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Abstract

With the increasing dominance of the transform coding technique virtually in

every image and video coding schemes proposed up to date, e�cient transform

coding system implementation has become an important research topic. This the-

sis addresses two system issues that may arise in practice: (i) e�cient architecture

designs for the discrete wavelet transform; and (ii) e�cient transform coding for

robust communication over erasure channels.

The �rst contribution of the thesis is to develop an overlap-state technique for

e�cient multilevel wavelet decompositions when memory and delay constraints

have to be strictly observed. In this case, the wavelet transform can be computed

in a block-by-block fashion, i.e., the input data is segmented into blocks and each

block is processed separately, either sequentially or in parallel. The proposed

technique enables e�cient data exchange between consecutive data blocks such

that the required memory bu�er size and/or communication overhead can be

signi�cantly reduced compared to existing techniques.

The second contribution is that we provide two e�cient loss data recovery

techniques for robust communication over erasure channels, such as today's In-

ternet. For the problem of multiple description transform coding, we propose a

structured correlating transform design making use of the available channel in-

formation. The enforced structure enables a signi�cant reduction of the number

of design parameters, which results in signi�cantly reduced design and implemen-

tation complexities compared to existing approaches. An alternative technique

for loss recovery using explicit redundancy is also proposed. This is achieved by

splitting the source into di�erent components and quantize them di�erently; the

primary information is �nely quantized at a relative high rate and the redundant

information at a relative low rate. When the primary information is lost, the

redundancy information can be used for recovery. The performance analysis and
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simulation results show that the proposed technique is very competitive compared

to previously published works.
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Chapter 1

Introduction

1.1 Motivation and Overview

To motivate our work in this thesis, let us �rst consider a simpli�ed communication

system shown in Fig. 1.1. The coding and decoding procedures can be described as

follows. First, the redundancy in the data is removed by applying a decorrelating

transform, such as the Karhunen-Loeve transform (KLT) or its approximations

(e.g., the discrete cosine transform (DCT) and the discrete wavelet transform

(DWT)). Next, the transform coe�cients are quantized and entropy-coded to meet

the bit budget constraint. The encoded bitstream is then sent over the channel

for transmission. At the receiver, an inverse procedure is applied to reconstruct

the original data.

While such a coding framework constitutes the core part of virtually every

existing image/video coding standards, e.g., JPEGx, MPEGx (MPEG1, MPEG2

Forward
Transform
DCT/DWT

Inverse
Transform

IDCT/IDWT

Quantization

Dequantization

Entropy
Coding

Entropy
Decoding

Channel

Figure 1.1: A simpli�ed image/video coding system.
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and MPEG4, etc..) and H.26x (H.261, H.263, and H.263+, etc..), these standards

themselves, however, are designed to target di�erent data compression applica-

tions. As a result, practical system designs and implementations have to be

subjected to di�erent constraints.

For example, the JPEG standard is mainly used for compression of still im-

ages, such as pictures in digital cameras, printers and scanners. One important

issue here is to reduce the algorithm memory usage in these consumer electronics

products to reduce the price [1, 2, 3]. That is, the transform, quantization and

entropy coding blocks in Fig. 1.1 have to be implemented using as less memory

as possible. The MPEGx and H.26x standards, on the other hand, are for com-

pression of moving pictures, such as movie and television video signals. In this

case, fast algorithms, including fast transform, fast quantization and fast entropy

coding, become more important since most applications have very stringent time

constraints and some even require real-time encoding and/or decoding, e.g., video-

conferencing and live concerts digital broadcasting. As one can see, it is thus very

important to design and implement e�cient systems under various application

constraints.

With the fast development of the Internet, more and more multimedia signals

(e.g., image, video and audio signals) are being communicated over the packet

network. However, most internet service providers can only deliver best-e�ort

services using current available network technologies, i.e., packets transmitted

may get lost before arrival at the destination. This can happen when the network

congestion occurs or link failures at intermediate routers. To achieve robust com-

munication over such unreliable channels thus become another important topic.

In this thesis work, two practical issues are addressed: (i) E�cient DWT sys-

tem design under memory and delay constraints; and (ii) Robust communication

over packet erasure channels. We now give a detailed review on each of these two

topics.

1.1.1 DWT System Design

In recent years, there have been considerable research activities centered around

building e�cient systems for computing the discrete wavelet transform (DWT)

2



[4, 5, 6, 7, 8, 9, 10, 11, 1, 12, 13, 14, 15, 16, 17]. This is certainly due in part

to the fact that the wavelet transform is a powerful tool for multiscale time-

frequency signal decomposition and analysis, which has found applications in

many areas, such as signal processing, digital communications, numerical analysis,

and computer graphics [18]. Moreover, practical system design is itself a very

challenging problem because there may be stringent constraints, such as bu�er

size, delay, power, chip area and control complexity, imposed by speci�c DWT

applications [7, 11, 19, 20, 21, 8, 13, 22, 1, 2, 14, 17].

In many cases, a sequential architecture is used where the DWT is computed

by splitting the input into blocks, with the processor operating on one block at

a time [6, 1, 2]. One reason for such a choice is that only a limited amount of

memory is available for the transform computation. Example scenarios include

image compression/decompression systems using a DSP/ASIC chip in products of

consumer electronics products (e.g., digital cameras) or space-borne instruments

[1, 2, 23]. In these applications, reducing the memory bu�er size helps not only

to maintain low costs but also to reduce the chip design area and thus the volume

of the �nal product.

As an alternative a parallel architecture would split the input among several

processors to speed up the transform computation [11, 24, 9, 22, 17]. This is

typical for applications where a large volume of data has to be processed in a rea-

sonably short time. For instance, the seismic data processing [22] or illumination

computations in computer graphics [18] are potential applications. Obviously, fast

DWT computation to meet stringent delay constraints is critical to the success of

any wavelet-based techniques.

While the problem of system design under constraints, such as memory and

delay, is not new and is also encountered in the design for traditional transforms

(e.g., FFT or DCT), system design for the wavelet transform poses particular

di�culties not present before. Consider an example three-level wavelet decom-

position as depicted in Fig. 1.2 where (h; g) are respectively the lowpass and

highpass �lters. The input is �rst �ltered by h and g. The lowpass output is

then downsampled and �ltered again. For multilevel decompositions, this process

of �ltering and downsampling operations has to be performed recursively on the

3



input data. Since �ltering operations in DWT can not be implemented as a block

transform (with the exception of the trivial Haar transform), this recursiveness

nature of the DWT computation poses special challenges when stringent memory

and delay constraints have to be observed for practical DWT system designs.

2

2

g

h

2

2

g

h

2

2

g

h

x

y0

y1

y2

y3

Figure 1.2: A three-level tree decomposition.

Consider, for example, this three level wavelet decomposition is to be per-

formed using two processors with each processor allocated half of the input data.

A problem arises when DWT is computed near data boundaries at both processors

(refer also to Fig. 2.7). Because DWT is not a block transform, for correct wavelet

coe�cients computation near data boundaries, each processor would need to ac-

cess data allocated to the other processor. In this case, either the two processors

exchange data before each level of the decomposition or the two processors are

given su�cient overlapped data to carry on the whole computation without com-

munication with each other. The �rst approach demands frequent data exchanges

between processors which increases the communication overhead thus adversely

a�ect the system scalability in parallel architectures, particularly these with slow

communication links, for example, Network Of Workstations (NOWs) or Local

Area Multicomputers (LAMs) [25, 16, 26, 27]. The second approach, although

avoiding frequent communication, needs to overlap data at each processor. This

overlap, due to the recursive nature of the DWT �ltering operations, can be very

large hence very expensive when the number of levels of decomposition increases

[28].

This provides the motivation to investigate e�cient DWT system design un-

der memory and delay constraints. While there are many factors which could

possibly a�ect the memory and delay for the DWT computation (see, e.g., the

4



memory requirement for the complete DWT compression/decompression systems

[1, 2] and the interprocessor communication required by data transposition in 2D

DWT [17]), in this work, we focus on the memory and the interprocessor com-

munication constraints imposed by the segmentation of the input data, either for

sequential or for parallel architecture designs as demonstrated by the above exam-

ple. Consequently, the two parameters we use to measure the performance would

be the amount of data to be transmitted between processors (or to be stored in

the processor if a sequential computation is used) and the number of times data

has to be communicated between processors.

1.1.2 Robust Communication

The second part of this thesis is devoted to the study of robust communication

techniques for delay-constrained applications over erasure channels. Examples of

applications in which such techniques become crucial include videoconferencing,

realtime audio and speech over packet networks. The best-e�ort service model,

as currently being implemented by most internet service providers (ISPs), does

not guarantee timely lossless packet delivery. Packets can be dropped or over-

delayed in a number of scenarios. For example, packets can be over-delayed in

congested network segments or even dropped if packet dropping policies (e.g.,

random early drop (RED)) are implemented to relieve the congestion. Packets

can also be corrupted thus becoming useless at the receiver when sent over hostile

channels, e.g., a mobile radio channel su�ering from severe multipath fading. As

observed by a number of works recently [29, 30, 31], packet losses, if not dealt with

appropriately, can cause very annoying quality changes in the received signal.

Numerous research e�orts have been aiming at providing quality-of-service

(QoS) by redesigning the network infrastructure (e.g., RSVP [32]) thus providing

bounds on packet losses or avoiding losses altogether. However, in this work, we

study techniques to enable recovery from packet losses and to mitigate the losses

in signal quality due to the underlying erasure channel. Our motivation is two-

fold: (i) the applications we study (e.g., image, video and audio communications)

do not require lossless data recovery, i.e., some degradation can be tolerated as

long as the degradation is below a certain threshold; and (ii) these techniques can
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complement QoS-based transmission (especially if packet losses still occur even

if they are bounded), or at least serve as near term solutions before the wide

deployment of QoS networks. Our goal is then to design techniques to enable the

signal quality to degrade gracefully in the presence of packet losses.

The problem of robust communication over erasure channels is not new and

has been studied thoroughly in the context of channel coding theory [33] and data

communication protocols [34]. By using error correcting codes (e.g., the block and

convolutional codes), one can increase the information redundancy (thus resulting

in bandwidth ine�ciency) to achieve more robust communication [35, 36, 37]. By

using retransmission mechanisms (e.g., the ARQ schemes) one can also achieve

robust communication at the expense of an increase in communication delay [38,

39]. These existing techniques, though quite successful in the past, have to be

applied with caution for communications over the packet network because of the

di�erences of the underlying channel models. For example, packet losses occur

more often due to network congestion rather than because of bit errors due to

channel noise, as assumed in many conventional channels. In this case, immediate

retransmission attempts may even aggravate the situation and lead to more packet

losses. The e�ectiveness of retransmission also decreases in multicast applications

when end users su�er from uncorrelated losses. In this case, an appropriate choice

would be to use forward-error-control (FEC) schemes. However, end users may

experience di�erent levels of packet loss due to the network heterogeneity and

a scheme that provides single level error protection can be insu�cient for some

users but redundant for others. These examples show that robust communication

over the lossy packet network deserves further study.

1.2 Contributions and Chapter Organizations

In the next chapter, we present our work on DWT system architecture design. We

start with an overview on previous works on DWT computations, including algo-

rithm studies and architecture designs. Then a �nite state machine (FSM) model

is proposed to characterize the DWT behavior especially around the data bound-

aries. Based on this DWT/FSM model, an overlap-state technique is proposed to

6



correctly transform the boundary samples in a multilevel wavelet decomposition

with reduced interprocessor communication and memory usage. We then present

various sequential and parallel DWT system designs using the proposed technique

and show how transform bu�er size and communication overhead can be reduced.

Our main contribution in this part is to provide a new technique, overlap-state,

to compute multilevel wavelet decompositions in a way that can signi�cantly re-

duce the memory and communication overhead compared to existing technologies.

We believe that this will greatly help practical DWT system designs where mem-

ory and delay constraints have to be strictly observed.

The second part of our thesis is on the study of techniques that can achieve

robust communication over packet erasure channels, such as today's Internet.

More speci�cally, we study techniques that can help the signal quality to degrade

gracefully in case of packet losses.

Two di�erent approaches are taken in our study. In chapter 3, a constrained

correlating transform design for multiple description coding is presented. This

correlating transform is used to add redundancy in the encoded data such that

lost transform coe�cients can be estimated (thus recovered) using the correlation

existing in correctly received coe�cients. Starting with an review of related works

in multiple description transform coding (MDTC), we provide an detailed analysis

on why non-orthogonal correlating transforms can perform better than orthogonal

correlating transforms for MDTC system design. We then address the di�culties

of existing MDTC system designs in which arbitrary non-orthogonal transforms

are used. A two-stage transform design approach, structure design and magnitude

design, is then presented to drastically reduce both the design and implementation

complexities. We also provide design examples using the proposed technique for

the design of transforms for equal rate and sequential protection channels.

Chapter 4 is devoted to a di�erent technique for packet loss recovery. Rather

than using a correlating transform to implicitly add redundancy into the data

for loss recovery, redundancy is explicitly added by source splitting and selective

quantization. The source splitting is performed using the polyphase transform

as an example though other forms are also possible. The selective quantization

is achieved by quantizing the primary information and redundant information at
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di�erent resolutions. The performance analysis of our proposed system is provided

in detail for Gaussian sources and comparisons with existing approaches are also

provided. Experimental results of image and speech coding and communication

over independent packet loss channels are also provided.

The main contribution in this part is that we propose simple (in design and

implementation) yet e�cient (competitive coding performances compared to pre-

viously reported works) techniques for adding redundancy into encoded data for

loss recovery. We believe that this is important for practical system implementa-

tions when robust communication is required over unreliable channels.
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Chapter 2

DWT Architecture Design

In this chapter, we study e�cient DWT architecture designs under memory and

delay constraints 1.

2.1 Introduction

Various investigations of e�cient wavelet transforms implementation have been

reported in recent years. The most popular DWT algorithm is the recursive �lter-

ing approach using the corresponding wavelet �lterbank, the so-called standard

algorithm [44], whose computational complexity is O(L) per output coe�cient (L

is the �lter length). The FFT-based DWT algorithm proposed by Rioul et al. [5]

can reduce the complexity from O(L) to O(log L) for large �lter lengths L. For

short �lters, they presented a \fast running FIR �ltering" technique which can

achieve 30% saving in computations. Using a lattice structure, Vaidyanathan et

al. [45, 46] have shown that the complexity can be reduced by a factor of 50%

for orthogonal wavelet �lterbanks. The ladder structure by Marshall [47] and the

lifting algorithm by Daubechies and Sweldens [48] further show that, asymptoti-

cally, for large �lter lengths L, 50% savings in computations can be achieved for

any FIR wavelet �lterbanks including orthogonal and biorthogonal �lterbanks.

In sequential architecture designs, most approaches adopt the standard FFT-

based �ltering techniques [49], overlap-add or overlap-save. These include the

1Part of this chapter represents work published before, see [40, 41, 42, 43].
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Block 1 Block 2

Level1

Level2

Level3

1

2
3

5
4

6

Figure 2.1: An example dataow chart of a three-level wavelet decomposition.

Solid lines: completely transformed data; Dashed lines: boundary samples from

the neighboring block. Operations 1,3,5: communicate boundary data samples to
neighboring blocks; Operations 2,4,6: transform for current level.

recursive pyramid algorithm (RPA) by Vishwanath [6], the spatially segmented

wavelet transform (SSWT) by Kossentini [28], and the reduced line-based com-

pression system by Chrysa�s et al. [1]. Since the SSWT overlaps data only once

before the start of the transform, the overlap bu�er size increases exponentially

with the increase of decomposition levels. An alternative is implemented in [6, 1]

where data is overlapped at each level of decomposition and the bu�er size is

reduced. In parallel architecture designs, most approaches proposed require com-

munication of the boundary data at each level of decomposition (see, for example,

the works by Fridman et al. [11] and by Nielsen et al. [24]). One such design

with three level decompositions is shown in Fig. 2.1. To reduce the overhead

caused by frequent inter-processor communication, Yang at el. [25] proposed to

use boundary extensions in their DWT system con�gured from a cluster of SGI

workstations. This, however, computes incorrect wavelet coe�cients near data

boundaries, which causes performance degradation in some applications, for ex-

ample, low-bit rate image coding [50].

In this chapter, we present a novel technique, overlap-state, for the DWT

computation, which can help to achieve signi�cant memory and communication

savings. The idea is motivated by the standard overlap-add technique which

performs �ltering operations on neighboring data blocks independently �rst and

completes the computation later by summing the partial boundary results together
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[49]. We extend this idea to the case of multilevelwavelet decompositions using the

lifting framework formulated by Daubechies and Sweldens [48]. The DWT is �rst

modeled as a �nite state machine (FSM) using the lifting algorithm and multilevel

partial computations (intermediate states) are performed for samples near block

boundaries. We show that, for correct transform near data boundaries, these

intermediate states can be preserved in their original storage spaces (an extension

of the in-place computation feature of the lifting algorithm) and exchanged only

once between neighboring data blocks for any arbitrary J level decompositions.

Some recent works have also explored (independently of our work) the use of

lifting factorizations for memory savings in DWT implementations [51, 52, 53, 54].

The novelty of our work is that, �rst, we introduce partial computations for

boundary samples at multiple decomposition levels and preserve these partially

computed results (intermediate states) in their original locations for later pro-

cessing, and second, we propose that processors exchange data after multilevel

decompositions rather than at each decomposition level. We will show how the

overlap-state technique can be used to reduce the memory requirement and the

interprocessor communication overhead in the sequential and parallel architecture

designs.

This chapter is organized as follows. In the next section, we de�ne the problem

of memory and delay constrained DWT system design. respectively for sequential

and parallel architectures. In Section 2.3 an overview of various DWT algorithms,

including the standard DWT algorithm and the lifting algorithm, is provided. Dif-

�culties of computing DWT near data boundaries are detailed from the memory

and delay perspective. Section 2.4 then presents the overlap-state technique based

on the idea of partial computation at multiple levels in the process of DWT com-

putation. It is shown that the proposed technique can help to signi�cantly reduce

the memory and communication need in practical system designs. A delayed nor-

malization technique is also introduced to speedup multilevelDWT computations.

In Section 2.5 examples DWT system designs for 1D and 2D data are provided in

detail. Experimental results and anaylsis are given in Section 2.6. Finally, Section

2.7 concludes this chapter.
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2.2 Problem De�nition

In this Section, we de�ne the problem of sequential and parallel architecture

designs using the 2D separable DWT as an example. Other types of DWT system

can be de�ned similarly.

2.2.1 Sequential Architecture Design

A sequential system for 2D DWT is shown in Fig. 2.2. The transform working

bu�er (e.g., on-chip memory or cache memory) usually is small in size compared

to the data size. Therefore the original data, stored in a secondary storage space

(e.g., hard disk, frame bu�er), therefore has to be segmented such that each

segment can be loaded to the working bu�er and the transform is computed one

segment at a time. Variations of this generic system include:

1. The block-based system presented in SSWT by Kossentini [28] which com-

putes the wavelet transform one image block at a time.

2. The line-based system presented by Chrysa�s et al [1, 55] which computes

the wavelet transform \on the y" and where the basic input units are image

lines.

Data 
Storage

Working
Buffer

DWT
FSM

Wavelet
Coeffs

Figure 2.2: A typical sequential DWT system diagram.

Assume blocks of size B (in bytes) are given to the processor, i.e., at most

B bytes of input data can be loaded into the working bu�er at a time. De�ne
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the overlap bu�er size Bs in bytes as the memory space taken by the overlapped

data which has to be kept in memory for the correct transform of next block of

input data. In the case of the line-based systems [1], Bs is the minimum bu�er

size needed for the transform. After transform of each block, only (B�Bs) bytes

can be freed and wavelet coe�cients generated can be transfered to the next

processing stage, e.g. quantization. We now de�ne the system throughput � as

� =
B �Bs

B
= 1� Bs

B
(2.1)

Intuitive explanations of � are as follows. If � = 1, this indicates that all of

the original data samples can be fully transformed which corresponds to the case

of pure block transforms, such as DCT or the Haar transform. If, using the whole

bu�er, no complete decomposition can be performed (i.e., data is not enough for

J -level of decompositions), then � = 0. We mention, however, that in this case

it is possible that some of the wavelet coe�cients in high frequency bands can be

generated.

The problem is formulated as: Given a �xed working bu�er size B, how to

compute the DWT to maximize the system throughput �? Obviously, to increase

the system throughput, one has to reduce the overlap bu�er size Bs as much as

possible.

2.2.2 Parallel Architecture Design

Mesh Processor Network We �rst consider a 2D mesh-connected processor

network depicted in Fig. 2.3(a) where each processor is only connected with

its immediately neighboring processors (a similar model is also studied in [11]).

Communications between processors can be according to the single port model,

in which processors may only send or receive a message over one communication

link at a time, or the multi-port model, in which a processor may send or receive

multiple messages over multiple links at a time.

Using such a model, the natural partition for 2D data is the block partition

strategy shown in Fig. 2.3(b). The processor Pm;n is allocated with input samples

with indices (x; y);mNr � x � (m + 1)Nr;mNc � y � (m+ 1)Nc. Without loss
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P0,0 P0,1 P0,Y-1

P1,0 P1,1 P1,Y-1

PX-1,0 PX-1,1 PX-1,Y-1

Px,y

Nr

Nc

W

H

(a) (b)

Figure 2.3: (a) 2D mesh processor network; (b) The corresponding data partition

(b).

of generality, assume W =MNr and H = NNc where (Nr; Nc) are the block row

and column length, and (M;N) are the number of processors in row and column

direction respectively.

Bus Processor Network We also consider another type of processor network

in which each processor can communicate to every other processor through a

common bus. An example is the LAM (Local Area Multicomputer) systems, see

Fig. 2.4(a), where locally connected machines are recon�gured into a parallel

system (a similar model can also be found in [22]). One possible data partitioning

approach is the strip partition which is depicted in Fig. 2.4(b) where processor

Pn is allocated with input samples of indices (x; y); 0 � x � W � 1; nNc � y �
(n + 1)Nc.

The message passing mechanisms in both processor networks are modeled as

follows. The communication time Tc for a size-m message is

Tc = ts +mtw + tp

where ts is the time it takes to establish a connection. tp is the propagation time,

and tw is the time to transmit a size-1 message. If one message unit is an integer,

then tw is the time to transmit one integer. Other cases are de�ned similarly.

Notice that for the bus processor network, tp is taken as the average propagation

time and, for the mesh processor network, tp = lth where l is the number of links
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PxNc
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H

Figure 2.4: (a)Bus-connected processor network; (b)The corresponding strip data
partition.

and th is the propagation time over one link.

The design problem is formulated as: Given the communication model as de-

�ned above, minimize the communication overhead in a parallel DWT system. To

this end, clearly we can reduce the overhead by reducing the number of commu-

nications and/or reducing the amount of data that has to be exchanged.

2.3 Preliminaries

To lay the foundation for our proposed architecture designs, we �rst give a review

on DWT algorithms including the standard and the lifting algorithms. The dif-

�culties of applying traditional techniques to meet the system design constraints

(memory and delay as outlined in the previous section) are then explained in

detail.

We mention that, throughout this chapter, we focus on the tree-structured e

[44] multilevel octave-band wavelet decomposition system with critical sampling

using a two-channel wavelet �lterbank. The extensions of our study to systems

of standard DWTs [56], multichannel wavelet �lterbanks, and wavelet packet de-

compositions are straightforward.
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2.3.1 The Standard Algorithm

Theoretically [57], the wavelet transform is a signal decomposition technique

which projects an input signal onto a multiscale space constructed from the dilated

and translated versions of a prototype wavelet function, i.e., the mother wavelet.

Computationally most wavelet transforms can be implemented as recursive �lter-

ing operations using the corresponding wavelet �lterbank as shown in Fig. 1.2.

This implementation will be refered to as the standard algorithm hereafter. We

emphasize that the �ltering operations are only performed every other sample for

two-channel �lterbanks, i.e. a subsample-�ltering approach, which is already a

fast algorithm [5]. The pseudo-code implementation is given in Table. 2.3.1.

Table 2.1: The standard algorithm.

input: x[n]; n 2 [0; N ]

N : input sequence length
J : decomposition level

L: �lter length
output: y[k]; k 2 [0; N ]
begin

for (j = 0; j < J ; j ++)

for (n = 0;n < 2J�j ;n++)
f
xj[n] =

PL�1
m=0 x

j�1[m]h[2n�m]

yj[n] =
PL�1

m=0 x
j�1[m]g[2n�m]

g
end

For practical applications with memory and delay constraints, the standard

algorithm, however, may not be a good choice for three reasons: (i) it requires

a bu�er of same size as the input to store the intermediate results (the lowest

subband ) for recursive �ltering operations; (ii) it has a large latency since all

the outputs of one subband are generated before the output of the next subband;

and (iii) the computation cost is high. De�ne algorithm computation cost as the

number of multiplications and additions per output point. Using wavelet �lters

with L-taps, L multiplications and (L � 1) additions are needed for one output
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point at each level. The cost CS of the standard algorithm, for a J -level wavelet

decomposition, can be computed as [5]

CJ
S = (L + L� 1)(1 +

1

2
+
1

4
+ � � �+ 1

2J�1
) (2.2)

= 2(2L � 1)(1 � 2�J ) (2.3)

2.3.2 The Lifting Algorithm

A size-N polyphase transform [57] of a signal x[n] is de�ned as a mapping which

generates N subsequences with each being a shifted and downsampled version

of x[n]. i.e., xi[n] = x[nN + i]. These subsequences are called the polyphase

components of signal x[n]. In the case of N = 2, this transform simply divides

the input sequence into two polyphase components which consist of samples with

odd indices and samples with even indices, respectively. In z-transform domain,

the polyphase representation of x[n] is X(z) =
PN�1

i=0 z�iXi(z
N ).

De�ne the polyphase matrix P(z) as

P(z) =

2
4 H0(z) H1(z)

G0(z) G1(z)

3
5 (2.4)

where Hi(z) is the ith polyphase component of the H(z) (similarly de�ned for

G(z)). The DWT in polyphase domain can be written as

2
4 Y0(z)

Y1(z)

3
5 =

2
4 H0(z) H1(z)

G0(z) G1(z)

3
5
2
4 X0(z)

X1(z)

3
5 (2.5)

A schematic plot is shown in Fig. 2.5 for DWT with a two-channel wavelet

�lterbank operating in the polyphase domain.

2

z 2 z2

2

-1

P(z)
-1x[n]

x0[n]

x1[n]

y0[n]

y1[n]
P(z)

Figure 2.5: Two-channel wavelet �lterbank in polyphase representation.
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The main advantage of the polyphase domain transform computation is that

polyphase matrix P(z) can be furhter factored and the factorization leads to fast

DWT algorithms [45, 46, 47, 48]. Using the Euclidean algorithm, Daubechies and

Sweldens [48] have shown that polyphase matrix P(z) of any PR FIR �lterbanks

can be factored into a product form of elementary matrices as

P(z) =

2
4 1=K 0

0 K

3
5 1Y
i=m

2
4 1 0

ti(z) 1

3
5
2
4 1 si(z)

0 1

3
5 (2.6)

where (si(z); ti(z)) are the prediction and updating �lters, respectively, at stage

i. It has been shown that such a lifting-factorization based DWT algorithm is,

asymptotically for long �lters, twice as fast as that of the standard algorithm

(Theorem 8 in [48]). In Fig. 2.6, the forward and inverse DWT using lifting

factorization are illustrated schematically.
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(a)

(b)

Figure 2.6: Wavelet transform via lifting. (a) Forward transform. (b) Inverse

transform.

Notice that the elementary matrices in the lifting factorization are all trian-

gular (upper or lower triangular) with constants in the diagonal entries. Such

a choice of elementary matrices enables the implementation of the DWT to be

in-place (see next section for details), a key factor di�erent from other types of
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factorizations (e.g., the lattice and ladder factorizations). While all these factor-

izations can reduce the DWT computation, the in-place feature can also reduce the

transform memory. Consequently, the lifting algorithm is chosen as the baseline

DWT algorithm for our proposed architecture designs.

2.3.3 Practical DWT System Design

For practical DWT system design under memory and delay constraints, choosing

only a fast algorithm (e.g. the lifting algorithm) may not be su�cient. First, the

complexity of the lifting algorithm is still linear with the size N of the input data,

i.e., O(N). If a parallel system is used to further speed up the computation, the

�rst problem to solve is that how to e�ciently access the data allocated to other

processors for correct boundary transform. Second, though the in-place feature

of the lifting algorithm eliminates the bu�er for intermediate results, it does not

address the problem of extra bu�er requirement when the input data has to be

transformed on a block-by-block basis.

1 2 3Input

Output

L

Figure 2.7: Boundary processing for DWT. When �lter (length L) moves to the
right boundary of block 1, it needs input data samples from block 2. In a sequential

architecture, block 1 and 2 do not reside in memory at the same time. In a parallel
architecture, block 1 and 2 are allocated to di�erent processors.
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In Fig. 2.7, we show the situation of DWT near block boundaries for one level

decomposition. Obviously, extra bu�er or communication is needed to ensure

correct computations near data block boundaries. Such a problem also exists in

cases of conventional linear �ltering of long data sequences and can be dealt with

using either overlap-add or overlap-save techniques (see Appendix A). However,

because the DWT consists of recursive �ltering operations on multilevel down-

sampled data, direct applications of these two existing techniques may increase

signi�cantly the cost in terms of memory and/or communication.

Consider a J -level wavelet decomposition with block size N and �lter length L.

Both overlap-add and overlap-save require an extra bu�er (for boundary �ltering

operations) of size L � 2 for each level of decomposition. If the overlap is done

once for all decomposition levels (the SSWT approach by Kossentini [28]), the

total overlap bu�er size is (2J � 1)(L� 2) which increases exponentially with the

increase of J . This becomes signi�cant if deep decomposition and long wavelet

�lters are used. An alternative is to overlap at each level. In this case, the overlap

bu�er size is J(L � 2) for J -level decompositions. This, however, causes delay

in parallel architectures since one processor has to wait the other to send new

data after each level of decomposition (an approach described in [11, 24]). A

third approach [25, 22] is to use boundary extension (e.g. symmetric extension)

to approximate the data in the neighboring blocks. This completely eliminates

the overlap bu�er and also eliminates the communication for data exchanges be-

tween processors. Unfortunately, the DWT coe�cients near block boundaries are

computed incorrectly.

The above analysis thus shows the ine�ciencies, in terms of memory and/or

communication overhead, of DWT system designs which adopt the existing over-

lapping techniques. In the next section, we will introduce a novel overlap-state

technique for DWT computation across block boundaries which can help to re-

duce the communication overhead in parallel architectures and the overlap bu�er

size in sequential architectures.
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2.4 The Overlap-State Technique

In this Section, we �rst introduce the FSM model for DWT based on the lifting

factorization. Then we present the overlap-state technique for DWT computation

across consecutive data blocks, which can help to reduce signi�cantly memory and

communication overhead in DWT system designs.

2.4.1 The Finite State Machine Model

From the lifting point of view [58, 48], the elementary triangular matrices in the

factorization (2.6) can be further classi�ed as prediction/lifting and updating/dual

lifting operations respectively. From a computational point of view, however, there

is no big di�erence among these elementary matrices, each of which essentially

updates one polyphase component at a time using linear convolutions.

Without loss of generality, we introduce notation ei(z) to represent the ele-

mentary matrices. That is

ei(z) �
2
4 1 si(z)

0 1

3
5 or ei(z) �

2
4 1 0

ti(z) 1

3
5

Let the input beX(z) with polyphase components (X0(z);X1(z)) and (x0(n); x1(n))

in frequency domain and time domain respectively). Now de�ne the intermediate

states in the process of transformation, fXi(z); i = 0; 1; � � � ; 2m+ 1g, as

Xi(z) = ei�1ei�2 � � � e0X(z) (2.7)

=
0Y

j=i�1

ej(z)X(z) (2.8)

= ei�1(z)Xi�1(z) (2.9)

where Xi(z) is the resulting signal after the �rst i elementary matrices have been

applied. Consider one lifting stage using a lower triangular elementary matrix
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ei(z) to update Xi(z) into Xi+1(z) as follows.

2
4 Xi+1

0 (z)

Xi+1
1 (z)

3
5 =

2
4 1 0

ti(z) 1

3
5
2
4 Xi

0(z)

Xi
1(z)

3
5 (2.10)

=

2
4 Xi

0(z)

Xi
1(z) + ti(z)Xi

0(z)

3
5 (2.11)

As one can see, in this transformation step the polyphase component Xi
0(z) is

unchanged while polyphase component Xi
1(z) is updated by adding a quantity

computed from the other polyphase component. In time domain, this means that

all even samples are preserved while all odd samples are updated. For an input

vector X of size N (assuming N even), the state transition can be written as

2
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(2.12)

Denote ti(z) =
Pbi

n=�ai t
i
nz
�n (ai � 0; bi � 0), then the updating quantity �(n)

can be computed as

�(n) =

8<
: 0 n = 2kP

l t
i
lx

i
0(k � l) n = 2k + 1

(2.13)

If e(z) is upper triangular, then odd samples are unchanged and even samples

are updated. In this case, denote si(z) =
Pbi

n=�ai s
i
nz
�n (ai � 0; bi � 0), then the

22



updating quantity �(n) for upper triangular matrix e(z) is

�(n) =

8<
:
P

l s
i
lx

i
1(k � l) n = 2k

0 n = 2k + 1
(2.14)

An important observation is that, only one polyphase component is updated

at each state transition and the updating quantity �(n) only depends on samples

from the other polyphase component. When updating even samples, only odd

samples are needed and vice verse. This leads to the following three conclusions

for states updating at each stage:

1. Whenever Xi is updated into Xi+1, there is no need to keep the old value

of Xi since no other updating will need it any more. In other words, every

time we generate Xi, we only need to store this set of values, i.e., we do not

need to know any of the other Xj, for j < i, in order to compute the output

(the �nal wavelet coe�cients).

2. The updated value of each sample xi+1(n) can be stored in the same memory

space allocated for xi(n) since the old value xi(n) does not contribute to the

updating of its neighbors and any later stage updating. For example, xi(1)

can be over-written by xi+1(1) without a�ecting the updating of xi(3). This

is the so-called in-place property of the lifting algorithm. Obviously, only a

bu�er of size N is enough for the transform while the standard algorithm

needs a bu�er of size 2N (N for the original input and N for the transform

outputs).

3. The updating of each sample xi(n) can be implemented independently from

the updating of other samples. That is, there is no ordering of the updating

between samples. For example, one can update xi(3) before or after the

updating of xi(1) and obtain the same result.

For the polyphase matrix factorization, the necessary and su�cient condition

for the above properties is that that the elementarymatrix ei(z) can only be in the

form of lower/upper triangular matrices with constants on the diagonal entries as

mentioned before. This key property of the lifting factorization guarantees that
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the DWT can be computed in-place. That is, each raw input data sample x(n)

(initial state) is progressively updated into a wavelet coe�cient (�nal state) using

samples in its neighborhood. Thus the wavelet transform based on the polyphase

factorization can be modeled as a FSM in which each elementarymatrix ei updates

the FSM state Xi to the next higher level Xi+1. The forward wavelet transform

Y(z) can be written as

Y(z) = P(z)X(z) (2.15)

=
0Y

i=2m

ei(z)X(z) (2.16)

= e2m(z) � � � e1(z) e0(z)X0(z)| {z }
X1(z)| {z }

... X2(z)| {z }
Y(z)=X2m+1(z)

(2.17)

and the inverse transform is

X̂(z) = P�1(z)Y(z) (2.18)

=
2mY
i=0

e�i(z)Y(z) (2.19)

= e�0(z) � � � e�2m+1(z) e�2m(z)Y0(z)| {z }
X2m(z)| {z }

... X2m�1(z)| {z }
X̂(z)=X0(z)

(2.20)

where e�i(z) is the inverse of ei(z). The schematic plot of the DWT as a FSM is

depicted in Fig. 2.8. A formal de�nition is given as follows [59].

X X XX X
X Y0 1 i i+1 2m+1

e0 e1 ei e2m

e-2me-ie-1e-0

Figure 2.8: State transition diagram of DWT as a FSM.

24



De�nition A Discrete Wavelet Transform can be modeled as a Finite State Ma-

chine, that is, a 5-tuple (Q;�; �; q0; F ) [59] where

Q a �nite set of states, Q = fXi(z)g; i = 0; 1; � � � ;m with m determined by

the given factorization.

� a �nite set of events, � = fei(z)g; i = 0; 1; � � � ;m, the lifting operations

at each lifting stage.

q0 the initial state, q0 = X0(z) (the raw input data).

F the �nal state, F = Y(z) = X2m(z), (the wavelet transform output).

� the transition function mappingQx�! Q, � = f(Xi(z); ei(z))! Xi+1(z)g.

2.4.2 Overlap-State

Assume there are M elementary matrices fei; i = 0; 1; � � � ;M � 1g in the factor-

ization of the polyphase matrix P(z), then there are total M states by the FSM

de�nition. The FSM modeling tells us that, to compute the transform, one needs

to help each and every sample x(n) to complete its state transitions from state 0

up to stateM �1 sequentially. This means that one has to compute the updating

quantities f�i(n); i = 0; 1; � � � ;M � 1g (2.13) and (2.14) at all these stages. Un-

fortunately this can not be accomplished for samples near block boundaries. This

happens when the input has to be transformed on a block-by-block basis due to

bu�er size limit or for purpose of parallel processing.

Consider one operation across data boundary using an upper triangular el-

ementary matrix. Let the current state be i and the input sequence xi(n) be

segmented at point 2k, refer to Fig. 2.9. In this state transition, even-indexed

samples are updated using odd-indexed samples, The updating quantity �(2k)

(2.14) is

�(2k) =
X
l

silx
i
1(k � l) (2.21)

=
X
l

silx
i(2k � 2l + 1) (2.22)

25



=
�1X

l=�ai

silx
i(2k � 2l + 1)

| {z }
C(2k)

+
biX
l=0

silx
i(2k � 2l + 1)

| {z }
A(2k)

(2.23)

where C(2k) and A(2k) are respectively the contributions from the causal and

anti-causal part of �lter si(z).
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x i+1

boundaryBlock 1 Block 2

Figure 2.9: State transitions across block boundary using ei with ai = 3 and
bi = 2. (a) Partial computations near boundaries. (b) After updating, boundary
samples stay in intermediate states. The \new boundary" separates fully updated
output coe�cients from partially computed ones.

Obviously, for samples near the block boundary we cannot compute both

C(2k) and A(2k) due to the segmentation. Therefore �(2k) will not be avail-

able. As a result, these samples can not be updated into state i + 1. In Fig.

2.9(a), for example, xi(2k) in block 1 can not be updated into xi+1(2k) since

fxi(2k+1); xi(2k+3); xi(2k+5)g are in the right block and thus are not available
at the time block 1 is transformed.

Consequently, �(2k), the updating factor for sample xi(2k) cannot be com-

puted. Therefore, xi(2k) can not be updated into xi+1(2k). Rather than leaving

xi(2k) in state i, we choose to partially update xi(2k) as �xi(2k) = xi(2k) +C(2k)
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since C(2k) can be computed from the causal neighborhood ( a function of

fxi(2k � 1); xi(2k � 3); xi(2k � 5)g). The signi�cance of this partial updating is

that, one can free all the samples in the casual past for future processing and save

memory. In this case, samples fxi(2k�1); xi(2k�3); xi(2k�5)g do not need to be
bu�ered for the fully updating of xi(2k) since their contribution C(2k) has already

been added to the partial result �xi(2k). On the other hand, if we choose not to

partially update xi(2k), then fxi(2k�1); xi(2k�3); xi(2k�5)g have to be bu�ered.
The same partial updating happens also for samples fxi(2k � 2); xi(2k � 4)g in

the left block and samples fxi(2k + 2); xi(2k + 4)g in the right block.

For the complete state transition from i to i + 1, we need to bu�er in each

block the following samples:

1. Partially updated samples such as f�xi(2k); �xi(2k� 2); �xi(2k � 4)g in the left

block and f�xi(2k + 2); �xi(2k + 4)g in the right block.

2. Contributing samples required by partially updated samples (in the other

block) to complete the transform, such as fxi(2m � 1); xi(2m � 3)g in the

left block and fxi(2m+ 1); xi(2m+ 3); xi(2m+ 5)g in the right block.

For simplicity, these partially updated samples and Contributing samples will be

called the state information hereafter. Obviously, as long as the state information

is preserved at each stage, the transform can be completed at any later time. That

is exactly what a FSM is supposed to do.

We mention that such a later processing is possible because partial updating

in the right block (updating of xi(2m + 2) and xi(2m + 4)) can be implemented

independently from the partial updating in the left block (updating of xi(2m),

xi(2m � 2) and xi(2m � 4)) as discussed before. The partial updating does not

remove any information needed by the other block, since it updates samples that

are not inputs at the i-th state transition stage. The end state after application

of ei is shown in Fig. 2.9(b). As one can see, because partially updated samples

cannot be used for processing, the size of the segment over which we can compute

is reduced, so that the e�ective boundary is now reached before sample xi+1(2k�4)
in block 1 and sample xi+1(2k + 6) in block 2. E�ectively, the physical boundary

splits into two and extends inwards in both blocks. The next state transition via
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ei+1 will operate only on samples in state i+ 1. All the samples between the two

new boundaries become the state information and the same procedure repeats at

each state transition stage.

To complete the transform for samples near the block boundary, the state in-

formation in neighboring blocks need to be exchanged. This can be done by over-

lapping the states between consecutive blocks. Thus we propose the overlap-state

method for DWT computation across consecutive data blocks. The overlap-state

procedure is shown in Fig. 2.10. In case of parallel processing, the implementation

is shown in Fig. 2.11. Though only one state transition is shown in these two

�gures, the overlap-state design can be easily generalized to multiple state tran-

sitions at multiple decomposition levels because all these state transitions share

the same three properties as given before (see section 2.4.1).
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Figure 2.10: Sequential DWT using overlap-state. (a) Input in initial state i. (b)
Block 1 consists samples up to xi(2m). After state transition, samples near block

boundary are only partially updated (anti-causal �ltering results not available).

(c) Partially updated samples (state information) are overlapped with next block
of input samples. They are now completely updated by adding their anti-causal

�ltering results. (d) Completely transformed (updated) input from state i to i+1.
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Figure 2.11: Parallel DWT using overlap-state. (a) Input in initial state i. (b)
Input is partitioned over two processors. Block 1 and 2 are transformed separately
and each have state information appearing near the block boundary. (c) State in-
formation is exchanged between two processors and the partially updated samples
are fully updated. (d) Completely transformed (updated) input from state i to

i+ 1.

2.4.3 Performance Analysis

Bu�er Size Analysis

Given a lifting factorization of the polyphase matrixP(z), we now show how much

state information one need to store for the DWT computation, i.e., the overlap

bu�er size. This is a key factor for memory constrained sequential architecture

design.

As shown before, at each stage, the partially updated samples and contributing

samples need to be stored. Denote the total number of partially updated samples

as Bi
1 and the total number of contributing samples as Bi

2. Writing si(z) and ti(z)

as

si(z) =
Pbi

n=�ai s
i(n)z�n ti(z) =

Pbi

n=�ai s
i(n)z�n (2.24)
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where ai � 0; bi � 0. Then Bi
1 = ai; Bi

2 = bi. The number of samples that must

be bu�ered at stage i, Bi, is Bi = ai + bi. Assume there are N state transitions

in the factorization of P(z), the bu�er size Bs for one level decomposition is

Bs =
N�1X
i=0

Bi (2.25)

=
N�1X
i=0

(ai + bi) (2.26)

Since the lifting factorization of a given polyphase matrix is not unique, ob-

viously one would choose the factorization which gives the minimum Bs if the

amount of memory is limited. An alternative way to �nd out the bu�er size is to

graphically plot the state transitions for a given factorization. See Appendix B

for details.

Communication

The communication delay is the time used for exchanging data between adjacent

processors. In existing parallel algorithms [11, 24], before each level of decom-

position, (L � 2) boundary samples need to be communicated to the adjacent

processors (L is the �lter length). Using the communication model given in (2.2),

the total communication time Dold, for a J level wavelet decomposition, is

Dold = J(ts + (L� 2)tw + tp) (2.27)

In the proposed parallel algorithm, using the overlap-state technique, the data

exchange can be delayed after the independent transform of each block and only

one communication is necessary. An example of three level decompositions is

shown in Fig. 2.12 and compare this to Fig. 2.1. Furthermore, the size of the state

information at each stage Bs is upper bounded by (L�2). So the communication

time in the proposed algorithm is upper bounded by

Dnew � ts + J(L� 2)tw + tp (2.28)
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Figure 2.12: An example dataow chart of a three-level wavelet decomposition
using the proposed Overlap-State technique. Solid lines: completely transformed
data; Dashed lines: partially transformed data. Operation 1: each block trans-
forms its own allocated data independently and state information is bu�ered; Op-
eration 2: state information is communicated to neighboring blocks; Operation 3:

complete transform for the boundary data samples.

As one can see, the communication overhead is reduced in the proposed par-

allel algorithm because: (i) the number of communication times is reduced; and

(ii) the amount of data exchanged is reduced. Essentially, the overlap-state tech-

nique enables us to exchange more data in one communication setup rather than

exchanging a small amount of data in multiple communication setups. It is,

however, important to emphasize that how much this communication overhead

reduction contributes to the reduction of the total computation time will strongly

depend on the parallel system communication link design. Clearly the slower the

inter-processor communication, the larger the gain and vice versa.

2.4.4 Delayed Normalization

Although the lifting based DWT algorithm has been shown to be twice as fast

as that of the standard Standard algorithm by Daubechies and Sweldens, this

is only true in general asymptotically for long �lters [48]. In this section we

introduce a simple technique, Delayed Normalization, which can help to reduce

the computation of multilevel wavelet decompositions.
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As one may have noticed, the last matrix factor in the polyphase factoriza-

tion form (2.6), is a normalization factor which scales the lowband and highband

coe�cients respectively. This normalization factor will appear at each level of de-

composition for a multilevel wavelet decomposition. Since the wavelet transform

is a linear operation and multiplication is commutative for linear operations, this

normalization (multiplication) operation can actually be delayed until the last

level decomposition. By doing so, computations can be saved.
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Figure 2.13: Illustration of delayed normalization. (a)Recursive two-channel lift-
ing. (b)Two channel lifting with delayed normalization.

One example of a three-level octave-band wavelet decomposition is shown in

Fig. 2.13. Interestingly, normalization operations for all the y1 coe�cients can be

all eliminated provided that the same wavelet �lterbanks are applied at each stage.

If di�erent wavelet �lterbank is used at di�erent levels of decomposition, then in

general only one normalization (multiplication) operation is necessary for each

wavelet transform coe�cients. Obviously such a delayed normalization technique

can also be used for multidimensional wavelet decompositions and wavelet packet

decompositions. In Fig. 2.14, a one-level 2D wavelet decomposition is shown with

recursive normalization in (a) and delayed normalization in (b).
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Figure 2.14: A 2D DWT example of delayed normalization.

We now give the performance analysis for 1D octave-band wavelet decompo-

sition. Let the input data sequence length be N and the decomposition level be

J . The computational costs of the standard algorithm, the lifting scheme, and

the lifting scheme with delayed normalization are denoted respectively as CJ
M ,

CJ
L, and CJ

L0. The cost unit we use is the average number of multiplications and

additions per output point. Then

CJ
M = C1

M(1 +
1

2
+
1

4
+ � � � + 1

2J�1
) (2.29)

= 2C1
M(1 � 2�J ) (2.30)

where C1
M is the number of multiplications and additions per output point for one

level decomposition using the standard algorithm. Accordingly, the li�ng cost is

CJ
L = 2C1

L(1� 2�J ) (2.31)

For the lifting scheme with delayed normalization, the whole wavelet transform

can be decomposed into two parts. One is the normal lifting operation part which
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Table 2.2: Costs comparison for multilevel wavelet decompositions (J > 3)

Wavelet Standard Lifting Lifting with Delayed Normalization
cost speedup cost speedup

Haar 1.5 1.5 0% 1.5 0%

D4 7 4.5 56% 3.5 100%

D6 11 7 57% 6 83%

(9-7) 11.5 7 64% 6 92%

(4,2) B-spline 8.5 5 70% 4 113%

lasts for J levels without normalization. For this part the one-level average cost is

C1
L0 = C1

L � 1 since one normalization/multiplication is saved for each coe�cient.

The second part is the �nal normalization part for all the coe�cients. This part

incurs cost 1 (one multiplication) per output point. So the total average cost is

C1
L0 = 2(C1

L � 1)(1 � 2�J ) + 1 (2.32)

= 2C1
L(1� 2�J ) + 2�J�1 � 1 (2.33)

= CJ
L + 2�(J�1) � 1 (2.34)

If N is large enough such that J can be large enough, then in the limit C1
L0 is on

an average one operation fewer than that of a pure lifting scheme. In Table.2.4.4

we show how this will a�ect the algorithm relative speedup using the same �lters

given by Daubechies and Sweldens [48].

The above performance analysis applies for transforms with di�erent wavelet

�lters at each stage. We have made the assumption that J is large enough such

that 2�(J�1) is negligible. If the same �lterbank is used at all decomposition

stages, the assumption can be further relaxed.

Recall that the normalizations for y1 coe�cients can all be eliminated ( see

Fig. 2.12). The savings is 0:25 since one-quarter of the total input data samples

do not have to be scaled. Thus average cost of the normalization part should

be 0:75 rather than 1 per output point. Taking this into consideration, as long

as J is large enough such that 2�(J�1) � 0:25, the above cost estimation CL0 is
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accurate. That is equivalent to having J � 3 which is a reasonable assumption

for most practical wavelet applications.

Further reduction of the normalization operation is possible if we jointly de-

sign the DWT system and the immediate data processing system. For exam-

ple, in a wavelet data compression system, wavelet coe�cients will be quan-

tized immediately after transform. Such a system is shown in Fig. 2.15(a).

The (Qi; i = 0; 1; 2; 3) are quantizers designed for wavelet coe�cients in di�er-

ent subbands. Obviously, the normalization operation can be done jointly with

this quantization operation thus can be completely eliminated from the transform

point of view. This is shown in Fig. 2.15(b). For other applications, such as

noise reduction using thresholding, this computation reduction is also possible.

Compared to independent transform and quantization, computation can be saved

if designed jointly.
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Figure 2.15: Joint design of transform and quantization to reduce computation.
(a) Independent transform and quantization. (b) Joint transform and quantiza-

tion. The normalization operation is merged with the quantization.
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2.5 The Proposed DWT Architectures

In this section, we present �rst generic sequential and parallel architecture designs

for 1D DWT using the Overlap-State technique. Variations are then detailed for

2D separable DWT systems.

2.5.1 1D Systems

Sequential In Fig. 2.16 the proposed sequential DWT system is shown and teh

C-code sequential algorithm is given in Table 2.5.1. The input data sequence is

�rst segmented into non-overlapping blocks of length N and fed into the FSM one

block at a time. The state information, however, is saved so that after one block

has been computed the next one can use it. After transformation, the wavelet

coe�cients are concatenated together to give the �nal result.

Output Data Stream

n Output
Samples

n-Point
DWT/FSM

Section

Input Data Stream

n
Input
Samples

DWT

State
Information

X

S

Y

Figure 2.16: The proposed sequential DWT architecture.

As one can see, the general system structure for DWT computation is essen-

tially the same as that in the standard overlap-add approach. The DWT/FSM

acts as a state machine with memory and the state information (partially com-

puted boundary samples from the previous block) at multiple decomposition level

are overlapped. This helps to reduce the memory requirement for the transform
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computation. This overlap leads to output delay in practice, i.e., the n output

samples shown in Fig. 2.16 are delayed relative to the n input samples.

Table 2.3: The proposed sequential DWT algorithm.

begin

initialize state S;

for (k = 0; k < N ; k ++)
f
J -level wavelet transform for block k;

update state S;
g

end

In Table. 2.5.1 the required overlap bu�er size,Bs, of di�erent sequential DWT

algorithms are given. For an N -point input data block, if the lifting algorithm is

implemented, the total bu�er size is N +Bs. The system throughput � is

� =
N

N +Bs

(2.35)

Obviously, the proposed sequential DWT algorithm, using the overlap-state tech-

nique, requires a smaller overlap bu�er size Bs and thus improves the system

throughput. However, if N >> O(JL) then the relative improvement becomes

small. On the other hand, if N = 0 when all completely transformed coe�cients

are immediately transfered (e.g., the line-based system in [1, 55]), the savings in

memory can be signi�cant (details are given in the next section).

Table 2.4: Overlap bu�er size Bs in 1D DWT for J -level decompositions using a

L-tap wavelet �lterbank.

SSWT[28] RPA[6] Proposed

L-tap (2J� 1)(L � 2) J(L� 2) � J(L� 2)

(9,7) 7(2J� 1) 7J 4J

(2,10) 8(2J� 1) 8J 4J

CDF(4,2) 5(2J� 1) 5J 3J
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Figure 2.17: The proposed parallel DWT architecture. In Split stage, each proces-
sor computes its allocated data independently up to the required decomposition
level. In Merge stage, a one-way communication is initiated to communicate the
state information to neighboring processors. A postprocessing operation is then
started to complete the transform for boundary samples.

Parallel In Fig. 2.17 the proposed parallel DWT architecture is shown and a

C-code algorithm is given in Table 2.5.1. The input data is uniformly segmented

non-overlapping blocks and allocated onto p available processors. Each processor

computes its own allocated data up to the required wavelet decomposition level.

This stage is called Split. The output from this stage consists of (i) completely

transformed coe�cients and (ii) the state information (partially updated bound-

ary samples). In the second stage, Merge, a one-way communication is initiated

and the state information is transfered to the neighboring processors. The state

information from the neighbor processor is then combined together with its own

corresponding state information to complete the whole DWT transform.

As shown before, the proposed parallel architecture only requires one commu-

nication between neighboring processors for J -level decompositions. The amount

of data exchanged is also less than that in direct overlapping approaches [11, 24].

Therefore, the communication delay is reduced.
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Table 2.5: The proposed parallel DWT algorithm.

beginf transform in processor pg
for( j = 0; j < J ; j ++)

f
transform at current level j.

store state information.

g
send state information to processor p+ 1;

receive state information from processor p� 1;
for( j = 0; j < J ; j ++)

f
transform boundary data samples at current level j.

g
end

2.5.2 2D Systems

In Fig. 2.18 an example 2D DWT with two level decompositions is shown. The

data is row transformed �rst and then column transformed. Naturally, data sam-

ples along block boundaries can not be fully transformed due to lack of neighboring

samples. These constitute the row and column state information at each level.

Let us introduce some notations �rst. Let Nr; Nc be the width and the height of

the data block, respectively. For decomposition level j = 0; 1; � � � ; J � 1, de�ne

� fW j
r0;W

j
r1g: numbers of partially transformed samples near left and right

boundaries respectively in a row. fW j
c0;W

j
c1g: de�ned similarly for a column.

� fN j
r ; N

j
c g: length of a row and a column respectively before the start of the

decomposition at each level.

� fM j
r ;M

j
c g: number of completely transformed samples in a row and a col-

umn respectively.

� Bj
s : total number of partially updated samples, i.e., the size of the bu�er to

hold the state information for further processing.
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Figure 2.18: 2D DWT/FSM illustration. Shaded areas represent the state infor-
mation with R0=C0 the row/column state information at level 0 and so on. The
input block is �rst row transformed (a) and column transformed (b) at level 0,
then downsampled (taking the LL0 subband) and row transformed at level 1 (c),
and column transformed at level 1 (d).

The following identities between these de�ned quantities at each level j can

be derived, refer to Fig. 2.18.

M j
r = N j

r �W
j
r0 �W

j
r1 (2.36)

M j
c = N j

c �W
j
c0 �W

j
c1 (2.37)

N j
r =

8<
: bM j�1

r =2c j � 1

Nr j=0
(2.38)

N j
c =

8<
: bM j�1

c =2c j � 1

Nc j=0
(2.39)

Bj
s = N j

rN
j
c �M j

rM
j
c (2.40)
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Upon completion of all J -level decompositions, we have

Bs =
J�1X
j=0

Bj
s (2.41)

Be = B �Bs (2.42)

= NrNc �
J�1X
j=0

Bj
s (2.43)

where Bs is the total bu�er size necessary to store the state information at all

decomposition levels and Be is the e�ective block size, i.e., number of wavelet

coe�cients that can be transfered to the next stage for processing, thus freeing

up memory.

2.5.3 Sequential Architectures

Strip Sequential In this case, the bu�er is organized to hold one strip of data

at a time. Equivalently, this is when B = WNc or B = NrH where WxH is the

original data size. This scenario is depicted in Fig. 2.19 for B = WNc. Because

the input data is segmented only in column direction, state information (partially

transformed samples) will only appear along the column direction. Certainly,

some type of boundary extension techniques, such as the symmetric extensions,

have to be used for the transform near the left and right row boundaries. For the

transform of the very �rst strip, extension is also needed for the upper and lower

boundaries of each column. Each strip takes over the state information left by the

previous strip to transform its own data. Upon completion, it also generates the

state information for the next strip. Then the strip slides down and the DWT is

calculated strip-by-strip with state information overlapped between strips.

At the bottom of Fig. 2.19 a blow-up version of the state information is shown.

For a J -level decomposition, the state bu�er size Bs can be calculated as

Bs =
J�1X
j=0

Bj
s (2.44)

=
J�1X
j=0

WW j
c12

�j (2.45)
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Figure 2.19: Strip sequential DWT system diagram. The input is segmented into
data strips which are transformed sequentially from top to bottom.

Obviously, Bs is proportional to the row length W for the case depicted in Fig.

2.19. To reduce the state bu�er size, the segmentation should choose the dimen-

sion with large data size. That is, if W > H then segment along row direction

and segment along column direction if otherwise.

In Table 2.5.3 comparisons of our proposed algorithm with existings ones for

the minimum memory requirements. As one can see, the proposed system can

produce signi�cant memory savings. Consider a color image size of 4096x4096

where each color component sample is stored as a 4 bytes oating point number

for DWT computation. In this case, one image scanline requires 48KB. Using

the Daubechies (9,7) wavelet �lterbank (L = 9), for a 3-level decomposition, the

total memory would be 588KB if using the RPA algorithm (the approach given

in [1, 55]). Using the overlap-state technique, the bu�er size can be reduced to

296KB.
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Table 2.6: Comparison of memory requirements where W is the width of the

image scanline and � = (2J � 1); � = (1� 2�J )

SSWT[28] RPA[6] Proposed

L-tap W�(L� 2) 2W�(L� 2) � 2W�(L� 2)

(9,7) 7W� 14W� 8W�

(2,10) 8W� 16W� 8W�

CDF(4,2) 5W� 10W� 6W�

Block Sequential In this case, the bu�er is divided into two parts, one for holding

the state information and one for new input samples in the sliding transform

window. Equivalently, this is when B = Bs + NrNc. This scenario is depicted in

Fig. 2.20.

As one can see, the data is segmented into blocks of size NrxNc and trans-

formed one block at a time. Since boundary extensions can be applied for the left

and up boundaries of the very �rst block A, state information fAr; Acg will appear
only on the right and down side of the block upon completion of the transform.

The fAr; Acg correspond respectively the partially transformed row and column

samples. When the window slides right to the position of block B, only the row

state information Ar can be overlapped. This shows that Ar can be fully trans-

formed by overlapping while Ac has to be bu�ered for later processing. Same as

block A, the column state information generated by B also has to be bu�ered.

This process continues until the completion of transforms of all the blocks in the

�rst block row. By that time, the column state information has accumulated to

the size Bs exactly same as that of the sequential strip DWT, refer to (2.44).

It turns out that the state bu�er size Bs will not increase beyond this point.

This can be veri�ed by checking the �rst block C in the second block row. For

clarity of illustration, the second row is drawn separately from the �rst block row

in Fig. 2.20. Actually, the two block rows are overlapped with the part of the state

information. That is, block C takes over the state information Ac to complete

the transform. When the transform stops, state information also appears on the

right and down boundaries of block C. However, since Ac has now been fully

transformed and hence can be transfered out, Cc can be written into the locations
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Figure 2.20: Block sequential DWT system diagram. The input is segmented into
blocks which are transformed from left to right and from top to bottom.

of Ac without increase of the total state bu�er size Bs.

The most general case of sequential block DWT is depicted for block D. The

block D overlaps with previously generated state information in both the row and

column directions, fCr; Bcg. When it �nishes its transform, it leaves fDc;Drg for
later processing. The transform of block E in the last block row is the same as

that of D except that boundary extension can be used in the column direction.

To study the system throughput, consider the problem how large the bu�er

has to be in order to transform a block data of size NxN at a time. This is typical

in a transformed-based image coding applications where images are coded on a

block-by-block basis. Assume the bu�er is of size NBxNB. In Table 2.5.3, NB

is given for J -level wavelet decompositions using di�erent wavelet �lterbanks and

overlapping techniques. Taking the Daubechies (9,7) �lterbank as an example.

Assume the decomposition level is J = 3. If the block size is of 32x32, then
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N = 32. Using SSWT, then NB = 32 + 49 = 81 which means a bu�er size of

81x81 is needed to compute DWT of a data block 32x32. The throughput � in

this case is approximately 16%. Using RPA, then NB = 45 and the throughput

increases to 50%. If using the overlap-state technique, then NB = 39 and the

throughput increases to 64%.

Table 2.7: Comparison of memory requirements where � = (2J�1); � = (1�2�J )

SSWT[28] RPA[6] Proposed

L-tap N + �(L� 2) N + 2�(L� 2) � N + 2�(L� 2)

(9,7) N + 7� N + 14� N + 8�

(2,10) N + 8� N + 16� N + 8�

CDF(4,2) N + 5� N + 10� N + 6�

2.5.4 Parallel Architectures

Block Parallel

As shown before, in the �rst phase Split each processor is allocated with its por-

tion of data and starts the transform all the way to the required decomposition

level J . Upon completion, the data con�guration at each processor is shown in

Fig. 2.21(a). The center part of each block is completely transformed while the

boundaries are left with the partially transformed samples, i.e., the state informa-

tion. The next stage Merge is to communicate the state information and complete

the transform for boundary samples. If the single-port model is used, then three

communications is necessary to complete the transform, one for row state, one

for column and one for the intersection of row and column state. However, if the

multi-port model is used, the row and column state information exchange can be

implemented simultaneously thus reducing one communication. This Merge pro-

cess is shown in Fig. 2.21 from (a) to (d) for the single-portmodel. If themulti-port

model is used, (a) and (b) can be combined to simultaneously transmit/receive

the row and column state information to/from neighboring processors. This is

in contrast to the observation given in [10] that \The 2D DWT algorithms seem

not able to e�ectively utilize more than a single communication port at a time",
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our analysis show that using multi-port model, the communication overhead can

actually be reduced compared to that of a single-port model.

Row
State

Col
State

Row/Col
State

Data
Transfered

Data at each
processor before
communication 

(a) (b)

(c)(d)

P0,0

P1,0 P1,1

P0,1

Figure 2.21: Merge operations in 2D mesh processor network. (a)transfer row

state information from Pi;j to Pi;j+1; (b)transfer column state information from
Pi;j to Pi+1;j; (c)transfer newly generated row state information from Pi;j to Pi;j+1;
(d)complete transform for boundary samples. Notice the total amount of data in
each processor in the �nal state (d) is di�erent from the original uniform allocation
due to the Merge operations.

Strip Parallel

In the �rst stage Split, each processor is allocated with its own strip and transforms

up to the required level of decomposition J . Since no segmentation is done in the

row direction, state information obviously will only appear along up and down

boundaries in each block. This is shown in Fig. 2.22. Next Merge, only one

communication is necessary to transfer/receive the column state information from

neighboring processors.

46



Nc

W

H

col
state

Data
transfered

Data at each
processor 
before communication

(a) (b)

Figure 2.22: Merge operations for strip parallel implementation. (a)transfer row

state information from Pi to Pi+1; and (b)complete transforms for boundary sam-

ples in each processor.

2.6 Experimental Results

In this section, experimental results are provided to show the computation reduc-

tion using the Delayed Normalization technique in sequential lifting algorithms.

Results are also given for the parallel DWT system using the Overlap-State tech-

nique. The wavelet �lterbank used is the Daubechies (9,7) �lters. The input

image is of size 512x512.

2.6.1 Delayed Normalization

In this experiment, three DWT algorithms using the (9; 7) �lters are implemented.

1. The recursive standard algorithm (see Table 2.3.1). The computation cost

is 11.5 mults/adds per output point.

2. Lifting DWT algorithm. The computation cost is 7 mults/adds per output

point.

3. Lifting DWT algorithm which delays the normalization until the last level

of decompositions. The computation cost is approximately 6 mults/adds

per output point.
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In the experiment, 2D separable wavelet transforms are implemented. The

algorithms are tested on a ULTRA-1 SUN workstation with clock speed 133MHz.

The algorithm running CPU time is measured using the clock() function call in

C. The average CPU time over 50 running instances of each algorithm are listed

in Table 2.6.1. To compare the performances, the standard algorithm is used as

the basis and the relative speedup is calculated as Tstandard=Tnew � 1.

Two observations can be seen from the experiment results. One is that the

lifting scheme coupled with delayed scaling can have about 30% improvement over

the standard algorithm for over three-level decompositions while lifting alone only

gives about 20% improvement. Second, neither lifting algorithms achieve the

performance gain as predicted in Table 2.4.4. The second observation actually

tells us that the number of multiplications/additions in a algorithm is not the

only factor contributing to the total DWT running time. The algorithm speed

may also be a�ected by how e�ciently the C-code is written and the memory

usage too. Obviously, this is a very important factor to consider when building

a real DWT system beyond that of reduction of numbers of multiplications and

additions.

Table 2.8: DWT CPU time of di�erent sequential algorithms (in seconds).

Level Standard Lifting Lifting with Delayed Normalization
time speedup time speedup

1 0.2398 0.2088 15% 0.1980 21%

2 0.2887 0.2466 17% 0.2294 26%

3 0.2988 0.2527 18% 0.2303 30%

4 0.3035 0.2598 17% 0.2368 28%

5 0.3098 0.2601 19% 0.2375 30%

2.6.2 Strip Parallel

In this experiment, three di�erent parallel DWT algorithms are implemented and

tested against a sequential DWT algorithm.

1. Sequential lifting algorithm.
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2. Each processor computes the DWT using the standard algorithm. Data

exchanges between processors follow the direct overlapping technique, i.e.,

processors exchange data at each level of decompositions [11, 24].

3. Each processor computes the DWT using the fast li�ng algorithm. Data

exchanges between processors follow the direct overlapping technique, i.e.,

processors exchange data at each level of decompositions [11, 24].

4. Each processor computes the DWT using the fast lifting algorithm. Data

exchanges between processors follow the proposed overlap-state technique.

The �rst issue in parallel system designs is how to allocate data to di�er-

ent processors. In this experiment, the strip partition strategy [11] is adopted

for its simplicity and its appropriateness for the parallel system used in the ex-

periment. The 512x512 image is segmented into two strips with size 256x512,

each of which is loaded into one machine for transform. The parallel platform is

LAM 6.1 from Ohio Supercomputer Center, which runs over Ethernet connected

SUN ULTRA-1 workstations. Two workstations are used to simulate a parallel

system with two processors. The algorithm running time is measured using the

MPI Wtime() function call from MPI libraries. The C-code algorithm is shown

in Table 2.6.2. The relative speedup is calculated against the sequential lifting

algorithm as Tseq=Tpara � 1. The algorithms are tested in 50 running instances

and the average DWT running times for di�erent decomposition levels are given

in Table 2.6.2.

It can be seen from the results that our proposed parallel algorithm can sig-

ni�cantly reduce the DWT computation time even compared with the fastest

available parallel algorithm, parallel lifting algorithm. Notice that the improve-

ment is not linear with the increase of the decomposition level. The reason is

that, though the communication overhead increases with the decomposition level,

the total numerical computation also increases. Another interesting observation

is that, even at one level decomposition the proposed algorithm still outperforms

the parallel lifting algorithm. This is because though two algorithms both require

one data exchange between processors, the amount of data exchanged is di�erent.

For the (9,7) �lters, the proposed algorithm only needs to exchange approximately
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Table 2.9: The proposed parallel DWT algorithm.

MPI Barrier( MPI COMM WORLD);

start = MPI Wtime();

beginf transform in processor pg
for( j = 0; j < J ; j ++)

f
transform at current level j.
store state information.

g
send state information to processor p+ 1;

receive state information from processor p� 1;

for( j = 0; j < J ; j ++)

f
transform boundary data samples at current level j.

g
end
MPI Barrier(MPI COMM WORLD);

�nish=MPI Wtime();
cputime=�nish-start;

half amount of that necessary in the parallel lifting algorithm.

2.7 Conclusions

In this chapter, an overlap-state technique is proposed for multilevel wavelet de-

compositions. The basic idea is to model DWT as a �nite state machine using the

factorization of the polyphase matrix. In this model, each raw input data sample

(initial state) is progressively updated into a wavelet coe�cient (�nal state) with

the help of samples in its neighborhood. The bene�t of such a DWT/FSM model

is that the transform (or state transition) of each sample can be stopped at any

intermediate stage as long as the state information at the break point is preserved.

Since the state information rather than the raw data samples needs to be stored

or communicated, we have shown that this helps to reduce the bu�er size in a se-

quential architecture and the communication overhead in a parallel architecture.
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Table 2.10: DWT running time of di�erent parallel algorithms (in seconds).
Level Sequential Parallel Standard Parallel Lifting Parallel Proposed

time speedup time speedup time speedup

1 0.3638 0.3115 17% 0.2745 33% 0.2045 78%

2 0.3649 0.3275 11% 0.2899 26% 0.2338 56%

3 0.3952 0.3490 13% 0.2938 34% 0.2369 67%

4 0.4028 0.3513 15% 0.3041 34% 0.2383 69%

5 0.4041 0.3675 9% 0.3165 28% 0.2417 67%

Detailed analysis on bu�er size calculation for a given factorization and communi-

cation overhead reduction are also provided. To further reduce the computations,

a delayed normalization technique for multilevel wavelet decompositions is also

presented.

Using the overlap-state technique, new sequential and parallel DWT architec-

tures are designed. Several system variations for 2D separable DWT are provided

and analyzed in detail, which include DWT systems of strip sequential, block

sequential, random sequential, block parallel and strip parallel. The performance

analyses and the experimental results have shown that the proposed sequential

architecture requires less memory and runs faster than existing sequential algo-

rithms. The proposed parallel architecture reduces the interprocessor communi-

cation overhead by reducing the number of communication times and the amount

of data exchanged. As a result, the DWT running time of the proposed parallel

architecture is faster than the best parallel algorithm available, the parallel lifting

algorithm.

One important advantage of traditional overlapping techniques, overlap-add

and overlap-save, is that they are well suited for the fast implementations using

FFT. Naturally, further research is needed to search for fast DWT algorithms com-

patible with the proposed overlap-state technique. It would increase the chances

of a the wide application of the wavelet transform if this can be achieved.
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Chapter 3

Constrained Transform Design

For Multiple Description Coding

Last chapter we studied e�cient DWT architectures in a transform coding system.

The problem there is simple in the sense that the transform is given and the

only thing needs to be done is how to compute the transform e�ciently. In this

chapter, we raise the problem to a higher level that how to design and compute

an unknown transform e�ciently. Speci�cally, we study what is the transform and

how to compute it e�ciently if the input data not only needs to be compressed

and but also needs to be delivered robustly to the receiver 1.

3.1 Introduction

Finding a good transform has long been a key issue for various transform coding

system designs. Traditionally, a good transform is de�ned to be the one which can

maximally decorrelate the input data, i.e., removing the redundancy and thus

achieving maximum energy/data compaction. However, to achieve overall perfor-

mance optimization for data compression and communication over an unreliable

channel (e.g., the mobile wireless channel or the best-e�ort network), maximum

decorrelation may not always be the best choice.

1Part of this chapter represents work published before, see [60, 61].
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Consider the case when the communication channel is not perfect, i.e., the en-

coded bitstreammay arrive at the receiver with error (refer to Fig. 1.1). Whenever

this happens, the received bitstream will not be decoded correctly. As a result,

the receiver will not be able to recover all the transform coe�cients. Neither can it

estimates lost coe�cients using received ones since the transform has removed the

correlation between output coe�cients. If lost coe�cients are non-principle com-

ponents (those with small variances), then the end-to-end reconstructed distortion

is small. However, suppose principle components (those with large variances) are

lost, then the distortion will be high. For communications over unreliable chan-

nels, such a quality variation in the received signal can be vary annoying.

Conventionally, channel coding is applied in such cases for error protection and

recovery. In this chapter, however, we study an alternative way for error recovery

by redesigning the transform to introduce correlation between the transmitted co-

e�cients, a technique of multiple description transform coding (MDTC) proposed

recently by Wang et al. [62], Orchard et al. [63] and Goyal et al. [64, 65, 66]. A

complete MDTC system is shown in Fig. 3.1 [67]. The input data is �rst decorre-

lated using T1 as that in a conventional transform coding system (see Fig. 1.1).

However, quantization coe�cients are correlated using another transform T2. Af-

ter that, the recorrelated data is encoded into two di�erent bitstreams, called

descriptions in MDTC terminology, which are sent through di�erent channels for

transmission. If channel failures result in data loss, receiver can now estimate lost

coe�cients from received ones since there exists correlation between them. As

such, the end-to-end reconstruction distortion can be reduced compared to the

case when no correlation exists.

Clearly, for such a multiple description transform coding system, its coding

e�ciency will be lower than that of the system shown in Fig. 1.1 due to the

correlation introduced by T2, i.e., extra bits are needed to encode the correlated

output from T2. The design goal of a MDTC system then focuses on the problem

of searching for an optimal correlating transform T2 which can achieve error

recovery at minimum possible redundancy.

For a pair of Gaussian random variables with two output channels, the op-

timal transform has been provided analytically by Goyal et al. [64] with one
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Figure 3.1: A typical MDTC system

special case also reported by Orchard et al. [63]. They have also shown that

non-orthogonal correlating transforms perform better compared to orthogonal

correlating transforms in terms of redundancy rate-distortion gain, though, in

this case the transform itself has to be invertible (mapping integers to integers).

For MDTC systems with M inputs and M outputs, the optimal transform de-

sign and its performance analysis is still an open problem, though near-optimal

solutions for 3 and 4 channels have been given by Goyal et al. [64]. Orchard

et. al [63] suggested a redundancy allocation strategy among pairs of input vari-

ables but optimal pairing is not yet readily available. A numerical optimization

algorithm was proposed by Goyal et al. [64] to design transforms for arbitrary

number of channels. However, exhaustive search through the whole space of all

non-orthogonal transforms is not only computationally intensive but also leads to

implementation di�culties when using an arbitrarily structured non-orthogonal

transform.

In this chapter, we �rst address the problem of correlating transform design,

i.e., designing T2 (refer to Fig. 3.1) to optimize the operational redundancy rate-

distortion performance. The approach we propose is a two-stage transform design

technique: separating the design into (i) structure design and (ii) magnitude

design. The observation is that error protection properties of a MDTC system

can be fully characterized by the output correlation matrix, i.e., the correlation

matrix of coe�cients generated by T2. Given the output correlation matrix, one

can immediately see which descriptions are correlated (structure) and to what

extent they are correlated (magnitude). While the magnitude information of

the correlation matrix can not, in general, be quanti�ed for speci�c redundancy
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rate distortion constraints, the structural information can sometimes be directly

inferred if speci�c channel conditions or protection requirements are provided.

For example, one common technique for error protection used in the robust

audio tool (RAT) over lossy packet networks is to have each packet protect its

previous packet or vice verse [29]. In this case, if a MDTC system is to be

designed, one possibility is to have a band-diagonal correlation matrix with each

coe�cient correlated only with neighboring coe�cients. Packing each coe�cient

into one packet and send these packets sequentially over the network, a similar

error protection scheme as that of RAT is completed. In this case, the key to

the transform design is to �rst �nd all transforms (admissible transforms) which

can generate a band-diagonal correlation matrix and then search through the

admissible transform set for the optimal solution. As we will show, the admissible

transform is simply the eigenmatrix of the output correlation matrix. If the

structural information is available, such as the band-diagonal structure in this

case, the transform can often be pre-designed taking advantage of existing results

in the area of decorrelating transform design. Thus the structural information

of the output correlation matrix can be used to �nd all admissible transforms

(eigenmatrices of the output correlation matrix). To meet the �nal redundancy

rate-distortion constraints, the optimization algorithm similar to that in [64] can

then be applied to complete the magnitude design.

The major advantage of this two-stage design approach is that it can en-

force a structure on the transform to be designed. For optimal redundancy rate-

distortion performance, the transform design previously has to search through all

non-orthogonal transforms, i.e., starting with an arbitrary non-orthogonal trans-

form, as that been shown by Goyal et al. [64]. If, however, the transform structural

information can be derived from the available channel information, the search

space can be drastically reduced. As a result, the complexity of the optimization

algorithm can be drastically reduced. The enforced structure in the design phase

also leads to structured optimal transforms, which can often be implemented via

existing fast algorithms as will be shown later.

As the second part of this chapter, we address the problem of designing a single

transform which can both decorrelate and recorrelate the input at the same time.
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As one can see from Fig. 3.1, the MDTC system con�guration is itself redundant,

i.e., the input is �rst decorrelated by T1, and then recorrelated by T2. To reduce

the system implementation complexity, we propose to replace both T1 and T2 with

a single transform, the Karnunen-Loeve vector transform (KLVT). The proposed

KLVT can take as input a group of vectors and generate decorrelated vectors

while preserving correlation between vector components in each vector. Each of

these vector components can be grouped to form one description and sent through

di�erent channels. The error recovery mechanism in case of channel failures is the

same as that in a MDTC system (refer to Fig. 3.1), however, the system can now

be con�gured as simply as that in Fig. 1.1. The idea of KLVT is very similar

to the vector transform (VT) proposed by Li at al. [68, 69, 70], which is used to

preprocess the data for vector quantization. To maximize the coding e�ciency,

both KLVT and VT are required to maximally remove the inter-vector correlation.

However, an optimal VT is also required to maximally preserve the intra-vector

correlation for compression while KLVT can be designed to vary the intra-vector

correlation based on channel statistics for loss data recovery.

The remainder of this chapter is organized as follows. In the next section, a

brief review on MDTC is provided and the problem of optimal correlating trans-

form design is de�ned. In Section 3.3, we propose a two-stage transform design

approach based on parametric scaling-rotation transforms for the design of MDTC

systems withM inputs andM outputs. Section 3.4 provides two correlating trans-

form design examples for equal rate channels and sequential protection channels,

respectively. Simulation results of Gaussian vectors are also presented. In Section

3.5, the proposed Karhunen-Loeve vector transform (KLVT) is de�ned together

with analysis of possible applications for the MDTC system design. Finally, we

conclude our work in Section 3.6.

3.2 Problem De�nition

Assume for a source X, M descriptions fCi; i = 1; 2; � � � ;Mg are generated. No-
tations are introduced following that in [63].
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Central Distortion Dc The average reconstruction error when all M descrip-

tions are used.

Side Distortion Ds The average reconstruction error when only a subset of M

descriptions are used.

Redundancy � The di�erence between the actual coding rate R and R� =

RX(Dc), the source rate-distortion function evaluated at Dc.

Redundancy Rate-Distortion Function �(Ds;Dc) The amount of extra bits

of redundancy necessary to achieve a desired side distortion Ds at a given

central distortion Dc.

For an input source vector X, the encoding procedure of a MDTC system

shown in Fig. 3.1, as described in [63, 64], is

1. X is decorrelated by T1.

2. The transform coe�cients generated by T1 are quantized with a uniform

scalar quantizer.

3. The quantized vector ~X is transformed with an invertible, discrete transform

T2, which introduces correlation among vector components of ~X.

4. The components of the transform output vector, f ~X1; ~X2g, are indepen-

dently entropy coded.

5. The encoded bitstreams are separated from each other and sent over di�erent

channels.

Assume that the correlation information is delivered to the decoder correctly.

The decoding procedure is

1. Entropy decode all received bistreams.

2. (a) If all descriptions are received, then the inverse transform T�12 is ap-

plied. The inverse transformed data is then dequantized.
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(b) If only a subset of descriptions are received, the received data is de-

quantized �rst. The lost descriptions are then estimated from available

descriptions using the correlation information received from the en-

coder. The reconstructed vector (including received and reconstructed

descriptions) is inverse transformed by T�12 .

3. The output from previous stage is then inverse transformed by T�11 to get

the reconstruction X̂. The �nal end-to-end reconstruction distortion D =

EjjX � X̂jj2 is the central distortion Ds for case 2(a) and side distortion Dc

for case 2(b).

The multiple description coding problem can be formulated as

Objective Design transform T2 to minimize the side distortion Ds as well as

the central distortion Dc subject to redundancy constraint �.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

Redundancy (bits/vector)

Si
de

 D
ist

or
tio

n 
(M

SE
)

Orthogonal Transform   
Nonorthogonal Transform

Figure 3.2: Redundancy rate distortion curve of a MDTC system for Gaussian
vector with �1 = 1; �2 = 0:5.

For MDTC of pairs of independent Gaussian random variables, an important

result is that non-orthogonal transforms are better than orthogonal transforms in
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terms of the redundancy rate-distortion gain [63, 64]. For a given central distor-

tion, the non-orthogonal transform not only can achieve lower average side distor-

tion using the same amount of extra bits, it can also extend the redundancy rate-

distortion function to the region where the orthogonal transform cannot reach,

see Fig. 3.2. However, non-orthogonal transforms, if used for recorrelation, pose

three challenges to the MDTC system design:

1. Lossless Implementation: The transform has to be lossless for e�cient quan-

tization. For �nite precision implementation, this means that the transform

has to be an integer mapping, i.e., mapping integers to integers.

2. Design Complexity: The numerical optimization algorithm by Goyal et al.

[64] becomes computationally intensive with the increase of the dimensional-

ity of the transform necessary. For a M -channel MDTC system, the trans-

form has to be of size MxM and each of its entry is a design parameter

(complexity of O(M2).

3. Implementation Complexity: The optimal transform can have arbitrary struc-

ture in practice, which makes fast implementation di�cult.

In the next section, we start with an intuitive geometric explanation on why

non-orthogonal transforms can perform better than orthogonal transforms. We

then propose a structured non-orthogonal transform framework for optimal cor-

relating transform design.

3.3 Proposed Design Approach

3.3.1 Geometric Interpretations

For two equal rate channels, the optimal pairing transform Ta given by Goyal and

Kovacevic [64] is of the form

Ta =

2
4 a 1=(2a)

�a 1=(2a)

3
5 (3.1)
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With a little math, the following can be derived.

Ta =

2
4 a 1=(2a)

�a 1=(2a)

3
5 (3.2)

=

2
4 1=

p
2 1=

p
2

�1=p2 1=
p
2

3
5
2
4
p
2a 0

0 1=(
p
2a)

3
5 (3.3)

As one can see, the optimal pairing transform is nothing but a concatenated

scaling-rotation transform. Obviously, the rotation transform, orthogonal by it-

self, can introduce correlation for uncorrelated inputs. The use of the scaling

transform further enhances its ability to do so.

Write the optimal transform in parametric form Ta;� as

Ta;� =

2
4 cos � sin �

� sin � cos �

3
5

| {z }
rotation

2
4 a 0

0 1=a

3
5

| {z }
scaling

(3.4)

=

2
4 a cos � sin �=a

�a sin � cos �=a

3
5 (3.5)

Denote the original orthogonal basis vectors as fu1;u2g and the new basis vectors

under the transform Ta;� as fv1;v2g. One can write

2
4 v1

v2

3
5 = Ta;�

2
4 u1

u2

3
5 =

2
4 a cos �u1 + (1=a) sin �u2

�a sin �u1 + (1=a) cos � u2

3
5 (3.6)

The inner product between v1 and v2 is

< v1;v2 > = (1=2) sin 2�(�a2 + 1=a2) (3.7)

It is easy to see that the inner product of the new basis vectors is equal to

zero (new basis is still orthogonal) whenever the scaling factor a = 1. In this

case, Ta;� is equivalent to an orthogonal transform. Since an orthogonal trans-

formation amounts to a plane or hyperplane rotation, it can not introduce any

correlation for the case when all eigenvalues of the input vector correlation matrix
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are equal. Geometrically, such a random vector does not have any directional

preference among all eigenvectors, and the joint distribution will be circular sym-

metric or hyper-spherical in higher dimensions. However, if the scaling factor a

is chosen to be either smaller or larger than 1, the inner product will become

nonzero (assuming � is nonzero) and the new basis will become correlated. In this

case, even if the input vector components all have same variances, they can still

become correlated after such a scaling-rotation transform. This scaling-rotation

structure partially explains that non-orthogonal transforms have greater exibility

to introduce correlation than orthogonal transforms.

In Fig. 3.3, the data distribution plots are shown for a pair of independent

Gaussian random variables under di�erent transforms. It can be seen clearly that

the scaling-rotation transform introduce stronger correlation than its orthogonal

counterpart.
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Figure 3.3: Distributions of two independent Gaussian variables with variance
�1 = 1; �2 = 0:5. (a) original; (b) after 45� rotation with correlation coe�cient

0:6. (c) after scaling(a = 2); (d) after scaling and 45� rotation with correlation
coe�cient 0:94. Clearly one can see that data in (d) is more correlated than that

in (b).
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3.3.2 Parametric Transform and Factorizations

The decomposition of the optimal paring transform into a scaling-rotation frame-

work is not accidental but reects a general structure of non-orthogonal trans-

forms. Indeed, any matrix can be factored into a product of an orthogonal matrix

and an upper triangular matrix, the so-called QR decomposition in matrix theory

[71]. Using our notations we write this as T = RU where R is an orthogonal

transform and U is an upper triangular matrix. The upper triangular matrix U

can be further decomposed as a product of a scaling matrix S and another upper

triangular matrix L (with diagonal entries all 1). In other words, any transform

can be written as a concatenation of three transforms, an upper triangular trans-

form L, a scaling transform S and a rotation transform R (orthogonal transform).

T = RSL (3.8)

Note that T can also be a non-square transform which is the case when frame

expansions is used for adding redundancy [66].

To reduce the design complexity, in this work, we only study non-orthogonal

square transforms with scaling-rotation factorization, i.e., Trs = RS. To use an

non-orthogonal transform for MDTC, the �rst constraint is lossless implemen-

tation for e�cient quantization [64]. To this end, we further require that the

determinant of Trs to be 1, i.e., det(Trs) = det(RS) = det(S) = 1.

We now show that any such transform Trs can be factored into lifting steps

and thus can be implemented losslessly. We �rst present factorization results for

2x2 rotation and scaling transforms (adapted from [48]) as follows.

2
4 a 0

0 1=a

3
5 =

2
4 1 a� a2

0 1

3
5
2
4 1 0

�1=a 1

3
5
2
4 1 a� 1

0 1

3
5
2
4 1 0

1 1

3
5 (3.9)

2
4 cos � � sin �

sin � cos �

3
5 =

2
4 1 (cos ��1)

sin �

0 1

3
5
2
4 1 0

sin � 1

3
5
2
4 1 (cos ��1)

sin �

0 1

3
5 (3.10)

These results show that basic 2x2 rotation and scaling transforms can be imple-

mented losslessly.
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For MxM rotation transforms, it is well known that any orthogonal M �M

matrix QM can be factored into the product of M(M � 1)=2 orthogonal matrices,

each of which is a M �M Givens rotation that only rotates two components at

a time. [71] The factorization of a Givens rotation matrix is equivalent to that

of the basic 2x2 rotation. Therefore, any MxM orthogonal transform can be

implemented losslessly as an integer mapping.

Factorization of a scaling transform is also straightforward using the factor-

ization result of the basic 2x2 scaling transform. One can show that any MxM

scaling transform can be written as a product of M � 1 subscaling transforms,

each of which only scales two components at a time. As an example, we show the

decomposition of a 4x4 scaling transform as follows.

S(A) =

2
6666664

a0 0 0 0

0 a1 0 0

0 0 a2 0

0 0 0 a3

3
7777775

=

2
6666664

a0 0 0 0

0 1=a0 0 0

0 0 1 0

0 0 0 1

3
7777775

2
6666664

1 0 0 0

0 a0a1 0 0

0 0 1=(a0a1) 0

0 0 0 1

3
7777775

2
6666664

1 0 0 0

0 1 0 0

0 0 a0a1a2 0

0 0 0 1=(a0a1a2)

3
7777775

Note the constraint of detS = 1 is applied, i.e.,
QM
i=0 ai = 1. Therefore a3 =

1=(a0a1a2).
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Figure 3.4: Lattice structure of a RS transform
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Thus we have shown that any Trs can be factored into lifting steps and there-

fore can be implemented losslessly. The general implementation structure of Trs

is shown in Fig. 3.4, which has a lattice structure similar to that of a biorthogonal

�lterbank. The perfect reconstruction property is guaranteed by such a transform

framework. To derive the inverse transform, one only needs to change all the

rotation angles to the opposite sign and multiply by the inverses of the scaling

factors.

Based on our analysis in previous section, we propose to use the parametric

form of a Trs for the design of MDTC. The parametric form of Trs can be written

as

Trs(A;�) = R(�)S(A) (3.11)

where A are scaling factors and� are Givens rotation angles. As analyzed before,

the scaling transform changes the relative energy distribution of the input vector

components while the rotation introduces correlation among vector components.

The net e�ect of such an operation is that the orthogonal basis is transformed

into a non-orthogonal one. As a result, more correlation can be introduced among

vector components via decomposition to a non-orthogonal basis rather than an

orthogonal basis.

3.3.3 Two Stage Transform Design

Although Trs enjoys structured lattice implementation, the number of design

parameters of anM�M transform still increases quadratically (O(M2)) for aM -

Dimensional input vector. In this section we propose a two-stage design technique

making use of the available channel information to further constrain Trs and

reduce both the design and implementation di�culties.

Recall that the transform to be designed is a recorrelating transform (equiv-

alent to T2 as shown in Fig. 3.1). Denote the uncorrelated input to Trs as X

and the correlated output as Y. Let RX = diagf�2
iig; i = 1; 2; � � � ;M be the

input correlation matrix and RY = frijg; i; j = 1; 2; � � � ;M the output correlation
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matrix of the transform output Y . Then we have

RY = Trs(A;�)RXT
t
rs(A;�) (3.12)

= R(�)RSR
t(�) (3.13)

Since RS = S(A)RXS(A)
t = fa2ii�2

ii; i = 1; 2; � � � ;Mg is still a diagonal matrix,

the rotation transform R(�) has to be the eigenmatrix of the output correlation

matrix RY . If the output correlation matrix can be predesigned, then the prob-

lem of correlating transform design can be formulated as the inverse of the of

matrix diagonalization problem. An orthogonal solution to the correlating trans-

form is simply the inverse of KL transform. In general, we cannot pre-design

the output correlation matrix subject to redundancy and distortion constraints.

However, we can select its structural information for speci�c channel conditions

or protection requirements. For example, equal rate channels require the output

correlation matrix to have equal diagonal entries for Gaussian inputs. Thus ad-

missible transforms have to be able to generate correlation matrices with equal

diagonal entries.

Based on such observations, we propose a two stage transform design approach,

i.e., structure design and magnitude design. The structure design �nds admissible

transforms (eigenmatrices of the output correlation matrix) for speci�c channels

using the Trs factorization framework. In Fig. 3.5 we show that the transform

search space can be reduced gradually using available channel information. Start

from the transform space which consists of all transforms, either orthogonal or

non-orthogonal, with determinant one. We reduce the search space by enforcing

that all the transforms must have a scaling-rotation factorization. This will re-

duce the complexities of both the design and implementation as described before.

From this scaling-rotation transform space, application speci�c constraints can

be imposed to further reduce the space for admissible transforms (details in next

section).

After the structure of the transform is found, the magnitude design then

searches for the optimal transform from admissible transforms using the algo-

rithm described in [64] where derivation details of the average side distortion

65



Ds(A;�) and the redundancy bit rate �(A;�) are given. A di�erent derivation

of this optimization algorithm is given in Appendix C. We perform a redundancy

constrained transform design using a Lagrangian multiplier �. The cost function

is J = Ds(A;�) + ��(A;�). By varying �, one can scan all the operational

redundancy rate distortion points (Ds; �).

Nonorthogonal 
Transforms det(T)=1

SR

SH SDST

Figure 3.5: Transform search space.

3.4 MDTC Design Examples

We give design examples for two important channels, equal rate channels and

sequential protection channels, both of which can be characterized by the output

correlation matrix RY . It turns out that for these two special channels, not only

can we use �xed rotation transforms, but also these �xed transforms also have

fast algorithms. Using a �xed rotation transform, we can reduce the number of

design parameters fromM � 1(A) +M(M � 1)=2(�) = (M2+M � 2)=2 to only

M � 1. This makes the optimization converge faster and reduces the amount of

information to be conveyed to the decoder. On the other hand, fast algorithms

reduce both the encoding and decoding complexities.

3.4.1 Equal Rate Channels

The equal rate channels case requires that output descriptions have the same

rates, which helps the bu�er management (e.g. packetization/depacketization

in a packet network) both at the encoder and the decoder. As stated before,

equal rate should be interpreted in a statistical sense. For example, two Gaussian

sources with same variances will be viewed as equal rate sources if quantized
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with the same quantizer. That is to say, for Gaussian random variables, \equal

rate" requires that the correlation matrix RY have equal diagonal entries. Here

we provide a Trs transform which generates equal rate descriptions for arbitrary

number of channels with M = 2n.

The equal rate transform we propose is a scaling Hadamard transform.

T(A) = HS(A) (3.14)

where H is the Hadamard transform. We need to show that, under this transform,

for input X, RY has equal diagonal entries (equal variances), i.e., rii = r; i =

1; 2; � � � ;M and r is a constant.

Since the Hadamard transform H is real symmetric, the output correlation is

RY = HRSH. Denote H = fhijg; i; j = 1; 2; � � � ;M . We have h2ji = 1;8(i; j).
The output Y component variance rii can be written as

rii =
MX
j=1

a2jj�
2
jjh

2
ji =

MX
j=1

a2jj�
2
jj

Thus we have shown a scaling-Hadamard (SH) transform generates equal rate

descriptions.

However, correlation coe�cients between output vector components, i.e., rij; i 6=
j, have to be jointly designed with the scaling transform to meet the rate-distortion

requirements via the optimization algorithm given in Appendix C. Nonetheless,

the scaling-Hadamard structure gurantees equal rates output and it also reduces

the number of design paremeters from M2 (an abitrary non-orthogonal MxM

transform) to M � 1 (M � 1 scaling factors required in the scaling-Hadmadard

transform). We mention that this scaling-Hadamard transform reduces to the

optimal equal rate transform given by Goyal and Kovacevic [64] when M = 2,

which demonstrates that, at least for two descriptions coding the RS transform

does not compromise the optimality of the MDTC system. We also note that the

cascaded structure given by Goyal et al. [64] is equivalent to a Scaling Hadamard

transform for M = 4.
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3.4.2 Sequential Protection Channels

Another example channel is the sequential protection channel in which descrip-

tions are sent out sequentially and each description will only protect the losses

of its immediate predecessor and its immediate successor. In a lossy packet net-

work, an example scenario is that when each packet carries information for the

recovery of its previous and next packets, e.g. a similar case when Robust Audio

Tool technique is applied for audio transmission [29]. For a MDTC system, this

indicates that the output correlation matrix RY should be a tridiagonal matrix

in which descriptions are sequentially correlated. The RY assumes the form

RY =

2
66666666666664

1 � 0 0 � � � 0

� 1 � 0 � � � 0

0 � 1 � � � � 0
...

...
...

0 � � � 0 � 1 �

0 � � � 0 0 � 1

3
77777777777775

(3.15)

From matrix theory, we know that the eigenmatrix for this type of symmetric

tridiagonal Toeplitz matrices is the Discrete Sine Transform (DST) [72]. So the

transform we propose for sequential protection channels is the Scaling-DST trans-

form

T(A) = DST S(A) (3.16)

3.4.3 Simulation Results of Gaussian Sources

In this experiment, we compare results of di�erent con�gurations of the cor-

relating transform for a 4D Gaussian vector source with standard deviations

f1; 0:5; 0:3; 0:1g [63]. We compare the side distortion when there is only one

description lost with equal channel failure probabilities. The di�erent transforms

are (i) Rotation; (ii) Scaling-Rotation; (iii) Scaling-Hadamard; and (iv) Scaling-

DST. The con�guration Scaling-Hadamard is equivalent to the cascaded structure
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given by Goyal and Kovacevic (Fig. 3 in [64]) for a 4-D input vector. The op-

timization is done via Powell's direction set technique [73]. The initial scaling

factors are all set to be 1 and the initial rotation angles are all set to be �=4 for

the Scaling-Rotation con�guration.
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Figure 3.6: Comparisons among di�erent transforms.

The comparison of all four con�gurations is shown in Fig. 3.6. Clearly, all the

non-orthogonal transforms achieve better performances compared to the orthog-

onal transform (case (i)). This indicates that non-orthogonal transforms can also

perform better than orthogonal transforms for MDTC systems of more than two

channels. We also observe performance degradations when we impose constraints

on the rotation transform, scaling-Hadamard or scaling-DST transform, specially

at higher redundancy bit rates. However, structured transforms simplify the de-

sign and implementation complexities. In this case, both Hadamard transform

and DST can be implemented using their existing fast algorithms.

A drawback of using a non-orthogonal transform is that the complete MDTC

system (refer Fig. 3.1) requires two transforms, T1 for decorrelation (before quan-

tization) and T2 for recorrelation (after quantization), both at the encoder and

decoder. Obviously, this increases the system implementation complexity. If an

orthogonal transform is used, then one can merge T2 with T1 into one transform
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to reduce the computation. In the next section, we present one such transform

and show possible applications for MDTC system design.

3.5 Karhunen-Loeve Vector Transform

Let X be a vector random sequence of size Nx1 generated from a stationary and

ergodic source with zero mean. Assume each vector in the sequence can be further

decomposed into subvectors of size Mx1, i.e., X = fx1; � � � ;xLg where ML = N .

Denote the correlation matrix of X as R and the correlation matrix between two

subvectors, xi and xj, as Ri;j. Then we have the following identities.

Ri;j =

2
6664

E(x1ix
1
j ) � � � E(x1ix

M�1
j )

� � � � � � � � �
E(xM�1

i x1j) � � � E(xM�1
i xM�1

j )

3
7775 (3.17)

and

R =

2
6664

R1;1 � � � R1;L�1

� � � � � � � � �
RL�1;1 � � � RL�1;L�1

3
7775 (3.18)

De�nition: Any unitary transform T which can block diagonalize the autocorre-

lation matrixR is de�ned to be a KL vector transform (KLVT) for vector random

sequence X = fxi; 1 � i � Lg.

TRTH =

2
6666666664

R1

R2

:

:

RL

3
7777777775

(3.19)

where Ri is the autocorrelation matrix of transformed subvector yi and Y =

TX = fyi; i = 1; 2; � � � ; Lg. The existence of such a transform for any arbitrary

inputs is obvious since one can easily see that the Karhunen-Loeve transform is a
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special case of KLVT. Actually, KLVT de�nes a transform set and its properties

follow that of KLT.

KLVT Properties

Property 1: KLVT set

KLVT de�nes a unitary transform set S = fT = BKg which includes all trans-

forms of the form T = BK where K is the KLT for X and B can be any arbitrary

block unitary matrix as long as the sizes of subblocks in B agree with the sizes of

subblocks in R. So the cardinality of set S is in�nity.

If

B =

2
6666666664

B1

B2

:

:

BL

3
7777777775

where each Bi is unitary, and

KRKH =

2
6666666664

�1

�2

:

:

�L

3
7777777775

then

TRTH = BKRKHBH

=

2
6666666664

B1�1B
H
1

B2�2B
H
2

:

:

BL�LB
H
L

3
7777777775

is also a block diagonal matrix.
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Property 2: Decorrelation

Assume T is any transform from the KLVT set S and Y = TX withY = fyi; 1 �
i � Lg and X = fxi; 1 � i � Lg, then

E[yiy
H
j ] =

8<
:
0 i 6= j

Ri i = j
(3.20)

where Ri is diagonal if T is the KLT of X and arbitrary symmetric otherwise.

This property is directly derived from the de�nition.

Property 3: Energy Compaction

Among all the unitary transforms, KLVT transforms pack maximum average en-

ergy in l � L subvectors of Y. Here the energy of a vector y is de�ned to be

its mean squared length Efjyj2g. If vector size is 1, then its energy equals to its

variance (assuming zero mean).

Efjyj2g = Efytyg = Tr(Efyytg) =
MX
i=1

�i (3.21)

whereM is the size of subvector y and f�i; i = 1; 2; � � � ;Mg are eigenvalues of the
autocorrelation matrix Efyytg (Tr(T) denotes the trace of matrix T.

This property can be easily proved by KLT's maximum energy compaction

property. Since each KLVT transform is related to the KLT by a block unitary

transform which preserves the eigenvalues [71], the transformed vector will pre-

serve all the energies of the corresponding scalar components in the KLT case.

Hence if the scalar components are ordered in KLT case, the accumulative vector

energy will also be ordered in the same order after the block unitary transform.

To probe further into the KLVT, we provide one more view from vector space

partition.

As one can see, KLVT actually de�nes a transform set T which includes all

the transforms that can block diagonalize the autocorrelation matrixR hence will

decorrelate the corresponding vector signal if applied to the original data. How-

ever, this non-uniqueness property of KLVT should not be misinterpreted as the

non-uniqueness of the decorrelation vector space partition for a given signal (see
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Appendix D). Actually, the decorrelation vector space partition for a given vec-

tor signal is unique only up to a permutation of the eigensubspaces corresponding

to each of these eigenvalues. For a given autocorrelation matrix, the eigenvalues

are uniquely de�ned. The di�erence among the transforms is that the residue

intra-vector correlation after the transform. At the one end is the KLT transform

which removes completely inter-vector correlation as well as intra-vector correla-

tion. There exists, however, an in�nite number of transforms which can maximally

remove the inter-vector correlation while keeping the intra-vector correlation at

some level. This intra-correlation obviously can be used for error protection as

that discussed before in a MDTC system. Thus we have shown the possibility to

combine decorrelating and recorrelating in one transform for the MDTC system

design. Compared to the system con�guration shown in Fig. 3.1, the use of KLVT

can reduce the design and implementation complexity.

3.6 Conclusions

In this chapter, we studied the problem of constrained transform design for robust

communication via multiple description transform coding. A two stage transform

design approach is proposed for MDTC system design. Such an approach enables

us to �nd structured transform solutions using available channel information.

This helps to reduce both the system design and implementation complexities. We

also provided example transform designs for equal rate channels and for sequential

protection channels. To further reduce the MDTC system complexity, a Kahunen-

Loeve vector transform is proposed and possibilities for application in MDTC

system designs are illustrated. One future work is to study the redundancy rate-

distortion performance of KLVT in a MDTC system.
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Chapter 4

Multiple Description Coding for

Erasure Channels

Last chapter we introduced a correlating transform based coding system which can

recover the lost data using the correlation existing in the correctly received data.

In this chapter, we take a di�erent approach for loss data recovery, i.e., adding

redundancy explicitly rather than implicitly (as that using the correlating trans-

form in the last chapter) in the encoded data for loss recovery. The motivation is

simple that we would like to have a simple system design and implementaion 1.

4.1 Introduction

In recent years, a number of approaches toward error control and protection for

audio and video communication over packet networks have been reported in the

literature [29, 76, 77, 78, 79, 80]. A majority of these works have chosen the

receiver-only strategies to avoid retransmission and to reduce the communication

delay. These include various FEC schemes (and its variations) and error conceal-

ment techniques that exploit the residual correlation in the encoded data.

For example, in Jayant's subsample-interpolation [76] scheme, odd and even

samples of the input speech signal are sent in di�erent packets. Thus if a packet is

lost, the missing samples can be interpolated using the neighboring samples that

1Part of this chapter represents work published before, see [74, 75].
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were received correctly. Unequal error protection schemes have been studied by

Davis et al. [35], Danskin et al. [36] and Sherwood et al. [37], in which error

correction codes are applied according to the importance of the data to provide

di�erent levels of protection. A robust audio tool (RAT) is proposed by Hardman

et al. for multicast teleconferencing [29]. In RAT, each packet carries explicitly

a redundant version of the previous packet, which can be used for loss recovery.

Similar ideas have also been explored and extended to video coding by Bolot at

al. [77, 78, 79] and Podolsky et al. [80]. To deal with the network heterogeneity

issue in broadcast/multicast applications, a hierarchical/layered FEC scheme is

proposed by Tan et. al. [81] and Chou et al. [82] in which end users can subscribe

to di�erent number of channel layers for error protection based on their own

observed packet loss statistics.

Recently, there has been renewed interest in using the technique of multiple

description coding (MDC) for error protection and control over the packet net-

work [83, 84, 85, 86, 76, 87, 88]. As formulated by El-Gamal and Cover in the

1980s [83], the basic idea of MDC is to encode the input signal into multiple

descriptions with the constraint that any one of the descriptions can render an

acceptable reconstruction of the signal. Furthermore, it requires that the more

the descriptions, the better the reconstruction quality. Assume each description

is sent through one packet, then an acceptable signal reconstruction can be guar-

anteed as long as one packet is received correctly. This is reasonable for networks

where QoS is not available and therefore there is no way to give more priority to

certain packets. This assumption is well matched to the MDC philosophy, where

all packets carry equally important information. Among recently proposed MDC

techniques we cite the DPCM diversity system by Ingle et al. [89] for packet speech

and the wavelet image MDC coding scheme by Servetto et al. [90] which both

use the multiple description scalar quantizer (MDSQ) designed by Vaishampayan

[91, 92], the multiple description perceptual audio coder (MDPAC) presented by

Arean et al. [30], which uses the Multiple Description Transform Coding (MDTC)

technique proposed by Wang et al. [62] and Orchard et al. [63], and further de-

veloped by Goyal et al. [66]. However, these MDC techniques usually involve

complex system designs and implementations which may a�ect their e�ectiveness
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for real-time applications. For example, MDSQ requires careful index assignment,

which becomes di�cult if more than two descriptions are necessary [91]. To build

a complete transform coding system, the MDTC approach necessitates another

correlating transform besides the conventional decorrelating transform [63, 66].

In this chapter, we propose a new MDC scheme for packet loss recovery

over packet networks. Di�erent from previous MDC works, data loss recovery

is achieved using the redundancy explicitly carried by the encoded data, an idea

inspired by the work of Hardman et al. [29] and Bolot et al. [78] on robust packet

speech/audio over the Internet. In the proposed scheme, the input is �rst split

into di�erent components and each component is quantized separately at di�erent

resolutions. In this work, a polyphase transform is used for source splitting. Each

polyphase component is coded independently at relatively high quality (i.e., �nely

quantized). Redundancy is then explicitly added to each description by coding

other polyphase components at a lower coding rate. In case of packet losses, i.e.,

descriptions are missing, the lost data is recovered using the redundancy carried

in the correctly received packets. The approach of adding redundancy explicitly

leads to a very simple system design and implementation. The use of polyphase

transform also enables us to incorporate context-adaptive coding techniques [93]

to further improve the system coding e�ciency. We will show that our proposed

MDC system, although simple, can yield very competitive coding performance as

compared to previously published work. More recently (at the time of writing this

chapter), much improved performance results have been reported by Moguel et al.

by increasing the granularity of redundancy addition, i.e., varying the amount of

redundancy with the importance of the data for unequal loss protection [94].

One may have noticed that MDC approaches can actually be combined with

FEC schemes for a better overall error protection. For example, one can send

redundant packets following the data packets for loss recovery, where each packet

can be protected using the error-correcting codes. Indeed, there have been such

hybrid error control schemes reported recently, e.g., the MDC via FEC work by

Puri et al. [95] and the generalized MDC scheme through unequal error loss

protection by Mohr et al. [96]. Nevertheless, improving the performance through

the use of error protection codes goes outside the scope of this chapter.
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The remainder of this chapter is organized as follows. In the next section, we

provide a characterization of the erasure channel and we de�ne the problem. In

Section 4.3, the proposed MDC system using polyphase transform and selective

quantization is detailed. The performance analysis in terms of optimal redundancy

bit allocation and comparisons for Gaussian i.i.d sources are presented in Section

4.4. Section 4.5 provides image and speech coding results using the proposed

MDC technique. Finally, we conclude our work in Section 4.6.

4.2 Erasure Channel Model and Problem De�-

nition

The erasure channel model which we are going to study in this work is a simpli�ed

one. Each packet of transmitted data is assumed either to be completely lost in

case of channel failures or received correctly when the channel is good. In terms

of the seven-layer OSI network model, in essence, we do not consider bit errors

introduced in the physical layer and we assume that these have been corrected or

the whole packet has been discarded if it was not possible to correct the errors.

Instead, we consider an alternative data recovery technique for the application

layer, where the smallest data unit is a single packet of the information source.

That is, the channel is a packet erasure channel. These erasures will occur largely

due to the network congestion and link failures.

To begin with, we make the following two assumptions:

� The event of channel failure occurs independently

Examples include mobile channels spaced beyond the coherence bandwidth,

time slots separated larger than the coherence time and packets routed

through di�erent paths in the network.

� The receiver knows which channel fails

That is, the receiver knows which description is lost. This can be achieved

by inserting synchronization points in the bitstream or tagging packets with

sequence numbers.
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The independent packet failure assumption, though a simpli�cation, can serve as

a good approximation when the network tra�c is su�ciently multiplexed from dif-

ferent sources and a random dropping policy is used to relieve the congestion (for

more details, see [78]). Though the failure probability of a single channel is large

in some cases, the �rst assumption ensures that the probability of simultaneous

multiple independent channel failures will tend to be small. A multiple description

coding system, taking advantage of this reasonable assumption, generates inde-

pendent bitstreams (descriptions), each of which is sent over di�erent channels.

This channel diversity thus helps greatly to increase the probability of the event

that at least one description arrives successfully at the receiver. To recover the

lost description(s), each description has to carry, in addition to the information

about itself, extra information (redundancy) about other descriptions.

Assume total M descriptions are generated for the source. Let us de�ne

Central Distortion Dc : the reconstruction error using all M descriptions.

Side Distortion Ds : the reconstruction error using only k descriptions (k < M).

For a �xed bit budget, one would prefer descriptions independent of each other to

minimizeDc. However, for loss recovery, one has to introduce redundancy among

descriptions to reduce Ds. Our goal is then

Objective For a given total bit rate R and a channel failure model, design a

multiple description coding system to minimize the average central distortion

Dc as well as the average side distortion Ds.

4.3 MDC Based On Explicit Redundancy

4.3.1 Base System

The proposed MDC system is shown in Fig. 4.1. The two quantizers Q1 and

Q2 are respectively the �ne (high rate R0) and coarse quantizers (low rate �).

The input source X is �rst split into two subsources Y1 and Y2. In this case,

a polyphase transform is applied but other choices are also possible. In a two

description coding system, Y1 consists of all even indexed samples and Y2 consists
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Figure 4.1: The proposed MDC system.

of all odd indexed samples. The two polyphase components, Y1 and Y2, are then

�nely quantized using Q1 and packed into corresponding packets P1 and P2. For

error protection and recovery, each packet also carries a coarsely quantized version

of the other polyphase component. For example, P1 consists of �y1, �nely quantized

Y1, and ŷ2, coarsely quantized Y2. The other packet P2 is obtained similarly, i.e.,

(�y2; ŷ1). At the receiver, if only one packet is received, then one �nely quantized

polyphase component and one coarsely quantized polyphase component are used

for reconstruction. For example, if only P1 is received, �y1 and ŷ2 are used for

reconstruction. However, if both packets are received, then only �nely quantized

data �y1 and �y2 are used in the signal reconstruction. In this sense, ŷ1 and ŷ2

are called redundant information whose function is solely to provide packet loss

protection.

4.3.2 Context-Adaptive Extension

Obviously, to improve the bandwidth e�ciency, one would like to use as few bits

as possible to encode the redundant information. This motivates us to consider

context-adaptive coding techniques. The basic idea of a context-based coding

technique is to make use of the knowledge of the neighborhood statistics for the

data to be encoded [93]. Since the polyphase components Y1 and Y2 are generated

from the same input X, strong correlation is expected to exist between Y1 and Y2.

This is true for natural speech or image signals and this correlation has been taken

advantage of to achieve compression gain in a number of coding standards (e.g.,
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G.721 for speeches and JPEG for images). If the input X is the subband data

from a DCT or a wavelet transform output, linear correlation is approximately

removed in most cases. However, strong structural similarities still exist between

polyphase components. One example is that large magnitude coe�cients tend

to cluster together and so is the case for smaller magnitude coe�cients. This

feature has been exploited extensively and proven to be very successful in context

adaptive codecs developed recently for image coding applications [93, 97]. To

incorporate the idea of context adaptive coding, the redundant information, ŷ2

and ŷ1 in our proposed MDC system, is quantized and coded conditioned on the

dequantized data, �y1 and �y2. This is shown in Fig. 4.2 where the coarse quantizer

Q2 also has as an input the dequantized data from Q1. As a result, more e�cient

quantization of the redundant information can be achieved. Note that, because

we limit our context-based coding to operate within each packet, a packet loss

does not a�ect the decoding of other packets.
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Figure 4.2: Context-based MDC System

4.4 Optimal Redundancy Bit Allocation for Gaus-

sian Sources

We now give a performance analysis of our proposed MDC system for i.i.d Gaus-

sian random sources. We answer the following question: for a given total bit
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rate, what is the optimal bit allocation between the source coding (primary in-

formation) and the channel coding (redundant information) to minimize both the

central distortion and side distortions?

4.4.1 Implicit Channel Modeling

Consider �rst the traditional MDC problem without explicit channel modeling.

For the problem of two descriptions coding, the goal is to �nd the operational

optimal regions for the 5-tuple (Rs;1; Rs;2;Dc;Ds;1;Ds;2) where Ds;i is the side

distortion of description i at rate Rs;i [83]. We only study equal rate MDC systems

in which all descriptions are coded with the same bit rate, i.e., Rs;1 = Rs;2.

Assume X is an i.i.d zero mean random source with pdf f(x) and variance �2.

Under the high resolution quantization assumption, its rate-distortion function

can be approximated as D = h�22�2R, with h an integral constant de�ned as

h = 1
12

nR1
�1[f(x)]

1=3dx
o3
[98]. For Gaussian sources, h =

p
3�=2. Obviously,

applying the polyphase transform on a memoryless source does not change the

distortion-rate function. Any subsampling, scrambling, etc., would not change

the statistics, since the data is random. Therefore, the polyphase components

Y1; Y2 will have same distortion-rate functions as X.

Let the bit rate for primary information be R0 and the redundant bit rate be

�, the side distortion (when one description is lost) and e�ective bit rates are then

Ds;i =
1

2
h�22�2� +

1

2
h�22�2R0 (4.1)

Rs;i =
1

2
(R0 + �) (4.2)

i = 0; 1 (4.3)

The corresponding central distortion achieved is

Dc = h�22�2R0 (4.4)

at a total bit rate R = R0 + �. With this simple formulation, the optimal bit

allocation between R0 (primary information) and � (redundant information) then

becomes a constrained optimization problem. Using a Lagrange multiplier, de�ne
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the cost function J as

J = Dc + �Ds (4.5)

= h�22�2(R��) + �(
1

2
h�22�2� +

1

2
h�22�2(R��)) (4.6)

The optimal redundancy bit rate �� can be analytically solved by having @J
@�
j�=�� =

0 which leads to

�� =
1

2
R +

1

4
log2(

�

2 + �
) (4.7)

This optimal redundancy �� has a very intuitive explanation. Since �
2+�

� 1, ��

is in the range of [0; 1
2
R] for a given total bit rate R. If only side distortion counts

(i.e., one description will be lost with very high probability), then the optimal

redundancy rate is 1
2
R. This shows that both the primary information and the

redundant information part are coded at the same rate, i.e., half of the total

bit rate. This is in fact the minimum possible achievable side distortion Ds for

our system, which however, is obtained at the expense of the maximum possible

central distortion Dc. If only central distortion counts (i.e., both descriptions

will arrive at the destination with very high probability), then the redundancy

� should always be set to zero. This means that each channel will carry half

of the total information. Upon receiving data from both channels, one can get

the minimum possible central distortion for the given bit rate R. However, the

side distortion will be its maximum in this case since there is no redundancy.

In between these two extreme cases, one has the freedom to �ne tune the side

distortion with respect to the central distortion by choosing di�erent redundancy

bit allocations. With this redundancy allocation, the achievable pair of side and

central distortion (Ds;Dc) for a given total bit rate R is

Dc = h�22�R+ 1

2
log2(

�
2+�

) (4.8)

Ds = h
�2

2
2�R�

1

2
log2(

�
2+�

) + h
�2

2
2�R+ 1

2
log2(

�
2+�

) (4.9)

As a practical example, we consider MDC for a unit-variance zero mean memo-

ryless Gaussian source. In our simulation, we �rst generate a sequence of Gaussian
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i.i.d samples. Then the even samples are quantized by a Lloyd-Max quantizer at a

source coding rate R0 and the odd samples are quantized by the same Lloyd-Max

quantizer at a redundancy coding rate �. This is our description 1. Description 2 is

formed in the same way except that odd samples are quantized at rate R0 and even

samples are quantized at rate �. The central distortion Dc is the MSE achieved at

rate R0 of the original source and the side distortion Ds is the average of the MSEs

achieved using only description 1 or description 2. We use �xed-length codes for

the index coding so the bit allocation is very simple with the only constraint of

�xed total coding rate R = R0 + � = constant. For example, if the total coding

rate is 5bps, the possible bit allocations are (R0; �) = (5; 0); (4; 1); (3; 2) at which

we measure central distortions and side distortions.

The optimal lower bound of the achievable set of 5-tuple (Rs;1; Rs;2;Ds;1;Ds;2;Dc)

for a unit-variance zero mean Gaussian source has been given by Ozarow [85] as

Ds;1 � 2�2Rs;1 (4.10)

Ds;2 � 2�2Rs;2 (4.11)

Dc � 2�2(Rs;2+Rs;1)

1� (
p
��p

�)2
(4.12)

where � = (1 � Ds;1)(1 � Ds;2) and � = Ds;1Ds;2 � 2�2(Rs;2+Rs;1). The total

bit rate is given by R = Rs;1 + Rs;2. The asymptotic results using the optimal

level-constrained MDSQ given by Vaishampayan et al. [92] are

Dc � 1

4
h2�R(1+a) (4.13)

Ds � h2�R(1�a) (4.14)

where 0 < a < 1 and h =
p
3�
2
. The comparisons are shown in Fig.4.3 for di�erent

bit rates.

As one can see, the results of our proposed system using a Lloyd-Max quantizer

on an average are comparable to those achieved with an optimal level-constrained

MDSQ. They can be better than MDSQ when redundancy rates become very low,

for relatively low total bit rates. It would be interesting to determine whether we

can improve the proposed system performance by using more e�cient quantizers
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Figure 4.3: Rate-distortion performances comparison for a Gaussian source
N (0; 1): (1) Ozarow: optimal bound. (2) MDSQ: optimal level-constrained re-
sults. (3) Proposed: Lloyd-Max quantizer results with �xed length code. (4)
Optimal: results using the rate-distortion function of the Gaussian source.

other than the Lloyd-Max quantizer. Moreover, it would also be useful to establish

what is the best achievable performance within the proposed MDC system frame-

work? For example, for a Gaussian source, if we can design a quantizer which

operates exactly on the rate distortion function, can we approach the Ozarow's

MDC bounds? Using the optimal bit allocation derived before, the achievable

central and side distortions are

Dc = �22�R+ 1

2
log2(

�
2+�

) (4.15)

Ds =
�2

2
2�R�

1

2
log2(

�
2+�

) +
�2

2
2�R+ 1

2
log2(

�
2+�

) (4.16)
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These optimal results are plotted in the same �gure (see Fig. 4.3). As one can

see, the performance gap narrows drastically and almost approaches the Ozarow's

lower bounds at lower redundancy rates. This indicates that, while the proposed

system cannot achieve the lower bounds within the whole operational range, its

performance can be greatly improved if we can design better quantizers. Moreover

that at low redundancy rates MDSQ is not as e�cient (even it does not introduce

explicit redundancy) as using two standard quantizers. We mention that here

the quantizer design is exactly the same as that for single description coding.

Therefore we can make use of the state-of-art results from single description coding

to reach our multiple description coding goals. As a result, the system design and

implementation complexity are expected to be reduced compared to specially

designed MDC systems, such as the MDSQ [91] and MDTC [63, 66] systems. Our

experimental results on MDC for image transmission will further illustrate this

point.

4.4.2 Explicit Channel Modeling

Next we consider the channel model in the analysis. Assume that the two de-

scriptions are sent over two di�erent channels with independent channel failure

probability p. There are four di�erent situations at the receiver: (a) both descrip-

tions are received, which happens with probability (1� p)2 and results in distor-

tion Dc = h�22�2R0; (b) one description is lost, which happens with probability

2p(1 � p) and distortion Ds =
1
2
h�22�2� + 1

2
h�22�2R0 ; and (c) both descriptions

are lost, which happens with probability p2 and distortion Db = �2. The average

distortion at the receiver for this channel model is

D = (1 � p)2Dc + 2p(1 � p)Ds + p2Db

= (1 � p)2h�22�2R0 + 2p(1 � p)[
1

2
h�22�2� +

1

2
h�22�2R0] + p2�2

Since the reconstruction distortion in case (c) will not be a�ected by the redun-

dancy allocation, the optimal bit allocation only needs to minimize the �rst two

terms in D. Notice that the total rate R = R0 + �. Taking the derivative of D

with respect to the redundancy rate � and solving the equation @D
@�
j�=�� = 0, it
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can be found that, to minimize the average distortion in the presence of channel

failures, the optimal bit allocation is

�� =
1

2
R +

1

4
log2 p (4.17)

One may notice that the optimal bit allocation �� can actually be computed

directly using the result derived before for the case of implicit channel modeling.

Notice that the average distortion D for the independent loss channel can be

written as

D = C1(Dc + �Ds) + p2Db (4.18)

where C1 = (1 � p)2 and � = 2p(1�p)
(1�p)2 . So the optimization of D is the same as

that of J (4.5). That is, the optimal redundancy can be computed from (4.7)

using the new �. This indicates that the use of an explicit channel model only

changes the weighting factor of the side distortion in the cost function J (4.5), i.e.,

the �. This is true that, for a MDC system, once the encoding is completed, all

possible decoding scenarios can be enumerated and corresponding side distortions

can be computed. The channel model then determines the probability of each

decoding scenario, i.e., providing a weighting function to compute the average

distortion. By using an arbitrary multiplier �, the optimization of cost function

J (4.5) actually subsumes all cases using explicit channel models. In this sense,

we can say that the proposed MDC system can also be easily extended for other

non-independent-loss channel models, e.g., the bursty erasure channel modeled

with a Markov chain loss process.

4.5 Experimental Results

4.5.1 An Image MDC Example

In this section, we present a wavelet image MDC example. As shown by our

analysis, the more e�cient the quantization scheme, the better performance of

our MDC system. Among these state-of-art wavelet coders [93, 99, 100, 101], we
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choose the Said-Pearlman wavelet coder due to its simplicity and to the fact that

the code is available 2.
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Figure 4.4: An example con�guration of two di�erent polyphase transforms using
a two-level wavelet decomposition on a 16x16 input matrix. In all the subbands,
all the 1 samples constitute one polyphase component and the remaining samples
constitute the other polyphase component. (a) plain polyphase transform. (b)

vector polyphase transform.

In our experiment, the input image is �rst wavelet transformed and its polyphase

components are extracted. In this case the polyphase transform of the wavelet co-

e�cients, not that of the original image data, is extracted. Two di�erent types of

polyphase transforms are tested on the wavelet coe�cients (see Fig. 4.4). One is

the plain polyphase transform which, for two descriptions coding, consists simply

in grouping all the even coe�cients into one description and all the odd coe�cients

into the other description. This is done for each row in each subband. The second

is not a polyphase transform in strict sense but can be viewed as a generalized

polyphase transform in vector form. Each subband is �rst grouped into vectors

of same size and these vectors' indices are used in the polyphase transform. For

example, if every two successive wavelet coe�cients are grouped into a vector of

size 2, then there are 4 such vectors in each row in in each subband at the �rst

decomposition level, refer to Fig. 4.4. Denoted these 4 vectors as fv0;v1;v2;v3g.

2The author would like to thank Dr. A. Said and Prof. W. A. Pearlman for providing the

SPIHT image coder.
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Polyphase component 1 will have fv0;v2g and polyphase component 2 will have

fv1;v3g. The vector size is increased across subbands as 2j ; j = 0; 1; � � � ; J � 1.

The motivation for introducing such a generalized polyphase transform is to pre-

serve spatial structures across subbands, which is used in the SPIHT coder to

improve the coding e�ciency [101].

Let the two polyphase components be y1 and y2. Then (y1(R0); y2(�)) consti-

tutes our �rst description and (y2(R0); y1(�)) the second description. The Said-

Pearlman wavelet coder [101] is used to quantize and entropy code the polyphase

components. For example, y1(R0) means that y1 is coded at a bit rate R0 with

the Said-Pearlman coder. If one description is lost, reconstruct from the received

data ((y1(R0); y2(�)) or (y2(R0); y1(�))) which gives the side distortion. The cen-

tral distortion is derived using (y1(R0); y2(R0)). The total coding rate is R0 + �.

Since the Said-Pearlman coder makes use of the zerotree structure among sub-

bands, the second type of polyphase transform generates slightly better coding

results. In Fig. 4.5 we show MDC results for Lena gray-level image (size 512x512)

using the Said-Pearlman wavelet coder [101]. The results of two descriptions are

plotted and the comparison with a recent MDSQ-based MDC wavelet coder by

Servetto et al. [90] is also given. With a �xed total coding rate, our MDC coder

achieves better rate-distortion performance in the whole redundancy range. In

Fig. 4.6 we show the reconstructed Lena images using only one channel informa-

tion with di�erent redundancy rates at a total coding rate 0:5bps (the vector form

polyphase transform is used).

In the second experiment, we measure the average achieved PSNRs when there

are independent packet losses. The input image is �rst wavelet transformed and

then a polyphase transform (the zerotree vector form) is implemented on the

wavelet coe�cients. The downsampling factor is 16 so we have a total of 16

polyphase components. To protect from channel failures, the redundancy is car-

ried in a sequential way like that used in RAT [29]. That is, packet 1 carries

redundancy to protect packet 2 while packet 2 carries redundancy to protect 3

and so on.

Each polyphase component constitutes the primary part in each packet while

it also carries redundancy to protect the next polyphase component in sequence.
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Figure 4.5: Experimental results with Lena gray-level image. (a) Two descrip-
tions. Polyphase (1): plain polyphase transform. Polyphase (2): vector polyphase
transform. (b) Performances with independent packet losses.

For example, packet 0 carries two parts of information:(1) polyphase component

0 coded at rate R0 and (2) polyphase component 1 coded at rate �. We emphasize

that R0 and � apply to all pixels, and therefore the total rate is indeed R0 + �.

In this experiment, we �x the coding rates with R0 = 0:4bps and � = 0:1bps

so that the total coding rate is R = 0:5bps. Since the total number of wavelet

coe�cients in each packet is the same, all 16 packets have the same size. We

then measure the reconstruction error assuming independent packet losses. For

example, assume there are 4 packets lost during the transmission, we �rst gen-

erate the loss pattern independently with 4 erasures. Let one loss pattern be

1 1 1 0 0 1 1 1 0 1 0 1 1 1 1 1 with 1s representing received packets while 0s

represent lost packets. In this case, packet 4 can be reconstructed by using the

redundancy carried by packet 3. The same is true for packet 9 and 11 while packet

5 will be lost without reconstruction. We tested 1000 loss patterns for each case

when there are 1/2/3/4 packets lost.

In Fig. 4.5 we show the image MDC results at total rate 0:5bps (0:1bps redun-

dancy rate). With di�erent number of independent packets losses, the average

PSNRs are plotted using star symbols with the standard deviations in vertical

bars. As one can see, reconstructed PSNRs deviate from the mean values with an

average standard deviation about 3dB. The quality changes are due to changes
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Figure 4.6: Reconstructed Lena images at total rate 0:5bps using only one channel
information. (a) Original image; (b) Redundancy bit rate 0:05bps, PSNR 29.64dB;
(c) Redundancy bit rate 0:10bps, PSNR 31.91dB; (d) Redundancy bit rate 0:15bps,
PSNR 32.98dB

in the di�erent loss patterns with consecutive losses lead to the worst reconstruc-

tions. For the case of only one packet loss, the average PSNR is 34.5dB with

standard deviation about 2dB. This is due to the fact that we assume that the

�rst packet loss is not recovered in the experiment. If the �rst packet can also

be recovered using the redundancy carried by the last packet, then the average

PSNR becomes 34.99dB with standard deviation 0.12dB.

The experimental results show that the system performance degrades gradually

as the packet loss rate increases. However, it also indicates that simple sequential

packet protection does not perform well in cases of consecutive losses. Recently,

Miguel et al. have shown that better error protection can be achieved by increasing
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the granularity of redundancy addition [94] by incorporating the idea of unequal

error protection. In their work, the amount of redundancy is varied according

to the importance of the data, i.e., more redundancy is given to important data

and less for unimportant data. For future improvement of our proposed MDC

technique, the idea of unequal error protection is certainly worth to be further

explored.

4.5.2 A Speech MDC Example

In this experiment, we show an example context-adaptive MDC system for robust

speech coding over a lossy packet network and compare the results with those of

the RAT scheme [29, 78]. The speech materials consist of two sentences recorded

at 16KHz and 16bps, one male speaker with \A tamed squirrel makes a nice pet"

and one female speaker with \Draw every outer line �rst, then �ll in the interior".

Each 20ms speech segment is sent in one packet with 320 samples in each packet.

A 14 bits per sample PCM coder is used as the �ne quantizer and a 2-bit ADPCM

coder is used as the coarse quantizer in the simulation. The 14bps PCM coder is

obtained by removing the two LSB bits from the original speech.

A schematic plot of speech coding and packetization is shown in Fig.4.7. In

the proposed scheme, the two polyphase components Y1 (all even samples) and Y2

(all odd samples) of the input vector X are independently quantized using a �ne

scalar quantizer Q1 and packed, respectively, into packets P1 and P2. To achieve

loss protection, P1 needs to carry also a coarse version of polyphase component

Y2. Rather than quantize Y2 directly using a coarse quantizer Q2, we �rst predict

Y2 using the dequantized data �Y1 and only quantize the prediction residue r2(n).

r2(n) = y2(n)� (�y1(n) + �y1(n+ 1))=2 (4.19)

r1(n) = y1(n)� (�y2(n� 1) + �y1(n))=2 (4.20)

where r2(n) and r1(n) are the prediction residues of Y2 using �Y1 and Y1 using

�Y2 respectively. These prediction residues are then quantized using the coarse

quantizer Q2. As one can see, a simple average interpolation is used for prediction

though more more sophisticated techniques can be applied as well.
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Figure 4.7: The proposed and the RAT schemes for robust packet speech coding.

In the same �gure, we also show the RAT scheme [29], which segments the

input X into two N sample frames. Each frame is quantized, coded, and packed

independently into one packet. Each packet also carries a coarsely quantized data

of previous N samples for loss protection.

Three di�erent schemes are implemented and tested in the simulation 3.

1. The subsample-interpolation method by Jayant [76]. The interpolation is

the average of two neighboring samples as shown before. Each frame is

16bps PCM coded.

2. The RAT scheme in which each packet carries a 2-bit ADPCM coded data

of the previous packet for loss protection and the main part is 14bps PCM

coded.

3. Every two frames are polyphase transformed and coded by the 14bps PCM

coder. The interpolation is the average of two neighboring samples as shown

before. The prediction residues are then coded using the 2-bit ADPCM.

To measure the reconstruction quality of speech signal, we use the Noise-to-

Mask Ratio (NMR) which measures the relative energy of noise components above

3In this experiment, for illustration purpose, the PCM coder is chosen for encoding the

primary information and the ADPCM coder is chosen for encoding the redundancy. More

advanced coders can certainly be used and more gains are expected, though, more delicate

context adaptive techniques are needed.
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the signal's audible masking threshold [102]. The NMR is de�ned as [102]

NMR =
10

M

M�1X
i=0

log 10
1

B

B�1X
b=0

1

Cb

Pk=kh
k=kl

jD(i; k)j2
T 2
b (i)

(4.21)

where M is the total number of frames, B is the number of Critical Bands (CB),

Cb is the number of frequency components for CB b, and jD(i; k)j2 is the power
spectrum of the noise at frequency bin k and frame i. The kl; kh are respectively

the low and high frequency bin indices corresponding to CB b.

We choose NMR rather than other criteria (e.g., Mean Opinion Score) as per-

formance measurement for a number of reasons. One is that NMR is an objective

measure based on human hearing system and it has been found to have a high

degree of correlation with subjective tests [103]. Second, although the MOS re-

sult is subjectively a better indication of the speech audio quality, most MOS

results published are based on limited tests within the authors' research group or

department and it is di�cult to compare. Third and the most important point is

that our focus here is to see the relative performance variations between di�erent

algorithms and NMR is easy to compute.

Table 4.1: \Squrriel" reconstruction NMR comparison (dB)

JAY RAT Proposed
Loss Prob

mean std mean std mean std

10% 3.36 7.20 4.86 3.37 0.36 7.02

15% 6.41 10.37 7.49 7.25 3.40 10.36

20% 8.61 11.44 9.24 10.36 5.99 11.41

30% 12.34 19.96 12.68 19.65 10.67 19.98

In Table 4.5.2 we show the reconstruction NMR results for the Squirrel sentence

under independent packet losses at di�erent loss rates. Each loss rate is simulated

100 times and the results are taken as the ensemble averages. It can be seen

that the proposed scheme achieves lowest mean NMR at all loss rates. However,

the standard deviation of the reconstruction NMR is larger compared to that

of the RAT scheme. The reason is that when two consecutive packets are lost,

the proposed scheme can not recover if these two packets are both polyphase
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components from the same speech frame. However, the RAT scheme can still

recover one packet. The same observations can also be seen from the NMR results

of the Draw sentence given in Table 4.5.2 and Fig.4.8. One possible solution

is to introduce more than two descriptions coding, for example, three or four

descriptions coding as long as the delay constraints are observed. Provided the

number of consecutive packet losses is smaller than the number of descriptions,

one can avoid the catastrophic case when all descriptions are lost.
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Figure 4.8: Reconstructed NMR distribution plot for the Draw sentence under

di�erent packet loss probabilities. RAT: o; Proposed: +; JAY: x
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Table 4.2: \Draw" reconstruction NMR comparison (dB)

JAY RAT Proposed
Loss Prob

mean std mean std mean std

10% 5.07 0.43 5.42 2.71 0.76 7.03

15% 8.01 9.79 7.95 4.30 2.77 5.01

20% 9.11 9.45 8.89 4.43 4.28 5.05

30% 12.11 11.28 11.10 6.84 7.92 8.59

4.6 Summary and Future Work

In this chapter, a MDC system using polyphase transform and selective quan-

tization has also been proposed in this chapter. For i.i.d Gaussian sources, we

give detailed analysis of optimal bit allocation to achieve minimum average cen-

tral distortion and side distortion for a �xed total coding rate. Our experimental

results have shown that our system implementation, compared to previous pro-

posed systems, is simple yet the achieved MDC results for image coding is better,

especially at lower redundancy rates.

One interesting question is to consider that whether MDC techniques are ap-

plicable to robust multicast applications for multimedia communications, Our

preliminary work has shown that MDC provides better end-to-end reconstruc-

tion signal quality compared to that of layered coding [104] when the network is

heavily loaded and delay constraints become critical. We believe that, the MDC

system can also be designed and implemented in a way to provide a layered coding

scheme to cope with the network heterogeneity issue. Each description can be sent

through one multicast group and end users can subscribe to a di�erent number

of groups based on their bandwidth availability and observed channel statistics.

In other words, end users can choose to receive from one to M descriptions by

subscribing to corresponding multicast groups. By doing so, not only can one deal

with the bandwidth heterogeneity issue (i.e., the goal of LC [104]) but also with

the packet loss heterogeneity issue (i.e., the goal of the hierarchical and layered

FEC schemes [81, 82].
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Appendix A

Overlap-Add and Overlap-Save

Standard techniques for linear FIR �ltering over a long data sequences include
overlap-save and overlap-add, both of which are block-based approaches [49]. The
input sequence is segmented into blocks, each of which is �ltered in the frequency
domain using DFT and IDFT. The outputs from each block processing are con-
catenated together to form the �nal result which is identical to the sequence

obtained as if the whole input sequence had been processed in the time-domain.
Let x(n) be the input sequence. Denote the block length as M and the �lter

length is L.
Overlap-Save In this method, each block consists of:(i) (L � 1) samples from
the previous block; and (ii) (M � 1) new samples from the sequence. The data
blocks are

b1(n) = f0; 0; � � � ; 0| {z }
L�1

; x(0); x(1); � � � ; x(M � 1)g

b2(n) = fx(M � L+ 1; � � � ; x(M � 1)| {z }
L�1

; x(M); � � � ; x(2M � 1)| {z }
M

g

b3(n) = fx(2M � L + 1; � � � ; x(2M � 1)| {z }
L�1

; x(2M); � � � ; x(3M � 1)| {z }
M

g

and so on. As one can see, the actual block size needed is N = M + L� 1 since

(L � 1) samples have to be overlapped from the previous block. The �ltering
output is yi(n) = IDFT (FFT (bi(n)) � FFT (h)). The �rst (L � 1) samples are
discarded due to aliasing and the remaining M samples constitute the desired

result from linear convolution.

Overlap-Add In this method, each block consists of only (L�1) nonoverlapping
samples from the input sequence. The data blocks are

b1(n) = fx(0); x(1); � � � ; x(M � 1); 0; 0; � � � ; 0| {z }
L�1

g
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b2(n) = fx(M); � � � ; x(2M � 1); 0; 0; � � � ; 0| {z }
L�1

g

b3(n) = fx(2M); � � � ; x(3M � 1); 0; 0; � � � ; 0| {z }
L�1

g

and so on. As one can see, though the input block is nonoverlapped, the actual

block size is still N =M +L�1 becasue of the (L�1) padded zero samples. The

�ltering output yi(n) = IDFT (FFT (bi(n))�FFT (h)) is free of aliasing. The last
(L� 1) points, however, must be overlapped and added to the �rst (L� 1) points

of the succeeding block to form the �nal result. That is

y(n) = fy0(0); y0(1); � � � ; y0(M � 1); y0(M) + y1(0);

y0(M + 1) + y1(1); � � � ; y0(N � 1) + y1(L� 1); y1(L); � � �g

Output Data Stream

n Output
Samples

Section

Input Data Stream

n-Point
Cyclic
Convolution

Discard
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Select
Second Value

n Input
Samples

(a)

Output Data Stream

Add

n Output
Samples

n-Point
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n-A
Input
Samples

Section

Input Data Stream

(b)

Figure A.1: (a) Overlap-save. (b) Overlap-add.
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Appendix B

DWT FSM Examples

Daubechies (9,7) �lters

This �lterbank has been used extensively in the image compression algorithms
proposed in the literature. The factorization of the analysis polyphase matrix
(adapted from [48]) is

Pa(z)=

"
� 0
0 1=�

#"
1 �(1 + z�1)
0 1

#"
1 0
(1 + z) 1

#"
1 �(1 + z�1)
0 1

#"
1 0
�(1 + z) 1

#

where � = �1:586134342; � = �0:05298011854;  = 0:8829110762; � = 0:4435068522,
and � = 1:149604398.

Based on this factorization, the forward transform is

x00(n) = x(2n)

x01(n) = x(2n+ 1)

x11(n) = x01(n) + �(x00(n) + x00(n+ 1))

x10(n) = x00(n) + �(x11(n) + x11(n� 1))

x21(n) = x11(n) + (x10(n) + x10(n + 1))

x20(n) = x10(n) + �(x21(n) + x21(n� 1))

x30(n) = �x20(n)

x31(n) = x21(n)=�

and the inverse transform is

x21(n) = �x31(n)

x20(n) = x30(n)=�

x10(n) = x20(n) � �(x21(n) + x21(n� 1))

x11(n) = x21(n) � (x10(n) + x10(n + 1))

x00(n) = x10(n) � �(x11(n) + x11(n� 1))
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x01(n) = x11(n) � �(x00(n) + x00(n+ 1))

x(2n + 1) = x01(n)

x(2n) = x00(n)

As one can see, using the (9,7) wavelet �lters, total 4 state transitions are

needed to transform a raw input sample into a wavelet coe�cient. This process is

ahown in Fig. B.1. Assume there are 9 samples, fx0(0); x0(1); � � � ; x0(8)g, loaded
in memory initially. The �rst elementary matrix e0(z) is lower triangular, so

the state transition is to update odd samples with two neighboring even sam-

ples. For example, x0(1) is updated into x1(1) = x0(1) + �(x0(0) + x0(2)). The

same updating also occurs for samples fx0(3); x0(5); x0(7)g. Notice that samples

fx0(0); x0(8)g remain un-updated because they are needed by neighboring blocks,

e.g., x0(8) is needed by x0(9) and x0(0) is needed by x0(�1) (not shown in the

�gure). Consequently, x0(0) and x0(8) are preserved as the state information at
state 0.
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Figure B.1: State transitions of the Daubechies (9,7) �lters using factorization
(B.1). The state information consists of 4 samples (the overlap bu�er size) in
shaded boxes. Dashed lines represent operations necessary for the transform of

the new input sample pair fx0(9); x0(10)g.

The next elementary matrix e1(z) is upper triangular so it updates even sam-

ples using odd samples. For example, x1(2) is updated into x2(2) = x1(2) +
�(x1(1) + x1(3)) and so are samples fx1(4); x1(6)g. Again, x1(1) and x1(7) are
preserved as the state information at state 1. The same process continues until

x0(4) is updated into the �nal transform coe�cient x4(4).

The state information near the right boundary consists of samples shown in

shaded boxes in the �gure, i.e., fx3(5); x2(6); x1(7); x0(8)g. So the overlap bu�er
size for one level of wavelet decomposition using the Daubechies (9,7) �lters is

4 samples. These partially updated samples constitutes the only information one
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needs to bu�er for the transform of the new input data pair fx0(9); x0(10)g. The
operations are shown as dashed lines in the �gure. As one can see, all these

operations are based on the state information which is preserved in the memory

bu�er.

(2,10) �lters

This �lter has been found to give excellent performances for lossless image com-

pression. The factorization of the analysis polyphase matrix is

Pa(z) =

"
1 0
3
64
(z2 � z�2) + 22

64
(z � z�1) 1

#"
1 1=2

0 1

#"
1 0

�1 1

#

Based on this factorization, the forward transform is

x10(n) = x(2n)

x11(n) = x(2n+ 1) � x(2n)

x20(n) = x10(n) + x11(n)=2

x21(n) = x11(n)

x30(n) = x20(n)

x31(n) = x21(n) +
3

64
(x20(n� 2)� x20(n+ 2)) +

22

64
(x20(n� 1)� x20(n+ 1))

and the inverse transform is

x21(n) = x31(n)�
3

64
(x20(n� 2)� x20(n+ 2)) +

22

64
(x20(n� 1)� x20(n+ 1))

x20(n) = x30(n)

x11(n) = x21(n)

x10(n) = x20(n)� x11(n)=2

x(2n) = x10(n)

x(2n+ 1) = x11(n) + x(2n)

As one can see,, �rst two state transitions are basically the same as that of

the (9,7) �lters. Assume initially there are 10 samples in the memory as shown
in Fig. B.2. The last transition is more interesting which is detailed here.

The elementary matrix e2(z) is

e2(z) =

"
1 0
3
64
(z2 � z�2) + 22

64
(z � z�1) 1

#

This is a lower triangular matrix so odd samples get updated. For example, x2(5)
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Figure B.2: State transitions of the (2,10) �lters using factorization (B.1). The

state information consists of 4 samples in shaded boxes. Dashed lines represent op-
erations necessary for the transform of the new input sample pair fx0(10); x0(11)g.

is updated into

x3(5) = x2(5) +
3

64
(x2(8) � x2(0)) +

22

64
(x2(6)� x2(2)) (B.1)

On the other hand, x2(7) can not be fully updated because x0(10) is not available
(not in bu�er yet). However, it is partially updated as

�x2(7) = x2(7) +
3

64
(�x2(2)) + 22

64
(x2(8)� x2(4)) (B.2)

This partial updating then frees sample x2(2) from the bu�er. In other words,

to fully update �x2(7), no samples with indices smaller than 7 are needed. Same
partially updating is also performed for sample x2(9) as

�x2(9) = x2(9) +
3

64
(�x2(6)) + 22

64
(�x2(4)) (B.3)

The only samples which have to be bu�ered are fx2(6); �x2(7); x2(8); �x2(9)g. So

the overlap bu�er size is 4 samples.

When the next new input pair fx0(10); x0(11)g comes, operations in dashed
lines are executed. As a result, samples fx2(6); �x2(7)g are completely transformed
thus can be removed from the bu�er. However, samples fx0(10); x0(11)g can only
be partially updated and thus have to be bu�ered. This process continues until

all inputs are transformed.

CDF(4,2) �lters

The scaling function of CDF(4,2) �lters is a cubic B-spine which is used frequently
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in computer graphics for interpolation. The factorization of the analysis polyphase

matrix (adapted from [48]) is

Pa(z) =

"
1=2 0

0 2

#"
1 3

16
(1 + z�1)

0 1

#"
1 0

�(1 + z) 1

#"
1 �1

4
(1 + z�1)

0 1

#

Based on this factorization, the forward transform is

x00(n) = x(2n)

x01(n) = x(2n+ 1)

x10(n) = x00(n)�
1

4
(x01(n) + x01(n � 1))

x11(n) = x01(n)� (x10(n) + x10(n+ 1))

x20(n) = x10(n) +
3

16
(x11(n) + x11(n� 1))

and the inverse transform is

x10(n) = x20(n)�
3

16
(x11(n) + x11(n � 1))

x01(n) = x11(n) + (x10(n) + x10(n+ 1))

x00(n) = x10(n) +
1

4
(x01(n) + x01(n� 1))

In this case, the state transition is basically the same as that of the (9,7) �lters.
The overlap bu�er size is 3 samples as shown in Fig. B.3.
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Figure B.3: State transitions of the CDF (4,2) �lters using factorization (B.4).

The state information consists of 3 samples in shaded boxes. Dashed lines

represent operations necessary for the transform of the new input sample pair

fx0(8); x0(9)g.
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Appendix C

MDTC Transform Design

Algorithm

The basic algorithm we use is the same as that described in [64]. Here we pro-
vide a di�erent derivation for a special channel model. We assume that channel
fails independently with an equal channel failure probability p (description loss

probability). One example is the best-e�ort network where independent packet
loss is a reasonable model for each individual connection [78]. We mention that it
is straightforward to generalize the algorithm to cases of unequal channel failures
probabilities.

The above constrained optimization problem can be transformed into a uncon-

strained one using a Lagrangian multiplier �. The cost function J can be written
as

J = Ds(A;�) + ��(A;�)

Let RX = f�2
iig; i = 1; 2; � � � ;M be the correlation matrix of input vector

X. Let RY = frijg; i; j = 1; 2; � � � ;M be the correlation matrix of the transform
output Y . Then we have

RY = T (A;�)RXT (A;�)t

= R(�)S(A)RXS(A)
tR(�)t

= R(�)RSR(�)t

where RS = S(A)RXS(A)
t = fa2ii�2

iig; i = 1; 2; � � � ;M is a diagonal matrix.
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C.0.1 Redundancy bit rate �

Let us �rst derive the redundancy rate � for this correlating transform T . Assume

the coding rate is RX for input vectorX and components of X are identically dis-

tributed. By optimal bit allocation and high resolution quantization, the achieved

distortion is [98]

D0 = h�2X2
�2RX

where h = 1
12

nR1
�1[f(x)]

1=3dx
o3

is a constant integral determined by the compo-

nent density function f(x) and �2X = (
QM
i=1 �

2
i )

1

M is the geometric mean of the

component variances. After transformation, the distortion will remain unchanged

since T is implemented losslessly. However, the bit rate will be increased to RY .

We have

D0 = h�2Y 2
�2RY

where �2Y = (
QM
i=1 r

2
ii)

1

M . The redundancy bit rate � is derived as the increased
bit rate from RX to RY as

�(A;�) = RY �RX

=
1

2M
log

QM
i=1 riiQM
i=1 �

2
i

C.0.2 Side Distortion Ds

Now we derive the side distortion when there are erasures, i.e., some descriptions
lost. We �rst need to recover the lost descriptions from received descriptions.

Assume m out of M descriptions are lost. Without loss of generality, we can
partition Y into received and lost portions [64], i.e., Y = [yr yl]

t For notational

simplicity, we will assume r = m and l =M �m so yr is a m-dimensional vector

which is available at the decoder while yl is a (M �m)-dimensional vector which
is not available at the decoder. Denote the decoder reconstructed descriptions as

Ŷ = [ŷr ŷl]
t, then Ŷ = [yr ŷl]

t. The MMSE estimator of yl, ŷl, based on yr is the
conditional mean, i.e., ŷl = E[yljyr]. For jointly Gaussian vectors, this reduces to

a LMMSE estimator, that is

ŷl = RlrR
�1
rr yr

with mean squared estimation error (MSE)

Ekeyk2 = Ekyl � ŷlk2
= tr(Ree)
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where tr(Q) is the trace of matrix Q and

Rrr = E[yry
t
r]

Rll = E[yly
t
l ]

Rlr = Rt
rl = E[yry

t
l ]

Ree = E[eye
t
y] = Rll �RlrR

�1
rr Rrl

Once Ŷ is found, the estimated X̂ = T�1Ŷ can be obtained via the inverse

correlating transform T�1. For simplicity, denote the transpose of T�1 as T�t.

The �nal mean-squared reconstruction error between X and X̂ is

E(keXk2) = EkX � X̂k2
= EkT�1(Y � Ŷ )k2
= tr(E[T�1(Y � Ŷ )(Y � Ŷ )tT�t])

= tr(T�1E[(Y � Ŷ )(Y � Ŷ )t]T�t)

Write Y and Ŷ in their partitioned forms, we have

E(eY e
t
Y ) = E[(Y � Ŷ )(Y � Ŷ )t]

=

"
0 0
0 Ree

#

Partition T�1 correspondingly,

T�1 =

"
Trr Trl
Tlr Tll

#
T�t =

"
T t
rr T t

lr

T t
rl T t

ll

#

After some simpli�cations, we �nally get the reconstruction mean-squared error,
the side distortion Dm when there are m descriptions lost, as

Dm = EkeXk2
= tr(TrlReeT

t
rl) + tr(TllReeT

t
ll)

The average side distortion Ds is a weighted sum

Ds =
MX
m=1

PmDm

with Pm =

 
M

m

!
pm(1� p)M�m, the probability of m descriptions lost.

To summarize, we list steps for side distortion calculation.
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1. For m = 1 : 1 :M , m is the number of lost descriptions.

� Calculate the side distortion Dm.

{ Partition RY to �nd Rrr, Rll, and Rlr. Partition T�1 to �nd Trl

and Tll.

{ Calculate correlation of estimation error Ree = Rll �RlrR
�1
rr Rrl.

{ Calculate side distortion as Dm = tr(TrlReeT
t
rl) + tr(TllReeT

t
ll).

� Calculate the event probability Pm =
�
M

m

�
pm(1 � p)M�m ( m descrip-

tions are lost).

2. Calculate the average side distortion Ds =
PM

m=1 PmDm.
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Appendix D

KLVT Vector Space Partition

Let < a1;a2; � � � ;aN > denote a vector space A with basis set fai; 1 � i � Ng.
That is, any vector in A can be represented as a linear combination of the basis
vectors. A is also called the expansion of this basis set. Consider a random
sequence x = fxi; 1 � i � Ng. Let R be an N � N (assuming N is even)
correlation matrix and its eigenmatrix � is

� = [e1 e2 � � � eN ]

where fei; 1 � i � Ng are eigenvectors and f�i; 1 � i � Ng are corresponding

eigenvalues. Hence R can be written as

R = �1e1e1
H + �2e2e2

H + � � �+ �NeNeN
H

=
NX
i=1

�ieiei
H

which is also called the spectral decomposition of R on its eigenspace

E = (e1 e2 � � � eN)

in the context of signal processing. In fact, each eiei
H constitutes an eigen-

subspace of dimensionality 1 with no correlation between each other.

Now we merge each two consecutive eigen-subspaces to form a new set of

eigen-subspaces as following

E1 = (e1; e2) E2 = (e3; e4) � � � EN=2 = (eN�1; eN )
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We will have another set of uncorrelated eigensubspaces fEi; 1 � i � N=2g, each
of which with dimensionality 2 and their union is still the eigenspace E.

E =
N=2[
i=1

Ei Ei?Ej; i 6= j; 1 � i; j � N=2

Projected onto this new set of eigensubspaces, R can be expanded as following:

R = E1�1E
H
1 +E2�2E

H
2 + � � �+EN=2�N=2E

H
N=2

=
N=2X
i=1

Ei�iEi
H

where fEi; 1 � i � Ng are N � 2 matrices with rank 2, i.e., the column space of

dimensionality of 2, and �i are 2� 2 eigenmatrices.
One notices that, fEi; 1 � i � N=2g is a very special partition of the eigenspace

E with each subspace having eigenvectors in the basis set and �i; 1 � i � N are all
diagonal matrices. As a matter of fact, these eigen-subspaces fEi; 1 � i � N=2g
can have other basis set other than the eigenvectors. In other words, �i; 1 � i � N

need not to be diagonal either. As long as these subspaces are a valid decorrelation
partition, R will be block-diagonalized.
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