
DISTRIBUTED ALGORITHMS FOR SOURCE LOCALIZATION

USING QUANTIZED SENSOR READINGS

by

Yoon Hak Kim

A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the
Requirements for the Degree

DOCTOR OF PHILOSOPHY
(ELECTRICAL ENGINEERING)

December 2007

Copyright 2007 Yoon Hak Kim



Dedication

To my mother for her support throughout my studies.

To my lovely wife, Hyun Bin for her constant love and encouragement.

ii



Acknowledgments

First, I would like to thank my advisor, Prof. Antonio Ortega for his continual support,

guidance and patience. It was the privilege to work with him during my doctoral research.

Our discussions were crucial factors in accomplishing this work.

I would also like to thank Prof. Mitra and Prof. Govindan for being on my dissertation

committee and Prof. Krishnamachari and Prof. Neely for serving on my qualifying

examination committee. I am very grateful to them for their valuable comments and

suggestions.

I would like to thank all my friends and colleagues for their help and friendship. My

experience during the studies was much more enjoyable with them.

I would like to thank my mother who has devoted herself to my education since my

childhood and my family, in particular my mother-in-law who always provided me with

strong support throughout years. Finally, I would like to express my deepest gratitude

to my wife Hyun Bin, for the unmeasurable love.

iii



Table of Contents

Dedication ii

Acknowledgments iii

List Of Tables vii

List Of Figures ix

Abstract xii

Chapter 1: Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Distributed Algorithms for Source Localization System . . . . . . . . . . . 4

1.3.1 Distributed Quantizer Design Algorithm . . . . . . . . . . . . . . . 5
1.3.1.1 Rate Allocation . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Distributed Localization Algorithm based on Quantized Data . . . 7
1.3.3 Distributed Encoding Algorithm . . . . . . . . . . . . . . . . . . . 8

1.4 Outline and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 2: Quantizer Design 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Location Estimation based on Quantized Data . . . . . . . . . . . 15
2.2.2 Criteria for Quantizer Optimization . . . . . . . . . . . . . . . . . 16

2.3 Quantizer Design Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Iterative Optimization Algorithm . . . . . . . . . . . . . . . . . . . 19
2.3.2 Constrained Design Algorithm . . . . . . . . . . . . . . . . . . . . 21
2.3.3 Convergence and stopping criteria . . . . . . . . . . . . . . . . . . 23
2.3.4 Summary of algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Rate Allocation using GBFOS . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 Application to Acoustic Amplitude Sensor Case . . . . . . . . . . . . . . . 28

2.5.1 Source localization using quantized sensor readings . . . . . . . . . 28
2.5.2 Quantizer design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.3 Geometry-Driven Quantizers: Equally Distance-divided Quantizers 32

iv



2.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6.1 Quantizer design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6.1.1 Comparison with traditional quantizers . . . . . . . . . . 33
2.6.1.2 Comparison with optimized quantizers . . . . . . . . . . 36
2.6.1.3 Sensitivity to parameter perturbation . . . . . . . . . . . 37
2.6.1.4 Performance analysis in a larger sensor network: compar-

ison with traditional quantizers . . . . . . . . . . . . . . . 38
2.6.1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.2 Rate allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6.2.1 EDQ design . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6.2.2 Effect of quantization schemes . . . . . . . . . . . . . . . 41
2.6.2.3 Rate allocation under power constraints . . . . . . . . . . 41
2.6.2.4 Performance analysis – comparison with uniform rate al-

location . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.6.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Chapter 3: Localization Algorithm based on Quantized data 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Localization Algorithm based on Maximum A Posteriori (MAP) Criterion:

Known Signal Energy Case . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4 Implementation of Proposed Algorithm . . . . . . . . . . . . . . . . . . . 53
3.5 Unknown Signal Energy Case . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6.1 Case of known signal energy . . . . . . . . . . . . . . . . . . . . . . 59
3.6.2 Case of unknown signal energy . . . . . . . . . . . . . . . . . . . . 60
3.6.3 Sensitivity to parameter mismatches . . . . . . . . . . . . . . . . . 61
3.6.4 Performance analysis in a larger sensor network . . . . . . . . . . . 62

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Chapter 4: Distributed Encoding Algorithm 64
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 Motivation: Identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 Quantization Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5 Proposed Encoding Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5.1 Incremental Merging . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.6 Extension of Identifiability: p-identifiability . . . . . . . . . . . . . . . . . 74
4.7 Decoding of Merged Bins and Handling Decoding Errors . . . . . . . . . . 75

4.7.1 Decoding Rule 1: Simple Maximum Rule . . . . . . . . . . . . . . 76
4.7.2 Decoding Rule 2: Weighted Decoding Rule . . . . . . . . . . . . . 77

4.8 Application to Acoustic Amplitude Sensor Case . . . . . . . . . . . . . . . 78
4.8.1 Construction of SQ(p) . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.9 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

v



4.9.1 Distributed Encoding Algorithm . . . . . . . . . . . . . . . . . . . 80
4.9.2 Encoding with p-Identifiability and Decoding rules . . . . . . . . . 83
4.9.3 Performance Comparison: Lower Bound . . . . . . . . . . . . . . . 86

4.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Chapter 5: Conclusion and Future work 90

Bibliography 93

vi



List Of Tables

Table 2.1 Comparison of LSQs with Optimized quantizers. The average local-
ization error are computed using a test set of 2000 source locations. . . . 37

Table 2.2 Localization error (LE) of LSQ due to variations of the modelling
parameters. LE = 1

100

∑100
l=1 El(‖ x − x̂ ‖2), where El is the average lo-

calization error for the l-th sensor configuration and is expressed in m2.
LE (normal) is for test set from normal distribution with mean of (5,5)
and unit variance and LE (uniform) from uniform distribution. LSQs are
designed with Ri = 3, a = 50, α = 2, gi = 1 and wi = 0 for uniform
distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Table 2.3 Average localization error (m2) vs. number of sensors (M = 12, 16, 20)
in a larger sensor field, 20× 20m2. The localization error is averaged over
20 different sensor configurations where each quantizer uses Ri = 3 bits. . 39

Table 2.4 Localization error (m2) for various sets of rate allocations where
R∗

EDQ,R∗
U and R∗ are obtained by GBFOS using EDQ, uniform quantizer

and LSQ, respectively given
∑

Ri = 10. Localization error is computed
by E(‖ x− x̂ ‖2) using EDQ and LSQ. . . . . . . . . . . . . . . . . . . . 42

Table 2.5 Localization error (m2) for various sets of rate allocations where
R∗

PW was obtained by GBFOS using EDQ given P =
∑

i CiRi =
∑

i 2Ci.
Localization error is given by E(‖ x− x̂ ‖2). . . . . . . . . . . . . . . . . . 43

Table 3.1 Localization error (LE) (m2) of MAP algorithm compared to en-
ergy ratios based algorithm (ERA) under various mismatches. In each
experiment, a test set is generated with M = 5 and σ = 0.05 and one
of the parameters is varied. Localization error (LE) (m2) is computed by
E(‖ x− x̂ ‖2) using α = 2, gi = 1, Ri = 3 and uniform distribution of p(x). 62

Table 4.1 Total rate, RM in bits (Rate savings) achieved by various merging
techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

vii



Table 4.2 Total rate RM in bits (Rate savings) achieved by distributed encod-
ing algorithm (global merging technique). The rate savings is averaged
over 20 different node configurations where each node uses LSQ with Ri = 3. 83

viii



List Of Figures

Figure 1.1 Block diagram of source localization system. We assume the chan-
nel is noiseless and each sensor sends its quantized (Quantizer, Qi) and
encoded (ENC block) measurement to the fusion node where decoding
and localization are conducted in a distributed manner. . . . . . . . . . . 2

Figure 2.1 Localization of the source based on quantized energy readings . . . 30

Figure 2.2 Comparison of LSQs with uniform quantizers and Lloyd quantiz-
ers. The average localization error is plotted vs. the number of bits,
Ri, assigned to each sensor. The average localization error is given by
1

500

∑500
l El(‖x − x̂‖2) where El is the average localization error for the

l-th sensor configuration. 2000 source locations are generated as a test set
with uniform distribution of a source location. . . . . . . . . . . . . . . . . 34

Figure 2.3 Partitioning of sensor field (10×10m2) (grid= 0.2×0.2) by uniform
quantizer (left) and Lloyd quantizer (right). 5 sensors are deployed with
2-bit quantizers. Each partition corresponds to the intersection region of
5 ring-shaped areas. More partitions yield better localization accuracy. . . 35

Figure 2.4 Partitioning of sensor field (10× 10m2) (grid= 0.2 × 0.2) by EDQ
(left) and LSQ (right). 5 sensors are deployed with 2-bit quantizers. Each
partition corresponds to the intersection region of 5 ring-shaped areas. . . 35

Figure 2.5 Justification of EDQ design. The average localization error is plot-
ted vs. the number of bits, Ri, assigned to each sensor with M=5 (left)
and vs. the number of sensors, M with Ri =3bits (right). The average
localization error is given by 1

500

∑500
l El(‖x− x̂‖2) where El is the average

of localization error for the l-th sensor configuration. 2000 source locations
are generated as a test set with uniform distribution of source locations. . 40

ix



Figure 2.6 Comparison of optimal rate allocation, R∗ with uniform rate allo-
cation RU . LSQs are designed for each R∗ and RU . 4 curves are plotted
for comparison. For example, “EDQ (or LSQ) with RU (or R∗)” indicates
the curve of localization error computed when each sensor uses EDQ (or
LSQ) designed for R = RU (or R∗). . . . . . . . . . . . . . . . . . . . . . 44

Figure 2.7 Gain in rate savings achieved by our optimal rate allocation, R∗ us-
ing LSQs as compared with trivial solution where each sensor uses uniform
quantizers of the same rate. . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 2.8 Evaluation of optimal rate allocation for many different sensor con-
figurations. Localization error is averaged over 100 sensor configurations
for two different rate allocations: RU and R∗. . . . . . . . . . . . . . . . . 46

Figure 3.1 Source locations that generate the given Qr for each variance (σ =
0, 0.05, 0.16, 0.5) are plotted. 5 sensors (marked as ◦) are employed in a
sensor field 10× 10m2 and each sensor uses a 2-bit quantizer. . . . . . . . 53

Figure 3.2 Localization accuracy of proposed algorithm under source signal
energy mismatch (top). In this experiment, a test set of 2000 source lo-
cations is generated for each source signal energy (a = 40, 45, ..., 55, 60).
Localization is performed by the proposed algorithm in Section 3.4 using
a = 50 and δ = 1m. Distribution of weights vs. Number of weights cho-
sen, L. (bottom) (

∑L
l Wl∑N
k Wk

vs. L). A test set of 2000 source locations is
generated and N=10 weights are computed for each source location. . . . 59

Figure 3.3 Localization algorithms based on MMSE and MAP criterion are
tested when σ varies from 0.5 to 0 with Ri = 3 (left) and when Ri = 3, 4
and 5 with σ = 0.05 (right) and δ = 1m respectively. wi ∼ N(0, σ2). . . . 60

Figure 3.4 Localization algorithms based on MMSE estimation, MAP criterion
and energy ratios are tested by varying source signal energy a from 20 to
100. We set N = 10, L = 3, and δw = 1m in our algorithm. In this
experiment, a test set with M = 5, Ri = 3 is generated with uniform
distribution of source locations for each signal energy and the measurement
noise is modeled by a normal distribution with zero mean and σ = 0.05. . 61

Figure 3.5 Localization algorithms based on MAP criterion and energy ratios
are tested in a larger sensor network by varying the number of sensors.
The parameters are N = 10, L = 3 and δw = 1m in our algorithm. In this
experiment, a test set of 4000 samples was generated for M = 12, 16, 20.
Each sensor uses a 3 bit quantizer and the measurement noise is modeled
by the normal distribution with zero mean and σ = 0.05. . . . . . . . . . . 63

x



Figure 4.1 Encoder-Decoder Diagram . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 4.2 Average localization error vs. Total rate RM for three different
quantization schemes with distributed encoding algorithm. Average rate
savings is achieved by the distributed encoding algorithm (global merging
algorithm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 4.3 Average rate savings achieved by the distributed encoding algorithm
(global merging algorithm) vs. number of bits, Ri with M = 5 (left) and
number of nodes with Ri = 3 (right) . . . . . . . . . . . . . . . . . . . . . 83

Figure 4.4 Rate savings achieved by the distributed encoding algorithm (global
merging algorithm) vs. SNR (dB) with Ri = 3 and M=5. σ2 = 0, ..., 0.52 . 84

Figure 4.5 Average localization error vs. total rate RM achieved by the dis-
tributed encoding algorithm (global merging algorithm) with simple max-
imum decoding and weighted decoding, respectively. Total rate varies by
changing p from 0.8 o 0.95 and weighted decoding is conducted with L = 2.
Solid line + ¤: weighted decoding. Solid line + ∇: simple maximum de-
coding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 4.6 Average localization error vs. total rate, RM achieved by the dis-
tributed encoding algorithm (global merging algorithm) with Ri = 3 and
M=5. σ = 0, 0.05. SQ(p) is varied from p = 0.85, 0.9, 0.95. Weighted
decoding with L = 2 is applied in this experiment. . . . . . . . . . . . . . 86

Figure 4.7 Performance comparison: distributed encoding algorithm is lower
bounded by joint entropy coding. . . . . . . . . . . . . . . . . . . . . . . . 88

xi



Abstract

We consider sensor-based distributed source localization applications, where sensors trans-

mit quantized data to a fusion node, which then produces an estimate of the source lo-

cation. For this application, the goal is to minimize the amount of information that the

sensor nodes have to exchange in order to attain a certain source localization accuracy.

We propose an iterative quantizer design algorithm that allows us to take into account

the localization accuracy for quantizer design. We show that the quantizer design should

be “application-specific” and a new metric should be defined to design such quantizers.

In addition, we address, using the generalized BFOS algorithm, the problem of allocating

rates to each sensor so as to minimize the error in estimating the position of a source.

We also propose a distributed encoding algorithm that is applied after quantization

and achieves significant rate savings by merging quantization bins. The bin-merging

technique exploits the fact that certain combinations of quantization bins at each node

cannot occur because the corresponding spatial regions have an empty intersection.

We apply these algorithms to a system where an acoustic amplitude sensor model is

employed at each sensor for source localization. For this case, we propose a distributed

source localization algorithm based on the maximum a posteriori (MAP) criterion. If the

source signal energy is known, each quantized sensor reading corresponds to a region in

xii



which the source can be located. Aggregating the information obtained from multiple

sensors corresponds to generating intersections between the regions. We develop algo-

rithms that estimate the likelihood of each of the intersection regions. This likelihood

can incorporate uncertainty about the source signal energy as well as measurement noise.

We show that the computational complexity of the algorithm can be significantly reduced

by taking into account the correlation of the received quantized data.

Our simulations show the improved performance of our quantizer over traditional

quantizer designs and that our localization algorithm achieves good performance with

reasonable complexity as compared to minimum mean square error (MMSE) estimation.

They also show that an optimized rate allocation leads to significant rate savings (e.g.,

over 60%) with respect to a rate allocation that uses the same rate for each sensor, with

no penalty in localization efficiency. In addition, they demonstrate rate savings (e.g., over

30%, 5 nodes, 4 bits per node) when our novel bin-merging algorithms are used.
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Chapter 1

Introduction

1.1 Motivation

In sensor networks, multiple correlated observations are available from many sensors that

can sense, compute and communicate. Often these sensors are battery-powered and op-

erate under strict limitations on wireless communication bandwidth. This motivates the

use of data compression in the context of various tasks such as detection, classification,

localization and tracking, which require data exchange between sensors. The basic strat-

egy for reducing the overall energy usage in the sensor network would then be to decrease

the communication cost at the expense of additional computation in the sensors [42].

One important sensor collaboration task with broad applications is source localization.

The goal is to estimate the location of a source within a sensor field where a set of

distributed sensors measure the acoustic, seismic or thermal signals emitted by a source

and manipulate the measurements to produce meaningful information such as signal

energy, direction-of-arrival (DOA) and time difference-of-arrival (TDOA) [3,20]. In such

cases, the sensor observations are correlated and usually corrupted by noise. In addition,
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Figure 1.1: Block diagram of source localization system. We assume the channel is
noiseless and each sensor sends its quantized (Quantizer, Qi) and encoded (ENC block)
measurement to the fusion node where decoding and localization are conducted in a
distributed manner.

since there is normally a physical separation between the sensors and the fusion node,

use of efficient data compression schemes becomes attractive for the sensor networks that

normally have to operate under severely limited channel bandwidth.

It should be noted that since practical systems will require quantization of the obser-

vations before transmission, the estimation ought to be accomplished based on quantized

observations. Thus, the goal of this thesis is to study the impact of quantization on the

source localization performance of systems such as those in Figure 1.1.

1.2 Related Work

Localization algorithms based on acoustic signal energy measured at individual acoustic

amplitude sensors have been proposed in [1, 11,19,30], where each sensor transmits un-

2



quantized acoustic energy readings to a fusion node, which then computes an estimate

of the location of the source of these acoustic signals. Acoustic amplitude sensors are

suitable for low cost systems such as sensor networks, even though measurements will

be highly susceptible to environmental interference. The localization problem has been

solved mostly through nonlinear least squares estimation, which is sensitive to local op-

tima and saddle points. To overcome this drawback, alternative approaches that cast the

problem as a convex feasibility problem have been proposed [1, 11].

Localization can also be performed using DOA sensors (sensor arrays) [2–4]. Sensor

arrays generally provide better localization accuracy, especially in far-field, as compared

to amplitude sensors, while they are computationally more expensive. TDOA can be

estimated by using various correlation operations and a least squares (LS) formulation

can be used to estimate source location [5, 24, 31]. Good localization accuracy for the

TDOA method can be accomplished if there is accurate synchronization among sensors

which may require communication overhead that could be significant in a wireless sensor

network. It may be efficient to deploy different types of sensors (e.g., amplitude sensors

and DOA sensors) in a sensor field of interest so that good localization accuracy can be

achieved at reasonable cost [22].

None of these approaches take explicitly into account the effect of sensor reading

quantization. Since the measurements should be quantized before transmission, estima-

tion algorithms need to be developed based on quantized measurements. For example,

in a simple distributed framework where a parameter of interest is directly estimated

at each sensor, distributed estimators based on quantized data were derived in [23, 40];

these results rely on the availability of measurement noise statistics. In [25], the authors
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considered a source localization system where each sensor measures the signal energy,

quantizes it and sends the quantized sensor reading to a fusion node where the local-

ization is performed. In this framework, the authors addressed the maximum likelihood

(ML) estimation problem using quantized data and derived the Cramer-Rao bound (CRB)

for comparison. Note that in deriving the ML estimator, it was assumed that each sen-

sor used identical (uniform) quantizers. In [26], heuristic quantization schemes were also

proposed in order to select the quantization to be used at all sensors. Note that this

approach does not take into account the sensor location in order to assign quantizers to

each sensor.

1.3 Distributed Algorithms for Source Localization System

We consider a situation where a set of sensors and a fusion node wish to cooperate to

estimate a source location. We assume that each sensor can estimate noise-corrupted

source characteristics, such as signal energy or DOA, using actual measurements (e.g.,

time-series measurements or spatial measurements). We also assume that there is only

one way communication from sensors to fusion node, i.e., there is no feedback channel,

the sensors do not communicate with each other (no relay between sensors) and these

various communication links are reliable.

The block diagram for the source localization system we consider in this thesis is given

in Figure 1.1. We propose distributed algorithms for quantizer design (the quantizers we

design are Q1, ..., QM ), encoding of quantized data (ENC) and localization (Localization

Algorithm). We also address the problem of allocating the rate to each sensor so as to

4



minimize the localization error. We show that if the sensor location is known during

the quantizer design process, significant performance gains can be achieved with respect

to uniform quantization at all the sensors. In particular, it will be seen that optimal

strategies for allocating bits to sensors tend to target a uniform “bit density” throughout

the sensor field. Thus, the number of bits per sensor tends to be low in areas where many

sensors are located, and conversely high where sensors are relatively far apart from each

other.

1.3.1 Distributed Quantizer Design Algorithm

We address the quantizer design problem and propose an iterative algorithm for quantizer

design (Q1, ..., QM in Figure 1.1). Since standard design of scalar quantizers aims at

minimizing the average distortion between the actual sensor reading and its quantized

value, there is no guarantee that these quantizers will reduce the localization error. Thus,

we propose that quantizer design should be “application-specific”. That is, to design

such quantizers, a new metric should be defined that takes into account the accuracy of

the application objective. Application specific quantizer designs have been proposed for

several applications, including time-delay estimation [36, 37], speech recognition [33, 34],

and speaker verification [35]. An overview of recent application specific quantization

techniques can be found in [9]. In this thesis we consider as an application-specific metric

the localization error, i.e., the difference between the actual source location and that

estimated based on quantized data. A challenging aspect of this problem is that, while

quantization has to be performed independently at each sensor, the localization error,

which we wish to minimize, depends on the readings from all sensors. Thus we have a

5



problem where independent (scalar) quantizers for each sensor have to be designed based

on a global (vector) cost function.

To solve this problem, we propose an iterative quantizer design algorithm for the

localization problem (see [16, 18]), as an extension of our earlier work [32]. We apply

our algorithm to a system where an acoustic sensor model proposed in [19] is considered.

Our experiments demonstrate the benefits of using application-specific designs to replace

traditional quantizers, such as uniform quantizers and Lloyd quantizers.

1.3.1.1 Rate Allocation

Obviously, improved localization accuracy can always be achieved with finer quantiza-

tion of the sensor measurements, but this requires higher overall power consumption for

transmission, and thus potentially reduced lifetime for the sensors. Thus, we will ex-

plore the trade-off between rate (i.e., number of bits to represent the measurements) and

overall localization accuracy. In [39], the authors considered an optimal power schedul-

ing scheme which allowed them to determine the optimal rate for each sensor and thus

the corresponding transmission power. In deriving the optimal scheme, they assumed

that each sensor could measure directly the parameter to be estimated with error due

to the measurement noise, and quantize its measurement using a uniform quantization

scheme. However, in the case of source localization, each sensor can measure only the

source signal (acoustic or seismic), from which estimates of signal energy or DOA can be

obtained. Note that these measurements are nonlinear functions of the source location

(the parameter to be estimated) and will be quantized before transmission to a fusion

node. In addition, it will be generally more efficient to use different quantization schemes

6



at each sensor in order to achieve a certain degree of localization accuracy; this accuracy

can vary significantly depending on the quantization scheme.

We address the rate allocation problem while taking into account the effect of quan-

tization on localization. Clearly, better rate allocation can be achieved if better quan-

tization schemes have been employed at each sensor. We apply the generalized BFOS

algorithm (GBFOS [28]) to solve the problem. We perform the rate allocation for a sys-

tem where an acoustic amplitude sensor model proposed in [19] is considered. Our rate

allocation results indicate that better performance can be achieved when allocation leads

to a partition of the sensor field that is as uniform as possible. Thus, when several sensors

are clustered together, the rate per sensor tends to be lower than when the same sensors

are more spread out.

1.3.2 Distributed Localization Algorithm based on Quantized Data

We address source localization problem based on quantized sensor readings when an

acoustic amplitude sensor is employed at each sensor (see block Localization Algorithm

in Figure 1.1). We show that when there is no measurement noise and known source signal

energy, the localization is equivalent to computing the intersection of the regions, each

of which corresponds to one quantized sensor reading from each sensor. In this thesis,

we propose a distributed source localization algorithm that uses a maximum a posteriori

(MAP) criterion (see [17]). To tackle this problem we use a probabilistic formulation,

where we consider the likelihood that a given candidate source location would produce a

given vector reading. We show that the complexity of the solution can be significantly

reduced by taking into account the quantization effect and the distributed property of the
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quantized data, without significant impact on localization accuracy. We also show that

for the unknown source signal energy case, a good estimator of the source location can

be found by computing a weighted average of the estimates obtained by our MAP-based

algorithm under different source energy assumptions.

1.3.3 Distributed Encoding Algorithm

We propose a novel distributed encoding algorithm (blocks ENC and Decoder in Fig-

ure 1.1) that exploits redundancies in the quantized data from sensors and is shown to

achieve significant rate savings, while preserving source localization performance [15].

With our method, we merge (non-adjacent) quantization bins in a given sensor whenever

we determine that the ambiguity created by this merging can be resolved at the fusion

node once information from other sensors is taken into account. Note that this is an

example of binning as can be found in Slepian-Wolf and Wyner-Ziv techniques [7, 8, 12].

In our approach, however, we do not use any channel coding. Instead, we propose design

techniques that allow us to achieve rate savings purely through binning, and provide

several methods to select candidate bins for merging.

1.4 Outline and Contributions

The main contributions of this thesis are,

• Distributed Quantizer Design Agorithm

We propose an iterative quantizer design algorithm which leads to quantizers that

show improved performance over traditional quantizer designs. In addition, our
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design algorithm can be combined with the rate allocation process to produce better

results.

• Distributed Localization Algorithm

We view the localization estimation problem as one of maximum a posteriori (MAP)

detection problems so as to reduce the significant complexity that may be required

by traditional estimators such as maximum likelihood (ML) and minimum mean

square estimation (MMSE) estimators. We show that our distributed localization

algorithm achieves good performance as compared with MMSE.

• Distributed Encoding Algorithm

We propose a novel distributed encoding algorithm that merges quantization bins

at each sensor and achieves rate savings without any loss of localization accuracy

when there is no measurement noise. We show that a significant rate savings can

be also obtained via our merging technique even when there is measurement noise.

The block diagram in Figure 1.1 illustrates the organization of the thesis. In Chapter 2

we address the problem formulation for designing quantizers (see block Qi, i = 1, ...M in

Figure 1.1) and propose a distributed design algorithm that can be performed in an iter-

ative fashion. We also show that significant gains can be obtained by using optimal rate

allocation. In Chapter 3 we address the source localization problem based on quantized

data and propose a distributed algorithm based on MAP criterion which shows good lo-

calization accuracy with reasonable complexity as compared with MMSE estimation (see

block Localization Algorithm in Figure 1.1). In Chapter 4, assuming no measurement

noise, we first present a novel encoding algorithm (block ENC in Figure 1.1) and further
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develop decoding rules to resolve the decoding errors that may be caused by measurement

noise or parameter mismatches. It should be noted that the decoding and the localization

are conducted at the fusion node. As an example throughout this thesis, we consider a

system where an acoustic amplitude sensor model is employed at each sensor. In each

chapter, simulations are conducted to characterize the performance of our algorithms.

Concluding remarks are given in Chapter 5.
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Chapter 2

Quantizer Design

2.1 Introduction

In this chapter, we address a quantizer optimization problem where the goal is to design

independent quantizers which operate on their sensor readings while they should minimize

the localization error which depends upon all sensor readings. Instead of solving directly

the problem by exhaustive search, we propose a distributed quantizer design algorithm

which allows us to obtain independent quantizers by reducing the localization error in

an iterative manner [6]. Similar procedures have been proposed for vector quantizer

designs [21, 32]. We show that our iterative technique achieves performance close to the

exhaustive search among independent quantizers.

We also address the rate allocation problem. We are given a total rate and each sensor

is assigned additional rate iteratively until the total rate is fully allotted. To solve the

problem we apply the generalized BFOS algorithm (GBFOS [28]) which requires calcu-

lation of Rate-Distortion (R-D) points for each candidate rate allocation. In addition,

since power consumption due to rate transmission to the fusion node is proportional to
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the distance between each sensor and the fusion node, the same rate at different sensors

may lead to different power consumption. With this consideration, we also view the

problem as a rate allocation under power constraints where the goal is to achieve optimal

localization accuracy for a given power consumption. Note that the GBFOS algorithm

allows us to choose the best rate allocation (R) that minimizes the localization error (D)

computed using the quantized sensor readings, which are generated from any given set of

quantizers designed for each candidate rate allocation. Thus, better rate allocation can

be achieved if better quantizers have been employed at each sensor.

While the proposed quantizer design algorithm allows us to obtain good quantizers

for each rate allocation, having to redesign the quantizers for each iteration of the rate

allocation process would be computationally complex1. To avoid having to redesign

quantizers at each iteration, we introduce “geometry-driven” quantizers, which are simple

to implement and show good performance [16,18].

In the experiments, we consider the acoustic amplitude sensor system (see [16–18]).

Extensive simulations have been conducted to characterize the performance of our algo-

rithm. Our experiments show the improved performance of our quantizers over traditional

quantizers such as uniform quantizers and Lloyd quantizers. We also perform the rate

allocation with several quantization schemes such as uniform quantizers, geometry-driven

quantizers and the proposed quantizers. In the experiments, our rate allocation optimized
1Note that in some cases rate allocation and quantizer design can be done off-line, e.g., when the

number and position of the sensors does not change, but that in many cases of interest the sensor network
could be reconfigured regularly, e.g., some subsets of sensors would be activated, which would require
on-line rate selection. In these latter cases, a low complexity rate allocation technique would be very
important.
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for source localization allowed us to achieve over 60% rate savings in some cases as com-

pared to a uniform rate allocation, with no loss in localization accuracy.

This chapter is organized as follows. The problem formulation of the quantizer design

is given in Section 2.2. An iterative quantizer design algorithm is proposed in Section 2.3

and the rate allocation using the GBFOS algorithm is described in Section 2.4. In Sec-

tion 2.5, we present an application to the case where an acoustic amplitude sensor model

is employed. Simulation results are given in Section 2.6 and the conclusions are found in

Section 2.7.

2.2 Problem Formulation

Within the sensor field S of interest, assume there are M sensors located at known

spatial locations, denoted xi, i = 1, ..., M , where xi ∈ S ⊂ R2. The sensors measure

signals generated by a source located at an unknown location x ∈ S, which we assume to

be static during the localization process2. Denote zi the measurement at the i-th sensor

over a time interval k:

zi(x, k) = f(x,xi,Pi) + wi(k) ∀i = 1, ..., M, (2.1)

where f(x,xi,Pi) denotes the sensor model 3 employed at sensor i and wi is a combined

noise term that includes both measurement noise and modeling error. Pi is the parameter

vector for the sensor model (an example of Pi for an acoustic amplitude sensor case is
2Obviously, our proposed techniques can be readily extended to the case where the source is moving

and estimates of its location are computed independently at each time. Tracking algorithms that would
exploit the spatial correlation of the source location go beyond the scope of this work.

3The sensor models for acoustic amplitude sensors and DOA sensors can be expressed in this form [22].
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given in Section 2.5.1). It is assumed that each sensor measures its observation zi(x, k)

at time interval k, quantizes it and sends it to a fusion node, where all sensor readings

are used to obtain an estimate x̂ of the source location.4

At sensor i we use a Ri-bit quantizer with a dynamic range [zi,min zi,max]. We

assume that the quantization range can be selected for each sensor based on desirable

properties of their respective sensing ranges. This will be illustrated in Section 2.5.2 with

an example in the case of an acoustic amplitude sensor. Denote αi(·) the encoder at

sensor i, which generates a quantization index Qi ∈ Ii = {1, . . . 2Ri}. In what follows,

Qi will also be used to denote the quantization bin to which measurement zi belongs.

Denote βi(·) the decoder corresponding to sensor i, which maps the quantization index

Qi to a reconstructed quantized measurement ẑi.

Both this formulation and the subsequent design methodology are general and capture

many scenarios of practical interest. For example, zi(x, k) could be the energy captured

by an acoustic amplitude sensor (this will be the case study presented in Section 2.5), but

it could also be a DOA measurement.5 Each scenario will obviously lead to a different

sensor model f(x,xi,Pi). We assume that the fusion node needs observations, zi(x, k),

from all sensors in order to estimate the source location. In some cases one reading

per sensor is used, while in other cases values of zi(x, k) for several k’s are needed for

localization. While multiple measurements can be made at each sensor, all individual

measurements need not be sent. Instead, each sensor can compute a sufficient statistic
4In this thesis, we assume that M sensors are activated prior to the localization process. However,

selecting the best set of sensors for the localization accuracy would be important to improve the the
system performance with limited energy budget [13,38].

5In the DOA case each measurement at a given sensor location will be provided by an array of collocated
sensors.
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for localization from the multiple measurements, which can then be quantized and trans-

mitted. For example, considering the case where the source is not moving and multiple

source signal energy measurements are made, it can be easily shown that the average of

the measurements at each sensor is a sufficient statistic for localization. Thus each sensor

would simply quantize and transmit the average of its signal energy measurements. In

what follows we discuss the design of a complete localization system, including i) source

localization techniques that operate on quantized data, ii) quantizer design for localiza-

tion, and iii) an algorithm to select the quantizer to use at each sensor.

2.2.1 Location Estimation based on Quantized Data

Clearly, for zi(x, k) to be useful for localization it must be a function of the relative

positions of the source and the sensor. Thus, there exists some function gu(·) that can

provide an estimate of the source location x̂ based on the original, unquantized, obser-

vations; these estimators have been the focus of most of the literature to date, for both

sensor networks and other source localization scenarios. Instead, here our goal is to design

both quantizers αi and the corresponding estimators g(·) that operate on quantized data

to estimate the source location x̂:

x̂ = g(α1(z1), ..., αM (zM )). (2.2)

While specific g(·) choices depend on the sensor model f(·), we can sketch some of their

general properties (more details for a specific sensor model can be found in Section 2.5.1).

First, zi(x, k) must provide information (distance, angle, etc) about the relative position
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of sensor and source. Thus, after quantization, each transmitted symbol will represent

a range of positions (e.g., a range of distances from the sensor or an angular range).

Second, with information obtained from all sensors, the source localization algorithm

exploits the range information corresponding to each quantized symbol, Qi. This is in

general better than reconstructing ẑi and then using reconstructed sensor information

within a standard estimator, gu(·). That is, an optimal estimator, g(·), should be a

function of range information rather than reconstructed values.

In Section 2.5.1 we provide concrete examples for acoustic amplitude sensors in the

noiseless case, and our more recent work [17] explores improved estimators that take into

account the noise. In both cases, we derive optimal estimators in the minimum mean

square error (MMSE) sense that make use of the range information, rather than the

reconstructed values.

2.2.2 Criteria for Quantizer Optimization

We now consider, for a given rate allocated to each sensor, R = [R1, ..., RM ], the prob-

lem of designing the scalar quantizers that can achieve maximum localization accuracy.

Assume the sensor model, f(x,xi,Pi), and source localization function, g(·), are given.

We define a cost function J(x) for the quantizer design as follows:

J(x) =
M∑

i

|zi − ẑi|2 + λ ‖ x− x̂ ‖2, ∀x ∈ S, (2.3)

where ẑi is the reconstructed value assigned to zi and x̂ is the estimated source location

using a localization function g(·) that will also have to be designed. Note that the cost
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function is a weighted sum of i) the standard mean squared error (MSE) in representing

the sensor readings and ii) the localization error, ‖ x − x̂ ‖2. The Lagrange multiplier,

λ ≥ 0, controls the relative weight of these two cost metrics, so that when setting λ = 0,

the problem of minimizing J(x) becomes a standard quantizer design problem. Clearly,

for the localization problem we address in this work, we could choose λ = ∞ since the

goal is to design quantizers that minimize the localization error, ‖x − x̂‖2 regardless of

the MSE, |zi − ẑj
i |2.

However, in this chapter, we address the quantizer optimization problem using the

weighted metric with a given λ 6= 0. This approach is chosen in order to limit the

complexity of the quantizer design as will be described in what follows.

Recall that in our formulation we are designing scalar quantizers. Assume we are

given a set of scalar quantizers, one for each sensor, and we seek to encode an observation

in a way that minimizes the localization error. The key point to note is that the estimated

location x̂ is based on all the quantized readings. Then, localization optimized encoding

will in fact depend on the observations made at all the sensors. Thus it is likely that, in

order to optimize localization, an observation zi at sensor i will be assigned to different

quantization bins depending on the observations at other sensors zj for j 6= i. Such an

unconstrained encoder would achieve optimality in terms of localization but could only

be used if there is information exchange between sensors, which has been precluded in

our formulation because of the communication overhead it entails.

Instead we need to design a set of scalar quantizers that are constrained, in the sense

that a given observation zi is always assigned to the same quantization index, no matter

what the other sensor readings are. These are just standard scalar quantizers that apply
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decision rules based on distance to encode zi. Our goal is then to find the best scalar

quantizer assignment by searching the set of all possible constrained quantizers.

Solving directly the problem (i.e., searching only among constrained quantizers) would

require an exhaustive search and is not practical in general. Instead we will use iterative

design techniques for a given λ 6= 0 in (2.3) where we allow unconstrained quantizers to be

used. Within the design algorithm, mechanisms are then used to constraint the resulting

quantizers. Essentially, this means that quantizers are designed so encoders minimize the

metric of (2.3) with λ 6= 0, but are then approximated by encoders that operate based on

λ = 0, as required for the real system (localization information is not known at the time

of encoding).

While there will be a loss in localization performance relative to using unconstrained

quantization, we will show examples to illustrate that our iterative techniques can achieve

performance very close to exhaustive search among constrained quantizers.

2.3 Quantizer Design Algorithm

The goal of our quantizer design algorithm is to minimize the expected value of the cost

function6 in (2.3) where we average over all possible source locations, characterized by a

probability density function p(x):

Javg = E(J(x)) =
∫

S
J(x)p(x)dx. (2.4)

6For source localization, the cost function J(x) is replaced by the localization error ‖ x− x̂ ‖2.
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If no prior information is available about the relative likelihood of possible source

locations, p(x) can be made uniform over the sensor field. For the purpose of training

our quantizer, we generate a training set of observations {z1(x, k), ..., zM (x, k)} based on

the sensor model, f(x,xi,Pi), with a given choice of p(x). Quantizer design is optimized

for the known sensor locations and the given bit allocation. The optimal bit allocation

will be discussed in Section 2.4.

In what follows we first explain the iterative optimization algorithm for the weighted

metric with a given λ, then propose an iterative algorithm that allows us to consider

unconstrained quantizers for quantizer design and finally we discuss convergence and

stopping criteria for our algorithm.

2.3.1 Iterative Optimization Algorithm

The cost function J(x) can then be rewritten in terms of the M quantizers and localization

function g(·)

J(x) =
M∑

i

|zi − βi(αi(zi))|2 +

λ ‖ x− g(α1(z1(x, k)), ..., αM (zM (x, k))) ‖2 . (2.5)

We propose an iterative solution to search for αi(·), βi(·), g(·), i = 1, ..., M that minimizes

Javg given by (2.4). For each sensor i we optimize the quantizer selection, while quantizers

for the other sensors remain unchanged. This is done successively for each sensor and

repeated over all sensors until a stopping criterion is satisfied. Similar iterative procedures

have been proposed for constrained product VQ design [32] and for entropy constrained
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mean gain shape VQ [21]. Furthermore, in designing quantizers at each sensor, with the

other quantizers fixed, we take the approach in [6]. That is, at sensor i with βi(·) and

g(·) fixed, αi(·) is designed to minimize Javg(αi(·), βi(·), g(·), i = 1, ..., M) = Javg(αi(·)).

Similarly, βi(·) (or g(·)) is designed with αi(·) and g(·) (or αi(·) and βi(·)) fixed. If

optimal solutions for each of these steps can be found, then this method guarantees

that Javg(αi(·), βi(·), g(·)) is nonincreasing at each step, thus leading to at least a locally

optimal solution. We now describe solutions for each of these problems.

First, fix βi(·) and g(·). The optimal encoder α∗i (·) that minimizes (2.5) (or equiva-

lently, (2.4)) is such that:

α∗i (·) = arg min
αi(·)

∫

x∈S
[|zi − βi(αi(x))|2 + λ ‖ x− g(αi(x)) ‖2]p(x)dx. (2.6)

Note that only the i-th MSE, |zi− ẑi|2 and the localization error ‖x− x̂‖2 are affected by

the selection of α∗i (·), i.e., all the other MSE terms are unchanged. Clearly, exhaustive

search over all αi(·)’s (with βi(·) and g(·) fixed), guarantees that the overall cost would

be non-increasing. This will be impractical, especially for high rates, but we will use such

an exhaustive search in Section 2.6.1.2 to serve as a benchmark to evaluate the simpler

techniques we propose in Section 2.3.2.

With αi(·) and g(·) fixed, the decoder β∗i (·) that minimizes (2.5) is simply the centroid

of all zi assigned to a specific quantization bin Qj
i for the i-th sensor7, i.e.,

β∗i (Qj
i ) = E[zi(x)|x ∈ {x|αi(x) = Qj

i}], j = 1, ..., Li,∀i (2.7)

7note that β∗i (·) only affects the MSE cost, since the localization estimate, x̂, is based on the quanti-
zation intervals.
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Finally, given αi(·) and βi(·), we can determine g∗(·) that minimizes (2.5) as follows:

g∗(·) = arg min
g(·)

∫

x∈S
‖ x− g(αi(x)) ‖2 p(x)dx = arg min

g(·)
E[‖ x− x̂ ‖2] (2.8)

Notice that the average localization error can be minimized by g∗(·) = E[x|α1(x), ..., αM (x)]

which is the minimum mean square error (MMSE) estimator obtained given M encoders.

In summary, in our proposed iterative procedure two of the design steps can be solved

optimally, while the remaining one (designing αi(·)) can also be solved optimally, but

would require an exhaustive search. It can be easily shown that for a given sensor each

step in the optimization reduces overall cost and so the algorithm will converge to a

minimum for the metric of (2.4). Moreover, when quantization for a sensor is optimized,

the MSE of the other sensors is not affected, so that again overall cost is reduced. Thus

a locally optimal solution can be found using this procedure. We next explain how an

efficient constrained design for αi can be obtained without requiring exhaustive search.

2.3.2 Constrained Design Algorithm

Suppose that at sensor i, we are given an encoder αi = {Qj
i ; j = 1, ..., Li} with Li = 2Ri

quantization levels. A partition Vi = {V j
i ; j = 1, ..., Li} analogous to the Voronoi partition

in the generalized Lloyd algorithm is constructed as follows:8

V j
i = {x : J(x, αi = Qj

i ) ≤ J(x, αi = Qm
i ), ∀m 6= j} j = 1, ..., Li (2.9)

8In the standard quantization (λ = 0), the Voronoi partition Vi is equivalent to the encoder αi.
That is, V j

i is the same region as the j-th quantization bin Qj
i and given by V j

i = {zi| |zi − ẑj
i |2 ≤

|zi − ẑm
i |2, ∀m 6= j}.
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where the cost function is computed using β∗i and g∗(·) which are obtained from (2.7)

and (2.8) respectively. Notice that V j
i is a set of source locations that minimizes the cost

function as mapped to Qj
i . Then the average cost function Javg given in (2.4) can be

computed using Vi as follows:

Javg(αi, Vi) =
Li∑

j=1

E(J(x, αi)|x ∈ V j
i )p(x ∈ V j

i ) (2.10)

Javg can be reduced by minimizing it for each V j
i . As in the standard quantization

(λ = 0), we perform the minimization over ẑj
i for each V j

i which will be achieved by

taking the centroid, E(zi(x)|x ∈ V j
i ). Formally,

Javg(αi, Vi) ≥
Li∑

j=1

min
ẑj
i

E(|zi(x)− ẑj
i |2 + λ‖x− g∗(αi)‖2|x ∈ V j

i )p(x ∈ V j
i )

= Javg(αi, β
∗
i (Vi), Vi) (2.11)

where β∗i (Vi) produces the reconstructed values, ẑj
i , j = 1, ..., Li by taking the centroid

over {zi(x)|x ∈ V j
i }. It is noted that the encoding of sensor readings corresponding

to Vi in (2.9) is unconstrained since it requires knowledge of other sensor readings for

encoding. Thus, the unconstrained encoder should be changed into the corresponding

constrained one which in turn will be used for construction of Vi at the next iteration.

In our algorithm, we adopt a simple distance measure to obtain constrained encoders.

We first find the centroid of each V j
i obtained from (2.9) and then use these centroids to

create a quantization partition, i.e., a quantization bin Qj
i includes all inputs assigned to

the centroid of V j
i using the nearest neighbor rule:
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Qj
i = {zi| |zi − ẑj

i |2 ≤ |zi − ẑm
i |2, ∀m 6= j} (2.12)

where {ẑj
i |j = 1, ..., Li} generated from β∗i (Vi).

It should be noticed that the encoder α̂i = {Qj
i ; j = 1, ..., Li} updated by (2.12) would

not guarantee that the metric Javg is nonincreasing since the encoder α̂i is updated in a

sense that only the first term |zi− ẑj
i |2 is minimized. That is, α̂i may increase the second

term ‖x− x̂‖2 = ‖x− g∗(α̂i)‖2 in Javg. The procedure of (2.9) to (2.12) will be repeated

at each sensor until a certain stopping criterion is satisfied.

2.3.3 Convergence and stopping criteria

The challenge for achieving convergence is that we need the unconstrained quantizers

to minimize the metric with nonzero values of λ while they should be replaced by the

constrained ones which are not guaranteed to minimize the metric.9 As in the standard

quantization (λ = 0), we can seek to find the largest value λmax for λ that leads directly

to constrained encoding of sensor readings in order to guarantee convergence.

However, we observe that λmax tends to be very small and leads to localization errors

that are greater than those achieved by first designing unconstrained quantizers and then

forcing them to be constrained. This is not surprising since we design quantizers with

small λ while the localization error is minimized when λ = ∞.10

9We can do exhaustive search at each iteration to obtain the constrained quantizers that minimize the
metric in order to guarantee the convergence but it would be too computationally expensive in practice.

10For some applications where the local metric (e.g., |zi − ẑj
i |2) and the global metric (e.g., ‖x− x̂‖2)

are important, we should be able to find λ to maximize the application objective. For such cases, some
techniques need to be developed to search for a reasonable λ.
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In order to avoid increase in the metric at each iteration by (2.12), we suggest to use

a simple stopping criterion which forces the algorithm to stop whenever the metric gets

worse. This simple stopping rule would be efficient for the design of distributed quantizers

for source localization since other quantizers are also designed so as to reduce the same

metric, ‖x− x̂‖2 and when the design process goes back again to say, i-th quantizer, the

metric recomputed at sensor i tends to get better than the previous iteration, making the

algorithm continue to work. At least with this stopping criterion, we can guarantee that

the metric is nonincreasing.

Despite the fact that Javg is not always nonincreasing due to (2.12), we can expect that

the updated encoder α̂i will reduce the metric for most of iterations since it is updated

based on the partition Vi which is constructed in a sense that the metric is minimized.

As an example, we experiment with our quantizers for the acoustic amplitude sensor

case in Section 2.6.1.1 where the algorithm is shown to produce a good solution on

the average as compared with typical quantizers such as uniform quantizer and Lloyd

quantizers. Our quantizers are also shown to achieve performance close to that of the

optimized quantizers designed using the exhaustive search explained in Section 2.6.1.2.

2.3.4 Summary of algorithm

Given the number of quantization levels, Li = 2Ri , at sensor i, the algorithm is summa-

rized as follows.11

Algorithm 1 For simplicity, in what follows, zi(x, k) is written as zi(x).

Step1 : Initialize the encoders αi(·), i = 1, ..., M . Set thresholds ε1 and ε2, set i = 1, and
11Our algorithm can be applied for arbitrary integer, Li, and not only those values corresponding to

integer Ri.
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set iteration indices κ1 = 1 and κ2 = 1.

Step2 : Compute the cost function of (2.5).

Step3 : Construct the partition, Vi using (2.9).

Step4 : Compute the average cost Jκ1
avg = E[J(x)]

Step5 : If (J
κ1−1
avg −J

κ1
avg)

J
κ1
avg

< ε1 go to Step 7; otherwise continue

Step6 : κ1 = κ1 + 1. Update the encoder αi using (2.12). Go to Step 2

Step7 : if i < M i = i + 1 go to step 2;

else if Dκ2−1(x,x̂)−Dκ2 (x,x̂)
Dκ2 (x,x̂) < ε2 Stop;

else i = 1;κ2 = κ2 + 1; Go to Step 2,

where Dκ2(x, x̂) is given by E(‖ x− x̂ ‖2) at the κ2-th iteration.

Note that the quantizer design is performed off-line using a training set that is gen-

erated based on known values of Pi and p(x); thus the quantizer training phase makes

use of information about all sensors, but when the resulting quantizers are actually used,

each sensor quantizes the information available to it independently.

It is possible to introduce “geometry-driven” quantizers: for the amplitude sensor

case, these quantizers are designed so as to partition uniformly the distance between

sensors and source (see Section 2.5.3). Similar ideas can be applied to DOA sensors,

where quantizers provide uniform quantization of the angle of arrival. In Section 2.6,

these quantizers are shown to be simple and achieve good performance as compared

with the proposed quantizers. A discussion of the robustness of our quantizer to model

mismatches is also left for Section 2.6.
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2.4 Rate Allocation using GBFOS

With the proposed cost function we can design quantizers for a given rate allocation (bits

assigned to each sensor). The next step is then to search for the rate allocation, R∗, that

minimizes the average localization error, i.e., D =
∫
x∈S ‖x− x̂‖2p(x)dx for a given total

rate RT =
∑M

i Ri.

A more general problem formulation can take into consideration transmission costs,

e.g., the power consumption in the network required to transmit bits to the fusion node.

This power consumption will depend on the bits allocated to specific sensors and also

on the distance between these sensors and the fusion node. Thus, we can address the

rate allocation problem under power constraints as follows: we are given a total power,

P =
∑M

i Pi, Pi = CiRi where Ci is the power required for sensor i to transmit one bit

to the fusion node, xf ; Thus Pi provides an approximation to the power consumption

at sensor i. Our goal is then to find the rate allocation R∗ that minimizes the average

localization error for a given total power. Clearly, Ci is proportional to the physical

distance between xi and xf and thus once the sensors are deployed in a sensor field, it

can be determined prior to the rate allocation12. Notice that only the relative values of

Ci’s will play a role in this rate allocation process.

To solve the rate allocation problem for source localization, we can apply the well-

known generalized BFOS algorithm (GBFOS) [28] to obtain R∗. The algorithm typically

starts by assigning the given maximum rate, RT to each sensor and then reduces the

number of bits optimally until the rate budget is met. Initially, Ri = RT , i = 1, ..., M

12Ci can be written as Ci = γi ‖ xf − xi ‖αs where αs is the exponent for path-loss and γi reflects
transmission method and other factors [39]; in this chapter γi is assumed to be equal for all sensors and
thus ignored for simplicity.
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and at each iteration we reduce the rate allocated to one of the sensors by computing

alternative rate-distortion (R-D) operating points for each candidate rate allocation and

choosing the one that minimizes the slope of the R-D curve. Note that as the bit rate is

reduced, the distortion (localization error) at each sensor will decrease at different rates

(equivalently, slope) in the R-D curve. This procedure guarantees the optimal reduction

in bit rate at each iteration. This is done repeatedly until
∑M

i Ri = RT is satisfied.

Formally, at the η-th iteration,

iη = arg min
1≤i≤M

Di(η)−D(η − 1)
∆Rη

i

(2.13)

where D(η − 1) is the average localization error at the previous step, Di(η) =
∫
x∈S ‖x−

x̂i(η)‖2p(x)dx, x̂i(η) is computed using g(·) and M quantizers are designed for Ri =

(Rη
1 = Rη−1

1 , ..., Rη
i = Rη−1

i −∆Rη
i , ..., R

η
M = Rη−1

M ).

Note that for each candidate rate allocation, we may design quantizers using the

algorithm in Section 2.3.4 to achieve good rate allocation performance13 or we can use

simple quantization schemes that do not require redesigning quantizers at each iteration.

For example, we can use M uniform quantizers (or the “geometry-driven” quantizers

to be introduced later) for the purpose of obtaining the rate allocation. Then, once an

optimal rate allocation is obtained, a better set of quantizers can be designed for that rate

using the algorithm in Section 2.3.4. Our experiments in Section 2.6 illustrate the impact

of using different quantization schemes on the rate allocation performance. That is, it
13The rate allocation problem would be one of the applications where we can obtain benefits from using

our quantizer design algorithm.
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can be said that a significant gain can be achieved by taking into account quantization

scheme during the rate allocation process.

The GBFOS algorithm can be also applied to the rate allocation problem under power

constraints. In this case, at each step, we decrease the power consumed by individual

sensors by reducing the bit rate assigned to them until
∑

i CiRi = P is satisfied. That

is, the same process as in the previous rate allocation will be performed except that the

computation of the slope is conducted in terms of the power consumption so that at the

η-th iteration,

iη = arg min
1≤i≤M

Di(η)−D(η − 1)
∆P η

i

(2.14)

where ∆P η
i = Ci∆Rη

i .

2.5 Application to Acoustic Amplitude Sensor Case

2.5.1 Source localization using quantized sensor readings

Assuming no measurement noise (wi = 0 in (2.1)), we consider source localization based

on quantized data. Note that the localization algorithm to be explained in this section

is designed for the high SNR regime (wi ≈ 0) but will also provide the foundation for

localization based on noisy quantized data (see [17], and Chapter 3). Since each quan-

tized sensor reading corresponds to a region where a source is located, all quantized

sensor readings lead to a partition of a sensor field obtained by intersecting the regions

corresponding to each sensor reading. Formally,

A =
M⋂

i=i

Ai, Ai = {x|f(x,xi,Pi) ∈ Qi, x ∈ S} (2.15)
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where Ai is the region corresponding to the quantized reading from sensor i. Once the

intersection region A is obtained, we can compute the estimate as x̂ = E(x|x ∈ A). Notice

that the estimator is optimal in MMSE sense under the assumption of no measurement

noise.

As an example, we consider source localization based on acoustic sensor readings

as proposed in [19], where an energy decay model of sensor signal readings is used for

localization based on unquantized sensor readings.14 This model is based on the fact that

the acoustic energy emitted omnidirectionally from a sound source will attenuate at a

rate that is inversely proportional to the square of the distance [27]. When an acoustic

sensor is employed at each sensor, the signal energy measured at sensor i over a given

time interval k, and denoted by zi, can be expressed as follows:

zi(x, k) = gi
a

‖x− xi‖α
+ wi(k), (2.16)

where the parameter vector Pi in (2.1) consists of the gain factor of the i-th sensor gi, an

energy decay factor α, which is approximately equal to 2, and the source signal energy

a. The measurement noise term wi(k) can be approximated using a normal distribution,

N(0, σ2
i ). In (2.16), it is assumed that the signal energy, a, is uniformly distributed over

the range [amin amax].

Assuming that the signal energy, a, is known,15 localization based on quantized sensor

readings can be illustrated by Figure 2.1, where each ring-shaped area corresponds to one

quantized observation at a sensor. By computing the intersection of all the ring areas (one
14The energy decay model was verified by the field experiment in [19] and was also used in [11,17,22].
15In practice, the signal energy is unknown and should be jointly estimated along with the source

location as described in [17] and in Chapter 3.
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shaped areas

Figure 2.1: Localization of the source based on quantized energy readings

per sensor), it is possible to define the area where the source is expected to be located.

Note that at least three observations are required to achieve a connected intersection and

the region Ai in (2.15) can be rewritten as follows:

Ai = {x : gi
a

‖x− xi‖α
∈ Qi}

x̂ = E(x|x ∈
M⋂

i

Ai), (2.17)

where Ai is the ring-shaped region obtained from the quantized bin Qi that zi falls into

(Figure 2.1). If the source is uniformly distributed in the sensor field, the estimate, x̂

would be the sample mean in the intersection A. Clearly, x̂ is the MMSE estimator under

the assumption of known energy and no measurement noise.

A similar approach can be applied to the DOA sensor case where each quantized

sensor reading leads to a cone-shaped region and the localization will be performed by

computing the intersection of the corresponding regions.
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2.5.2 Quantizer design

In quantizer design, we generate the training set assuming that the signal energy a is

known and wi = 0. Notice that M quantizers (α1, ..., αM ) are designed by reducing the

metric, J(αi, β
∗
i , g∗(·)) with λ = ∞ at each iteration where β∗i and g∗(·) are given by

(2.7) and (2.17), respectively. However, since the signal energy is generally unknown, the

sensitivity to mismatches in signal energy will be studied in Chapter 3, where localization

algorithms will be developed to handle measurement noise and unknown signal energy.

Since the signal energy takes any value in the range [amin amax] in real situations,

quantizers should be designed to avoid quantizer overload by setting the dynamic ranges

of the M quantizers as [zi,min zi,max] = [ amin

r2
i,max

amax

r2
i,min

] where [ri,min ri,max] is the range

within which the i-th sensor is supposed to measure acoustic source energy. The value

of ri,max can be set such that the probability that an arbitrary point inside the sensor

field is sensed simultaneously by at least 3 sensors should be close to 1 [41]. Assuming

that the distribution of the number of sensors in any given circle with area Cd = πr2
d is

Poisson with rate λdCd where λd is the sensor density (sensors/m2), the probability p is

then given by

p =
∞∑

i=3

e−λdπr2
d(λdπr2

d)
i

i!
(2.18)

Given λd, we can compute ri,max(≥ rd) for a desirable value of p (say, 0.999). In this way,

the likelihood of missing a source is minimized. In order to guarantee that finite dynamic

ranges are used, the value of ri,min is chosen as a small nonzero value (0.2 ≤ ri,min ≤

1.0m). Note that if more sensors are used, better quantization in each sensor is possible
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(the dynamic ranges will tend to be smaller). With this initialization step, the quantizer

design as outlined in Section 2.3.4 can be used.

2.5.3 Geometry-Driven Quantizers: Equally Distance-divided Quantizers

Since each set of quantizers induces a partitioning of the sensor field, designing good

quantizers for localization can be seen to be equivalent to making a good partition of

the sensor field by adjusting the width, ∆ri(ri), of the ring-shaped areas in Figure 1.

If no prior information is available about the source location, p(x) can be assumed to

be uniform and thus choosing ∆ri(ri) to achieve a uniform partitioning of the sensor

field would seem to be a good choice. Intuitively, a uniform partitioning of the sensor

field is more likely to be achieved when the ring-shaped areas have the same width,

∆ri(ri) = const (this is certainly the case when the sensors are uniformly distributed).

This consideration leads us to introduce equally distance-divided quantizers (EDQ), which

can be viewed as uniform quantizers in distance such that ∆ri(ri) = ri,max−ri,min

Li
, ∀i.

That is, EDQ allows each sensor to quantize the signal intensity such that the rings have

equal width. To justify the EDQ design, we performed a simulation (see Figure 2.5)

that shows that EDQ provides good localization performance, which comes close to that

achievable by the quantizers proposed in Section 2.3.4. EDQ has the added advantage of

facilitating the solution of the rate allocation problem. While the GBFOS algorithm [28]

provides the optimal rate allocation, it would also require very large computational load,

since it relies on the calculation of rate-distortion points at each iteration step, and the

quantizers should be redesigned using the algorithm of Section 2.3.4 for each candidate

rate allocation. Instead, in our experiments we use the GBFOS algorithm along with
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EDQ, which does not require quantizer redesign for each candidate rate allocation. With

this approach one can use EDQ to compute easily the optimal rate allocation for the

particular sensor configuration, and then use the technique proposed in Section 2.3.4 to

design a quantizer for the given optimal rate allocation.

2.6 Simulation Results

In our experiments, we denote localization-specific quantizer (LSQ) the quantizer designed

using the algorithm proposed in Section 2.3.4 and assume that each sensor uses the same

dynamic range with ri,min = 1m and ri,max = rd (see Section 2.5.2 for details of the

dynamic range) for all quantizers (uniform quantizer, Lloyd quantizer, EDQ and LSQ).

2.6.1 Quantizer design

We design LSQs using a training set including 1500 source locations generated with a

uniform distribution in a sensor field of size 10 × 10m2, where M = 3, 4, 5 sensors are

randomly located. In these experiments, the cost function is given by J =‖ x − x̂ ‖2

(equivalently, λ = ∞ in (2.3)) and the model parameters are a = 50, α = 2, gi = 1 and

σ2
i = 0. Note that Lloyd quantizers are designed with λ = 0 in (2.3). We evaluate the

results in terms of the average localization error, E(‖ x− x̂ ‖2) computed by (2.17).

2.6.1.1 Comparison with traditional quantizers

In Figure 2.2, LSQ is compared with traditional quantizers such as uniform quantizers and

Lloyd quantizers in terms of the average localization error. In this experiment, 500 differ-

ent sensor configurations are generated for M = 3, 4, 5, and for each configuration LSQs
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are designed for Ri = 2, 3, 4. The 95% confidence interval for the localization error is also

plotted to show the robustness of LSQ to the sensor configuration. It can be noted that

LSQ is more robust than traditional quantizers, since the sensor configuration is already

taken into account in the LSQ design. In contrast, the other quantizers are designed with-

out considering sensor location information. Because of this, they may perform poorly in

certain sensor configurations, thus leading to greater variance in localization error than

with LSQ.

2 2.5 3 3.5 4
0

5

10

15

Number of bits at each sensor, M=5

A
ve

ra
ge

 lo
ca

liz
at

io
n 

er
ro

r 
(m

2 )

Uniform Q

Lloyd Q

LSQ

3 3.5 4 4.5 5
0

5

10

15

Number of sensors involved, R
i
=3

A
ve

ra
ge

 lo
ca

liz
at

io
n 

er
ro

r 
(m

2 ) Uniform Q

Lloyd Q

LSQ

Figure 2.2: Comparison of LSQs with uniform quantizers and Lloyd quantizers. The
average localization error is plotted vs. the number of bits, Ri, assigned to each sensor.
The average localization error is given by 1

500

∑500
l El(‖x− x̂‖2) where El is the average

localization error for the l-th sensor configuration. 2000 source locations are generated
as a test set with uniform distribution of a source location.

Since LSQ makes full use of the distributed property of the observations, it can be seen

to provide improved performance over traditional quantizers. This can be also explained

in terms of the partitioning of the sensor field, as shown in Figures 2.3 and 2.4. As

expected, the ring-shaped areas for uniform quantizers are hardly overlapped, yielding
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the worst partitioning of a sensor field, since most quantization bins are mapped into

regions close to the sensors by the relation, zi ∝ 1
r2
i

= 1
‖x−xi‖2 . It is also easily seen that

LSQ leads to a more uniform partitioning, which in turn reduces the localization error.
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Figure 2.3: Partitioning of sensor field (10×10m2) (grid= 0.2×0.2) by uniform quantizer
(left) and Lloyd quantizer (right). 5 sensors are deployed with 2-bit quantizers. Each
partition corresponds to the intersection region of 5 ring-shaped areas. More partitions
yield better localization accuracy.
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Figure 2.4: Partitioning of sensor field (10× 10m2) (grid= 0.2× 0.2) by EDQ (left) and
LSQ (right). 5 sensors are deployed with 2-bit quantizers. Each partition corresponds to
the intersection region of 5 ring-shaped areas.
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2.6.1.2 Comparison with optimized quantizers

LSQs are also compared to optimized quantizers which are designed by an exhaustive

search. In this experiment, since the computational complexity required to search for

α∗i in (2.6) is very high, we make some approximations to curtail the search size. That

is, each encoder, α∗i is designed based on two different methods which approximate the

exhaustive search.

• Method 1: first, we search over αi which are constructed with a coarse grid ∆c =

zi,max−zi,min

Ns
where Ns determines the size of the set {αi} computed by Ns!

(Li−1)!(Ns−Li+1)! .

Once we obtain the encoder with ∆c, we observe that the boundary values that de-

termine quantization bins are located in the subinterval, [zi,min zh
i ], zh

i ¿ zi,max.

Thus, we search using a fine grid, ∆f = |zh
i −zi,min|

Ns
, ∆f ¿ ∆c with reduced com-

plexity to find the encoder that minimizes the metric given by (2.6).

• Method 2: instead of searching with a fixed grid size, we consider a variable grid

size that allows us to search with finer grid over the encoders that show good per-

formance. That is, by using the grid ∆r = ri,max−ri,min

Nr
, we can construct candidate

encoders with their quantization bins that uniformly divide the sensor field (for

further details, see EDQ in Section 2.5.3). It is noted that the search grid mapped

from ∆r becomes smaller toward zi,min and larger toward zi,max.

For the same sensor configuration of Figure 2.4, the optimized quantizers are designed

with Ri = 2 and tested for comparison. The number of partitions and the localization er-

ror are tabulated for several quantizers in Table 2.1. OPT Q1 and OPT Q2 correspond to

the quantizers designed using Method 1 and Method 2, respectively. For comparison, the
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search grids for the optimized quantizers are determined such that the search complexity

for them is almost the same. Note that more partitions tend to yield better localization

accuracy. It can be seen that LSQ achieves performance close to the optimized ones, both

in terms of average localization error and in number of partitions.

Table 2.1: Comparison of LSQs with Optimized quantizers. The average localization
error are computed using a test set of 2000 source locations.

Quantizer Type Uniform Q Lloyd Q LSQ OPT Q1 OPT Q2
Number of partitions 36 55 132 140 142

Avg. Localization error 11.1172 6.0463 0.3758 0.3088 0.3001

2.6.1.3 Sensitivity to parameter perturbation

LSQ was evaluated under various types of mismatch conditions for 100 different 5-sensor

configurations. In each test we modified one of the parameters with respect to what was

assumed during quantizer training. The simulation results are tabulated in Table 2.2.

In this experiment, 1000 source locations in a sensor field 10 × 10m2 were generated

under assumptions of both a uniform distribution and a normal distribution for each

configuration. We assume that the true parameters can be estimated at the fusion node

and used for localization. Note that our localization algorithms are not very sensitive

to parameter mismatches (see [17] and Chapter 3). Thus, small errors in estimating

parameters at the fusion node from received quantized data do not lead to significant

localization errors.

As seen in Table 2.2, LSQ is robust to mismatch situations where the parameters

used in quantizer design are different from those characterizing the simulation conditions.
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Thus, there would be no need to redesign the quantizers when the parameter mismatches

are small.

Table 2.2: Localization error (LE) of LSQ due to variations of the modelling parameters.
LE = 1

100

∑100
l=1 El(‖ x−x̂ ‖2), where El is the average localization error for the l-th sensor

configuration and is expressed in m2. LE (normal) is for test set from normal distribution
with mean of (5,5) and unit variance and LE (uniform) from uniform distribution. LSQs
are designed with Ri = 3, a = 50, α = 2, gi = 1 and wi = 0 for uniform distribution.

Decay factor α 1.8 1.9 2 2.1 2.2
LE (normal) 0.4654 0.2211 0.1468 0.3512 1.1254
LE (uniform) 1.7025 0.5586 0.1321 0.4612 1.4235
Gain factor gi 0.8 0.9 1 1.1 1.2
LE (normal) 0.5567 0.2332 0.1468 0.1521 0.2783
LE (uniform) 0.6734 0.2556 0.1321 0.2298 0.5176

2.6.1.4 Performance analysis in a larger sensor network: comparison with

traditional quantizers

Since there are a large number of sensors in a typical sensor network, we now evaluate LSQ

for large sensor networks. In this experiment, 20 different sensor configurations in a larger

sensor field, 20× 20m2, are generated for M = 12, 16, 20. For each sensor configuration,

LSQs are designed with a given rate of Ri = 3 and show good performance with respect to

traditional quantizers in Table 2.3. Note that the sensor density for M = 20 in 20×20m2

is equal to 20
20×20 = 0.05 which is that for the case of M = 5 in 10 × 10m2. It is worth

noting that the system with a larger number of sensors outperforms the system with a

smaller number of sensors (M = 3, 4, 5) although the sensor density is kept the same.

This is because localization performance degrades around the edges of the sensor field
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and thus in a larger sensor field there is a relatively smaller number of source locations

near the edge, as compared to a smaller field with the same sensor density.

Table 2.3: Average localization error (m2) vs. number of sensors (M = 12, 16, 20) in a
larger sensor field, 20× 20m2. The localization error is averaged over 20 different sensor
configurations where each quantizer uses Ri = 3 bits.

Number of sensors, M Uniform Q Lloyd Q LSQ
12 2.6007 0.7152 0.1105
16 1.7386 0.3976 0.0708
20 0.9541 0.2284 0.0525

2.6.1.5 Discussion

Based on the above experiments, we make the following observations. First, each sensor

should use a different quantizer, designed based on the location of all sensors to achieve

good localization accuracy. Second, the proposed algorithm provides a practical way of

designing independent quantizers that reduce a global metric (localization error) without

requiring exhaustive search.

2.6.2 Rate allocation

2.6.2.1 EDQ design

Before employing the EDQs for the rate allocation problem, we compare their perfor-

mance to that of LSQs. Refer to Figure 2.5, where 500 different sensor configurations are

generated for each M (M = 3, 4, 5) and LSQ and EDQ are compared with a test set of

2000 source locations for each configuration. Figure 2.5 shows that EDQ provides good

localization performance, which comes close to that achievable by LSQ. In Figure 2.4,

39



the partitioning of a 10 × 10m2 sensor field with 5 sensors deployed is plotted for EDQ

and LSQ respectively.

Based on these experiments we observe that EDQ allows us to achieve a good parti-

tioning, even though the sensor location information is not taken into account for EDQ

design. Note that the benefit of LSQ design will become insignificant as rate and/or

number of sensor increases. (see Figures 2.2 and 2.5). This is because each partition

(equivalently, the intersection of M ring-shaped areas) becomes smaller when the number

of sensors and/or the rate increases and thus there will be less gain to be achieved by

making each partition as equal in area as possible during LSQ design
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Figure 2.5: Justification of EDQ design. The average localization error is plotted vs. the
number of bits, Ri, assigned to each sensor with M=5 (left) and vs. the number of sensors,
M with Ri =3bits (right). The average localization error is given by 1

500

∑500
l El(‖x−x̂‖2)

where El is the average of localization error for the l-th sensor configuration. 2000 source
locations are generated as a test set with uniform distribution of source locations.
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2.6.2.2 Effect of quantization schemes

In the same sensor configuration as in Figure 2.3, the rate allocation was conducted

using three different quantizers (uniform quantizers, EDQs and LSQs) to search for the

optimal rate allocation that would give the minimum localization error. In the example of

Figure 2.3, it can be seen that sensors 3 and 5 are so close to each other that they provide

redundant information for localization and thus the optimal solution allocates few bits

to both these sensors. In fact, in our example, at relatively low rates (an average of 2

bits per sensor) it is more efficient to send information from only three sensors (sensors

1,2 and 4), i.e., allocating zero bits for the other two sensors (sensors 3 and 5). The

results obtained by the rate allocation are provided in Table 2.4 where the localization

errors were computed using EDQs and LSQs designed for several different rate allocations,

demonstrating that rate allocation is important to achieve good localization performance.

To test the effect of different quantization schemes at each sensor, the rate allocation was

conducted using uniform quantizers, EDQs and LSQs at each sensor to obtain R∗
U ,R∗

EDQ

and R∗, respectively. Note that the same rate allocation (R∗ = R∗
EDQ) was obtained for

EDQs and LSQs.

2.6.2.3 Rate allocation under power constraints

The rate allocation under power constraints given by (2.14) was also performed using

EDQs for the sensor configuration in Figure 2.3. In this experiment, the fusion node xf ,

is assumed to be located at (10, 10) and the power consumption at sensor i is assumed to

be Pi = CiRi = ‖xi − xf‖αsRi where αs = 1 for simplicity. The optimal rate allocation
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Table 2.4: Localization error (m2) for various sets of rate allocations where R∗
EDQ,R∗

U

and R∗ are obtained by GBFOS using EDQ, uniform quantizer and LSQ, respectively
given

∑
Ri = 10. Localization error is computed by E(‖ x− x̂ ‖2) using EDQ and LSQ.

Sets of rate allocations EDQ LSQ
R∗ = [4 3 0 3 0] 0.1533 0.1226

R∗
EDQ = [4 3 0 3 0] 0.1533 0.1226
R = [3 3 0 4 0] 0.1615 0.1258
R = [3 4 0 3 0] 0.1543 0.1329
R = [3 2 2 3 0] 0.3005 0.2297
R = [2 2 2 2 2] 0.6199 0.3908
R∗

U = [6 0 0 3 1] 1.2360 1.2142

R∗
PW was obtained with the total power set as the power consumed by 5 sensors when

each sensor uses Ri = 2 bits.

The test results for R∗
PW and several uniform rate allocations RU ’s are provided

for comparison in Table 2.5. It can be seen that the sensors (sensors 2,4 and 5) closer

to xf will be assigned higher rate and sensor 3 will be allocated lower rate since it

would provide redundant information along with sensor 5. Note that significant power

savings (over 60%) can be achieved by the rate allocation, R∗
PW as compared with RU =

[5 5 5 5 5]. Obviously, the optimal rate allocation R∗ = [4 3 0 3 0] obtained

under equal power assumption (Ci =constant) is no longer the optimal one for this rate

allocation problem.

2.6.2.4 Performance analysis – comparison with uniform rate allocation

Figure 2.6 demonstrates the benefits of our optimal rate allocation, R∗, as compared to

uniform rate allocation, RU = (R1 = RT
M , ..., RM = RT

M ). For the sensor configuration in

Figure 2.3 the total rate, RT , is varied from 10 to 20 bits. For each RT , R∗ is obtained
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Table 2.5: Localization error (m2) for various sets of rate allocations where R∗
PW was

obtained by GBFOS using EDQ given P =
∑

i CiRi =
∑

i 2Ci. Localization error is
given by E(‖ x− x̂ ‖2).

Sets of rate allocations EDQ Power Consumption
R∗

PW = [0 6 0 4 3] 0.0155 68.5841
R∗ = [4 3 0 3 0] 0.1533 78.6355
RU = [2 2 2 2 2] 0.6199 71.9401
RU = [3 3 3 3 3] 0.1547 107.9101
RU = [5 5 5 5 5] 0.0204 179.8502

by rate allocation process using EDQs and then the LSQs are designed for each R∗ for

comparison. The two rate allocations (R∗,RU ) were tested using a test set of 2000 source

locations with two measurement noise scenarios σi = 0 and σi = 0.05. In Figure 2.6, we

compare performance under both EDQ and LSQ for both uniform and optimized rate

allocation (RU and R∗ respectively). This experiment shows that significant gains can

be achieved by using optimal rate allocation even when there is measurement noise. Note

that the gain achieved by using optimal bit allocation (rather than uniform bit allocation)

is greater for EDQ. This can be explained by the fact that EDQ does not use sensor

location information when the bit allocation is uniform, whereas LSQ does incorporate

location information even in the uniform case. Thus more gain can be expected for

EDQ because the optimal bit allocation allows sensor location to be used to improve

performance. We also note that EDQs with optimized allocation in fact provide better

localization accuracy than LSQs with uniform allocation. This suggests that using the bit

allocation process to improve performance could be a good design strategy, as it allows

competitive performance to be achieved even with simple quantizers such as EDQ.
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Figure 2.6: Comparison of optimal rate allocation, R∗ with uniform rate allocation RU .
LSQs are designed for each R∗ and RU . 4 curves are plotted for comparison. For example,
“EDQ (or LSQ) with RU (or R∗)” indicates the curve of localization error computed when
each sensor uses EDQ (or LSQ) designed for R = RU (or R∗).

A comparison between standard uniform quantization with uniform bit allocation

(which would be a straightforward design for this system) and LSQ with optimal bit

allocation is also useful. As can be seen in Figure 2.7 a significant gain (over 60% rate

savings) can be achieved by the rate allocation optimized with LSQs.

Finally, our rate allocation was evaluated for different sensor configurations where 5

sensors are randomly deployed in 10×10m2 sensor field. In the experiments, 100 different

sensor configurations are generated and for each configuration, rate allocation using EDQ

is performed to obtain R∗. The localization error is averaged over 100 configurations and

compared with that for RU . Figure 2.8 shows that the rate allocation is more important

than quantizer design alone for obtaining good localization accuracy.
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Figure 2.7: Gain in rate savings achieved by our optimal rate allocation, R∗ using LSQs
as compared with trivial solution where each sensor uses uniform quantizers of the same
rate.

2.6.2.5 Discussion

From our rate allocation experiments we observe first that significant gains can be

achieved by assigning different rates to sensors at different locations. Second, we also

note that in regions where sensors are clustered each sensor uses a smaller number of

bits, while sensors that are further apart are allocated more bits. Third, EDQ is a useful

practical design due to its simplicity, implying that some geometry-driven quantizers can

be similarly introduced in real situations. Finally, noting the close relationship between

sensor locations and their relative rates (equivalently, weights) assigned, we can develop

simple and powerful algorithms that should use solely geometry information. For exam-

ple, the relative distances between sensors or directional information could be effectively

used for applications such as sensor networks that require a simple computing process

and/or low power consumption.
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Figure 2.8: Evaluation of optimal rate allocation for many different sensor configura-
tions. Localization error is averaged over 100 sensor configurations for two different rate
allocations: RU and R∗.

2.7 Conclusion

In this chapter, we addressed the quantizer design and rate allocation problems for source

localization. We proposed an iterative design algorithm that allows us to reduce the

localization error for quantizer design. We showed that we can obtain the optimal rate

allocation by applying the well known GBFOS algorithm along with LSQ. To overcome

the complexity due to the rate allocation process, we introduced a simple quantizer, EDQ.

As future work, we are considering new algorithms for rate allocation with low com-

plexity so that they can be applied to large-scale sensor networks. We will also study the

case of multiple sources and another application (e.g., vehicle tracking) which requires

rate allocation. In addition, since the channel between each sensor and the fusion node

is not perfect, this should be taken into account for future research.
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Chapter 3

Localization Algorithm based on Quantized data

3.1 Introduction

Source localization based on quantized acoustic sensor readings has been discussed in

Section 2.5.1 for the case of no measurement noise and known source signal energy. In

this chapter, we extend the work and propose a distributed source localization algorithm

under more challenging conditions, including measurement noise as well as unknown

source signal energy. If there is no measurement noise and the source signal energy is

known, the only source location uncertainty is due to quantization. Because the source

signal energy is known, each quantized reading can be mapped to a region in the sensor

field, such that the shape of the region depends on the characteristics of the sensor.

For the case of an acoustic sensor that provides no directional information, the region

corresponding to one quantized reading takes the form of a “ring” centered at the sensor

location (see Figure 2.1 in Section 2.5.1). Since the measurements are assumed to be

noiseless the source can be located by intersecting the regions corresponding to each

sensor. A vector of measurements (one per sensor) will correspond to a unique location
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and, after quantization, there will be a unique (non-empty) intersection region that will

contain the position of the source. In this scenario efficient quantizer designs aim at

minimizing the average area of all admissible intersections (see Chapter 2 and [16]).

Clearly, localization becomes more difficult when there is non-negligible measurement

noise and/or the source signal energy is not known. In particular, some vector readings

may lead to empty intersection regions and a given source location can produce different

quantized measurements, depending on noise conditions.

To address these problems we use a probabilistic formulation, where we estimate the

probability that each candidate location may have produced a given vector reading. In

this context, we first formulate the source localization problem as minimum mean square

error (MMSE) estimation problem; this approach generally has significant computational

complexity, especially for the non-Gaussian case1 we are addressing in this chapter [14].

We show that the complexity can be significantly reduced by taking into account the

quantization effect and the distributed property of the quantized data while maintaining

good localization accuracy. Based on this, first, under the assumption of known source

signal energy, we propose a distributed algorithm based on the maximum a posteriori

(MAP) criterion. We also show that for the case of unknown source signal energy, good

localization performance can be achieved by using a weighted average of the estimates

obtained by our proposed localization algorithm under different source energy assump-

tions.
1In the acoustic sensor case, the received quantized data and the source location are not jointly

Gaussian.
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3.2 Problem Formulation

Recall the sensing scenario described in Section 2.2 where we discussed the localization

problem considered when the source signal energy, a, is known and there is no measure-

ment noise (wi = 0 in (2.1)). Consider now the case where there is measurement noise

and/or the source signal energy is unknown. There is no guarantee that the intersection

constructed from quantized readings (see Figure 2.1) is always nonempty. Furthermore,

the source location, x might be located outside the intersection if it is nonempty. Thus,

we need to consider all possible quantized values that a given source location can produce

with the measurement noise and unknown energy.

Assuming the statistics of the measurement noise wi are known, we can formulate the

source localization problem as MMSE estimation problem as follows:

x̂ = E(x|Qr) =
∫

x∈S
xp(x|Qr)dx (3.1)

=
∫

x∈S
xp(Qr|x)p(x)/p(Qr)dx (3.2)

=

∫
x∈S x[

∏M
i=1

∫
zi∈Qi

p(zi|x)dzi]p(x)dx

p(Qr)
(3.3)

where p(Qr) =
∫
x∈S [

∏M
i=1

∫
zi∈Qi

p(zi|x)dzi]p(x)dx. The conditional probability p(zi|x), i =

1, ..., M in (3.3) can be obtained by the sensor model in (2.1) and knowledge of a (e.g., a

pdf of a) as follows:

p(zi|x) =
∫

a
p(zi|x, a)p(a)da (3.4)

where p(zi|x, a) is a normal distribution with mean gi
a

‖x−xi‖α and variance σ2
i . Note that

in computing p(zi|x, a), it is assumed that the measurement noise wi is normal distributed
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with zero mean and variance, σ2
i . Clearly, if the conditional probability p(zi|x) and p(x)

are given, the MMSE estimator x̂ can be obtained using (3.3). It can be noted that

although the MMSE estimation provides an optimal estimate of the source location, it

would require very large computational complexity to perform the integration over the

sensor field S and would also require knowledge of the prior distributions, such as p(x)

and p(a). In this chapter, we use an uninformative or uniform prior distribution whenever

there is ignorance about the parameters to be estimated, since this allows us to obtain

an a posteriori distribution that will be approximately proportional to the likelihood.

The uninformative prior has the added advantage of keeping subsequent computations

relatively simple.

Now, in the following sections, we develop our localization algorithm, which is shown

to achieve good performance with reasonable complexity as compared with the MMSE

estimation.

3.3 Localization Algorithm based on Maximum A Posteriori

(MAP) Criterion: Known Signal Energy Case

First, we assume that the source signal energy a is known at the fusion node when the

localization is performed. The case of unknown signal energy is treated in Section 3.5.

Even when there is no measurement noise (wi = 0 in (2.1)), there still exists some degree

of uncertainty on the source location, due to the quantization. That is, the best thing we

can do for localization based on quantized measurements would be to identify a region

where the source is located. Thus, when quantization is used, we need candidate regions
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where the source might be, rather than all candidate source locations. This is helpful in

reducing the complexity of estimating source locations.

Since each observed M -tuple corresponds to a different spatial region in the noiseless

case, we can partition the source field S into |Sf
Q| regions where Sf

Q is the set of the

M -tuples that can be generated in a noise-free environment. This can be written as

follows:

Sf
Q = {(Q1, ..., QM )|gi

a

‖x− xi‖α
∈ Qi, i = 1, ..., M x ∈ S} (3.5)

For the j-th element, Qj in Sf
Q, we can construct a corresponding region, Aj in S as

follows:

Aj =
M⋂

i=i

Ai, Ai = {x|gi
a

‖x− xi‖α
∈ Qj

i , x ∈ S} (3.6)

where Qj = (Qj
1, ..., Q

j
M ). Clearly, there is one to one correspondence between each region

Aj and each Qj in Sf
Q.

In what follows, we first consider how to select the region that maximizes the proba-

bility Pr[Aj |Qr], ∀j where the received M -tuple, Qr, is typically noise corrupted and

thus Qr may not belong to Sf
Q. Then, we estimate the source location as the centroid

of the region we selected. Based on this, the localization algorithm can be formulated as

follows:

Let Hj be the j-th hypothesis, corresponding to the j-th region, Aj , which can be ob-

tained using the j-th M -tuple, Qj, in the set Sf
Q. Now, we seek to identify the hypothesis,

H∗, that maximizes the probability Pr[Hj |Qr],∀j.
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H∗ = arg max
j

p(Hj |Qr) j = 1, ..., |Sf
Q|

= arg max
j

p(Aj |Qr)

= arg max
j

p(Qr|x ∈ Aj)pj , pj = p(x ∈ Aj)

= arg max
j

M∏

i=1

p(Qi|x ∈ Aj)pj , (3.7)

where the conditional probability, p(Qi|x ∈ Aj) is computed in the following way:

p(Qi|x ∈ Aj) = p(µi(x) + wi ∈ Qi|x ∈ Aj)

= p(Qi,l − µi(x) ≤ wi ≤ Qi,h − µi(x)|x ∈ Aj)

=
∫

x∈Aj

[Φ(
Qi,h − µi(x)

σi
)− Φ(

Qi,l − µi(x)
σi

)]pj(x)dx,

(3.8)

where µi(x) = gi
a

‖x−xi‖α and pj(x) = p(x|x ∈ Aj). Here Φ(.) is the cdf for the nor-

mal distribution, N(0, 1). Once H∗ is obtained, the source estimate x̂ is computed by

E(x|H∗) = E(x|x ∈ A∗).

It should be noticed that the proposed algorithm can be applied regardless of the sen-

sor types, since each set of quantized sensor readings would generate a unique intersection

under the assumption of no measurement noise. That is, we can obtain H∗ in (3.7) by

replacing gi
a

‖x−xi‖α in (3.5) and (3.6) with the sensor model employed at each sensor.
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3.4 Implementation of Proposed Algorithm

While the computational complexity of our MAP-based localization as described by (3.7)

is lower than that for the MMSE estimation, the integration of (3.8) has to be per-

formed for each hypothesis, which is computationally complex. To make it practical,

the localization algorithm needs some modification so that the complexity due to |Sf
Q|

integrations per Qr should be significantly reduced, so that only a few integrations need

to be performed.

Figure 3.1: Source locations that generate the given Qr for each variance (σ =
0, 0.05, 0.16, 0.5) are plotted. 5 sensors (marked as ◦) are employed in a sensor field
10× 10m2 and each sensor uses a 2-bit quantizer.

It should be observed that, even in the noisy case, if the source is in Aj corresponding

to Qj ∈ Sf
Q, the corresponding quantized vector reading is likely to be Qj. Clearly, the
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number of source locations belonging to Aj that produce Qj would be larger at higher

SNR.

Figure 3.1 demonstrates this observation: in this experiment, a test set of 5000 source

locations is generated for each σ = 0, 0.05, 0.16, 0.5 and only source locations generating

the given Qr are plotted for each test set. Based on this observation, it would be possible

to construct a set, As(⊂ S) such that p(x ∈ As|Qr) ≈ 1, allowing us to consider only the

hypotheses (or regions) that belong to the set As, leading to a reduction in the number

of the hypotheses that have to be evaluated for the MAP-based localization.

This set can be constructed by noting that given a source location x, and the corre-

sponding noisy M -tuple Qr, it is be very likely that p(x ∈ Ai|Qr) > p(x ∈ Aj |Qr) as

long as p(x̂i|Qr) À p(x̂j |Qr), where x̂j is the centroid of the set Aj . In other words,

we first choose the most likely centroid, say x̂c given Qr and construct As(δ) = {x| ‖

x − x̂c ‖< δ,x ∈ S} such that we can obtain the set As(δ) satisfying P (x ∈ As(δ)) ≈ 1,

with a reasonable choice of δ. Clearly, the smaller the δ we choose, the more reduction in

computational complexity we can achieve at the cost of increased localization error. This

consideration leads us to a practical implementation of the algorithm as follows:

1) Initial search (coarse search):

x̂c = arg max
j

p(x̂j |Qr), where x̂j = E(x|x ∈ Aj)

= arg max
j

p(Qr|x̂j)pj

= arg max
j

M∏

i=1

[Φ(
Qi,h − µi(x̂j)

σi
)− Φ(

Qi,l − µi(x̂j)
σi

)]pj
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2) Refined search:

Once x̂c is obtained, we can construct the set As(δ) =
⋃K

k=1 Ak (clearly, As ∈ S) such

that ‖ x̂c − x̂k ‖< δ, ∀k = 1, ..., K where x̂k = E(x|x ∈ Ak). Now, we can compute H∗

using K hypotheses as follows:

H∗ = arg max
k

p(Ak|Qr), k = 1, ..., K (3.9)

= arg max
k

p(Qr|x ∈ Ak)pk, pk = p(x ∈ Ak) (3.10)

= arg max
k

M∏

i=1

p(Qi|x ∈ Ak)pk (3.11)

Notice that K takes a small value (¿ |Sf
Q|) with a good choice2 of δ.

3.5 Unknown Signal Energy Case

So far, we assumed that the source signal energy, a, is known to the fusion node where

the localization is performed based on quantized data. However, the source energy is gen-

erally unknown and should be also estimated along with the source location. A possible

solution would be to adopt the energy ratios-based source localization method proposed

in [19] where the authors took ratios of the unquantized energy readings of a pair of

sensors in the noise-free case to cancel out the energy, a, and formulated a nonlinear

least square optimization problem. However, while the method shows good performance

with low-complexity implementation for unquantized sensor readings and provides full

robustness to unknown source energies, it would have some drawbacks when the sensor
2A good choice of δ depends upon the experimental settings, such as M, Ri, sensor models and other

factors.
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energy readings are quantized. This is because the fusion node has to obtain the energy

ratios based on quantization intervals. This leads to larger range of possible values for

the energy ratios and thus increased uncertainty about the source location.

In this section, we consider the localization problem with unknown energy as an

extension of the estimation problem explained in the previous sections and we show that

a good estimate of the source location can be represented by a weighted average of source

estimates, each of which is obtained by the proposed algorithm in Section 3.3. With the

unknown source signal energy a, termed a nuisance parameter [10], we can reformulate

the MMSE estimation problem from Section 3.2 as follows:

x̂ = E[x|Qr] =
∫

x∈S
xp(x|Qr)dx (3.12)

=
∫

x
x[

∫

a
p(x, a|Qr)da]dx (3.13)

=
∫

x
x[

∫

a
p(x|Qr, a)p(a|Qr)da]dx (3.14)

=
∫

a
[
∫

x
xp(x|Qr, a)dx]p(a|Qr)da (3.15)

=
∫

a
x̂MMSE(a)p(a|Qr)da (3.16)

≈
∫

a
x̂prop(a)p(a|Qr)da. (3.17)

In (3.17), the MMSE estimate, x̂MMSE given by (3.3) is replaced by the estimate x̂prop

obtained by the localization algorithm proposed in Section 3.3. Note that computing

p(a|Qr) can be complex:
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p(a|Qr) =
∫

x
p(x, a|Qr)dx (3.18)

∝ p(a)
∫

x
p(Qr|x, a)p(x)dx. (3.19)

In order to reduce the complexity of computing (3.19), we further make the following

approximations:

1. While the source signal energy can take continuous values in a predetermined inter-

val [amin amax], we consider only discrete energy values, since small variations in

signal energy have a small impact on localization accuracy (see Figure 3.2). Based

on this, (3.17) can be written as

x̂ ≈
∫

a
x̂prop(a)p(a|Qr)da (3.20)

≈
N∑
ak

x̂prop(ak)p(ak|Qr) (3.21)

=
N∑
ak

x̂prop(ak)Wk∑
Wi

(3.22)

where N is the number of discrete energy values used and Wk is the k-th weight

factor which can be rewritten as

Wk = p(ak)
∫

x∈S
p(Qr|x, ak)p(x)dx. (3.23)

2. Some signal energy values are bound to be less likely than others (for example, a

particular energy value can lead to a non empty intersection of quantization regions,
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while under other energy values the intersections may be empty). Thus, there will

be some dominant weights in (3.23) and if we compute the weights first, we only need

to perform the localization algorithm for those weights that are sufficiently large.

Refer to Figure 3.2, which illustrates that a few weights (3 or 4) are sufficiently large

while others can be ignored. Thus, we can approximate (3.22) by
∑L

l=1
x̂prop(al)Wl∑L

i Wi

where it is assumed that the set of weights, {Wk}N
k=1 is arranged such that W1 ≥

W2 ≥ ... ≥ WL ≥ ... ≥ WN .

3. Finally, since we can construct a set As(δw, ak) using the coarse search described in

Section 3.4, this set can also be used to compute the weights given by (3.23):

Wl ≈ p(al)
∫

x∈As(δw,al)
p(Qr|x, al)p(x)dx (3.24)

Clearly, there will be some trade-offs between the computational complexity and the

localization performance and this can be controlled by adjusting parameters such as

N,L, and δw.

3.6 Simulation Results

We consider a sensor network of M sensors deployed randomly in a 10×10m2 sensor field

(M = 3, 4 and 5 in our experiments). Each sensor measures an acoustic source energy

based on the energy decay model in (2.1), quantizes it using a quantizer designed by the

algorithm in Chapter 2 and sends it to a fusion node where localization is performed
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Figure 3.2: Localization accuracy of proposed algorithm under source signal energy mis-
match (top). In this experiment, a test set of 2000 source locations is generated for each
source signal energy (a = 40, 45, ..., 55, 60). Localization is performed by the proposed
algorithm in Section 3.4 using a = 50 and δ = 1m. Distribution of weights vs. Number
of weights chosen, L. (bottom) (

∑L
l Wl∑N
k Wk

vs. L). A test set of 2000 source locations is
generated and N=10 weights are computed for each source location.

using our proposed localization algorithms. Note that the measurement noise is assumed

to be normal distributed with zero mean and a variance of σ2.

3.6.1 Case of known signal energy

First, assuming a is known, the distributed localization algorithm proposed in Section 3.4

is tested using a test set of 2000 source locations generated with p(x) modeled by a

uniform distribution for each (σ,M) pair, where σ varies from 0 to 0.5 and M=3,4 and

5. In Figure 3.3 the proposed algorithm is compared to the MMSE estimation given by

(3.3) since the latter gives us a good lower bound for testing our localization algorithm.
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Note that we choose δ = 1m in our algorithm. From Figure 3.3, it can be said that our

algorithm provides localization accuracy close to that for MMSE estimation, especially

when σ < 0.16.

Figure 3.3: Localization algorithms based on MMSE and MAP criterion are tested when
σ varies from 0.5 to 0 with Ri = 3 (left) and when Ri = 3, 4 and 5 with σ = 0.05 (right)
and δ = 1m respectively. wi ∼ N(0, σ2).

3.6.2 Case of unknown signal energy

Our distributed localization algorithm for the unknown source signal energy case of Sec-

tion 3.5 is tested and compared with the MMSE estimator and the energy ratio based

method and also evaluated under various types of mismatches. In applying the local-

ization algorithm, prior distributions for p(x) and p(a) are assumed to be uniform over

x ∈ S and a ∈ [amin amax] = [0 100], respectively and the parameters are set as

N = 10, ak ∈ {10, 20, ..., 100}, L = 3, δw = 1m, α = 2, gi = 1.
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In Figure 3.4, the interval [amin amax] is divided into 8 subintervals, namely [20

30],...,[90 100], and for each subinterval, a test set of 2000 source locations with the

source signal energy randomly drawn from the subinterval is generated with σ = 0.05.

Clearly, as we mentioned in Section 3.5, the energy ratio-based method provides worse

localization accuracy than our proposed algorithm.
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Figure 3.4: Localization algorithms based on MMSE estimation, MAP criterion and
energy ratios are tested by varying source signal energy a from 20 to 100. We set N =
10, L = 3, and δw = 1m in our algorithm. In this experiment, a test set with M = 5, Ri =
3 is generated with uniform distribution of source locations for each signal energy and the
measurement noise is modeled by a normal distribution with zero mean and σ = 0.05.

3.6.3 Sensitivity to parameter mismatches

Table 3.1 shows results when one of the parameters is randomly perturbed: that is, the

actual value of α in generating a test set is randomly drawn from the interval [2−∆α, 2+

∆α] with ∆α = 0, 0.1, ..., 0.4 and the actual gain also drawn randomly from a uniform

distribution [1−∆g 1+∆g]. Similarly, each sensor location (x, y) is randomly generated
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from [x−∆x x+∆x] and [y−∆y y+∆y], respectively with ∆x = ∆y = 0, 0.1, ..., 0.4.

In addition, a test set of 2000 source locations with normal distribution with mean (5, 5)

and variance (σ2
x, σ2

y) is generated for σx = σy = 1, 1.5, 2, 2.5 and 3. From the results in

Table 3.1, it can be said that small perturbations do not result in significant degradation

in localization accuracy.

∆α 0 0.1 0.2 0.3 0.4
LE (MAP) 0.5319 0.7360 1.4643 2.2653 3.6998
LE (ERA) 0.8886 1.1402 1.8658 2.7042 3.6696

∆gi 0 0.1 0.2 0.3 0.4
LE (MAP) 0.5414 0.6293 0.8201 1.1606 1.6215
LE (ERA) 0.8980 0.9695 1.2012 1.6407 2.0873
(∆x,∆y) 0 0.1 0.2 0.3 0.4

LE (MAP) 0.5414 0.5380 0.5836 0.6242 0.7176
LE (ERA) 0.8980 0.8900 0.9167 1.0074 1.0760
(σx, σy) 1 1.5 2 2.5 3

LE (MAP) 0.2710 0.3554 0.4806 0.8992 1.7617
LE (ERA) 0.8879 0.9233 0.9732 1.4556 2.2024

Table 3.1: Localization error (LE) (m2) of MAP algorithm compared to energy ratios
based algorithm (ERA) under various mismatches. In each experiment, a test set is
generated with M = 5 and σ = 0.05 and one of the parameters is varied. Localization
error (LE) (m2) is computed by E(‖ x − x̂ ‖2) using α = 2, gi = 1, Ri = 3 and uniform
distribution of p(x).

3.6.4 Performance analysis in a larger sensor network

Our MAP-based localization algorithm was also tested and compared with ERA in a

larger sensor network 20× 20m2 where the number of sensors is M = 12, 16, 20. For each

M , a test set of 4000 samples was generated using uniform priors for p(x), p(a) and normal

measurement noise with σ = 0.05. Our proposed algorithm still shows better localization

accuracy than the energy-ratios based algorithm (ERA) in larger sensor networks.
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Figure 3.5: Localization algorithms based on MAP criterion and energy ratios are tested
in a larger sensor network by varying the number of sensors. The parameters are N =
10, L = 3 and δw = 1m in our algorithm. In this experiment, a test set of 4000 samples
was generated for M = 12, 16, 20. Each sensor uses a 3 bit quantizer and the measurement
noise is modeled by the normal distribution with zero mean and σ = 0.05.

3.7 Conclusion

In this chapter, we considered the source localization based on acoustic sensor readings

and proposed a distributed localization algorithm based on MAP criterion. We showed

that the complexity could be significantly reduced by taking into account the correlation

of quantized data without much degradation of localization accuracy.
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Chapter 4

Distributed Encoding Algorithm

4.1 Introduction

In the quantizer design proposed in Chapter 2, our algorithm seeks to reduce the local-

ization error by adjusting the size of a “fixed” number of quantization bins at each node.1

In this chapter, we consider a novel way of reducing the total number of bits transmitted

to the fusion node while preserving localization performance. It is shown that this can be

accomplished by exploiting properties of the combinations of quantization bins that can

be transmitted by the nodes. The basic concept can be motivated as follows. Suppose

that one of the nodes reduces the number of bins that are being used. This will cause a

corresponding increase in uncertainty. However, the fusion node that receives information

from all the nodes can often compensate for this uncertainty by using data from the other

nodes as side information.

More specifically, in the context of source localization, since each source location leads

to a set of quantized sensor measurements that correspond to a non-empty intersection,

the fusion node will only receive those combinations of quantized measurements that
1Each node may employ one sensor or an array of sensors, depending on the applications.
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correspond to real source locations. Obviously, this is true only in the noiseless case. The

key observation in this chapter is that the number of real quantized vector observations is

smaller than the total number of possible combinations of quantized values at the nodes.

Thus, many arbitrary combinations of quantized readings at several nodes cannot be

produced because the corresponding regions have an empty intersection. Therefore, there

will still be some redundancy after quantization which we will seek to reduce in order to

decrease overall transmission rate.

In this chapter, we consider a distributed encoding algorithm that achieves significant

rate savings by merging selected quantization bins without affecting localization perfor-

mance. This algorithm is designed for the case when there is no measurement noise but

we also show that it can be applied with slight modification (at the expense of potential

decoding errors) even when there is measurement noise.

The assumptions made in Section 2.2 still hold throughout this chapter. This chapter

is organized as follows. The definitions which will be used to derive our algorithm are

provided in Section 4.2. The motivation is explained in Section 4.3. In Section 4.4,

we consider quantization schemes that can be used with the encoding at each node. An

iterative encoding algorithm is proposed in Section 4.5. For a noisy situation, we consider

the modified encoding algorithm in Section 4.6 and describe the decoding process and

how to handle decoding errors in Section 4.7. In Section 4.8, we apply our encoding

algorithm to the source localization system where an acoustic amplitude sensor model is

employed. Simulation results are given in Section 4.9 and the conclusions are found in

Section 4.10.
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4.2 Definitions

Let SM = I1 × I2 × ...× IM be the cartesian product of the sets of quantization indices.

SM contains |SM | = (
∏M

i Li) M -tuples representing all possible combinations of quanti-

zation indices. We denote SQ the subset of SM that contains all the quantization index

combinations that can occur in a real system, i.e., all those generated as a source moves

around the sensor field and produces readings at each node:

SQ = {(Q1, ..., QM )| ∃x ∈ S,Qi = αi(zi(x)), i = 1, . . . ,M} (4.1)

We denote Sj
i the subset of SQ that contains all M -tuples in which the i-th node is

assigned quantization bin Qj
i :

Sj
i = {(Q1, ..., QM ) ∈ SQ|Qi = j}. (4.2)

For a given Qj
i we can always construct the corresponding Sj

i from SQ. Note also that

Sj
i ⊂ SQ. Along with this, we denote Sj

i , the set of (M−1)-tuples obtained from M -tuples

in Sj
i , where only the quantization bins at positions other than position i are stored. That

is, if (Q1, ..., QM ) = (a1, ..., aM ) ∈ Sj
i then we have (a1, ..., ai−1, ai+1, ..., aM ) ∈ Sj

i . There

is a one to one correspondence between the elements in Sj
i and Sj

i so that |Sj
i | = |Sj

i |.

4.3 Motivation: Identifiability

In this section, we assume that Pr[(Q1, ..., QM ) ∈ SQ] = 1, i.e., only combinations of

quantization indices belonging to SQ can occur and those combinations belonging to SM−
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SQ, which lead to an empty intersection, never occur. These sets can be easily obtained

when there is no measurement noise (i.e., wi = 0) and no parameter mismatches. As

discussed in the introduction, there will be elements in SM that are not in SQ. Therefore,

simple scalar quantization at each node would be inefficient because a standard scalar

quantizer would allow us to represent any of the M -tuples in SM , but |SM | ≥ |SQ|. What

we would like to determine now is a method such that independent quantization can still

be performed at each node, while at the same time we reduce the redundancy inherent

in allowing all the combinations in SM to be chosen. Note that, in general, determining

that a specific quantizer assignment in SM does not belong to SQ requires having access

to the whole vector, which obviously is not possible if quantization has to be performed

independently at each node.

In our design we will look for quantization bins in a given node that can be “merged”

without affecting localization. As will be discussed next, this is because the ambiguity

created by the merger can be resolved once information obtained from the other nodes is

taken into account. Note that this is the basic principle behind distributed source coding

techniques: binning at the encoder, which can be disambiguated once side information is

made available at the decoder [7, 8, 12] (in this case quantized values from other nodes).

Merging of bins results in bit rate savings because fewer quantization indices have

to be transmitted. To quantify the bit rate savings we need to take into consideration

that quantization indices will be entropy coded (in this chapter Huffman coding is used).

Thus, when evaluating the possible merger of two bins, we will compute the probability of

the merged bin as the sum of the probabilities of the merged bins. For example, suppose
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that Qj
i and Qk

i are merged into Q
min(j,k)
i . Then we can construct the set S

min(j,k)
i and

compute the probability for the merged bin as follows:

S
min(j,k)
i = Sj

i ∪ Sk
i (4.3)

P
min(j,k)
i = P j

i + P k
i (4.4)

where P j
i =

∫
Aj

i
p(x)dx, p(x) is the pdf of the source position and Aj

i is given by

Aj
i = {x|(Q1 = α1(z1(x)), ..., QM = αM (zM (x))) ∈ Sj

i } (4.5)

Suppose the encoder at node i merges Qj
i and Qk

i into Ql
i with l = min(j, k), and

sends the corresponding index to the fusion node. The decoder will construct the set Sl
i

for the merged bin using (4.3) and then will try to determine which of the two merged

bins (Qj
i or Qk

i in this case) actually occurred at node i. To do so, the decoder will use

the information provided by the other nodes, i.e., the quantization indices Qm (m 6= i).

Consider one particular source position x ∈ S for which node i produces Qj
i and the

remaining nodes produce a combination of M − 1 quantization indices Q ∈ Sj
i . Then, for

this x there would be no ambiguity at the decoder, even if bins Qj
i and Qk

i were to be

merged, as long as Q /∈ Sk
i . This follows because if Q /∈ Sk

i the decoder would be able to

determine that only Qj
i is consistent with receiving Q. With the notation adopted earlier

this leads to the following definition:

Definition 1 Qj
i and Qk

i are identifiable, and therefore can be merged, iff Sj
i ∩ Sk

i = ∅.
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The question that remains is how to merge identifiable bins in order to minimize the

total rate used by the M nodes to transmit their quantized observations.

4.4 Quantization Schemes

As mentioned in the previous section, there will be redundancy in M-tuples after quanti-

zation which can be eliminated by our merging technique. However, we can also attempt

to reduce the redundancy during quantizer design before the encoding of the bins is per-

formed. Thus, it would be worth considering the effect of selection of a given quantization

scheme on system performance when the merging technique is employed. In this section,

we consider three schemes as follows:

• Uniform quantizers

Since they do not utilize any statistics about the sensor readings for quantizer

design, there will be no reduction in redundancy by the quantization scheme. Thus

only the merging technique plays a role in improving the system performance.

• Lloyd quantizers

Using the statistics about the sensor reading, zi available at node i, the i-th quan-

tizer is designed using the generalized Lloyd algorithm [29] with the cost function

|zi − ẑi|2 which is minimized in an iterative fashion. Since each node consider only

the information available to it during quantizer design, there will still exist much

redundancy after quantization which the merging technique can attempt to reduce.

• LSQ proposed in Chapter 2

While designing a quantizer at node i, we take into account the effect of sensor
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readings at other nodes on the quantizer design by defining a new cost function,

J =
∑M

i |zi − ẑi|2 + λ‖x − x̂‖2 which will be minimized in an iterative manner.

Since the correlation between sensor readings is exploited during quantizer design,

LSQ along with our merging technique will show the best performance of all.

We will discuss the effect of quantization and encoding on the system performance

based on experiments for an acoustic amplitude sensor system in Section 4.9.1.

4.5 Proposed Encoding Algorithm

In general there will be multiple pairs of identifiable quantization bins that can be merged.

Often, all candidate identifiable pairs cannot be merged simultaneously, i.e., after a pair

has been merged, other candidate pairs may become non identifiable. In what follows we

propose algorithms to determine in a sequential manner which pairs should be merged.

In order to minimize the total rate, an optimal merging technique should attempt to

reduce the overall entropy as much as possible, which can be achieved by (1) merging

high probability bins together and (2) merging as many bins as possible. It can be

observed that these two strategies cannot be pursued simultaneously. This is because high

probability bins (under our assumption of uniform distribution of the source position) are

large and thus merging large bins tends to result in fewer remaining merging choices (i.e.,

a larger number of identifiable bin pairs may become non-identifiable after two large

identifiable bins have been merged). Conversely, a strategy that tries to maximize the

number of merged bins will tend to merge many small bins, leading to less significant
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reductions in overall entropy. In order to strike a balance between these two strategies

we define a metric, W j
i , attached to each quantization bin:

W j
i = P j

i − γ|Sj
i |, (4.6)

where γ ≥ 0. This is a weighted sum of the bin probability and the number of quantizer

combinations that include Qj
i . If P j

i is large this would be a good candidate bin for

merging under criterion (1), whereas a small value of |Sj
i | will indicate a good choice

under criterion (2). In our proposed procedure, for a suitable value of γ, we will seek

to prioritize the merging of those identifiable bins having largest total weighted metric.

This will be repeated iteratively until there are no identifiable bins left.

The proposed global merging algorithm is summarized as follows:

Step 1: Set F (i, j) = 0, where i = 1, ..., M ; j = 1, ..., Li, indicating that none of the bins,

Qj
i , have been merged yet.

Step 2: Find (a, b) = arg max(i,j)|F (i,j)=0(W
j
i ), i.e., we search over all the non-merged

bins for the one with the largest metric W b
a .

Step 3: Find Qc
a, c 6= b such that W c

a = maxj 6=b(W
j
a ), where the search for the maximum

is done only over the bins identifiable with Qb
a at node a. If there are no bins identifiable

with Qb
a, set F (a, b) = 1, indicating the bin Qb

a is no longer involved in the merging

process. If F (i, j) = 1, ∀i, j, stop; otherwise go to Step 2.

Step 4: Merge Qb
a and Qc

a to Q
min(b,c)
a with S

min(b,c)
a = Sb

a ∪ Sc
a. Set F (a,max(b, c)) = 1.

Given M quantizers, we can construct the sets Sj
i , and the metric W j

i , ∀i, j, perform

the merging using the proposed algorithm and find the parameter γ in (4.6) that minimizes
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the total rate2. In the proposed algorithm, the search for the maximum of the metric is

done for the bins of all nodes involved. However, different approaches can be considered

for the search. These are explained as follows:

Method 1: Complete sequential merging. In this method, we process one node at a time

in a specified order. For each node, we merge the maximum number of bins possible before

proceeding to the next node. Merging decisions are not modified once made. Since we

exhaust all possible mergers in each node, after scanning all the nodes no more additional

mergers are possible.

Method 2: Partial sequential merging. In this method, we again process one node at a

time in a specified order. For each node, among all possible bin mergers, the best one

according to a criterion is chosen (the criterion could be entropy-based and for example,

(4.6) is used in this thesis) and after the chosen bin is merged we proceed to the next

node. This process is continued until no additional mergers are possible in any node.

This may require multiple passes through the set of nodes.

These two methods can be easily implemented with minor modifications to our pro-

posed algorithm. Notice that the final result of the proposed encoding algorithm will be

M merging tables, each of which has the information about which bins can be merged at

each node in real operation. That is, each node will merge the quantization bins using

the merging table stored at the node and will send the merged bin to the fusion node

which then tries to determine which bin actually occurred via the decoding process using

M merging tables and SQ.

2A heuristic method can be used to search γ. Clearly, γ depends on the application.
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4.5.1 Incremental Merging

The complexity of the above procedures is a function of the total number of quantization

bins, and thus of the number of nodes involved. Thus, these approaches could potentially

be complex for large sensor fields. We now show that incremental merging is possible,

that is, we can start by performing the merging based on a subset of N sensor nodes,

N < M , and will be guaranteed that merging decisions that were valid when N nodes

were considered will remain valid when all M nodes are taken into account.

To see this, suppose that Qj
i and Qk

i are identifiable when only N nodes are consid-

ered. That is, from Definition 1, Sj
i (N) ∩ Sk

i (N) = ∅, where N indicates the number

of nodes involved in the merging process. Note that since every element Qj(M) =

(Q1, ..., QN , QN+1, ..., QM ) ∈ Sj
i (M) is constructed by concatenating M − N indices

QN+1, ..., QM with the corresponding element, Qj(N) = (Q1, ..., QN ) ∈ Sj
i (N), we have

that Qj(M) 6= Qk(M) if Qj(N) 6= Qk(N). Thus, by the property of the intersection

operator ∩, we can claim that Sj
i (M)∩ Sk

i (M) = ∅ ∀M ≥ N , implying that Qj
i and Qk

i

are still identifiable even when we consider M nodes.

Thus, we can start the merging process with just two nodes and continue to do further

merging by adding one node (or a few) at a time without change in previously merged bins.

When many nodes are involved, this would lead to significant savings in computational

complexity. In addition, if some of the nodes are located far away from the nodes being

added (that is, the dynamic ranges of their quantizers do not overlap with those of the

nodes being added), they can be skipped for further merging without loss of merging

performance.
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4.6 Extension of Identifiability: p-identifiability

Since for real operating conditions, there exist measurement noise (wi 6= 0) and/or pa-

rameter mismatches, the assumption that Pr[(Q1, ..., QM ) ∈ SQ] = 1 is no longer valid.

Thus, we need to consider modifications to the merging technique to allow it to operate

under noisy condition. We start by constructing the set SQ by taking elements in SM

that have high probabilities. In other words, we discard some M -tuples in SM that rarely

happen so that we can maintain Pr[Qr ∈ SQ(p)] = p(' 1) and still achieve good rate

savings by the merging technique. Formally,

SQ(p) = {Q(1), ...,Q(|SQ(p)|)}, P r[Q(i)] ≥ Pr[Q(j)] i < j, i, j = 1, ..., |SM | (4.7)

Notice that a decoding error will occur at the fusion node whenever an element in SM −

SQ(p) is produced. Clearly, there will be trade-off between rate savings and decoding

errors. If we choose SQ(p) to be as small as possible, we can achieve better rate savings

at the expense of larger decoding error, which could lead to significant degradation of

localization performance. Handling of decoding errors will be discussed in Section 4.7.

With this consideration, Definition 1 can be restated as follows:

Definition 2 Qj
i and Qk

i are p-identifiable, and therefore can be merged, iff Sj
i (p) ∩

Sk
i (p) = ∅,

where Sj
i (p) and Sk

i (p) are constructed from SQ(p). Notice that p-identifiability allows

us to apply the merging technique explained in Section 4.5 and thus achieve good rate
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savings at the expense of decoding error. Clearly, the probability of decoding error would

be less than 1− p.

4.7 Decoding of Merged Bins and Handling Decoding Errors

Figure 4.1: Encoder-Decoder Diagram

When there is a decoding error, the first step we should take would be to obtain the

possible M-tuples, QD1 , ...,QDK
from the received M-tuple Qr (encoded version) by using

the M merging tables. Note that the merging process is done off-line in a centralized

manner. In real operation, each node stores its merging table to perform the encoding

and the fusion node uses SQ(p) and M merging tables to do the decoding. For example

when M = 3, Ri = 2, suppose that according to node 1’s merging table, Q1
1 and Q4

1 can

be merged into Q1
1, implying that node 1 will transmit Q1

1 to the fusion node whenever
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z1 belongs to Q1
1 or Q4

1. If the fusion node receives Qr = (1, 2, 4), it decomposes (1, 2, 4)

into (1, 2, 4) and (4, 2, 4) by using node 1’s merging table. This decomposition will be

performed for the other M − 1 merging tables.

Suppose we have a set of K M-tuples, SD = {QD1 , ...,QDK
} decomposed from Qr.

Then clearly, Qr ∈ SD and Qt ∈ SD where Qt is the true M-tuple before encoding

(see Figure 4.1). It is observed that since the decomposed M-tuples are produced via

the M merging tables from the true one, Qt, it is very likely that Pr(QDk
) ¿ 1, where

QDk
6= Qt, k = 1, ..., K. In other words, since the encoding process allows us to merge

the quantization bins whenever any M-tuples that contain either of them are very unlikely

to happen at the same time, the M-tuples, QDk
(6= Qt), tend to take very low probability.

4.7.1 Decoding Rule 1: Simple Maximum Rule

Since the received M-tuple Qr has ambiguity produced by encoders at each node, the

decoder at fusion node should be able to find the true M-tuple by using appropriate

decoding rules. As a simple rule, we can take the M-tuple (out of QD1 , ...,QDK
) that is

most likely to happen. Formally,

QD = arg max
k

Pr[QDk
], k = 1, ..., K (4.8)

where QD is the decoded M-tuple which will be forwarded to the localization routine.

Now we consider two possible cases as follows:

• Qt ∈ SQ(p)

There will be no decoding error and there exists only one M -tuple QD from K
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M -tuples that belongs to SQ(p). Note that Pr[QD] ≥ Pr[QDk
] k = 1, ..., K due

to the property of SQ(p) in (4.7) and thus the decoding rule in (4.8) allows us to

obtain Qt out of K M -tuples without decoding error.

• Qt ∈ SM − SQ(p)

Since the decoding error occurs only when Pr[Qt] < Pr[QD], the decoding error

probability will be less than 1− p. Note that Pr[Q ∈ SQ(p)] = p.

4.7.2 Decoding Rule 2: Weighted Decoding Rule

Instead of choosing only one decoded M-tuple, we can treat each decomposed M-tuple as

a candidate for decoding with a corresponding weight based on likelihood. For example,

we can view QDk
as the decoded M-tuple with weight of Wk =

Pr[QDk
]∑K

l Pr[QDl
]

k = 1, ..., K.

It should be noted that the weighted decoding rule will be used along with the localization

routine as follows:

x̂ =
K∑

k

x̂kWk k = 1, ..., K (4.9)

where x̂k is the estimated source location using the decoded M-tuple, QDk
. For simplicity,

we can take a few dominant M-tuples for the weighted decoding and localization. That

is,

x̂ =
L∑

k

x̂(k)W(k) k = 1, ..., L (4.10)

where W(k) is the weight of QD(k)
and Pr[QD(i)

] ≥ Pr[QD(j)
] if i < j. Typically L is

chosen as a small number (e.g., L = 2). Note that the weighted decoding rule with L = 1

is equivalent to the simple maximum rule in (4.8).
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4.8 Application to Acoustic Amplitude Sensor Case

In order to perform distributed encoding at each node, we first need to obtain the set

SQ, which can be constructed from (4.1) as follows:

SQ = {(Q1, ..., QM )| ∃x ∈ S, Qi = αi(gi
a

‖ x− xi ‖α
+ wi)} (4.11)

where the i-th sensor reading zi(x) is expressed by the sensor model gi
a

‖x−xi‖α , and the

measurement noise, wi (see Section 2.5.1 for further details about the expression). When

the signal energy a, is known and there is no measurement noise (wi = 0), it would

be straightforward to construct the set SQ. That is, each element in SQ corresponds

to one region in sensor field which is obtained by computing the intersection, A, of M

ring-shaped areas, A1, ..., AM . For example, using an j-th element Qj = (Qj
1, ..., Q

j
M ) in

SQ, we can compute the corresponding intersection Aj as follows:

Ai = {x|gi
a

‖ x− xi ‖α
∈ Qj

i ,x ∈ S}, i = 1, ..., M (4.12)

Aj =
M⋂

i

Ai (4.13)

Clearly, since the nodes involved in localization of any given source location generate the

same M-tuple, the set SQ will be computed deterministically. In other words, Pr[Q ∈

SQ] = 1. Thus, using SQ, we can apply our merging technique to this case and achieve

significant rate savings without any degradation of localization accuracy (no decoding

error).
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However, measurement noise and/or unknown signal energy will make this problem

complicated by allowing random realizations of M-tuples generated by M nodes for any

given source location. Since the condition for no decoding error, i.e., Pr[Q ∈ SQ] = 1,

is satisfied only when SQ takes all possible M-tuples, the size of SQ should be increased

to reduce the decoding errors and this will result in large reduction in the rate savings

achieved by our encoding algorithm. Thus, by noting that the decoding errors will occur

whenever Qr ∈ SM − SQ, we can construct SQ by including only those elements with

high probability, so that decoding errors are unlikely. Formally, we construct SQ(p) such

that Pr[Q ∈ SQ(p)] = p(≈ 1) and then apply our modified merging algorithm with

p-identifiability explained in Section 4.6.

4.8.1 Construction of SQ(p)

In order to construct SQ(p), which should meet the property (4.7), we need to have

all possible M-tuples and compute their probabilities to obtain the sorted version of

Q(1), ...,Q(|SQ|). Practically, since this would incur very large computation cost, we in-

stead construct SQ as follows:

• Assuming no measurement noise, construct multiple SQ(ak)’s using (4.11) where

a = ak, wi = 0, k = 1, ..., La. Note that La = amax−amin
∆a , and ∆a = ak+1 − ak is

chosen as a small value (¿ 1).

• Check if Pr[Q ∈ SQ(p) =
⋃La

k=1 SQ(ak)] = p.

• Otherwise, generate random realizations of M-tuples by using measurement noise

until Pr[Q ∈ SQ(p)] = p.
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Note that this construction allows SQ(p) to take most of M-tuples with high proba-

bility due to the assumption of normal distribution of measurement noise.

4.9 Experimental results

The distributed encoding algorithm is applied to the system where each node employs

an acoustic amplitude sensor model for source localization. The experimental results are

provided in terms of average localization error, E‖x−x̂‖2, and rate savings (%) computed

by RT−RM
RT

×100, where RT is the rate consumed by M nodes when only the independent

entropy coding (Huffman coding) is applied after quantization and RM is the total rate

computed when the merging technique is applied before entropy coding. In performing

the localization based on the quantized noisy sensor readings, the localization algorithm

proposed in Chapter 3 was applied to compute E‖x− x̂‖2.

We also assume that each node uses the quantizer (LSQ) proposed in Chapter 2 except

for the experiments where otherwise noted.

4.9.1 Distributed Encoding Algorithm

First, we assume that each node can measure the known signal energy without measure-

ment noise. The distributed encoding algorithm proposed in Section 4.5 has been applied

to the acoustic sensor system. Figure 4.2 shows the overall performance of the system

for each quantization scheme. In this experiment, 100 different 5-node configurations

were generated in a sensor field 10 × 10m2. For each configuration, a test set of 2000

random source locations was used to obtain sensor readings, which are then quantized by

three different quantizers, namely, uniform quantizers, Lloyd quantizers and LSQs. The
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average localization error and total rate RM are averaged over 100 node configurations.

As expected, the overall performance for LSQ is the best of all since the total reduction

in redundancy can be maximized when the application-specific quantization (LSQ) and

the distributed encoding are used together.

Figure 4.2: Average localization error vs. Total rate RM for three different quantization
schemes with distributed encoding algorithm. Average rate savings is achieved by the
distributed encoding algorithm (global merging algorithm).

Our encoding algorithm with the different merging techniques outlined in Section 4.5

is applied for comparison and the results are provided in Table 4.1. Methods 1 and 2 are

as described in Section 4.5, and Method 3 is the global merging algorithm discussed in

that section. We can observe that even with relative low rates (4 bits per node) and a

small number of nodes (only 5) significant rate gains (up to 30%) can be achieved with

our merging technique.
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Table 4.1: Total rate, RM in bits (Rate savings) achieved by various merging techniques.

Ri Method 1 Method 2 Method 3
2 9.4 (8.7%) 9.4 (8.7%) 9.10 (11.6%)
3 11.9 (20.6%) 12.1 (19.3%) 11.3 (24.6%)
4 13.7 (31.1%) 14.1 (29.1%) 13.6 (31.6%)

The encoding algorithm was also applied to many different node configurations to

characterize the performance. In this experiment, 500 different node configurations were

generated for each M(M = 3, 4, 5) in a sensor field 10 × 10m2. After quantization,

the global merging technique has been applied to obtain the rate savings. In obtaining

the metric in (4.6), the source distribution is assumed to be uniform. The average rate

savings achieved by the encoding algorithm is computed as a sample mean over 500

different node configurations and plotted in Figure 4.3. Note that the performance of our

encoding algorithm is dependent upon the set SQ given by (4.1).

Since there are a large number of nodes in a typical sensor network, our distributed

algorithms have been applied to the system with an acoustic sensor model in a larger

sensor field (20×20m2). In this experiment, 20 different node configurations are generated

for each M(= 12, 16, 20) and for each node configuration, our encoding algorithm is

applied after quantization with assumption of no measurement noise. Note that the node

density for M = 20 in 20× 20m2 is equal to 20
20×20 = 0.05 which is also the node density

for the case of M = 5 in 10 × 10m2. In Table 4.2 it is worth noting that the system

with a larger number of nodes outperforms the system with a smaller number of nodes

(M = 3, 4, 5) although the node density is kept the same. This is because the incremental

property of the merging technique allows us to find more identifiable bins at each node.

82



2 2.5 3 3.5 4
16

18

20

22

24

26

28

30

32

34

36

Number of bits assigned to each node, R
i
 with M=5

A
ve

ra
te

 r
at

e 
sa

vi
ng

s

3 3.5 4 4.5 5
10

12

14

16

18

20

22

24

26

28

Number of nodes involved, M with R
i
=3

A
ve

ra
ge

 r
at

e 
sa

vi
ng

s

Figure 4.3: Average rate savings achieved by the distributed encoding algorithm (global
merging algorithm) vs. number of bits, Ri with M = 5 (left) and number of nodes with
Ri = 3 (right)

Table 4.2: Total rate RM in bits (Rate savings) achieved by distributed encoding algo-
rithm (global merging technique). The rate savings is averaged over 20 different node
configurations where each node uses LSQ with Ri = 3.

M Total rate RM in bits (Rate savings)
12 17.3237 (51.56%)
16 20.7632 (56.45%)
20 23.4296 (60.69%)

4.9.2 Encoding with p-Identifiability and Decoding rules

The distributed encoding algorithm with p-identifiability described in Section 4.6 was

applied to the case where each node collects noise-corrupted measurements of unknown

source signal energy. First, assuming known signal energy, we checked the effect of mea-

surement noise on the rate savings, and thus decoding error by varying the size of SQ(p)

(see Figure 4.4). In this experiment, the variance of measurement noise, σ2, varies from
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0 to 0.52 and for each σ2, a test set of 2000 source locations was generated with a = 50.

Figure 4.4 illustrates that good rate savings can be still achieved in a noisy situation at

the expense of a small decoding error. Clearly, it can be noted that better rate savings

can be achieved at higher SNR3 and (or) with a larger decoding error (< 0.05) allowed.

Figure 4.4: Rate savings achieved by the distributed encoding algorithm (global merging
algorithm) vs. SNR (dB) with Ri = 3 and M=5. σ2 = 0, ..., 0.52

For the case of unknown signal energy where we assume that a ∈ [amin amax],

we constructed SQ(p) =
⋃La

k=1 SQ(ak) with ∆a = ak+1 − ak = amax−amin
La

= 0.5 by

varying p = 0.8, ..., 0.95 where SQ(ak) is the set SQ constructed when a = ak in noise-free

condition (wi = 0). Using SQ(p), we applied the merging technique with p-identifiability

to evaluate the performance (rate savings vs. localization error). In the experiment, a

test set of 2000 samples is generated from uniform priors for p(x) and p(a) with each
3Note that for practical vehicle target, the SNR is often much higher than 40dB [19].
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noise variance (σ = 0, 0.05). In order to deal with decoding errors, two decoding rules in

Section 4.7 were applied along with the localization algorithm in Chapter 3. In Figure 4.5,

the performance curves for two decoding rules were plotted for comparison. As can be

seen, the weighted decoding rule performs better than the simple maximum rule since

the former takes into account the effect of the other decomposed M-tuples on localization

accuracy by adjusting their weights. It is also noted that when decoding error is very low

(equivalently, p ≈ 1), both of them show almost the same performance.

Figure 4.5: Average localization error vs. total rate RM achieved by the distributed
encoding algorithm (global merging algorithm) with simple maximum decoding and
weighted decoding, respectively. Total rate varies by changing p from 0.8 o 0.95 and
weighted decoding is conducted with L = 2. Solid line + ¤: weighted decoding. Solid
line + ∇: simple maximum decoding.

To see how much gain we can obtain from the encoding, we compared this to the

system which uses only the entropy coding without applying the merging technique.
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In Figure 4.6, the performance curves are plotted by changing the size of SQ(p) with

σ = 0, 0.05. It should be noted that we can determine the size of SQ(p) (equivalently, p)

that provides the best performance from this experiment.

Figure 4.6: Average localization error vs. total rate, RM achieved by the distributed
encoding algorithm (global merging algorithm) with Ri = 3 and M=5. σ = 0, 0.05.
SQ(p) is varied from p = 0.85, 0.9, 0.95. Weighted decoding with L = 2 is applied in this
experiment.

4.9.3 Performance Comparison: Lower Bound

We address the question of how our technique compares with the best achievable perfor-

mance for this source localization scenario. As a bound on achievable performance we

consider a system where (i) each node quantizes its observation independently and (ii) the

quantization indices generated by all nodes for a given source location are jointly coded

(in our case we use the joint entropy of the vector of observations as the rate estimate).
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This approach can be applied to both the original quantizer designed and the quantizer

obtained after merging.

Note that this is not a realistic bound because joint coding cannot be achieved unless

the nodes are able to communicate before encoding. Note that in order to approximate

the behavior of the joint entropy coder via distributed source coding techniques one

would have to transmit multiple observations of the source energy from each node, as

the source is moving around the sensor field. Some of the nodes could send observations

that are directly encoded, while others could transmit a syndrome produced by an error

correcting code based on the quantized observations. Then, as the fusion node receives

all the information from the various nodes it would be able to exploit the correlation from

the observations and approximate the joint entropy. This method would not be desirable,

however, because the information in each node depends on the location of the source and

thus to obtain a reliable estimate of the measurement at all nodes one would have to

have observations at a sufficient number of positions of the source. Thus, instantaneous

localization of the source would not be possible. The key point here, then, is that the

randomness between observations across nodes is based on the localization of the source,

which is precisely what we wish to observe.

For one 5-node configuration, the average rate per node was plotted with respect to

the localization error in Figure 4.7, with assumption of no measurement noise (wi = 0)

and known signal energy. As can be seen from Figure 4.7, our distributed encoding

algorithm in Section 4.5 outperform techniques based on uniform quantization. For this

particular configuration we can observe a gap of less than 1 bit/node, at high rates,

between the performance achieved by proposed quantizer with distributed encoding and
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that achievable with the same quantizer if joint entropy coding was possible. In summary,

our merging technique with the proposed quantization scheme provides substantial gain

over straightforward application of known techniques and comes close to the optimal

achievable performance.

Figure 4.7: Performance comparison: distributed encoding algorithm is lower bounded
by joint entropy coding.

4.10 Conclusion

Using the distributed property of the quantized observations, we proposed a novel encod-

ing algorithm which allows us to obtain significant rate savings by merging quantization

bins. We also developed decoding rules to deal with the decoding errors which can be

caused by measurement noise and/or parameter mismatches. In the experiment, we

showed that the system equipped with the quantizers proposed in Chapter 2 and the
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distributed encoders achieved significant data compression as compared with standard

systems.
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Chapter 5

Conclusion and Future work

In this thesis, we have studied the impact of quantization on the performance of source

localization systems where distributed sensors measure source signals, quantize the noise-

corrupted measurements, encode them and send them to a fusion node that performs

decoding and the localization based on quantized data to estimate the source location.

We proposed an iterative design algorithm which allows us to reduce the localization

error for quantizer design. We showed that quantizer design should be “application-

specific”. We addressed the rate allocation problem and showed that the rate allocation

result could be improved by taking into account the quantization scheme at each sensor.

We also proposed a novel distributed encoding algorithm that merges quantization bins

at each sensor whenever the ambiguity created by this merging can be resolved at the

fusion node by using information from other sensors.

As an example of the localization application, we considered an acoustic amplitude

sensor system where each sensor measures the source signal energy based on an energy

decay sensor model. For this application, we proposed a distributed localization algorithm

based on the maximum a posteriori (MAP) criterion. We showed that the localization
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algorithm achieves good performance with reasonable complexity as compared to the

minimum mean squared error (MMSE) estimation.

Extensive simulations have been conducted to characterize the performance of our dis-

tributed algorithms. They demonstrated the benefits of using application-specific designs

to replace traditional quantizers such as uniform quantizers and Lloyd quantizers. They

also showed that the rate allocation optimized for source localization achieved significant

gains as compared to a uniform rate allocation. In addition, the experiments showed

the complexity of the localization algorithm could be significantly reduced by taking into

account the distributed property of the quantized data without much degradation of the

localization accuracy. They also showed that significant rate savings could be achieved

via our encoding algorithm.

In future work, many relevant topics and ideas can be addressed. First, in this thesis,

we have considered a specific source localization system and used the simulation based

data to test our algorithms. Thus, it would be worth applying the algorithms to real

data obtained in the test ground for various systems where different types of sensors

can be employed at each sensor for different tasks. Second, we assumed that the com-

munication link between the sensors and the fusion node is fully reliable. Further work

should be conducted to incorporate the noisy link to our design framework. Third, the

topic that can be addressed is the joint design of quantizers and encoders since there

exists dependency between quantization and encoding of quantized data which will be

exploited to obtain more performance gain. Finally, complexity should be addressed for

practical applications. Note that our design algorithms operate off-line by using infor-

mation of sensor locations. However, in many cases of interest the sensor network could
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be reconfigured regularly and would require on-line tasks. In these cases, low complexity

techniques would be very important.
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