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Dedication

For the 3D paranoid...

Keep moving forward!

3D will be as ubiquitous in our life

as color is today,

by the next millennium...
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Abstract

In this dissertation, novel coding schemes for stereo images/video are proposed.

Recently, the demand for 3D imaging has been increasing because the stereoscopic

method provides realism to 2D images. The price for this added realism is the dou-

bling of data and thus, as in the single-channel case, the limited bandwidth of existing

channels becomes the main bottleneck. To achieve an optimal coding gain for a pair

of stereo images, we have proposed various e�cient encoding schemes, which can

be mainly grouped into two classes blockwise dependent bit allocation and disparity

estimation/compensation.

In the proposed optimal blockwise dependent bit allocation scheme, the quanti-

zation parameters are selected simultaneously for blocks in both the reference image

and the disparity compensated di�erence frame. In this manner, an average distortion

measure can be minimized, while meeting any applicable bit budget constraints. In

general, the bit allocation problem is complicated by the dependencies arising from

using predictions based on the quantized reference image. Therefore, only approxi-

mate solutions are feasible in the case of motion compensated video. However, in the

case of stereo images, an optimal solution can be estimated with reasonable complex-

ity given the special characteristics of the \binocular dependency." A fast algorithm

is also proposed, which provides most of the gain at a fraction of the complexity.

The proposed two hybrid estimation/compensation schemes are based on �xed

and variable size blocks, respectively. The �rst scheme, modi�ed overlapped block dis-

parity compensation, can overcome drawbacks of conventional block-based schemes

that use the smoothness constraints arising in causal neighborhoods by estimating

xiv



a relatively smoother disparity �eld. Simultaneously, selective overlapped block dis-

parity compensation for the blocks with higher prediction errors reduces blocking

artifacts, while reducing computational complexity over the conventional overlapped

matching scheme. The other scheme, quadtree-base hybrid block segmentation, can

further improve the encoding e�ciency along object boundaries. Similarly, a Markov

Random Field model-based hierarchical approach allows the estimation of a consis-

tent disparity �eld, even for small blocks. Furthermore, RD-based block segmentation

and selective overlapped disparity compensation improve the encoding performance.

xv



Chapter 1

Introduction

In this Chapter, we �rst provide motivation for stereo images/video compression

and then briey describe the main contributions of our research. Afterwards, we

formulate the coding problem for stereo images within the framework of predictive

(or dependent) coding. Usually, a predictive coding system includes displacement

(disparity or motion) estimation/compensation, transform/quantization and entropy

coding. Therefore, the overall encoding performance can be controlled by various

factors. Especially, for the stereo image coding case, an e�cient prediction reduces

the \binocular redundancy" between two images in a stereo pair. In addition, op-

timal quantization that takes into account the \binocular dependency" can further

improve the overall encoding performance. Therefore, the proposed novel coding

schemes consist of two central parts: (i) e�cient disparity estimation/compensation

and (ii) optimal bit allocation. The dissertation overview is provided at the end of

this Chapter.

1.1 Motivation of Stereo Image Coding

Over the past few decades, e�cient representation schemes for visual data, such as

image and video, have been actively developed. Communication technologies have

matured so fast that various commercial systems are already available for real-time
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2D visual communications based on standards such as JPEG, MPEG-1, MPEG-2,

or H.26x. As a result, face-to-face meetings are possible through teleconferencing

or telepresence, without the high cost of travel. In addition, technologies in vari-

ous related areas (e:g: telecommunication, computer, TV and �lm) are converging

rapidly and enabling more natural multimedia communication. New standards such

as MPEG-4 and MPEG-7 are recently being developed to meet those new demands

on interactive multimedia communications.

What is next? The main development trend in image/video-related technologies

has been the addition of (perceptual) sensations. For example, monochrome video

added realism to still photographs. Later, the addition of color improved the limited

quality of the monochrome video. Recently, this realism has been further enhanced

by increasing the resolution of the video signals with a bigger and wider screen, e:g:,

High-De�nition Television (HDTV)1. The HDTV provides more realism than conven-

tional color TV. However, the current imaging systems still have their limitations in

representing natural and real scenes.

A promising way of providing visual realism to images/video is to add depth infor-

mation. This is because the human visual system (HVS) reacts more strongly to 3D

than to 2D images [1,2]. In general, humans perceive 3D using various 3D cues such

as perspective, occlusion and shading. However, those 3D cues alone are not enough

to provide realistic 3D. Another e�cient method of providing depth information for

images/video is to use stereoscopic approaches, which display well-composed stereo

pairs simultaneously for each eye, based on the fact that humans perceive a scene in

3D by simultaneously viewing a scene from slightly di�erent positions. The selected

pairs of stereo images are in Appendix B. Unfortunately, a wider deployment of stereo

systems has been primarily limited by the requirement of inconvenient stereo glasses.

1The experimental broadcasting of HDTV, called Hi-Vision, has been ongoing in Japan since

1988. In USA, leveraging more than 10 years of research and development in digital television, the

�rst High-De�nition digital broadcast signals have been transmitted in 1998.
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Therefore, newly introduced technologies for autostereoscopic displays are likely

to contribute to a widespread usage of stereo techniques. For example, lenticular mon-

itors are replacing the need for those annoying stereo glasses, which have prevented

widespread usage of stereo methods for a long time2. As a result, the usage of stereo-

scopic images/video will become increasingly popular as demand grows for more real-

istic 3D imaging. 3D imaging systems have a variety of potential applications such as

visualization (CAD/CAM/medical data), telecommunication (telemedicine, telepres-

ence) [3{5], telerobotics (remote control, autonomous navigation, surveillance) [6, 7],

entertainment (interactive HDTV and cinema) [2, 8] and Virtual Reality [9].

The obvious price for this increased realism is the doubling of data size, as com-

pared to mono channel cases. In general, the problem of increased data can be solved

by: (i) increasing channel bandwidth, (ii) improving channel utilization with e�cient

protocol or/and (iii) reducing the source itself using e�cient compression techniques.

Up to now, as shown in Figure 1.1, the main bottleneck for 3D images, as well as

monocular image/video case, has been the limited bandwidth of existing channel

(or storage) [2, 10, 11]. As a means of alleviating the bottleneck, stereo image/video

compression has been attracting considerable attention over last few years.

Analogous to other coding scenarios, compression for stereo images can be

achieved by taking advantage of redundancies in the source data, e:g: spatial and

temporal redundancies for monocular images and video. A simple solution for com-

pression is using independent coding for each image/video with existing compression

standard such as JPEG or MPEG. However, in the case of stereo images/video, an

additional source of redundancy stems from the similarity, i:e: the strong \binocular

redundancy" between two images in a stereo pair, due to stereo camera geometry.

Exploiting this binocular dependency allows achieving higher compression ratios [12].

In this research, we will assume that \generic" transform coding and motion esti-

mation are used to exploit the spatial and temporal redundancies, as shown in Figure

2For an overview of current display technologies, refer to Appendix A or the following web page

at http://escalus.usc.edu/~wwoo/Research/Stereo/display.html
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Figure 1.1: Motivation of stereo image/video coding. Up to now, the main bottleneck

has been the limited bandwidth of existing channel. Therefore, stereo image/video

compression has been attracting considerable amount of attention over the last few

years. Note that the dependent image/sequence can further be compressed by ex-

ploiting the dependency between two images in a stereo pair.

1.2. We will then focus on the issues that are speci�c to disparity compensated coding.

1.2 Problem Formulation: Dependent Coding

Figure 1.3 shows a block diagram of a general predictive encoder for stereo

images, where the encoder consists of disparity estimation/compensation, trans-

form/quantization and entropy coding. Let F1 and F2, respectively, be the reference

image and the target image in a stereo pair. In the predictive coding framework, an

image is selected as a reference image (F1) and then the dependent (or target) image

(F2) is estimated/compensated from the reference image. Similar to other predictive

coding scenarios, displacement estimation/compensation reduces the redundancy be-

tween two images in a stereo pair. As explained, instead of encoding the original

target image, the resulting disparity vector (DV) �eld and the disparity compensated

di�erence (DCD) frame are encoded. The di�erence is computed between the orig-

inal target image and the estimated target image (F̂2), i:e: F1(Q1; V ). Therefore,
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Figure 1.2: Stereo video coding using multiview pro�le in MPEG-2. In MPEG-2,

the scalability syntax o�ers higher exibility and thus various con�gurations can be

supported.

as shown in Figure 1.3, the encoding performance mainly depends on the disparity

estimation/compensation and quantizations, i:e: (V;Q1; Q2).

Let R and D be rate and distortion, respectively. In order to optimize the overall

coding e�ciency, the given bits have to be distributed between two images in a stereo

pair, while minimizing the total distortion. Distributing bits by considering the two

images together is called dependent bit allocation [13]. In disparity compensated

coding, the target image in the stereo pair is replaced with the DV �eld and the DCD

frame, and thus the given bits are distributed among the reference image, the DV

�eld and the DCD frame. Then, given a bit budget, Rbudget, the optimal (in terms

of rate and distortion) bit allocation problem for stereo images can be formulated as

follows

Given F1; F2; Rbudget

�nd (V;Q1; Q2)
�

such that (V;Q1; Q2)
� = argmin(V;Q1;Q2)fD1(Q1) + �D2(V;Q2jQ1(V ))g

subject to R1(Q1) +R2(V;Q2jQ1(V )) � Rbudget
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Image, F1
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Buffer
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Channel/
Storage

DCD

Encoder

R1,D1

R2,D2

F1(Q1)

Figure 1.3: Block diagram of a general encoder for stereo images, where the encoder

consists of disparity estimation/compensation, transform/quantization and entropy

coding.

where V and Q refer to a DV �eld and a set of quantizers, respectively.

The relative importance of D1 and D2 can be controlled by the weighting constant

� which allows us to support two di�erent views of the depth perception process:

fusion theory and suppression theory [14,15]. Fusion theory claims that both images in

a stereo pair equally contribute in 3D perception, while suppression theory indicates

that the highest quality image (or region) dominates the perception. Note that,

according to suppression theory, the target image in a stereo pair can be highly

compressed as long as the reference image retains the details of the scene. In our

experiments, we set � equal to one.

At this stage, the dependency between the stereo pair seems too complicated to

exploit, because the disparity estimation and the quantization are coupled with each

other. In our research, this complicated joint optimization problem is decoupled into

two independent optimization problems by using an open loop coding framework: (i)

e�cient disparity estimation is performed on the original (unquantized) data and (ii)

optimal dependent quantization is performed after the DV �eld has been determined.

As a result, distortion and rate can be represented as D1(Q1) + D2(Q2jQ1(V )) and

R1(Q1) +R2(Q2jQ1(V )) +R2(V ), respectively.
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Figure 1.4 compares two types of stereo image codecs using the closed loop and

the open loop framework. The disparity estimation based on the open-loop encoder

is independent of the quantizer choices, so that any kind of estimation technique

can be used as long as the scheme provides a good disparity �eld in terms of the

rate and the estimation error. Note that the estimated disparity in the open-loop

coder is suboptimal, because the estimation is performed between F2 and F1, whereas

the compensation is performed between F2 and F1(V;Q1), which is available at the

decoder. However, the open loop encoder generally tends to generate a relatively

accurate and consistent DV �eld, as compared to the closed loop encoder.

Figure 1.4: Comparison of codecs for stereo image coding: closed-loop encoder vs.

open-loop encoder (dotted line). The same decoder is used in both cases.

The general procedure of the proposed optimal predictive (or dependent) coding

for stereo images is as follows. Given two images in a stereo pair, a DV �eld is esti-

mated based on blocks or meaningful objects to exploit binocular redundancy. The

resulting DV �eld is �rst encoded. If object or shape-based estimation is adopted, the

shape information also needs to be encoded as an additional side information. Based

on the disparity �eld, the compensation is performed between the original target im-

age and the estimated target image, where the target image is estimated from the
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quantized reference image. Then, the reference image and the DCD frame are trans-

formed, quantized and encoded. At this stage, the bits have to be distributed properly

between the transformed reference image and the di�erence frame. Note that, to opti-

mize encoding e�ciency, the reference image, F1, can not be quantized independently

because the distortion of the target image, D2, depends on the quantization choices

for the reference image along the DV �eld, i:e: F1(Q1; V ). The distribution can be

controlled by adjusting the quantization steps (scales or factors) for both transformed

F1 and DCD frame. At the decoder, �rst the reference image is decoded and then

the target image is reconstructed by adding the disparity compensated frame and the

decoded di�erence frame.

1.3 Main Contribution

The primary aim of this research is to provide e�cient encoding schemes for stereo

images/video within the predictive coding framework, where the dependencies aris-

ing from using a prediction with a quantized reference image complicates an optimal

dependent coding. In the proposed framework, using an open-loop encoding frame-

work, we decouple this complicated joint optimization problem into two independent

optimization problems: (i) \e�cient" disparity estimation and (ii) \optimal" depen-

dent quantization. In this dissertation, \e�cient" means reducing the rate as much

as possible, while maintaining a low distortion, which we assume will correlate with

3D perceptual visual quality. As a result, in the proposed framework, any e�cient

disparity estimation algorithm can be adopted as long as the estimation scheme pro-

vides a good DV �eld in terms of the rate of the DV and the energy of the estimation

error. Note also that we interchangeably use the terms coding and compression. The

proposed schemes are implemented with a JPEG-like codec but they can be easily

modi�ed to use an MPEG-like video codec to encode multiview images/video. A

detailed list of the main contributions of this research follows.
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� We have made a brief survey on conventional coding schemes for stereo images

and addressed the main coding issues. We have proposed an optimal blockwise

dependent quantization scheme. In the proposed framework, the quantization

parameters are selected simultaneously for blocks in the reference image and

the disparity compensated di�erence frame so as to minimize some averaged

distortion measure, while meeting any applicable bit budget constraints. The

encoding complexity and delay in the dependent quantization framework can be

signi�cantly reduced in the proposed structure by exploiting the predominant

unidirectional property of the binocular dependency3. The experimental results

show that the proposed scheme results in a higher rate being used for the refer-

ence frame (thus improving its MSE performance) that results in higher PSNR

for the target frame as well (even though fewer bits are used). The proposed

quantization scheme can be a benchmark for practical rate control schemes

or aid in developing a fast and e�cient bit allocation strategy. It also can be

used in asymmetric applications such as CD-ROM, DVD and video-on-demand,

which may involve o�ine encoding.

� We also have proposed a fast algorithm for the blockwise dependent quantiza-

tion, based on the assumption of existence of a monotonicity property in the

prediction between the two images in a stereo pair. The experimental results

show that most of the gain can be obtained at a fraction of the complexity, as

compared to the full search scheme.

� We have investigated various disparity estimation/compensation algorithms

and proposed two schemes to overcome well-known limitations of block-based

schemes such as inaccurate disparity estimation and blocking artifacts in the

decoded image at low rate coding. The proposed schemes produce robust and

3In similar problems in motion compensated video only approximate solutions are feasible. Note

that an optimal solution requires considering a whole image, due to 2D dependency between frames

in a video sequences.
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accurate DV �elds, which in turn increase the encoding e�ciency. The proposed

disparity compensation schemes are based on: (i) �xed size block matching and

(ii) variable size block matching.

� We have proposed a �xed size block-based scheme, modi�ed overlapped block

disparity compensation, that can overcome the drawbacks of conventional �xed

sized block-based methods. The proposed hybrid scheme consists of (i) dispar-

ity estimation using a modi�ed MRF model, i:e: using a smoothness constraint

within a causal neighborhood and (ii) selective overlapped block disparity com-

pensation. The disparity estimation with smoothness constraint results in a

relatively smooth disparity �eld, while maintaining the energy level of the DCD

frame. The selective overlapped block disparity compensation reduces blocking

artifacts in the decoded target image and improves encoding e�ciency, while

reducing the computational complexity of overlapped block disparity compen-

sation schemes. The incorporated half-pixel accuracy further improves the en-

coding e�ciency.

� We have proposed a quadtree-based block segmentation scheme to overcome

inherent limitations of �xed size block-based schemes. The proposed scheme

achieves higher PSNR gain over �xed size block matching by relaxing the one-

vector-per-block assumption. In addition, hierarchical disparity estimation with

smoothness constraints in a causal neighborhood allows a consistent disparity

�eld. The RD cost-based block segmentation improves encoding e�ciency over

conventional variable size block matching. The selective overlapped block dis-

parity compensation for the segmented subblocks reduces blocking artifacts and

thus further improves encoding e�ciency for the DCD frame.

� Finally, we have presented and discussed various possible extensions of this

research in the last Chapter of this dissertation. The extensions include

{ object-oriented hybrid segmentation using stereo images

10



{ rate-distortion based contour coding

{ blockwise dependent quantization for video coding

{ joint estimation of disparity and motion for stereo video

{ multiview image coding and intermediate view generation

1.4 Dissertation Overview

This dissertation is organized as shown in �gure 1.5.

Figure 1.5: Overview of the dissertation.

In Chapter 2, we �rst formulate the stereo image coding problem using the pre-

dictive coding framework and explain that exploiting the \binocular" dependency is

essential in optimizing the overall coding performance. We briey review 3D and

stereo vision as a background. We also survey various issues on stereo images and

briey review previous works on stereo image coding.
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In Chapter 3, we propose a blockwise dependent quantization scheme and explain

how to �nd optimal sets of quantizers for a pair of stereo images, i:e: the reference im-

age and the disparity compensated di�erence frame. The proposed algorithm, based

on dynamic programming, provides the optimal blockwise bit allocation. The RD-

based cost function is de�ned using Lagrangian method. The predominant horizontal

dependency helps construct a compact dependency tree, which is called a trellis, for

each pair of \row of blocks (ROB)," one in the reference image and one in the target

image. The �nite set of admissible quantization scales and the corresponding La-

grangian cost are assigned to the nodes and the branches of the trellis, respectively.

Then, optimal sets of quantizers are searched using the Viterbi algorithm. The same

trellis structure is repeatedly applied for each pair of ROB. We also propose a fast

algorithm that provides most of the gain at a fraction of the complexity.

In Chapter 4, we propose a block-based disparity estimation/compensation

scheme, modi�ed overlapped block disparity compensation, that overcomes the well-

known limitations of conventional �xed size block matching schemes, such as blocking

artifacts or inaccurate estimation. In the proposed scheme, smoothness constraints in

causal neighborhood help us estimate a relatively smoother and more consistent dis-

parity �eld, while maintaining encoding performance for the disparity compensated

di�erence frame. Simultaneously, selective overlapped block disparity compensation

reduces computational complexity of the conventional overlapped matching scheme,

while reducing blocking artifacts. However, block-based methods have inherent lim-

itations in removing the estimation errors, especially along the object boundaries.

These kinds of errors can be reduced by using the variable size block matching and

relaxing the uniform disparity assumption within the block, while keeping consistency

of disparity vector �eld.

As a continuation of Chapter 4, in Chapter 5, we therefore introduce a variable size

block-based scheme, quadtree-based block segmentation, to further improve encoding

e�ciency along object boundaries. In the proposed scheme, the MRF model-based
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disparity estimation allows consistent estimation even in small blocks and the RD

cost-based block segmentation improves encoding e�ciency. In addition, the selec-

tively applied overlapped disparity compensation further improves encoding e�ciency.

In all the proposed schemes, the encoding e�ciency is improved mainly by reducing

the entropy of the disparity compensated di�erence along the object boundaries,

while reducing the rate for the disparity �eld using hierarchical smooth constraint.

The improved encoding performance also results from selective overlapped disparity

compensation.

Finally, the summary and possible extension of this research are briey addressed

in Chapter 6.
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Chapter 2

3D and Stereo Image Coding

A number of research results have been reported which demonstrate the advantages

of stereoscopic images/video over conventional monoscopic image/video [2]. In gen-

eral, objects are seen more sharply in 3D images than in 2D images because 3D

images enable humans to perceive clear contours between objects and background

using binocular depth information. However the cost for this increased realism is

the doubling of the amount of data necessary to transmit or store. In general, ef-

�cient transmission can be achieved by exploiting spatial and temporal redundancy

in each sequence. In the case of stereo images/video, the e�ciency can be further

improved by exploiting binocular dependencies in stereo pairs. Also note that, to

allow compatibility with 2D displays, transmission of stereoscopic images/video over

existing channels may require very low rate coding to accommodate the additional

image/stream, while maintaining the quality of the reference image/sequence. In this

chapter, we describe 3D and stereo vision as a background. We briey review the

main issues and the previous work on stereo image coding.
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2.1 Brief History of 3D

In 300 B.C. Euclid recognized that depth perception is obtained when each eye re-

ceives simultaneously one of two similar images [16]. In the early 1830s, the Wheat-

stone Viewer1 created the illusion of three dimensions using pairs of hand-drawn

illustrations. The subsequent invention of photography in 1839 allowed for stereo

photographs. Then, the stereo photographs became popular in the late 19th century

after the creation of the re�ned and reduced version of Wheatstone Viewer2. The

popularity of 3D peaked around the turn of the century. Ever since, 3D has been an

important part of the history of photography and �lm3.

The �rst 3D �lm showing scenes of New York and New Jersey premiered in New

York City in 1915. Subsequently, 3D imaging was revitalized through the 30's and

40's. In 1933, the Tru-Vue Company introduced a stereoscope using a 35mm �lm.

In 1939, Chrysler Motors paved the way for the projection of full-color 3D �lm by

showing a 3D �lm using polarized material without color distortion. With the inven-

tion of the television in 1939 (London), electronic versions of 3D (based on anaglyph

method) were prompted in 19424. However, in the 1950s, due to the disadvantages of

the anaglyphs methods, 3D survived mostly in the cinema, rather than TV. The 3D

�lm was one of the great hopes for the movie industry to reverse the decline in the

number of viewers lost to TV. However, 3D �lm also has not been widely accepted

due to its drawback that viewers have to wear uncomfortable special glasses and thus

can experience headaches.

In the early 1990s stereoscopic methods gained a renewed interest based on the

recent developments of autostereoscopic display system5. For several decades, various

1The �rst stereoscope was invented by British scientist Sir Charles Wheatstone.
2The hand-held versions, the Brewster Stereoscope and the Holmes stereoscope, were invented

by Sir Davis Brewster in 1847 and by Oliver Wendell Holmes in 1862, respectively.
3Refer http://www.afc.gov.au/resources/online/afc loi/presentations/gary+w.html
4The �rst experimental stereoscopic television program was broadcasted by SelectTV, LA, CA,

USA in 1953.
5Refer http://www.cl.cam.ac.uk/Research/Rainbow/projects/asd.html
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e�orts have been made to develop practical 3D systems but 3D technologies including

holography have not met the demands for realistic displays. Most of the e�orts have

gone into two-view stereoscopic systems with special glasses, which have limitations

in terms of providing high quality or comfortable viewing. Such systems have proved

e�ective in some scienti�c applications and, to a limited extent, in 3D wide screen

cinema, such as IMAX(R) 3D6. However, through the 90's, considerable advances in

3D display technologies and innovations in the related �elds are opening a new way

for the 3D systems without special glasses.

In particular, several 3DTV projects bring together both signal processing and

human factors. In Europe, research on 3DTV has been initiated by several projects,

such as COST2307 and DISTIMA8, which aimed to develop a system for captur-

ing, coding, transmitting and presenting digital stereoscopic image sequences. The

projects had been followed up by another project, PANORAMA9, which aims to en-

hance the visual information exchange in telecommunications with 3D telepresence.

Other noteworthy e�orts have been made by the 3D HDTV project of NHK10.

2.2 3D Perception and Stereo Geometry

So far, stereo images/video have been intensively studied in the �eld of computer

vision because stereoscopic viewing is one basic and popular way to perceive the

environment in 3D [16, 17]. The two images in a stereo pair are called stereoscopic

or stereo images. A sequence of stereoscopic images is called stereo video. The

main limitation of stereo images/video is that the viewing position is bound to the

position of cameras. In general, 3D imaging systems provide more freedom in viewing

position than stereoscopic displays. However, the term \stereoscopic" and \3D" are

6Refer http://www.theatres.sre.sony.com/imax/across/history/history.html
7Refer http://www.fub.it/cost230/welcome.htm
8Refer http://www.tnt.uni-hannover.de/project/eu/distima/overview.html
9Refer http://www.tnt.uni-hannover.de/project/eu/panorama/
10Refer http://www.strl.nhk.or.jp/results/annual96/3-1.html
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used interchangeably because stereoscopic images/video can be easily extended into

3D.

In general, 3D perception is based on various depth cues such as light, shade,

relative size, motion, occlusion, texture gradient, geometric perspective, disparity,

etc. However, one of the most e�ective cues is the binocular depth perception based

on the fact that the depth perception is obtained by viewing a scene from slightly

di�erent viewing positions. Humans perceive a scene in 3D as follows. First, the scene

in 3D real world is projected onto the retina as a 2D image, where each eye views

a slightly di�erent scene. Note that the 3D depth information is lost at this stage.

Then, the primary visual cortex in the brain fuses the stereo pair by a stereopsis and

a prior knowledge on the 3D world. Finally, humans perceive the feeling of depth by

reconstructing 3D from 2D.

Similarly, in 3D imaging systems, the function of the eyes is taken over by stereo

cameras that capture a scene from slightly di�erent positions. The depth information

can be obtained based on stereo vision techniques where the depth information is

calculated by triangulation with the disparity, the relative displacement, and the

geometry of the stereo camera. The procedure of estimating the disparity �eld has

been known as the correspondence problem or disparity estimation.

To generate a stereo video sequence, two video cameras are placed in parallel to

take images from slightly di�erent perspective. Figure 2.1 shows the basic structure

for stereo image formation and stereo camera geometry. The center of the lens is

called the camera focal center and the axis extending from the focal center is referred

to as the focal axis. The line connecting the focal centers is called the baseline, b.

The plane passing through an object point and the focal centers is the epipolar plane.

The intersection of two image planes with an epipolar plane makes the epipolar line.

Let (X; Y; Z) denote the real world coordinates of a point. The point is projected

onto two corresponding points, (xl; yl) and (xr; yr), in the left and right images. The
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disparity is de�ned as the di�erence vector between two points in the stereo images,

corresponding to the same point in an object, i:e:, v = (xl � xr; yl � yr).

Base line

(xl,yl)

(xr,yr)

Object

point (X,Y,Z)

Epipolar plane

Focal axis

Focal center

Epipolar

line

b

focal length

 f

Figure 2.1: Simple camera geometry for stereo photography

In general, as shown in Figure 2.2, the converging camera con�guration generates

3D distortion such as the Keystoning error [18]. For example, the projected squares

are no longer the same size and become trapezoids or other sorts of quadrangles.

These shapes are called keystones. If the keystoning e�ects are severe, then disparity

estimation will generate higher estimation errors in the disparity compensated dif-

ference frame. Also, notice that the perception of 3D will be painful because the

resulting depth plane is a curve rather than a straight line.

Therefore, the parallel camera con�guration is preferred to the converging camera

con�guration. We assume pinhole cameras with parallel optical axes: the focal rays of

the two cameras are parallel and perpendicular to the stereo baseline. We also assume

that the two image planes are coplanar and that the two scan lines are parallel with

the epipolar line (or baseline). As a result and with appropriate calibration, stereo

images satisfy the following constraints.

� Epipolar Constraint Corresponding points in stereo images are in the same

epipolar lines.

� Similarity Corresponding points in images have similar brightness.
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Figure 2.2: Conversing camera geometry for stereo photography

� Uniqueness A point in an image corresponds to only one point in the other

image because one point in an object is projected onto only one point in each

image.

� Continuity and Ordering Under the assumption of smooth object surfaces,

the disparity varies continuously (or smoothly) in most parts of the image except

at object boundaries or occlusion areas. The disparity is also in order except

for the occlusion areas.

Finally, 3D information (X; Y; Z) can be computed by triangulation with binocular

disparity and a given camera geometry as follows.

X =
b(xl + xr)

2� jvj
; Y =

b(yl + yr)

2� jvj
; Z =

bf

jvj
; (2.1)

where b represents the baseline and f denotes the camera focal length. As can be

seen in (2.1), the disparity can be considered as a relative depth because the disparity

is inversely proportional to the depth. If the parallel axis constraint is satis�ed, the

search area for correspondence is restricted to a line and the matching process is
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accelerated signi�cantly, i:e, (vx; vy) = (0; yl � yr). By broadening the baseline, the

accuracy of the distance measure can be increased but the common areas in the two

images are decreased.

In real systems, there may be luminance di�erences between images in a stereo

pair because the characteristics of the stereo cameras may be slightly di�erent. In

addition, there are some areas that only appear in one image of the stereo pair due

to the stereo camera geometry, even though we assume the parallel axis constraint

is met. Figure 2.3 shows an example of this phenomenon in stereo images, which is

called occlusion.

image plane Object

Camera

invisible
area Occluded

area
Self-occlusion

Figure 2.3: Occlusion e�ects. There are some regions that appear only in one image

of the stereo pair due to the stereo camera geometry.

In general, the occlusion makes disparity estimation complicated. Figure 2.4 shows

the disparity �eld variation according to the occlusion e�ects.

2.3 Issues in Stereo Image Coding

2.3.1 Disparity Correspondence

Most research e�orts in stereo vision have been focused on an accurate disparity

estimation11. As explained, several factors make the correspondence problem di�-

cult. To overcome those problems and to estimate an accurate disparity �eld, several

11A comprehensive review on computational stereo can be found in [19].
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Figure 2.4: Disparity variation according to occlusion areas

schemes have been proposed, which can be grouped into two categories: (i) area-based

and (ii) feature-based approaches.

In area-based approaches, pixels or regions are used to measure the similarity be-

tween stereo pair [20,21]. They yield dense disparity �elds but tend to fail because of

local ambiguities in the correspondence. Various improved estimation techniques have

been proposed to overcome these problems. Regularization methods with smoothness

constraints weaken the noise problem but they oversmooth the discontinuities such

as those occurring at object boundaries [22{24]. Markov random �eld (MRF) mod-

els with various constraints reduce the oversmoothing problem using soft smoothness

constrained with line processes [25{28]. Though the bene�ts of including disconti-

nuities in the energy function are signi�cant, they require excessive computational

power to solve highly nonlinear (stochastic) optimization problems.

In feature-based methods, local cues (such as edges, lines, corners) have been used

in disparity estimation [29{33]. They provide a robust disparity �eld because the

features are more stable image properties than the original intensity image. However,

feature-based schemes may work only if features are extracted in both images. They

also may require interpolation to estimate a dense disparity �eld, because the disparity

can be estimated only at the feature positions. However, interpolation is another

complicated procedure due to its ill-posedness [34]. Phase-based disparity estimation
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is another method, which also requires additional steps to ensure the exclusion of

regions with ill-de�ned phase [35, 36].

Though many disparity estimation techniques developed in the computer vision

communities may be applicable to stereo image coding, the direct adoption of those

techniques may not be e�ective for various reasons. For example, the main emphasis

of stereo vision (or/and motion analysis) has been on the accurate estimation of

disparity (or/and motion) in order to reconstruct the 3D structure of the scene. An

accurate displacement estimation is a key issue in stereo vision, because a disparity

vector corresponds to the distance between cameras and the corresponding object

point in the scene. However, the main focus of coding is the tradeo� between rate

and distortion. Thus the goal of stereo image/video coding is not to estimate the

true disparity but rather to achieve a high compression ratio. Therefore, it may not

be worthwhile to compute a dense disparity �eld if the cost of handling (transmitting

or storing) the disparity vector �eld is too high.

As a compromise, in coding of stereo images/video, �xed size block matching

(FSBM) has been widely used, even though the true disparity/motion �elds are obvi-

ously not blockwise constant [8,12,37]. FSBM-based methods are simple to implement

and e�ective in terms of rate-distortion (RD) because they exploit the redundancy

on the disparity �eld with a regular structure, which does not require additional

information for the structure of the disparity �eld.

2.3.2 A Brief Review: Stereo Image Coding

As explained, higher encoding performance can be achieved by exploiting the inherent

redundancy between two images in a stereo pair, as compared to independent coding.

A simple coding for stereo images is to encode the two images independently, using

conventional coding schemes or using 3D DCT [38]. Dinstein et al. also proposed

a compression method based on the frequency domain relationship without dispar-

ity estimation [15]. A simple modi�cation to uncorrelate two images is to encode
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an image and the di�erence between two images. However, this method is not so

e�cient because each object in the scene has di�erent disparity. Therefore, further

improvement can be achieved by adopting predictive coding, where a disparity vector

�eld and disparity compensated di�erence frame are encoded.

Due to the similarity between stereo images and video, many of the intuitions and

techniques used in video coding are applicable to stereo image coding [39]. Predictive

coding with motion estimation in video coding increases the coding gain by exploit-

ing the temporal dependency. It is possible because consecutive images in a video

sequence tend to be similar. In general, disparity estimation is similar to motion

estimation in the sense that they both are used to exploit the similarity between two

(or more) images in order to reduce the bit rate.

However, the motion estimation schemes developed in video coding may not be

e�cient unless geometrical constraints for stereo imaging are taken into account. For

example, if the cameras meet the epipolar constraint12, the direction of the disparity

is predominantly horizontal13. In comparison, motion vectors can take any direction

in the 2D plane. This property simpli�es the disparity estimation process, but other

distinctive features of stereo images, e:g: occlusion, noise and 3D distortion (such

as Keystoning) resulting from the stereo camera geometry, signi�cantly degrade es-

timation/compensation e�ciency [17, 18]. Note that, unlike video sequences, stereo

images are projected onto two cameras and thus intensity levels between two images

in a stereo pair tend to be slightly di�erent. Note also that the occlusion areas are

generated by all objects in the scene and not only moving objects as in motion estima-

tion, as long as the objects are located at slightly di�erent position in the 3D scene.

As a result, the DCD may have high residual energy and thus the DCD frame may

require relatively more rate as compared with the displaced frame di�erence (DFD)

12This constraint implies that the focal rays of the two cameras are parallel and perpendicular to

the stereo baseline.
13If the cameras met the epipolar constraint, a particular object will appear in the two images

with only a horizontal shift between its respective position. The epipolar constraint implies that

focal rays of the two cameras are parallel and perpendicular to the stereo baseline
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in video coding. Consequently, the e�ciency of disparity compensated coding can be

greatly reduced due to those features and the coding gain of disparity compensation is

relatively smaller over independent coding, as compared to motion compensation [38].

Disparity estimation is one of the key steps in the stereo coding, because it

helps to exploit the similarity along the disparity in the process of disparity estima-

tion/compensation. In the predictive coding framework14, the redundancy is reduced

by compensating the target image from the reference image along the disparity vec-

tors. Since the pioneering work by Lukacs [12], the most widely used coding methods

for stereo images have been FSBM-based predictive coding15.

Though FSBM is simple and e�ective to implement, disparity estimation schemes

based on FSBM su�er from several well-known drawbacks: (i) inaccurate disparity

estimation and (ii) annoying artifacts in the reconstructed image. In general, an

inaccurate estimation is inevitable, with the inaccuracy mainly coming from: (a) the

various noises, occlusion and lack of or repetitive textures, (b) a pixel accuracy in

disparity estimation and (c) the uniform disparity assumption within a block. In

general, FSBM with a simple error measure may not provide the smooth disparity

�eld, and thus may result in increased entropy of the disparity �eld. In turn, an

inaccurate estimation increases the bit rate of the disparity �eld.

Therefore, the e�ciency of FSBM-based predictive coding can be increased by

improving the e�ciency of the disparity estimation/compensation. The proposed

schemes to improve the encoding e�ciency include: genetic algorithms [18], subspace

projection methods [40, 41], extended windows [42], balanced �ltering [43] and RD-

based estimation [44]. The rate for the DV �eld also can be reduced by adopting

other lossy encoding schemes (e:g: appropriate smoothing) for the disparity �eld.

The central idea of achieving e�cient estimation is to reduce or weaken the various

14In general, predictive codec consists of disparity estimation/compensation, trans-

form/quantization, and entropy coding.
15Note that block, rather than feature or pixel, has been widely used, because the main focus

of the coding is in the tradeo� between rate and distortion due to the limited available channel

bandwidth.
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noise e�ects by using useful constraints such as smoothness. The noise e�ects can

be reduced by exploiting the correlation among neighboring disparity vectors. In

general, the reduction of bit rate for the disparity �eld can be achieved by estimating

a relatively smooth disparity �eld. Note however that, in order to maintain or improve

encoding e�ciency, a careful tradeo� is required between smoothness of the disparity

�eld and the entropy of the DCD frame. For example, the disparity vector has to

be selected to reduce the entropy for the disparity �eld, if it is similar to those of its

neighbor blocks and it does not increase prediction error \too much."

In addition, an e�cient method to deal with the DCD frame is essential to achieve

low rate encoding because higher energy occurs along object boundary and occlusion

region. For example, if the block includes object boundaries, block-based methods

may su�er from visual artifacts at low bit rates, where only a few bits are assigned to

the DCD frame. In particular, for images encoded at low rate coding, these artifacts

usually appear along the block boundaries in the decoded target, as shown in Figure

2.5. These blocking errors can be very annoying because the human visual system

(HVS) is sensitive to object boundaries, which are usually related to abrupt intensity

changes. These artifacts result from di�erent error sources: (i) disparity discontinuity

due to our use of an error criterion considering only the DCD, (ii) the assumption

of one vector per �xed size of block, and (iii) the quantization e�ect of the reference

image, i:e:, block edge may be copied and pasted. Therefore, using overlapped block

disparity compensation reduces the energy level of the disparity estimation errors

without increasing the bit rate for the disparity �eld. In particular, the rate of the

DCD frame can be reduced by combining both the subpixel accuracy and overlapped

block disparity compensation [45].

Another approach to improve encoding e�ciency is relaxing the one-vector-per-

block assumption, which can overcome the disadvantage of FSBM, e:g: the annoying

blocking artifacts in the reconstructed image. In FSBM, the higher prediction errors

occur because the block boundaries do not coincide with the object boundaries. By
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Figure 2.5: Various types of error in the DCD frame.

reducing the block size, the estimation error can be reduced, but as the block size

becomes smaller the associated overhead (bit rates) required to transmit the disparity

�eld becomes too large. In addition, smaller blocks frequently fail to provide good

matching results because the estimation is subject to various noise e�ects and thus a

less homogeneous disparity �eld is generated. Note that pixel-based estimation is the

best way to reduce the entropy of the DCD frame. However, this comes at the cost of

an expensive increase in the overhead necessary to represent the resulting disparity

�eld. Meanwhile, increasing the block size increases the robustness against noise in

the disparity estimation, but it also increases the magnitude of the estimation error.

A good solution to this dilemma is a hierarchical (or sequential) block segmentation

[46, 47].

Segmenting a block with higher prediction error into smaller subblocks can further

reduce the rate of the DCD frame. The quadtree-based methods have been commonly

used to encode the resulting disparity �eld [48{52]. However, the cost for reduced

energy of the DCD frame is the increased side information of the disparity �eld.

In order to increase coding gain over the block-based methods, segmentation-based
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algorithms have to represent the segmentation information (quadtree or boundary)

and the corresponding disparity in an e�cient manner.

A hybrid segmentation approach, which combines the disparity estimation based

on the hierarchical block segmentation and the disparity �eld segmentation using

an MRF model, can further improve encoding e�ciency [53]. Also, the pixel-based

disparity estimation with an arbitrary shape-based coding can be used to reduce the

blocking artifacts [54,55]. In general, the process of segmentation simultaneously pro-

duces useful intermediate information for various applications such as scene analysis,

synthesis, or generation [56]. Note however that the segmentation and its description

cost are too expensive, compared to block-based schemes [3, 4, 53, 57].

In general lossy coding scenarios, quantization is an equally important problem.

However, with few exceptions (e:g: [58]), the quantization and the bit allocation

issues speci�c to stereo image coding have rarely been considered. Note that available

conventional quantization or bit allocation schemes are mainly developed based on the

assumption of completely decoupled encoding steps, e:g: the reference image and the

target image in a stereo pair are quantized independently, and thus overall optimality

cannot be guaranteed. Obviously, in the predictive coding framework, dependent

quantization can further optimize the coding performance by selecting two sets of

quantizers reducing quantization errors for the reference image and the DCD frame,

while maintaining the total bit rate less than that of the allowed bit budget [39, 59].

A noteworthy e�ort in stereo image coding research has been generating interme-

diate views to provide additional freedom of viewing angles, without increasing rates.

In general, intermediate view at the decoder can be synthesized by spatial interpola-

tion using two decoded images in a stereo pair and disparity information. Therefore,

to increase the quality of the synthesized intermediate image, a reliable occlusion, as

well as disparity, estimation is essential [53, 60].

Another challenging area is measurement of 3D distortion. In 3D imaging systems,

humans observe 3D scenes by combining two images together, instead of observing
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each image independently. Recently, image coding schemes incorporating the charac-

teristics of human visual system (HVS) have been investigated. The spatial frequency

sensitivity of HVS is measured and model as modulation transfer function (MTF) [61].

The MTF has been incorporated into transform coding and used to adjust quantiza-

tion step sizes [62]. In addition, the spatio-temporal characteristics of HVS have been

measured and modeled [63]. However, the measurement of 3D perception of HVS has

yet to be actively researched. Obviously, simply combined distortion, D1 +D2, may

not reect the exact perceptual quality [64]. According to the suppression property

of HVS, relatively lower bit rate for the target image may not signi�cantly degrade

the 3D perceptual quality [38].

2.3.3 Fixed Size Block Matching

2.3.3.1 Disparity Estimation

The basic idea of FSBM is to segment the target image into �xed size blocks and

�nd for each block the corresponding block that provides the best match from the

reference image. In general, a block minimizing estimation error is selected as a

matching block. Let the target image be segmented into blocks, with a �xed size of

B�B pixels. Two popular error criteria are the mean absolute error (MAE) and the

mean squared error (MSE) which are de�ned as follows

DMAE(i; j) =
1

B � B
jjf

2
ij � f

1
ij�vij

jj

DMSE(i; j) =
1

B � B
jjf

2
ij � f

1
ij�vij

jj
2 (2.2)

where fij and �vij denote the ij-th block in the target image and the corresponding

displacement of the block, respectively.

In general, MAE, rather than MSE, is selected as a measure because MAE is more

e�cient in hardware implementation, while MSE yields somewhat better performance.

In many standards, 16 � 16 blocks are used, but the block size can be increased or
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reduced according to the characteristics of the images. The most straightforward

block matching method is the full search within the search window, known as the

exhaustive search. It guarantees an optimal solution for given sizes of block and

search window, if only the DCD frame is considered.

However, the advantages of FSBM may not be so clear once the overall coding

system is considered together. In addition, a more consistent and exact disparity

�eld is necessary for the application of intermediate scene generation, which provides

look-around capability, because there is no available DCD frame in synthesizing the

images corresponding to the intermediate viewpoints.

2.3.3.2 Disparity Compensated Di�erence

After disparity estimation/compensation, the di�erence between the disparity com-

pensated and the original target image is generated. The di�erence is called disparity

compensated di�erence (DCD), which has to be stored or transmitted together with

a disparity �eld to improve the quality of the decoded target image. As explained in

Section 2.3.3, the disparity estimation based on FSBM with MSE (or MAE) results

in non-zero residual images containing high frequency components, especially in the

block where the disparity estimation/compensation fails.

For DCD coding, several di�erent approaches can be used such as pulse code

modulation (PCM), di�erential PCM (DPCM), vector quantization, transform coding

and subband coding. The simplest way is PCM, where the value of each pixel in

DCD frame is quantized and encoded independently, without considering values of

neighboring pixels. However, PCM is ine�cient when neighboring pixels have strong

correlation. DPCM exploits inherent spatial redundancy by predicting the current

value using values of neighboring pixels. The di�erence between the value of the

current pixel and the predicted value is quantized and encoded. In PCM or DPCM, an

optimal scalar quantizer (SQ), such as Lloyd-Max or entropy constrained quantizer, is

required to optimize the encoding e�ciency [65]. Given the number of reconstruction
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levels, the indices of reconstruction levels are transmitted or stored. Though DPCM

is relatively simple to implement, the achievable compression ratio is not so high.

A more e�cient approach is to group pixels into vectors and to quantize them

jointly. Note that usually this so called vector quantization (VQ) has been applied

jointly with a transform or a subband coding scheme. The main advantage of VQ

over SQ stems from utilizing correlation between pixels. However, �nding an optimal

codebook, i:e: reconstruction levels, is complicated.

The discrete cosine transform (DCT) is the most widely used transform for image

and video coding. It has been so successful that, in current image/video coding

standards, the DCT is employed for encoding of the DCD frame as well as the intra

frame. Note that the basis of DCT are image independent but DCT approximate

the optimum transform, Karhunen-Loeve transform (KLT), for natural images that

can be modeled with a �rst order Gauss-Markov process (with higher correlation,

� > 0:9). Chen et al. showed that the KLT, for the motion compensated di�erence

frame is identical to that for the luminance image in spite of di�erent statistical

characteristics and, as a result, the DCT remained a near optimum transform for

the motion compensated di�erence frame [66]. Another advantage of DCT is the

availability of a fast implementation. Note however that the main weakness of the

DCT is the fact it causes blocking artifacts at low rate coding.

Other noteworthy e�orts include exploiting the statistical characteristics of DCD

frame. The characteristics of motion compensated di�erence (MCD) frames have

been studied [62, 66{72] and those works can provide insights into the encoding of

the DCD frame. Based on observed statistics, many adaptive quantization schemes

(with transform coding) have been reported. Connor et al. discussed the statistical

characteristics of the MCD frame using the autocorrelation properties based on MRF

theory [67]. Gonzalez et al. developed a minimal adaptive quantization algorithm

operating in DCT domain. The algorithm is designed to optimize image quality by

adapting a quantization scale factor to the local characteristics of the video while
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keeping the average output bit rate [73]. Puri et al. developed a strategy for an

adaptive quantization method using a model for perceptual quality and bit rate [71].

Chun et al. described an adaptive quantization algorithm for video sequence coding

by applying the perceptual weights according to the block-based visual activity in the

DCT domain [72]. Stiller et al. proposed a Laplacian pyramid coding for the MCD,

where they employed the classical Laplacian pyramid, a tree growing bit allocation

strategy and the subsequent vector quantization [74]. Muller et al. proposed an

embedded pyramid coding of MCD based on Shapiro's zerotree coding algorithm

[75, 76].

Needless to say, a more precise modeling of the DCD frame for stereo image/video

coding is very important to improve the quality of the coded image, especially at low

rate coding. For stereo image coding, Moellenho� et al. reported on specialized

transform coding for the DCD frame, where they modi�ed a quantization matrix and

then the scanning order [58].

2.3.4 Variable Size Block Matching

Due to its simplicity and robustness, FSBM has been widely used in many video

coding algorithms, including those based on standards16. However, as explained in

previous section, FSBM has well-known drawbacks such as blocking artifacts and in-

accurate estimation. An extreme example of FSBM would be a pixel based approach,

which allows the reduction in entropy of the DCD frame, while increasing the rate of

the disparity �eld by estimating a dense disparity �eld.

The basic idea of variable size block matching (VSBM) is to tradeo� between an

e�cient estimation/compensation and representation of the disparity �eld and the

resulting DCD frame. The quadtree (Qtree) is commonly used, because the Qtree

is e�cient in hierarchically estimating and representing the disparity �eld [77]. An

16One exception is H.263, which allows splitting 16� 16 block into 8� 8 block in the \advanced

prediction mode."
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image or a block is assigned to a Qtree. Then, the block is segmented into four

subblocks according to a given criterion. The segmentation is repeatedly applied

until the size of subblock reaches 1�1 or the criterion is met. The resulting disparity

�eld is encoded using DPCM.

Another promising approach is region matching, instead of block matching, which

allows more e�cient estimation by considering complex displacement. Obviously, re-

gion or object-based schemes are attractive because they allow the addition of various

object-based functionalities. Note however that the cost of these more sophisticated

schemes is the increase in computational complexity.

2.4 Tools

2.4.1 Rate Distortion Theory

In this Section we introduce some basic concepts of rate-distortion (RD) theory, which

will be useful for the remainder of the dissertation. The source coding theorem states

that the entropy of a source X, H(X) = �
P
p(X)log2P (X), is the minimum rate

at which a source can be encoded without information loss, and the channel coding

theorem states that the rate of the source need to be smaller or equal to C for error free

transmission over a channel with capacity C. Meanwhile, the RD theory represents

the lower bound on the rate with a given average distortion or vice versa. Based

on the RD theory the performance bound of lossy data compression schemes can be

found. Note however that RD theory does not provide methods to achieve the bound.

A detailed introduction can be found in [78].

Let a stereo pair in a stereo video sequence be a correlated random processes,

i:e: (F1; F2). Then, according to Shannon's �rst theorem [79], the achievable bound

of the minimum rate is H(F1; F2) = H(F1) + H(F2jF1). Let R and D denote rate

and distortion of an image, respectively. Then, H(F1) � R(F1) and H(F1; F2) �
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R(F1; F2). As a result, the required rate for lossy coding of the stereo pair can be

represented as follows,

R(F1) � R(F1; F2) = fR(F1) +R(F2jF1)g � fR(F1) +R(F2)g (2.3)

Similarly, the RD function can be represented as follows,

R(D1) � R(D1; D2) = fR(D1) +RF2jF1(D2)g � fR(D1) +R(D2)g (2.4)

where R(D1; D2) and RF2jF1(D2) denote the joint RD function and the conditional RD

function, respectively. Therefore, predictive encoding, which simultaneously consid-

ering two images in a stereo pair, achieves better RD performance over independent

encoding, in general [13].

2.4.2 Optimal Bit Allocation

The aim of optimal bit allocation is to distribute \optimally" the available bit budget

among di�erent sources such that the overall distortion is minimized. In general, the

bit allocation problem can be considered as an optimal quantization problem because

usually a set of quantizers is available for each source.

So far, most research e�orts have dealt with the problem of optimal independent

quantization under the assumption that a speci�c selection of quantizer for a source

does not a�ect the performances of other sources. In general stereo images/video

scenarios, as well as in video coding, this is not the case because there exists strong

\binocular" dependency between the two images in a stereo pair along disparity vec-

tors. The selection of quantizers for the reference frame a�ects the selection for

the target frame, as long as the reference frame is used to predict the target frame.

Therefore, optimal dependent quantization schemes maximize overall coding perfor-

mance [39, 59, 80, 81].
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Meanwhile, optimal bit allocation schemes have been developed based on the

operational RD (ORD) theory. In general lossy coding scenarios, only a �nite number

of quantizers are available, which results in only having a �nite number of RD-points.

Those pairs of RD points constitute the ORD function. Let Q be a set of available

quantizers, i:e: Q = fq0; � � � ; qN�1g, where N is the number of available quantizers,

i:e: N = jQj, the cardinality of Q. Let R(qi) and D(qi) be the rate and corresponding

distortion of a source for a quantizer qi. As shown in Figure 2.6, corresponding sets

of RD points can be plotted on an RD plot. Then, the ORD line is obtained by

connecting those selected consecutive ORD points, where no other quantizer results

in a lower or equal rate with a given distortion, or vise versa. While the RD curve

is useful in showing how the performance of a real scheme approximate the optimal

performance bound, ORD curve is useful in allocating bits optimally for a given

scheme.

Figure 2.6: An operational RD plot. The x-mark and represents a possible RD pair.

The ORD line is obtained by connecting consecutive o-marks points.
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2.4.3 Lagrangian Optimization

An optimal solution to the bit allocation problem can be solved using Lagrangian

multiplier approach [82]. Lagrangian multiplier method is a well-known mathematical

tool to solve constrained optimization problems in a continuous framework. Note that

for a discrete number of operating points, the Lagrangian method �nds a solution

lying on the convex hull, rather than on the ORD line.

Let the rate and distortion of each block depend on the quantization selection.

Then, the rate and the distortion functions are de�ned as R(Q) =
P

(ij)2
 r(qi) and

D(Q) =
P

(ij)2
 d(qi), respectively.

For a given bit budget Rbudget an optimal set of quantizers that solves this problem

is,

Q
� = argmin

Q
D(Q); subject to R(Q) � Rbudget (2.5)

The constrained problem can be transformed into an unconstrained problem using

a Lagrange multiplier �. For any � > 0, an optimal solution Q
�(�) to the uncon-

strained problem is

Q
�(�) = argmin

Q
fD(Q) + �R(Q)g (2.6)

A remaining problem is how to �nd an optimal �� to optimize the quantization

e�ciency. For �2 > �1, by the optimality of Q�(�1) with R(Q�(�1)) > R(Q�(�2)),

D(Q�(�1)) + �1R(Q
�(�1)) � D(Q�(�2)) + �2R(Q

�(�2)). By solving for �1 and �2,

�2 �
D(Q�(�1))�D(Q�(�2))

R(Q�(�1))� R(Q�(�2))
� �1 (2.7)

Therefore, the ratio of the changes is bounded between two multiplier, �1 and �2. Note

that R(Q�(�)) and D(Q�(�)) are, respectively, a nonincreasing and nondecreasing

function of the Lagrangian multiplier �. Therefore, with a pair of two initial �'s,

(�1; �2), bisection method starts, i:e: R(Q�(�1)) � Rmax � R(Q�(�1)), where Rmax is

the target rate. By selecting a �̂ = �1+�2
2

, the initial interval is bisected. Then, �1 = �̂
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if R(Q�(�̂) � Rmax and �2 = �̂, otherwise. By repeating this procedure, the bound is

getting tighter and tighter. However, the bisection scheme has to be stopped using a

threshold value � (> 0), because there might not exist � satisfying R(Q�(�)) = Rmax.

Note that R is de�ned on the �nite set of quantizers Q.

The Lagrangian method is not always optimal because, as shown in Figure 2.6,

the ORD line is not necessarily convex. Note that the Lagrangian method only �nds

the convex approximation, while a direct exhaustive search of constrained problem

results in an optimal solution.

2.4.4 Viterbi Algorithm

The Viterbi algorithm (VA) is a deterministic forward dynamic programming scheme,

which solves an constrained problem e�ciently. The main advantage of VA over con-

ventional optimization techniques is that VA can deal with discrete sets. In addition,

VA yields a globally optimal solution according to Bellman's optimality principle.

We use VA to search possible solutions through a tree or trellis, while sequentially

eliminating suboptimal solutions. In the tree (or trellis) each branch (or/and node)

has a cost, which is additive over the path. In image/video coding, usually a block

(or a frame) is assigned to a stage and other available quantity, such as a selection of

quantizer or motion vector, is assigned to a node. Then, at each stage we can prune

all branches arriving at each node, except the one having least cost.

Additional pruning schemes can help reduce the number of possible paths. Espe-

cially, in case of the dependent quantization problem in predictive coding, the pruning

based on the so called monotonicity property e�ciently reduces the search space with-

out signi�cant loss of performance [39,80]. The monotonicity property indicates that

the �ner quantization for the reference frame, the more e�cient quantization, in the

RD sense, for the depending frame.
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2.4.5 MRF/GRF Model and MAP Estimation

Geman and Geman considered images as realizations of a stochastic process that con-

sists of an observable noise process and a hidden edge process [83]. We can apply this

stochastic model to modeling the intensity image and extend it to modeling the dis-

parity �eld. We model the spatial interactions among the neighboring intensity pixels

(disparities) based on the discrete MRF model and Gibbs distribution. Consider a

random �eld of intensity, F = ffij; (i; j) 2 
g (or disparity, V = fvij; (i; j) 2 
g)

de�ned on a discrete, �nite, rectangular lattice 
 = f(i; j)j0 � i � Nx; 0 � j � Nyg

where Nx and Ny are, respectively, the vertical and horizontal size of the image (or

the disparity �eld). Assume the intensity image, F (or V ), is a MRF with respect to

a neighborhood system � = f�ij; (i; j) 2 
g, where �ij is the neighborhood of fij (or

vij) such that (i; j) =2 �ij and (k; l) 2 �ij, i:e:,

PfF = fijjfkl; (k; l) 2 
g = Pffijjfkl; (i; j) 6= (k; l); (k; l) 2 �ijg (2.8)

Similarly, the spatial interaction among the disparity (or motion) in the image se-

quences also can be de�ned as follows,

PfV = vijjvkl; (k; l) 2 
g = Pfvijjvkl; (i; j) 6= (k; l); (k; l) 2 �ijg (2.9)

Fig. 2.7 shows some neighborhood systems commonly used in image processing.

These can be used similarly for disparity and occlusion.

Fig. 2.8 shows two di�erent neighborhood systems for edge processes, horizontal

and vertical edges, respectively [27]. Considering the model constraints, an isolated

edge is inhibited and a connected edge is encouraged even if the intensity (or disparity)

changes slightly.
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 5    4    3    4    5

 3    1    1    1    3

 4    2    1    2    4

 4    2    1    2    4

 5    4    3    4    5

(a) (b)

Figure 2.7: Neighborhood systems and cliques: (a) Geometry of neighborhoods; the

number denotes the order of the neighborhood system. (b) First order neighborhood

�
1 and cliques used for intensity, the disparity and the occlusion; we can quantify the

e�ect of each clique according to the characteristics of the random �elds.

Figure 2.8: Neighborhood System for Edge Process for: (a) Vertical Edge (b) Hori-

zontal Edge
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According to the Cli�ord-Hammersley theorem [84], if a measure can be modeled

by a MRF, then the probability mass of the measure can be represented in the Gibbs

distribution form as follows

P (F ) =
1

Z
expf�

1

T
U(F )g (2.10)

where Z is a normalization constant and T is the so called temperature which controls

the sharpness of the distribution. The energy function U(F ) can be represented as the

sum of clique potentials de�ned according to the neighborhood system selected. The

main advantage of representing each probability in the Gibbs distribution form is that

it can be formulated with energy function and the multiplication of the probabilities

can be replaced by the sum of the energy equations. Therefore, the MAP estimation

problem can be replaced by the problem of �nding a solution minimizing the energy

equation.

The main advantage of the MRF model based approach is that it provides a

rigorous mathematical framework and a general model for the interaction among

spatially related random variables. Another advantage of the MRF model is its ability

to combine discontinuity into the energy equation. It reduces the error resulting from

an oversmoothing e�ect by adopting the line process. It is easy to integrate di�erent

information such as stereo and motion [85]. It also can deal with the occlusion

e�ect. The resulting algorithm also can be implemented in parallel due to its inherent

localization property [27].

2.4.5.1 Example-I: Image Restoration and Segmentation

We can formulate an image segmentation problem as follows. For a given intensity

image, G, we want to �nd a smooth intensity image, F , and intensity edge, LI , such
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that solutions maximize the a posteriori probability (MAP), P (F; LDjG). We can

decompose the posterior probability using Bayes theorem as follows

P (LI
; F jG) =

P (GjLI
; F )P (F jLI)P (LI)

P (G)
/ P (GjF )P (F jLI)P (LI) (2.11)

where P (G) is a constant and thus can be ignored, because P (G) is not a function of

L
I or F .

The �rst term of the right side in (2.11) is called the observation (or noise) process.

The degradation model can be represented in the Gibbs distribution form as follows

P (GjF ) =
1

Z
expf�U(GjF )g (2.12)

where Z is a normalization constant. The energy functions designate the constraints

of the strong similarity between the noise image and the original image. The energy

function, U(gijjfij), can be represented as follows

U(gijjfij) = (gij � fij)
2 (2.13)

where f and g denote the given and the reconstructed intensity image, respectively.

The second term in (2.11) represents an a priori assumption on the smoothness

of the intensity �eld, F , given an intensity edge, LI . The a priori distribution for F

with L
I can also be represented as Gibbs distribution form

P (F jLI) =
1

Z
expf�U(F jLI)g (2.14)

where Z is a normalization constant. The energy function U(fij jlij) can be represented

as follows

U(fijjlij) =
X
�ij

(1� l
�
ij)(fij � f

�
ij)

2 (2.15)
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where f � represents the neighboring pixels and l
� represents the corresponding dis-

continuities.

We can also decide edge process initially by the intensity di�erence of the noisy

image. The initial discontinuity process is de�ned as

lij =

8><
>:

1; jfij � f
�
ijj � Td

0; o:w:

(2.16)

where Td is the threshold for edge decision. If the di�erence between the intensity

and its neighborhood exceed a threshold Td, then there is discontinuity. In this case,

the smoothness constraints should not be performed across this discontinuity.

Finally, we have

P (LI
; F jG) / expf�U(GjF )gexpf�U(F jLI)gexpf�U(LI)g (2.17)

where each term represents a noise process, a smooth intensity �eld, and an inten-

sity edge process, respectively. The overall energy function for the intensity image

restoration/segmentation can be represented as equation (2.11) and the corresponding

energy function can be calculated as follows

U(lIij; fijjgij) = �(fij � gij)
2 + (1� �)

X
�ij

(1� l
�
ij)(fij � f

�
ij)

2 + Vc(lij; l
�
ij)g (2.18)

where � and  are weighting constants. The weighting constant � is controlled

according to the noise level of the given image.

2.4.5.2 Example-II: Block-based Disparity Estimation

The disparity estimation problem can be formulated as follows. For given stereo

pairs, F1 and F2, we want to �nd the disparity �eld, V , and occlusion, �, such

that the solutions maximize the a posteriori probability, P (V;�jF1; F2). We can de-

compose the posterior probability using Bayes theorem. Similarly, according to the
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Cli�ord-Hammersley theorem [84], the MAP estimation problem can be replaced by

the energy minimization problem. As a result, the solutions, X = (V;�) minimiz-

ing the energy function U(V;�jF1; F2), are the solutions maximizing the posterior

probability P (V;�jF1; F2), i:e:,

X̂ = argmax
X

P (V;�jF 1; F 2)

= argmin
X

U(V;�jF 1; F 2)

= argmin
X

fU(F2jF1; V;�) + U(V j�) + U(�)g (2.19)

where each term represents imposed constraints for the disparity estimation, i:e:

similarity, smoothness and occlusion, respectively.

Given the above model, we can derive the overall energy function for the disparity

estimation with FSBM as follows,

U(V;�jF1; F2) =
X

(ij)2N

U(vij; �ijjf
1
ij; f

2
ij)

=
X

(ij)2N

f(1� �)(1� �ij)jjf
2
ij � f 1ij�vij jj

2 (2.20)

+�
X

�

(1� �
�
ij)(vij � v

�
ij)

2 + �
X

c2CL

Vc(�ij; �
�
ij)g

where fij, vij and �ij represent a block and the blockwise disparity vector and its

occlusion status, respectively. In the above equation, � and � denote the weighting

constants17. In general �rst order neighborhood �1 is used. The larger the neigh-

borhood, the greater the inuence from the neighboring disparity vectors. A set of

cliques CL and its potential are pre-speci�ed for the occlusion.

17Note that the constant � is determined according to the noise level of the two images and

increased according to its noise level. For example, if we set � to be zero for the noise-free images

the equation will be similar to the simple BM algorithm.
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Chapter 3

Optimal Blockwise Dependent Quantization

Research in coding of stereo images has focused mostly on the issue of disparity es-

timation/compensation, which aims at exploiting the redundancy between the two

images in a stereo pair. However, less attention has been devoted to the equally

important problem of allocating bits between the two images. This bit allocation

problem is complicated by the dependencies arising from using a prediction based on

the quantized reference images. In this chapter, we address the problem of blockwise

bit allocation for coding of stereo images and show how, given the special charac-

teristics of the disparity �eld, one can achieve an optimal solution with reasonable

complexity, whereas in similar problems in motion compensated video only approxi-

mate solutions are feasible. We present algorithms based on dynamic programming

that provide the optimal blockwise bit allocation. Our experiments based on a mod-

i�ed JPEG coder show that the proposed scheme achieves higher mean PSNR over

the two frames (0.2-0.5 dB improvements), as compared to blockwise independent

quantization. We also propose a fast algorithm that provides most of the gain at a

fraction of the complexity.
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3.1 Introduction

Most research e�orts on stereo image/video coding have been devoted to investi-

gating e�cient disparity estimation/compensation (DE/DC) schemes to improve the

encoding performance [12, 13, 41, 43, 53, 86]. As in other coding scenarios, stereo

images/video can be compressed by taking advantage of spatial/temporal redun-

dancies in each monocular image/video. However, the coding e�ciency for stereo

images/video can be improved even further by exploiting an additional redundancy

associated with the similarity between the two images in a stereo pair, i:e: the \binoc-

ular" dependency. The central idea of stereo image coding based on DE/DC is to use

one of the images in the stereo pair as a reference and to estimate the other image

(the target)1.

With few exceptions (e.g. [58]), the quantization and the bit allocation issues spe-

ci�c to stereo coding have rarely been considered. Obviously, as shown in Figure

1.3, the encoding performance also depends on making a \proper" choice of quantiz-

ers (Q1; Q2) and not just on the choice of the disparity vectors (V ). However, the

available bit allocation (or quantization) schemes are mainly developed based on the

assumption of completely decoupled encoding steps, e:g: target and reference frames

are quantized independently, and thus overall optimality cannot be guaranteed.

Here, we study the problem of optimal bit allocation for stereo image coding.

Our proposed bit allocation scheme is aimed at block-based, rather than segmenta-

tion based, DE/DC techniques due to the comparative simplicity and robustness of

block-based techniques. Note that we assume that the disparity vector (DV) �eld is

estimated in \open loop", i:e: based on the original image rather than the quantized

1Many of the intuitions and techniques used in motion estimation/compensation (ME/MC) are

applicable to DE/DC due to the similarities between ME/MC and DE/DC.
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version, and then focus on the quantizer allocation to the reference and the residue

images2.

The main novelty of our work is the introduction of an algorithm for optimal

blockwise dependent bit allocation for stereo image coding. The binocular dependency

has to be taken into account because the target image (F2) is compensated based on

the quantized reference image F1(Q1). Thus, each choice of quantizer for the reference

frame results in di�erent residual energy levels in the di�erence frame [13]. Given

that the epipolar constraint is met3, the binocular dependency becomes relatively

simple, i:e: it occurs predominantly along the horizontal direction. This property not

only simpli�es the disparity estimation process but also allows us to �nd an optimal

solution for our allocation problem. We �rst demonstrate how the optimal set of

quantizers can be determined using the Viterbi algorithm (VA), and then introduce a

novel method that approximates the optimal solution with limited loss in performance

but much faster operation.

Note that our results may also provide some ideas for the related problem of

blockwise dependent bit allocation in video coding, where choices of quantization

for a reference frame a�ect the frames that are motion predicted from it [80]. In

the case of video coding it is di�cult to take into account blockwise dependencies,

because motion vectors can have any direction in the 2D plane4. Accordingly, an

optimal solution for the video case is not available and thus much of the work has

concentrated on analyses of framewise dependency, i:e: where a single quantizer is

2Note that techniques developed in rate-distortion (RD) based ME in video coding [44, 87{90]

could also be used in conjunction with our algorithm to estimate an optimal (in an RD sense)

disparity �eld.
3This constraint implies that the focal rays of the two cameras are parallel to each other and

perpendicular to the stereo baseline. Thus, if the cameras meet the epipolar constraint, then the

disparity is exactly 1D, i:e: a particular object will appear in the two images with a horizontal shift

between its respective positions. Even if the parallel axis constraint is not strictly met (i:e: the

disparity is not exactly 1D), blocks in one row in the target image can be predicted fairly accurately

from blocks located in the corresponding row in the reference frame, because the vertical disparity

is con�ned only to � a few pixels.
4In the case of motion, each block in the predicted frame depends on up to four blocks in the

reference, and conversely, blocks in the reference frame a�ect several blocks in the target image.
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allocated per frame [80,91]. Note that schemes such as [92] have addressed blockwise

bit allocation but without taking into account the temporal dependency, i:e: the e�ect

of a particular allocation on future frames.

Our experimental results demonstrate that the proposed scheme provides higher

mean peak signal to noise ratio (PSNR), about 0.2-0.5 dB for the two images in a

stereo pair, as compared to an optimal blockwise independent quantization. Note

that �ner quantization for the reference image tends to allow more e�cient encoding

for the disparity compensated di�erence frame [80]. We use this so called monotonic-

ity property as a starting point to propose a fast algorithm that further reduces the

computational complexity without signi�cant loss of quality. This blockwise depen-

dent bit allocation can be a benchmark for faster allocation schemes, or can be used

in o�ine encoding applications or in applications where encoding is performed just

once but decoding is performed many times.

This chapter is organized as follows. In Section 3.2 we formulate the problem of bit

allocation and describe how to �nd the optimal blockwise quantizer assignments using

the VA. We also discuss how to reduce the complexity of the allocation algorithm.

Experimental results are provided in Section 3.3. Finally, we discuss the results and

give directions for future work in Section 3.4.

3.2 Dependent Bit Allocation

3.2.1 De�nitions and Notations

Let an image Fl, be segmented into N square blocks, Fl = fBm; 0 � m � N � 1g,

where Bm represents the m-th block in the image. In case of a stereo pair, F1 and

F2 denote the reference and the target images, respectively. Blocks in F2 are denoted

B0
m, to di�erentiate them from blocks in F1. Let a quantizer (or quantization scale)

be assigned to each block (from a �nite set of available quantization choices). Then,

a set of blockwise quantizers for F1 can be represented as Q1 = fqm; 0 � m � N�1g,
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where qm denotes a quantization index. Similarly, a set of quantizers for the disparity

compensated di�erence (DCD) frame is represented as Q2 = fpm; 0 � m � N � 1g.

The DV �eld is de�ned as V = fvm; 0 � m � N � 1g, where vm corresponds to

the disparity for the m-th block in F2. In the same way, the blockwise rate and the

distortion can be de�ned, and the overall rate and the distortion are represented as

the sum of the individual rates and the distortions of the blocks.

In our experiments, we use simple objective measures such as mean square error

(MSE) and PSNR. Note that subjective evaluation of 3D quality is still an open prob-

lem and is not very reliable and repeatable yet. Therefore, we measure the distortions

of F1 and F2 using MSE, i:e: D1 = (F1 � F1(Q1))
2 and D2 = (F2 � F̂2(Q1; Q2; V ))

2,

where F (Q) denotes the decoded image, when quantizer Q is used. The decoded tar-

get image, F̂2(Q1; Q2; V ), can be reconstructed by adding the compensated target im-

age with the DV �eld and the decoded DCD, i:e: F̂2(Q1; Q2; V ) = F1(Q1; V )+E(Q2),

where E = F2 � F1(Q1; V ). We also measure the performance using mean PSNR for

the stereo pair, de�ned as follows,

PSNRmean = 10� log10f
2552

(D1 +D2)=2
g (3.1)

where D1 and D2 denote the MSE's of the reconstructed images, F̂1 and F̂2, respec-

tively.

3.2.2 Optimal Blockwise Dependent Quantization

For simplicity we assume that the quantizer indices are encoded with a constant

number of overhead bits per block. Note that other 1D dependencies such as those

resulting of DPCM encoding of quantization indices could also be incorporated easily

into our scheme.
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Let Rbudget be the remaining bit budget after allocating bits to the DV �eld. For

a given DV �eld, V , the optimal dependent bit allocation problem can be formulated

as follows5,

Given F1; F2; V; Rbudget

�nd X̂ = (Q1; Q2)

such that X̂ = argminXfD1(Q1) +D2(Q2jQ1)g

subject to R1(Q1) +R2(Q2jQ1) � Rbudget:

where we would have an independent bit allocation problem in the particular case

where D2(Q2jQ1) = D2(Q2) and R2(Q2jQ1) = R2(Q2).

This constrained optimization problem can be transformed into an unconstrained

problem using the Lagrange multiplier method [82,93,94] by introducing a Lagrangian

cost

J(�) = J1(Q1) + J2(Q2jQ1)

= fD1(Q1) + �R1(Q1)g+ fD2(Q2jQ1) + �R2(Q2jQ1)g (3.2)

where the Lagrange multiplier � is a nonnegative constant.

Figure 3.1 provides an example of why dependencies have to be taken into ac-

count [80]. Note that, for a given � and three operational RD (ORD) points, Q1b is the

RD optimal quantizer for the reference image because its Lagrangian cost J1(Q1b) is

the lowest. However, if the overall Lagrangian cost for the two images is taken into ac-

count, Q1a may turn out to be the best choice for the reference image; the Lagrangian

cost J1(Q1a) + J2(Q2bjQ1a) may be smaller than the cost J1(Q1b) + J2(Q2bjQ1b).

5The relative importance of D1 and D2 can be controlled using the weighting constant �, i:e:

using D1 + �D2 as our distortion measure. This allows us to support two di�erent views of the

depth perception process: fusion theory and suppression theory [14,15]. Note that this modi�cation

can easily be incorporated into our framework.
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Figure 3.1: Operational RD plots in a typical dependent bit allocation scenario: (a)

reference image and (b) target image. Independent bit allocation: for given �, the

quantizer Q1b is optimal because the Lagrangian cost J1(Q1b) is smaller than for

the others. Dependent bit allocation: if stereo pairs are considered together, there

is a chance for the quantizer Q1a to be optimal, because the total Lagrangian cost

J1(Q1a) + J2(Q2bjQ1a) can be smaller than the cost J1(Q1b) + J2(Q2bjQ1b).

For the blockwise quantizer assignments the Lagrangian cost in (3.2) can be ex-

pressed as,

J(�) =
N�1X

m=0

fd(qm) + �r(qm)g+
N�1X

n=0

fd(pnjq
�1(vn)) + �r(pn)g (3.3)

where q�1 is a vector that contains the quantizer indices of those blocks in F1 that

are used to predict the current block in F2. As shown in Figure 3.2, �1 denotes (at

most) two consecutive blocks in F1 along the DV. Given the disparity vector v1, the

selection of a quantizer for B0
1 in the DCD frame will be a�ected by the selection of

quantizers for B2 and B3 in F1. Thus a block in the DCD frame depends only on the

quantizers, pn and (qm; qm+1), i:e: d(pnjq
�1) = d(p1jq2; q3) in Figure 3.2. In general,

the index m can be denoted as m = n + b vn
jBj
c, where bc and jBj represent the oor

function and the width of the block, respectively.
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Figure 3.2: Binocular dependency between corresponding blocks along the disparity

vector. At most two consecutive blocks in the reference image are related to a block

in the target image. For example, a block B0
1 in the target image is compensated

from two consecutive blocks, B2 and B3, in the reference image along the disparity

vector v1. Therefore, the distortion of the block in the DCD frame is a function of

p1, q2 and q3.

3.2.3 Solution using the Viterbi Algorithm

Due to the predominant 1D dependency, a row of blocks (ROB) in the target image

depends only on the ROB in the same position in the reference image. Therefore, we

only need to consider the bit allocation for pairs of ROBs6, as other ROBs do not

a�ect the result. Even if there is some small vertical disparity this is a su�ciently

good approximation.

Let ROB1 and ROB2 be the ROBs in the same position in the reference image

and the DCD image, respectively. From now on, when we refer to the k-th block it

should be clear that this is within the particular ROB. We �rst represent all possible

allocations for each pair of ROBs by constructing a trellis. The costs of the branches

and nodes of the trellis correspond, respectively, to the blocks in ROB1 and ROB2.

Refer to Figure 3.3 for the trellis corresponding to the example in Figure 3.2.

We now de�ne our method more formally. Let k be the index of the stage.

6One from the reference and one from the target located at the same position.
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Figure 3.3: Trellis structure for blockwise dependent bit allocation. Each node in the

trellis corresponds to a quantizer choice for a block in F1 and has a corresponding

Lagrangian cost. The quantizer indices are monotonically increasing from �nest to

coarsest. A branch linking two stages corresponds to a quantization assignment to

all the dependent blocks in the DCD frame. The corresponding Lagrangian cost is

attached to the branch. The darker path denotes selected quantizers using the Viterbi

algorithm.
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Stage: The k-th stage in the trellis corresponds to the k-th block in ROB1. Therefore,

the number of stages, K, is equal to the number of blocks in ROB1.

Node: Each node in the k-th stage corresponds to a possible quantizer choice for the

k-th block of ROB1. The choices are ordered from top to bottom in order of

�nest to coarsest. Therefore, the number of state nodes per stage is L = jqj,

i:e: the number of available quantizers for the reference image. Each node has

a corresponding Lagrangian cost, J1(i; k) in (3.4), which depends only on the

rate and the distortion of the k-th block of ROB1 when quantizer i is used.

J1(i; k) = d(qik) + �r(qik) (3.4)

Branch: A branch, joining nodes qik and q
j
k+1, corresponds to the optimal vector of quan-

tizers, pijn , for the (possibly more than one) blocks in ROB2 which depend on

blocks k and k + 1 in ROB1. Each branch has a total Lagrangian cost

J2(i; j; k) =
X

n2�2(k;k+1)

fd(pijn jq
i
k; q

j
k+1) + �r(pijn jq

i
k; q

j
k+1)g (3.5)

which adds up the Lagrangian costs corresponding to each of the blocks n. Note

that more than one block in ROB2 can be assigned to a given branch (this will

depend on the size of the disparity search region). For example, in Figure 3.2

two blocks in ROB2 are assigned to a branch, i:e: B0

1 and B
0

2 both depend on B2

and B3 and thus the two Lagrangian costs corresponding to B0

1 and B0

2 would

be added to each branch linking stages 2 and 3 in the trellis.

Path: A path is a concatenation of branches from the �rst stage to the �nal stage

in the trellis. Each path corresponds to a set of quantization choices for both

ROB1 (nodes) and ROB2 (branches). The cost of a path is the accumulated

cost of branches and nodes along the path.
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Trellis: The trellis is made of all possible paths linking the nodes in the �rst stage and

the nodes in the last stage, i:e: all possible concatenated choices of quantizers

for a given pair of ROBs in the stereo pair.

Once the trellis has been constructed, the optimal blockwise dependent quantiza-

tion problem is equivalent to �nding the smallest cost path from a node in the �rst

stage to a terminal node in the last stage of the trellis. For a �xed �, by applying

the VA [95], we can obtain the best possible quantizer selection that minimizes the

Lagrangian cost de�ned in (3.3). To �nd the optimal bit allocation for a given bit bud-

get, we may need to iteratively change � until we �nd �� such that R(��)�Rbudget � �,

for � � 0. The desired �� can be selected using a fast bisection search algorithm, as

in the previous chapter [82]. For a �xed � the procedure is as follows,

Step 0: (Initialization:) Add an initial node B0 and a �nal node BT where T = K + 1,

where K denotes the number of stages. Set k = 0 and Jacc(0; 0) = 0.

Step 1: At stage k, branches are added to the end of each node i (of all surviving paths)

and Lagrangian costs, J1 and J2, are assigned to the node and the branch,

respectively.

Step 2: At a stage (k + 1), for each node j, an accumulated transition cost from node

i, Jtr(i; j; k), is calculated by summing the accumulated cost, Jacc(i; k), and the

transition cost, J2(i; j; k). Of all arriving branches (at most L), the one with

the lowest accumulated transition cost is chosen. The resulting cost is assigned

to the accumulated cost, Jacc(j; k + 1) and the remaining branches are pruned.

Jtr(i; j; k) = Jacc(i; k) + J2(i; j; k)

Jacc(j; k + 1) = minfJtr(i; j; k)g
L�1
i=0

Jacc(j; k + 1) = Jacc(j; k + 1) + J1(j; k + 1) (3.6)

Step 3: If k < K, then k = k + 1, go to step 1 and repeat.
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Step 4: The path with minimum total cost across all paths can be found by backtracking

the surviving path.

In the proposed framework, the quantization choices for the k-th block in the

reference image and the corresponding blocks in the DCD frame do not a�ect the

choices for the future blocks. Thus, based on the Bellman's optimality principle, the

VA provides a globally optimal solution because suboptimal paths at a given node

cannot be optimal overall and can thus be pruned. Similarly, overall optimality within

the stereo pair can be achieved by assigning the same � to every pair of ROBs since

each pair of ROBs is independent [80, 82].

3.2.4 Fast Algorithm Using Monotonicity

We now propose a fast algorithm based on the monotonicity property, i:e: the obser-

vation that �ner quantization of F1 tends to allow more e�cient coding, in the RD

sense, for the DCD frame [80]. For example, J(pjq�) � J(pjq), for q� � q, where q�

is �ner than q. If � = 0, d(pjq�) � d(pjq), for q� � q. To take advantage of this,

we �rst consider a \ROB1-only optimization" and then only calculate RD values for

the selected nodes and branches. Figure 3.4 shows an example of the reduced trellis

obtained from the trellis of Figure 3.3.

The proposed fast search algorithm is as follows.

Step 0: First, we select a pair of Lagrange multipliers, �'s, e:g:, (�1; �2). For example,

we can choose (0; �2) so that we do not eliminate the �nest quantizer for ROB1

(which tends to be good, given monotonicity).

Step 1: Then, for each �, we set to zero the branch costs and then select, at each stage,

the node, which minimizes D+ �R. Each � will provide an optimal path (a set

of nodes) in the trellis. We then restrict ourselves to only consider those paths

that lie in between the paths selected using �1 and �2.
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Figure 3.4: A heuristic fast search. The trellis in Figure 3.3 can be restricted using the

proposed fast search algorithm. The search space is reduced to the (circled) nodes,

selected by a blockwise optimization using two �'s for the reference image only. If

we choose the two �'s as (0; �2), then we keep the �nest quantizer for ROB1. Then,

we only need to calculate RD values of the blocks in ROB2 for the remaining (solid

lined) branches.
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Step 2: Finally, we use the algorithm outlined above except that we apply the VA on

the pruned trellis so that only a subset of the branches representing blocks in

ROB2 need to be grown.

The proposed fast scheme reduces the computational complexity signi�cantly. The

most signi�cant contribution to the complexity of the VA comes from having to

compute the RD values in order to assign the node and branch costs. For example, if

a block in ROB2 depends on two blocks in ROB1, each combination of quantization

choices for these blocks gives rise to a di�erent residue. Thus, we would need to

compute the residues L � L times and to quantize them L times, where L is the

number of quantizers. In other words, the required total number of RD values per

trellis is in O(L3K), because the total number of nodes and branches per trellis are

L � K and L2 � K, respectively. Let the number of remaining nodes per stage in

the pruned trellis be ~L. In our proposed fast scheme, we need only those RD values

corresponding to the remaining nodes and branches in the trellis. Thus, the required

total number of RD values for the pruned trellis is in O(K ~L2L). Based on the above,

if ~L is small, our pruning will result in much reduced complexity and, with good

choices of (�1; �2), will not a�ect much the �nal quality.

3.3 Experimental Results

In our experiments we use two stereo pairs, one synthesized and the other natural.

The test images are shown in Figure B.2 and B.1, and resulting DV �elds are shown

in Figure 3.57. The target image is segmented into blocks of size 8�8 pixels and then

disparity estimation is performed using �xed size block matching. The search window

sizes are (0; 15) and (�2; 15) for the synthesized and the natural pairs, respectively.

7The test images are also available in

http://escalus.usc.edu/~wwoo/Stereo.

The original images where obtained from

Room: http://www-dbv.cs.uni-bonn.de/~ft/stereo.html and

Fruit: http://www.ius.cs.cmu.edu/idb/html/stereo/index.html
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For this particular selection of the block and search window sizes, two consecutive

blocks in F1 will a�ect at most two consecutive blocks in F2, as shown in Figure 3.3.

Note that our algorithm can accommodate arbitrary search regions.

(a) (b)

Figure 3.5: Test images and DE results with 8� 8 block. The DV �eld with FSBM

for (a) Room (b) Fruit.

The resulting DV �eld is losslessly encoded using DPCM with a causal median

predictor to exploit the spatial redundancy among neighboring DV s. The reference

image and the DCD frame are encoded using a JPEG-like coder, with the only mod-

i�cation to the baseline JPEG [96] being that we allow each block to have a di�erent

quantization scale (QS). Consequently, the change of QS per block allows the encoder

to assign di�erent levels of quantization coarseness to each block. For each block one

among eight di�erent QS can be chosen from the set QS = f90; 80; � � � ; 20g, where

increasing values indicate �ner quantization. In our calculation of rate, we assume a

constant overhead is used for each block.

In our experiments, we compare the RD performance of the blockwise dependent

quantization scheme with those of: (i) framewise constant quantization and (ii) block-

wise independent optimal allocation. Note that a constant quantization scale is used

for all blocks in each image in (i), while the optimal quantization scale for each block
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in the two images is estimated with a �xed � in (ii). The RD points we plot are

obtained for � = f0; 0:1; 0:5; 1; 2; 100g.

Figure 3.6 compares RD performance of the synthesized image. In Figure 3.6, (a)

and (b) shows RD performances for the reference image, (c) compares the mean RD

performance in terms of the overall bit rate and the mean PSNR.

As shown in Figure 3.6, quantization selections for F1 a�ect RD performance

for F2. Table 3.1 compares the resulting RD performances for the dependent bit

allocation scheme to those for the independent blockwise bit allocation scheme. In

the table, \IND" and \DEP" denote the blockwise independent and dependent bit

allocation schemes, respectively. Note that at the same rate, Rmean = 0:727, the

dependent bit allocation scheme tends to assign relatively more bits to F1 and achieve

slightly higher PSNR gain for F2 even though it is using lower rate, as compared to

the independent scheme.

Method � R1/PSNR1 R2/PSNR2 Rmean/PSNRmean

IND 0.500 0.966/37.64 0.488/37.35 0.727/37.49

DEP 0.500 1.092/38.76 0.436/38.03 0.764/38.38

DEP 0.588 1.044/38.23 0.410/37.47 0.727/37.83

Table 3.1: Comparison of RD performance in terms of rate ([bpp]) and PSNR ([dB])

(Room.256).

Figure 3.7 shows the mean RD performance obtained for another stereo pair, for

which small vertical disparity vectors are allowed.

According to the experimental results, at the same rate, the proposed blockwise

dependent bit allocation method resulted in 0.2-0.5 dB improvement in mean PSNR

for the two images in a stereo pair, as compared to the optimal blockwise independent

quantization. Note that the mean PSNR gains mainly arise from the fact that the

�ner quantization for the reference image (F1), increasing the rate of F1 at the expense

of decreasing the rate for the target image (F2), improves the encoding e�ciency for

the target image (F2).
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Figure 3.6: RD performance comparison (Image: room.256, Block size=8� 8, SW =

16, jQj = 8, QS = f90; 80; � � � ; 20g and � = f0; 0:1; 0:5; 1; 2; 100g). The '+'-mark

denotes the DC with framewise quantization. The 'x'-mark and 'o'-mark correspond

to the DC with blockwise independent and dependent quantizations, respectively.

Each point is generated with one di�erent �. (a) The RD performance for the reference

image is similar for both types of blockwise allocation. (b) A better RD performance

for the target image can be achieved using the dependent bit allocation approach. (c)

The overall performance also improves when taking dependencies into account.
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Figure 3.7: RD performance comparison. (fruit.256, Block size=8 � 8, SW = 10,

jQj = 8, QS = f90; 80; � � � ; 20g and � = f0; 0:1; 0:5; 1; 2; 100g). The '+'-mark de-

notes the DC with framewise quantization. The 'x'-mark and 'o'-mark correspond

to the DC with blockwise independent and dependent quantizations, respectively.

RD characteristics for (a) the reference image, (b) the DCD frame, and (c) the two

images.
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Figure 3.8 shows mean ORD curves for the reference image (points marked with

x) and the dependent DCD frame (points marked with o), respectively. As shown, the

monotonicity property is satis�ed for the blockwise quantization, i:e: J(QS2jQS1) �

J(QS2jQS
�

1), for QS1 � QS�

2 . Thus if the quality of the reference frame improves,

so does the DCD, for the same quantization scale QS2, i:e: if � = 0, d(QS2jQS1) �

d(QS2jQS
�

1), for QS2 � QS�

2 [80]. Thus, the �ner quantization (QS1 = 90) leads to

more e�cient coding for the DCD frame in the RD sense so that the corresponding

mean ORD curve is closer to the origin. In addition, the plot shows that, in both

cases, the distortion, d(QS2jQS1), increases monotonically as the quantization scales

changes from �nest to coarsest, i:e: from 90 to 30.
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Figure 3.8: Mean ORD plots for the block in the reference image and the DCD

frame. (room.256, QS = f90; 70; 50; 30g) QS2 is changed for the DCD frame with

a given QS1. As shown, the monotonicity property is satis�ed, i:e: J(QS2jQS1) �
J(QS2jQS

�

1), for QS1 � QS�

1 . In particular, if � = 0, d(QS2jQS1) � d(QS2jQS
�

1), for

QS1 � QS�

1 .

Figure 3.9 shows the RD performance of the proposed fast algorithm. To keep

the �nest quantizers for the reference we set �1 to be zero and thus the selected �'s
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are f�1; �2g = f0; 0:5g, in our experiments. As explained in the previous section,

we restrict the search space to the nodes in between two paths selected by the two

�'s. Finally, the set of dependent quantization assignments is determined using the

pruned trellis. In our example, only 61% of original nodes and 37.5% of branches

remain in the pruned trellis, which results in signi�cant savings in the computation

of RD values. The resulting number of computation (and thus comparison) in the

pruned trellis is about 37.5% of the original. The overall RD performance remains

practically unchanged in this case, as compared to the original algorithm. Note

however that we need to make a good choice for the � range, based on the expected

quality level for the overall image. Thus, in the example, we show good performance

at high rates whereas the low rate points cannot be achieved since the corresponding

nodes have already been pruned out.

3.4 Discussion

We have proposed an optimal dependent bit allocation scheme for stereo image coding.

We have concentrated on quantization issues and assumed that the disparity estima-

tion was performed open-loop. The proposed dynamic programming algorithm leads

to an e�cient bit allocation between the reference image and the DCD frame. Accord-

ing to our experimental results, the proposed scheme provides signi�cant PSNR gains,

e:g: about 1-2 dB compared to DC with the framewise bit allocations and 0.2-0.5 dB

compared to DC with the blockwise independent bit allocation. In addition, we have

shown a method to reduce the computational complexity and the encoding delay of

the VA by exploiting the monotonicity property. Adopting reasonable RD models

can further reduce the computational complexity of the proposed scheme [91]. This

framework has been developed for a JPEG-like codec but it can be directly extended

to an MPEG-like codec for stereo images, without the loss of generality.

Additional research is required to achieve a more complete allocation algorithm

including the disparity estimation. Further study of our algorithm may lead to a
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Figure 3.9: RD performance comparison of the fast algorithm. (room.256, Block

size= 8 � 8, SW = 10, jQj = 8, QS = f90; 80; � � � ; 20g, �1 = [0; 0:5], and � =

f0; 0:1; 0:5; 1; 2; 100g). The '*'-mark denotes the proposed fast algorithm, which only

uses 61% of the original nodes (the resulting computation corresponds to about 22.7%

of the original). The '+'-mark denotes the DC with framewise quantization. The 'x'-

mark and 'o'-mark correspond to the DC with blockwise independent and dependent

quantizations, respectively. RD characteristics for (a) the reference image, (b) the

DCD frame, and (c) the two images combined.
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better understanding of the similar issues in blockwise dependent allocation for video

coding, where an optimal solution cannot be achieved due to the 2D nature of the

dependencies. Finally, the extension to stereo video coding [11,44,97], in which both

temporal and binocular dependencies have to be taken into account, is another area

of future work.
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Chapter 4

Modi�ed Overlapped Block Disparity

Compensation

In this chapter, we propose a modi�ed overlapped block matching (OBM) scheme

for stereo image coding. The OBM scheme has been introduced in video coding, as

a promising way to reduce blocking artifacts by using multiple vectors for a block,

while maintaining the advantages of the �xed size block matching framework. Even

though it overcomes some drawbacks of block matching schemes, OBM has its own

limitations. For example, estimating an optimal displacement vector �eld within the

OBM framework may require an iterative search procedure. In addition, OBM does

not always guarantee a consistent DV �eld, even after several iterations, because

the estimation considers only the magnitude of the prediction error as a measure.

Therefore, we propose a modi�ed OBM scheme for stereo image coding, which allows

both consistent disparity estimation and e�cient disparity compensation, without

the need for an iterative procedure. The computational burden resulting from the

iterations is reduced by decoupling the encoding into estimation and compensation.

Consistent disparity estimation is performed by using a causal MRF model and a

half-pixel search, while maintaining (or reducing) the energy level of the disparity

compensated di�erence frame. The compensation e�ciency is improved by both

applying OBM and interpolating the reference image in half pixel accuracy.
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4.1 Introduction

An e�cient disparity estimation/compensation (DE/DC) has been a main focus

of the research on stereo image/video coding since the pioneering work by Lukacs

[12,13,41,43,53,86]. However, the various proposed schemes only relieve those prob-

lems in part. For example, DE with a Markov random �eld (MRF) model can over-

come the inconsistency by taking advantage of disparity information of neighboring

blocks [27, 86, 98]. Subspace projection is another way of estimating a smooth DV

�eld [41]. However, both schemes have limitations in reducing the energy level of

the DCD frame. The energy level of the DCD frame can be reduced using non-

integer (half or quarter) pixel-based search but that increases the rate of the DV

�eld. Blocking artifacts also can be reduced by adopting various other methods

such as post-processing, segmentation-based estimation/compensation, etc. How-

ever, many post-processing algorithms degrade the quality of the whole image as well

as the block boundaries. Also, the cost to pay for the segmentation is the increase in

overhead to describe the structure of the segmentation [50, 53, 57].

Another promising way to improve encoding e�ciency for stereo images is adopt-

ing overlapped block motion compensation (OBMC), which has been used for video

coding [99{102]. In general, OBMC reduces blocking artifacts by linearly combining

multiple blocks provided by the vectors of a block and its neighbors. For practical im-

plementations, non-iterative OBMC schemes have been proposed. For example, block

matching (BM) [99] or windowed BM [103] is �rst applied for the motion estimation

(ME), without considering the e�ects of neighboring blocks, and then OBMC is per-

formed only for motion compensation (MC). However, these schemes do not always

provide an optimal motion vector (MV) �eld for OBMC. Even the MV �eld itself

may not be optimal because the estimation only depends on the prediction error, i:e:

mean square error (MSE) or mean absolute error (MAE) of the block. Meanwhile,

an optimal MV �eld estimation for OBMC requires complicated iterative schemes to

resolve the noncausal spatial interaction among MVs of neighboring blocks.
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In conventional approaches, to reduce complexity resulting from the non-causality

problem in ME, a \two-step procedure" is usually adopted, i:e: an initial MV �eld

is estimated using FSBM and then the DV �eld is re�ned to improve the encoding

performance. This process repeats until the DV �eld converges to an optimal state.

However, this iterative process makes optimal OBMC di�cult in real-time applica-

tions [100]. Therefore, at the cost of slightly reduced performance, modi�ed OBMC

schemes such as raster scan OBMC [104] or checkerboard scan OBMC [105,106], have

been proposed to reduce computational complexity. Note however that those schemes

do not always guarantee a smooth displacement (disparity or motion) vector �eld. In

both cases, due to the inconsistency in motion estimation, the overhead may be high

in cases where the displacement �eld is di�erentially encoded using variable-length

codes.

Another weakness of OBMC stems from the �xed shape of the window. Note

that spreading compensation errors tends to reduce blocking artifacts, but it might

degrade compensation e�ciency, particularly for those blocks that can be compen-

sated e�ectively without OBMC. Orchard et al. showed that the optimal shape of the

OBMC window could be determined with the knowledge of the correlation matrix of

the image [100]. However, the required computational complexity is extremely high

for the adaptive window to be implemented in real-time applications.

Therefore, in this chapter, we propose an e�ective but non-iterative OBM scheme

for stereo image coding. In the proposed overlapped block disparity compensation

(OBDC) scheme, the computational complexity resulting from the iterative DE has

been reduced by decoupling the encoding procedure into two steps, i:e: �rst disparity

estimation and then disparity compensation. Note however that non-iterative schemes

may not provide an optimal DV �eld for OBDC in general. Therefore, we propose an

alternative DE/DC strategy to overcome the non-optimality problem. First, the DE

with a modi�ed MRF model and half pixel search results in a smooth DV �eld without

excessively increasing the energy level of the prediction error and thus tends to reduce
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bit rate for the DV �eld. Then, given a smooth DV �eld, the selective OBDC in half

pixel accuracy reduces blocking artifacts and energy level of the DCD frame. Note

that the selective OBDC adaptively changes the shape of the OBM window to prevent

the oversmoothing problem and thus lowers the computational complexity as well as

the energy level of the DCD frame.

The main novelty of this research is that we introduce an OBDC scheme for stereo

image coding for the �rst time. In the proposed OBDC, the overall encoding per-

formance for the target image is achieved by estimating a smooth DV �eld, while

reducing the energy level of the DCD frame, at a fraction of the computation that

would be required by an OBDC based on conventional OBMC. To verify the e�ective-

ness, we compare the RD performance of the proposed OBDC scheme with various

FSBM-based DE/DC schemes such as (i) simple FSBM, (ii) FSBM with MRF model

and (iii) OBDC based on OBMC. According to our experimental results, the proposed

scheme achieves about 0.5-1 dB gain in terms of PSNR as well as better perceptual

quality, compared to OBDC. Note that the resulting smooth DV �eld also helps gen-

erate intermediate-views with lower visual artifacts in the decoder. The proposed

OBDC scheme can also be applicable to video coding without the loss of generality.

This chapter is organized as follows. In Section 4.2, we describe the proposed

two-step hybrid scheme, the modi�ed OBM with MRF model and half-pixel search.

In Section 4.3, we provide some experimental results to compare the e�ectiveness of

the proposed scheme. Conclusions are summarized in Section 4.4.

4.2 Modi�ed Overlapped Block Matching

4.2.1 Notation and De�nition

We de�ne the (i; j)-th overlapping block in the target image as s2ij and thus each target

block is estimated/compensated as a windowed-sum of a block and its neighboring

blocks along the corresponding DVs. In conventional FSBM, s2ij equals f
2
ij and thus
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each target block is estimated from only one block in the reference image along the

disparity vector vij.

In general, the overlapped window W is designed to decay toward the boundaries

on the assumption that blockwise estimation error increases as a pixel moves away

from the block center and the increase is symmetric with respect to the block center

[107]. Another property of the window is that the windowed-sum over the image

is identical to the original image, i:e: F =
P

ij W � sij. Typical selections for the

overlapped window are the sinusoidal and the bilinear windows1. An optimal shape for

the overlapped window can also be considered but the resulting improvement is not a

signi�cant one, given the proportional increase in the computational complexity [100].

In our experiments, therefore, we adopt the bilinear window as shown in Figure 4.1

(a). For a 2B � 2B window, window components corresponding to each region of a

block are shown in Figure 4.1 (b)-(e).

The selected separable bilinear window W is de�ned as follows,

W (m;n) = Wm �Wn

Wm = Wn =

8><
>:

m+0:5
B

; 0 � m < B

W2B�m�1; B � m < 2B
(4.1)

whereWm andWn denote the separable vertical and horizontal windows, respectively.

4.2.2 Disparity Estimation Using Overlapped Windows

Figure 4.2 shows the DE using overlapped window and a smoothness constraint. In

general, the DV �eld obtained by the overlapped window is not likely to be consistent

because the MSE/MAE-based prediction is sensitive to various noise e�ects such as

intensity variation. Note that the two images in a pair may have slightly di�erent

1Note that FSBM can be considered as a OBM with a rectangular function.
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Figure 4.1: Bilinear window function for the overlapped block matching and its com-

bined weighting matrices. (a) Bilinear OBM window (16 � 16) (b) Main (f̂ 2
ij�vij

)

(c) Horizontal (f̂ 2
ij(N)�vi�1j

; f̂
2
ij(S)�vi+1j

) (d) Vertical (f̂ 2
ij(W )�vij�1

); f̂ 2
ij(E)�vij+1

) (e) Cor-

ner (f̂ 2
ij(NW )�vi�1j�1

; f̂
2
ij(NE)�vi�1j+1

; f̂
2
ij(SW )�vi+1j�1

; f̂
2
ij(SE)�vi+1j+1

). The capital letters

(N,W,S,E) denote locations of quadrants of a block, i:e: north, west, south, and east,

respectively.

intensity levels due to the camera noise and lighting condition. In addition, the lack

of texture and/or repetitive texture may disturb consistent estimation.

Therefore, we introduce an MRF model to estimate a smooth DV �eld by con-

sidering the DV �eld and the estimation error together. In general, conventional

MRF-based schemes have high computational complexity because they require sev-

eral (stochastic) iterations to estimate an optimal (pixelwise) dense DV �eld [84].

Thus, we propose a simpli�ed blockwise DE scheme for stereo image coding, which

estimates a smooth DV �eld without complicated iterations by considering only blocks

in a �rst order causal neighborhood as shown in Figure 4.3. Meanwhile, the same

neighborhood is used for encoding the DV �eld, i:e: the di�erence between vij and the

median of its causal neighborhood is encoded using DPCM. As a result, estimating a

smooth DV �eld contributes to reducing side information, which is especially essential

at low rate coding.
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Figure 4.2: Disparity estimation based on block matching with an enlarged window.

In the target image, shaded and dashed areas correspond to a block, fij, and an

enlarged block, sij, respectively.

Figure 4.3: A �rst order causal neighborhood. The same neighborhood is used in the

encoding of the DV �eld, i:e: Diff(vij) = vij �median(vWij ; v
N
ij ; v

NE
ij ).
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We use the formulation in Chapter 2.4.5.2 for the MRF-based DE. In (2.20), we

set � equal to be zero and separately determine �ij according to the prediction error

level. Then, for DE based on overlapping block, the corresponding cost function in

(2.20) has to be changed as follows,

U(V jF1; F2) = U(F2jF1; V ) + U(V ) (4.2)

/

X

(i;j)2


fjj(1� �)W � (s2ij � s
1
ij�vij

)jj2 + �

X
�

jjvij � v
�
ijjj

2
g

where � denotes a neighborhood and �(> 0) is a weighting constant controlling the

degree of smoothness. Each term of the right side in (4.2) represents the constraints of

the similarity between stereo pair for a given disparity and an a priori assumption on

the smoothness of the DV �eld. Note that setting � = 0,W = I and sij = fij in (4.2),

corresponds to conventional FSBM, which only assumes that the image intensities in

the stereo pair are similar along the DV.

Also note that, in the proposed scheme, the choice of model parameters is relatively

robust. For example, a small �xed weight (e:g: � = 0:1) is su�cient for the smoothness

term for most images because the smoothness constraint is exploited only to avoid

various local minima in DE2. However, conventional MRF schemes, mainly employed

in computer vision, require more careful selection of an \optimal" set of weighting

parameters, in order to provide good results.

To further reduce the prediction error, the DE/DC is performed in half pixel

accuracy. The projected images in a stereo pair are sub-sampled versions of the real

scene and thus the resulting correspondence between two images may not be aligned

with integer pixel location. Therefore, estimating/compensating the target image

on the interpolated reference image along the disparity vectors helps to estimate

a more accurate DV �eld and thus reduces the energy of the DCD frame. The

performance can be increased by adopting more elegant interpolation methods such

2An optimal value of � can be selected by Lagrangian optimization.

72



as an approximated ideal �lter or Wiener �lter [108, 109]. Clearly the higher the

subpixel accuracy (i:e: the larger displacement space), the greater the probability of

�nding a good match. Note however that we cannot choose an arbitrarily small value

because, as the subpixel accuracy increases, both the rate for the resulting DV �eld

and the number of candidate blocks being compared in the search area increase at

the same time. In our experiments, we use bilinear interpolation, as a compromise, to

obtain the half-pixel precision intensity value, as used in most video coding standards.

4.2.3 Encoding with Selective OBDC

In general, OBDC is e�cient only when the energy level of the DCD block is sig-

ni�cantly di�erent with its neighboring blocks or when high frequency components

exist in the DCD block. Thus, during the DE process, a block with higher prediction

error than a threshold is selected as an OBDC candidate. The DCD is calculated

by taking the di�erence between the predicted block and the original block in the

target image, i:e: DCD = f
2
ij � f̂

2
ij. Let �

0 and � denote an initial occlusion and an

occlusion, respectively. Then, OBDC is only considered for the block with �
0 = 1.

Note that a block with �0ij = 0 can be compensated e�ectively without OBDC. First,

�
0
ij = 1, if jDCDj > T�, where T� denotes a threshold value. For each block with

�
0
ij = 1, if the energy level of the DCD using OBDC is lower as compared to block

DC (BDC), then �ij = 1. Meanwhile, a block having the same DV with its neighbors

is selected �ij = 0, since there is no RD gain by OBDC when the disparity vectors of

the neighboring blocks are the same. Otherwise, i:e if there is no gain from BDC or

OBDC, the original intensity block is encoded instead of the DCD block.

As shown in Figure 4.4, in OBDC, a target block is inuenced by the nine over-

lapped blocks in the reference image along the corresponding disparity vectors. Thus,

the whole compensation is obtained by summing up the window-operated nine blocks.
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Figure 4.4: Disparity compensation based on the overlapped block matching. Colored

and dashed areas correspond to a block, fij, and an enlarged block, sij, respectively.

As explained in the proposed scheme, OBDC is selectively applied to those blocks

yielding higher prediction errors, i:e: �ij = 1, while BDC is applied to all the others.

This reduces computational complexity of OBDC, while preventing oversmoothing

e�ects. Figure 4.5 shows an example of resulting window shapes, when �ij = 0 and

�'s of other blocks are one. An opposite example is shown in Figure 4.6.

Note that, as shown in Figure 4.4, in the case where the window width and height

are double of those of block, i:e: Bw = 2 � B, one quarter of a block only depends

on three neighboring blocks and itself. For example, each pixel in the upper left part

(NW) of the target block f
2
ij(NW ) is compensated by the weighted-sum of only four

blocks as follows

f̂
2
ij(NW ) = a � f̂

2
ij(NW )�vij

+ b � f̂
2
ij(NW )�vi�1j

+ c � f̂
2
ij(NW )�vi�1j�1

+ d � f̂
2
ij(NW )�vij�1

(4.3)

where (a; b; c; d) are the parts of the window W as shown in Figure 4.4. If �ij = 0,

the neighboring blocks are regarded as having the same disparity vectors and thus

e�ects of neighboring blocks are ignored. Note however that the block with �ij = 0

a�ects neighboring blocks with � = 1. These nonsymmetrical interaction prevents

oversmoothing problem in part, while reducing blocking artifacts.

74



0

5

10

15

0
5

10
15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a)

0

5

10

15

0
5

10
15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b)

0
5

10
15

0

5

10

15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c)

0

5

10

15

0
5

10
15

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d)

Figure 4.5: Adaptive windowing for selective overlapped block disparity compensa-

tion. Given �ij = 0 and �i�1j�1 = �i�1j = �ij�1 = 1, OBM windows are changed

adaptively according to the �'s. OBM windows for (a) si�1j�1 (b) si�1j (c) sij�1 (d)

sij.
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Figure 4.6: Adaptive windowing for selective overlapped block disparity compensa-

tion. Given �ij = 1 and �i�1j�1 = �i�1j = �ij�1 = 0, OBM windows are changed

adaptively according to the �'s. OBM windows for (a) si�1j�1 (b) si�1j (c) sij�1 (d)

sij.
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The encoding procedure based on the proposed selective OBDC is as follows

� Step 0 The reference image is independently encoded using JPEG.

� Step 1 The disparity is estimated using an enlarged bilinear window with

Bw = 2B. The window function W is operated on the disparity-predicted

di�erence, without considering DE errors of neighboring blocks, i:e: eobm;ij =

jjW�fs
2
ij�s

1
ij�vij

gjj. The corresponding DE cost is de�ned by adding a smooth-

ness constraint as shown in (4.2). The estimation is performed in half-pixel

accuracy.

� Step 2 Given a DV, a block is determined as an OBDC candidate, if the

energy level of the di�erence, DCD = f
2
ij � f̂

2
ij, is larger than the threshold. If

jDCDj > T�, �
0
ij = 1. Otherwise, �0ij = 0.

� Step3 After DE with windowed BM, for each block with �
0
ij = 1, the DV is

re�ned by considering OBDC. If the resulting DCD has less energy than that of

BDC, the block is selected as OBDC block, i:e: �ij = 1. If there is no gain from

either BDC or OBDC, the block is replaced with the original intensity block.

� Step 4 OBDC is selectively performed for those blocks with �ij = 1 by summing

up all windowed compensation blocks based on (4.3).

� Step 5 The resulting DV �eld and DCD frame are encoded using DPCM and

JPEG, respectively. For DPCM of the DV �eld, its median is selected from the

pre-de�ned causal neighborhood.

At the decoder, the reference image is decoded �rst and then the target image

is reconstructed according to �ij, e:g: by performing OBDC, if �ij = 1 and BDC,

otherwise. The �nal target image is reconstructed by adding information from the

DCD for those blocks that have been predicted.
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4.3 Experimental Results

In this experiment, the right image is selected as reference image and then a constant

quantization factor (Q1 = 80) is assigned for that reference image. Exhaustive search

is performed within a search range of [0;�15] pixel in half-pixel accuracy. For the

images that do not satisfy the parallax constraints, we search �2 pixels in vertical

direction. In order to test the e�ectiveness of the proposed algorithm, we have simu-

lated its performance for two pairs of stereo images; a synthesized scene, Room, and

a natural scene, Aqua. The image sizes of the pairs are 256 � 256 and 288 � 360,

respectively. The used stereo pairs are as shown in Figures B.2 and B.33.

First, we investigate how the block size a�ects the RD performance. Figure 4.7

compares the resulting DV �elds of the Room image, which are obtained from FSBM

for six di�erent block sizes, from 32 � 32 to 1 � 1. Note that as the block size

is reduced the resulting disparity �eld appears to be noisier, even though those DV

�elds reduce the estimation errors. The smaller block sizes also result in increase of

the rates required to transmit the DV �elds and thus may not be useful in practice.

Figure 4.8 shows the corresponding RD curves with di�erent block sizes. The

performance is measured in terms of the bit rates of the encoded images and peak

signal to noise ratio (PSNR). As expected, DE/DC-based coding provides better

coding performance than two independent coding (JPEG) of each image, because

DE/DC-based coding takes advantage of the binocular redundancy in a stereo pair.

However, obviously, as we reduce the block size(� 2 � 2), the bit rate of the DV

�eld increases while the estimation error is reduced. As a compromise between the

overhead and the energy of the estimation error, we choose a block size of 8 � 8 for

DE in the following experiments.

Figure 4.9 compares the DV �elds of for various disparity estimation methods: (i)

FSBM, (ii) DE with MRF (in [86]), (iii) DE with OBM, (iv) MRF with half-pixel

3The decoded images and the used source codes (based on JPEG coder), are available at

http://escalus.usc.edu/~wwoo/Stereo/
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Disparity vector �eld using a simple FSBM with di�erent size of block

(Room). (a) 32 � 32 (0.003 bps) (b) 16 � 16 (0.012 bps) (c) 8 � 8 (0.046 bps) (d) 4

� 4 (0.169 bps) (e) 2 � 2 (0.725 bps) (f) 1 � 1 (3.151 bps)
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Figure 4.8: RD plot of FSBM with di�erent block sizes. In the plot, `-s-' denotes a

square-mark line, and `-<-' and `-v-' denote the direction of triangle in the triangle-

mark line. The subscript represents the block size. Note that the RD performance

of the smaller block (e:g: 2� 2) is worse than that of JPEG, because the rate for the

DV �eld is too high.
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search, (v) OBM with half-pixel search and (vi) the proposed scheme (OBM with

MRF and half-pixel search). As expected, the MRF-based DE estimates a smoother

DV �eld by the tradeo� between the spatial correlation in a stereo pair and the

smoothness in the DV �eld. The proposed hybrid method provides the most smooth

and consistent DV �eld.

Figure 4.10 (a) and (b) compare the corresponding RD plots for the two stereo

pairs, Room and Aqua, respectively. The proposed selective OBDC scheme is com-

pared to FSBM, MRF and OBMC in terms of PSNR and bit rate of the target image.

The results of JPEG without disparity compensation are also provided for reference.

Note that for the natural image pair (Aqua), the RD gain of FSBM is relatively small,

compared to those of Room.

As expected, the proposed selective OBDC in half-pixel accuracy results in an

improved overall encoding performance, i:e: a lower bit rate for the DV �eld and

DCD frame while maintaining a PSNR gain. The modi�ed MRF model-based DE

maintains the energy level of the DCD frame (or slightly increases according to �),

while estimating a consistent DV �eld using smoothness constraint within causal

neighbors. Then, the estimation/compensation in half-pixel accuracy reduces the

energy level of the DCD frame. Note that the smoothness term also reduces the

increase in rate of the DV �eld due to the half-pixel search. Selective OBDC reduces

oversmoothing problem as well as blocking artifacts by summing the neighboring

compensated blocks using the changing OBM window. According to our experimental

results, the proposed modi�ed OBDC scheme obtains a higher PSNR, about 0.5-1 dB,

as well as better perceptual quality, over conventional OBMC schemes. In addition,

selectively applying OBDC reduced the computational complexity over OBMC.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: DV �elds for various disparity estimation methods: (a) FSBM (0.046

bps), (b) DE with MRF (0.032 bps), (c) DE with OBM (0.038 bps), (d) MRF with

half-pixel search (0.042 bps), (e) OBM with half-pixel search (0.065 bps) and (f)

OBD with MRF and half-pixel search (0.060 bps). The combined method provides

the most smooth and consistent DV �eld.
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Figure 4.10: The resulting RD plots. (a) Room (b) Aqua. Various DE/DC methods

(block size of 8 � 8, quality factor for the reference image Qf1=80): The proposed

hybrid scheme is compared with JPEG, FSBM, FSBM with MRF, and OBM. In the

plot, `-s-' denotes the square-mark line.
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4.4 Discussion

We presented a novel hybrid DE/DC scheme for stereo image coding. As expected,

MRF-based DE allows estimating a smooth DV �eld. Also, selective OBDC in half-

pixel accuracy results in better compensation by reducing the energy level of the DCD

frame as well as the blocking artifacts. According to our experimental results, the

proposed OBDC scheme provides a higher PSNR as well as better perceptual quality

over other FSBM schemes such as MRF or OBMC, encoded at the same rate. The

results of the proposed selective OBDC schemes also can be applied into video coding

without the loss of generality. It is also worth noting that obtaining a smooth disparity

is useful for multi-view video coding since the robustness against noise can help reduce

the temporal redundancy between two consecutive disparity �elds. However, there

remain several problems to be resolved. The overall encoding performance could be

improved by combining the proposed DE scheme and the dependent bit allocation

scheme proposed in [39, 59].
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Chapter 5

MRF-based Hierarchical Block Segmentation

In this chapter, we propose a novel quadtree-based disparity estimation/compensation

(DE/DC) algorithm for stereo image coding. Variable size block matching (VSBM)

is a way of overcoming those well-known limitations of �xed size block matching

(FSBM), such as inaccurate disparity estimation and blocking artifacts in the de-

coded target image. However, VSMB may su�er from the inconsistency problem in

disparity estimation especially as the subblock becomes small. In addition, the re-

sulting disparity compensated di�erence frame contains high frequency components

along subblock boundaries as a result of block segmentation. Therefore, we propose

a hybrid quadtree-based DC/DC scheme, where DE with MRF model-based VSBM

allows estimation of a consistent disparity �eld. The combination of RD cost-based

block segmentation and selective overlapped block disparity compensation improves

the encoding e�ciency over conventional VSBM schemes. According to the experi-

mental results, the proposed block segmentation scheme achieves a higher PSNR gain,

while generating a relatively consistent disparity �eld, as compared to conventional

VSBM schemes. The proposed scheme also yields fewer visual artifacts along object

boundaries.
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5.1 Introduction

As with in the video case, block-based predictive coding has been widely used to en-

code stereo images/video. However, as explained in Chapter 4, inaccurate estimation

is inevitable in �xed size block matching (FSBM). Besides, FSBM may introduce

the annoying blocking artifacts in the decoded target image at a low rate coding,

where only few bits are employed to encode the disparity compensated di�erence

(DCD) frame. Since Lukacs [12] introduced FSBM in stereo image coding, various

block-based DE/DC schemes have been studied to reduce the well-known drawbacks

of FSBM [41, 45, 86, 110]. Nevertheless, conventional FSBM-based approaches only

relieve few of the problems.

An alternative is a hierarchical approach relaxing the uniform-disparity-per-block

assumption [51,53,111,112]. In term of the DCD frame, it is desirable to segment an

image into smaller blocks to reduce the entropy of the DCD frame. However, it may

not be worth computing a dense disparity �eld, if the cost of transmitting or storing

the DV �eld is too high. On the other hand, the number of blocks could not be too few

because larger blocks result in higher estimation errors. As a compromise, variable

size block matching (VSBM) has been introduced in image/video coding. A main

advantage of VSBM is that larger blocks are used in homogeneous areas (background

or inside of object) and smaller blocks are used in object boundary areas. Thus, the

disparity compensation can be performed properly, even if the initial block contains

several objects with di�erent disparity vectors or contains an occlusion area. The

representation of the resulting disparity vector (DV) �eld generally relies on a binary

tree [113] or a quad tree [46, 48, 50, 77, 114].

However, like FSBM, the quadtree-based VSBM has similar limitation in a con-

sistent DV �eld estimation. In general, block segmentation is determined by various

intuitive ad hoc criteria such as threshold, features, local variance of the DCD, local

motion activities and/or rate-distortion (RD) [47,48,111,113,115{119]. However even

if RD-based segmentation approaches are used, the segmentation may not take into
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account the consistency of the displacement. As a result, DE with smaller blocks

su�ers from the noise e�ects or aperture problem
1
. Consequently, the neighboring

blocks may have many di�erent vectors, resulting in ine�cient encoding for the DV

�eld, because each vector minimizes only the prediction error of the block. Usually,

smaller blocks such as 2�2 or 1�1 are very sensitive to noise and thus, in conventional

VSBM, 8� 8 (or 4� 4) is considered as the smallest block
2
. In addition, the segmen-

tation of the block into smaller subblocks may result in the DCD frame containing

high frequency components, within the initial block, along subblock boundaries. As

a result, DCT for those subblocks may not e�cient because the segmented block

requires more bits to encode those high frequency components.

Therefore, we propose a novel quadtree-based disparity estimation/compensation

scheme to overcome those weaknesses of VSBM. The proposed scheme consists of

three components: (i) disparity estimation using an MRF model, (ii) hierarchical

block segmentation by the quadtree pruning based on the simpli�ed RD cost and (iii)

selective overlapped block disparity compensation (OBDC) for the segmented sub-

blocks. The novelty of the proposed VSBM scheme is that the hierarchical disparity

estimation with MRF model allows estimating a consistent DV �eld, i:e: a relatively

smoother DV �eld. Obtaining a smooth DV �eld is bene�cial as it reduces the rate for

the DV �eld itself and segmenting blocks based on the RD cost improves the encod-

ing e�ciency. In addition, the selective OBDC for the segmented subblocks improves

the encoding e�ciency by reducing blocking artifacts within segmented blocks. The

main improvement over the OBDC scheme proposed in Chapter 4 comes from the

fact that we segment the occlusion blocks according to the prede�ned RD cost and

thus we use overlapped windows with di�erent sizes and shapes for those segmented

subblocks. For selective OBDC, no side information is required because a quadtree

1In areas without signi�cant features (or with repetitive features), a smaller block usually su�er

from many local minima within search window during displacement estimation.
2Note that in H.26x, for each macroblock block, the segmentation is preset only one time (from

16� 16 to 8� 8), which may not be suitable for object-based coding such as MPEG-4.
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already contains block segmentation information. Consequently, the proposed scheme

allows more accurate disparity estimation/compensation along the object boundaries

and thus reduces the visual artifacts along the object boundaries while maintaining

encoding e�ciency of the target image.

The proposed VSBM scheme is also of general interest in image analysis or synthe-

sis/generation as well as image coding by producing useful intermediate information

for various applications. For example, in new standards such as MPEG-4, the pro-

posed scheme can help object-based segmentation of the image by combining both the

intensity and the disparity information together. In video coding, the motion informa-

tion has been used to estimate the boundaries of moving objects according to motion

homogeneity, under the assumption that the objects have rigid motion. Thus, the

applications have been restricted to simple video-phone-like sequences [120]. Mean-

while, in stereo images, an image can be segmented into di�erent objects because

not only moving objects but also all objects within the scene have di�erent disparity

vectors.

According to our experimental results, the proposed scheme provides higher RD

performance as well as better perceptual quality, while also being computationally

e�cient. To prove the e�ectiveness, we compare the proposed scheme with a simple

VSBM scheme. According to our experimental results, the proposed scheme results

in an improved peak-signal-to-noise-ratio (PSNR) gain, about 0.5-1.5 dB, as well as

better perceptual quality, as compared to simple VSBM, which segments blocks based

on threshold values.

This chapter is organized as follows. In Section 5.2, we briey explain the main

components of the proposed scheme, MRF model-based disparity estimation and RD-

based block segmentation. The proposed encoding procedure is described in Section

5.3. In Section 5.4, we provide some experimental results to compare the e�ectiveness

of the proposed scheme. The conclusion is made in Section 5.5.
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5.2 Variable Size Block Matching

5.2.1 DE with MRF Model for VSBM

In VSBM, each block is successively subdivided into quadrants until no further di-

vision is necessary. The basic idea of VSBM-based coding is that the subblocks are

encoded only when they signi�cantly improve encoding e�ciency over their upper

block. The main advantage of the hierarchical DE with MRF model is that it can

overcome the mismatching problem (inconsistency of the DV �eld) by considering

blocks in upper level as well as neighboring blocks, while maintaining encoding e�-

ciency.

To estimate a smooth DV �eld, we consider the DV �eld as a coupled MRF model

consisting of disparity process and occlusion process. We can similarly formulate DE

problem as we did in Chapter 4 and in [86, 110]. The main di�erence is that we

de�ne a neighborhood in hierarchical layers as shown in Figure 5.1. We �rst derive

an energy equation for hierarchical block matching based on the MRF model, which

allows us to �nd a smooth DV �eld. In order to achieve an e�cient estimation of

the DV �eld, we can impose some useful and realistic constraints on the DV �eld,

such as similar intensity level between the two corresponding images in a stereo pair,

smooth disparity �eld, occlusion �eld, etc. Note that we only segment occlusion block

to improve the overall encoding e�ciency.

For the proposed VSBM, (2.20) has to be changed as follows,

U(V;�jF1; F2) =
X

i2N

K�1X

k=0

f(1� �)(1� �lki )jjb
lk
2i � blk�v

lk

1i jj
2

(5.1)

+�
X

�lk

(1� �
�lk
i )(vlki � v

�lk
i )

2
+ �
X

c2Cl

Vc(�
lk
i ; �

�lk
i )g

where blk denotes the k-th block in the l-th level of the segmentation, where K = 4
l
for

the quadtree-based segmentation. Similarly, vlk and �lk denote the disparity vector

and the occlusion status of blk.
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Figure 5.1: Neighborhood System For VSBM. We use 1
st
order neighborhood system.

The larger neighborhood, the greater the inuence from its neighborhood.

The �rst term of the right side in (5.1) represents the constraints of the similarity

between two images in a stereo pair for a given disparity and occlusion. Note that the

block containing multiple objects or object boundaries results in erroneous matching.

If the block in F1 fails to be compensated from a block in F2, the block is selected as

an occlusion candidate and then segmented further into subsequent subblocks. Note

that if we ignore the occlusion and the smoothness terms, the above algorithm simply

becomes the conventional block matching.

The second term in (5.1) represents an a priori assumption on the smoothness

of the DV �eld, V , given the occlusion, �, which will be used to tradeo� between

the smoothness and the estimation error. We assume that the real disparity �eld is

smooth except for the object boundaries (due to occlusion) that are related to the

depth discontinuities. Note that generating a smooth disparity �eld not only mitigates

the e�ects of noise, but also increases the encoding e�ciency for the disparity, because

similar disparities in adjacent blocks results in lower entropy. For VSBM, we de�ne

a neighborhood system in a hierarchical structure as shown in Figure 5.1.

The last term in (5.1) denotes an occlusion process. We can impose an a priori

assumption on the occlusion �eld such as connected occlusion. The isolated occlusion
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is inhibited. In this experiments, we set � to be zero and then decide the initial

candidate by comparing the magnitude of the mean absolute error (MAE) of the

block with a pre-selected threshold. The detailed occlusion block selection procedure

is explained in Chapter 4.

Finally, we selectively apply VSBM and OBDC for those occlusion blocks.

5.2.2 RD-based Hierarchical Block Segmentation

In order to achieve better overall coding performance than the FSBM-based meth-

ods, further segmentation of an occlusion block has to be performed in an e�cient

manner. An optimal hierarchical block segmentation can be searched in the RD-plot

using a Lagrange multiplier (� � 0), by minimizing a cost function according to the

available bit budget, Rbudget, or allowable distortion, Dbudget. In general, RD-based

segmentation can be considered in various aspects. First of all, all the blocks in an

image can be considered simultaneously to achieve a global optimization [39]. Also

the bu�er-constrained optimal block segmentation can be performed for groups of

blocks [81, 121]. In this chapter, we perform the block segmentation for each block

on the assumption that minimizing the cost of each block also minimizes the global

coding cost [48, 82].

Quadtree can be constructed by using top-down or bottom-up approaches. In this

chapter, we adopt a top-down approach, where a hierarchical block segmentation can

be performed using the Lagrangian cost. For blockwise segmentation, the number of

possible trees can be approximated as S �= 2
4l
, where l denotes the depth of a tree.

For example, for l = 4 (from 32 � 32 to 2 � 2), S �= 2
256

. Therefore, the optimal

segmentation based on exhaustive search is too computationally expensive. To reduce

the complexity, we adopt a tree-pruning technique.

Let T and P , respectively, be sets of full trees and pruned trees, i:e: T2 = fT2i; 0 �

i < Ng and P2 = fP2i; 0 � i < Ng. In VSBM, an initial block fi is assigned to the

root node of Ti or Pi. In quadtree-based VSBM, an initial block (the usual size
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is 32 � 32 or 16 � 16) is segmented into a l-level hierarchical structure, where the

block size of a subblock is B � 2�l � B � 2�l. The number of subblocks is K = 4
l
,

where l denotes the level (or depth) of tree and the maximum level is L = log2B.

The subsequent subblocks are assigned to the children nodes, consisting of leaf and

internal nodes. A leaf node is de�ned as a node without children. Meanwhile, a node

with children is called an internal node. The pruned tree is represented by using a

sequence of bits, where "0" and "1" are used to indicate an internal or a leaf node,

respectively.

In general, for a block segmentation considering the rate and distortion, the cost

of the pruned tree P �
is less than that of the full tree T , i:e: C(P �

) � C(T ), where

R(P �
) � R(T ) and D(P �

) � D(T ). To achieve an e�cient segmentation, the decision

of block segmentation can be made by comparing the Lagrangian costs of the parent

and children nodes. We �rst de�ne a blockwise Lagrangian cost cl for the hierarchical

segmentation as follows,

cli =
X

k2cl
i

fdlki + �rlki g (5.2)

where dlk and rlk denote the distortion and the rate of the block, blki , respectively.

Lagrange multiplier (� � 0) controls the weight between d and r. Note that the rate

rl for the blocks in l-th level is de�ned as a sum of bit rates, r(vl) + r(dcdl), where v

and dcd denote disparity vectors and the resulting DCD of the block.

For the quadtree-based segmentation, the required bits are increased four times

for each segmentation, if we assume the DV �eld is encoded with �xed length code.

The required bits for a DV are (at most)
dlog

2
W e

B�B
� [bits/pixel], where W denotes the

maximum range of the search window and de represents a ceiling function. The rate

for the tree also has to be counted in calculation of the rate r(vlk). The tree structure

is encoded by a sequence of bits representing the status of the tree node, e:g: "0" and

"1" denote a leaf node and a internal node, respectively as shown in Figures 5.2. As

91



a result, 4 bits are required to describe the segmentation in the quadtree, if the block

is segmented.

(a) (b)

Figure 5.2: Quadtree-based block segmentation and encoding. (a) DPCM of DV �eld

(b) Quadtree Construction. A leaf node and a internal node are denoted by "0" and

"1", respectively.

In (5.2), by segmenting a block the rate for the DV, r(vl), is a monotoni-

cally increasing functional, i:e: r(vl) <
P
r(vl+1),. Meanwhile, the rate for the

DCD, r(dcdl), and the distortion dl are monotonically nonincreasing functionals, i:e:

r(dcdl) �
P
r(dcdl+1) and dl �

P
dl+1. The block segmentation is performed, only if

the gain from the reduced distortion is greater than the increased rate, i:e:, cl > cl+1,

which corresponds to

rdl � �rr(dcdl) > �rr(vl) (5.3)

where

8>>>>><
>>>>>:

rdl = dl �
P3

k=0 d
l+1k

rr(dcdl) =
P3

k=0 r(dcd
l+1k

)� r(dcdl)

rr(vl) =
P3

k=0 r(v
l+1k

)� r(vl)g

(5.4)

92



where rd and rr denote the distortion and the rate decreases, respectively. The

distortion dl of the blocks in l-th level is calculated using MSE (or MAE).

In this chapter, we assume that �xed length coding for r(v) and ignore r(dcd).

We also use the MSE of the DCD for d(dcd), instead of the quantized DCD. Note

however that the results are still superior to those of threshold-based VSBM schemes,

although the above assumptions and simpli�cations lead to suboptimal solution in

terms of encoding e�ciency. In conventional RD-based segmentation schemes, the

computational cost of RD values is very expensive and thus, in place of computing

the real bit rate, the rate is either replaced by the entropy, approximated by using

a stochastic model [47, 116] or linear function [118]. Especially with conventional

approaches, the calculation of r(dcd) is complicated and yet the results are still sub-

optimal because the DCD is nonstationary. Therefore, based on the observation that

r(dcd) depends on d(dcd), we ignore r(dcd) and consequently only consider the two

terms in (5.3), i:e: rd and rr(v).

The corresponding block diagram of the Qtree-based block segmentation scheme

is shown in Figure 5.3.

5.3 Encoding Procedure

In this Section, we explain the procedure of the proposed hybrid coding scheme. The

basic procedure is as follows. First, the F1 is encoded in intraframe mode using trans-

form methods such as DCT or wavelet transform
3
. Then, using (5.1), we estimate

the DV �eld by tradeo�s between the similarity of intensities and the smoothness of

the disparity �eld. We determine the block segmentation using (5.4). Finally, we

apply OBDC only for those segmented blocks to reduce the blocking artifacts and to

improve encoding e�ciency of the DCD frame.

3Note that we do not encode the F1 based on segmentation since the quality of the reconstructed

image highly depends on that of the reference image and generally conventional transform methods

provide better performance at higher bit rates than segmentation based coding does.
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Figure 5.3: Flow chart of Qtree-based disparity estimation by comparing RD costs

between blocks in consecutive layers .
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The formal procedure of the proposed scheme is as follows.

� Step 0 F2 is segmented into initial blocks, i:e: 32 � 32 or (16 � 16). The

segmentation level, l = 0.

� Step 1 For each block in F2, the best matching block is estimated in F1 within

the search window using (5.1). Go to next block, if the resulting MSE of the

DCD is smaller than a threshold, T�. Otherwise, set �i = 1 and go to step2

for further segmentation. A block containing high prediction error in the DCD

block is considered as an occlusion block.

� Step 2 At l = l+1, for each subblock, a DV is estimated using energy function

in (5.1). Outliers in DV �elds are reduced in this process using MRF-based cost

function to estimate a smooth DV �eld.

� Step 3 If the DV's are the same as those generated in the upper level, we do

not need to further consider segmentation. Otherwise, the given DE costs are

compared to determine using (5.3), whether the block should be segmented.

The block is segmented if the coding cost of the subblocks is lower than that of

the block, i:e: cl+1 < cl. Segmentation is repeated until the coding cost of the

block is smaller than that of segmented subblocks or the block size is reached

the preselected size, i:e: k = L� 1.

� Step 4 This process is repeatedly applied to the blocks in the target image. If

i < N , go to step1. Otherwise, stop.

� Step 5 For the resulting DV �eld, based on the Qtree, OBDC is selectively

performed for the occlusion blocks (with � = 1).

The resulting Qtree, the DV �eld and the DCD frame are encoded for subsequent

transmission or storage. The DV vectors of subblocks, as shown in Figure Figure 5.2,

are ordered in a Z shape. The DVs are then ordered in row by row and later encoded

using DPCM. After selective OBDC, the smoothed DCD frame is encoded using

95



JPEG and then stored or transmitted to improve the overall quality of the decoded

image. Notice that no side information is needed for the selective OBDC since the

information is already contained in the quadtree.

The decoding is the inverse of the encoding process. At the decoder, the ref-

erence image is �rst decoded. Afterwards, the target image is reconstructed using

the reference image and the side information such as disparity with occlusion and

compensated error.

5.4 Experimental Results

To show the e�ectiveness of the proposed scheme, DE/DC with hierarchical block

segmentation, we test our algorithm on a synthesized image pair, Room, and a natural

image pair, Aqua, as shown in Figures B.2 and B.3. The search window is (�2;�16).

Then, the results are compared with those of the FSBM and VSBM. The performance

is measured in terms of the bit rate and the peak signal to noise ratio (PSNR) of the

target image.

First, the e�ects of block size are measured in terms of MSE and bit rate. As

shown in Figure 5.4, as the block size is reduced for DE, the MSE between the

disparity estimated block and the original block is linearly decreased. However, as

shown in Figure 5.4 (b), the bit rate required to transmit the DV �eld is increased,

simultaneously. Another noteworthy observation is that, as shown in Figure 5.4 (c),

if the block size of DE becomes smaller that the block size of DCT (e:g: compare

the RD performance for both 8� 8 and 4� 4), decreasing block size does not always

increase the encoding e�ciency, due to block boundary e�ects of smaller blocks, even

though the smaller block decreases the MSE of the DCD frame. Note that in our

experiments DCT is performed on the 8� 8 block and thus the DCD resulting from

FSBM with 4�4 block may not be e�cient in the RD sense, which is one of the main

motivations of introducing OBDC for the segmented subblocks.
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Figure 5.4: E�ects of block size. (a) MSE vs. block size. (b) Bit rate vs. block size

rate (at the same rate, 0.4 [bpp]). (c) Bit rate vs. block size (at the same PSNR,

34dB).
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Figure 5.5 compares the disparity estimation results of the proposed scheme versus

those of threshold-based VSBM. Figure 5.5 (a) and (b) show DV �elds based on the

FSBM. The resulting DV �eld of FSBM has a blocky appearance, as we are limited

to a single disparity vector per block. The errors occur, as expected, along the object

boundaries for the FSBM, where a di�erent estimate for object and background is

needed. The disparity �eld in Figure 5.5 (c) and (d) show DV �elds based on the

VSBM. As shown, VSBM shows inconsistencies in the DV �eld, as the sublock size

becomes small. As shown in (d), MRF-based DE in VSBM allows a consistent DV

�eld estimation.

(a) (b)

(c) (d)

Figure 5.5: Results of the disparity estimation for the synthesized image, Room. (a)

DV �eld with the FSBM (32� 32) (b) DV �eld with the FSBM (2� 2) (c) DV �eld

with the VSBM (32� 32 to 2� 2) (d) DV �eld with the proposed VSBM (32� 32 to

2� 2)
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As expected, the proposed MRF model-based DE scheme estimates a relatively

smooth and accurate DV �eld, which can be used to generate intermediate scenes in

the virtual environment while reducing the disparity compensated error. The resulting

smooth disparity �eld reduces the bit rate for the disparity �eld itself. Figure 5.6

shows similar results for the natural images, Aqua.

(a) (b)

(c) (d)

Figure 5.6: Results of the disparity estimation for the natural image, Aqua. (a) DV

�eld with the FSBM (32� 32) (b) DV �eld with the FSBM (4� 4) (c) DV �eld with

the VSBM (32�32 to 4�4) (d) DV �eld with the proposed VSBM (32�32 to 4�4)

Figure 5.7 (a) and (b) show the corresponding RD plots of both target images

in the pairs of stereo images. In the experiments, we �x the reference image and

only measure the RD performance for the target images in the stereo pairs. The DV

�elds are encoded using Qtree and the DCD frames are encoded using JPEG. The

performance is measured in terms of PSNR. As shown, the proposed scheme achieves
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a higher PSNR performance in both test images. Note however that the RD gain

of VSBM mainly comes from selectively segmenting the blocks according to some

\good" RD criteria.

According to our experimental results, the proposed hybrid VSBM method im-

proved overall encoding performance for the target image in a stereo pair. The DE

using (5.1) estimates relatively accurate and more consistent DV �elds, which re-

sults in less bit rate for the DV. The block segmentation using (5.3) reduces the

energy levels of the DCD frame. The encoding e�ciency has been further improved

by selectively applying OBDC for occlusion blocks, which signi�cantly reduces the

compensation error along the object boundaries. In terms of PSNR, the proposed

scheme achieved 0.5-1.5 dB higher PSNR, as compared with conventional VSBM,

at the same bit rates. In addition, the reconstructed image based on the proposed

scheme resulted in fewer annoying blocking artifacts, by reducing the blocking errors

along the subblocks using OBDC, the main drawback of the VSBM as well as FSBM

methods.

5.5 Discussion

We have proposed a hybrid coding scheme for stereo images, hierarchical DE/DC

with MRF model and selective OBDC. According to our experimental results, the

proposed scheme simultaneously solves the well-known problems of VSBM as well as

FSBM. The MRF-based hierarchical disparity estimation provides a smooth DV �eld

and the hierarchical block segmentation based on approximated RD cost reduces the

energy level of the DCD frame. Selective OBDC further reduced the energy level

of the DCD frame and blocking artifacts along subblock boundaries. As a result,

the proposed algorithm provides a higher PSNR as well as a better perceptual visual

quality.
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Figure 5.7: R-D Plot of reconstructed target images in the stereo pairs. (a) Room (b)

Aqua.
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This research will be extended to the intermediate view generation (or synthesis)

to provide the look-around-capability at the decoder. The RD-based contour repre-

sentation of the segmented region remains a crucial future work because the RD-based

shape coding will be an important technique for object-based coding, providing vari-

ous functionalities such as interactive manipulation of objects.
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Chapter 6

Summary and Future Extensions

6.1 Summary

In this research, the main focus has been on the e�cient representation of stereo

images, which is a simple way providing the 3D-depth information on a at 2D screen.

The transmission of stereoscopic images or sequences over existing channel requires

a very low rate coding of the additional stream in order to maintain the quality of

the reference image sequence. Such high compression ratio can only be achieved

by imposing structure to the additional sequence and taking advantage of the high

tolerance of the human visual system. The easiest extension would have been to

simply encode the reference image/sequence using JPEG/MPEG-type scheme and

the other image/sequence using disparity compensation method. To further improve

encoding e�ciency, we have proposed various encoding schemes within predictive

coding framework through this dissertation.

In Chapter 2, we surveyed various issues on 3D imaging systems and briey re-

viewed research on stereo image/video coding. We then formulated the stereo im-

age coding problem using the dependent coding framework, consisting of estima-

tion/compensation, quantization, and rate control. Using the open loop coding sys-

tem, we decoupled the complicated joint optimization problem into two independent

problem; an e�cient disparity estimation and an optimal dependent quantization.
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We �rst proposed a blockwise dependent quantization scheme in Chapter 3. With

a given DV �eld, we increased the coding e�ciency in quantization by taking into ac-

count the binocular dependency between the stereo pairs. The special dependency of

the stereo images was exploited to reduce the computational complexity. By exploit-

ing the predominant horizontal dimensional dependency, a compact dependency tree

was constructed per pairs of ROBs and then the optimal sets of quantizers had been

selected using the Viterbi algorithm. On the assumption of monotonicity property,

we also proposed a fast search algorithm for dynamic programming.

In Chapter 4 we explained the FSBM-based disparity estimation and its well-

known limitations. We then proposed a hybrid scheme to overcome those limitations.

The proposed hybrid scheme, MRF model-based disparity estimation and selective

overlapped block disparity compensation, provided a higher PSNR gain as well as

fewer visual artifacts. The MRF model helped provide smooth disparity �eld, while

maintaining the entropy of the disparity compensated di�erence. The selective OBDC

reduced the blocking artifacts in the reconstructed target. The incorporated half-pixel

accuracy further improved the encoding e�ciency.

In Chapter 5, we introduced the disparity estimation/compensation schemes based

on the VSBM to further reduce the entropy of the disparity compensated di�erence.

In the proposed method, the DV �eld was �rst estimated based on the MRF-based

cost function. Then, hierarchical block segmentation was performed by comparing

the RD costs of a block and its subsequent subblocks. Subsequently, overlapped block

disparity compensation is selectively performed for the occlusion blocks. Finally, the

resulting Qtree and the corresponding DV �eld were encoded. The DCD frame was

also encoded to improve the quality of the decoded target image.

6.2 Future Extensions

Stereo images can be encoded e�ciently by combining the disparity estimation and

the blockwise dependent quantization. These schemes can be extended easily into
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stereo video coding. Based on the proposed algorithms in this thesis, the following

works are possible extensions.

6.2.1 Object-Oriented Segmentation Using Stereo Images

Object-oriented image segmentation is a key step in the upcoming new standards such

as MPEG-4 and MPEG-7. So far, a wide variety of image/video coding methods

have been developed but the main research activities on image/video coding have

concentrated on the �rst generation codec. Available �rst generation coding schemes

mainly exploit statistical redundancies of the image data and change parameters of

algorithms based on the blocks. The current image/video coding standards (JPEG,

H.26x, MPEG-1/2) belong to this category. However, most of these methods have

reached their limits in compression performance and have limitations when dealing

with real objects in a scene. They may fail to provide an acceptable quality, especially

at low rate coding, because annoying block artifacts become noticeable. Therefore,

more exible approaches are required.

Therefore, a novel object segmentation scheme using stereo images can help sep-

arate objects (or areas of interest) from a scene under assumption that pixels within

a rigid object have similar disparity vector. This scenario works under assumption

of 3D infrastructures, which require, at least, two cameras for 3D image/video cap-

ture [122]. Note however that even in 2D infrastructure, it provides look-around

capability based on intermediate scene synthesis [123].

6.2.2 RD-based Contour Coding

The main goal of segmentation-based coding is an e�cient representation of images,

i:e:, achieving the best visual quality for a given bit budget. An image can be seg-

mented into homogeneous regions and the segmented image can be represented by the

contours (or shapes of segmented regions), the textures (intensities) and the segmen-

tation errors, which then have to be encoded. The very same observed ideas can be
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used to segment a disparity �eld or a motion vector �eld. the segmented regions can

be represented by global object descriptors such as the surface area, the perimeter,

the center of mass, the length and width, or the convexity. These type of parameters

are useful for object recognition and classi�cation but not for coding since such low

precision descriptions do not allow for a good reconstruction.

Other popular ways to represent the segmented regions are the region description

methods and the boundary description methods. In [53], we proposed a VSBM scheme

using the MRF model. The resulting DV �eld was segmented and encoded using

the chain coding method. To further increase the encoding e�ciency, we need RD-

based contour coding, which is a major problem in object-based coding. In general,

boundary also can be encoded using a lossy scheme and a lossless scheme [124{126].

Schuster et al [127, 128] proposed a RD-based boundary approximation using spline

and chain coding but they ignored the rate of the texture, which also has to be

considered. In addition, the bit allocation problem for the segmentation-based coding

is important. The bit budget has to be distributed between the contour description

and the segmentation error.

6.2.3 Blockwise Dependent Quantization for Video

The framework proposed in Chapter 3 can be directly extended into video coding

without the loss of generality. However, the temporal dependency is more complicated

because the direction of motion can be anywhere in 2D.

6.2.4 Joint Estimation of Motion and Disparity

Stereoscopic video consists of two image sequences, each sequence for a corresponding

eye. Therefore, there exists temporal redundancy between consecutive disparity map

sequence, which can help motion estimation of the reference sequence. It means that

the motion and the disparity have to be estimated jointly, which provide the consistent

motion and disparity �elds. Basically, disparity vector �eld can help estimate motion
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vector �eld and vice versa. Therefore, it is interesting to combine information these

two �eld to increase reliability and to compensate the weakness of each method [5,56].

6.2.5 Multi-view Images and Intermediate-view Generation

The ideal 3D system has to provide images in space to allow for walking around and

viewing the object from all sides. In this sense, stereoscopic images are not the same

as 3D images because the viewing angle is strictly restricted to the position of stereo

cameras. These look-around capabilities can be achieved by multiview images. To

provide the look-around capability, the cameras have to move synchronously with the

viewers head, which is awkward. One solution is to use more cameras. However, it

also requires either a feedback signal from the end user to encoder or an increase in

the amount of data. the generation of intermediate scene at the decoder according

to the movement of head is one simple solution to this problem. Using the concepts

we used in the stereo image compression, we can synthesis the intermediate views.
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Appendix A

3D Display Techniques

The basic idea of 3D display is to present simultaneously each image in a stereo pair

to the corresponding eye, i:e: to provide separately the left and right images to the

left and right eyes of the viewer, respectively. There are several ways to view 3D

scenes: Free-viewing, stereoscopic display, head-mounted display, autostereoscopic

display and holography. Note however that the two basic types are those that require

wearing glasses (stereoscopic display) and those that do not require wearing glasses

(autostereoscopic display).

A.1 Free Viewing and Stereoscope

The basic method for viewing pictures in stereo without special viewing devices is

called free-viewing. For example, 3D e�ects can be perceived by putting viewing

direction in parallel or crossing eyes to see the corresponding image, respectively.

Unfortunately, some people have problems in concentrating their eyes on stereo im-

ages. There may also be side e�ects such as eye stain, blur, and headaches to some

viewers. The classical stereoscope can help alleviate these pain in perceiving 3D by

removing the crosstalk between left and right eye views.

A.2 Stereoscopic Display

To perceive 3D scene on a 2D display monitor we have to produce or synthesize 2D

images by means of superimposing or temporal multiplexing.

� Anaglyphs and Pulfrich: Another popular and inexpensive method is

anaglyphic display (1850's) which is the oldest type of 3D viewing (red/blue)

glasses. Anaglyphs provide alternative method to represent stereo images,

where two views are encoded in di�erent colors and then each eye sees the

corresponding image through di�erent color �lter. For example, with anaglyph

techniques, the red (or cyan) �lters must coordinate with the blue (or green) of

the image. The next key is cancellation, which is the ability of the red �lter to
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NOT see a red image, and the blue �lter to NOT see the blue image. This is the

weakest aspect of anaglyphs because it destroys the original color because the

color is used as a selection mechanism. Pulfrich is based on the same method

except colors of lenses (dark/clear lenses).

� Polarized display: Polarized (gray lenses) display is a more sophisticated

technique, where the two images in a stereo pair are encoded in orthogonal

polarization and then each eye sees the properly intended image through per-

pendicular polarizing �lters (or glasses). Polarization preserves color but is

sensitive to crosstalk (when the left eye sees the image for the right eye or vice

versa), because it utilizes the relative orientation of the polarized light. It is

used for projection situations such as theatrical 3D movies or in special venue

displays. These are comparatively expensive to manufacture because of two

things: the lens material and the handling of polarized images.

� Head Mounted Display (HMD): HMD is the best ALTERNATIVE where

the realism is not a concern, such as certain classes of video games. The resulting

the very low resolution is one of its major drawbacks.

� Sequential Display: The stereo image is displayed in time multiplexed se-

quence and the synchronization signal is passed to the shuttle glasses worn by

the viewer. The glasses are equipped with liquid crystal shutters switching from

opaque to clear: a shuttle alternately opens and closes in front of each eye as

the image changes on the monitor. For example, one of the lenses, the left one,

is made opaque (closed) so that the viewer can only see the right image on the

monitor through the right lens. Then, the situation is reversed, i:e: the right

lens is made opaque while the left view is displayed on the monitor. If the

images are displayed rapidly enough, then each eye perceives a di�erent image

from viewing the same monitor. For example, for a NTSC-based monitor with

a refresh rate of 60 Hz, each eye sees the image at a refresh rate of 30 Hz.

Therefore, for the icker-free 3D display a 120 Hz system is desirable.

A.3 Autostereoscopic Display

What autostereoscopic implies is a form of stereoscopic display that requires no glasses

or other aids for the viewer. With the advent of modern electronics, many methods

have become feasible, where each eye received a separated image.

Parallax Barrier Screen (PBS) and Lenticular Display: The picture behind the

PBS is composed of 2D images from di�erent viewing angles. Pixels for the left and

right images are displayed simultaneously in alternative columns. Each eye sees the

corresponding image through the appropriate stripes without special glasses. Lenticu-

lar Monitor uses cylindrical lenses, which is geometrically similar to PBS but provides

superior optical e�ciency.
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The real limitation, however, of both autostereoscopic displays is in the image

quality. For example, the angular �eld of view is limited and each eye must be very

precisely positioned relative to the display. To meet those requirements, the display

system may require high display bandwidth, which is complex and expensive.

A.4 Hologram

To overcome �xed viewer position problems, 3D images have to be drawn into real

space. The most popular technique in depicting 3D scenes in space is holography.

Holograms are generated by splitting a laser light bundle in two parts, of which the

reference ray reaches 2D media (�lm) directly and the other is reected from the

object onto the �lm. To record 3D images the �lm keeps only a phase di�erence, the

interference pattern of coherent laser beam (bright and dark lines holding the coded

spatial information), instead of a recognizable image. The 3D volume is displayed

directly into space without any stereoscopic tricks by the di�raction phenomenon

when the hologram is lit appropriately. They are fascinating new technologies but far

from practicality yet because of the huge amount of data. For example, an object of

a cubic (10� 10� 10 cm) with a 30 degree viewing angle requires a 25 Gbytes. Real

time video holography requires a further improvement in coding technique.
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Appendix B

Stereo Images

(a) (b)

Figure B.1: Test stereo images Fruit. (a) left image (b) right image
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(a) (b)

Figure B.2: Test stereo images Room. (a) left image (b) right image

(a) (b)

Figure B.3: Test stereo images Aqua. (a) left image (b) right image.
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