβi , as the downsampling

matrices, and Hi0 and Hi1 as the low-pass and high-pass filters respectively, for the bipartite

graph Bi, for i = 1, 2. Since, the vertex sets L1 and H1 in bipartite graph B2 are disconnected,

the filtering and downsampling operations on graphs B2(L1) and B2(H1) do not interact with

each other. Therefore, graph-filters H2j , for j = 0, 1 on the second bipartite graph B2, can be

represented as block-diagonal matrices with diagonal entries H2j(H1, H1) and H2j(L1, L1). As a

result, H20 and H21 commute with downsampling matrix Jβ1 of the first bipartite subgraph, i.e.,

H2jJβ1 = Jβ1H2j , (6.1)

for j = 1, 2. 1 Further, let Tai be the equivalent analysis transform for Bi, for i = 1, 2. The

combined analysis transform Ta in the 2-dimensions can be written as the product of analysis

transform in each dimension. Using (5.16), we obtain:

Ta = Ta2.Ta1 =

2∏
i=1

1

2
((Hi1 + Hi0) + Jβi(Hi1 −Hi0)) , (6.2)

Note that for graph-Bior filter designs, lifting wavelet filter designs, and for exact graph-QMF

filter design such as with the Meyer kernel in (5.33), Tai is invertible with T−1ai = Tt
ai, for

i = 0, 1. As a result, Ta is invertible with T−1a = Tt
a1.T

t
a2

2. The transform function Ta can be

further decomposed into the transform functions THH ,THl,TLH and TLL corresponding to the

four channels in Figure 6.1. For example, the transform THH , consists of all the terms in the

expansion of Ta in (6.2), containing filters H11 and H21. Thus,

THH =
1

4
(H21H11 + H21Jβ1H11 + Jβ2H21H11 + Jβ2H21Jβ1H11), (6.3)

where (1/4)H21H11 is the transform without downsampling, and the remaining terms arise pri-

marily due to the downsampling in the HH channel. Using (6.1), which is a property of our

proposed decomposition scheme in (6.3), we obtain:

1In general, this result can be applied to any general K-dimensional decomposition using proposed recursive
method, as the downsampling matrix Jβi commutes with all filter matrices Hk1 and Hk2 corresponding to bipartite
subgraph Bk, where k > i.

2For polynomial approximations, of Meyer kernels, we incur some reconstruction errors in each dimension.

88

THH =
1

4
(H21H11 + Jβ1

H21H11 (6.4)

+ Jβ2
H21H11 + Jβ2

Jβ1
H21H11)

=
1

4
(I + Jβ2)(I + Jβ1)H21H11.

Thus, the equivalent transform in each channel of the proposed 2-dimensional separable fil-

terbanks can be interpreted as filtering with a 2-dimensional filter, such as H21H11 for the HH

channel, followed by DU operations with two downsampling functions β2(n) and β1(n) in cas-

cade. It also follows from (6.5), that the output of H21H11 in the HH channel is stored only

at the nodes corresponding to H1 ∩H2. Thus, the output of each channel is stored at mutually

disjoint sets of nodes, and each node stores the output of exactly one of the channel. Therefore,

the overall filterbank is critically sampled. Further, if the spectral decompositions of B1 and B2

are given as {λ,P1
λ} and {γ,P2

γ}, then H21H11 consists of a two dimensional spectral kernel

h21(γ)h11(λ) and corresponding eigenspace P2
γP

1
λ. The analysis extends to any dimension K > 2

with K-dimensional graph-frequencies (λ1, λ2, ..., λK), corresponding eigenspace P1
λ1
,P2

λ2
, ...PK

λK

and transforms with spectral response
∏K
i=1 gi(λi).

Note that invertible cascaded transforms can also be constructed even when the conditions for

edge selection described are not followed, e.g., if an edge e1 between nodes in H1 and L1 is not

included in E1. In such a situation, it is possible to perform an invertible cascaded decomposition

if e1 is no longer used in further stages of decomposition. Thus, we would have an invertible

decomposition but on a graph that approximates the original one (i.e., without considering e1).

Alternatively it can be shown that it is possible to design invertible transforms with arbitrary

Ei selections (i.e., not following the rules set out in this chapter), but these transforms are not

necessarily critically sampled. A more detailed study of this case falls outside of the scope of this

thesis.

6.1.1 Graph after downsampling

The DU operations in graphs, only define the node-sets H or L to be retained after downsampling.

For bipartite graphs, unlike the case of regular lattices, the resulting downsampled graphs GL and

GH may neither be identical nor bipartite. Therefore, for the next level of decomposition, we can

89

either operate on a single bipartite graph approximation of GL which leads to a one-dimensional

two-channel filterbank, or a multiple bipartite graph approximation, which leads to a multi-

dimensional two-channel filterbank implementation on the downsampled graph, which shall be

explained in the Chapter 5. Further, this multiresolution decomposition of graph-signals can be

extended to the case of general K-dimensional two-channel filterbanks for any arbitrary graph

G, which decomposes the signal into 2K lower-resolution versions, as described in Section 6.1. In

this case, the downsampled graphs in each channel, can be computed by reconnecting two nodes

in the downsampled vertex set, if they are 2K-hops away in the original graph.

6.2 Bipartite Subgraph Decomposition

So far we have described how to implement separable multi-dimensional two-channel filterbanks

on a graph G, given a decomposition of G into K bipartite subgraphs. In particular, we defined

a “separable” method of graph decomposition, which leads to a cascaded tree-structured imple-

mentation of the multi-dimensional filterbanks. While these multi-dimensional filterbanks can be

implemented for any separable bipartite subgraph decomposition of G, the definition of a “good”

bipartite decomposition is not clear. In this section, we study the desired properties of these

bipartite subgraph decompositions. As described in the beginning of this chapter, the bipartite

subgraph decomposition of a graph can be interpreted as decomposing the graph into different

“graph-dimensions”, where a “graph dimension” refers to a subset of edges in the graph. Further,

two bipartite subgraphs are “orthogonal” if the neighborhood sets defined on the two subgraphs at

each node are mutually disjoint. However, it can be problematic to strictly impose orthogonality

in the decomposition of some graphs (specially dense graphs), where this can lead to the genera-

tion of too many bipartite subgraphs, with very few edges in most of these subgraphs. Therefore,

the question is, given a fixed K (such as K = 2 in this case), what is a “good” K-dimensional

bipartite subgraph decomposition of a graph. The answer we propose is a bipartite subgraph

decomposition G =
⋃K
p Bp in which the k-hop neighborhoods N p

k (n) defined on each subgraph

Bp are maximally disjoint for all k and for all n. For simplicity, we restrict our discussion to the

2-dimensional case. The extension to higher dimensional decomposition is straightforward.

Before finding the solution, we define some metrics which measure the neighborhood separation

in bipartite subgraphs. For this, we define k-hop adjacency matrix as Ai,k so that Ai,k(n,m)

90

represents the number of paths from node n to node m of length up to k, in the bipartite subgraph

Bi. The diagonal entries of Ai,k are set to zero. Using matrix Ai,k, we measure separability in the

k-hop neighborhoods of bipartite subgraphs Bi by computing the correlation between nth rows of

adjacency matrices Ai,k at each node n. The k-hop neighborhood set correlation NSC(k) between

two bipartite subgraphs is the average correlation between the k-hop neighborhoods defined as:

NSC(k) =
1

N

N∑
n=1

∑
m A1,k(n,m)A2,k(n,m)√∑

m A1,k(n,m)2
∑
m A2,k(n,m)2

(6.5)

A low value of NSC would imply mutually disjoint neighborhoods in the decomposed bipartite

subgraphs. At a global scale, the eigen-vectors of bipartite subgraph Laplacian matrices which

form the graph-Fourier basis should also be decorrelated with each other. The correlation between

the lth eigen-vectors u1,l and u2,l on two bipartite subgraphs can be measured by their inner-

product. Therefore, we define spectral basis correlation SBC between bipartite subgraphs B1 and

B2 to be the Euclidean norm of inner-products between the corresponding eigenvectors:

SBC =

√√√√ N∑
l=1

(ut1,lu2,l)
2 (6.6)

To measure the loss because of the approximation, we define an edge-loss fraction (ELF) which

is the ratio between total number of edges in remaining graph G2 = G − B1 − B2 and the total

number of edges in G. Thus, ELF measures the fraction of edges not used in computing the

transform. We next present two heuristic algorithms to find good subgraph decompositions in

arbitrary graphs.

6.2.1 Harary’s decomposition algorithm

In this section, we propose a bipartite subgraph decomposition method, referred to as Harary’s

decomposition, which provides a dlog2ke bipartite decomposition of a graph G given a k-coloring

defined on it3. The method is derived from [15] and we describe it in Algorithm 3.4 Although the

3A graph is perfectly k-colorable if its vertices can be assigned k-colors in such a way that no two adjacent
vertices share the same color. The term chromatic number χ(G) of a graph refers to smallest such k.

4Note that the bipartite decomposition is not unique and depends on the ordering in which the k-colors are
divided.

91

problem of determining the chromatic number χ(G) is NP-complete, there exist several approxi-

mate minimum coloring algorithms with various orders of accuracies, a comparison of which can

be found in [23]. The complexity of these algorithms range from O(N2) for greedy algorithms to

O(N4) for a backtracking sequential coloring (BSC) algorithm presented in [23]. Based on this

result, we propose a dlog2ke- bipartite decomposition of the graph G, given a perfect k-coloring

defined on it. We refer to this method as Harary’s decomposition

Algorithm 3 Harary’s Decomposition

Require: F, s.t. F (v) is the color assigned to node v, min(F)=1 , max(F)=k.
1: Set L1 = set of nodes with F (v) ≤ bk/2c colors.
2: Set H1 = set of nodes with F (v) > dk/2e colors.
3: Set E1 ⊂ E containing all the edges between sets H1 and L1.
4: Compute bipartite subgraph B1 = (L1, H1, E1),
5: Set G = G− B1.
6: G is now a union of two disconnected subgraphs G(H1) and G(L1).
7: Graph G(L1) is dk/2e-colorable.
8: Compute coloring FL on G(L1) s.t. min(FL)=1 , max(FL)=dk/2e.
9: Graph G(H1) is bk/2c-colorable.

10: Compute coloring FH on G(H1) s.t. min(FH)=1 , max(FL)=bk/2c.
11: Repeat 1− 4 on G(L1) and G(H1) to obtain bipartite subgraphs B2(L1) and B2(H1).
12: Compute bipartite subgraph B2 = B2(L1) ∪ B2(H1).
13: Set G = G− B2.
14: repeat 1− 13 exactly dlog2ke times after which graph G will become an empty graph.

6.2.2 Min-cut weighted max-cut (MCWMC) algorithm

The nature and complexity of finding minimum bipartite subgraph decomposition with maximally

disjoint neighborhoods is not known. We therefore, propose the following greedy heuristic to

find bipartite subgraphs with disjoint neighborhoods: given a graph G, let β be chosen as the

first downsampling function inducing a partition (S1,S2) on graph G with sizes |S1| = N1 and

|S2| = N2. Let us define p(S) to be the probability of randomly choosing a node v ∈ S in graph G,

which is equal to |S|/|V |. Further let e = ES1,S2 denote the cut-set and B = (S1,S2, e) denote the

bipartite subgraph corresponding to β. This decomposition can be graphically represented as in

Figure 6.3. The exclusion of B from G changes the neighborhood structure of the resulting graph

G1. Thus in remaining graph G1, nodes in set S1 cannot reach nodes in set S2 and vice-versa.

We define the expected change in the neighborhood size at each node given the cut e as:

E[∂N | e] = p(S1)|S2|+ p(S2)|S1| =
2N1N2

N
(6.7)

92

Figure 6.3: Example of a bipartite graph-cut

Clearly E[∂N] is maximized if N1 ≈ N2 at each iteration. This problem is widely studied in

graph-literature as the balanced-cut problem in graphs. However finding balanced-cut iteratively

becomes problematic as it leads to roughly log2(N) bipartite subgraphs for graph-size N . Further,

in each bipartite graph the nodes that do not have edges in the cut-set e are disjoint and do not

take part in the transform. Therefore, we would like to maximally pack these edges into larger

and fewer bipartite subgraphs, packing edge-sets e in the order of their importance E[∂N | e].

In order to do this we assign a weight we = E[∂N]/|e| to each edge in the cut-set e ∈ e in

each iteration of balanced cut decomposition. The weight signifies the importance of the edge in

changing the neighborhood structure of resulting decompositions. We perform an iterative max-

cut algorithm on the resulting min-cut weighted graph which provides bipartite subgraphs with

maximum packing of the weighted edges. The algorithm is thus termed as the min-cut weighted

max-cut (MCWMC) algorithm, and described in Algorithm 4.

6.3 Experiments

In order to evaluate the different schemes for bipartite subgraph decomposition, we simulate ran-

dom graphs by uniformly distributing N = 100 nodes in a 2-D field and connecting nodes which

are within a fixed radius of each other.5 For MCWMC algorithm, we use the balanced-cut algo-

rithm proposed in [16] and the max-cut algorithm in [1]. For each graph G, we decompose the

graph iteratively into bipartite subgraphs up to two steps to obtain bipartite subgraphs B1 and B2

respectively. We then evaluate the metrics NSC and SBC for the two bipartite subgraphs obtained

by using a) MCWMC algorithm b) Harary’s algorithm proposed in [30] and c) a random decom-

position (in which we randomly assign downsampling functions to nodes). Table 6.1 summarizes

5Note that the 2-D embedding of graph is for illustration only. The MCWMC algorithm only depends on the
link-structure of the graph nodes.

93

Algorithm 4 MCWMC Decomposition

Require: G = (V, E)
1: Set (V, Ed) = min cut weighing(V, E)
2: Set k → 1.
3: while |E| 6= 0 do
4: Compute normalized Laplacian matrix L(Gd).
5: Compute eigenvector uλ, of maximum magnitude eigenvalue λ of L(Gd).
6: Set Lk = {v : uλ(v) ≥ 0}.
7: Set Hk = {v : uλ(v) < 0}.
8: Set Ek = {(u, v) : (u, v) ∈ E, u ∈ Lk, v ∈ Hk}.
9: Set Edk = {(u, v) : (u, v) ∈ Ed, u ∈ Lk, v ∈ Hk}.

10: Set Bk = (Lk, Hk, Ek).
11: Set E = E \ Ek; G = (V, E)
12: Set Ed = Ed \ Edk; Gd = (V, Ed)
13: Set k → k + 1.
14: end while

1: function Gd = min cut weighing(V, E)
2: if |E| = 0 then
3: Set Ed = E.
4: else
5: Compute normalized Laplacian matrix L(G), where G = (V, E).
6: Compute eigenvector uλ, of minimum non-zero eigenvalue λ of L(G).
7: Set S1 = {v : uλ(v) ≥ 0}.
8: Set S2 = {v : uλ(v) < 0}.
9: Set E1 = {(u, v) : (u, v) ∈ E, u ∈ S1, v ∈ S1}.

10: Set E2 = {(u, v) : (u, v) ∈ E, u ∈ S2, v ∈ S2}.
11: Set e = {(u, v) : (u, v) ∈ E, u ∈ S1, v ∈ S2}.
12: Compute we = 2|S1||S2|

|e|(|S1|+|S2|)
13: Set ed = we.e. {multiply all edges in e with we}
14: Set (S1, Ed1) = min cut weighing(S1, E1)
15: Set (S2, Ed2) = min cut weighing(S2, E2)
16: Set Ed = Ed1 ∪ Ed2 ∪ ed.
17: end if
18: return Gd = (V, Ed)
19: end function

the comparison results for 100 instances of such random graphs. A low value of ELF suggests that

MCWMC algorithm packs more edges in subgraphs B1 and B2 than other algorithms. Further, we

observe that NSC(k), in general decreases for large k-hop neighborhoods which makes sense since

at each step of iterative decomposition, the removal of a bipartite subgraph bisects the remaining

graph and thus reduces the long-hop connections between nodes. However, we observe that the

NSC(k) drops sharply with MCWMC algorithm which implies that the neighborhood are better

separated than by using other schemes. At global scale, SBC is lowest for MCWMC, which means

that the eigenvectors of the resulting bipartite subgraph are also better decorrelated in case of

94

proposed algorithm. To see it more clearly, we measure similarity (i.e inverse of shortest hoping

distance) between all node pairs in different subgraphs. With maximal neighborhood separation,

we expect any pair of nodes in the graph to have different similarities on different subgraphs.

Figure 6.4 plots the histogram of absolute difference in the similarities of node-pairs on different

bipartite subgraphs.

Method Random Harary MCWMC
ELF 0.249 0.225 0.14

NSC(2) 0.48 0.53 0.51
NSC(4) 0.50 0.54 0.51
NSC(6) 0.49 0.53 0.48
NSC(8) 0.47 0.51 0.45
NSC(10) 0.45 0.49 0.42
NSC(12) 0.43 0.48 0.39

SBC 0.60 0.61 0.55

Table 6.1: Comparison of bipartite subgraph decomposition schemes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

MCWMC

Harary

Figure 6.4: Histogram of absolute difference in similarity between node-pairs in two bipartite
subgraphs

In case of Harary’s decomposition the histogram is concentrated near zero which means that

most node-pairs are near similar on the two subgraphs, whereas in the case of proposed MCWMC

algorithm the histogram is shifted to the right implying most node-pairs are not equally similar

on both subgraphs, i.e., if they are close to each other in one subgraph, then they are away from

each other in other subgraph. This further corroborates our claim that neighborhood are better

separated using the proposed decomposition scheme.

95

6.4 Summary

In this chapter, we have proposed a separable, multi-dimensional wavelet filterbank design for

any arbitrary undirected graph. The design is an extension of two-channel filterbanks described

in Chapter 5. According to our proposed formulation, a graph is iteratively decomposed into

a set of bipartite subgraphs, and then filtering and downsampling operations are carried out in

cascade on each bipartite subgraph. We have proposed bipartite subgraph decompositions, which

provide dimensionality to the graph similar to the case of regularly sampled signals in higher

dimensions. We explained that dimensionality in graphs can be understood as neighborhood

separability, and we defined some metrics to evaluate various bipartite decompositions based on

this understanding. Further, we proposed two algorithms which compute bipartite subgraph

decompositions, and compared them based on these metrics. In the next chapter, we describe

some applications of our proposed filterbanks.

96

Chapter 7

Examples and Applications of Graph Wavelet Filterbanks

In this chapter, we consider some applications where the graph filterbanks proposed in Chapter 5,

can be applied. We first consider an example of multi-resolution decomposition of graphs, where

we analyze data defined on the vertices of an arbitrarily linked graph. This is the most general

illustration of our proposed designs, where we only use topological information to compute down-

sampling and filtering operations. Next, we consider an edge-aware image-processing application,

where image-pixels can be connected with their neighbors to form undirected graphs.1 Here, we

propose various graph-formulations of images, which capture both directionality and intrinsic edge

information. The proposed graph-wavelet filterbanks provide a sparse, edge-aware representation

of image-signals. The outline for the rest of the chapter is as follows: in Section 7.1, we discuss

an example of proposed graph wavelet filterbanks in multi-resolution decomposition of graphs. In

Section 7.2, we discuss application of proposed filterbanks on a graph representation of images.

We present some experimental results for non-linear approximation of images in Section 7.3, and

finally we conclude the chapter in Section 7.4.

7.1 Multi-resolution Decomposition of Graphs

Our proposed filterbanks can be used as a useful tool in analyzing/compressing arbitrarily linked

irregular graphs. To study its feasibility, we take the example of Minnesota traffic graph from

[14]. The graph is shown in Figure 7.1(a), where the spatial coordinates are only used to display

the graph and the wavelet transform, and do not affect the edge-weights. Further, we consider

1This research was conducted jointly with Yung-Hsuan Chao. See [28] for details.

97

a graph-signal on this graph with sharp irregular discontinuity, as shown in Figure 7.1(b), where

the color of a node represents the signal value at that node.

7.1.1 Bipartite subgraph decomposition

The Minnesota graph is not bipartite (two-colorable). Therefore, in order to implement wavelet

filterbanks, we decompose the graph into bipartite subgraphs, using Harary’s decomposition al-

gorithm. The graph is perfectly 3-colorable and hence, it can be decomposed into dlog2(3)e = 2

bipartite subgraphs, which are shown in Figure 7.1(c-d).

Figure 7.1: (a) The Minnesota traffic graph G, and (b) the graph-signal to be analyzed. The
colors of the nodes represent the sample values. (c)(d) bipartite decomposition of G into two
bipartite subgraphs using Harary’s decomposition.

98

7.1.2 Spectral wavelet filterbank implementation

Given the bipartite subgraph decomposition of G, we compute the normalized Laplacian matrices

Li and the downsampling functions βi = βHi , for each bipartite subgraph Bi. Further, we com-

pute the low-pass analysis kernel hi,0(λ) on Bi, as the mth
i order Chebychev approximation of the

Meyer kernel hMeyer
0 (λ), for mi = 24. The remaining spectral kernels hi,1(λ), gi,0(λ), gi,1(λ) are

computed from hi,0(λ) according to graph-QMF relations mentioned in (5.28). The correspond-

ing analysis and synthesis transforms are then computed as Hi,j = hj(Li) and Gi,j = gj(Li),

respectively, for j = 0, 1. Note that since the kernels are polynomials, the transforms are also

matrix polynomials of Laplacian matrices and do not require explicit eigenspace decompositions.

In our experiments, we use mi = m, and hence hi,j(λ) = hj(λ), j ∈ {0, 1} for all i, in which case

the resulting transforms are exactly m-hop localized on each bipartite subgraph. The order m is

a parameter of our design and should be chosen based on the required level of spatial localization

and how much reconstruction error can be tolerated. The overall filterbank is designed by con-

catenating filterbanks of each bipartite subgraph in the form of a tree, analogous to Figure 6.1

in the 2-dimensional decomposition case. Since, the proper coloring of the Minnesota graph is

3, the output of the HL channel (i.e. nodes for which (β1(n), β2(n)) = (−1, 1)) is empty after

downsampling. The output coefficients of the other three non-empty channels (LL,LH,HH) are

shown in Figure 7.2. Note that after downsampling, the total number of output coefficients in

the four channels is equal to the number of input samples, thus making the transform critically

sampled. We observe in Figure 7.2 that the output coefficients in the LH and HH channels,

have significantly high magnitude along the discontinuity, hence reflecting the high-pass nature

of these channels. Further, in order to see how much energy of the original signal is captured

in each channel, we upsample then filter the coefficient of each channel by the synthesis part of

proposed filterbank. This is shown in Figure 7.3. In this figure, we see that the reconstructed sig-

nal from LL channel coefficients, provides a low-pass approximation of the original signal (sharp

boundaries blurred), whereas the signals reconstructed from the LH and HL channels provide a

high-pass approximation of the input signal (highlighting the boundaries). Thus, the proposed

graph-based filterbanks, provide a meaningful decomposition of input signals, analogous to the

standard wavelet-filterbanks.

Similarly, we design graph-Bior filterbanks. For this we choose parameters (k0, k1) = (7, 7), as

99

Figure 7.2: Output coefficients of the proposed graph-QMF filterbanks with parameter m =
24. The node-color reflects the value of the coefficients at that point. Top-left: LL channel
wavelet coefficients, top-right: absolute value of LH channel wavelet coefficients, and bottom-
right: absolute value of HH channel wavelet coefficients

described in Section 5.5.3. Given these specifications, we design p(λ) = h0(λ)g0(λ) as a maximally

flat half band polynomial kernel with K = k0 + k1 = 14 number of roots at λ = 0. As a result,

p(λ) turns out to be a 2K − 1 = 27 degree polynomial, and we factorize it into h0(λ) and g0(λ),

with least dissimilar lengths (i.e., we choose l0 = K = 14 and l1 = K − 1 = 13). The other

two filters, namely h1(λ) and g1(λ) are computed as in (5.48). Once again, we choose the same

filter kernels for both bipartite subgraphs, in which case the resulting transforms H0 and G0 are

exactly K-hop and (K − 1)-hop localized on each bipartite subgraph, respectively. The wavelet

coefficients of resulting filterbanks are given in Figure 7.4, and the reconstructed signals from

individual channels are given in Figure 7.4.

The proposed decomposition of graphs can be useful in many applications. From the analysis

point of view, the high-magnitude samples in the signals, reconstructed from high-pass channels,

100

Figure 7.3: Reconstructed graph-signals from the graph-QMF wavelet coefficients of individual
channels. As before the node-color reflects the value of the coefficients at that node. Top-left:
reconstruction from LL channel only, top-right: reconstruction from LH channel only, and bottom-
right: reconstruction from HH channel only. Since, HL channel is empty the reconstruction is an
all-zero signal (bottom-left figure). The reconstruction SNR of sum of all four channels is 50.2
dB.

provide knowledge of the location and type of discontinuities in the graph-signal. For example,

in a traffic sensing scenario, in the Minnesota graph example, the stations (nodes), with high-

magnitude samples in the HH channel in Figure 7.3 and Figure 7.5, provide a good location to

install traffic sensors. Further, since the filters in our proposed designs can be computed iteratively

in a few steps, with local one-hop operations at each node in each step, the resulting filterbanks

can be very useful in detecting anomalies in large distributed networks.

From the compression point of view, the output coefficients in the LL channel in Figure 7.2

and Figure 7.4, provides a downsampled representation of original graph-signal, with only 45% of

the samples. This can be extended to multiple levels, by reconnecting the LL nodes to obtain a

downsampled graph, and applying the proposed filterbanks on the downsampled graph by treating

LL output coefficients as new signal, and so on. In the next section, we consider a compression

101

Figure 7.4: Output coefficients of the graph-Bior filterbanks with parameter (k0, k1) = (7, 7). The
node-color reflects the value of the coefficients at that point. Top-left: LL channel wavelet coef-
ficients, top-right: absolute value of LH channel wavelet coefficients, and bottom-right: absolute
value of HH channel wavelet coefficients

application for 2-D images, where we define multi-level implementations of proposed filterbanks,

on graph representations of images.

7.2 Edge Aware Image Processing

In this section, we propose a novel method for image-analysis using graph wavelets. While stan-

dard separable extensions of wavelet filterbanks to higher dimensional signals, such as 2-D images,

provide useful multi-resolution analysis, they do not capture the intrinsic geometry of the images.

For example, these extensions can capture only limited (mostly horizontal and vertical) direc-

tional information. This means that if the object boundaries in an image are neither horizontal

nor vertical, e.g., diagonal or round shape, the resulting transform coefficients tend not to be

sparse and high pass wavelet components can have significant energy. Therefore, more powerful

representations are sought for images, in which basis functions can adapt to the directionality

102

Figure 7.5: Reconstructed graph-signals from the graph-Bior wavelet coefficients of individual
channels. As before the node-color reflects the value of the coefficients at that node. Top-left:
reconstruction from LL channel only, top-right: reconstruction from LH channel only, and bottom-
right: reconstruction from HH channel only. Since, HL channel is empty the reconstruction is an
all-zero signal (bottom-left figure). The reconstruction SNR of the sum of four channels is 168.57
dB.

and edge-information contained in the image. Among the various solutions proposed, some trans-

forms, such as 2-D Gabor wavelets [25] and complex wavelets [22], provide extra dimensionality

at the cost of producing an over-sampled output. Other designs such as curvelets [2] and con-

tourlet transforms [9], which provide a dictionary of anisotropic edge-aware basis functions, require

higher complexity and suffer from the same problem of oversampling. Some other designs such

as bandlets [34], directionlets [43] and tree-based lifting transforms [37] provide critically sampled

transforms based on side-information about geometric flows in the image.

Images can also be viewed as graphs, by treating pixels as nodes, pixel intensities as graph-

signals, and by connecting pixels with their neighbors in various ways. The advantage of formulat-

ing images as graphs is that different graphs can represent the same image, which offers flexibility

of choosing the graphs that have useful properties. In particular, the weights of the links can

be adjusted at each node, in order to take into account local edge-information present in the

image. An example of weighted image-graph formulation is the anisotropic diffusion based image

smoothing considered in [51]. In Chapter 5, we designed two-channel wavelet-filterbanks for any

103

undirected weighted graphs, with vertices (nodes) as data-sources. These filterbanks are critically

sampled and provide basis elements which are localized in both spatial and frequency domain of

the graph 2. Further, they can be implemented using an iterated separable filterbank structure,

and thus provide a multi-resolution analysis of graph-signals. We now apply these filterbanks

to undirected unweighted graph representations of images, and show that the interpretation of

resulting graph-wavelets transforms is analogous to classical wavelet decompositions.Since the DC

signal in images corresponds to an all constant signal, we design graph filterbanks using asymmet-

ric Laplacian matrix, as described in Section 5.6. We provide preliminary results related to image

non-linear approximation that show promising gains over standard separable wavelet transforms3.

7.2.1 Graph representation of images

Digital images are 2-D regular signals, but they can also be viewed as graphs by connecting every

pixel (node) in an image with its neighboring pixels (nodes) and by interpreting pixel values as the

values of the graph-signal at each node. Graph representations of the regularly sampled signals

have been shown to be promising in practice recently [35, 11]. In our experiments, we use an

8-connected representation G of an image as shown in Figure 7.6. In this representation, each

pixel has two types of connections with its neighbors: (a) rectangular connections with NWSE

neighbors, and (b) diagonal connections with its diagonal neighbors. Note that adding more

directions to the graph, for example, by linking each pixel with its 2-hop neighbors, is possible

but is not considered in our present work. In the 8-connected image graph G, separating out

Figure 7.6: Two dimensional decomposition of 8-connected image-graph

rectangular and diagonal links into separate graphs leads to two bipartite subgraphs B1 and B2 as

shown in Figure 7.6. The importance of each dimension can be changed by adjusting the weights

2The frequency of graph is defined in terms of eigenvalues of the normalized graph Laplacian matrix
3For results related to denoising, see [28].

104

of the links in each bipartite-subgraph. Given such a decomposition, we can implement a two-

stage (“two-dimensional”) graph-wavelet filterbank, as described in Chapter 5, where the filtering

operations in the first dimension capture the variations along rectangular directions and those in

the second dimension capture the variations along the diagonal directions. The overall wavelet

filterbank has 4 output channels, and the downsampling pattern in each channel is identical to a

downsampling-by-4 pattern for standard separable case. The nodes sampled in different channels

are shown by different colors in the 8-connected graph G in Figure 7.6.

7.2.2 Graph Filter-banks on Images

The graph-based approach provides additional degrees of freedom (directions) to filter/downsample

the image while still having a critically sampled output. To demonstrate this, we implement a

graph wavelet filterbank on the 8-connected image-graph G of a given image, as shown in Fig-

ure 7.6. Here we assume the graph to be unweighted (i.e., all the links in the graph have equal

weight). Figure 7.7 shows the one-level output wavelet coefficients of proposed 2-dim filterbank on

a toy image which has both diagonal and rectangular edges. In this figure, the energy of wavelet

Figure 7.7: Separable two-dim two channel graph filterbank on a toy image with both rectangular
and diagonal edges.

coefficients in the LH channel (low-pass on B1, high-pass on B2) is high around the rectangular

edges, which is reasonable, since subgraph B2 is diagonally connected and its low-pass spectral

frequencies are oriented along diagonal links. Similarly we observe that the high-energy wavelet

coefficients in the HL channel (high-pass on B1, low-pass on B2) lie around the diagonal edges,

105

since B1 is rectangularly connected and its low-pass spectral frequencies are oriented towards hor-

izontal and vertical directions. In Figure 7.8, we compare the proposed graph-based filterbanks

with standard separable implementation with CDF 9/7 filters used in JPEG2000, on the binary

image in the above example. We observe in Figure 7.8(a), that the reconstructed image, using

standard CDF filters, has a lot of distortion near diagonal edges. This is because the wavelet

filters in the standard case are only oriented in either horizontal or vertical direction. There-

fore, they produce a lot of detail coefficients at the diagonal discontinuities. On the other hand,

the reconstructed images in Figures 7.8(b) and 7.8(c), corresponding to graph-QMF filterbanks

and graph-Bior filterbanks respectively, have less distortion (roughly 0.5dB in this case) than

the standard case. This is because, the graph-based filters are oriented in both rectangular and

diagonal directions, and therefore produce less detail coefficients in these directions. However,

we also observe in Figures 7.8(b) and 7.8(c) that these graph-based filters also produce artifacts

near the edges, which is because the filtering operations still cross edges in one direction (rect-

angular/diagonal in graph case) or the other. Therefore, filtering operations need to be made

edge-aware. Note that in the graph-based formulation, more directions can be added to down-

sample/filter by increasing the connectivity of the pixels in the image-graph. Moreover, since

graph-based transforms operate only over the links between nodes, the graph formulation is useful

in designing edge-aware transforms (which avoid filtering across edges) by removing links between

pixels across edges. We discuss the edge-aware representation of images in the next section.

(a) CDF 9/7 (PSNR = 64.16 dB) (b) graph-QMF (PSNR = 64.72 dB) (c) graph-Bior (PSNR = 64.63 dB)

Figure 7.8: Reconstruction of binary image shown in Figure 7.7, using only 4th level LL-channel
wavelet coefficients, using (a) 2-D separable CDF 9/7 filterbanks, (b) proposed graph-QMF fil-
terbanks with filter length (m = 28), and (c) proposed graph-Bior filterbanks with filter length
(k0 = 20, k1 = 21).

106

7.2.3 Edge-aware graph representations

Graph representation of images provide a simple way to accommodate the edge-information

present in the images, by adjusting the weights of the pixels near the edges. In this approach,

first the pixels at the edges (i.e., pixel whose intensities change sharply from their neighboring

pixels), are detected using standard edge-detection algorithms. Subsequently, the links between

each edge-pixel and its neighbors are tagged as either regular or less-reliable, depending on the

difference between pixel intensities across the link being low or high, respectively. Then in the

edge-aware graph representation, the less-reliable links are either completely removed or assigned

a lower link-weight than the regular links. Similar constructions have been proposed in recent

work [11, 21], but these constructions use lifting transforms and block transforms respectively,

and do not use graph-filterbanks. In our proposed design, we choose to assign a lower link-weight

for less-reliable links, as completely removing links around edge-pixels sometimes create isolated

pixels (holes) in the graph, which do not participate in computing the wavelet transform, and

thus need to be separately accounted for. Consequently, the graph-wavelet filters on the resulting

weighted graph have most of their energy on one side of the edge, and produce less number of

non-zero wavelet coefficients at the edges than in the case of unweighted image graphs. This is

demonstrated by an example in Figures 7.9 and 7.10.

Figure 7.9: Example demonstrating importance of edge-weighted graph formulation of images:
(a) input image (b) edge-information of the image and a highlighted pixel v, (c) unweighted 8-
connected image-graph formulation (d) edgemap-weighted 8-connected image-graph formulation

107

Figure 7.10: (a) HH wavelet filter (dB scale) on the pixel v on the unweighted graph (b) HH
wavelet filter (dB scale) on the pixel v on the weighted graph, (c) undecimated HH band coefficients
using unweighted graph and (d) undecimated HH band coefficients using edge-weighted graph.

7.2.4 Downsampling image graphs

Similar to standard wavelet transforms, the graph-wavelet filterbanks can be recursively applied at

multiple levels, treating the LL channel output coefficients to be the new graph-signal, operating

upon the downsampled graph constructing using the LL channel nodes only. In the proposed

8-connected image graph representation, since the LL channel nodes are uniformly sampled, the

downsampled graph using LL nodes is made 8-connected by connecting each LL pixel to its

neighboring 8 LL pixels. Further, the link weight between two neighbors in a given orientation

(horizontal, vertical, diagonal, or off-diagonal) in the downsampled graph is equal to the weight

of the path in the same orientation, between the two nodes in the original graph. Here the weight

of the path is product of the weights of the links that it consists of. For example, the edge weight

between two horizontal neighbors u and v in the downsampled graph, is the product of the weights

of horizontal set of links connecting u and v in the original graph. The graphs obtained for 4

levels of decomposition for the Lena image are shown in Figure 7.11.

108

Figure 7.11: The weighted-graphs computed for Lena image, in 4 levels of decomposition

7.3 Experiments

In our experiments, we choose an undirected 8-connected representation of images as described

in Section 7.2.1. For edge-detection in an image, we use standard Gaussian filtering followed by

thresholding. In addition, we perform a connected component analysis to weed out small clusters

of edge-pixels (of size less than 200), and dilate the remaining edges using a 2 × 2 structuring

element to fill out the empty corners in the edges. For each edge-pixel the links between the

pixel and its 8 neighbors are divided into two sets by applying a two-class clustering, based on the

intensity difference. The links in the cluster with high intensity difference are declared less-reliable

and their weights are adjusted to one-fourth of the weights of regular links (which is set to 1). The

resulting graph has a binary weight distribution of links (regular/ less-reliable). The graphs in

the subsequent levels of decomposition are generated from downsampling the first level graph as

described in the Section 7.2.4, and have a more varied link-weight distribution. The graph at each

level of decomposition is further decomposed into a rectangular-link only and a diagonal-link only

bipartite graph as shown in Figure 7.6, and a two-stage two-channel graph-QMF filterbank is then

109

applied at each level. The filters in the filterbank are chosen to be polynomial approximations

of graph-QMF filters in (5.28) with prototype kernel h0(λ) to be Meyer kernel in (5.33) with

parameter m = 30 (for mth order of approximation).

7.3.1 Image non-linear approximation

We now compare the proposed graph-based filterbanks with existing CDF 9/7 filters used in

JPEG2000, using non-linear approximation with k-largest wavelet coefficients. Figure 7.12, shows

PSNR and SSIM [49] values plotted against fraction of detail coefficients used in the reconstruction

of Lena (512×512) image. It can be seen from both the plots that graph-QMF filterbanks achieve

better compression than the standard CDF 9/7 filterbanks. This is because the graph-QMF

filterbanks capture signal variation in more orientations than the separable case. Among the

graph-based wavelet transforms, the edge-weighted formulations perform better than unweighted

formulation. This makes sense, as the weighted graph-formulations of the image are edge-aware

and produce fewer wavelet coefficients compared to unweighted graphs near the edges. However,

the performance gain does not include additional edge-map information which can eclipse the

gain. Recent work [35, 21] using transforms based on similar edge-map information have shown

that this trade-off is favorable. Formulating the trade-off between extra performance gain using

edge-weighted graphs and the edge-information needed, as an optimization problem constitutes

part of our ongoing work. Figure 7.13 shows the reconstructed image with largest 1% detail

coefficients in all described cases. It can be seen that perceptually the reconstructed images

using both graph-QMF wavelets look sharper than the reconstruction with standard CDF 9/7

wavelet reconstruction. However, the reconstructions using the unweighted graph-QMF wavelets

have ringing artifacts near some edges, which disappear when we use the edge-weighted graph

formulation. Thus, the edge-weighted graphs and corresponding graph-wavelet filterbanks produce

a sparser representation of edges, than the standard separable wavelets.

7.4 Summary

In this chapter, we have proposed some applications of our proposed spectral wavelet filterbanks.

The first application is based on a multiresolution decomposition of arbitrary graphs, where graphs

are downsampled and filtered into smaller graphs, with data on the graphs representing a (smooth

110

Figure 7.12: Performance comparison: non-linear approximation

or sharp) approximation of the original data. This method can be useful in graph compression

and anomaly detection applications. Next we discussed, a novel method of processing 2D images

using proposed graph-based wavelet filterbank design. We have proposed a graph representation

of images in which pixels are connected with their neighbors to form undirected graphs. The

graph formulation captures the geometric structure of the image by linking pixels in different

directions and by adjusting the weights of the links near edges. Preliminary results show gains in

the image non-linear approximation application over standard wavelet filterbank.

111

Figure 7.13: Reconstruction of “Lena.png” (512× 512) from 1% detail coefficients

112

Chapter 8

Conclusions and Future Work

8.1 Main Contributions

In this thesis, we have proposed wavelet filterbanks for analyzing data defined on graphs. We

termed the data on the vertices of graphs as graph signals and extended regular DSP techniques

such as basis decomposition, filtering and downsampling to these graph-signals. The graphs in

our research are undirected with no self loops or multiple edges. While many wavelet transform

have been proposed in literature for graphs (see Chapter 2 for discussion), a common drawback

of most of these designs is lack of critical sampling, which limits their applications in compression

and denoising tasks.

Therefore, we have proposed critically sampled wavelet filterbanks for graphs. These filter-

banks are implemented as “one-dimensional” two-channel filterbanks on bipartite graphs, and

extended as “multi-dimensional” separable filterbanks on arbitrary graphs. We have found bi-

partite graphs to be the natural choice for implementing critically sampled two-channel wavelet

filterbanks, because of their spatial and spectral properties. For lifting wavelet transforms, dis-

cussed in Chapter 3, we showed that any even-odd assignment strategy is equivalent to finding a

bipartite subgraph approximation of the graph. Further, in Chapter 4, we showed that downsam-

pling in bipartite graphs leads to a spectral folding phenomenon, which is analogous to aliasing in

regular signals.

The spectral folding phenomenon allowed us to implement critically sampled spectral wavelet

filterbanks on any bipartite graph, by computing filters which satisfy simple constraints (discussed

in Chapter 5). In particular, we proposed wavelet filters, which are based on spectral kernels

113

and provided necessary and sufficient conditions for aliasing cancellation, perfect reconstruction

and orthogonality in the resulting filterbanks. As a practical solution, we proposed graph-QMF

designs for bipartite graphs which satisfy all the above mentioned properties. The exact orthogonal

filterbanks are not compact support. They can however be realized as compact support filters by

using Chebychev polynomial approximations at the cost of small reconstruction error and loss of

orthogonality. As an alternative, we proposed graph-Bior filterbanks which are not orthogonal,

but have compact support and provide perfect reconstruction. These filterbanks are critically

sampled and invertible and offer a multi-level subband decomposition of graph-signals.

For arbitrary graphs we proposed three choices: a) approximate the graph G as a single

bipartite graph B, and implement the “one-dimensional” designs proposed in Chapter 5, (b)

decompose the graph into K edge-disjoint bipartite subgraphs whose union is G via bipartite

subgraph decomposition, discussed in Chapter 6, which leads to separable “multi-dimensional”

filterbanks on graphs, and c) a combination of both (a) and (b) in which we find K edge-disjoint

bipartite subgraphs, whose union is not exactly G, but very close to it. There are edge losses in

approaches (a) and (c). However, the edge losses in (c) can be minimized by suitably choosing K-

bipartite subgraphs. A comparison of our proposed design vis-a-vis existing transforms is shown

in Table 8.1.

Method DC response CS PR Comp OE GS

Wang & Ramchandran [47] non-zero No Yes Yes No No

Crovella & Kolaczyk [7] zero No No Yes No No

Lifting Scheme [18, 38, 45] zero for wavelet basis Yes Yes Yes No Yes

Diffusion Wavelets [6] zero for wavelet basis No Yes Yes Yes No

Spectral Wavelets [14] zero for wavelet basis No Yes Yes No No

graph-QMF filterbanks (Sec: 5.3) zero for wavelet basis1 Yes Yes No2 Yes No

graph-Bior filterbanks (Sec: 5.5) zero for wavelet basis1 Yes Yes Yes No No

Table 8.1: Evaluation of graph wavelet transforms. CS: Critical Sampling, PR: Perfect Recon-
struction, Comp: compact support, OE: Orthogonal Expansion, GS: Requires Graph Simplifica-
tion.

We applied lifting wavelet filterbanks using approach (a) in a data-gathering application in

wireless sensor networks in Chapter 3. Here, we formulated the even-odd assignment problem as

a minimum dominating set problem, which led to about 44% reduction in communication cost,

1When designed using asymmetric normalized Laplacian matrix.
2The exact Graph-QMF solutions are perfect reconstruction and orthogonal, but they are not compact support.

Localization is achieved with a matrix polynomial approximation of the original filters, which incur some loss of
orthogonality and reconstruction error, which can be arbitrarily reduced by increasing the degree of approximation.

114

compared to raw-transmissions, and about 10% reduction compared to state of the art tree-based

lifting transforms.

Further, we implemented spectral wavelet filterbanks in Chapter 7 on graph representation of

images, in which pixels are connected with their neighbors to form undirected graphs. The graph

formulation captures the geometric structure of the image by linking pixels in different directions

and by adjusting the weights of the links near edges. Preliminary results showed gains in the

image non-linear approximation and denoising application over standard wavelet filterbank.

8.2 Future Work

The proposed wavelet filterbanks in this thesis can be operated on any arbitrary undirected

graphs. The building blocks of our design are filterbanks on bipartite graphs which provide a

“one-dimensional” analysis of graph-signals. The spectrum of bipartite graphs (using normalized

Laplacian matrix) lies in the closed set [0 2], and has eigenvalues symmetrically placed on either

side of λ = 1. Further, the eigenvectors of bipartite graphs, corresponding to any pair of symmetric

eigenvalues, are identical to each other (except some sign changes). These properties are not found

in any other graph. Therefore, one question which shapes our future direction is whether some

form of aliasing occurs in graphs with higher chromaticity. More precisely, can the two-channel

filterbank constraints discussed in Section 5.2, be extended to any non-bipartite graphs?

Moreover, the bipartite graph based designs themselves have lots of degrees of freedom. The

choices to be made for implementing proposed filterbanks on any graph can be split into three

major parts: (i) which bipartite subgraph decompositions to choose for a given graph, (ii) what

filters designs to choose (orthogonal or biorthogonal, shorter or longer, spectral or non-spectral

etc.), and (iii) how to compute graphs after downsampling, so that they are meaningful and

approximate the properties of original graph. Our future work includes working on optimizing

all these design choices. For deciding (i), we have proposed choosing bipartite subgraphs which

provide mutually disjoint neighborhood sets at each node, which leads to orthogonal filtering

operations on bipartite graphs. We also proposed two algorithms: Harary’s decomposition and

MCWMC decomposition, to compute bipartite subgraphs, which performed well on some of the

graphs we studied. However, in some applications, other bipartite subgraph decompositions, such

that those favoring more links in the low-pass channels, may be more favorable. Therefore, finding

115

optimal bipartite subgraph decomposition for any given application is what we plan to investigate

in future.

In the edge-aware image processing application, preliminary results showed gains in the image

non-linear approximation using proposed graph-based filterbanks over standard wavelet filter-

banks. In the future, we would like to implement proposed graph-based filterbanks using H.264

encoders to better estimate the gains compared to the standard designs. Further, our future work

includes studying a more heterogeneous distribution of link weights in the image-graphs and its

impact on the graph-formulation.

116

References

[1] B. Aspvall and J. R. Gilbert. Graph coloring using eigenvalue decomposition. Technical
report, Ithaca, NY, USA, 1983. 28, 93

[2] E. J. Cands and D. L. Donoho. Curvelets and curvilinear integrals. J. of Approx. Theory,
2001. 103

[3] Fan R. K. Chung. Spectral Graph Theory (CBMS Regional Conf. Series in Math., No. 92).
American Mathematical Society, February 1997. 2, 11, 30, 48

[4] V. Chvatal. A greedy heuristic for the set-covering problem. Mathematics of Operations
Research, 4:233–235, 1979. 32

[5] A. Cohen, I. Daubechies, and J.-C. Feauveau. Biorthogonal bases of compactly supported
wavelets. Communications on Pure and Applied Mathematics, 45(5):485–560, 1992. 54, 72

[6] R. Coifman and M. Maggioni. Diffusion wavelets. Applied and Computational Harmonic
Analysis, 21:53–94, 2006. 3, 19, 21, 114

[7] M. Crovella and E. Kolaczyk. Graph wavelets for spatial traffic analysis. In INFOCOM 2003,
volume 3, pages 1848–1857, Mar 2003. 1, 3, 10, 17, 21, 114

[8] E. B. Davies, G. M. L. Gladwell, J. Leydold, and P. F. Stadler. Discrete nodal domain
theorems. Linear Algebra and its Applications, 336(1-3):51 – 60, 2001. 11

[9] M.N. Do and M. Vetterli. The contourlet transform: an efficient directional multiresolution
image representation. Image Proc., IEEE Transactions on, dec. 2005. 103

[10] D.L. Donoho. De-noising by soft-thresholding. Information Theory, IEEE Trans. on,
41(3):613–627, May 1995. 30

[11] E. M. Enriquez, F. D. Maria, and A. Ortega. Video encoder based on lifting transforms on
graphs. In Intl. conf. image proc. ICIP. IEEE, Sep 2011. 104, 107

[12] S. Fitzpatrick and L. Meertens. An experimental assessment of a stochastic, anytime, de-
centralized, soft colourer for sparse graphs. In In Proc. SAGA’01, pages 49–64, 2001. 28,
29

[13] M. Girvan and M. E. Newman. Community structure in social and biological networks. Proc
Natl Acad Sci U S A, 99(12):7821–7826, June 2002. 1, 2

[14] David K. Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on graphs via
spectral graph theory. Applied and Computational Harmonic Analysis, 30(2):129–150, Mar
2011. 3, 12, 19, 21, 54, 55, 63, 97, 114

[15] F. Harary, D. Hsu, and Z. Miller. The biparticity of a graph. Journal of Graph Theory,
1(2):131–133, 1977. 91

117

[16] Shi J. and Malik J. Normalized cuts and image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22:888–905, 1997. 93

[17] Dmitry Jakobson, Stephen D. Miller, Igor Rivin, and Zev Rudnick. Eigenvalue spacings for
regular graphs. In IN IMA VOL. MATH. APPL, pages 317–327. Springer, 1999. 45

[18] M. Jansen, G. P. Nason, and B. W. Silverman. Multiscale methods for data on graphs and
irregular multidimensional situations. Journal of the Royal Statistical Society, 71(1):97125,
2009. 3, 18, 21, 23, 114

[19] I. M. Johnstone and B. W. Silverman. Wavelet threshold estimators for data with correlated
noise. Royal Statistical Society: Series B (Statistical Methodology), 59:319–351, 1997. 30

[20] D. Kempe and F. McSherry. A decentralized algorithm for spectral analysis. ACM sympo-
sium on Theory of computing, pages 561–568, 2004. 2

[21] W.S. Kim, S.K. Narang, and A. Ortega. Graph based transforms for depth video coding. In
in ICASSP’12, Mar 2012. 107, 110

[22] Nick Kingsbury. Complex wavelets for shift invariant analysis and filtering of signals. Applied
and Computational Harmonic Analysis, 10, 2001. 103

[23] W. Klotz. Graph coloring algorithms. Mathematik-Bericht, 5:1 – 9, 2002. 92

[24] R.I. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete structures. In
Proc. ICML, pages 315–322, 2002. 2

[25] Tai Sing Lee. Image representation using 2d gabor wavelets. Pattern Anal. and Mach. Intel.,
IEEE Trans. on, 18(10):959 –971, oct 1996. 103

[26] U. Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416,
2007. 2, 11, 30

[27] R. Mersereau and T. Speake. The processing of periodically sampled multidimensional sig-
nals. ITASS, 31(1):188 – 194, feb. 1983. 50

[28] S. K. Narang, Y. H. Chao, and A. Ortega. Graph-wavelet filterbanks for edge-aware image
processing. to appear SSP, Aug. 2012. 97, 104

[29] S. K. Narang and A. Ortega. Local two-channel critically-sampled filter-banks on graphs.
ICIP, pages 333 –336, Sep. 2010. 22, 55

[30] S.K. Narang and Ortega A. Perfect reconstruction two-channel wavelet filter-banks for graph
structured data. IEEE trans. on Signal Processing, 60(6):2786–2799, June 2012. 93

[31] S.K. Narang, G. Shen, and A. Ortega. Unidirectional graph-based wavelet transforms for
efficient data gathering in sensor networks. In In Proc. of ICASSP’10, March 2010. 22

[32] J. P.-Trufero, S.K. Narang, and A. Ortega. Distributed transforms for efficient data gathering
in arbitrary networks. In ICIP ’10., pages 1829– 1832, Sept 2010. 22

[33] G. Pandey, M. Steinbach, R. Gupta, T. Garg, and V. Kumar. Association analysis-based
transformations for protein interaction networks: a function prediction case study. In KDD
’07, pages 540–549. ACM, 2007. 29

[34] E. Le Pennec and S. Mallat. Sparse geometric image representations with bandelets. IEEE
Trans. on Image Proc., 14(4), 2005. 103

118

[35] G. Shen, W.S. Kim, S.K. Narang, A. Ortega, J. Lee, and H.C. Wey. Edge-adaptive transforms
for efficient depth map coding. In Picture Coding Symposium (PCS), 2010, Dec 2010. 104,
110

[36] G. Shen, S. K. Narang, and A. Ortega. Adaptive distributed transforms for irregularly
sampled wireless sensor networks. ICASSP ’09, 0:2225–2228, 2009. 22, 35

[37] G. Shen and A. Ortega. Compact image representation using wavelet lifting along arbitrary
trees. ICIP’08, 2008. 103

[38] G. Shen and A. Ortega. Optimized distributed 2D transforms for irregularly sampled sensor
network grids using wavelet lifting. In ICASSP’08, pages 2513–2516, April 2008. ix, 1, 3, 5,
18, 21, 22, 23, 24, 26, 30, 34, 35, 36, 114

[39] G. Shen and A. Ortega. Tree-based wavelets for image coding: Orthogonalization and tree
selection. In PCS’09, Chicago, IL, May 2009. 22

[40] G. Shen and A. Ortega. Transform-based distributed data gathering. Sig. Proc., IEEE
Trans. on, 58(7):3802 –3815, july 2010. 3, 5, 18

[41] G. Shen, S. Pattem, and A. Ortega. Energy-efficient graph-based wavelets for distributed
coding in wireless sensor networks. ICASSP’ 09, 0:2253–2256, 2009. 35

[42] TinyOS-2. Collection tree protocol. http://www.tinyos.net/tinyos-2.x/doc/. 34

[43] V. Velisavljevic, B. Beferull-Lozano, M. Vetterli, and P.L. Dragotti. Directionlets:
Anisotropic multidirectional representation with separable filtering. IEEE Trans. on Image
Proc., 15(7), 2006. 103

[44] M. Vetterli and J. Kovačevic. Wavelets and subband coding. Prentice-Hall, Inc., NJ, USA,
1995. 2, 71

[45] R. Wagner, R. Baraniuk, S. Du, D.B. Johnson, and A. Cohen. An architecture for distributed
wavelet analysis and processing in sensor networks. In IPSN ’06, pages 243–253, April 2006.
3, 5, 18, 21, 22, 114

[46] A. Wang and A. Chandraksan. Energy-efficient DSPs for wireless sensor networks. IEEE
Signal Processing Magazine, 19(4):68–78, July 2002. 36

[47] W. Wang and K. Ramchandran. Random multiresolution representations for arbitrary sensor
network graphs. In ICASSP, volume 4, pages IV–IV, May 2006. 1, 3, 10, 16, 21, 114

[48] M. Weber and S. Kube. Robust perron cluster analysis for various applications in computa-
tional life science. In CompLife, pages 57–66, 2005. 1

[49] H. R. Sheikh Z. Wang, A. C. Bovik and E. P. Simoncelli. Image quality assessment: From
error visibility to structural similarity. IEEE Trans. on Image Proc., 13(4), 2004. 110

[50] W.W. Zachary. An information flow model for conflict and fission in small groups. Journ. of
Anthropological Research, 33:452–473, 1977. ix, 29

[51] F. Zhang and E. R. Hancock. Graph spectral image smoothing using the heat kernel. Pattern
Recogn., 41(11), 2008. 2, 30, 103

119

	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	Abstract
	Chapter 1: Introduction
	1.1 Motivation
	1.2 Background
	1.3 Contributions
	1.3.1 Sampling operations in graphs
	1.3.2 Two-channel wavelet filterbanks on bipartite graphs
	1.3.3 Bipartite subgraph decomposition

	1.4 Thesis Statement and Research Questions
	1.5 Publications
	1.6 Summary

	Chapter 2: Basic Theory
	2.1 Spatial Representation of Graph Signals
	2.2 Spectral Representation of Graph Signals
	2.3 Downsampling in Graphs
	2.4 Two-Channel Filterbanks on Graph
	2.5 Literature Review
	2.5.1 Spatial Designs
	2.5.1.1 Random transforms
	2.5.1.2 Graph wavelets
	2.5.1.3 Lifting wavelet transforms

	2.5.2 Spectral Designs
	2.5.2.1 Diffusion wavelets
	2.5.2.2 Spectral graph wavelets

	2.6 Summary

	Chapter 3: Lifting wavelet filterbanks on graphs
	3.1 Problem Formulation
	3.2 Maximum Bipartite Subgraph Approximation
	3.2.1 Example: graph denoising

	3.3 Dominating Set Approximation
	3.3.1 Example: data gathering in WSN

	3.4 Summary

	Chapter 4: Downsampling in Graphs using Spectral Theory
	4.1 Problem Formulation
	4.2 Downsampling in -RBG graphs
	4.3 Extension to non-regular bipartite graphs
	4.4 Example: Images as -RBG
	4.5 Summary

	Chapter 5: Two-channel Wavelet Filterbanks on Bipartite Graphs
	5.1 Problem Formulation
	5.2 Two-Channel Filterbank Conditions for Bipartite Graphs
	5.2.1 Aliasing cancellation
	5.2.2 Perfect reconstruction
	5.2.3 Orthogonality

	5.3 Graph-QMF Filterbanks
	5.3.1 Chebychev polynomial approximation

	5.4 One-hop Localized Spectral Filterbanks
	5.4.1 One-hop localized designs for arbitrary graphs
	5.4.2 One-hop localized designs for bipartite graphs

	5.5 Graph-Bior Filterbanks
	5.5.1 Designing half-band kernel pl
	5.5.2 Spectral factorization of half-band kernel pl
	5.5.3 Nomenclature and design of graph-Bior filterbanks

	5.6 Filterbank designs using asymmetric Laplacian matrix
	5.6.1 Perfect Reconstruction
	5.6.2 Orthogonality

	5.7 Summary

	Chapter 6: Separable Multi-dimensional Wavelet Filterbanks on Graphs
	6.1 Proposed Design
	6.1.1 Graph after downsampling

	6.2 Bipartite Subgraph Decomposition
	6.2.1 Harary's decomposition algorithm
	6.2.2 Min-cut weighted max-cut (MCWMC) algorithm

	6.3 Experiments
	6.4 Summary

	Chapter 7: Examples and Applications of Graph Wavelet Filterbanks
	7.1 Multi-resolution Decomposition of Graphs
	7.1.1 Bipartite subgraph decomposition
	7.1.2 Spectral wavelet filterbank implementation

	7.2 Edge Aware Image Processing
	7.2.1 Graph representation of images
	7.2.2 Graph Filter-banks on Images
	7.2.3 Edge-aware graph representations
	7.2.4 Downsampling image graphs

	7.3 Experiments
	7.3.1 Image non-linear approximation

	7.4 Summary

	Chapter 8: Conclusions and Future Work
	8.1 Main Contributions
	8.2 Future Work

	References

