
Transmission Tomography for high contrast media based on
sparse data

by

Yenting Lin

A Dissertation Presented to the
FACULTY OF THE USC GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the
Requirements for the Degree

DOCTOR OF PHILOSOPHY
(ELECTRICAL ENGINEERING)

August 2013

Copyright 2013 Yenting Lin



Dedication

To my Mon, Hui-ing Wu, who always support me and remains on my side through

this incredible journey.

To my godfather and godmother, Jhen-Chuan Gong and Yu-Ying Wu, who

always keep faith on me.

ii



Acknowledgements

I would like to thank, first and for most, to my dissertation adviser, Dr. Anto-

nio Ortega, for his support and guidance throughout my graduate studies at the

University of Southern California. I have been fortunate to work with him, who

shapes my ideas about research, and moreover, refine my approach on writing and

analytical thinking. I owe my gratitude to Dr. Iraj Ershaghi, for his support and

many insightful suggestions from the petroleum engineering aspects to strengthen

of my research. Thanks are also due to Dr. Richard Leahy for serving as members

in my dissertation committee. I also needs to thank to Dr. Alex Dimikis who in-

troduces and inspires me to work on compressed sensing, and serve as a committee

member in my qualifying exam. I would like to thank to Dr. Harry Hu, who serves

in my qualifying committee and valuable suggestions on medical imaging. Special

thanks to Dr. Robert Scholtz, for the insightful suggestions and discussion over

these years.

I would like to thank to several PhD students in Petroleum Engineering: Amir

Mohammad Nejad, and Tayeb Ayatollahy Tafti. They provide valuable suggestions

and do incredible work on reservoir simulations. I also need to thank to the staff

of the CiSoft project for their help and continuous support for these years.

For all the colleagues in our research group Group, it is a great pressure and

know and work with you. Especially, I would like to thank Kun-han Lee for unfor-

gettable years of collaborations and for all the sharing. I would also like to thank

iii



Sungwon Lee, Sunil Kumar, Godwin Shen and Sean McPherson, for the wonderful

friendship that helps me strengthen my research and support for these years.

I would also like to thank my mother Hui-ing Wu, my godfather Jhen-Chuan

Gong and godmother Yu-Ying Wu for their endless love, patience, guidance and

support throughout my life. Finally, I would like to thank all my pets to accompany

me for all these years.

iv



Table of Contents

Dedication ii

Acknowledgements iii

List of Tables vii

List of Figures viii

Abstract xiii

Chapter 1: Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Travel-time tomography for high contrast media with sparse data . 5

1.3 Water-flooding Tomography . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Discrete X-ray Tomography . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 2: Travel-time tomography for high contrast media with
sparse data 10

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Object based model . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Forward step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Fast travel time/path finding . . . . . . . . . . . . . . . . . 19

2.3.2 Dijkstra path finding . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Relationship between object size and travel time . . . . . . . 24

2.4 Inverse step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Proposed algorithm . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.2.1 Accelerated random walk sampling . . . . . . . . . 30

2.4.2.2 Re-sampling by the monotonicity property . . . . . 33

2.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

v



Chapter 3: Waterflooding Tomography 48
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Physical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.1 Injection-Production model . . . . . . . . . . . . . . . . . . 52
3.2.2 Travel time in a tight fractured reservoir . . . . . . . . . . . 54

3.3 Estimation of CM parameters . . . . . . . . . . . . . . . . . . . . . 57
3.3.1 Injection Sequence Design . . . . . . . . . . . . . . . . . . . 59
3.3.2 Model Estimation . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.2.1 Multi-stage approach . . . . . . . . . . . . . . . . . 62
3.3.2.2 Direct Estimation Approach . . . . . . . . . . . . . 63

3.4 Tomographic Reconstruction . . . . . . . . . . . . . . . . . . . . . . 64
3.5 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5.1 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . 66
3.5.2 Field Experiment . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Chapter 4: X-Ray Discrete tomography 79
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3 Dictionary Representation . . . . . . . . . . . . . . . . . . . . . . . 88
4.4 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4.1 Sparse recovery with known intensity levels . . . . . . . . . . 95
4.4.1.1 Reweighed L1 minimization . . . . . . . . . . . . . 99
4.4.1.2 Projection onto convex sets . . . . . . . . . . . . . 102

4.4.2 Estimating the unknown intensity level . . . . . . . . . . . . 105
4.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Chapter 5: Conclusions 114
5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Reference List 116

vi



List of Tables

3.1 Table for the method comparison in simulations and field trial . . . 78

vii



List of Figures

2.1 The forward-inverse step of the velocity model and travel time . . . 16

2.2 (a) Grid based model: the HVS structure is approximated with cells
and assigns the same velocity inside each cell. (b) Object based
model with ellipse as the fundamental object: the structure is ap-
proximated with objects and assigns the same velocity inside each
ellipse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 The travel path will be the faster one between the direct path or the
one through high velocity object . . . . . . . . . . . . . . . . . . . . 21

2.4 Graph representation of path tracking. (a) The distance between
objects (b) Graph and distance metric . . . . . . . . . . . . . . . . 24

2.5 The example for Dijkstra algorithm. Note in (b) the dist[θ2] is
dist[α] + e(α,θ2) = 5, and in (c) after we add θ1 the dist[θ2] is
updated to dist[θ1] + e(θ1,θ2) = 4 . . . . . . . . . . . . . . . . . . 25

2.6 Change of the travel path with respect to the object size . . . . . . 26

2.7 The simulated state movement. Note the initial momentum is toward
left, driving to the high error region. Then it falls into low error
regions, and we can see the total energy is decreasing through the
simulation. Most of samples are near local minimum. . . . . . . . . 32

2.8 Change of travel time and error function with respect to the size of
one high velocity object. (a) The travel time function Ti(Θ,A,B)
(b) The error function Ei(Θ = ‖ti−Ti(Θ,A,B)‖2. The travel time is
monotonically non-increasing, therefore the error function is weakly
unimodal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.9 Sum of two unimodal functions. Note the sum of two unimodal
functions is not necessary a unimodal function. . . . . . . . . . . . . 37

viii



2.10 Re-sampling comparison. (a) Re-sampling locations chosen by run-
ning the golden section search on f(x) (b) Locations chosen sepa-
rately on f1(x) and f2(x). The red “squares” are sampling locations
chosen from f2(x), and black “dots” are from f1(x). Note that choos-
ing from separate functions gives much better approximation because
each one is unimodal. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.11 The (a) geometry of sensor settings and (b) (c) the PDF for experi-
ment 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.12 The HMC sampling and randomized re-sampling in experiment 1.
(a) The blue “dots” are samples from HMC. (b) The red “x” are re-
samples from random walk. Note it can only explores a small region
in parameter space. (c) The red “x” are re-samples from golden
section search. The re-sampling locations have the same ψ but cover
the whole s axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.13 The estimated PDF by (a) Randomized re-sampling (b) Golden sec-
tion search re-sampling. Note the randomized re-sampling only ex-
plores a small region of parameter space and most of PDF is unknown. 40

2.14 The PDF and our estimation in experiment 2. Note comparing to
experiment 1, the PDF has sharper changes which implies higher
model resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.15 (a) The ground truth and (b) the appearance probability map. It
shows several different models closed to ground truth all have high
probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.16 (a) The ground truth and (b) the error metric for experiment 3. Note
that the error metric decreases when the number of sensor increases. 43

2.17 (a) The grid-based result with 25*25 transmitters/receivers and (b)
the appearance probability map for Experiment 3. Note the grid-
based model fails to recover the HVS location. . . . . . . . . . . . . 44

2.18 (a) Ground truth and (b) error metric for experiment 4. Note the er-
ror metric does not decrease monotonically due to the vertical phan-
tom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.19 (a) Grid-based result and (b) appearance probability map for 10∗10
sensors in experiment 4 . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.20 (a) Grid-based result (b) Appearance probability map for 25 ∗ 25
sensors in experiment 4 . . . . . . . . . . . . . . . . . . . . . . . . . 46

ix



3.1 With high permeability channel (a) the total control volume can be
viewed as cascade of small ones, and (b) the travel path is a combi-
nation of several line segments. Note that because the productivity
index in high permeability channel is very high, the time delay con-
stant inside can be ignored. . . . . . . . . . . . . . . . . . . . . . . 57

3.2 The multistage approach . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Simulation 1 (a) injection rate in injector 1 (b) injection rate in
injector 2 (c) measured production rate in simulation 1. Note that
we vary the injection rate in injector 1 and 2 at the same time. . . . 68

3.4 Simulation 1, the estimated FIR model for four injection-production
pairs. After fitting with CM, the time delay constants are τ11 = 4.17,
τ21 = 1.87, τ31 = 3.47, τ41 = 3.96. . . . . . . . . . . . . . . . . . . . 68

3.5 Simulation 1, the reservoir model. (a) Ground truth and (b) esti-
mated probability map. . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6 Simulation 2 (a) injection rate in injector 1 (b) injection rate in
injector 2 (c) measured production rate in producer. Note that only
one injection rate is changed at a time, thus we can estimate the
response with respect to the change of injection directly from the
increase of production . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.7 Simulation 2 (a) The ground truth and (b) estimated probability
map. We successfully detect the high permeability channel between
injector 5 and producer 3. . . . . . . . . . . . . . . . . . . . . . . . 71

3.8 Field trial. We use the calibrated POC data and partition 1− 70 as
training set, 71−85 as testing set. Because L1 norm is chosen as the
error metric, the predicted output is not affected severely by outliers. 74

3.9 Field trial, upper area. (a) The location of wells and (b) estimate
probability map. Note that the high probability areas is roughly
parallel to the installation of the wells, which is consistent to the
seismic survey for the nature fracture direction . . . . . . . . . . . 75

3.10 Field trial, lower area. The (a) location of wells and (b) estimated
probability map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.11 Field trial, the estimated probability map with a known fault. Our
result shows the appearance probability is very low in the fault zone,
which agrees with the prior survey. . . . . . . . . . . . . . . . . . . 77

x



4.1 Example for the Radon transform. The measurement Pθ,f (t) is a line
projection of f(x1, x2) along angle θ. . . . . . . . . . . . . . . . . . 87

4.2 (a) Binary Phantom (b) Decomposition along the y axis (c) Decom-
position using the dictionary along both x and y axis (d) Another
possible representation when stripes are overlapping. Note that we
prefer a representation where stripes tend not to overlap with each
other. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Sparse representation example: (a) The image we want to represent
(b,c) one possible representation of this image with non-overlapping
strips (d,e,f) Another possible representation, two over-lapping line
function and subtract the overlapping part. We prefer (b,c) as our
representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4 A multi-level phantom. We represent it by non-overlapping regions
with different intensity. . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 Flowchart of our algorithm. We iteratively perform sparse recovery
and intensity estimation. . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6 The feasible set for (a) intensity boundary constraint (b) data fitting
constraint (c) intersection of data fitting and boundary. Note that
the solution in DT must belong to the intersection to satisfy both
constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.7 The minimum L1 solution for (a) noiseless case and (b) noisy case.
Note the solution will be on the inner boundary of feasible region. . 99

4.8 The reweighed L1 minimization. Note that the feasible region is the
intersection of data fitting y = A ·Du and −1 ≤ u ≤ 1. (a) solution
with initial weights (b) after reweighing, the solution stays on the
boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.9 Alternating projection on two convex sets . . . . . . . . . . . . . . 104

4.10 The Simulation 1 results. (a) The binary testing phantom (b) Re-
construction result with noise variance = 0.1 (c) S. Weber’s method
with same noise variance (d) Filtered back projection result with
same noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.11 Comparison of the mean square error with respect to different noise
level in Simulation 1. Note our method have perfect reconstruction
in noiseless case and outperform other methods in high SNR case. . 110

xi



4.12 Simulation 2. (a) Test Shepp-Logan phantom (b) Histogram of the
reconstructed image after 1 iteration (c) Histogram after 2 iterations
(d) Histogram after 2 iterations. After few intensity updates, the
histogram is more concentrated on few spots. . . . . . . . . . . . . 111

4.13 Reconstruction mean square error with respect to the noise level with
{12, 18} number of projection views in Simulation 2. This shows that
our method outperform Total-Variation reconstruction in all cases. . 112

4.14 Projection onto convex set results in Simulation 3 (a) After projec-
tion onto the data fitting set. Note that some pixels may be nega-
tive. (b) After projection onto boundary constraint set. All pixels
are within the range now. . . . . . . . . . . . . . . . . . . . . . . . 112

4.15 The reconstructed mean square error with respect to the number of
iterations in Simulation 3. The result shows the MSE decreases with
respect to number of iterations, and also reflects the slow convergence
of POCS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xii



Abstract

Transmission tomography is a powerful tool to image the interior structure based on

measured data on the boundary. It provides a “non-destructive” imaging and widely

used in different areas. However, the reconstructed image quality degrades when

lower number of data is available. In this work, we consider tomography problems

involving detection of high contrast structures with limited amount of data, and

propose a sparse representation for the images of our interest. The sparse model is

useful to reduce the unknown variables for the tomographic reconstruction. In the

first part, we propose an object-based model for high velocity structure in travel

time tomography. We focus on how to speed up the path tracking procedure on high

velocity object assumption. To estimate the object parameters, we use probabilistic

approach to define the appearance probability of different models, and estimate the

probability distribution by accelerated random walk. The result can be viewed as

a “probability map”, which represent the appearance of the high velocity structure

in different regions. Compared to the conventional grid-based model, our approach

provides stable results and superior reconstruction quality. As an application, we

use the high contrast tomography to detect fractures in a low permeability reservoir

under water-flooding. In particular, we (i) propose to use the injected water as a

probe signal, where we are able to measure the travel time without shutting down

the usual operation, and (ii) formulate the fracture as high velocity objects and

do tomographic reconstruction. The results from commercial simulator show our

xiii



method can successfully identify the location of fractures, and the field experiment

is consistent with the conclusion from experts in the field engineering team. In

the second part, we study the X-ray transmission tomography where the object is

assumed to be made from few distinct materials. This problem is called discrete

tomography (DT). Such images arise in tomography problems where very high

contrast is expected, e.g., in angiography medical imaging or electron tomography.

We assume the image of interest can be segmented as several smooth boundary,

constant intensity regions. Moreover, we design transform which can represent

each region with sparse coefficients, and formulate the tomographic reconstruction

as a sparse recovery. A common assumption for DT is that the set of possible

intensity levels is known in advance. However, determining the prescribed intensity

levels is a difficult problem, coupled with measurement calibration and the prior

knowledge of image. We introduce an unsupervised DT algorithm that jointly

reconstructs the image and estimates the unknown intensity levels. Our algorithm

alternates between (i) an L1 sparse recovery step with a reweighed cost function

that search the sparse representation which fits the measurements, and (ii) an

estimation step for the most likely intensity levels. We experimentally demonstrate

that the proposed algorithm successfully estimates the unknown levels and leads to

high quality reconstruction of phantom images.
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Chapter 1

Introduction

1.1 Motivation

Transmission tomography aims to image the interior structure of an object based

on measuring the response of the penetrating wave through it. The penetrating

wave, which acts as a probe signal, can be X-ray, ultrasound or seismic wave. A

set of sensors are installed on the boundary of the object to measure the signal

response, which could be the attenuation or delay of the signal induced by the

object. Then, we would like the reconstruct the object model, which captures the

physical properties of the structure by material parameters (e.g., wave velocity,

attenuation) as a function of position. In tomographic inversion, we want to match

the measured data with the predicted ones from the reconstructed model. This

technique provides a “non-destructive” method to image the interior of the object,

and the idea can be traced back to Radon transform [21]. Although different

researchers made progress on tomographic imaging [72, 82], we have to wait for

the development of electronics and digital computers. In 1972, Hounsfield [38]

developed the first computed tomography scanner. Since then, the transmission

1



tomography has been widely used in many different areas, e.g., radiology [61],

biology [31], geophysics [23], oceanography [55], etc.

In this dissertation, we investigate two types of transmission tomography: Travel

time tomography and X-ray computed tomography. In travel time tomography, we

measure the delay of signals between sensors, which give us the first arrival travel

times. The travel time is the path integral on the shortest path in the slowness

(reciprocal of velocity) model, where the travel path (shortest path) depends on

the velocity model and may not be a straight line between sensors. Thus, with

the travel time data, estimating the velocity model is a nonlinear inverse problem.

This technique is very useful in modeling geophysical structures, for example, re-

construction of velocity model of the Earth and monitoring the earthquake zone.

In X-ray computed tomography, series of X-ray sources are pointing to the object

from different directions, and we measure the X-ray energy from the sensors on the

boundary. Different from previous case, the travel path of X-ray can be assumed

as a straight line, and the energy decrease is characterized by the line integral of

the material attenuation coefficients. Therefore, we have a linear inverse problem

when estimating the attenuation model with the X-ray energy measurements. It is

widely used in medical imaging, e.g., Angiography and cancer tumor detection.

To reconstruct the object model, it is an inverse problem and might be ill-posed.

But in many typical applications, for example, computed medical imaging, it is pos-

sible to increase the number of samples by putting more sensors. Thus, a sufficient

number of samples can be acquired in order to reconstruct a high quality object

model. Many reconstruction algorithms have been developed for this scenario, e.g.,

simultaneous iterative reconstruction technique (SIRT) [35], filtered back projec-

tion algorithm (FBP) [43] and total variation reconstruction [65]. It is well known

that we will have better quality for reconstruction with more samples. However,

2



in some applications, it would be too costly to increase the number of sensors sig-

nificantly. In these scenarios, the measured data will be sparse and many of these

reconstruction tools will not provide good quality results. For example, in seismic

cross-borehole tomography [37] sensors are placed in a vertical wellbore to measure

the reflection or refraction seismic waves. In such case, increasing the amount of

measured data means drilling new wells to place additional sensors. Similarly, in X-

ray computed tomography cardiac angiography [34], series of photon attenuations

are measured by capturing X-ray that travel through the object from different an-

gles. But taking more data means the patient is exposed to higher X-ray radiation

doses, which may increase the risk of cancer. In this dissertation, the primary focus

is to develop algorithms to reconstruct the object image when only sparse measured

data available.

Furthermore, we consider the cases where the structure has “high contrast”

property, which means that there are regions with sharp changes in the model pa-

rameters. For example, in hydraulic travel time tomography, the flow conductivity

in a low permeability reservoir is very low, while the fractures provide fast path-

ways for the fluid. Also, in industrial computed tomography inspection, the testing

material is assumed to be homogeneous and high attenuation (e.g., metal), where

the cracks inside can be viewed as almost zero attenuation. The “high contrast”

property and the limited availability of data makes the reconstruction more diffi-

cult and typical reconstruction algorithms may not perform well. The high contrast

of the travel velocity will cause the travel paths bend severely near the high con-

trast regions. This violates the “almost straight travel path” assumption in most

iterative linearized reconstruction algorithms and leads to lack of convergence in

3



the solutions. For X-ray transmission tomography, the sharp changes of attenua-

tion will cause the standard Filter-Back projection reconstruction method generates

blur image near the high contrast boundary, which causes diagnostic ambiguity.

To improve the handling of this difficult situation, different from typical grid-

based model, we propose an object based model to provide a “sparse” representation

for high contrast regions. This is useful to (i) reduce the dimensions of unknown

variables and (ii) provide a regularization for ill-posed inverse problem. In this

work, we mainly focus on designing object models and the corresponding tomo-

graphic reconstruction algorithms. The algorithms in this dissertation are toward

two applications: The first one is fracture estimation in a low permeability reser-

voir under water-flooding. In this application, estimating the location of fractures

is important to reservoir characterization, production optimization, etc. We model

the fractures as high velocity objects and use “injected water” as a probe signal,

then estimate the fractures based on injection-production response. Compared to

other methods (seismic, tracer testing), our method can be done based on current

infrastructure and without additional cost. The second application is X-ray dis-

crete tomography, where the object of interest is assumed to have several smooth

boundary, constant regions. We design a dictionary to represent the object in a

transformed domain and apply the “sparse recovery” technique. Thus, superior

reconstructed image quality is achieved with limited amount of measured X-ray

projection data. We give an overview of our work in Sections 1.2, 1.3 and 1.4 then

provide an outline of this dissertation in Section 1.5.
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1.2 Travel-time tomography for high contrast media

with sparse data

In travel time tomography, the first arrival time between transmitters and receivers

is measured and then this data is used to reconstruct the velocity model for the

object, where each point in the object structure is characterized by its wave traveling

velocity. The transmitted signal can be a seismic wave, an acoustic sound wave,

and even a fluid pressure wave. This technique is important to characterize large

scale elastic media, in applications such as seismic geophysical exploration [58] and

acoustic tomography (for example, in the atmosphere’s surface [77] or in the ocean

layers [55]). As we mentioned before, the “high contrast media” problem means

that the typical algorithms usually fail to provide a stable solution. Moreover, lack

of a sufficient amount of measured data will introduce more uncertainty for the

reconstructed model, because multiple velocity models may fit the measured travel

time data.

Without knowing the travel path, the reconstruction of a velocity model becomes

a nonlinear inverse problem. The reconstruction algorithm can be specified by

(i) a forward step, which calculates the travel time and path, based on current

estimated velocity model, (ii) an inverse step, which updates the velocity model

based on the travel path calculated in previous step. By Fermat’s principle, the

travel path is the path traversed in the shortest time [11], and thus calculating the

travel path is very computationally intensive. In this dissertation, we describe how

to use object-based models to represent the high contrast velocity structure and

propose a probabilistic approach to reconstruct the possible models with sparse

data. The novel contributions are (i) an object representation which provides a

dramatic reduction in the complexity requirement to calculate the travel path in

5



the forward step, and (ii) development of a fast randomized algorithm to estimate

the probability distribution in model parameter space by using the monotonicity

property of high velocity objects.

1.3 Water-flooding Tomography

We study the fracture estimation problem in a low permeability oil reservoir un-

der water-flooding. Due to the high demand of crude oil, enhanced oil recovery

(EOR) technologies are introduced to boost the production. “Water-flooding” is

one of the most widely used process to enhance the oil recovery, where water is

injected in the reservoir to provide pressure support and stimulate the oil produc-

tion. Water-flooding requires a careful design of the amount of injection to use at

different locations because the heterogeneous structures (fracture or fault, which

act as fast pathways or barriers for the fluid) will affect the recovery efficiency dra-

matically. Thus, to optimize the water-flood efficiency it is critical to identify these

heterogeneous structures in a reservoir.

Many reservoir characterization techniques have been proposed in the past few

decades, e.g., seismic cross-hole tomography [14,64], pulse testing [41,53] and tracer

tests [2, 3, 24]. A common aspect of these methods is that they all require extra

equipments and may disrupt normal operations. In this work, we only consider

fractures in a low permeability reservoir. Thus, we can model the fractures as high

velocity objects in a uniform low velocity background and apply our high contrast

travel time tomography technique. Moreover, we use the injected water as a signal

source and measure the change in production. By using the injection-production

wells as transmitters-receivers, we can estimate the response time between them.
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This will eliminate the need for the extra equipment for the reservoir characteri-

zation, therefore making possible real-time reservoir monitoring based on current

infrastructure. We validate our approach by running simulations on a commercial

reservoir simulator from computer modeling group LTD. [50]. A field experiment

is also conducted and it shows that our result is consistent with the known fault

location and the expectation from the field engineers.

1.4 Discrete X-ray Tomography

The second type of transmission tomography we investigate in this dissertation is X-

ray computed tomography, which is widely used for noninvasive testing in medical

imaging and industrial material inspection. During the test, a series of X-rays

are sent targeting the object from different directions, and the decrease of X-ray

intensity is measured around the object. It is well known that the quality of the

reconstructed object image degrades if we have fewer projections angles. However,

in medical imaging we want to limit the number of X-ray projections, so that it is

as small as possible thus limiting the radiation dose for the patient. For example,

in Angiography [39] a typical cardiac CT scan needs to put the patient under CT

scan for the entire cardiac cycle, which means the patient is exposed to a high

energy X-ray radiation over a long period of time (about 60 − 90 seconds). Thus,

our goal is to study the problem of improving the reconstructed image quality when

a reduced amount of data is available.

In this dissertation, we consider the case where the image of interest can be

segmented into several smooth boundary, high contrast regions. The testing objects

are assumed to be made from few different materials, which correspond to distinct

attenuation levels of X-ray radiation. For example, in an industrial CT scan for
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material flaw detection, we usually know the type of material compound for the

object (aluminum, plastic, etc) in advance and want to test if a cavity exists. A

cavity refers to empty space, which has almost zero X-ray attenuation. Thus, the

reconstructed image can be approximated by a binary intensity image where the

high pixel value accounts for the object and an almost zero value corresponds the

cavity.

In this case, we want to recover a high contrast image where there are only few

different pixel values. With a limited amount of data, the image reconstruction

becomes an ill-posed integer inverse problem. This problem is called Discrete To-

mography (DT) [36] and many algorithms have been proposed [36]. However, none

of these algorithms has considered the sparsity in a transform domain. In recent

years a significant amount of work, e.g., compressed sensing [18] has been devoted

to perfectly recover a sparse signal, even though the amount of measured data is

insufficient. Following this concept, we propose to use the object based model to

represent the high contrast image, which leads to a sparse representation. This is

done by designing a dictionary that can represent the discrete image with very few

coefficients in the transformed domain. Thus, with the designed dictionary we can

formulate the DT as a sparse recovery problem, and the quality of reconstruction

result is superior to standard reconstruction methods.

Another challenge is that for a high contrast image, the set of possible inten-

sity levels is not known in advance. In practice, determining the intensity levels

as a prior is very challenging and affected by other practical issues, such as mea-

surement calibration [16]. Therefore, we formulate an unknown intensity levels

DT problem and propose a completely unsupervised algorithm to reconstruct the

image. We first address the binary DT problem for known intensity levels, then ex-

tend our algorithm by representing the multi-value image with the superposition of
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binary images and adding a level-estimation step within each iteration. Thus, our

algorithm iteratively estimates the intensity level and reconstructs the final image.

1.5 Outline

This dissertation is organized as follows. First we study the high contrast travel time

tomography problem and propose an object-based reconstruction in Chapter 2. As

an application, we propose the fracture estimation in a low permeability reservoir

under water-flooding in Chapter 1.3. In Chapter 4 we propose a dictionary and use

sparse recovery to reconstruct the object in X-ray discrete tomography. Finally, in

Chapter 5 we conclude our work and point out some possible future work.
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Chapter 2

Travel-time tomography for high contrast media

with sparse data

2.1 Introduction

Travel time tomography aims to reconstruct an interior velocity model by using

the measured first-arrival times between transmitters and receivers. The velocity

model captures the physical properties of the region where the signal transmission

occurs. The transmitted signal can be a seismic wave, an acoustic sound wave,

and even a fluid pressure wave. This technique is important to characterize large

scale elastic media, in applications such as seismic geophysical exploration [58] and

acoustic tomography (for example, in the atmosphere’s surface [77] or in the ocean

layers [55]). However, different from many other types of transmission tomography

(X-Ray CT, Positron emission tomography CT) where the straight-line travel path

assumption is commonly used, in this work we consider the “high contrast” velocity

model where the travel path may bend severely according to the velocity changes.

This phenomenon happens in all kinds of waveform inversion applications, with one

of the most studied cases being acoustic tomography. Instead of using the straight

line assumption, the travel path can be characterized by Fermat’s principle: the
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travel path observed is the path traversed in the shortest time [11], where the time

can be predicted as a path integral of the slowness function (reciprocal of velocity)

integrated along the travel path.

In many geophysical applications it is very common to have heterogeneous struc-

tures where the velocity contrast is high, e.g., a factor of two difference in velocity

between different areas. Example of scenarios where this situation can be en-

countered arise in many applications: using seismic waves to find fault zones [69],

monitoring the water/oil saturation in vegetable oil bio-remediation projects [47],

etc. The heterogeneous structure could be either fast or slow velocity structures. In

this work, we mainly focus on finding the high velocity structures in a homogeneous

background. Different from the case where the velocity distribution only has small

variations [77], the travel path near the boundary of high velocity structure not

only bends severely but is almost dominated by them that form high transmissive

channels. Because the straight line travel path approximation is not valid, the re-

construction of the velocity model becomes a nonlinear inverse problem. Note that

conventional reconstruction methods are based on iterative linearized algorithms to

approximate the travel path. Thus, given that in many practical situations we only

have sparse measured travel time data, these methods suffer from problems due to

low ray-coverage and severe path bending in the high contrast velocity medium.

For a comprehensive review on this subject, we refer the reader to the overview by

Berryman [12].

Our initial motivation for this work comes from the flow permeability charac-

terization in a fractured reservoir [73]. One of the most widely used enhanced oil

recovery (EOR) techniques, water-flooding, involves injecting water in a controlled

manner in order to provide pressure support that can slowly sweep the oil into

the production wells [75]. During this process, the permeability (measurement of
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ability to transmit fluid) of open fractures can be orders of magnitude higher than

that of surrounding tight rocks, providing fast pathways for the flow. Thus, travel

time through a fracture (which could be modeled as a line in 2D or a plane in

3D) is much faster than through surrounding rocks. The flow properties of the

reservoir are dominated by these highly “transmissive” fracture structures. If a

fracture is close to both an injection well and a production well, most water will

flow directly through the fracture and will fail to displace oil in nearby areas. This

is a phenomenon known as “water cycling”, which significantly reduces oil recov-

ery efficiency. Thus, understanding the locations of fractures is critical in flow

characterization and enhancement of oil recovery efficiency. The major challenge

to achieve this understanding is that travel time measurements are limited by the

borehole locations, which makes it difficult to reconstruct high resolution images

of fracture locations. The high permeability contrast property between open frac-

tures and surrounding rocks also increases the difficulty of reconstructing accurate

velocity maps.

A similar situation also arises in bio-remediation problems, where the goal is to

map the hydraulic conductivity and predict the ground water flow in the aquifer.

Borehole core samples and pollutant concentration data are available only from

the pumping wells, which are very sparsely located in the field. Another interesting

application is network delay tomography [71], where the main goal is to identify the

nodes where congestion occurs. Instead of using internal measurements at many

nodes, which require high bandwidth resources, network tomography measures the

end-to-end delay in the network and estimates the delay in each link. When conges-

tion happens, the delay time may be very different from the typical values, which

would make this a “high contrast” tomography problem.
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Many different models have been developed for problems that involve a struc-

tured velocity distribution. Grid-based methods [10], which divide the volume into

small cells and assign a constant velocity to each cell, are widely used because of

the freedom to represent the structure in any degree of detail by increasing the

number of cells. As an alternative, object-based methods [47] use predefined ob-

jects to represent the velocity structure. Compared to grid-based methods, if the

pre-defined shape of those objects is chosen wisely, object-based methods have the

advantage of parameterizing the spatial velocity distribution with a small number

of objects instead of a large number of cells.

This paper focuses on finding high velocity structures (HVS) in a relatively slow

homogeneous background. Specifically we consider the case where the travel veloc-

ity can only take one of several possible discrete values. We call this a “discrete”

travel time tomography problem. For example, a reservoir can usually be modeled

as a layered structure, where each layer has quite different hydraulic conductivity.

Only a limited amount of research has addressed the high contrast velocity prob-

lem in travel time tomography. Bai and Greenhalgh [6] proposed to add irregular

nodes on the boundary of cells to improve the stability when determining nonlinear

ray travel paths. Berryman [9] used Fermat’s principle on the velocity model to

handle the case where high contrast velocity alters the travel path severely. Both of

these approaches are grid-based methods and use iterative linearized algorithms to

perform the tomographic reconstruction. Because the velocity contrast is so high,

grid-based models require a very fine grid to represent the velocity distribution at

the boundaries between areas of different velocity, and the corresponding iterative

linearized inversion algorithm will often fail to converge and determine the actual

travel path. A finer grid implies we need to estimate more unknown values (the

number of parameters to estimate grows linearly with the number of cells), some of
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cells may not even be covered by any travel path. For these cells, we cannot deter-

mine the travel velocity because no travel path passes through the corresponding

cells. This is the well known “lack of ray coverage” phenomenon.

As an alternative, in this chapter, we use object-based models to represent the

HVS. The objects are chosen from pre-defined fundamental convex shapes, so that

the geometrical shape of HVS can be represented by a combination of these objects.

This approach has two main advantages. First, the problem of approximating an

arbitrary shape by multiple convex objects is well understood. Moreover, we can

incorporate the prior information about the HVS into object-based models. For

instance, in the fracture characterization problem we know that the geometrical

shape of fractures can be well approximated by lines in 2D models or planes in 3D

models. Thus, in these cases, we can define the shape of our fundamental convex

object as a “line” or a “plane”, respectively. With this formulation, only small num-

ber of objects is needed to well approximate the shape of HVS, which reduces the

dimensionality and uncertainty of the reconstruction problem. Second, the travel

path tracking procedure can be simplified by only considering the shortest path be-

tween objects instead of all cells in spatial domain. Because the elementary objects

are convex, the travel path is piecewise linear and the computational complexity for

finding the shortest path between objects is reduced. Compared to the methods we

mentioned before, our approach reduces the number of unknown variables (which is

equal to the number of object parameters) and avoids the “lack of path coverage”

problem arising in grid-based models, which leads to a more stable solution to the

problem.

To estimate the velocity model from the measured travel time, we need to solve

a nonlinear inverse problem. The major issue in all inverse problems is that the

solution, in this case the estimated velocity model, may not be unique for the
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given measurements. One popular approach to handle the non-uniqueness issue is

to apply regularizations to favor certain properties in the model [28]. The regu-

larization methods can be viewed as model selection: they will lead to solutions

that balance data-fitting and model-penalty. However, it is not easy to select the

weight for model-penalty and this usually requires cross validation in order to avoid

over-fitting [57].

An alternative approach is to estimate the probability distribution for the model

space according to the data-fitting [68]. This gives a full description of the relative

probabilities of the different models, so that we can explicitly consider all likely

solutions. However, estimating the probability density in a high dimensional model

space is very challenging and time consuming [52].

In this chapter, we choose the Bayesian approach and focus on estimating the

probability density in the model parameter space. Due to the large dimension of

the model parameter space, we develop an accelerated random walk algorithm to

explore the model space. Based on the Hamiltonian Monte Carlo method (HMC),

we add an additional friction term to the generation of sampling points along the

simulated particle moving trajectory through the model parameter space. Our al-

gorithm will sample more frequently locally in low error regions, and re-sampling

will be used based on the HVS property to approximate the structure of the prob-

ability distribution. The results are presented as a probability map showing where

the high velocity objects are more likely to appear in the underlying structure of

the system.

To the best of our knowledge, we are the first to use an object-based approach

to solve a high contrast, discrete velocity tomography problem. Our proposed algo-

rithm uses the HVS properties to simplify the path finding step, which makes the

HMC sampling process more efficient. Furthermore, we exploit the monotonicity

15



of the travel time as a function of high velocity object size to approximate the

probability distribution in the space of model parameters. The rest of the paper is

organized as follows: We define the object based model to represent the structure

in the velocity model in Section 2.2, and introduce the forward step and define the

mathematical formulation for the travel path finding problem in Section 2.3. In

Section 2.4 we give an overview of our proposed algorithm for probability density

estimation. Simulation results and conclusions are presented in Section 2.5 and 2.6.

2.2 Object based model

In this chapter, we addresses the problem of detecting high velocity structures in

low velocity background with sparse data. The relation between the travel time and

velocity model is illustrated in Figure 2.1, where the forward step predict the travel

time for a given velocity model. In the inverse step, a velocity model is estimated to

match the measured travel time data. In this section, we will introduce the object

based approach to represent the high contrast velocity model.

Figure 2.1: The forward-inverse step of the velocity model and travel time
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To represent the high velocity structure with the object based model, we need

to define the type of object that is appropriate for our application. In rendering

(computer graphics), it has been well studied that we can approximate an arbitrary

structure in any detail with few fundamental objects [4], for example, triangle or

ellipse. In this chapter, we use convex objects as our fundamental objects, where we

can define the types of convex object shape by user’s choice. For example, if we only

use one type convex object (ellipse) as the fundamental object, the ith object will

be parameterized by the scale (size of object), center location and the orientation

of the corresponding ellipse, leading to a vector of parameters θi = {si, ci, ψi},

where si, ci, ψi denote the scale, center location and the orientation respectively

(see Figure 2.2(b)). We denote |θi| the area inside the ith object. This formulation

can be easily extended to multiple type of convex shapes, for example, the object

can be either a triangle or an ellipse with one additional parameter to identify the

type of shape.

(a) (b)

Figure 2.2: (a) Grid based model: the HVS structure is approximated with cells
and assigns the same velocity inside each cell. (b) Object based model with ellipse
as the fundamental object: the structure is approximated with objects and assigns
the same velocity inside each ellipse.
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Next we define the velocity model in terms of the objects. Let {θ1,θ2, . . . ,θN}

be the set of N high velocity objects, we denote vh the velocity in the homogeneous

background, and vi the velocity inside object θi. Thus, the velocity model can be

represented by the objects as:

V (x, y) =

 vi, if (x, y) ∈ |θi|,

vh, otherwise.
(2.1)

Obviously the spatial velocity distribution is determined by the objects. We use

the notation V (θ1, . . . ,θN) to indicate the velocity distribution when we have N

objects with parameters θ1, . . . ,θN in the model.

We use d(θi,θj) to represent the distance between two objects, which is defined

as:

d(θi,θj) = min
µ,ν
‖µ− ν‖2, µ ∈ |θi|, ν ∈ |θj| (2.2)

and the corresponding path is denoted by ~P (θi,θj). The same notation can be

used for the distance between point and object, or point to point, i.e., d(α,β) and

~P (α,β) are the distance and path between points α and β, etc.

2.3 Forward step

In this section, we introduce the forward step: Given the velocity model as input,

the forward model predict the corresponding travel time between arbitrary trans-

mitters and receivers. We use the mathematical formulation proposed in [12] to

calculate the travel time, where the travel path is defined as the direction of wave-

front propagation. Based on Fermat’s principle, the actual travel path is the one
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with minimum time cost from all possible travel paths connecting the transmitter

and the receiver. Let V (x, y) represent the velocity at position (x, y). The time

cost of an arbitrary path P connecting two points {α,β} based on velocity model

V is defined by the path integral:

τP (V,α,β) =

∫
P

1

V (x, y)
dlP , with Pstart = α, Pend = β. (2.3)

The travel path, P ∗, is defined as the path with minimum time cost τ ∗. Therefore,

we can define the travel time τ ∗ between two points {α,β} as:

τ ∗(V,α,β) = min
P
τP (V,α,β) = min

P

∫
P

1

V (x, y)
dlP , (2.4)

and the path P ∗ will be:

P ∗(V,α,β) = arg min
P

τP (V,α,β). (2.5)

Finding the analytical solution for the travel time τ ∗ and travel path P ∗ is a

classical problem in calculus of variations [20]. Conventional methods, including the

shotgun ray-tracing method [12] or the level set method [63], tend to be all very

computationally expensive. In what follows, we will show that simple solutions

exist if we consider the case of a homogeneous background containing high velocity

convex objects.

2.3.1 Fast travel time/path finding

With the object based velocity model we proposed in Section 2.2, we now propose

a fast travel path finding algorithm and prove it can be built using induction on the
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number of objects included in the model. For now, in order to reduce the complexity,

we assume that all objects have the same velocity and consider the high contrast

velocity case, i.e., v = v1 = · · · = vN and velocity ratio v/vh →∞. With the high

velocity contrast assumption, we can ignore the time spent passing through an

object, which provides a way to find the fastest travel path by considering the path

between objects recursively, thus greatly reducing the computational complexity.

We build our path-finding algorithm by induction. We start by assuming there

is only one object in the velocity model, V (θ1), then the travel path between a

transmitter α and a receiver β will be either the direct path connecting transmitter-

receiver points α and β or the one passing through the object, whichever is faster

(see Fig. 2.3(a)). Thus, the travel time function for any two points α and β with

a single object θ1 in the model is the fastest of two possible travel paths:

τ ∗(V (θ1),α,β) = min

 1/vh · d(α,β)

1/vh · ( d(α,θ1) + d(θ1,β) ) + 1/v1 · d(γ, ζ)
(2.6)

where γ, ζ are the closest points to α,β in |θ1|, which are defined as:

γ = arg min
γ

‖α− γ‖, ζ = arg min
ζ

‖β − ζ‖, γ, ζ ∈ |θ1|. (2.7)

The travel path passing through the object is the combination of the shortest dis-

tance from α to |θ1|, a path inside |θ1| and the shortest distance from |θ1| to β.

Because of the background is homogeneous, the shortest distance from α to |θ1|

is a straight line and we use ~P (α,γ) to represent it (likewise for ~P (ζ,β)). And

the shortest path inside |θ1| connecting γ and ζ is also a straight line, because

the object is convex shape. This travel path can be viewed as α − θ1 − β which
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describes the order of objects passing through. From the high velocity object as-

sumption, the travel time inside |θ1| is negligible, thus, the travel time function in

the one-object case becomes:

τ ∗(V (θ1),α,β) = min

 1/vh · d(α,β)

1/vh · ( d(α,θ1) + d(θ1,β) )
. (2.8)

Figure 2.3: The travel path will be the faster one between the direct path or the
one through high velocity object

Next, we consider the two-object case, N = 2. Now the fastest travel path

will be either the path using less than two objects, or the path passing through

both objects. From (2.8) we know how to compute the travel path/time for the

one-object cases, which are α−θ1−β and α−θ2−β. Thus, all we need to do now

is to compute two new paths which pass through both |θ1| and |θ2|, and compare

them to the previous results.

We notice that the path α− θ1− θ2−β includes the shortest paths from α to

object θ1, from object θ1 to object θ2, and from object θ2 to β. Similar to (2.8),

the corresponding travel time will be 1/vh · ( d(α,θ1) + d(θ1,θ2) + d(θ2,β) ). But

d(α,θ1) has been calculated in the previous step when finding the path α−θ1−β,
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and likewise d(θ2,β) is also available. Thus d(θ1,θ2) is the only new quantity to

be calculated. Now it is clear that the travel path α − θ1 − θ2 − β can be found

efficiently based on previous results. Similarly for α− θ2 − θ1 − β, only d(θ2,θ1)

would be needed, but d(θ2,θ1) = d(θ1,θ2) and thus no new distance needs to be

computed.

Now the forward model for calculating the travel time given two objects in

velocity model τ ∗(V (θ1,θ2),α,β) can be simplified as

τ ∗(V (θ1,θ2),α,β) = 1/vh ·min



d(α,β)

d(α,θ1) + d(θ1,β)

d(α,θ2) + d(θ2,β)

d(α,θ1) + d(θ1,θ2) + d(θ2,β)

d(α,θ2) + d(θ1,θ2) + d(θ1,β)

. (2.9)

Note that compared to the single object case in (2.8), in (2.9) we only need to

compute three new terms d(α,θ2), d(θ1,θ2) and d(θ2,β). By induction, it follows

that when we add the Nth object θN the new terms that need to be computed will

be d(α,θN), d(θ1,θN), . . . , d(θN−1,θN) and d(θN ,β). That is, the number of new

distances to be computed increases linearly with the number of objects. Therefore,

the overall computational complexity of path tracking becomes O(N2).

2.3.2 Dijkstra path finding

Note that in (2.9), as well as in successive cases with additional objects, N > 2, the

optimal result is obtained by comparing different combinations of pairwise distance

(between points and/or objects). Based on this fact, we can convert the path

tracking problem into a shortest distance problem on a graph.
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To do so, we can define a graph where the transmitter and receiver act as source

and destination vertices and the objects are intermediate vertices. The weight of

edges between the vertices is the distance between the corresponding objects defined

in (2.2) (sources, destinations or objects, see Figure 2.4). Thus, this undirected

graph G = (v, e) will be fully connected with nonnegative weights and the shortest

path from source to destination can be found by running the Dijkstra algorithm [22]

(see Algorithm 1).

Algorithm 1 Dijkstra algorithm for path tracking

for v ∈ G do . Initialization
dist[v] =∞ . Unknown distance from source to v
previous[v] = ∅ . Previous node in optimal path from source
dist[source] = 0 . Distance from source to source
Q := ∀v ∈ G . Put all nodes in Q to be scanned

end for
while Q 6= ∅ do . The main update loop

u := v ∈ Q with minimum dist[v] . Start node in first case
Q = Q \ u . remove u from Q
if dist[u] =∞ then

break ; . all remaining vertexes are inaccessible from source
else

for ∀ neighbor v of u do . where v is still in Q
alt = dist[u] + e(u, v)
if alt ≤ dist[v] then . update the distance for v

dist[v] = alt
previous[v] = u

end if
end for

end if
end while

For example, in Figure 2.4b we can construct the corresponding fully connected

graph for velocity model V (θ1,θ2) with 4 nodes as shown in Figure 2.4(b). We

show the update of the path tracking algorithm from the source α to each node
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(a) (b)

Figure 2.4: Graph representation of path tracking. (a) The distance between objects
(b) Graph and distance metric

for a numerical example with the same topology as the example of Figure 2.4(b) in

Figure 2.5.

2.3.3 Relationship between object size and travel time

For high velocity convex objects, we note that there is a monotonicity property

between the travel time function and the size of the objects. This will play an

important role in the inverse step to be presented later. To see this, we assume

two high velocity convex objects, {θ1,θ
′

1}, where |θ′

1| is a dilation of |θ1|. In other

words, θ
′

1 is a convex object with larger size but with the same overall shape as θ1,

thus, |θ1| is a subset of |θ′

1|, |θ1| ⊂ |θ
′

1| (as shown in Figure 2.6).

From previous discussion, the travel path depends on the distance between the

objects. If one object expands, the distance between this object and others must

be shorter. Thus, all the edge weights (distance metric) in the graph will be smaller

than or equal to the weights before expansion, thus, the travel time must be faster.

This leads to the following lemma:
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(a) (b)

(c) (d)

Figure 2.5: The example for Dijkstra algorithm. Note in (b) the dist[θ2] is dist[α]+
e(α,θ2) = 5, and in (c) after we add θ1 the dist[θ2] is updated to dist[θ1] +
e(θ1,θ2) = 4
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Figure 2.6: Change of the travel path with respect to the object size

Lemma 1. Consider two high velocity objects, {θ1,θ
′

1}, where |θ′

1| is a dilation of

|θ1|, |θ1| ⊂ |θ
′

1|. With the other N−1 objects fixed, consider two alternative velocity

models V (θ1,θ2, . . . ,θN) and V (θ
′

1,θ2, . . . ,θN) using θ1 and θ
′

1 respectively. For

the travel time function, we have τ ∗(V (θ1, . . . ,θN),α,β) ≥ τ ∗(V (θ
′

1, . . . ,θN),α,β)

∀α,β. Thus, the travel time is monotonically non-increasing with respect to the size

of high velocity object. 1

Proof. The proof is straight forward, given that weights in the graph are smaller

or equal with the same topology, the shortest path will be shorter.

2.4 Inverse step

In the forward step we just presented, we can predict the travel time when the

velocity model is given. Then, in the inverse step the goal is to estimate the velocity

model when the travel time data is observed. With limited travel time measured

data, this inverse problem becomes ill-posed and the solution may not be unique.

Thus, searching one single most possible model provides limited information for

1This property still holds for any even |θ1| ∈ |θ
′

1|, even |θ1| and |θ
′

1| have different shapes.
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this inverse problem. Instead, we formulate it as a statistical inference problem

and estimate the probability distribution of the velocity model in the parameter

space [68]. We start this section by introducing some notations.

2.4.1 Notations

The input data is obtained by measuring the travel time between the set of transmit-

ters A = {α1, . . . ,αtx} and receivers B = {β1, . . . ,βrx}. We denote the measured

travel time for all transmitter-receiver pairs (αi,βj) as a vector t = {t1, . . . , tn},

where n = tx · rx. Assuming that there are at most N objects in the velocity

model, we can cascade all object parameters and define a vector of model parame-

ters, Θ = {θ1, . . . ,θN}, thus the velocity model V (θ1, . . . ,θN) can be represented

simply by V (Θ). Then we define the travel time function from the forward model,

T(Θ,A,B), as a vector function representing the travel time between each pair of

transmitters and receivers based on the velocity model with parameter Θ:

T(Θ,A,B) = (T1(Θ,A,B), . . . , Tn(Θ,A,B)), (2.10)

where 
T1(Θ,A,B) = τ ∗(V (θ1, . . . ,θN),α1,β1)

...

Tn(Θ,A,B) = τ ∗(V (θ1, . . . ,θN),αtx,βrx).

(2.11)

We then define an error function as a quadratic data-fitting error between the travel

time predicted from the forward model and the measured travel time:

E(Θ) = ‖t−T(Θ,A,B)‖2. (2.12)
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We use the Bayesian approach [68], which leads us to update the belief for different

models after accounting for the observations. The likelihood function L(Θ), which

is modeled as a Gaussian uncertainty of the error, measures the confidence on

different models:

L(Θ) = k̃ · e−E(Θ), (2.13)

where k̃ is a normalization constant. From Bayes’ rule, the posterior probability

density function (PDF) σ(Θ) is proportional to the prior probability distribution

ρ(Θ) multiplied by the likelihood function L(Θ). The prior probability ρ(Θ),

which may come from previous experience, can provide useful information to select

possible models after the data is observed:

σ(Θ) = k · ρ(Θ)L(Θ), (2.14)

where k is again a normalization constant. For the rest of this paper, we assume

a uniform distribution for the prior probability ρ(Θ), so that the posterior PDF

is equal to the likelihood function. Estimate the posterior PDF is equivalent to

estimating the error function, where the most possible models correspond to the

global minima in the error function E(Θ). In the next section, we will introduce

our algorithm to estimate the error function.

2.4.2 Proposed algorithm

Because the travel time function is nonlinear, the error function E(Θ) will have a

complex and multi-modal shape. We can “sample” the error function at any point

Θ by calculating the mismatch between the measured travel times and the ones

predicted from the forward model based on parameter Θ. However, even with the
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fast path tracking approach of Algorithm 1, calculating the travel time is still very

computationally expensive.

A naive approach to estimate the error function would be running a brute-force

uniform sampling in the whole parameter space. For example, consider the 2D case

where each object needs one parameter for the size, two parameters for the center

location and one for the rotation angle. If we choose 3 objects in the velocity model,

there will be 12 parameters, so that if we uniformly sample 10 possible values for

each parameter, this will require a total of 1012 samples, which clearly makes this

uniform sampling approach impractical.

We note that in (2.13) the high probability models correspond to the regions

with low error in the parameter space. Thus, when sampling the error function,

we would like to have more sample points in these low error regions. However, the

error function is multi-modal and the gradient based method (steepest descend) can

only search and sample near the closest local minima. Thus, in order to search and

sample in the whole parameter space, we choose a random walk sampling scheme.

While this is a popular approach to find multiple minima, the main drawback is

that its computational time could be very high, especially when the dimension of

the parameter space is high [52]. Thus, when we consider a velocity model with

many objects, the dimension of the model parameter space grows with the number

of objects which implies an exponential growth in the number of samples. To

overcome this problem, we propose an accelerated sampling algorithm to speed up

the random walk sampling and achieve denser sampling in the low error regions.

To further accelerate the sampling, we make use of known properties of the error

function. Specifically, in the second part of our algorithm we use the monotonicity

property in Lemma 1 which implies that each error function (corresponding to one

measured travel time) is a unimodal function with respect to changes in the size
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of one object. This allows us to re-sample along the dimension corresponding to

the object size (with all other parameters fixed). These re-sampling location are

chosen by running golden section search on each error function (which is unimodal).

Compared to other sampling methods, our method significantly reduces the compu-

tational time and provides a sufficiently good approximation of the error function.

The two parts of our algorithm are described in the next section.

2.4.2.1 Accelerated random walk sampling

In the first part of our algorithm, we want to sample the error function and em-

phasize the sampling in the low error regions. We modify the “Hamiltonian Monte

Carlo” (HMC) method [25], which is a Metropolis method but includes the gradient

information to reduce the random walk behavior. HMC uses the dynamical system

concept to draw samples by simulating a particle movement on the surface of the

error function. We introduce a new “friction” term, which is closely related to the

cooling schedule in simulated annealing [45], to draw more samples near the local

minima.

In HMC, we define a dynamical system where the model parameter Θ is aug-

mented by a momentum variable p, where p,Θ have the same size. The total energy

H(Θ,p) of the dynamical system is defined as the sum of “kinetic energy” and the

“potential energy”, where the “potential energy” is equal to the error function E(Θ)

and the “kinetic energy” is given by K(p) = ‖p‖2/2, i.e, H(Θ,p) = E(Θ) +K(p).

The changes in Θ and p will be determined by the following equations:

Θ̇ = p, (2.15)

ṗ = −∂E(Θ)

∂Θ
− εp. (2.16)
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To sample the error function, we simulate and record the states of particle

movement. With a randomized momentum p, we solve the Hamiltonian dynamics

in (2.15) during a simulated time of duration t. In the dynamical movement, the

momentum variable p determines where the parameter Θ goes, and the gradient

of potential function determines the change of momentum p. The friction term εp

decides the loss of total system energy.

Starting with the initial value Θ0, we define the simulation time t and steps ∆t,

then use (2.15) to identify the successive steps in the walk through parameter space.

During the simulated time t, we can record the state variables [Θ(∆t),p(∆t)],

[Θ(2∆t),p(2∆t)], . . . , [Θ(t),p(t)] which describes the variable movement on the

error function. Then we take all the Θ(∆t), . . . ,Θ(t) as new sampling points for

the error function.

In Fig 2.7 we show an example of the particle movement. The initial momen-

tum drives the particle to the high potential region, then it falls back because the

momentum is changed by the gradient of the potential function. And the total

energy decreases during the simulation, which causes the particle to settle down in

one local minima.

Then we decide whether to accept the last sampling point Θ(t) as a new starting

point for the next round of simulation by the Metropolis rule [54]. This acceptance

rule is based on the change of the error function, ∆E(Θ) = E(Θ(t)) − E(Θ(0)),

where Θ(0) is the current starting point. If ∆E(Θ) ≤ 0, the new sample reaches

a lower error state and we always accept it as a new starting point. Otherwise, we

draw a random number r between [0, 1] and accept it if exp(−∆E(Θ)) ≥ r. We

iteratively simulate this dynamic system L times, and the detail algorithm is shown

in Algorithm 2.
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Figure 2.7: The simulated state movement. Note the initial momentum is toward
left, driving to the high error region. Then it falls into low error regions, and we
can see the total energy is decreasing through the simulation. Most of samples are
near local minimum.

This sampling scheme provides some useful properties for exploring the param-

eter space in our inverse problem:

• The random momentum provides the ability to jump out of current local

minima, and makes it possible to travel through all parameter space and

sample in multiple low error regions.

• The additional friction term decreases the total system energy at each simu-

lation proceeds, which “cools down” the system and allows the state to stay

near a local minimum. This property leads to more samples in the low error

region.

• The exploration speed is linearly related to the number of iterations, instead

of being related to its square root, as in the typical random walk. This makes
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Algorithm 2 Modified Hamiltonian Monte Carlo method

Θ(0) = Θinit . Initialize
for l = 1 : L do . loop L times

g = ∇E(Θ(0)) . set gradient using initial parameter
E = E(Θ(0)) . set error function value
p← randn( size(Θ(0)) ) . initialize momentum
Θnew = Θ(0), gnew = g
for tsim = 0 : ∆t : t do . Use “leapfrog” steps to simulate the dynamics

p = p− δ · gnew/2
Θnew = Θnew + δ · p
Sample list← Θnew . Record the state samples
gnew = ∇E(Θnew) . Update the gradient and momentum
p = p− δ · gnew/2− ε · p

end for
Enew = E(Θnew) . Find the final value of error function
∆E = Enew − E . Use Metropolis rule to decide the new starting point
if ∆E < 0 then

Θ(0) = Θ(t) . Accept the new starting point
else

if exp(−∆E) ≥ rand() then
Θ(0) = Θ(t) . Accept the new starting point if exp(−∆E) ≤ a

random number
end if

end if
end for

our sampling scheme much more efficient in a high-dimensional parameter

space.

2.4.2.2 Re-sampling by the monotonicity property

In the first part of our algorithm, an accelerated random walk leads to sample

points concentrated in the low error regions. However, if we want to understand the

structure of the error function in the whole parameter space, it will not be sufficient

if we only sample in the low error regions. In the second part our algorithm, we

want to re-sample the error function and build a linear approximation for it.
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Because the shape of error function is complicated and multi-modal, without

any prior information there is no easy way to efficiently choose “good” sampling

locations to approximate it. One possible approach would be using the samples

from HMC step as starting points to run a pure random walk to explore and re-

sample the error function. However, the exploration speed in a pure random walk

would be roughly equal to the Nth root of the number of samples, where N is

the dimension of parameter space. This would be too slow and we would require

exponential samples to cover the whole parameter space. We now show how to use

some properties of the error function in order to choose the re-sampling locations

efficiently.

We note that the error function is defined by the sum of mismatches correspond-

ing to each measured travel time:

E(Θ) = ‖t− T (Θ,A,B)‖2 (2.17)

= ‖t1 − T1(Θ,A,B)‖2 + ‖t2 − T2(Θ,A,B)‖2 + . . . (2.18)

= E1(Θ) + E2(Θ) + . . . , (2.19)

where each separate error function has a quadratic formEi(Θ) = ‖ti−Ti(Θ,A,B)‖2.

Consider the change in the travel time function Ti(Θ,A,B) with respect to the size

sj of object j, while all other parameters are left unchanged. By Lemma 1, the

travel time between two arbitrary points will always be non-increasing as the size of

a high velocity object increases. Thus, given its quadratic form the change of each

individual error function, Ei(Θ), will be a weakly unimodal function with respect

to the change of a single object size(see Figure 2.8).

We make use of this property to choose the re-sampling locations in the param-

eter space. The basic idea is to re-sample only along the dimensions corresponding
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(a) (b)

Figure 2.8: Change of travel time and error function with respect to the size of one
high velocity object. (a) The travel time function Ti(Θ,A,B) (b) The error func-
tion Ei(Θ = ‖ti − Ti(Θ,A,B)‖2. The travel time is monotonically non-increasing,
therefore the error function is weakly unimodal.

to size parameters, s1, s2, . . . . We choose one size parameter each time and use the

above property. Because Ei(Θ) is unimodal with respect to the change of sj, it can

be well represented by linear interpolation if we sample more frequently in large

curvature regions. Thus, we select one axis sj at a time corresponding to the size of

object j and use the golden section search [44] to perform selection on re-sampling

locations along that axis, while leaving parameters along the other dimensions un-

changed. We use these probing points as re-sampling locations, with more locations

chosen in the large curvature regions (minima). Thus, compared to the random or

uniform sampling, the golden section search sampling is more efficient because it

puts few samples in the almost constant regions and focuses on the large curvature

regions in the parameter space.

To illustrate our approach, consider an example where we have two objects

in the velocity model Θ = {θ1,θ2} and two measured data points t = {t1, t2},

the error function is defined as E(Θ) = E1(Θ) + E2(Θ). Given an initial sam-

ple Θ(0), the parameters can be re-ordered as Θ(0) = {s1(0), s2(0), Θ̃(0)}. To
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find the re-sampling locations on the s1 axis, we run the golden section search k

times along the s1 dimension on E1(Θ) and E2(Θ). The re-sampling locations

will be {s1(1), s2(0), Θ̃(0)}, . . . , {s1(k), s2(0), Θ̃(0)} and {s1(k + 1), s2(0), Θ̃(0)},

. . . , {s1(2k), s2(0), Θ̃(0)} where the first k points are chosen by running the golden

section search on E1 and the next k points are on E2. Likewise, we run the same

procedure to choose the re-sampling locations on the s2 axis.

Note that to re-sample on the s1 axis, we choose 2k re-sampling locations for

the error function based on E1 and E2 separately. If we run the golden section

search directly on the error function E(Θ), which is the sum of each separate error

function E(Θ) = E1(Θ) + E2(Θ) and may not be unimodal (sum of unimodal

functions is not necessary unimodal, see Figure 2.9), the direct search is unlikely

to give us good sampling locations. Since each separate function is unimodal and

we know how to efficiently sample it, we divide the sampling “budget” and choose

the sampling locations based on each separate function. Because the error function

is the sum of each separate error function, the large curvature regions for the error

function should belong to the union of large curvature regions of each separate error

function and our approach selects more samples in the regions where one of the two

error functions has large curvature. In Figure 2.10 we show an example of how

this approach works better than choosing sampling locations directly on the total

function.

2.5 Simulation Results

Following our previous assumptions, in our simulations we use a velocity ratio

v/vh →∞ and choose “line” as the pre-defined convex geometrical object to model

the HVS. The model parameters θj = {sj, cj, ψj} will be the length, line center and
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(a) (b)

Figure 2.9: Sum of two unimodal functions. Note the sum of two unimodal functions
is not necessary a unimodal function.

(a) (b)

Figure 2.10: Re-sampling comparison. (a) Re-sampling locations chosen by running
the golden section search on f(x) (b) Locations chosen separately on f1(x) and
f2(x). The red “squares” are sampling locations chosen from f2(x), and black
“dots” are from f1(x). Note that choosing from separate functions gives much
better approximation because each one is unimodal.
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angle for the line object. The scenario we choose for our experiments is motivated

by the problem of modeling a fractured reservoir, where the fractures are usually

represented by lines in 2D or planes in 3D.

To visualize the object based model in spatial domain, after we sample {Θ1, . . . ,ΘN}

N points in the parameter space, we define a mapping function f(Θ) which maps

the object parameters into object shapes in spatial domain. Then we calculate the

average:

Mf =

∫
σ(Θ)f(Θ)dΘ ≈

N∑
i=1

σ(Θi)f(Θi). (2.20)

Because f(Θ) represents the high velocity structure in spatial domain,Mf can be

viewed as the “appearance probability map” of the high velocity in different region.

In simulations, we need to choose the random momentum p and friction ε · p.

We draw the momentum from a normal distribution N(0, ρ), where ρ is equal to

the 10% of the maximum possible value of Θ. The friction coefficient ε is chosen

to be 1/t in our experiments .

In Experiment 1, we illustrate the sampling process. Assuming there is only

one measured data point (one travel time between transmitter-receiver pair), and

the center of “line” object is fixed. Thus, in this case we only have two parame-

ters {s, ψ} which represent the length and angle of the line object. We show the

geometry of the line object, sensor locations and the ground truth PDF (which is

multi-modal because only one measured data point) in Figure 2.11. Now we apply

our algorithm to sample and estimate the PDF: The samples from the HMC step

are listed as blue circles, which are concentrated in high probability regions. The

results of randomized re-sampling and golden section search are shown in Figure

2.12, where the randomized re-sampling only explores a very narrow region near

the starting points and golden section search re-samples along the whole s axis.
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(a) (b) (c)

Figure 2.11: The (a) geometry of sensor settings and (b) (c) the PDF for experiment
1.

The estimated PDF from the two different approaches are shown in Figure 2.13,

which shows that our proposed method has much better estimated PDF than the

result from randomized re-sampling. Because the randomized re-sampling only

explores a small region near the initial samples, most of the structure of the PDF

remains unknown. Our approach choose the re-sampling locations which lead to

better approximation of PDF structure.

(a) (b) (c)

Figure 2.12: The HMC sampling and randomized re-sampling in experiment 1.
(a) The blue “dots” are samples from HMC. (b) The red “x” are re-samples from
random walk. Note it can only explores a small region in parameter space. (c) The
red “x” are re-samples from golden section search. The re-sampling locations have
the same ψ but cover the whole s axis.

In Experiment 2, we increase the number of measured data (2 transmitters and

2 receivers, total 4 measured travel time between transmitter-receiver pairs). The
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(a) (b)

Figure 2.13: The estimated PDF by (a) Randomized re-sampling (b) Golden section
search re-sampling. Note the randomized re-sampling only explores a small region
of parameter space and most of PDF is unknown.

PDF and our estimation are shown in Figure 2.14. Comparing to the Experiment

1, the change of PDF is much sharper which implies the model uncertainty is less

if we have more data. For example, if we define the acceptable model as E(Θ) ≤ δ,

then the corresponding region in the parameter space is much narrow for the large

data case.

We show the ground truth model and the estimated probability map in Figure

2.15. The result shows that we have high probability areas near the ground truth.

Note the center has highest probability - the reason is that in this simple example

we fix the center for all HVS models. Thus, when we calculate the appearance

probability, all models have a common center point and we will have the highest

probability near the center area.

In Experiment 3, the transmitters and receivers are placed on the boundary

and the HVS is near the center lower area. In the inverse step, we use one line

object in the HVS model and all object parameters (center position, length, angle)

can be changed freely, so that the parameter space has 4 dimensions.
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(a) (b)

Figure 2.14: The PDF and our estimation in experiment 2. Note comparing to
experiment 1, the PDF has sharper changes which implies higher model resolution.

(a)
(b)

Figure 2.15: (a) The ground truth and (b) the appearance probability map. It
shows several different models closed to ground truth all have high probability.
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To quantify the reconstructed model error, we define the error metric as the

difference between each sampled HVS model and the ground truth, weighted by

the probability of each estimated HVS model. We use the Hausdorff distance to

characterize the difference of two HVS models. The Hausdorff distance for two

objects X,Y is defined by:

dH(X,Y) = max

{
sup
α∈X

inf
β∈Y

d(α,β), sup
β∈Y

inf
α∈X

d(β,α)

}
, (2.21)

where d(α,β) is the distance function of (2.2).

In our result, we map the high velocity model into 2D spatial domain, then

discretize the result into a set of points. The Hausdorff distance can be viewed as

the maximum distance among all points in a set to the nearest point in the other

set [60] and is widely used in computer vision to measure the difference between

3D curves or binary images [40]. It also has an interesting property in that when

dH(X,Y) = 0 then X and Y have the same closure. In our case, because we

use convex object models, if the Hausdorff distance is zero it implies that the two

objects are equal X = Y. From previous discussion, for a given model parameter

Θ, f(Θ) is the function that represents the shape of the corresponding high velocity

structure in spatial domain. Then, the error metric with respect to the true HVS

Θtruth can be written as

E(Θ) =

∫
dH(f(Θ), f(Θtruth)) · σ(Θ)dΘ (2.22)

≈
N∑
i=1

dH(f(Θi), f(Θtruth)) · σ(Θi), (2.23)

where Θi are sampled models.
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(a) (b)

Figure 2.16: (a) The ground truth and (b) the error metric for experiment 3. Note
that the error metric decreases when the number of sensor increases.

We list the error metric for 5 ∗ 5, 10 ∗ 10, 25 ∗ 25, 50 ∗ 50 transmitter-receiver

pairs (see Figure 2.16). Our results show that the error metric decreases as the

number of sensors increases. We also list the result with grid-based model and

linearized reconstruction algorithm for comparison. Due to the travel paths only

covering very few cells, most of the cell’s velocity remain unknown and the linearized

reconstruction algorithm will assign the high velocity to cells which give the most

significant changes for the error function, which usually are the cells closed to

sensors. (see Figure 2.17)

In Experiment 4, we use the same sensor constellation as in Experiment 3 with

a more complicated HVS. For the inversion, we use 3 line objects and the result

shows some difficulties to resolve the vertical structure of HVS. In Figure 2.19 and

2.20, it shows that increasing the number of measured data points does not increase

the vertical resolution. This is an inherent limitation of travel time tomography,

which comes from the relative location of the sensors and the HVS. If the “line”

HVS is orthogonal to the travel path, it will not affect the travel time at all. In

this case most of the transmitter-receiver pairs are in the horizontal direction, so
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Figure 2.17: (a) The grid-based result with 25*25 transmitters/receivers and (b)
the appearance probability map for Experiment 3. Note the grid-based model fails
to recover the HVS location.

that the vertical resolution is very limited. This is the reason we have “phantoms”

in the vertical direction and the error metric (see Figure 2.18) does not decrease

when we increase the number of measured data points.

From the above experiments, we show that our algorithm can estimate the

PDF and recover possible models for high contrast travel time tomography with

sparse data. Our algorithm is robust to noise because we estimate the PDF from

all measured data. For example, if one measured travel time is affected by shot

noise, the corresponding error function Ei will be significantly changed. But the

error function is defined as the sum of all individual error functions (see equation

(2.12)), thus, the effect of shot noise will be “averaged” out by other good measure

data points which provides the robustness for estimation.

2.6 Conclusion

The main purpose of this paper is to propose a new approach for the reconstruction

of high contrast discrete velocity models in travel time tomography. To image the
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(a) (b)

Figure 2.18: (a) Ground truth and (b) error metric for experiment 4. Note the
error metric does not decrease monotonically due to the vertical phantom.
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Figure 2.19: (a) Grid-based result and (b) appearance probability map for 10 ∗ 10
sensors in experiment 4
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(a) (b)

Figure 2.20: (a) Grid-based result (b) Appearance probability map for 25 ∗ 25
sensors in experiment 4

high contrast media, we take advantage of the high velocity structures and prove

that the travel trajectory is piecewise linear when we consider convex object model.

We show that our travel path finding method is able to compute the correspond-

ing travel time much faster than the conventional ray-tracing method because we

consider the number of objects as “nodes” instead of number of cells in grid model.

Thus, the complexity scales with the number of objects, instead of the (much larger)

number of cells in a grid.

A model based approach for high velocity structures (HVS) is studied and the

error function is defined by the misfit between the predicted travel time based on

current model and the measurements. We develop a reconstruction algorithm to

efficiently sample the error function in the model parameter space. After we map

the corresponding model parameters back to the object shape in spatial domain,

we can obtain the HVS appearance probability in different areas. In our simula-

tions, we show how our algorithm samples and approximates the error function,

finding set of possible HVS models. The results also show our algorithm has better

reconstructions compared to the typical grid-based model.
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Future work will be to explore how to refine the idea of object based model

to achieve an efficient representation of the HVS structure. For example, we are

looking at how to define or adaptively change the shape of objects to have a sparse

representation. And the optimum number of objects for the model is another

interesting question. Increasing the number of objects will provide a better detail

representation of structure, but also increase the dimension of parameter space.

We plan to explore the trade-off between the number of objects and computational

complexity of our randomized sampling algorithm.
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Chapter 3

Waterflooding Tomography

3.1 Introduction

Recently, due to the high demand of crude oil, enhanced oil recovery (EOR) tech-

niques have been widely used to boost oil production. The most commonly used

EOR approach is fluid e.g., gas or water injection in order to maintain the pres-

sure of the reservoir and increase the amount of oil that can be extracted. In this

chapter, we consider the “water-flooding” process where water is injected to the

reservoir to stimulate production. In a water-flooding project, we would like the in-

jected water to uniformly increase the pressure through the reservoir and “push” the

residual oil toward the production wells. The fluid flow through a porous medium

is described by Darcy’s law, which states that the flow rate is proportional to the

permeability. Therefore, it is critical to control the injection amount in different

locations because the heterogeneous structures affect the sweep efficiency dramat-

ically. Heterogeneous structures could be fractures or faults, which act as a high

permeability channels or barriers for the flow. For example, if a high permeability

channel is very close to the injection-production well pair, most injected water will

flow through it and fail to sweep the oil in other regions. This phenomenon is
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called “water cycling”, since much of the water injected is later produced. Water

cycling decreases the sweep efficiency and increases the water cut (the ratio of wa-

ter produced compared to the volume of total liquids produced), and high water

cut requires special treatment in the oil-water separation. Moreover, when the oil

production efficiency is low, the overall cost (per barrel of oil produced) increase

significantly because it includes lifting, separation, filtering, pumping and injection

of water. Another example is that if an injection well is near a fault, very little

water can flow through the barrier, which will also decrease the sweep efficiency

dramatically. To handle this situation, many authors have considered production

optimization as an approach to compensate the impact of heterogeneity and im-

prove sweep efficiency [5, 15, 67]. Thus, to optimize the water-flood efficiency it is

critical to identify these heterogeneous structures in a reservoir.

Many reservoir characterization methods have been proposed in the past few

decades. The most widely used one might be seismic cross-hole tomography, which

provides very detailed geological structures [14,64]. However, it is difficult to use the

seismic results to infer flow properties directly. In early work, pulse testing [41,53]

was used to measure the pressure build-up curve in nearby wells. This method

provides a direct measurement of the pressure wave propagation time, but field

operations need to be interrupted (because the field needs to be shutdown to enable

accurate measurements) Moreover, downhole pressure gauges are hard to maintain.

Another popular method is tracer testing [2, 3, 24], which injects a tracer chemical

at one well and monitors the concentration at all the production wells to estimate

the diffusion process between injector-producer pairs and provide a direct estimate

of flow permeability distribution. Vasco [73] also proposed combining the dynamic

data obtained from tracer tests and that obtained from productions rates in order

to generate a high-resolution representation of the reservoir.
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A common aspect of these methods is that they all require extra equipment and

may interrupt day-to-day operations. Seismic cross-hole testing needs to induce

seismic waves and deploy sensors to monitor the reflected signals, which requires

additional equipment and manpower. In tracer tests, chemicals or radioactive mate-

rials are injected and the concentration changes are monitored to map the inter-well

flow properties. But repeating the testing is difficult - either a different tracer is

used or we need to wait a significant amount of time for the tracer concentration

to return back to the background level.

In this chapter, we consider the case where water-flooding is applied to an oil

reservoir where wells are equipped with automatic measurements and control valves,

which gives us the freedom to control the rates of injection and monitor the result-

ing production changes in real time. Thus, we propose to vary the injection rate

and use these variations as a “probe” signal then measure the resulting changes

in production. The variation of injection rates will induce a pressure wave passing

through the field, so that the injection/production wells can be treated as trans-

mitting/receiving sensors as described in Chapter 2. Then we estimate the travel

time between well pairs (the time it takes for a producer to respond to a change

in an injector), and apply the travel time tomography techniques we developed in

Chapter 2 to characterize the permeability of the reservoir. The main advantage

over other methods (e.g., seismic and tracer test) is that this technique can be

applied based on current infrastructure without additional cost.

We treat the reservoir as a multiple input multiple output (MIMO) system and

use the capacitance model (CM) [80] to model the injection-production response.

We design the variation of injection rates based on the previously proposed sys-

tem identification techniques [49], which allow the injection rates to be chosen to
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maintain a constant average rate, so that we can keep the same overall average pro-

duction level and estimate the CM parameters from the production rate changes at

individual wells. The “time delay constant” in CM is used as an estimate of travel

time between well pairs.

In this chapter, we mainly focus on identifying fractures in a low permeability

reservoir, where the fractures act as high permeability channels in low permeability

background. The permeability contrast can be assumed to be very high - open

fractures are about 105 times more permeable than the host rock. Thus, the travel

time for the pressure wave to propagate through high permeability channels can

be considered to be almost negligible. Note that travel times can only be esti-

mated for the existing injection-production well-pair locations, which are sparsely

located in the field. In computed tomography, it is well known that the quality

of the reconstructed results is related to the density of travel ray-path. Thus, the

reconstructed reservoir image resolution is fundamentally limited by the spatial

distribution of well locations.

Based on these conditions, we can formulate a high contrast travel time tomog-

raphy problem with the goal to characterize these high permeability channels in a

low permeability fractured reservoir. If we use a grid-based model and apply the

conventional iterative least-squares methods [12], the reconstruction results will be

very poor in general. To identify these high permeability channels, following the

approach in Chapter 2, we use an object-based model, with “lines” as fundamental

objects to represent fractures in 2D. We use the algorithm described in Chapter 2

to estimate the probability distribution of the model parameters, directly pointing

to the location of high permeability channels. We can also map the result into

the spatial domain and view it as a probability map to represent the probability

of appearance for high permeability channels in different regions. We validate our
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approach by running simulations on a commercial reservoir simulator [50], and also

report the results of a field experiment. The results show very good model estima-

tion in our simulations, and the field trial result was seen to be consistent with the

known fault location as well as the expectations from field production engineers.

The rest of this chapter is structured as follows: in Section 3.2, we introduce

the system model to treat the reservoir as a linear MIMO system. We use the

capacitance model to characterize the injection-production response, and explain

why we can use the time delay constant in CM as the travel time in a tight reser-

voir. With the system model, in Section 3.3 we describe how to estimate the CM

parameters from historical data and formulate the tomography problem in Section

3.4. In Section 3.5 we describe the simulation results using CMG, as well as the

field trial result. We conclude this chapter in Section 3.6.

3.2 Physical Model

3.2.1 Injection-Production model

The recently introduced capacitance model (CM) [79,80] has generated significant

interest in the reservoir modeling community. Different from traditional complex

reservoir models, it treats injection and production as inputs and outputs of the

system, respectively, and uses signal processing techniques to estimate the unknown

system parameters, which relate to reservoir physical properties. CM uses a linear

multi-input multi-output (MIMO) system to model the response between injec-

tion/production rate. Yousef et al. [81] show how to extract reservoir physical

properties from historical data based on the parameters of the capacitance model
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and use this model to optimize the water-flooding recovery efficiency. CM pro-

vides a powerful tool to model the flow properties of a reservoir and evaluate the

water-flooding performance.

The mathematical formulation for one injection-production well pair in CM can

be written as:

τ
dP (t)

dt
+ P (t) = I(t)− τ · J dPwf

dt
, (3.1)

where I(t) is the water injection rate and P (t) is the fluid production rate. Pwf rep-

resents the flowing bottom hole pressure (BHP) and J stands for the productivity

index. If we consider the case where the reservoir is mature with fixed bottom-hole

pressure, we can ignore the production induced by initial pressure and the change

of BHP. Under this assumption, the production rate only depends on the injection

rate and can be simplified as follows:

P (t) =

∫ t

0

e−η/τ

τ
I(t− η) dη. (3.2)

The corresponding discrete form will be

P [n] =
n∑
k=0

1

τ
e−k/τ I[n− k], (3.3)

where k = 0, 1, . . . , n. The impulse response is controlled by the “time delay con-

stant” τ , which is defined by the total compressibility ct, the productivity index

J , and the pore volume Vp associated with the control volume between injector-

producer well pair:

τ =

(
ctVp
J

)
. (3.4)
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The formulation in (3.3) can be extended to cases with multiple injection-production

well pairs. For a MIMO system, additional inter-well connectivity parameters λij,

are introduced to represent the flow distribution from injector i to producer j. Then

the output flow rate in producer j is the sum of contribution from all different in-

jectors:

Pj[n] =
∑
i

∑
k

λij
1

τij
e−(n−k)/τij Ii[k]. (3.5)

According to the conservation of mass, the output flow cannot be greater than the

input flow, which implies the sum of flow distribution for an injector is less than or

equal to one. Thus, the sum of inter-well connectivities for any injector should be

less than or equal to one. Moreover, for a MIMO system, the time delay constant

is controlled by the reservoir property of the region corresponding to well pair i− j:

∑
j

λij ≤ 1, τij =

(
ctVp
J

)
ij

. (3.6)

Thus, we model the reservoir as a MIMO system, where the impulse response is

related to the reservoir properties. In the next section, we will explain the relation

between the time delay constant τij and the flow paths, and also justify why we

can use τij as a proxy for the travel time time between well pair i − j in a low

permeability fractured reservoir.

3.2.2 Travel time in a tight fractured reservoir

From the above discussion, we know that the time delay constant is determined

by the control volume and productivity index. If the reservoir is homogeneous, the

fluid flow should be uniform and the travel path will be a straight line between

injector and producer. In particular, we can assume that the control volume is

54



proportional to the distance between the corresponding well pair if the region is

uniform.

If the the reservoir is not homogeneous, we need to take into account the perme-

ability variations between well pairs. One possible approach is to apply a grid-based

model to parameterize the permeability distribution, which assigns the same per-

meability value to the area within one cell in the grid. Then we can obtain the CM

parameters and cascade all the responses in each cell to model the total response

between injection i and producer j [62]. However, solving and cascading CM for

every cell is very computationally expensive. When we consider a tight fractured

reservoir, which has tight rocks as background embedded with open fractures, we

can assume that these fractures have much higher permeability than the back-

ground. Thus, the open fractures in a tight reservoir mean that the permeability

model is “high contrast”, where we assume the tight rock to be homogeneous and

low permeability, and fractures to be very high permeability objects.

In such case, the flow path is dominated by these fractures because they have

much higher permeability, and provide a fast pathway for the fluid (see Figure 3.1).

Moreover, the total control volume can be modeled as a cascade of a few control

volumes along the flow path connecting injector i and producer j. Each control

volume is either a region in the high permeability channel or in the background.

Note that the control volume in the background is proportional to the length of

flow path through it because the background is uniform. (see Figure 3.1).

Thus, the time delay constant can also be viewed as the “sum” of different parts,

each of which is proportional to the corresponding control volume divided by the

local productivity index. Because the productivity index in the high permeability

channel is much higher than the value in the background, when we calculate the
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time delay constant, we can ignore the part of time delay constant corresponding

to these high permeability channels.

We use the travel time definition in Chapter 2, where the travel time is the

length of travel path divided by travel velocity. In the high contrast object based

velocity model, the travel path can be approximated by straight line segments

between objects. We denote li as the travel path and vi as the travel velocity in the

ith object. With the assumption that the velocity in high permeability channels

is much higher than in the background, we can ignore the cost time to travel

through the channels and the travel time is dominated by the path and velocity in

background vbase.

Following these assumptions, the time delay constant will be proportional to

the travel time in a tight fractured reservoir. As an example, when we have an

injection well and a production well with a fracture as high velocity object, we use

l1, l2, l3 to represent the path from injector to object, the path inside object, and

the path from object to producer (see Figure 3.1b). The time delay constant can

be represented as:

τ ≈ τ 1 + τ 2 + τ 3 (3.7)

= (
c1
tV

1
p

J1
) + (

c2
tV

2
p

J2
) + (

c3
tV

3
p

J3
) (3.8)

≈ cbt
J b
(
V 1
p + V 3

p

)
(3.9)

=
cbt
J b
(
c · l1 + c · l3

)
(3.10)

=
cbt
J b
· c · vbase

(
l1

vbase
+

l3

vbase

)
(3.11)

= h · t (3.12)
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(a) (b)

Figure 3.1: With high permeability channel (a) the total control volume can be
viewed as cascade of small ones, and (b) the travel path is a combination of sev-
eral line segments. Note that because the productivity index in high permeability
channel is very high, the time delay constant inside can be ignored.

where V i
p is the ith control volume, and cit, J

i are corresponding compressibility and

productivity index (see Figure 3.1a). If the control volume belongs to the back-

ground region, we use cbt and jb to represent the compressibility and productivity

in the homogeneous background. The constant h can be estimated from lab exper-

iments or field data. In particular, (3.7) allows us to use the time delay constant

as the corresponding travel time and solve the fractured reservoir characterization

problem as a high contrast travel time tomography.

3.3 Estimation of CM parameters

From the previous discussion, we use CM to model the response between injection

and production rate, then take the “time delay constant” as the travel time between

wells. In this section, we explain how to estimate the time delay constant from
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historical injection-production data. To formulate the CM parameter estimation

problem, we define the fitting error for a certain model with parameters ϑ by:

ε(t,ϑ) = P (t)− P̂ (t|ϑ), (3.13)

where P̂ (t|ϑ) is the predicted production rate based on model ϑ. When the pro-

duction rate P (t) is measured for t = 1, . . . , N , the fitting error can be computed.

To estimate the CM parameters, one approach is to run an optimization directly

on the CM parameters to minimize the fitting error. In this approach, the number

of unknown variables is equal to the number of CM parameters, but the estimated

result may not be stable and may depend on how the minimization is initialized [62].

This is because the CM parameters are not linearly related to the production data,

thus, estimating the CM parameters becomes a nonlinear optimization. Another

approach is a “multi-stage” strategy: Instead of estimating CM directly, in the first

stage we use a finite impulse response (FIR) model as an intermediate model and

estimate FIR coefficients (see Figure 3.2). This has the advantage that the FIR

parameters are linearly related to the data and the estimated coefficients are always

stable. Then, in the second stage, we estimate the time delay constant by finding

the CM parameters that best fit the FIR model obtained in the first stage.

The trade-off between these two approaches is that when we choose the multi-

stage approach, we need to estimate the FIR model, which has many more pa-

rameters than CM. Thus, to achieve the same confidence level, it requires more

data (longer experiment duration). For example, when the amount of injection-

production data is limited, the multi-stage approach may not be a good choice

because the FIR model estimation requires the amount of data to be at least the

same as the length of the impulse response. In this situation, we may need to
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estimate the FIR coefficients based on insufficient data, which makes this problem

ill-conditioned. Thus, when insufficient data is available, we choose to perform the

CM parameter estimation directly by solving a nonlinear optimization.

In conclusion, the choice between direct estimation or multi-stage approach

depends on the length of experiment duration. When the experiment duration is

long enough to provide sufficient data, we can choose multi-stage approach to have

a stable estimation result. Otherwise, we prefer the direct estimation approach to

avoid using FIR as an intermediate model.

Figure 3.2: The multistage approach

3.3.1 Injection Sequence Design

To get a reliable estimate of the model parameters, the input sequences must have

enough “richness” of information to distinguish the response of all possible models.

For example, if we apply a constant input to a linear system, the output will also be

constant and there is no way that we can estimate the model parameters from this

dataset. This leads to the problem of “input design”, which has been well-studied

in system identification literature [49]. Based on system identification concepts, we

choose the pseudo-noise (PN) sequences as the inputs. It is well known that PN

sequences have the lowest average correlations, which implies that the estimated

FIR parameters will have the lowest error variance [33]. This procedure has been
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proposed to determine the inter-well connectivity in reservoir modeling by Lee et

al. [48].

However, in practice the amplitude and length of input sequences are two major

constraints to design PN sequences. For example, higher input energy will provide

a better signal-to-noise ratio (SNR) and the estimated results can achieve lower

variance. But in a reservoir, the physical flow property is characterized by Darcy’s

law [76], where the input-output response is highly nonlinear. When we use a linear

model to approximate the reservoir response, we assume the reservoir is operating in

a region of almost linear response. If the input variation is too large, it may drive

the physical system far away from the previous condition and the linear system

response model may not be longer valid. On the other hand, if we choose a small

variation for the input amplitude, the system response should be almost linear.

However, the small change amplitude in input will result in low SNR and degrade

the estimation results.

Another issue is the experiment time duration, which is related to the length of

input sequences. It is well known that the length of PN sequence will determine the

lowest input frequency and the cross correlation function, where longer sequences

will provide better estimation results. For example, when we work with a very low

permeability reservoir, the impulse response is very slow and it requires low fre-

quency input to correctly estimate the model. In such cases, short input sequences

cannot provide enough low frequency contents and the estimate reservoir response

is very unreliable. Rezapour et al. [1] have studied the problem of injection design

from a system identification perspective, and have analyzed the physical constraints

and developed empirical design rules.

For our application, we use field knowledge and an ad-hoc approach to design

the input amplitude and testing period. In the trial run, we use the PN sequences
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as input with maximum variation to be 50% of the average amplitude, and try

different variation levels for PN sequences, then estimate the response. The goal is

to find the maximum allowable input amplitude to provide enough SNR while the

system still has the same response. Moreover, the testing period can be predicted

according to prior knowledge of the reservoir. For example, we may use the core

sample drilled from reservoir to estimate the background permeability, then use the

distance between wells to predict the maximum possible time delay. In particular,

the testing period should be chosen to be longer than the maximum possible time

delay.

3.3.2 Model Estimation

With the designed injection schedule as the input signal, we use the production

rates as the system outputs and formulate the model estimation problem. We

assume that there are A = (a1, . . . , atx) injectors and B = (b1, . . . , brx) producers

in the field, where Ii[t] represents the injection rate for ith well and Pj[t] is the

production rate for jth well. Thus, we can model the inter-well response as a MIMO

system with Ii[t] as input and Pj[t] as output. As we mentioned before, when we

consider a mature reservoir, the system follows the material balance property, which

implies that the total fluid output is less than or equal to the fluid input. Thus,

the impulse response coefficient should be non-negative and the sum of impulse

response should be less than one. This property provides us additional constraints

to help us estimate the model parameters.
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3.3.2.1 Multi-stage approach

In the multi-stage approach, we first estimate the parameter of an FIR model

that is used as an intermediate step. The predicted output can be defined by the

convolution of the FIR and the input signal:

P̂j[t] =
tx∑
i=1

M−1∑
k=0

hij[k] · Ii[t− k]. (3.14)

where we assume the FIR filters have length up to M and hij[k] represents the FIR

coefficients corresponding to the i − j well pair. When we choose the Lα norm as

data fitting metric, then the FIR parameter estimation can be formulated as an

optimization problem:

hij[k] = arg min
hij [k]

(∑
t

∣∣∣Pj[t]− P̂j[t]∣∣∣α)1/α

(3.15)

subject to hij[k] ≥ 0,
tx∑
j=1

M−1∑
k=0

hij[k] ≤ 1 (3.16)

where the constraints correspond to the non-negative response and material balance

properties. Note that the FIR filter length should be longer than the maximum

possible time delay between wells, which can be estimated from the prior knowledge

of reservoir. For example, the maximum possible time delay can be estimated

from reservoir core sample, tracer testing, even previous pilot water-flooding. In

particular, if the FIR length is too short, the FIR will not model the reservoir

response correctly. On the other hand, longer FIR length always provides a more

accurate model of the reservoir response, but it requires more data to estimate the

FIR parameters reliably.
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In the second stage, we want to estimate the CM parameters and this is done

by selecting the CM parameters that provides a best fit of the FIR model we

estimated in the previous stage. The impulse response curve in CM, described in

(3.3), is defined by the inter-well connectivity λij and time delay constant τij. To

estimate λij and τij, we formulate a constrained optimization for the curve fitting:

{λij, τij} = arg min
{λij ,τij}

∑
k

∣∣∣hij[k]− λij 1
τij
e−(k/τij)

∣∣∣2 (3.17)

subject to 0 ≤ λij ≤ 1, τij ≥ 0. (3.18)

Note that we estimate {λi,j, τij} based on the FIR coefficients hij[k] corresponding

to the i − j well pair. Thus, each time we only need to solve a curve fitting

problem for one input-output pair with two unknown parameters. Compared to the

direct estimation described in the next section, we break down a complex nonlinear

optimization into many small ones, which makes the multi-stage approach very

effective.

3.3.2.2 Direct Estimation Approach

If we choose to estimate the CM parameters directly from the data, the predicted

output from the CM will be:

P̂j[t] =
tx∑
i=1

∞∑
k=0

λij
1

τij
e−k/τij · Ii[t− k]. (3.19)
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Thus λij, τij will be chosen to minimize the error between predicted and measured

output:

{λij, τij} = arg min
λij ,τij

(∑
t

∣∣∣Pj[t]− P̂j[t]∣∣∣α)1/α

(3.20)

subject to 0 ≤ λij,
∑

j λij ≤ 1, τij ≥ 0. (3.21)

Note that in this case, the constraint
∑

j λij ≤ 1 is not separable, thus, we need to

solve a nonlinear optimization with 2× tx× rx unknown parameters, where tx, rx

are the number of injectors and producers, respectively. This implies that we may

face a high dimensional nonlinear optimization problem which is very difficult to

handle. The benefit is that does not require using FIR as an intermediate model,

which would have a number of unknown parameters growing linearly with the length

of the impulse response.

3.4 Tomographic Reconstruction

In the previous section, we explain how to estimate the “time delay constant”

between wells from injection/production data. Thus, we can use injection and

production wells as sensors and the estimated time delay constant as the equivalent

travel time between them, then model the fractures as objects, i.e., “lines” in 2D

or “planes” in 3D. Because the travel velocity of fluid through fractures is assumed

to be much higher than through the tight rocks in the background, detecting the

fractures can be formulated as a high contrast travel time tomography problem.

Thus, we apply the object based reconstruction algorithm described in Chapter 2

to estimate the location of fractures.
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In our approach, fractures are modeled by line objects which are parameterized

by length l, center c and rotation angle ψ. We define a parameter vector θi =

{li, ci, ψi} to represent ith line object. Assuming that there are at most K objects

in the reservoir model, we can cascade all object parameters and define a vector of

model parameters, Θ = {θ1, . . . ,θK}.

We use the travel time function T(Θ,A,B) defined in Chapter 2, which is

a vector function representing the predicted travel time between each injector-

producer pair based on the velocity model with parameter Θ:

T(Θ,A,B) = (T1(Θ,α1,β1), . . . , Tn(Θ,αtx,βrx)). (3.22)

We can cascade all estimated travel times as a vector, t = {t1−1, . . . , ttx−rx} and

define the error function as a quadratic data-fitting error between the travel time

predicted from the forward model and the measured travel time:

E(Θ) = ‖t−T(Θ,A,B)‖2. (3.23)

Thus, the probability density function ρ(Θ), which is modeled as a Gaussian un-

certainty of the error, measures the confidence on different models:

σ(Θ) = c · e−E(Θ), (3.24)

where c is a normalization constant. To visualize the result, we define the mapping

function f : Θ → X × Y, which maps the object parameters into corresponding

high velocity areas in 2D spatial domain. The weighted average of different models

in 2D is defined as:

Mf (x, y) =

∫
u

σ(Θ)f(Θ)dΘ. (3.25)
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Mf (x, y) can be viewed as the appearance probability of the high permeability

channels in different regions. We use the randomized sampling method in Section

2.4.2 to estimate the probability density in the model parameter space and calculate

Mf (x, y).

3.5 Experiment Results

3.5.1 Numerical Simulations

To validate our proposed method, we run numerical simulations on a commercial

reservoir simulator [50]. In our simulated reservoir model, we place a high perme-

ability channel in very low permeability background to simulate a tight fractured

reservoir. Moreover, to simulate a mature reservoir, we first apply constant injec-

tion rates until the production rates become stable. Then we apply our designed

injection schedule, where the purpose of our method is to detect the direction of

fracture without stopping regular operation. In particular, we assume the fluid

production is observed on the daily basis. Because we have the freedom to choose

the length of testing period, we can collect enough data and use the multi-stage

approach which estimates the FIR model first. Then we estimate the time delay

constant and inter-well connectivity in CM by running the curve fitting between

FIR and CM.

With the estimated time delay constant, we use the object-based reconstruction

algorithm to estimate the locations of fracture. In this case, we model the fracture as

a “line” object, and run the PDF estimation. Moreover, we calculate the estimated

probability map and compare it with the ground truth in simulator.
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In Simulation 1, the well installation pattern is a 5-spot with 4 injectors located

on the corners and 1 producer in the center. For the reservoir model, we place a high

permeability channel on the producer to simulate the effect of hydraulic fracturing.

In this case, the fracture must pass through the production well, thus, we choose

the number of “line” objects to be equal to 1 and add the constraint that the line

object must pass through the location of producer, P ∈ l1, where P is the location

of producer and l1 is the line with length, center and angle parameters {l1, c1, ψ1}.

We use the PN sequences for the injection rates at each injector, which roughly

keeps the same average injection rate (see Figure 3.3). We set the frequency of

injection rate changes to be to 1 day, and the total length of the testing period to

be 63 days. Thus, according to the material balancing rule, the average production

is almost at the same level as before the test, which implies our method does not

stop or decrease the daily production as many other methods do.

After running the multi-stage estimation, the result shows the time delay con-

stant between injector 2 and producer 1 is significantly less than others, which sug-

gests possible existence of high permeability channels along that direction. More-

over, we provide the estimated probability map in Figure 3.5, which shows high

appearance probability for the high permeability channel is near the ground truth.

The model with highest probability is very close to the ground truth - the angle

difference between the estimated most likely line and the ground truth is within 5

degrees.

In Simulation 2, we test a case where the well installation pattern is a line

drive with 5 injectors and 5 producers. For the reservoir model configuration, there

is a high permeability channel between injector 5 and producer 3. To compare

with different input sequences, we apply step functions as the change of injection

rate in this simulation, which involves only changing one injection rate at each time.
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(a) (b) (c)

Figure 3.3: Simulation 1 (a) injection rate in injector 1 (b) injection rate in injector
2 (c) measured production rate in simulation 1. Note that we vary the injection
rate in injector 1 and 2 at the same time.

(a) h11[k] (b) h21[k]

(c) h31[k] (d) h41[k]

Figure 3.4: Simulation 1, the estimated FIR model for four injection-production
pairs. After fitting with CM, the time delay constants are τ11 = 4.17, τ21 = 1.87,
τ31 = 3.47, τ41 = 3.96.
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(a)

(b)

Figure 3.5: Simulation 1, the reservoir model. (a) Ground truth and (b) estimated
probability map.

Compared to the PN sequences in Simulation 1, the response can be easily estimated

from the change of production rate, because we only change one injection rate at

each time that enables us to isolate the response of each well pair. However, the

drawback is that it requires higher average injection rate, which might be limited

by the pumping facility and the pressure limit. Moreover, the experiment duration

is much longer because we have to change the injection and estimate the response

one by one.

Different from the Simulation 1, now we have multiple producers, thus, the

injected water can flow to any one them. In our reconstruction algorithm, we only

use the travel time data such that corresponding inter-well connectivity is greater

than 10%, i.e., the flow from injector i to producer j corresponds to at least 10% of

total injection in injector i. Thus, the measured travel times t1−3, t1−5, t2−3 are not

considered because their corresponding inter-well connectivities are too low. In the

object model, we choose the number of objects is equal to 3, which implies there

are at most 3 fractures in the filed.
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We show the estimated probability map in Figure 3.7, which gives high proba-

bility in the region between injector 5 and producer 3. Note that the probability

map also shows the possible existence of high permeability channels in the region

between injector 3 and producer 2, which is different from the ground truth in sim-

ulator. This comes from the non-uniqueness of the solution to our inverse problem -

many different velocity models may all fit the measured travel time data well. Our

algorithm can identify several possible models: in this case, one possible model

is a single high permeability channel from injector 5 passing through the region

between producer 2 and 3. Another possible model has a combination of one high

permeability channels from injector 5 passing through the region between producer

3 and 4, and a shorter one in the region between injector 3 and producer 2. We can

apply additional regularization criteria to choose between possible solutions. For

example, we can select the model that fits the measurements with minimum frac-

ture length, or use prior probability to favor some models. In this case, if we choose

minimum length as additional regularization, the result will be a single fracture

between injector 5 and producer 3.

In Simulation 1 and 2, we use PN sequences and step functions as injection

rates, respectively. We are able to estimate the travel time in both cases, moreover,

the estimated probability maps are consistent with the reservoir model in simula-

tors. The major difference is that when we use the step function as input, we only

change one injection rate at a time. Thus, we can use the change of production to

map the response between well pairs directly. However, in such case we estimate

the response for each injector one by one, thus, it takes much longer for experiment

duration. On the other hand, by using PN sequences as the input, we can do a

MIMO system identification and estimate the response between all well pairs at the

same time, which dramatically reduces the experiment duration.
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(a) (b) (c)

Figure 3.6: Simulation 2 (a) injection rate in injector 1 (b) injection rate in injector
2 (c) measured production rate in producer. Note that only one injection rate is
changed at a time, thus we can estimate the response with respect to the change
of injection directly from the increase of production

(a) (b)

Figure 3.7: Simulation 2 (a) The ground truth and (b) estimated probability map.
We successfully detect the high permeability channel between injector 5 and pro-
ducer 3.
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3.5.2 Field Experiment

We also conducted a field experiment in a a mature, low permeability fractured oil

reservoir, which has been under water-flooding for many years. The pilot area had

12 injection, 3 production wells and the well installation pattern was a line-drive,

which is roughly parallel to the direction of natural fractures estimated from seismic

survey.

Two types of systems were used in the field to measure the fluid production:

One is “well-testing”, which diverts the production from a well to a three phase

separator. After a period of time, the accumulated fluid level can be measured

in the separator and the average production rate is estimated. However, due to

the cost, many wells share the same separation facility and these wells are tested

sequentially. This fact limits the sampling frequency of the production rates: the

system must measure each well one by one, and the system sampling period will

be the sum of each testing period for different production wells. In this field, we

usually have one measurement point every two weeks when well-testing is used,

which makes the sampling rate for production data very low.

Another data source is the pump-off control (POC) data, which measures the

load of each pumping unit. If we continuously monitor the load change in every

stroke, we can calculate the daily production flow in real time [32]. However,

the POC data needs to be calibrated with other references, because the pumping

efficiency may change over time. In this application, we estimate the pumping

efficiency by calculating the ratio of POC and well-testing data every two weeks,

and use it to calibrate the POC data. The calibrated POC data is used as the daily

production in the field.
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For the field trial, we choose to estimate the CM parameters with the direct

approach. The reason is that the amount of injection-production data is very

limited, thus, the multi-stage approach is not appropriate because the number of

FIR coefficients will be much larger than the measured data. In some days, due

to the power outage or loss of data transmission, we do observe unusually low

production rates and should treat them as outliers. Thus, to reduce the effect of

these outliers, we choose L1 instead using L2 norm as the data fitting error metric.

It is well known that L2 norm is severely influenced by these outliers, while the

L1 norm provides a better balance between fitting good data points and outliers.

From the above discussion, we know that the direct estimation has fewer unknown

variables but requires to solve a nonlinear optimization. Thus, the estimated CM

might lead to a local minimum and not model the system response well. To verify

the estimated result, we use cross-validation [27] which divides the measured data

into two parts. The first part is the training set, which is used to estimate the

CM parameters. The second part is the testing set, where we use the estimated

CM to predict the production rate and compare with the measurements (see Figure

3.8). If the prediction error is too high, we claim that this estimated CM is not

accurately modeling the system response and re-do the nonlinear optimization with

a different initialization until the error is below a threshold.

To simplify the problem, we partition the pilot area into upper and lower areas

and estimate the travel time between the well pairs separately. The reason we

did not perform the estimation for well pairs in the whole field is that this would

require solving a nonlinear optimization with many more unknown variables. In a

line drive water-flooding scenario, it can be assumed that the produced fluid is only

affected by the injections from the nearest two rows of injection wells. Thus, we

divide the whole field into two sub-fields and solve two smaller problems instead.
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Figure 3.8: Field trial. We use the calibrated POC data and partition 1 − 70 as
training set, 71− 85 as testing set. Because L1 norm is chosen as the error metric,
the predicted output is not affected severely by outliers.

After estimating the CM parameters, we follow the same approach in Simula-

tion 2 and use only these travel times corresponding to at least 10% of interwell

connectivity. In the upper part of pilot area, the reliable estimated travel times are

t1−1, t3−2, t4−2, t5−1, t5−2, t6−1, t7−1, t7−2, t8−1, t8−2. We show the probability map

in Figure 3.9, which indicates that the high permeability channels are very closed

to the production well 2 and roughly parallel to the installation of wells. This

prediction is consistent with the fact that production well 2 is a 24 hours run, high

production well, which implies there could be high permeability channels in nearby

areas. In the lower part, the estimated travel times are t7−3, t9−3, t10−3, t11−3, t12−3

and we show the results in Figure 3.10.

The combination of the two results is shown in Figure 3.11, with the comparison

of the known fault location provided by previous seismic survey. Note that in the

upper/lower area, we only estimate the probability map for the region between the

wells (transmission tomography can only estimate the interior structure between
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(a) (b)

Figure 3.9: Field trial, upper area. (a) The location of wells and (b) estimate
probability map. Note that the high probability areas is roughly parallel to the
installation of the wells, which is consistent to the seismic survey for the nature
fracture direction

sensors). For instance, we see a sudden “cut” for possible fracture models in the

right side area of injection 8. The reason is that area is already “out of bound”, thus

the probability is set to zero. When we compared with the seismic survey, our result

shows that the high probability areas are roughly parallel to the well installation,

which agrees with prior knowledge. Also, we note that there is a known fault near

injector 12 and our result also shows low appearance probability in that area.

3.6 Conclusion

In this chapter, we propose a novel method to detect high permeability channels

in a water-flooding reservoir without additional instrument or altering the average

daily production. This method uses the change of injection rate as the active

probing signal and detects the field production changes in real-time, then estimates

the equivalent travel time from the injection-production data. With the estimated

travel time, we can formulate the detection of the high permeability channels as a
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(a) (b)

Figure 3.10: Field trial, lower area. The (a) location of wells and (b) estimated
probability map.

high contrast travel time tomography and apply the algorithm described in Chapter

2 to solve it.

We validate our approach using both a simulator and also a field experiment. In

order to apply our algorithm to real field data, we note some practical issues. First,

the data sampling frequency and the data quality need to be considered. Limited by

the field measuring system, we usually have very reliable daily injection rates, but

production rates are often obtained from bi-weekly well-testing. The low sampling

frequency of production rate reduces the time resolution of estimated travel times.

Therefore, we try to increase the sampling rate by using the POC data (calibrated

with well-testing data) to get the daily production rate.

The second issue we encounter in practical applications is the distribution of

well locations, which is related to spatial resolution. It is well known that the

spatial resolution for the reconstructed image is proportional to the density of travel

paths. For a small variation velocity model, the travel path is almost a straight line

between transmitter-receivers, thus, the density of travel paths can be calculated

by the location of wells. However, in the high velocity contrast case the travel path
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Figure 3.11: Field trial, the estimated probability map with a known fault. Our
result shows the appearance probability is very low in the fault zone, which agrees
with the prior survey.

bends severely near the high velocity objects, thus the density of travel paths cannot

be estimated as in the previous case. In particular, the travel path may show a

“jump” effect depending on the location of high velocity objects, which makes the

estimation spatial resolution difficult. For example, assuming there is a small high

velocity object near the transmitter-receiver pair, in such case the travel path is a

straight line. When the object size increases, the travel path will “jump” from a

straight line to a bent path through the object, thus, this object is “invisible” until

it reaches certain size. In order to detect the high permeability channel in arbitrary

direction, we prefer for the wells to be uniformly located in the field and to cover

all angles, which may not be the case in a real field. We are currently studying this

problem, and plan to address it in the future work.
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Simulation 1 Simulation 2 Field trial
Injection schedule PN sequences step functions PN sequences
Experiment duration 64 days 400 days 90 days
Production data type Exact Exact POC
Estimation approach Multi-stage Multi-stage Direct

Table 3.1: Table for the method comparison in simulations and field trial

The estimated result is presented as a probability map to visualize the prob-

ability of the appearance for high permeability channels in different area. Future

work needs to focus on how to combine the geological information in the result,

and consider not only the natural fractures, but also the faults in the field.
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Chapter 4

X-Ray Discrete tomography

4.1 Introduction

In this chapter, we investigate high contrast transmission X-ray tomography, which

is widely used for noninvasive testing in medical imaging and industrial material

inspection. In these applications, a series of X-rays target the object from different

directions, and the X-ray energy is measured along the object boundary. The travel

path of an X-ray can be assumed to be a straight line, and the decrease of energy

is modeled as a line integral of the attenuation along the travel path. With the

measured energy data, an image of the attenuation distribution within the object

can be computed through the reconstruction algorithm.

It is well known that if we increase the amount of measured data, we can always

achieve better reconstructed image quality. But for X-ray medical imaging, we want

to keep the number of X-ray projections as small as possible. The major concern

is the radiation doses for the patient: in angiography [39], a typical cardiac CT

scan needs to be coupled with ECG-gating to synchronize the recording of data,

which means that the patient is exposed to high energy X-ray for the entire cardiac

cycle. To lower the radiation dose, we would need to reduce the number of X-ray
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projections, which limits the amount of data. Another scenario is when we can only

measure the object from certain angles, e.g, in dental CT [59] the scanning angle

is limited. Thus, we want to study the problem of how to improve the quality of

reconstructed image based on a limited amount of data.

In this chapter, we consider the case where the object is assumed to be made of

a few different materials (corresponding to very different X-ray attenuation coeffi-

cient). Thus, the target image can be segmented into several high contrast regions,

and we can approximate the target image by assigning the same value inside a given

region. We state our problem as follows: with limited amount of data, we want to

reconstruct a high contrast image where there are only few distinct pixel values.

This problem is called discrete tomography (DT) [36]. Note that in many prob-

lems of interest, we apply tomography techniques to reconstruct a digital image:

the main difference in our case is that we expect that only a few of those levels

may appear in the reconstruction. For example, we may have 8 bit resolution in

intensity levels, but only a small subset of the 256 possible ones can be found in

the reconstructed image. There are many practical examples of discrete tomogra-

phy: For example, in industrial CT scanning to detect material flaws, we know the

material compound of the object (aluminum, plastic, metallic composite, etc) and

want to detect the existence of possible fractures in a reduced time (less amount

of sampled data). In such case, the attenuation coefficients of the materials are

known as a prior, and the fracture can be viewed as an empty space (almost zero

attenuation for air). The reconstructed image can be approximated by a image

with a few different intensity values, where the high pixel values correspond to the

composite materials in the object, while near zero values correspond to the back-

ground or fracture parts. As another example, in angiography, we want to reduce

the radiation doses and a contrast agent (Iodine) is injected to the blood vessel.
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Thus, the area where blood flows through will have much higher X-ray attenuation

compared to other body tissues and the result is also close to a two level intensity

image.

Different from typical X-ray tomography, which can be formulated as a linear

inverse problem, in DT the possible intensities are limited to a few discrete values.

When the possible intensity levels are known as a prior, DT becomes a linear integer

inverse problem, for which many algorithms have been proposed. One approach is

to start from continuous reconstruction methods then force the solution to converge

into discrete values. Batenburg [7] proposed a discrete algebraic reconstruction al-

gorithm (DART) to iteratively update the object boundary. Fishburn [30] and

Weber [74] used linear programming (LP) relaxation for this integer programming

problem, and use a convex-concave regularization to enhance the discrete value

solution. Another approach is to work on the discrete values directly: In combi-

natorics, researchers [46] are interested in reconstructing a special class of images,

hv-convex objects, with only horizontal, vertical, and diagonal projection angles.

For a comprehensive review, we refer to [36].

However, none of the above methods has exploited the sparse nature of images

having only a few distinct intensity values, with each region having a constant in-

tensity and smooth boundary. We propose to solve DT problem in the transform

domain by exploiting sparseness properties of reconstructed images of interest in

the transform domain. Specifically, we observe that piecewise constant images with

a few gray levels have a sparse representation as linear combinations of unit step

functions. For example, we can decompose these images in terms of step functions

in vertical or horizontal axis. The step functions form a dictionary, which can be

used to represent these images with sparse set of coefficients because step functions

are needed only at the boundaries between regions.
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In recent years a significant amount of work has been devoted to sparse signal

recovery, e.g., in the context of compressed sensing [18]. It has been proved that

with high probability, a sparse image can be perfectly reconstructed by a small

amount of random projection data. But only limited effort has addressed scenarios

where the data to be reconstructed is discrete in terms of intensity levels [66]. In

particular, no work has considered how to take advantage of the potential sparseness

of 2D images with only a few distinct intensity levels under certain transformations.

In this chapter, we start by considering a binary, known-level DT problem.

We design a dictionary with step functions on “stripes” along different angles,

thus, these atoms can form rectangles for different angles and positions by using

two atoms to represent the boundary. If a binary image has smooth boundaries,

this dictionary should provide a sparse representation, namely, only a few non-

zero coefficients (few rectangles) will be required when representing images using

the dictionary. Moreover, we prefer a specific type of representation: we want to

represent a image with “non-overlapping” rectangles. The main reason is that we

know the intensity levels as a prior. Thus, if each pixel is represented only by one

rectangle, the coefficient for the dictionary representation also belongs to one of the

known few discrete levels. For example, if we use step function on horizontal stripes

as dictionary to represent a binary image with intensity levels {0, 1}, the intensity

of the horizontal rectangle should be equal to 1. Thus, the coefficients in dictionary

will belong to {0,−1, 1} to form a rectangle with intensity 1. In particular, if the

pixel intensity belongs to {0, ki}, the coefficients in the dictionary should belong to

{0,−ki, kk} which preserve the “few discrete level” property.

From the above discussion, we can formulate the binary DT as a sparse recovery

problem, in which the goal is to recover a sparse coefficient vector within known

possible values. To reconstruct a binary image that fits the measured data, we have
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two constraints: (i) data fitting, and (ii) binary pixel intensity. Based on the linear

programming (LP) relaxation, we relax the binary pixel intensity constraint, {0, 1}

into a convex region [0, 1]. With the designed dictionary, we use L1 norm of the

coefficients as a heuristic regularization for searching a sparse representation. The

cost function will be convex, which implies that we can solve the problem efficiently

using convex optimization.

Because we use linear relaxation to convert an integer programming problem

into a linear programming problem, the reconstructed image may not have exactly

binary intensity levels. To encourage the reconstructed image to reach binary inten-

sity and have a sparser representation, we modify the reweighed L1 minimization

algorithm [19]. The reweighed L1 algorithm uses majority-minimization to search

a sparse representation in the transformed domain. From above discussion, we

prefer a sparse representation with coefficients having intensity levels in {0,−1, 1}.

Thus, if the representation has coefficients with non-integer value, we randomly

modify the weight of the reweighed L1 norm for those coefficients corresponding

to non-integer values. This will help the solution jump out of a current local min-

imum and search for our preferred integer solution. By running this randomized

reweighing, the solution has higher chance to converge to an integer solution. Simu-

lation results show that our method does reconstruct an image with sparser, integer

representation compared to the results without randomized reweighing.

Next, we extend our approach from the binary DT problem to a multi-level DT

problem. This can be done by defining a multi-level image as a superposition of

several binary-level images, which can be represented by rectangles. In particular,

we prefer a representation that all the rectangles will not overlap with each other.

Following the same approach as we proposed before, each binary level image will

have a sparse representation under the dictionary. Thus, to extend a binary DT
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problem to anM+1 level DT problem, we increase number of coefficients toM times

from the case in binary DT to recovery a M + 1 level image with a superposition of

M binary level images. For example, in a M + 1 level DT problem with intensity

levels {0, k1, . . . , kM}, we can represent the image as I = k1 · I1 + · · · + kM · IM ,

and we recover the sparse representation for binary images I1, . . . , IM at the same

time by running a sparse recovery with M times of unknown variables.

A common assumption for DT algorithms is that the set of possible intensity

levels is known in advance. However, in practice determining the intensity levels

is very challenging and coupled with other aspects of the problem, such as mea-

surement calibration. For example, in angiography the target image will be very

high-contrast, but the intensity level of blood vessels is very hard to determine a

priori since it is related to the blood flow and the chosen contrast agent [16].

To the best of our knowledge, only a few authors explicitly address the unknown

intensity discrete tomography problem. Different from known intensity DT prob-

lems, the unknown intensity increases the difficulty of reconstruction significantly.

Not only we need to identify the discrete intensity level corresponding to each pixel,

but we also need to estimate the set of possible levels. One possible approach is

to build the intensity estimation based on the existing known level DT algorithms:

Batenburg et al. [8] proposed a semi-automatic algorithm for intensity level estima-

tion, which requires the user to select manually regions that are expected to belong

to the same gray level. Another approach is to modify the cost function in DT to

encourage it to converge to few intensity levels: Lukić [51] combined the multi-well

potential function into the object function in order to encourage the solution stay-

ing on gray level values, but it is not easy to design the potential function without

the solution being trapped in a local minimum.
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We propose a completely unsupervised estimation algorithm for the unknown

intensity level case that jointly reconstructs the image and estimates the intensity

levels. We extend our binary DT reconstruction algorithm by (i) adding a level-

estimation step within each iteration and (ii) allowing the superposition of multiple

levels. For the ideal reconstructed discrete image, the histogram of pixel intensity

levels should only have a few peaks. Thus, our proposed level-estimation step is

essentially a clustering algorithm on the histogram of the reconstructed image.

In our DT reconstruction algorithm, we need to solve a convex optimization for

sparse recovery which could be very computational expensive for high resolution im-

ages (corresponding to many unknown variables). The state of art convex solvers

usually use second-order optimization methods (e.g, interior point method [56])

which require calculating the Hessian matrix. In high dimensional problems, this

leads to very large time and memory requirements to store and compute the Hessian

matrix (which has a size of N2, where N is the number of variables) and makes the

second order solver impractical. Thus, we use a first order gradient method, pro-

jection onto convex sets [29] (POCS), to solve this problem with reduced memory

requirements. The first order methods only use the gradient of the cost function,

and thus, the memory required grows linearly with respect to the number of un-

known variables. The drawback is that POCS requires many more iterations to

converge to the global minimum.

The rest of this chapter is organized as follows: In Sections 4.2 and 4.3, we

present the formulation of the discrete tomography problem and the proposed dic-

tionary representation. In Section 4.4 we explain our sparse reconstruction algo-

rithm with the intensity level estimation. In Section 4.5, we present our recon-

struction results from noiseless and noisy measurements and provide performance
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comparisons. In Section 4.6 we conclude this work and discuss some further direc-

tions.

4.2 Problem Definition

In this section, we formulate the DT problem in the 2D case. Extension to the 3D

case will be straightforward. Let f(x1, x2) represent the attenuation distribution

of a 2D object we want to estimate, and assume we measure the energy decrease

along parallel X-ray projections with different angles. Because the travel path of

X-rays can be assumed to be a straight line, the measurements can be viewed as

the integral of f along a straight line (see Figure 4.1). The relationship between

the measurements and object f is modeled by Radon transform:

Pθ,f (t) =

∞∫ ∫
−∞

(x1, x2) δ(x1 sin(θ) + x2 cos(θ)− t) dx1 dx2. (4.1)

Note that the Radon transform is a linear transform. If we discretize the object

using a grid-based model, namely, assigning the same parameter within a given

cell, we can represent the object by an image, where each pixel value corresponds

to the physical property inside one cell. We assume the measured X-ray energy

decreases as a function of the sum of all pixels in the given ray passes through,

and a trigonometric interpolation is used for the non-grid points. If the image has

p × q pixels, we can reshape the 2D image f into a 1D vector x with dimension

n = p · q. For each projection angle, the sampling distance between parallel X-rays

(δt in Figure 4.1) is set equal to the length between neighboring pixel centers. If
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Figure 4.1: Example for the Radon transform. The measurement Pθ,f (t) is a line
projection of f(x1, x2) along angle θ.

we take γ samples, the measured data for one specific angle will be a γ-dimensional

vector. In particular, we can write this operation into a matrix form as:

Wθ · x = pθ, (4.2)

where Wθ is a γ × n line projection matrix with angle θ. If we have d different

viewing angles, we can cascade the projection matrices and measurements as:

Ax = y, (4.3)

with

A =


Wθ1

...

Wθd

 ,y =


pθ1
...

pθd

 . (4.4)
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A will be a line projection matrix with size m × n that maps x into measured

data y, where m = γ · d. A given entry Aij represents the effect of pixel j on

measurement i, and corresponds to the path length of the projection line inside the

square region of pixel i.

The reconstruction problem is: Given the projection matrix A and measure-

ments y, where the number of measurements is far less than the number of un-

known variables, m � n, we would like to find a solution that has few distinct

intensity levels, xi ∈ {0, k1, . . . , kM}, such that its predicted projection will match

the measurements Ax = y, where ki is unknown and needs to be estimated, but

the number of distinct intensity levels is known. Note that the possible solution

set is discrete so that this is an linear integer inverse problem. In the next section,

we will describe how to define a sparse representation for an image with only few

distinct intensity levels and use this as regularization to solve the inverse problem.

4.3 Dictionary Representation

In the previous section, we define the reconstruction in DT as an inverse problem.

However, we mainly focus on the cases when only limited data is available, thus,

this inverse problem is ill-posed. The key to solve an ill-posed inverse problem

is to find ways to constrain the possible solutions in order to favor solutions with

desirable properties, based on available prior knowledge. In particular, we will iden-

tify representations such that the objects of interest can be described with a small

number of coefficients (i.e., the representation is sparse). Once a representation

that favors sparsity has been defined, we can use it as an additional regularization

constraint to obtain a better solution. In our problem, we focus on images that

have only few distinct intensity levels, and are composed of regions with constant
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intensity levels and smooth boundaries. Thus, we want to design a dictionary that

can represent this type of images with very few pre-defined atoms. To characterize

the “few distinct intensity levels” and “smooth boundary” properties, we choose

unit-step functions along different directions as atoms and decompose the image on

the discontinuities, which provides a sparse representation.

We define the 2D continuous basis function ψθ,α,β(x1, x2) as the unit-step func-

tions along the parallel lines, x1 cos(θ) + x2 sin(θ) = α, with the angle θ, spacing

distance between parallel lines α, and the shift β on the discontinuity of unit step

function. With the delta function and step function, the basis function can be

written as:

ψθ,α,β(x1, x2) = δ(x1 cos(θ) + x2 sin(θ)− α) · U(x1 sin(θ)− x2 cos(θ)− β) (4.5)

δ(x) =


+∞, x = 0

0, x 6= 0,

,

∫ ∞
−∞

δ(x) dx = 1, U(x) =


1, x ≥ 0

0, x < 0.

(4.6)

In other words, we represent a image f(x, y) with parallel “stripes” along the an-

gle θ, where the stripes is defined by the unit step functions. The mathematical

formulation can be written as:

f(x1, x2) =
∑
α,β

gθ,α,β · ψθ,α,β(x1, x2).

Following the same concept, we can also define the atoms for a 2D function with

discrete variables, namely, f(x1, x2), xi ∈ N. Then we can represent a image with
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unit step functions along arbitrary angle θ. For example, if we choose angle θ1 = 0,

the decomposition of the 2D binary image f will be:

f(x1, x2) =
∑
α,β

gθ1,α,β · ψθ1,α,β(x1, x2) (4.7)

=
∑
α,β

gθ1,α,β · δ(x2 − α)U(x1 − β). (4.8)

In particular, gθ1,α,β decomposes f(x1, x2) along the x1 axis with unit step function,

thus, it “marks” the discontinuities along the horizontal direction.

Since vector x is a reshape of image f , we can also reshape the coefficients

gθ,α,β into a 1D vector uθ in the same way. Following the same approach, we can

define two basis with different angles θ1, θ2. These two transforms are linear and

invertible, that is x = Tθ1uθ1 = Tθ2uθ2 which provide decomposition of x along

two different angles θ1 and θ2. Moreover, we can cascade two basis to form our

over-complete dictionary, D = [Tθ1 ,Tθ2 ], and the signal x can be represented by

an even sparse vector u = [uθ1 ,uθ2 ]
t:

x = [Tθ1 ,Tθ2 ]

 uθ1

uθ2

 = Du. (4.9)

This dictionary can be extended to include more basis along different angles to have

a sparser representation.

When we have an over-complete dictionary, we will have multiple possible rep-

resentations for a binary image. In particular, we prefer the representation that

the binary image is represented by disjoint stripes. The reason is since the possible

intensity level is {0, 1} and every pixel is represented only by one stripe, under

this representation the intensity for stripes must be 1 and the possible coefficients
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(a) (b)

(c) (d)

Figure 4.2: (a) Binary Phantom (b) Decomposition along the y axis (c) Decompo-
sition using the dictionary along both x and y axis (d) Another possible represen-
tation when stripes are overlapping. Note that we prefer a representation where
stripes tend not to overlap with each other.

must belong to {0,−1, 1}. Thus, this presentation may not provide the most sparse

representation, but it preserves the possible intensity levels (see Figure 4.3). This

property imposes additional constraints on the selection of an image model.

From the above discussion, we show how to represent a binary image efficiently

with our designed dictionary. Next, we extend our approach to represent images

with a few distinct intensity levels. Note that a multi-level image can be represented

as a combination of many non-overlapping two level images. For example, if the
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(a) (b) (c)

(d) (e) (f)

Figure 4.3: Sparse representation example: (a) The image we want to represent
(b,c) one possible representation of this image with non-overlapping strips (d,e,f)
Another possible representation, two over-lapping line function and subtract the
overlapping part. We prefer (b,c) as our representation.
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image pixel intensity belongs to {0, k1, . . . , kM}, the signal x can be represented as

a combination of at most M two-level signals:

x = k1 · x1 + . . . kM · xM (4.10)

=
M∑
j=1

kj · xj (4.11)

=
M∑
j=1

kj ·Duj (4.12)

where xj is the segmentation of different intensity levels and each entry of xj belongs

to {0, 1}. From (4.9), we know that a binary signal xj can be represented by a

dictionary D with a sparse coefficient vector uj, where the stripes that represent

xj do not overlap with each other. In particular, x can be represented by non-

overlapping two level regions, where each region can also be represented by non-

overlapping stripes (see Figure 4.4). The advantage of choosing this representation

is that it preserves the “few distinct level” property for the coefficients. However,

the drawback is that a coefficient of dimension M is needed to represent each pixel.

Figure 4.4: A multi-level phantom. We represent it by non-overlapping regions
with different intensity.
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4.4 Proposed Algorithm

In the previous section, we show how to efficiently represent a smooth boundary

image with a few discrete intensity levels, using a pre-defined dictionary. Thus, if we

are interested in this type of images, we can formulate the DT as a sparse recovery

problem and use the dictionary representation as regularization in solving inverse

problem. Our proposed algorithm iteratively recovers the sparse representation of

the signal and estimates the possible intensity levels. It can be separated into two

parts: In the first part, for given possible intensity levels, we recover the coefficients

in dictionary representation by solving the reweighted L1 minimization. In the

second part, we run a clustering algorithm on the histogram of the reconstructed

image to update the set of possible intensity levels, then return to the first step.

Figure 4.5 shows the flowchart of our algorithm.

Figure 4.5: Flowchart of our algorithm. We iteratively perform sparse recovery and
intensity estimation.
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4.4.1 Sparse recovery with known intensity levels

Given intensity levels, we start to build our sparse recovery algorithm in a binary

case, then we extend this algorithm to multi-level scenarios. When the intensity

levels are known, namely, a binary image has intensity levels in {0, 1}. With the

dictionary we described in Section 4.3, we can transform the image of interest

and represent it with very few coefficients. Therefore, DT can be formulated as a

sparse recovery problem, where the reconstructed image is binary and has a sparse

representation using the dictionary. However, the “binary pixel” constraint means

that the solution space becomes discrete, and the recovery problem will be an

integer programming problem. Thus, we use linear relaxation to relax the integer

constraint into a convex region constraint, and transform the NP-hard optimization

(integer programming) into a related problem which can be solved in polynomial

time (linear programming). Instead of searching for an integer solution, we search

for a solution in a continuous feasible region. With our designed dictionary, we can

transform the possible intensity region into [−1, 1] in the transformed domain. In

particular, the possible intensity region will be a hypercube (see Figure 4.6a). For

the data fitting constraint, because the X-ray projection is linear and modeled by

the measurement matrix, the feasible region for data fitting will be a hyperplane

(see Figure 4.6b). Then the feasible region can be defined as the intersection of data

fitting and intensity boundary constraints (see Figure 4.6). Now, this problem can

be formulated as a sparse signal recovery with a new measurement matrix Ã = AD.

min ‖u‖1 (4.13)

subject to Ãu = y, Ã = AD

0 ≤ x ≤ 1, − 1 ≤ u ≤ 1, Du = x
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(a) (b) (c)

Figure 4.6: The feasible set for (a) intensity boundary constraint (b) data fitting
constraint (c) intersection of data fitting and boundary. Note that the solution in
DT must belong to the intersection to satisfy both constraints.

Candès and Tao [18] have shown that if the measurement matrix Ã has the

restricted isometry property (RIP), it is guaranteed that a perfect reconstruction

of sparse signal u can be obtained. However, in DT the RIP property of the

measurement matrix Ã depends on the number of viewing angles and the chosen

transform.

When we design the dictionary, we would like to choose D such that the signal

x has sparse representation and the combined sensing matrix Ã = AD also has

low coherence. In [26] joint learning of the dictionary and sensing matrix is con-

sidered. However, in the X-ray tomography problem, the sensing matrix is a line

projection matrix and the coherence of the sensing matrix is fixed by the number of

projections. In the joint learning approach, the learned dictionary will be a balance

between the vectors that diagonalize the sensing matrix and the principal compo-

nents of the training images. Thus, the atoms in the learned dictionary usually

have non-zero entries all over the space and fail to provide a representation that

preserve the “discrete intensity level” property. In our approach we rather choose
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a deterministic dictionary that can lead to reconstructed images with discrete in-

tensity levels and use reweighed L1 minimization to recover a sparse solution even

for the high correlation of the combined sensing matrix.

Next, we extend this approach to images with multi-level discrete intensity.

When the possible intensity levels ki are given, in (4.10) we can represent a multi-

level image x as the linear combination of several two-level signals: Thus, if kj are

given, the sparse reconstruction problem for multi-level DT can be written as

min
M∑
j=1

‖uj‖1 (4.14)

subject to y = Ax, x =
M∑
j=1

kj ·Duj (4.15)

−1 ≤ uj ≤ 1, 0 ≤ x ≤ U (4.16)

where kj · Duj represents the region with intensity kj and U is the boundary of

feasible intensity values. The feasible region for the intensity values Ui is initialized

with the maximum possible intensity value {max
j
kj}, and will be updated iteratively

as the estimated intensity levels change.

After the sparse recovery, we will have the coefficients uj corresponding to the

intensity value kj. Thus, we can define M segments as zj = kj ·Duj, j = 1, 2, . . . ,M ,

which maps the coefficients in the dictionary back to the 2D spatial domain. We

say that pixel i belongs to segment zj if the ith entry in zi is greater than a small

constant ξ. Note that under this definition, it is possible for one pixel to belong

to several different segments. For perfect reconstruction, all the pixels in the jth

segment will have the same intensity kj and segments will not overlap with each

other (which implies every pixel only belongs to one segment). Thus, if a pixel
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belongs to only one segment, xi ∈ zj, the intensity boundary for a pixel can be

assigned as Ui = ki.

However, when the sparse recovery is not perfect, it is possible that some seg-

ments are overlapping. Under this circumstance, a pixel xi may belong to more

than one segment. Thus, we use a “soft” decision rule and choose the intensity

boundary as the maximum of intensity levels for all segments covering that pixel,

namely, Ui = max kj
j1,...,jp

if xi ∈ ∩
j1,...,jp

zj. By choosing a loose intensity boundary, we

guarantee the existence of solution in the sparse recovery.

With the presence of noise, the measurements will be y = Ãu + z, where z is

the noise with power ‖z‖2 ≤ ε. In order to operate with noisy measurements, we

change the feasible region in (4.13) from y = Ax to ‖y − Ax‖2 ≤ δ, where δ is

the search allowance for noisy measurements. This approach is closely related to

LASSO [70] and sparse Bayesian learning [78], where the goal is to achieve a good

trade-off between data fitting and model complexity. Without knowing the noise

power ε, selecting an appropriate δ is non-trivial. If we choose δ to be too large,

then the hyper ball ‖y −Ax‖2 will contain the origin x = 0. In that case, the

solution will be a zero vector which is the global minimum for reweighed L1 norm.

On the other hand, if δ is too small, the intersection of data fitting ‖y −Ax‖2 and

boundary constraint 0 ≤ x ≤ 1 may be empty. Thus, no solution can be found.

Boufounos et al [13] have proposed a cross validation method to estimate noise

power. With a good choice of δ, we can assume that the hyper ball ‖y −Ax‖2

contains the actual solution we want to recover. For the noisy case, because we use

L1 norm as regularization, the solution is the one with minimum L1 norm within

feasible region. Moreover, even with correct search allowance δ, the solution will

still not be exactly all integer. It will always to be on the inner bound of the

feasible region because it has lower L1 norm compared to the ground truth (see
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(a) (b)

Figure 4.7: The minimum L1 solution for (a) noiseless case and (b) noisy case.
Note the solution will be on the inner boundary of feasible region.

Figure 4.8). Thus, for the noisy case our algorithm is likely to recover a solution

with non-discrete levels. In such case, additional regularization constraint may be

needed to prefer a solution with discrete levels.

4.4.1.1 Reweighed L1 minimization

To recover a sparse solution, we modify the reweighed L1 minimization algorithm

proposed by Candès et al. [19]. We first introduce our algorithm for the binary

case, with known intensity levels {0, 1}, then extend it into multi-level cases. Given

the measured projection data y, our algorithm can be described in Algorithm 3.

Our algorithm finds the minimum weighted L1 norm (which can be viewed as a

generalized L1 ball) that satisfies the constraints. The solution will be the intersec-

tion of the minimum L1 ball and the convex feasible sets for the constraints, where

the shape of the L1 ball is determined by the weights, and is updated iteratively.

This is one type of majority minimization: After we get the solution from the initial

condition, we will modify the corresponding weights. Then, in the next iteration,
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Algorithm 3 Reweighed l1 norm minimization for binary DT

1: Define the maximum iteration number tmax and set the iteration number t = 0.
Initialize a weight vector w(t) = 1, where the dimension is equal to u. Set a
small positive constant κ.

2: Solve the reweighed L1 minimization problem

u(t) = arg min ‖w(t) ◦ u‖1

subject to y = Ãu(t), x = Du(t)

0 ≤ x ≤ 1

where the operator ◦ is defined as the element-by-element product of two vectors
(Hadamard Product), (w ◦ u)i = wiui.

3: Update the weights according to the previous solution: for each entry, i =
1, . . . , n, modify the weight by

wi(t+ 1) =
1

|ui(t)|+ κ
. (4.17)

4: Reset the weights for non-integer solutions: Every 5 iterations, we reset wi(t)
corresponding to non-integer ui(t) by a random number that is uniformly dis-
tributed between [0, 2/κ]

wi(t)← U(0, 2/κ) (4.18)

5: Terminate the iteration if the solution converges or reach the maximum number
of iteration. Otherwise, increase t→ t+ 1 and go to step 2.
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(a) (b)

Figure 4.8: The reweighed L1 minimization. Note that the feasible region is the
intersection of data fitting y = A ·Du and −1 ≤ u ≤ 1. (a) solution with initial
weights (b) after reweighing, the solution stays on the boundary

the large entries of wi will force those solution to concentrate on the dimensions

where wi is small [19]. The updated L1 ball becomes a closer approximation to

the L0 norm, where the reweighing scheme is in charge of “choosing” the non-zero

entries.

The key difference in our DT algorithm is that we know the possible values as

a prior. With the designed dictionary, we preserve the “discrete level” property in

transformed domain. In a typical sparse recovery, we need to identify the non-zero

entries and estimate the values. However, in DT the value belongs to few possible

levels, and we use it as an additional constraint to enhance the sparse recovery.

We show the geometrical interpretation in Figure 4.8. The feasible region is the

intersection of the data fitting y = A ·Dx and the intensity boundary −1 ≤ u ≤ 1.

In particular, the reweighed scheme will make the L1 ball sharper, increasing the

chances that the solution will be on the intensity boundary which corresponds to

the possible discrete levels.
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Moreover, we can encourage the solution to reach the known intensity levels by

randomized modification of the weights. When the reconstruction is not perfect, it

is possible that the solution will be trapped in the non-integer regions. In order to

jump out from these non-integer regions, every 5 iterations we check the solution

and identify the non-integer entries ui and reset the corresponding weights wi with

a random value from the uniform distribution U(0, 2/κ). This induces a “random

search” for the non-integer entries, making it possible to converge to integer points.

The reason we draw the weight from U(0, 2/κ) is that we want to randomize the

slope of the L1 ball, and make sure this entry still has weight less than the all-zero

entries (otherwise this entry will become zero from next iteration). Our randomized

algorithm tends to find solutions with more integer values, while a non-randomized

method will stop after a few iterations providing solutions with fewer integer values.

4.4.1.2 Projection onto convex sets

To solve the convex optimization in (4.14), the state of art second order methods

(e.g., interior point method) use the Hessian matrix, which requires space of N2 for

storage. When we consider a typical 512× 512 image, the Hessian matrix requires

more than 6 · 1010 variables which makes impractical for current computers. Thus,

we switch to the first order method to solve the convex optimization with limited

memory usage. In convex optimization, we need to search the solution in a convex

feasible region, we use projection onto convex sets (POCS) [17] to project to solution
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from unconstrained optimization onto feasible region. The feasible region of the

original convex problem can be separated as two constraints:

Min
∑
j

‖uj‖1

Subject to C1:Data fitting : Ax = y

C2:Boundary : Li ≤ xi ≤ Ui

where x =
∑

j kj ·Duj. The convex set and projection operator for C1 and C2 are

well-defined (C1 is a hyper-plane of null space A, and C2 is a hyper-cube). But,

directly projecting the solution onto the feasible region C = C1 ∩C2 is not an easy

task, thus, we move one constraint into cost function and alternately solve these

two smaller problems. The first one is:

Min
∑
j

‖uj‖1 + µ · φBd(x) (4.19)

Subject to uj ∈ C1:Data fitting (4.20)

And the second one is:

Min
∑
j

‖uj‖1 + ν · ‖Ax− b‖2 (4.21)

Subject to uj ∈ C2:Boundary (4.22)
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where we use ‖Ax − b‖2 as the cost function for data fitting, and φBd(x) as the

cost function for the boundary constraints. Each entry of φBd(x) is defined as:

φBd(x)i =


0, Li ≤ xi ≤ Ui

|Li − xi|, xi ≤ Li

|Ui − xi|, xi ≥ Ui

(4.23)

Figure 4.9: Alternating projection on two convex sets

We use POCS to alternate solving these two small problems. In the first step, we

solve the first problem by running an unconstrained minimization for cost function

in (4.19), then we project the solution onto the convex set in (4.20) to satisfy

the data-fitting constraint. The unconstrained minimization is done by first order

method (gradient based), which only requires space of size N to store the gradient

information. In the second step, we use the result from the previous step as an

104



initial point, then solve the second problem by the same unconstrained minimization

- projection onto convex set procedure. We do this iteratively until the solution

converges.

Because the original problem is convex, the convergence of the solution is guar-

anteed. In POCS, we separate the original convex problem into two smaller prob-

lems, and use basic operations to solve it iteratively. Each operation (unconstrained

optimization, projection) can be done with reduced space requirement, however, the

drawback is that compared to second order convex optimization, although POCS

converges to global optima, it does require much more time to converge.

4.4.2 Estimating the unknown intensity level

In Section 4.4.1, we proposed how to solve a DT problem with known intensity

level. Now, we want to move forward to the unknown intensity level case. Based

on our previous algorithm, we add the intensity level estimation step, and alternate

these two steps iteratively. In this step, we will estimate the unknown intensity

levels {0, k1, . . . , kM} based on the solution from the sparse recovery step. We use

the histogram of pixel values and run clustering algorithm on it. We only choose

partial data, which have intensity values greater than a small constant ξ, and run

the Gaussian Mixture Model (GMM) based clustering to cluster the histogram of

data into M groups. We only use pixel values greater than ε for clustering because 0

is a prior known level, whose intensity does not need to be estimated. Furthermore,

the Gaussian distribution used in GMM is symmetrical and pixel intensities are non-

negative, thus if we performed GMM clustering on all pixel values we would never

obtain a cluster with mean 0. In summary, we use simple thresholding to assign
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small pixel values to the cluster with intensity 0, while using GMM to estimate the

remaining intensities from pixel data above the threshold.

After GMM clustering, the result will be Gj, with their mean cj, variance σj

and cardinality |Gj|. Then we update the possible intensity level kj based on the

mean cj and variance σj of each cluster:

kj ← kj − γ(
σj
|Gj|

) · (kj − cj). (4.24)

The new intensity estimate kj is chosen so that it moves closer to the mean cj of

cluster j: the coefficient function γ(x) is defined as min{1
4
, x} to control the update

speed. We use the ratio of the variance and cardinality
σj
|Gj | to define the step size,

which implies large average variance will speed up the convergence. After updating

the intensity estimate kj, we use it as the input for the sparse reconstruction step

and run it iteratively.

4.5 Simulation Results

In this section, we show the simulation results for our algorithm. The testing image

is a simplified Shepp-Logan phantom, and the measurements are taken with equally

spaced projections. The projection angles are chosen to be uniform in the range

[0, 180] degree. In order to test the noisy measurement, we add white Gaussian

noise with zero mean and different variance to the measured data, and the search

allowance δ is chosen to be equal to the noise variance.

In Simulation 1, we assume the intensity levels are given, and the testing

image is a binary level Shepp-Logan phantom with size 32×32. The measurements

are taken with 5 different angles uniformly distributed in [0, 180], and the added
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Gaussian noise is zero mean with variance {0, 0.1, 0.25, 0.5, 1}. Because the intensity

level is known, we just show the results from sparse recovery step in Figure 4.10. For

comparison, we list the mean square error achieved by the method from Weber [74]

and by a filtered back-projection reconstruction. The results show that in the

noiseless case, our algorithm achieves a perfect reconstruction with only 5 different

viewing angles. For high signal-to-noise ratio (SNR) cases, our algorithm shows

superior performance to the other two methods. However, in low SNR, because

the measurements are corrupted by noise and we choose the search allowance to be

equal to the noise variance, the solution will always stays on the inner bound of

feasible region which means the solution is closer to the origin than the high SNR

cases. One extreme example is if the noise variance is very high and the feasible

region contains the origin, the minimum weighed L1 solution will be 0 because it

gives the lowest possible L1 norm and also inside the feasible region. Thus, for

very low SNR cases, we may need other regularization technique to combine with

reweighed L1 norm to solve DT.

In Simulation 2, we use a 64× 64 simplified Shepp-Logan phantom with three

intensity levels as the testing image. The intensity levels are {0, 16, 80}, which cor-

respond to the background, left lobe and outer circle, respectively. The maximum

possible intensity value is set to 100. For the measurements, {12, 18} different pro-

jection angles are taken uniformly between [0, 180] and zero mean Gaussian noise

is added with variance σ = {0, 0.1, 0.2, 0.5, 1, 2, 5}.

We show the histogram of the reconstructed image through iterations in Figure

4.12. After we update the intensity level, the distribution of histogram becomes

more concentrated and finally converges to a few peaks. The result shows that most

of the non-zero entries xi stay on the boundary of feasible region, as we expected.

The mean square error of the reconstructed image with different noise variance and
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number of projections is shown in Figure 4.13. We compare the results with the

standard filtered back-projection [42], and total variation (TV) reconstruction [65].

Results show that our method has much better reconstructed image quality than

the other two approaches, and even outperforms the TV method in the case with

same noise variance, fewer measurements. Even though unknown the intensity level

case is a more difficult problem, the overall results still show good performance.

In Simulation 3, we use a testing image with size 256 × 256. The number of

variables is over 50, 000 and the second order method can not be used to solve the

convex optimization due to the requirement for the large memory space to store

the Hessian matrix. We switch to the first order algorithm, projection onto convex

sets (POCS) [17] method to solve it with limited memory requirement.

When we alternate solving these two small problems in (4.19), after we project

the solution onto the data fitting feasible set, some pixels may become negative

(see Figure 4.14). In the next step, after we finish the minimization and project the

solution onto the convex set for boundary constraint, all pixels go back to greater

than zero in order to satisfy the boundary constraint but with slightly higher data

fitting error. The change of MSE with iterations is listed in Figure 4.15, and the

result shows it iteratively converges to the ground truth.

4.6 Conclusions

In this chapter, we have presented a new sparse reconstruction formulation for

discrete tomography, which focuses on reconstruction of few level intensity images

that have a sparse representation using a well designed dictionary. Our binary

reconstruction algorithm uses LP to relax the integer solution condition and also

search the the sparse representation. We introduce a randomized reweighed L1
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Figure 4.10: The Simulation 1 results. (a) The binary testing phantom (b) Recon-
struction result with noise variance = 0.1 (c) S. Weber’s method with same noise
variance (d) Filtered back projection result with same noise
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Figure 4.11: Comparison of the mean square error with respect to different noise
level in Simulation 1. Note our method have perfect reconstruction in noiseless case
and outperform other methods in high SNR case.

minimization to enhance convergence to an integer solution. We also present a new

automatic intensity level estimation algorithm adding the binary reconstruction al-

gorithm. Our algorithm iterates between reweighed L1 minimization and GMM

histogram clustering steps to estimate the unknown intensity levels, and it has very

good performance in our preliminary experimental evaluations for multi-level DT

problems. It outperforms the conventional TV method even with fewer measure-

ments. For large image reconstruction, we use POCS to handle the problem. but

this algorithm suffers from the slow convergence speed.

Future work involves understanding the performance of the proposed algorithm

under different noise and image models, for example using Poisson models for the

noise statistics of the X-ray detector. We also plan to use the discrete value property

to enhance signal recovery from noisy measurements. The speed of convergence for

the first-order method in our DT problem is also very interesting. Finally, we want
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(c) (d)

Figure 4.12: Simulation 2. (a) Test Shepp-Logan phantom (b) Histogram of the
reconstructed image after 1 iteration (c) Histogram after 2 iterations (d) Histogram
after 2 iterations. After few intensity updates, the histogram is more concentrated
on few spots.

to develop a method on top of our current work to handle the unknown number of

intensity levels case.
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Figure 4.13: Reconstruction mean square error with respect to the noise level with
{12, 18} number of projection views in Simulation 2. This shows that our method
outperform Total-Variation reconstruction in all cases.

(a) (b)

Figure 4.14: Projection onto convex set results in Simulation 3 (a) After projec-
tion onto the data fitting set. Note that some pixels may be negative. (b) After
projection onto boundary constraint set. All pixels are within the range now.
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Figure 4.15: The reconstructed mean square error with respect to the number of
iterations in Simulation 3. The result shows the MSE decreases with respect to
number of iterations, and also reflects the slow convergence of POCS.
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Chapter 5

Conclusions

A high contrast transmission tomography problem has been proposed and studied

for sparse data scenario. In Chapter 2, an object based model is proposed to rep-

resent the high velocity structure in travel time tomography. This model provides

a sparse representation and greatly reduces the number of parameters needed for

the model. A fast path tracking algorithm is proposed in Section 2.3 that provides

a efficient way to find the travel path in the high velocity object model. To do to-

mographic reconstruction, we suggest to use the probabilistic approach to estimate

the probability distribution of model space. Moreover, we propose an accelerated

random walk algorithm to explore multiple minima and generate the probability

map. The result can be interpreted as a “appearance” probability map of high ve-

locity structures in different areas. The probability map describe the most possible

models and cover the non-uniqueness nature of the solution, where the user can

add prior knowledge or personal expertise to choose between possible models.

In Chapter 3, fracture detection problem is proposed and the tomographic re-

construction algorithm is used for a low permeability reservoir under water-flooding.

Based on the current infrastructure, we use the “injected water” as a probe sig-

nal and injection-production wells as transmitters-receivers. Compared to existing
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reservoir characterization methods, our approach has benefit that it won’t inter-

rupt the usual production and be able to detect the dynamical change of reservoir

on-line. The conditions of designing injection schedule are provided in Section 3.3,

and we show how to estimate reservoir response and travel time from production

data. The result of field experiment is shown in Section 3.5.

For X-ray transmission tomography, piecewise-constant dictionary is proposed

to represent the type of image for our interest, e.g., high contrast images which can

be segmented to several smooth boundary regions with same intensity. This pro-

vides a very sparse representation since only boundaries and intensity values of each

region needs to be coded. We formulate this problem as a discrete sparse recovery

and propose an algorithm to alternating recovering the boundary and estimating

the intensity level of each region in Section 4.4. Moreover, the reconstructed image

quality outperform conventional reconstruction algorithms (total-variation mini-

mization and filter-back projection) when the measured data is sparse, and it leads

to better interpretation of image in applications that number of X-ray projections

is limited.

5.1 Future Work

There are several interesting directions for the future work. One is to consider

the very low velocity structure in the travel time tomography. The heterogeneous

structure could be either high or low velocity, and the path finding algorithm should

be extended to cover both cases where the object may speed up or slow down the

travel time. Currently, the shape and number of objects in our algorithm pre-

defined. In particular, if the object shape is closed to the natural shape of the

high contrast structure, our method can have superior reconstructed image quality
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comparing to grid-based methods. However, in many situations the geometrical

shape of structure is unknown, and there is no guarantee that our pre-defined

number of objects will provide a good approximation for it. Thus, adaptively

modifying the shape and number of the object could be a new way to achieve

better reconstructed image quality.

In X-ray tomography, the dictionary with unit-step functions as atoms is ca-

pable of representing the smooth boundary, few intensity level image efficiently.

However, this dictionary also has high coherence, which increase the uncertainty

for sparse recovery. This scheme can be improved by considering different type of

dictionary, e.g., graph based transform should be very efficient to smooth edge im-

ages. Moreover, the transform can be adaptive, which based on the sparse recovery

result. The combination of dictionary design and sparse recovery could lead to a

more efficient representation and better reconstruction quality.
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