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Abstract

In this thesis we study various techniques for eÆcient quantization and entropy cod-

ing in several source coding applications. In particular we discuss adaptive methods

and rate-distortion (R-D) optimization techniques as our vehicles to carry out the

goal of eÆcient source coding.

We use adaptive methods to help compression of inputs such as images and video

that have little known or non-stationary source statistics. We investigate new R-D

optimization techniques to seek fast and optimal solutions in lossy source coding. We

also consider the error robustness issue associated with entropy coding and develop

techniques for robust image coding.

The speci�c topics of interest in this thesis are:

� Adaptive vector quantization (VQ) without side information. We employ non-

parametric pdf estimation for adaptation of the scalar-vector quantizer and the

trellis coded quantizer. The resulting adaptive VQ algorithms are moderate

in complexity while achieving signi�cant adaptation gain.

� Adaptive quantization of image subband data. Context-based subband data

classi�cation and parametric pdf estimation are used for adaptive image sub-

band quantization. We also employ a forward adaptive mode to obtain robust

adaptation performance. The resulting subband image coder is competitive or

superior to other state-of-the-art wavelet image coders.

� Image domain coding of simple images. We develop an image domain com-

pression algorithm for images consisting of a few pixel intensity values. We

xvi



observe that bit-plane coding with an adaptive binary arithmetic coder is e�ec-

tive for these simple images. We introduce a new context modeling technique

to enhance the adaptive arithmetic coder eÆciency.

� Fast R-D optimization algorithms. We propose a novel hybrid R-D optimiza-

tion technique by combining the two most popular techniques, Lagrangian

optimization and dynamic programming. The proposed technique is endowed

with both the speed of the Lagrangian approach and the optimality of dynamic

programming.

� Error robust compression of still images. We develop a JPEG-based image

coder that transmits the number of coded bits for each group of DCT blocks

as resynchronization side information. We show this approach to be useful

compared to the resynchronization scheme found in baseline JPEG.
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Chapter 1

Introduction

Recent years have witnessed increasing exchange of data over communication net-

works. As data traÆc outgrows the capacity of communication channels, compact

representation of data is essential for eÆcient use of available bandwidth for data

transmission or storage. The need for eÆcient data representation, a common inter-

est in many practical digital communication systems, manifests the importance of

source coding or signal compression in modern communication environments.

Signal compression is usually categorized into quantization, as a lossy compres-

sion technique, and its lossless counterpart often called entropy coding. Both com-

pression techniques have found fruitful application for various data representation

needs. Entropy coding compresses data without loss of information but, in many

cases, its achievable compression|bounded by the entropy of source data|is in-

suÆcient by itself for the purpose of low rate coding. By contrast, quantization

can provide 
exible compression for a wide range of encoding rates at the cost of

accordingly introduced quantization error or information loss.

In general source coding systems, quantization is followed by entropy coding

so as to achieve the desired compression rate with minimum loss of information.

Transform of input data can also be considered prior to quantization in order to

improve the eÆciency of compression. Fig. 1.1 depicts the components of a generic

source coding system. There are many well-established techniques available for each

of the coding components in various coding applications. For example, in image and

1



Transform Quantization
Entropy
Coding

Input
Source

Channel

Figure 1.1: Block diagram of a generic encoding system.

video coding systems, the discrete cosine transform (DCT) and the wavelet transform

are prevalently used for data transform while Hu�man coding and arithmetic coding

are the two most popular methods for entropy coding of quantized data [47, 34, 18,

19, 59].

Meanwhile, it is interesting that uniform quantization, the oldest and simplest

technique in the proli�c literature of quantization, has been the quantization choice

in many practical compression systems until recently. For example, JPEG (Joint

Photographic Experts Group) [47] and MPEG (Motion Pictures Experts Group)

[34], which emerged during the last decade, as, respectively, the image and video

international standards, use uniform quantization to quantize the DCT block coeÆ-

cients. Although the uniform quantizer does not o�er the best available compression

quality for these applications, it is preferred to other sophisticated quantizers mainly

due to its simplicity. In other words, the high complexity of more advanced quantiz-

ers outweighs the potential performance advantage over the uniform quantizer and

thus limits their use in practice.

However complicated source coding techniques become a�ordable thanks to the

ceaseless improvement of the digital circuit speed, while the need for highly eÆcient

digital signal compression is increasing as exempli�ed by high-�delity multimedia

data storage and transmission applications. Thus it is likely to see many practical

compression systems equipped with sophisticated techniques in the near future. In

fact, advanced quantization algorithms have been employed in standards for digital

speech coding systems, e.g., Code Excited Linear Prediction (CELP) coder uses

an adaptive vector quantization technique for a low-rate (4.8 kbits) speech coding
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standard [54]. In the case of still image compression, the emerging ISO/ITU standard

JPEG 2000 [16] is considering a wavelet transform coder based on the trellis coded

quantizer (W/TCQ) [41] as a possible baseline algorithm. Also, many adaptive

arithmetic coders with sophisticated source modeling techniques have been proposed

so as to enhance entropy coding in various image coding applications [20, 68, 65].

The interest of our study lies in the techniques to aid high quality source coding

in demanding modern communications environments. We �rst focus on adaptive

methods for quantization. Adaptive quantization is particularly e�ective when the

input source statistics are little known or non-stationary. Thus audio, image, and

video coding systems all can be improved by using adaptive quantization as they

compress inputs having non-stationary characteristics. Other adaptation problems

arise in entropy coding for lossless compression of a particular type of images.

Then we discuss fast algorithms for discrete rate-distortion (R-D) optimization,

which can bene�t various quantization and general source coding tasks where tradi-

tional optimal allocation solutions are computationally costly. Finally we investigate

the problem of error robust source coding. EÆcient quantization often involves en-

tropy coding to generate variable bit rate (VBR) data being vulnerable to bit error

propagation. We consider a technique to generate an inherently robust bit stream

without losing the eÆciency of VBR quantization.

In this chapter, we overview the basic concepts and techniques for high qual-

ity source coding. In Section 1.1 we discuss adaptive source coding. We �rst de-

scribe di�erent types of adaptation algorithms, i.e., forward adaptation and back-

ward adaptation. Then we present particular adaptation techniques used to develop

our work in later chapters, e.g., adaptation via input pdf estimation and context-

based adaptation. Section 1.2 introduces the budget-constrained R-D optimization

formulation of source coding problems. We also introduce conventional solutions for

R-D optimization along with their advantages and drawbacks. In Section 1.3 we

bring up the issue of error robust source coding. This topic is relatively new in the

source coding study but important as it deals with means to preserve the eÆciency
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Figure 1.2: Types of adaptive quantization systems. (a) Forward adaptive systems
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is required but the decoder complexity is increased.

of VBR source coding schemes under imperfect data transmission environment. Fi-

nally, in Section 1.4, we give an overview of the work in this study and summarize

the contribution.

1.1 Adaptive techniques for source coding

Most common source coding schemes rely on training sets and/or source models,

which can represent the statistics of the actual input, to design the quantizer code-

book or the entropy code. The performance of a source coding system using such

a priori knowledge about the input is largely a�ected by the choice of the training

set or the input source model, resulting in unexpected performance degradation if

there is a mismatch between the actual input statistics and the design assumption.

In practical situations of compressing complex data, it may be hard to have a good

training set or suÆcient knowledge for the input model. Thus there exists a moti-

vation for adaptive source coding schemes which do not require any (or as little as

possible) a priori information on the signal of interest.

We can categorize the various adaptation schemes into two broad classes: forward

adaptation and backward adaptation. We will describe the di�erence between these

4



two adaptation scenarios with a focus on the case of adaptive quantization. Fig. 1.2

depicts the block diagrams of the typical forward and backward adaptive quantiza-

tion systems. In forward adaptive quantization, the encoder makes a decision on

how to adapt the quantizer by probing the current and future inputs. Since the

adaptation is based on information unavailable to the decoder, side information has

to be sent to inform the decoder of the encoder's decision. As an example of forward

adaptive quantization, JPEG encoders can selectively use a speci�c quantization

table for each image. The optimized quantization table for a given image must be

stored in the JPEG �le header for correct dequantization while reconstructing the

image.1

In the case of backward adaptation, quantizers are updated based on the \previ-

ously quantized" data which are available to both encoder and decoder. Although

backward adaptation has the drawback of increasing the complexity not only in the

encoder but also in the decoder, it has the clear advantage of avoiding the need

for the adaptation overhead information in the decoder. When discussing adaptive

techniques for quantization and entropy coding in our study, we are particularly

interested in this overhead-free backward adaptive systems which we will simply call

\adaptive," for convenience.

Early examples of adaptive quantization systems [14, 21] focus on the dynamic

range adaptation of the uniform quantizer. The recent work of [46] has extended

the adaptation to include updating of quantization thresholds and reconstruction

levels, as well as dynamic range, for scalar quantizers. Assuming a quantizer design

algorithm based on the pdf of input source, the basic idea to achieve adaptation

is to estimate the input pdf from past quantized data. Figure 1.3 illustrates a

method of input pdf estimation: the histogram of past quantized data is used to

evaluate the probability mass function associated with the quantization bins, which

1For entropy coding, there is a similar forward adaptation option available in JPEG: the JPEG
encoder can use a custom Hu�man code table optimized for each input image, instead of the default
Hu�man table. The custom Hu�man code also adds to the side information for correct entropy
decoding.
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Figure 1.3: Input pdf estimation from histogram of past quantized data.

in turn provides a piecewise linear approximation of a non-parametric input pdf. The

resulting adaptation scheme can \learn" the distribution of stationary memoryless

sources and, more importantly, \detect" the short-term statistics changes of the

input. Thus it performs well either for the input from an unknown stationary source

or in the presence of switching modes in the source distribution.

[46] has demonstrated the usefulness of this quantizer adaptation technique by

implementing adaptive scalar quantizers based on the Lloyd-Max minimum distor-

tion design and based on the optimal entropy-constrained design. These adaptive

scalar quantizers achieve good results for the input from a single Gaussian source

and also for the mixed input obtained from switching Gaussian sources.

Now two questions can be raised regarding further application of this type of

adaptive quantization idea:

1. Can we use this adaptation technique for more complicated quantizers, e.g.,

vector quantizers?

2. Can we utilize the pdf estimation idea in practical applications, e.g., adaptive

quantization for compression of speech data, image data, etc.?
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We will provide an answer to the �rst question by considering two speci�c vector

quantizers in Chapter 2. Chapter 3, motivated by the second question, will intro-

duce a high quality subband image compression scheme where quantizer adaptation

is achieved by exploiting a di�erent pdf estimation technique, i.e., parametric pdf

estimation based on quantized data.

Another key tool for backward adaptive quantization in this study is the \context

modeling" technique. See Fig. 1.4 for an example of context-based quantization of

2-D data (e.g., coeÆcients obtained by 2-D wavelet transform of an image). While

a relatively large amount of previously quantized data are required for those pdf

estimation techniques, only a few past quantized data would be enough for context-

based adaptation. Thus context-based adaptation can be particularly useful when

quantization has to deal with fast varying input statistics. In fact, context modeling

has been a popular idea for eÆcient entropy coding, i.e., the arithmetic coder can use

the context modeling technique to adaptively determine the conditional probability

of the input symbol [63].

We will use a context-based method in Chapter 3 to classify the subband image

data into the sets of di�erent activity. Given multiple classes of data, we achieve

quantization adaptation such that the dynamic range of the quantizer for each data

class matches the estimated activity, or variance, of the class. Then, in Chapter 4,
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we will introduce a lossless algorithm for compression of \simple" images|images

that consist of only a small number of pixel intensity levels. In this image domain

algorithm, the context modeling technique is employed to enable eÆcient entropy

coding of image bit-planes.

1.2 Rate-distortion optimization techniques

A fundamental problem in source coding is how to allocate available bits R (or

the rate budget) over individual coding units to minimize the overall coding distor-

tion D, measured by a given metric. As a tool to formulate and solve this prob-

lem, rate-distortion (R-D) optimization pervades all of source coding, both from an

information-theoretic standpoint as well as for the design of practical coding systems

(where the term operational rate-distortion is used).

While an optimal solution is always desirable in order to achieve the extreme per-

formance of R-D formulated source coding problems, the ability to �nd the optimal

solution is not the only concern in employing a particular optimization approach.

The complexity of optimization algorithm|usually evaluated in terms of computa-

tion time and memory requirements|is often a bigger concern in many practical

systems. For the particular example of Chapter 5, the codebook search for scalar-

vector quantizer [30], conventional techniques for R-D optimization o�er solutions

which may be either optimal but too complex, or fast but far from optimal. This

example suggests the need for a fast method to �nd optimal solutions which can im-

prove the source coding applications in terms of the coding quality or the complexity,

compared to the existing R-D optimization methods.

In what follows we discuss two popular techniques for R-D optimization in order

to understand the problems of the conventional methods. We start with a mathe-

matical formulation of our optimization problem.
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1.2.1 Formulation: Budget-constrained R-D optimization

In this section we formulate budget-constrained R-D optimization for general lossy

source coding problems. Suppose that we have a block of N coding units, with M

di�erent quantization choices being available for each unit. Assume that the rate and

the distortion, ri(j) and di(j), respectively, for each unit i and quantization option

j are known. Our goal is to �nd, among all the possible quantization combinations

z = (z(1); : : : ; x(N)) where z(i) denotes the quantization choice for unit i, the

optimal solution z� that minimizes the total distortion

z� = argmin
z

NX
i=1

di(z(i)) (1.1)

while not exceeding the pre-determined rate budget RT , i.e.,

NX
i=1

ri(z
�(i)) � RT : (1.2)

This problem can be encountered for example in block-based DCT image coding

where the input unit in the above formulation corresponds to a DCT block and the

quantization choices correspond to di�erent quantization scales as in MPEG. Also

entropy-constrained quantization over a window of input samples can �t into this

R-D optimization formulation, where each sample is the coding unit [79].

1.2.2 Lagrangian optimization

The Lagrange multiplier method is a popular choice to solve the above problem [53].

The basic idea is to introduce the Lagrangian cost

J =
NX
i=1

(di(j) + �ri(j)): (1.3)
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they have smaller distortion than the convex hull solution still within the budget.

Then a search is performed by choosing, for a given Lagrange multiplier �, the

optimal quantization choice j(�) that minimizes the cost di(j) + �ri(j) of the i-

th element in the coding block. The goal of the search is to �nd the Lagrangian

multiplier �� for which the resulting total rate
PN

i=1 ri(j(�
�)) is equal to or just

below the desired budget RT . If the budget is exactly met for �� then the solution

is optimal.

We note that the Lagrangian optimization algorithm is very fast since each stage

of the search for the optimal � consists of greedy minimization of the cost terms

on a term-by-term basis. But the Lagrange multiplier method has the limitation of

reaching only the operating points on the convex hull of the R-D characteristics (see

Fig. 1.5) and thus only approximates the performance of the optimal algorithms.

This shortcoming could be crucial when the operating points on the convex hull are

sparse so that the convex hull solution fails to approximate the optimal solution

e�ectively.
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Figure 1.6: Components of the dynamic programming tree.

1.2.3 Dynamic programming

To optimally solve the R-D optimization problem, we can alternatively resort to

dynamic programming (DP). The DP algorithm �rst builds a tree in a sequential

manner to represent possible solutions. Fig. 1.6 depicts a DP tree in a 2-D plane

where the x-axis corresponds to the stage (or input unit) and the y-axis represents

the accumulated rate. Each stage in the tree corresponds to one of the N inputs and

each tree node, or state, is associated with the accumulated distortion and rate. For

example, consider the node (i,s) in the tree which represents a solution for which

s bits have been used up to stage i at a total distortion cost �. If quantizer j is

selected at stage i+1, it will generate a branch connecting (i,s) to (i+1,s+ ri+1(j))

and the accumulated distortion will be �+ di+1(j). Along with the method to grow

the tree, DP provides an optimal way to prune out the tree. Based on Bellman's

optimality principle [1], of all paths arriving at a node, only the one with smaller

distortion has any chance of being globally optimal. Thus we can eliminate, out of all

paths with the same accumulated rate at a given stage, those with larger distortion.

11



After the growing-and-pruning procedure, the overall survival path arriving at the

desired state at the �nal stage, which is determined by the budget constraint, yields

the optimal solution of the problem.

Dynamic programming has the advantage of achieving solutions that are not

reachable using the Lagrangian method. Thus it is particularly useful when there

might be \gaps" in the convex hull, for example, it could achieve the top-left (i.e.,

optimal) point in the shaded area in Fig. 1.5. However the major drawback of DP

is the computational complexity and memory requirement associated with its tree

search operation, especially when there are too many quantization choices at each

state of the DP tree or when the DP search block size is too large. For this reason,

dynamic programming cannot be used in many practical situations. For instance,

this method would be clearly impractical for real-time bit allocation over a large

image or a long video sequence.

For various source coding applications formulated as the R-D optimization prob-

lem, we can employ either the dynamic programming method or the Lagrange mul-

tiplier method as standard optimization techniques depending on the main concern

of the application, i.e., optimality or complexity. However, in Chapter 5, we propose

a novel hybrid technique for eÆcient R-D optimization, which combines the speed

of the Lagrangian approach with the optimality of the DP technique.

1.3 Error robust source coding

Entropy coding is an important tool to increase the eÆciency of source coders. At

the same time, it is an algorithm that is prone to channel or transmission errors by

generating variable bit rate (VBR) output bit streams. While the entropy decoder

relies on the pre�x code's unique decodability for correct decoding of the VBR

streams [7], channel errors result in loss of synchronization at the decoding end. Once

synchronization loss has occurred, the e�ect of a bit error can propagate through
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the remaining part of the bit stream. Thus, in the worst case, all remaining bits

become useless.

Forward error correction (FEC) is a conventional method which can prevent

catastrophic error propagation of bit errors by adding redundant bits to the VBR

streams in channel coding. Another popular approach is to insert a resynchronization

marker (or codeword) at a pre-speci�ed interval during the entropy coding. Then

the decoder can recover synchronization by locating the following resynchronization

maker in the bit stream after it experiences loss of synchronization. This type of

approach can be found in the error propagation protection scheme of the JPEG

standard.

We are interested in error protection techniques that can help entropy coding

generate error robust bit streams where the redundancy is minimized. In Chapter 6

we will introduce an error robust image coding scheme based on the JPEG encoder.

Our goal is to develop a JPEG-like coder that is more robust against channel errors

and o�ers better image compression than the baseline JPEG. We note that R-D

optimization techniques are used to compensate the overhead introduced for error

propagation protection by optimally allocating the available bits over the DCT block.

1.4 Overview and contribution of study

To present and develop eÆcient source coding systems based on the techniques and

problems introduced thus far, we organize this study as follows. We remark that, to

keep each chapter self-contained, some important ideas and concepts will be revisited

in di�erent chapters. For an overview of the study, refer to Fig. 1.7.

In Chapter 2 a backward adaptive quantization technique is employed for two

high performance vector quantizers: scalar-vector quantizer (SVQ) and trellis coded

quantizer (TCQ). Adaptation algorithms for selected vector quantizers resort to non-

parametric model estimation given quantized data, a proven technique for successful

scalar quantizer adaptation. Through simulation, the adaptation technique is shown
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Figure 1.7: Overview of the study.

to be useful in improving robustness and stability of SVQ and TCQ without using

side rate.

In this chapter we identify SVQ and TCQ as a special type of structured vector

quantizers that are built on a underlying scalar quantizer (USQ). We demonstrate

that adaptation of the USQ using the pdf estimation idea of [46] is useful for adaptive

operation of SVQ and TCQ while we can avoid complication of treating the whole

SVQ or TCQ as the adaptation unit.

Chapter 3 extends adaptive quantization to a real world application in subband

image coding. Context-based classi�cation of image subbands and quantizer adap-

tation using parametric pdf estimation are implemented in a backward adaptation

framework. A forward adaptation technique is also exploited to help the performance

of backward adaptation. The Laplacian distribution model assumed for image sub-

band data yields eÆcient use of overhead necessary for forward adaptation as well as
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reduces the overall adaptation complexity. The resulting image coder outperforms

most state-of-the-art image coders in the literature, especially at low rates, as its

experimental results show.

In Chapter 4 we present another adaptive image coder that operates in the im-

age domain rather than in the wavelet transform domain. In this chapter we are

interested exclusively in a special type of images which we will call simple. Simple

images are di�erent from natural images in that they consist of only a limited num-

ber of pixel intensity levels. Since wavelet transform coders are not successful in

compressing simple images such as scanned documents, computer generated graph-

ics, and cartoons, a new image coding scheme is proposed to take the advantage of

the characteristics of simple images.

Again the backward adaptation of the image domain compression algorithm re-

sorts to context-based operation. The main tool used in the algorithm is bit-plane

coding using an adaptive binary arithmetic coder. By developing a specialized com-

pression algorithm for simple images, we provide a potential to establish a more

generic image coding system that can handle even compound images with natural

and simple regions through adaptive application of appropriate coding algorithms

depending on the type of region.

Chapter 5 introduces eÆcient techniques for budget-constrained R-D optimiza-

tion. We describe how to incorporate the Lagrange multiplier method with dynamic

programming to improve the complexity of optimization. Excellent performance of

the resulting optimization technique is demonstrated for SVQ codebook search, an

R-D optimization problem.

The main contribution of this chapter is that we provide a clear framework for dis-

crete R-D optimization based on a novel hybrid approach. The proposed framework

can also be employed in more general class of �nite resource allocation optimization

problems, o�ering a practical means to �nd optimal solutions for complex large-scale

optimization problems.
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In Chapter 6 we turn our attention to the robustness issue that is often encoun-

tered in practical source coding systems. We develop a scheme to improve robustness

of variable-rate coding systems with the baseline JPEG codec as our testbed.

As the contribution of this chapter a new approach is proposed to attack the error

propagation problem associated with the JPEG bit stream, for which the standard

uses explicit resynchronization approach. Our alternative approach is based on the

idea of constraining the data length for the group of DCT blocks in the JPEG

encoded data. The advantage of the proposed approach stems from its intelligent

overhead use to endow the JPEG bit stream with error robustness.
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Chapter 2

Adaptive Quantization without Side Information

Using Scalar-Vector Quantizer and Trellis Coded

Quantizer1

2.1 Introduction

Lossless compression methods such as arithmetic coding [63] and dynamic Hu�man

coding [13] are well known for successful use of adaptive techniques in source coding.

These adaptive coders can learn the source statistics at both encoding and decoding

ends so as to adjust their encoding and decoding behavior on the 
y in a synchronized

manner. It is this \self-adjusting" feature that makes the adaptive methods distinct

from non-adaptive systems for which encoding and decoding is �xed throughout the

process.

Aiming to develop adaptive quantization algorithms similar in their characteris-

tics to those adaptive lossless compression schemes, [46] has introduced a framework

of quantizer adaptation through on-line estimation of the statistics of the input. In

particular, a piecewise linear approximation of the input pdf based on past quantized

data is presented in [46]. The estimated pdf is used for the encoder and the decoder

1For related publication to this chapter see [71].
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to periodically update quantization parameters (e.g., bin sizes and reconstruction

levels). A theoretical analysis of this adaptation scenario is provided in [78].

Although the framework can provide virtually any quantizers with adaptivity as

long as a quantizer design based on input pdf is available, the diÆculty arises from

the fact that the pdf estimation should depend only on quantized data. Since quan-

tized data represent only partial information about the input statistics, estimation

based on quantized data cannot resort to conventional pdf estimation techniques.

In [46], an adaptation algorithm is developed taking into account this problem and

applied to two simple scalar quantizers based on the Lloyd-Max design [38, 43] and

the entropy-constrained design [11, 4]. The resulting adaptive quantizers are shown

to be more e�ective for non-stationary input as well as competitive for stationary

input in comparison with their non-adaptive versions, i.e., the Lloyd-Max quantizer

and the optimal entropy-constrained scalar quantizer.

To achieve further gain over adaptive scalar quantization, we may consider ad-

vanced quantization schemes, e.g., vector quantizers, in the adaptation scheme.

However estimating the joint pdf of a vector source is not a straightforward gen-

eralization of the scalar case. Moreover most of the practical vector quantizer design

algorithms rely on a training set rather than the joint pdf of the vector source.

The goal of this chapter is to use the adaptive quantization technique of [46]

as a building block in more sophisticated quantization schemes|in particular, the

scalar-vector quantizer (SVQ) [30] and the trellis coded quantizer (TCQ) [42], which

are constructed based on an underlying scalar quantizer (USQ). Our motivation is

to demonstrate how adaptivity can be added and provide good results for popular

quantization techniques such as TCQ and SVQ both of which have useful properties.

We will introduce the adaptive scalar-vector quantizer (ASVQ) and the adaptive

trellis coded quantizer (ATCQ) where we will use the previously quantized data to

update their USQ.

The SVQ introduced in [30] approximates the performance of the optimal entropy-

constrained scalar quantizer (ECSQ) while quantizing the input vectors at a �xed
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Figure 2.1: Block diagram of backward adaptation. In the diagram, we assume SVQ
or TCQ to quantize the input although, in general, we can employ any quantizers
for the purpose of actual quantization of input as long as the quantized data can be
used to estimate the input distribution.

rate and retaining structural and computational simplicity. The �xed rate approach

is attractive to avoid the potential problems associated with transmitting variable-

rate quantizer output over channels with error. The popularity of the TCQ [42]

stems from its excellent SNR performance with encoding complexity which is far

less than that of other vector quantizers. In fact, TCQ has demonstrated its perfor-

mance in the practical application of wavelet image data quantization [41] and has

been selected as part of the veri�cation model for the emerging JPEG 2000 standard

[17].

The chapter is organized as follows: In Section 2.2, we introduce the adaptive

scalar quantization scheme. In Section 2.3, we explain how the adaptation scheme

can combine the SVQ and the TCQ, leading to the ASVQ and the ATCQ, respec-

tively. Experimental results with the ASVQ and the ATCQ are given in Section 2.4.

We conclude this chapter in Section 2.5 with remarks on future research issues.
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2.2 Backward adaptive quantization

Early works on adaptive quantization mainly concentrated on the problem of adapt-

ing the dynamic range of a uniform quantizer according to changes in the input

[14, 21]. Clearly, there should be room for performance improvement if the recon-

struction levels and quantization thresholds can also be adapted on the 
y. This

was the motivation of the algorithm of [46] and will contribute in this chapter to

establish the basic adaptation structure for the selected VQ's.

Fig. 2.1 shows the block diagram of the proposed adaptive quantizer based on

the SVQ or the TCQ. The adaptation algorithm is composed of two basic building

blocks, namely, model estimation and quantizer design as in [46]. The key idea is

to use past quantized data to estimate the input probability density function (pdf).

Each time a new estimate of the pdf is obtained the parameters of the quantizer are

accordingly updated. For that purpose, simpli�ed versions of the quantizer design

techniques for the SVQ and the TCQ are used at the encoder. The next input is then

quantized using the updated quantizer. Depending on the required adaptation speed,

we keep N past quantized outputs in the memory where N is called the adaptation

window size. Note that we can either use a �xed value for N or determine N on

the 
y by monitoring the speed of change in the estimated input distribution. An

extensive treatment on the pdf estimation based on the quantized past can be found

in [46]. Here we brie
y sketch the main ideas.

GivenM reconstruction levels qi, i = 0; : : : ;M�1, withM�1 decision thresholds
bi, i = 1; : : : ;M � 1, and the N most recent quantized sample occurrences, let ni

be the number of samples which fell into the i-th bin [bi; bi+1) for i = 0; : : : ;M � 1,

where b0 = �1 and bM =1. Then we use the normalized histogram

�
n0
N
; : : : ;

nM�1

N

�
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to deduce the probability mass function Pi of the i-th bin such that

Pi =
Z bi+1

bi
f(x) dx =

ni
N
; i = 0; : : : ;M � 1 ; (2.1)

where f(x) is assumed to be the pdf of the input source. Pi's are used to determine

f̂(x), the estimate of f(x).

To simplify the problem, we assume a piecewise linear function for f̂(x). See also

Fig. 1.3. We can determine f̂(x) which also needs to satisfy

Z bi+1

bi
f̂(x) dx = Pi; i = 0; : : : ;M � 1 ; (2.2)

by evaluating f̂(x) at x0; : : : ; xM�1, where we choose

xi =
bi + bi+1

2
; i = 0; : : : ;M � 1 : (2.3)

Here we need to further assume that f̂(b̂0) = f̂(b̂M ) = 0 to completely specify

f̂(x) in [b̂0; b̂M ], the support of f̂(x). b̂0 and b̂M can be determined from the dynamic

range adaptation algorithm. f̂(x) at x 6= xi; i = 0; : : : ;M � 1, is then determined as

the linear interpolation of the data points

ff̂(b̂0) = 0; f̂(x0); f̂(x1); : : : ; f̂(xM�1); f̂(b̂M ) = 0g:

For estimation of the dynamic range of the input distribution, we use a method

di�erent from that of [46]. We �rst detect a new statistical trend in the most recent

quantized data by observing the empirical entropy (or sample entropy) determined

from the histogram of the latest data. If the change in the empirical entropy is

signi�cant, i.e., if there is more change than a pre-speci�ed threshold, we turn on

the range adaptation algorithm of [14].

The range adaptation algorithm in [14] uses a simple decision rule to adjust the

dynamic range of the uniform scalar quantizer. With appropriately de�ned notions
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of the inner and outer bins, the dynamic range is expanded if the last quantizer

output belongs to one of the outer bins; otherwise, the algorithm reduces the range.

The quantization levels are also adjusted proportionally to the change in the dynamic

range.

Finally, note that we need a smoothness assumption on the input distribution

for this input pdf estimation idea to produce a satisfactory result unless we have

suÆciently many bins to detail the shape of the pdf in the histogram.

2.3 Adaptive scalar-vector quantizer and adaptive

trellis coded quantizer

The adaptive quantizer of [46] achieved better performance than both the �xed

Lloyd-Max quantizer and the �xed optimal ECSQ for non-stationary input sources

while showing minimal performance degradation for stationary inputs. Our moti-

vation is to apply the adaptive quantization technique to a vector quantizer (or a

block-based quantizer) built on an underlying scalar quantizer (USQ) so that we re-

design the quantizer using the estimate of the marginal input pdf. Hence we consider

two quantizers whose structures are based on the constituent USQ: the scalar-vector

quantizer (SVQ) and the trellis coded quantizer (TCQ).

For these quantizers, the input pdf estimate can be used to update the USQ.

Note that both the SVQ and the TCQ quantize the input such that the vector-wise

(or block-based) distortion is minimized rather than quantize in the component-wise

manner according to the nearest-neighbor rule. Hence some input components can

be quantized to a reconstruction level which is not the closest level in order for the

overall performance. As a result, we may have a histogram of quantized data that

is not exactly matched to the actual distribution of the input. This mismatch can

result in a slight degradation in estimating the input pdf but we do not deal with

this problem in this chapter.
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Figure 2.2: A 2-dimensional SVQ codebook derived from USQ for an i.i.d. Gaussian
source. (a) SVQ codevectors are chosen from the 2-dimensional grid such that the
codeword length is no greater than a pre-determined threshold L. (b) Quantization
levels and the associated lengths of the USQ which determines each component of
the vector grid.

2.3.1 Scalar-vector quantizer (SVQ)

The SVQ was �rst proposed in [30]. The motivation of the SVQ is to design a

�xed-rate vector quantizer, allowing entropy-constrained quantization of the vector

components, so as to be robust against transmission errors in noisy environments.

While reducing the error propagation problem of the variable-rate VQ's, the SVQ

can outperform �xed-rate Linde-Buzo-Gray VQ [37] with less design/encoding com-

plexity, mainly thanks to its special codebook structure.

Fig. 2.2 illustrates a 2-dimensional SVQ codebook derived from a USQ for a

memoryless Gaussian source. Each quantization level qj is associated with a metric

`j that amounts to the rounded self-information [� log pj] of qj, where pj is the

probability of an input component being quantized to qj. For convenience we call

`j the length associated with the level qj. The SVQ codebook consists of the grid

points in the shaded area of Fig. 2.2|the darker the region, the more likely the

contained codevectors are used in quantization. We describe how to choose the SVQ

codebook in the following.
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If we use m times an n-level USQ, we have nm vector points in an m-dimensional

grid. By restricting the quantization budget to r bits per sample on average, we

have chosen 2rm codevectors among nm grid points as the reproduction vectors in

the SVQ codebook which can best represent the input source. Let the codevector

length be de�ned as the sum of lengths of component quantization levels. Then the

codevectors with smaller lengths are highly likely to be used in quantization. Hence

we arrange nm grid points in increasing order of codevector length and form the

SVQ codebook with the �rst 2rm points. This procedure gives a threshold L on the

codevector length such that a grid point z is a SVQ codevector if and only if its

length is no greater than L.

Therefore an SVQ is completely de�ned in terms of a triplet (Q;L; L) where
Q = fq1; : : : ; qng is the set of quantization levels of the USQ, L = f`1; : : : ; `ng is the
corresponding set of lengths, and L is the threshold on the codevector length for the

SVQ codebook. For a detailed description and the design algorithms of SVQ, we

refer to [30]. In our adaptation scheme, we need only to update and estimate Q and

L using the estimated pdf.

2.3.2 Trellis coded quantizer (TCQ)

The TCQ proposed in [42] is also derived from a scalar quantizer. Motivated by

the set partitioning ideas from trellis coded modulation of [58], the TCQ is designed

on a USQ having twice as many levels as the quantization rate (r) allows. The

quantization levels are then partitioned into 2m+1 subsets where m � r. We consider

here a particular case of rate-2 TCQ with 4 subsets, i.e., m = 1.

We depict an 8-level USQ and its partition into 4 subsets in Fig. 2.3 (b) to

show the structure of this particular TCQ. Note that each subset is assigned two

quantization levels such that the average distance between the levels within a subset

is maximized.

24



A0

A1

B0

B1

A1

A0

B1

B0

A0 A1 A0 A1

B0 B1 B0 B1

(a)

(b)

0

1

1

0

0

1

1

0

Figure 2.3: 4-state 8-level uniform trellis code. (a) The state transition diagram
restricts the quantization of the current input depending on the quantization of
the previous input. (b) Quantization levels of the underlying scalar quantizer are
partitioned into two sets of A = fA0; A1g and B = fB0; B1g where each of the
subsets Ai's and Bi's has two corresponding levels.

Since the quantizer rate is r = 2, we are in general allowed to use at most 2r = 4

distinct levels to quantize an input sample. For the TCQ, a �nite state machine (or

a state transition rule of the 4-state trellis in Fig. 2.3(a)) enables the quantizer to

use one of two sets fA0; A1g and fB0; B1g at each trellis state, where each of two

states has two subsets containing a pair of levels. Since the available set of levels

depends on the state of the �nite state machine, the best encoding for a given source

corresponds to the optimal path through the trellis. As a result, for a given encoding

rate, TCQ can have more degrees of freedom in choosing quantization levels than

a �xed-rate scalar quantizer, due to the various combinations of quantization level

subsets along the trellis path.

The best choice of the subsets for quantization of each input sample is made such

that it globally minimizes the overall distortion of a given block of input samples

using only the allowable transitions in the state transition diagram. The Viterbi
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algorithm is used to �nd the best trellis path which is a concatenation of state

transitions through the block of samples.

Note that, since the SVQ and the TCQ have additional constraints on top of the

USQ, inputs may not be always quantized to their nearest neighbor in the USQ, as

mentioned earlier in the chapter. This will a�ect our pdf estimate slightly (the bin

counts will not give an exact estimate of the probability of the source) but we have

observed that the e�ect is negligible.

2.3.3 Complexity considerations

For both the ASVQ and the ATCQ, we use the empirical entropy of the output to

detect the change in source statistics. We can calculate the empirical entropy at

little extra cost since we keep generating the output data histogram.

The input pdf estimation and the range adaptation take only a small fraction of

the overall complexity because we have an estimation strategy which uses a linear

interpolation for the pdf estimate and a simple decision rule for the range adap-

tation. Hence, from Fig. 2.1, most of the additional complexity of the ASVQ and

the ATCQ compared to their respective non-adaptive quantizers arises from the

quantizer redesign block.

In general, the SVQ and the TCQ are designed by iterative algorithms to �nd

a set of reproduction levels for a given training sequence. Note however that, for

the ASVQ and the ATCQ, the USQ levels are found based on the piecewise linear

pdf estimate. By taking advantage of this, it is possible to implement the quantizer

design algorithms with much reduced complexity as compared to their TCQ and

SVQ counterparts based on a training set. As an example in the ATCQ case, all

that is needed in each iteration is to adapt the USQ since the �nite state machine

to govern the state transition is �xed on top of the USQ.

We include a brief sketch of adaptation algorithm for SVQ and TCQ in the

following.
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Figure 2.4: (a) Samples generated by a bimodal Gaussian source switching between
two Gaussian sources, N(0,12) and N(0,22) with the transition probability 0.001. (b)
Samples from N(0,12).

Algorithm 1 Sketch of Adaptive Quantization Using SVQ/TCQ

For every N quantized samples from the SVQ or the TCQ,

1. Estimate the input pdf f̂(x) as described in Section 2.2.

2. Update the USQ using the Lloyd-Max design [38, 43] or the ECSQ design

[11, 4] based on f̂(x).

3. For SVQ, calculate the length set L and the threshold L using f̂(x) and Q
from the previous steps; No additional update is required for TCQ.

4. Quantize new inputs by SVQ or TCQ with the updated quantizer parameters.

2.4 Experiments and results

We compare our adaptive quantizers to the �xed SVQ and TCQ designed by training.

We consider two types of input sources: (i) A bimodal source obtained by switching

between two i.i.d. Gaussian sources with the same mean but di�erent variances.
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Figure 2.5: ASVQ vs. SVQ (a) When the input is bimodal with each of the modes
being Gaussian of the same mean and di�erent variances, the performance of the
ASVQ remains nearly constant throughout the sequence except at the point of mode
change while SVQ performance is better for one of the two modes. (b) When the
input is stationary memoryless Gaussian, there is a slight degradation in performance
due to the adaptation.

The transition probability between modes is 0.001; and (ii) an i.i.d. Gaussian source

with parameters N(0,12). Samples from the two input sources are plotted in Fig. 2.4.

For each source, a sequence of 40,000 samples is used as an input to both the

ASVQ and the SVQ. The SVQ training sequence to obtain Q, L, and L consists of

100,000 samples and has the same characteristics as the simulation input. We use

an adaptation window of 50 vectors, as an adaptation parameter for the ASVQ. For

both quantizers, the rate is 2.0 bits per sample and the vector dimension is 8.

Fig. 2.5 contains the plots of the SNR changes by the ASVQ and the SVQ through

the entire simulation sequences. Fig. 2.5(a) shows that the proposed ASVQ performs

better than the �xed SVQ when a non-stationary input source is applied. The

average SNRs included in the �gure are obtained by averaging the SNRs evaluated

for sets of 50 vectors. The overall SNRs of the ASVQ and the SVQ for the entire

input sequence are 8.89dB and 8.00dB, respectively. The performance loss of the

ASVQ compared to the SVQ is minimal when the input is stationary, as we can see
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Figure 2.6: ATCQ vs. TCQ (a)When the input is bimodal, the performance of the
ATCQ remains nearly constant throughout the sequence except at the point of mode
change and outperforms the TCQ while the TCQ performance is better for one of
the two modes. (b) For a stationary memoryless Gaussian input source, the ATCQ
experiences a slight degradation in performance due to the adaptation.

from Fig. 2.5(b). And, in this case, the overall SNRs of the ASVQ and of the SVQ

are 9.73dB and 9.96dB, respectively.

We also experimented with an ATCQ and a TCQ under the same setting as for

the ASVQ/SVQ experiment. Here we use a block length of 100 samples to generate

a trellis and the adaptation window of 5 blocks. Again we use the encoding rate of

2.0. Fig. 2.6 includes the resulting plots of the SNR changes for the bimodal and

the stationary Gaussian input sequences. The overall SNRs for the ATCQ and the

TCQ are 9.32dB and 8.77dB for the bimodal source, and 10.03dB and 10.13dB for

the stationary Gaussian source, respectively.

Finally, we summarize the experimental data in Table 2.1. We include, in paren-

theses, the data from the ASVQ and the ATCQ which use only the range adaptation

algorithm to update quantizers provided each of the quantizers has a uniform USQ.

Hence, we conclude that the ASVQ and the ATCQ with the input pdf estimation

can achieve performance gain over those with the range adaptation only.
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Nonstationary Stationary
bimodal GaussianQuantizer

SNRavg SNR SNRavg SNR

ASVQ 9.35 8.89 9.76 9.73
(9.24) (8.75)

SVQ 7.99 8.00 9.96 9.96
ATCQ 9.49 9.32 10.07 10.03

(8.87) (7.61)
TCQ 8.19 8.77 10.12 10.13

Table 2.1: Performance comparison of rate-2.0 quantizers for non-stationary and
stationary sources. SNRavg denotes the average of SNRs evaluated for blocks of input
samples while SNR is the overall SNR for the whole sequence. In the parentheses are
the SNRs from the adaptive quantizers using only the range adaptation on uniform
USQ's. All results are in dB.

2.5 Conclusion and future work

In this chapter we have presented backward adaptive quantization using the scalar-

vector quantizer (SVQ) and the trellis coded quantizer (TCQ). Both VQ's have an

underlying scalar quantizer (USQ) in their structure, which makes it convenient to

exploit the adaptation technique for scalar quantizers in [46]. The resulting adap-

tive scalar-vector quantizer (ASVQ) and adaptive trellis coded quantizer (ATCQ)

redesign the USQ based on the past quantized outputs.

The adaptive quantizers require no side information while outperforming the

SVQ and the TCQ, respectively, when the input signal is non-stationary. For an

input sequence from a bimodal source switching infrequently between two Gaussian

distributions with the same mean and di�erent variances, both adaptive quantizers

achieve performance gains of more than 1.3dB over the non-adaptive quantizers de-

signed for a training set from the same bimodal source. Also the adaptive quantizers

demonstrate minimal performance degradation due to adaptation when stationary

inputs are considered.
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As future work extended from this chapter, we can consider adaptation of ex-

tended quantizers from the SVQ and the TCQ, e.g., trellis-based scalar-vector quan-

tizer (TB-SVQ) [32] and arithmetic coded trellis coded quantizer (AC-TCQ) [25, 26],

which are among the best quantizers in the literature in terms of SNR quality.

It is also interesting to investigate the performance of the proposed adaptive

quantization schemes in noisy environments where channel error can hamper syn-

chronized adaptation in the encoder and decoder. Our adaptation algorithm can

be contaminated by transmission error due to its backward adaptive nature, i.e.,

its dependency on the past encoded data. It is meaningful to evaluate the e�ect

of adaptation in the presence of channel error, especially for the SVQ, since it has

been originally proposed as a robust quantizer against the error propagation prob-

lem [30, 31]. A related work is to develop an error-robust adaptive quantizer based

on ASVQ.
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Chapter 3

Image Subband Coding Using Progressive

Classi�cation and Adaptive Quantization1

3.1 Introduction

Subband coding has been a popular and promising framework for image coding since

Woods and O'Neil's early work using quadrature mirror �lters (QMF's) [64]. The

interest in subband coding techniques was renewed thanks in part to the recent

work by Shapiro [52] which demonstrated that these techniques had the potential to

outperform the more popular Discrete Cosine Transform (DCT) based systems (for

example the JPEG standard [47]), both in terms of objective and subjective mea-

sures. In fact, subband or wavelet image coders are very likely to play a signi�cant

role in the new JPEG 2000 standard [16] for which work is just getting underway.

Subjectively, images reconstructed after subband coding at low rates do not present

the same blocking artifacts as those obtained with DCT-based methods. In addi-

tion, subband decompositions provide excellent space/frequency energy compaction

so that (i) there are signi�cant di�erences in total energy among di�erent subbands

and (ii) within each subband energy tends to be clustered spatially. The energy

1Part of this chapter represents work done jointly with Bin Yu. For related publications see
[75, 76].
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compaction property can be exploited through eÆcient quantization and entropy

coding, explaining to a large extent the success of subband coding.

The space/frequency localization of subband image data has been exploited using

two sets of techniques which were both utilized in Shapiro's breakthrough work [52].

First, subband coders take advantage of eÆcient data structures, e.g., zerotrees in

[52, 70], hierarchical trees in [51], or inter-subband conditioning in [57]. These tech-

niques make use of the correlation across subbands and the correlation within sub-

bands. By comparison, JPEG only uses energy compaction properties and ignores

any potential correlation between frequency contents in successive blocks (other than

the correlation between DC coeÆcients which is exploited using DPCM coding).

The second component is the use of adaptive techniques, i.e., schemes which

allow any of the three basic building blocks of typical image coding|transform (or

linear decomposition), quantization, and entropy coding|to change from one image

to another, or even locally within an image. Adaptivity can be achieved by using

an adaptive arithmetic coder for entropy coding as in [52] or [57]. Other methods

include adaptive selection of the subband decomposition for the given image [49] or

adaptively pruned zerotrees in di�erent regions of the image [70].

In this chapter we concentrate on incorporating adaptive quantization techniques

in the subband image coding framework. While many adaptive quantization ideas

already have been presented in the literature, most of those schemes were forward

adaptive. That is, the encoder adaptively assigns the best quantizer from a �nite

collection of available quantizers to each of the subband coeÆcient sets by examining

in advance the \current" data set to quantize. Note that forward adaptive quantizers,

including the ones in [70] and [24], require overhead information to be sent to the

decoder, thus increasing the required overall rate.

Alternatively, backward adaptation operates by adjusting the system through

prediction of the current data characteristics, where the prediction is based on \pre-

viously processed" data. A good example can be found in arithmetic coding which

achieves adaptation by having encoder/decoder keep track of already transmitted
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Figure 3.1: Building blocks in the conventional encoder for transform image compres-
sion. In our work the quantization block combines backward adaptive quantization
and classi�cation.

symbols and updating their probability models accordingly [63]. While a backward

adaptive system cannot be as accurate in describing the upcoming information as a

forward adaptive system, it has the obvious advantage of operating with little or no

overhead, since the encoder adapts its quantizer based only on information available

also at the decoder. The main drawback of the backward approach is the relatively

higher complexity of the decoder as compared to a forward adaptive scheme.

In this chapter we develop novel techniques for backward adaptive quantization

and demonstrate their e�ectiveness for subband image coding, especially at low

rates. We consider a general quantization scheme which includes classi�cation of

subband coeÆcients (see Fig. 3.1). For image subbands it is useful to separate the

coeÆcients in a given subband into di�erent classes so that di�erent quantization|

determined by bit allocation|can be applied to each class. This fact is well known

and a good summary on the previous classi�cation e�orts for image compression

can be found in [24] and [27], which also demonstrate very successful applications

of classi�cation in subband image coding. We note that most previous classi�cation

attempts, including [24] and [27], can be categorized under forward adaptation: as

a preprocessing stage to quantization, classi�cation is performed over the subband
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data at the encoding end, generating explicit classi�cation data (e.g., a classi�cation

map) which is delivered to the decoder as overhead. Forward adaptive classi�cation

is completed by assigning the optimal available quantizer to each class.

The contributions of the work in this chapter are summarized in the following.

First, we propose a novel technique, progressive classi�cation, to assign a class to

each subband coeÆcient based on the previously quantized data. Thus we can

reproduce the same classi�cation at the decoder without explicit side information.

However we still selectively use overhead to improve the performance. In particular,

we transmit the classi�cation thresholds which allow us to select a class given the

causal past. We will present a technique to compute them. The source statistics of

the classi�ed coeÆcients are also included in the overhead as each class is modeled

using a parametric distribution. Speci�cally, we approximate the distribution of

each class using a mean-zero Laplacian model so that we only need to specify the

Laplacian parameter. We will see that the Laplacian assumption allows eÆcient

design of the classi�cation thresholds as well as use of simple parametric quantizers.

Note that the concept of progressive classi�cation is analogous to the context-based

adaptation methods (for example [61, 66, 3, 67, 39, 6]). The main di�erence is that in

our case we use this adaptation mechanism for lossy rather than lossless compression

(as in [61, 66]) and adapt both quantizer and entropy coder, while [3, 67, 6] only adapt

the entropy coding.

The second contribution is the introduction of a method that allows the updating

of the Laplacian parameter of a given class, based on past quantized data, thus

allowing us to further take advantage of localized behavior. The on-the-
y update of

the Laplacian parameter facilitates backward adaptation of the parametric quantizer

in a similar way to the ideas introduced in Chapter 2 (see also [46] and [71]) where

non-parametric piecewise linear distributions were used.

Finally, we demonstrate how these two techniques can be integrated in a complete

subband image coding system having uniform threshold quantizer (UTQ) [11] as the
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baseline quantizer. The resulting image coder shows excellent performance, compet-

itive with other state-of-the-art image compression algorithms. In particular, at low

rates, the new scheme exhibits superior PSNRs comparing to other classi�cation-

based coding results. Our system has the potential for further improvements if

the proposed adaptive scheme is combined with adaptive subband decompositions

and/or more sophisticated quantizers instead of simple UTQ, e.g., the parametric

optimal entropy-constrained scalar quantizer (ECSQ) [55].

The chapter is organized as follows. In Section 3.2 we introduce our progressive

classi�cation technique. An eÆcient use of forward adaptation to help the progres-

sive classi�cation is also discussed in the same section. In Section 3.3 we present

techniques to allow the on-line model parameter estimation using the quantized data,

and show how these can be applied using UTQ as the baseline quantizer. Imple-

mentation issues and experimental results are included in Section 3.4 and concluding

remarks follow in Section 3.5.

3.2 Progressive classi�cation

We can easily see the impact of data classi�cation in general quantization applica-

tions: for an input source modeled as a mixture of sources with di�erent distribu-

tions, classi�cation allows us to use a set of quantizers customized to the individual

distribution components. Then a sequence of quantizers can be used rather than a

single average quantizer �tted to the overall input statistics. Thus we can localize

quantization with respect to the classi�cation information and improve performance

through what is described as classi�cation gain [22].

A typical example of image subbands obtained by 3-layer dyadic decomposition

is depicted in Fig. 3.2 and serves to motivate that classi�cation can provide potential

bene�ts in subband image coding. For natural images, high activity regions such as

edges are clustered and separated from surrounding low activity regions. We can

identify those regions using distributions with large and small variances, respectively,
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Figure 3.2: (a) Layout of the image subbands, with subband indices, from 3-level
dyadic decomposition. (b) Subband coeÆcients obtained by 3-level dyadic decom-
position of the Lena image using a wavelet �lter set. We can observe frequency com-
paction of energy towards low frequency subbands and, more importantly, spatial
clustering of the transform coeÆcients at similar energy level within each subband.

so as to assign appropriate quantizers. An extensive study, by Joshi et al. [27], on

various classi�cation-based image compression algorithms demonstrates substantial

gains due to classi�cation in subband image coding applications. The methods

proposed in [27] are all based on block-wise classi�cation: each block of coeÆcients

within a subband is assigned to one of a �nite number of classes and each class is

characterized as generalized Gaussian source with di�erent parameters. A di�erent

quantizer is then used for each class.

In the framework of [27] the assigned class (or class index) for each block of

coeÆcients is explicitly stated as side information. To maintain a relatively low

overhead, the size of blocks cannot be too small and only a limited number of classes

can be used. Even under these constraints and even with eÆcient management of

the overhead, the overhead rate may become excessive for low target bit rates. We

can observe, by comparing the image coders proposed in [27] and [70], that the
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Figure 3.3: (a) A template of 6 quantized coeÆcients forms the classi�cation context.
The activity of the current coeÆcient is predicted as the weighted average magnitude
of the data from the template. (b) Thresholds on the predicted activity to de�ne
the classi�cation mapping for each coeÆcient.

PSNR gain margin of a block-based forward classi�cation coder over a good non-

classi�cation coder narrows as the encoding rate becomes low.

To avoid this penalty of block-based classi�cation at low rates we introduce an

image subband classi�cation technique which aims at achieving both �ner grain

classi�cation, down to the coeÆcient level rather than a block level, and an eÆcient

use of the classi�cation overhead.

3.2.1 Context-based classi�cation

We de�ne context as a set of previously transmitted data which is used to charac-

terize (through prediction) the current data. Well known examples of context-based

prediction include DPCM coding and adaptive entropy coding as employed for both

lossless ([61, 66]) and lossy ([57, 67, 6]) image/video coding. For example in the case

of entropy coding, the probability model selection is based on the context.

If we form a classi�cation context with previously quantized coeÆcients, we can

overcome the typical shortcomings of block-based classi�cation. The context can be
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Figure 3.4: 4-level classi�cation map of Subband 8. A causal 6-coeÆcient context
from the same subband is used to obtain the map. Black indicates coeÆcients from
the least active class and white depicts the most active. The right �gure, the zoomed
detail of the boxed region in the left, shows that classi�cation is performed at the
coeÆcient level.

used to classify image subbands on a coeÆcient-by-coeÆcient basis and, if needed,

permit an increased number of classes without heavy use of overhead.

We assume a row-wise raster scan to illustrate the idea of context-based subband

coeÆcient classi�cation. Obviously the same idea can be applied with other scan

options, e.g., column-wise, zigzag, Peano scan, etc. Let Xij be the current coeÆ-

cient located at the array coordinates (i; j) on a raster-scanned subband. De�ne

Tij as a template to derive the context, consisting of quantized coeÆcients in the

causal neighborhood of Xij. For example, we consider a 6-coeÆcient template (see

Fig. 3.3(a)):

Tij = fX̂i�1j; X̂ij�1; X̂i�1j�1; X̂i�1j+1; X̂i�2j; X̂ij�2g: (3.1)

At the subband boundaries only the available part of the template is considered.

Now we can establish a rule to classify each coeÆcient Xij as a function of Tij.
The classi�cation rule is based on the predicted activity of Xij. We predict Xij's
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Figure 3.5: Histograms of the coeÆcients classi�ed into 4 di�erent sets, from high
activity (top) to low activity (bottom) sets.

Class 0 Class 1 Class 2 Class 3

mX 0.0075 0.0083 -0.0272 0.0659
�X 1.4618 2.7450 4.6767 5.2891

Table 3.1: Means (mX) and standard deviations (�X) of the class histograms in
Fig. 3.5.

activity using the weighted average magnitude of the quantized coeÆcients in Tij,
i.e.,

Mij = a0jX̂i�1jj+ a1jX̂ij�1j+ a2jX̂i�1j�1j+ a3jX̂i�1j+1j+ a4jX̂i�2jj+ a5jX̂ij�2j (3.2)

where ak, 0 � k � 5, are the relative weights satisfying
P

k ak = 1. The predicted

activityMij is then compared with the �xed classi�cation thresholds (see Fig. 3.3(b))

to determine the class assignment for Xij.

Consider Figs. 3.4 and 3.5 to motivate the performance of the proposed classi-

�cation scheme. Fig. 3.4 depicts an example where 4 classes are used in Subband

8 of the Lena image (Fig. 3.2(a)). It clearly indicates that the areas with di�erent
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energy levels are e�ectively classi�ed. The zoomed region of the classi�cation map

shows that classi�cation is performed at the coeÆcient level. Fig. 3.5 contains the

resulting histograms of the data in the 4 classes and veri�es that the classi�cation

has separated the coeÆcients into 4 classes with di�erent degrees of activity, i.e.,

higher activity results in larger variance as given in Table 3.1.

The goal of classi�cation is to allow assigning to each coeÆcient class a quantizer

from a set of available quantizers2. In the following sections we consider the issue

of selecting the set of available quantizers and, more importantly, �nding the best

quantizer for the given class. We will then discuss the design of the classi�cation

thresholds (e.g., T1, T2, and T3 in Fig. 3.3(b)). Taking into account the diÆculties

identi�ed from the threshold design, we will modify the baseline classi�cation scheme

presented in this section.

3.2.2 Parametric distribution estimation given unquantized

data

To avoid the excessive overhead of describing the selected quantizers for di�erent

classes as well as to simplify the quantizer design, it is convenient to assume a

parametric distribution model for each class. In this way, each quantizer can be

uniquely identi�ed from the model parameter(s) and, for a given class, the decoder

needs to know only the model parameter estimate(s) from the encoder in order to

dequantize correctly. The classi�cation-based image coders in [27], for example, use

a set of Arithmetic Coded Trellis Coded Quantizers (ACTCQ's) designed under the

generalized Gaussian distribution (GGD) assumption. For each class, the selected

quantizer|speci�ed by the estimates of the shape parameter and the variance of

GGD|is sent to the decoder as overhead (along with the class assignment informa-

tion), as is typical of forward adaptive operation.

2This idea will be later extended in Section 3.3 where we show how the quantizer within a
particular class can be adapted on the 
y.
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Figure 3.6: Overhead usage to help the backward adaptive classi�cation scheme. The
resulting overhead is negligible compared to those of forward adaptive block-based
classi�cation/quantization schemes.

In our scheme we also adopt a parametric modeling approach for class-adaptive

quantization. Note that, since context-based classi�cation does not require overhead,

the side information to identify the model parameters for each class, together with

the classi�cation thresholds, is the only overhead required. See Fig. 3.6 for an

illustration of the overhead usage in our image codec.

Many works in subband image compression (e.g., [56] and [39]) have favored zero-

mean GGD to characterize the subband coeÆcient distribution. GGD modeling for

image subband is justi�ed in [62]. We �rst discuss GGD parameter estimation given

a class of subband coeÆcients, assuming that the GGD is also good for each class

in subbands. We then focus on Laplacian distribution, a special case of GGD,

which makes our quantizer design and classi�cation threshold design algorithms

mathematically tractable. Note that the distribution for each class assumes zero

mean as the actual average is indeed close to zero in general (see Table 3.1).

3.2.2.1 Generalized Gaussian modeling

The pdf of a GGD with shape parameter � and scale parameter � is de�ned as:

f�;�(y) =

"
��(�; �)

2�(1=�)

#
exp(�[�(�; �)jyj]�) for �1 < y <1 (3.3)
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where �(�; �) = ��1�(3=�)1=2�(1=�)�1=2 [11]. As a special case of GGD, for � = 1,

(3.3) reduces to the Laplacian pdf, with � =
p
2��1,

f�(y) =
1

2
�e��jyj for �1 < y <1: (3.4)

The GGD modeling needs to estimate � and � for a given class of coeÆcients.

While we can derive a shape parameter estimator as in [40], we can alternatively

approximate � through the Kolmogorov-Smirnov test over a wide class of images

[56]. Once � is �xed, � can be estimated from the subband coeÆcients as described

in what follows.

Let Y1; : : : ; Yn be i.i.d. observations from a GGD source with pdf of (3.3). Then

jY1j; : : : ; jYnj can be regarded as i.i.d. observations from the positive generalized Gaus-

sian pdf

g�;�(y) =

"
��(�; �)

�(1=�)

#
exp(�[�(�; �)y]�) for y � 0: (3.5)

Fix � = �� and de�ne � = ��1. (3.5) becomes

g�(y) = �A1e
�(�A0y)�

�

for y � 0; (3.6)

where A0 = �(3=��)1=2�(1=��)�1=2 and A1 = ��A0�(1=�
�)�1. Thus the log-likelihood

of � given n independent observations Yi, i = 1; : : : ; n, is

`(�) = n log � + n logA1 �
X
i

(�A0jYij)��: (3.7)

By maximizing (3.7) with respect to �, we can obtain the maximum likelihood

estimator (MLE) of � as

�̂ =
1

A0

"
n

��
P

i jYij��
#1=��

: (3.8)

By the Invariance Property of MLE [44], (3.8) yields the MLE of � as �̂ = �̂�1.
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3.2.2.2 Laplacian modeling

Though the MLE of the GGD scale parameter is available in a handy form it still

depends on the shape parameter which must be determined independently. For

the general image subbands, a good choice of the shape parameter is � = 1 that

reduces the GGD to the Laplacian distribution. It has been pointed out [2] that

the increased quantization error due to the model mismatch under the Laplacian

assumption can be well compensated by its small modeling cost. Moreover, when

we need a parameter estimation procedure based on quantized data, for example

for the quantizer update in [75], we can avoid exhaustive numerical evaluation of

integrals involved in the GGD modeling by using the Laplacian model.

The Laplacian assumption simpli�es the positive generalized Gaussian pdf in

(3.5) to the well-known \exponential" pdf

g�(y) = �e��y for y � 0 (3.9)

where � is identical to the Laplacian parameter of (3.4). Then the MLE of � is given

as

�̂ =
nP
i jYij

=
1

1
n

P
i jYij

(3.10)

by reducing (3.8) with �� = 1.

3.2.3 Classi�cation threshold design

The 4-class example from Section 3.2.1 has demonstrated how context-based clas-

si�cation can split a set of coeÆcients into classes having di�erent variances. As

compared to the block-based methods it has the advantage of achieving classi�ca-

tion regions with arbitrary shapes but its performance will largely depend on the

threshold choice forMij of (3.2). We now discuss a method to de�ne those thresholds

for a given subband. Our algorithm consists of procedures to �nd N � 1 thresholds
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from a set of candidate thresholds with the goal of maximizing the classi�cation

gain.

Note that there is inter-dependency between the classi�cation thresholds and the

quantizers, i.e., the actual classi�cation will be based on the quantized past and the

selected quantizers will depend on the classi�cation thresholds. Hence it is diÆcult

to estimate a priori performance of a particular threshold choice, and in general a

particular choice can be shown to be e�ective only after it has been implemented.

Instead of an iterative joint design to handle this inter-dependency, which may be

optimal but is computationally costly, we will introduce a simple sequential design

approach in the following. For the time being let us assume that we know the

context for every coeÆcient, i.e., Mij for each Xij, and concentrate on describing

the overall threshold design algorithm (this is equivalent to assuming that we have

already selected a quantizer). Then we will present ideas to approximate Mij in the

design stage without performing actual quantization.

3.2.3.1 Threshold design algorithm

Given all the context information available, we want to determine the class to which

each of the (unquantized) coeÆcients belongs. We start by considering N0 > N

initial classes fC0; : : : ; CN0�1g de�ned by a set of N0 � 1 monotonically increasing

thresholds

fTk; 1 � k � N0 � 1 : 0 < T1 < � � � < TN0�1 <1g: (3.11)

The classi�cation rule is such that a coeÆcient Xij is assigned to Ck if

Tk �Mij < Tk+1 (3.12)

for k = 0; : : : ; N0� 1, with T0 = 0, TN0
=1, where Mij is the activity prediction of

Xij in (3.2). For a given class Ck, nk is the number of coeÆcients in the class, i.e.,
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Figure 3.7: Illustration of the merging process in the classi�cation threshold design.
At the m-th iteration, the pair of the k-th and the (k+1)-st classes has the smallest
classi�cation gain so as to merge into one class.

the total number of Xij such that Tk � Mij < Tk+1. See Fig. 3.3(b) for the mapping

associated with this classi�cation rule.

After collecting the coeÆcients into the N0 initial classes according to (3.12), the

MLE of the Laplacian parameter for each class, �̂k, k = 0; : : : ; N0� 1, is determined

as described in Section 3.2.2. Since the �nal thresholds will be chosen from the initial

set it is desirable to initialize the design algorithm with a large N0 so that the �nal

N � 1 thresholds can be at almost any arbitrary point within the support of Mij.

However N0 cannot be arbitrarily large because each of the initial classes should

contain enough coeÆcients to ensure a reliable estimate of �̂k. Furthermore the

initial thresholds should be chosen carefully such that each class has approximately

the same number of coeÆcients, which is important to guarantee equally reliable

estimates for di�erent classes. We notice that the trivial choice of uniformly spaced

thresholds is in general not appropriate in this sense.

We apply a greedy algorithm which removes one class at a time until the desired

number of classes is reached. The algorithm operates iteratively by merging at each

stage the pair of classes having the smallest classi�cation gain among all pairs of

adjacent (in the sense of corresponding to consecutive thresholds) classes. As in [24]
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we estimate the classi�cation gain by comparing the variances of two classes, say �2
k

and �2
k+1, with the variance �2

k0 of the union of the two classes. See Fig. 3.7 for one

iteration of the threshold design algorithm.

Let nk and nk+1 be the respective numbers of coeÆcients in two adjacent classes

Ck and Ck+1 for which the parameter estimates are �̂k and �̂k+1 respectively. Assume

that the Laplacian model is still valid for the new class obtained after merging Ck

and Ck+1. Then we can use the Laplacian parameter estimator in (3.10) to �nd the

Laplacian parameter �̂k0 of the new class

�̂k0 =
nk + nk+1

nk=�̂k + nk+1=�̂k+1

: (3.13)

Under the Laplacian assumption the variance is equal to 1=�2 and thus the classi�-

cation gain [22]

G =
�2
k0

�2rk
k �

2rk+1
k+1

; (3.14)

can be estimated by

G = G(�k; �k+1;nk; nk+1) =
�̂2rkk �̂

2rk+1
k+1

�̂2k0
(3.15)

where rk = nk=(nk + nk+1) and rk+1 = 1� rk = nk+1=(nk + nk+1).

We notice that the computational complexity is kept very low when assuming

the Laplacian model. Once we calculate the Laplacian parameter estimates for the

initial classes we do not have to recalculate a new set of �̂k's using (3.10) at every

iteration. Instead we use (3.13) to �nd the new parameter estimate, without a�ecting

the other classes not involved in merging, and (3.15) to evaluate the classi�cation

gain for a new set of classes.

We summarize the threshold design procedure under the Laplacian model as-

sumption in the following. Given a subband, the desired number of classes N , and

N0 initial classes (N0 > N) corresponding to the initial threshold set in (3.11),
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Algorithm 2 Classi�cation Threshold Design

1. Find the estimates of �0; : : : ; �N0�1 by (3.10). Set K = N0.

2. Find k� s.t.

k� = arg min
0�k<K

G(�k; �k+1;nk; nk+1)

where G(�) is given in (3.15).

3. Update the thresholds, the class sizes, and the Laplacian parameters by merg-

ing classes k� and k� + 1 such that the merged class has index k = k� with

nk = nk + nk+1. Update �k according to (3.13) for k = k�. Tk, nk, and �k

remain unchanged for the other values of k.

4. Set K = K � 1. STOP if K = N . Otherwise go to Step 2.

The issue of selecting an appropriate number of classes will be discussed in Sec-

tion 3.4.

3.2.3.2 Approximation of quantized context Mij

As we mentioned earlier, we do not know the quantized coeÆcients fX̂g a priori.

Thus Mij given by (3.2) cannot be used to set up the thresholds. To resolve this

diÆculty, [75] uses pre-quantization before applying the threshold design algorithm.

In this idea, the subband coeÆcients are initially quantized by a uniform quantizer

of stepsize �0 as an approximation to the actual UTQ. Then, with pre-quantized

coeÆcients fX̂0g, Mij is approximated by

M0
ij = a0jX̂0

i�1jj+ a1jX̂0
ij�1j+ a2jX̂0

i�1j�1j+ a3jX̂0
i�1j+1j+ a4jX̂0

i�2jj+ a5jX̂0
ij�2j: (3.16)

However the pre-quantization technique introduced in [75] has a drawback of using

a value of �0 chosen ad hoc. Moreover, while the eventual UTQ stepsize � depends

on the coding rate, �0 is �xed for all rates so that the threshold design of Algorithm
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Figure 3.8: The positive half of the UTQ with stepsize �. qj's and bj's are quanti-
zation levels and bin boundaries, respectively. q00 is the conditional mean of jyj, i.e.,
the centroid, in the interval of [0; b1) where jyj follows the exponential distribution
f�(jyj).

2 generates a �xed threshold set regardless of the rate. Thus, in this work, we con-

sider an approach to approximate Mij using pre-quantization with a rate-dependent

stepsize. This modi�ed approach is based on the techniques introduced in [39] for

context-based estimation of the wavelet coeÆcient magnitude.

First, suppose that we approximate MU
ij using only the unquantized coeÆcients,

i.e.,

MU
ij = a0jXi�1jj+ a1jXij�1j+ a2jXi�1j�1j+ a3jXi�1j+1j+ a4jXi�2jj+ a5jXij�2j: (3.17)

For (3.17) to be a good approximation to Mij in (3.2), jXj must be a good ap-

proximation to jX̂j. This is in general true since all the inputs X are quantized to

the closest X̂ and thus, if we have no information about the quantizer, X may well

approximate X̂. However, if X is in the center bin of the quantizer, we will have

jXj > 0 in most cases while jX̂j = 0 and thus this particular case has to be treated

separately to avoid biased estimation.
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Fig. 3.8 depicts the quantization levels and the bin boundaries of a UTQ of

stepsize � obtained under the Laplacian model assumption. It shows why jXj is not
a good approximation to jX̂j in the center bin, i.e., jXj approximates q00, the centroid
of the exponential pdf f�(jyj) in the interval [0; b1), rather than jX̂j = q0 = 0.

The mismatch between jXj and jX̂j in the center bin results inMU
ij overestimating

Mij. This is signi�cant especially when the context region contains many zeros,

which is frequently observed in high frequency subbands. In addition, the error

when using the MU
ij of (3.17) to approximate Mij tends to increase at low rates, as

more coeÆcients are quantized to zero.

To reduce the e�ect of mismatch between jXj and jX̂j in the center bin, [39]

proposed to treat the coeÆcients having \small" magnitude di�erently from the

other coeÆcients. A speci�c procedure was used to 1) choose a rate-dependent

threshold Æ0 to identify the coeÆcients of small magnitude; 2) pre-quantize the small-

magnitude coeÆcients to zero while preserving the other coeÆcients; and 3) �nd

and characterize the set of unpredictable coeÆcients for which the context consists

of all zero pre-quantized values. Note that in the last point we are taking care of a

particular situation (all-zero context) which will be treated as a separate context.

As the rate-dependent threshold, [39] suggests

Æ0(�) =
q
�=0:264 (3.18)

where � is the Lagrange multiplier to control the rate-distortion trade-o� in the

entropy-constrained quantization and 0.264 is the value of the Lagrange multiplier

which yields the UTQ of stepsize � = 2:0, i.e., a center bin of [�1:0;+1:0), for the
unit-variance Laplacian distribution. While we refer to [39] for the details in deriving

(3.18), an intuition can be given to verify that Æ0(�) appropriately conforms to the

change of the rate. For example, a large � forces a low-rate UTQ yielding increased
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number of all-zero contexts. This aspect can be captured by a large Æ0(�), propor-

tional to
p
�, which produces a large number of unpredictable (i.e., zero context)

coeÆcients.

We identify the unpredictable coeÆcient set by pre-quantizing a given subband

with the threshold Æ0 of (3.18) and then collecting a set of coeÆcients for which the

context is made of only the coeÆcients thresholded to zero. For the other coeÆcients,

we �nd N�1 thresholds, corresponding toN ordinary classes, by applying Algorithm

2. The Laplacian model parameter for the zero-context class is estimated also using

(3.10) and then included in the overhead.

Note that the new classi�cation threshold design generates a total ofN+1 classes,

i.e., N ordinary classes and 1 zero-context class. Thus we need a slight modi�cation

to the original N -level context-based classi�cation procedure of Section 3.2.1, where

we simply need to assign Xij to the zero-context class if Mij from Equation (3.2) is

equal to zero. If Mij is not equal to zero, we need to recalculate Mij by substituting

zero quantized coeÆcient(s) with q00 before comparing Mij with the thresholds.

3.3 Adaptation of uniform threshold quantizer

We employ uniform threshold quantizer (UTQ) to quantize the classi�ed subband

coeÆcients. First, we brie
y review UTQ and its eÆcient design under the Laplacian

model assumption, where a quantizer can be matched to �̂ of each class. We then

consider on-line adaptation of UTQ within each class which can be achieved by

update of the Laplacian parameter estimate of each class using the past quantized

coeÆcient.

3.3.1 Model-based UTQ

UTQ is a popular choice for image subband quantization [56, 39] as it e�ectively

approximates the optimum entropy-constrained scalar quantizer (ECSQ) for GGD
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without needing the complication of the optimum ECSQ [11]. The structure of UTQ,

completely de�ned by its �xed stepsize3 �, reduces its design and description com-

plexity while the reconstruction levels are optimized by the centroid condition. UTQ

outperforms the optimal �xed-rate scalar quantizer, designed under the minimum

distortion criterion, as well as the simple uniform quantizer.

The entropy-constrained design algorithm of UTQ in [11] can be simpli�ed by

assuming a parametric model for the input distribution as shown in the following.

Given a �xed Lagrange multiplier � which controls bit allocation, the design objective

is to minimize the joint rate-distortion (R-D) cost function J = D + �R where

D = D(�) andR = R(�) are respectively the distortion and the rate associated with

a UTQ with stepsize �. The design goal can be achieved by �nding the minimizing

stepsize �� since � is the only independent variable of the cost function. A simple

bisection search [48], for example, can be used to iteratively �nd ��.

At each iteration of the algorithm, we need to evaluate qj and pj, the reconstruc-

tion level and its probability in the j-th bin of UTQ, in order to calculate D(�)

and R(�). We will show that our Laplacian model assumption gives closed form

expressions for qj and pj. Consider a UTQ with (2L + 1) levels. By the zero-mean

assumption, pj and qj are symmetric and antisymmetric, respectively, i.e., q�j = �qj
and p�j = pj for j = 1; : : : ; L. For the center bin and the bins from the positive half

of the distribution,

p0 = 2
Z b1

0
f�(y)dy = 1� e��b1 (3.19)

q0 = 0 (3.20)

and

pj =
Z bj+1

bj
f�(y)dy =

1

2

h
e��bj � e��bj+1

i
(3.21)

3A more general de�nition of UTQ allows a di�erent stepsize for the center bin from the �xed
� for the outer bins. In this case we often refer to the center bin as deadzone.
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qj =
1

pj

Z bj+1

bj
yf�(y)dy =

1

2pj

h
bje

��bj � bj+1e
��bj+1

i
+

1

�
; (3.22)

for j = 1; : : : ; L, where bj = j � 1 + �=2 denotes the j-th (positive) bin boundary

and f�(y) is the Laplacian pdf in (3.4). As a result, once we know the Laplacian

parameter �|in practice, its estimate �̂|we have a much simpler UTQ design

compared to that based on other distribution models which may involve numerical

integrations. Note that a non-iterative design algorithm of UTQ for exponential and

Laplacian distributions is also available in [55].

3.3.2 Adaptive UTQ: Parameter estimation given quantized

data

In the baseline quantization system the Laplacian parameter estimate �̂k for Class

Ck is obtained in the classi�cation threshold design, based on the unquantized coef-

�cients. We now show how the quantizer can be further re�ned by estimating �̂k on

the 
y based on the previously quantized data. Note that the basic idea is extended

from the non-parametric pdf estimation paradigm introduced in [46] to a parametric

case.

With the same assumptions and notations from Section 3.2.2, consider an L-level

quantizer with decision levels

0 = b0 < b1 < b2 < : : : < bL <1

for which nj, 1 � j � L, is the number of data quantized to the j-th reproduction

level. Note that the quantizer is designed for the exponential distribution associated

with the magnitude data jY1j; : : : ; jYnj where Y1; : : : ; Yn are samples from a Laplacian

distribution|see also Fig. 3.8. Thus

nj =
nX
i=1

I[bj�1;bj)(jYij) for j = 1; 2; : : : ; L (3.23)
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LX
j=1

nj = n (3.24)

where

I[a;b)(y) =

8><
>:

1 if a � y < b

0 otherwise
: (3.25)

Let P̂l be the cumulative normalized frequency of occurrences of data quantized to

levels 1; 2; : : : ; l, i.e.,

P̂l =
lX

j=1

p̂j (3.26)

where p̂j = nj=n is the normalized count of the data quantized to the j-th level.

For any given l, we can �nd an estimator of � as follows. Denote by F�(y)

the cumulative distribution function (cdf) of the exponential random variable with

parameter �. That is, for y > 0,

F�(y) =
Z y

0
�e��tdt = 1� e��y: (3.27)

P̂l is a good empirical estimate, based on a total of n data, of F�(bl) which is the

proportion of data falling between b0 and bl assuming in�nite data. To be more

precise, by the Law of Large Numbers,

P̂l
i:p:�! F�(bl) (3.28)

as n!1.

By solving (3.27) for �, we get

� = � log(1� F�(y))

y
: (3.29)

Hence a reasonable estimate of � based on F�(bl) can be obtained as

�̂l = � log(1� P̂l)

bl
: (3.30)
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The question remains how to choose l. Let Pl = F�(bl) = 1� e��bl then

Var(P̂l) =
n

Pl(1� Pl)
(3.31)

since nP̂l follows a binomial distribution B(n; Pl). We can approximate the variance

of �̂l as

1

nb2l

Pl(1� Pl)

(1� Pl)2
=

Pl

nb2l (1� Pl)
=

e�bl � 1

nb2l
:

It follows that for �̂l to have a small variance, (e
�bl�1)=b2l should be small. Since

(e�bl � 1)=b2l !1 (3.32)

as bl ! 0 or 1, there exists a �nite value of bl somewhere for the approximate

variance of the estimate to be at its minimum. To know the exact value of this

minimum, we need to know the true value of � which is unavailable. An alternative

approach is to pick an initial estimate �0 which corresponds to some bl0 in the middle

of the range of the quantizer decision levels and then �nd l� such that

l� = arg min
l
(e�0bl � 1)=bl: (3.33)

Or we can just use the initial guess l0 to make the procedure simpler. It seems

reasonable to pick l0 such that P̂l0 is around 1/2.

For each of the classes the encoder transmits to the decoder the Laplacian pa-

rameter estimate |based on unquantized coeÆcients|that �ts the statistics of the

whole data in the class. This parameter serves to initialize the adaptive quantizer.

The adaptation algorithm estimates an updated Laplacian parameter based on the

past quantized data in each class. Since the initial Laplacian parameter is a fairly

good representation of the data in the class we in fact use a weighted average be-

tween the initial quantizer and the newly obtained (local) one. The system could be
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Lena.512 Goldhill.512

0.5 bpp 1.0 bpp 0.5 bpp 1.0 bpp

UTQ 35.37 38.89 32.15 35.57
PC-UTQ 36.23 39.57 32.61 36.05
PC-AUTQ 36.31 39.68 32.71 36.18

Table 3.2: PSNR (dB) comparison of di�erent quantization con�gurations. Subband
data are generated by 3-layer dyadic decomposition with the Daubechies D4 �lters.
PC-UTQ and PC-AUTQ use 4 classes. Adaptive arithmetic coding is considered to
obtain the bit rates. For simplicity, the classi�cation algorithm does not include the
all-zero context class in this example.

further improved by using overhead to give more degrees of freedom in determining

the centroids (cf. [77]), deciding on a block-by-block basis whether to adapt the

quantizer, etc.

To see the e�ect of the quantizer adaptation, we experiment with the subband

quantization system in three di�erent con�gurations: baseline UTQ, UTQ with 4-

level progressive classi�cation (PC-UTQ), and PC-UTQ with quantizer adaptation

(PC-AUTQ). We summarize the results for the Lena and Goldhill images (512�512)
in Table 3.2. We consider the adaptive arithmetic coder output bit stream size to

compare the peak signal-to-noise ratio (PSNR) de�ned as

PSNR = 10 log10
2552

MSE
(3.34)

where MSE is the mean square error between the original image and the compressed

image. The Daubechies D4 �lters [9] are used in the 3-layer dyadic decomposition

for all three con�gurations. To keep the experiment simple, the context-based clas-

si�cation uses only the ordinary classes with the thresholds obtained by the �xed

stepsize pre-quantization and the approximated activity prediction of 3.16.

This preliminary result shows that the quantizer adaptation is quite useful while

a signi�cant gain is achieved via progressive classi�cation of subbands. We note

however that the quantizer adaptation gain depends on the choice of the �lters for
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subband decomposition. In the next section we will consider a di�erent �lter choice

to compare PC-AUTQ with other high performance wavelet image coders based

on the same �lter choice. We will see that, for the new �lter choice, the PSNR

performance is improved for all three con�gurations while the gain from adaptation

becomes smaller.

3.4 Experiments and results

We have implemented an image coder using the proposed classi�cation/quantization

ideas and experimented with popular 512� 512 gray-scale images. Throughout the

experiments, we consider a 3-layer dyadic decomposition. The subband layout from

the decomposition is depicted in Fig. 3.2(a). We mainly use the 9/7-tap biorthogonal

wavelet �lters [60] to compare our results with other state-of-the-art results obtained

by using the same �lter choice. We also consider the 32-tap quadrature mirror

�lters (QMF's) [23]. While both �lter sets are popular for their good performance in

subband image compression, the 32-tap QMF's tend to be better than the other|

especially for the images containing a large amount of high frequency components|

but the 9/7-tap �lters enable faster subband transform. In processing the coeÆcients

in each subband, we scan Subbands 1, 4, and 7 column-wise and the other subbands

line by line in order to utilize the spatial orientation of each subband.

We apply our progressive classi�cation and adaptive uniform threshold quanti-

zation (PC-AUTQ) to the coeÆcients in the subbands except the lowest frequency

subbands, i.e., Subband 0 in Fig. 3.2(a), where we use PC-AUTQ as part of 4-th

order DPCM coding. As the predicted coeÆcient value at the current position to

calculate di�erential data, a weighted mean of the 4 nearest causal neighboring co-

eÆcients is used. The weights are experimentally determined and �xed for all input

images.

The di�erential data in Subband 0 can be also modeled as samples from Laplacian

sources. Hence we can use the same modeling assumption for Subband 0 and the
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other high frequency subbands (Subband 1 to 9) so that we use a single quantization

algorithm for all subbands.

Bit allocation is performed over all classes of coeÆcients from 10 subbands si-

multaneously. An iterative bit allocation based on [53] is used to determine the

Lagrange multiplier � in the cost function J = D + �R where D and R are the

overall distortion and rate from each attempt to �nd the stepsizes of UTQ's which

minimize J . We stop the iteration if we �nd � = �� for which the corresponding R

falls within a certain range from the target rate. Since �� speci�es the resulting bit

allocation or, equivalently, the UTQ stepsize �� for each class, �� is quantized using

16 bits and sent to the decoder as overhead.

The rate used to compare our results consists of the actual output rate from the

entropy coder and the overhead rate. In our algorithm the overhead rate remains

the same for di�erent compression ratios. The bits to identify the classi�cation

thresholds (Tk) in each band and the Laplacian parameter estimate (�̂k) in each class

take up most of the overhead. For instance suppose that each of the S subbands has

N + 1 classes: N ordinary classes and 1 special class to handle the all-zero context.

The overhead for the thresholds and the Laplacian parameter estimates is

B �S �(N � 1) +B �S �(N + 1) = 2N �B �S (3.35)

where B bits are assumed for each of the N � 1 classi�cation thresholds and N + 1

Laplacian parameters in each subband. Speci�cally we use 8 bits per parameter

in the experiment. Then the 10-band decomposition with 4 ordinary classes and 1

zero-context class needs overhead of 640 bits per image or, equivalently, 0.0024 bpp

for a 512� 512 image4.

We use an adaptive arithmetic coder for entropy coding of the index stream

corresponding to the quantized coeÆcients. The probability model of the index

4The total overhead including the other miscellaneous side information is 0.00247 bpp for the
actual compression of 512�512 images
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Rate (bpp) EZW SPIHT SFQ EQ PC-AUTQ

0.20 - 33.16 33.32 33.46 33.41
0.25 33.17 34.13 34.33 34.45 34.46
0.50 36.28 37.24 37.36 37.58 37.56
1.00 39.55 40.45 40.52 40.85 40.75

Table 3.3: Performance comparison in PSNR (dB) for Lena.

Rate (bpp) EZW SPIHT SFQ EQ PC-AUTQ

0.20 - 29.84 29.98 30.05 30.04
0.25 - 30.55 30.71 30.77 30.78
0.50 - 33.12 33.37 33.42 33.46
1.00 - 36.54 36.70 36.89 36.99

Table 3.4: Performance comparison in PSNR (dB) for Goldhill.

stream used in the arithmetic coder is initialized for each class with aid of the

Laplacian parameter estimate for the class. Thus no additional overhead is required

for the initialization of the arithmetic coder while the compression performance is

improved over an adaptive arithmetic coder without any particular assumption on

the initial probability models.

We might expect a better performance for our classi�cation-based encoder by

increasing the number of classes. Fig. 3.9 shows the plots of the PSNR performance

as a function of (a) the rate and (b) the number of classes for Lena decomposed with

the 9/7-tap �lters. From both plots, we can see little improvement of PSNR by using

more than 5 classes. Moreover, from (3.35), the overhead rate increases linearly as

more classes are used. Thus we limit the number of classes in our experiment to 5,

including the all-zero context class, and this is found to be a good number also for

the other test images. We have similar results for the 32-tap �lters. We note that

the modi�ed method for approximation of Mij, as described in Section 3.2.3.2, is

used to design the classi�cation thresholds.
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Figure 3.9: E�ect of the number of the classes on the PSNR performance of PC-
AUTQ in compressing the Lena image. In the cases of 2 or more classes, the special
class for the all-zero context is included. (a) PSNR vs. rate performance for di�erent
number of classes. Note that the dotted line for 9 classes is overlapped by the solid
line for 5 classes. (b) PSNR as a function of number of classes for various output
rates.
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We summarize the PSNR results of PC-AUTQ in Tables 3.3 and 3.4, for Lena

and Goldhill, respectively, and compare with those of popular and state-of-the-art

methods from the literature. In the table EZW stands for the Embedded Zerotree

Wavelet coder [52], SPIHT for the Set Partitioning in Hierarchical Trees algorithm

[51], and SFQ for the Space-Frequency Quantization coder using joint optimization

of zerotree quantization and non-zero coeÆcient quantization [70]. Also EQ denotes

the Estimation-Quantization scheme featuring backward adaptive R-D optimization

of quantization [39]. PC-AUTQ consistently outperforms the other coders at all test

rates for both test images, except EQ. Though comparison of PC-AUTQ with EQ

depends on image and rate, PC-AUTQ is very competitive with EQ in general. The

results in the table are obtained from each method using the 9/7-tap �lters, with

an exception for EZW which uses 9-tap QMF's. Note that the algorithms of EZW

and SPIHT have embedded structures to allow easier rate control and bit stream

scalability while none of the other algorithms in our comparison do.

To show the compression performance of PC-AUTQ, we include, in Fig. 3.10,

the original and the reconstructed images of Lena after compression at various rates.

Though the images are printed at a reduced resolution, we can see that the recon-

structed images o�er good quality even at a very low rate of 0.15 bpp. The images

are also available on the Internet at http://sipi.usc.edu/�yyoo/pcautq/.
Fig. 3.11 shows an interesting result by comparing PC-AUTQ with another

classi�cation-based image coder, OC-ACTCQ [27] which uses block-based VQ clas-

si�cation method. While OC-ACTCQ shows superior performance at high rates for

the Lena image, our progressive classi�cation achieves better performance than OC-

ACTCQ at near 0.25 bpp. The performance edge of PC-AUTQ at low rate can be

attributed to its eÆcient use of overhead rate. The classi�cation itself is better for

the forward adaptive OC-ACTCQ at the cost of large overhead. But the progres-

sive classi�cation allows more bits for the actual data stream, which is critical at

low rates. Note that both classi�cation-based coders use the 32-tap QMF's in this

comparison.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10: Original and reconstructed Lena images. (a) Original image (b) Rate
= 1.00 bpp (PSNR = 40.75 dB) (c) 0.50 bpp (37.56 dB) (d) 0.25 bpp (34.46 dB) (e)
0.20 bpp (33.41 dB) (f) 0.15 bpp (32.08 dB)
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Figure 3.11: Comparison of two classi�cation-based image coders, PC-AUTQ and
OC-ACTCQ for Lena.
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Figure 3.12: Comparison of two �lters combined with PC-AUTQ for Barbara.

In Fig. 3.12 the 9/7-tap �lters and the 32-tap �lters are compared in our coding

scheme. For the Barbara5 image, the 32-tap �lter gives far better performance,

which has been reported for other subband image coders.

Finally we consider the e�ect of quantizer adaptation for the 9-7 �lters in Fig. 3.13.

We can see that quantizer adaptation o�ers more gain as compression is done at

lower rates though the gain margin is small as compared to the D4 �lter case of

5The Barbara image in the experiment is obtained from the UCLA Image Communications
Lab's web site (http://www.icsl.ucla.edu/�ipl/).
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Figure 3.13: Comparison of the image coders with quantizer adaptation and without
adaptation, for Lena.

Table 3.2. The encoder can selectively use quantizer adaptation depending on the

quality-complexity tradeo� for the given image, �lter choice, etc., since the on-the-


y quantizer adaptation technique requires no overhead but results in increased

complexity.

3.5 Conclusion

We have proposed a new subband image coder with backward adaptive quantization.

While developing the new coding scheme we have introduced a clean conceptual

framework based on the parametric model for the distribution of image subband

data, which is also simple to implement in practice.

Context-based progressive classi�cation of subband data is the key component

of our backward adaptive system. The novel classi�cation scheme also combines a

forward adaptive technique to improve the classi�cation performance. In pursuit of

eÆcient overhead transmission, which is essential in forward adaptation, we have as-

sumed the Laplacian probability model for each of the classes in the image subbands.
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The Laplacian parameter estimate for each class, with the thresholds for classi�ca-

tion, reserves most of the total overhead and the resulting overhead is negligible

compared to the rate allowed for the actual data bit stream.

As a part of the progressive classi�cation scheme, we have introduced a classi�ca-

tion threshold design algorithm. We addressed the problem of biased approximation

to the quantized context by using unquantized context and thus employed a mixed

context of unquantized coeÆcients and pre-quantized coeÆcients as a solution. As a

result, the basic progressive classi�cation method was modi�ed to consider a special

class for the context of all zero-quantized coeÆcients in addition to the ordinary

classes.

We tried to further utilize the backward adaptation technique by considering

on-the-
y update of UTQ. We have also derived a good heuristic estimator of the

Laplacian parameter based on past quantized coeÆcient to make the adaptation of

UTQ viable.

We have used only conventional methods for the subband decomposition and

the entropy coding but still achieved a very good image coder with the proposed

ideas in its quantization block. The experimental results from our PC-AUTQ show

PSNR numbers competitive with those from the best image coders in the literature.

Especially PC-AUTQ's performance at low rates is superior, which can be explained

by an eÆcient use of overhead. To extend the proposed image coder, the performance

improvement can be readily available by replacing the current baseline quantizer with

a more versatile one, e.g., AC-TCQ [26]. More sophisticated subband decomposition

can also be used to improve the current performance. Coding complexity reduction

by using a table-based quantizer design/update would allow the coder to use more

general distribution models (e.g., GGD) and is planned as part of our future work.
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Chapter 4

Image Domain Compression of Simple Images1

4.1 Introduction

Wavelet transform coding methods provide excellent performance for lossy compres-

sion of natural images over all compression rates, as seen in Chapter 3. However

wavelet-based methods fall short when the histogram of an image, or its subimage,

has only a small number of active intensity values, i.e., a large portion of inten-

sity values are never used within the image/subimage. We call such image objects

\simple." A typical histogram of a simple image is depicted in Fig. 4.1. Exam-

ples of simple images of interest include: bi-level images; gray-scale or color images

scanned from bi-level images; computer generated graphics with simple textures, car-

toons, screendumps, diagrams, etc.

Although simple images are inherently easier to compress compared to natural

images, the wavelet transform is not very e�ective for these images. For instance,

wavelet transform coders still have to deal with a large number of wavelet coeÆcient

values even for simple images. And strong Markov statistics in simple images, which

can promote data source modeling and adaptive coding techniques, are not preserved

through wavelet transform. Moreover, while the sharp edges in simple images are

1For related publications see [36, 73].
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Figure 4.1: The histogram of a simple image is characterized by a few strong modes.
The example shown here is a typical histogram of an 8-bit gray-scale image scanned
from a bi-level image. While most pixel intensity values are either 0 or 255 (corre-
sponding respectively to black or white pixels in the bi-level image), the scanning
noise can cause a small number of pixels to have intensity values slightly di�erent
from 0 or 255.

usually important visual objects, wavelet transform coders can result in blurring

sharp edges, especially when compression is lossy.

While the wavelet transform is not very e�ective in compressing simple images,

an image domain compression algorithm can be employed as an alternative to achieve

good compression. In this chapter we introduce an image domain algorithm that

aims at compression of simple images. The algorithm is proposed in the context of

lossless and near-lossless compression. However, even in a lossy compression environ-

ment, these types of approaches are useful. In particular, when compound images are

considered, eÆcient performance can be achieved even with lossless or near-lossless

compression of the simple image regions. We thus propose a simple, yet e�ective

method to encode \simple" regions with lossless or near-lossless compression. Also

we discuss a simple technique to separate a compound image into simple regions

and natural regions so that we can apply the proposed compression algorithm to the

simple regions in a compound image. Transform-based coding can be potentially

used to compress the natural regions so as to optimize the overall performance, but

we do not attempt to provide solutions to this subject in this chapter.
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A previous work that treats the simple image/subimage with a dedicated com-

pression algorithm is found in the course of RICOH's CREW algorithm development

[81, 82]. An early implementation of CREW depends on wavelet transform to ob-

tain good coding performance for general continuous-tone images [81]. Performance

degradation of this wavelet-based coder, when applied to images having \unusual"

�rst order Markov statistics, is considered in the improved version of CREW [82]

which opts for a binary mode. CREW compression in the binary mode for coding

is an image domain algorithm similar to JBIG [20]. This algorithm is applied to

parts of the image which are deemed to be simple based on a suitable segmentation

criterion. With this option, CREW has achieved signi�cant gains in compression

performance for simple images and compound images containing simple regions.

The chapter is organized as follows. In Section 4.2 we describe an image do-

main algorithm for eÆcient coding of simple images and discuss a generic image

compression system in which our algorithm is used to handle simple regions. Other

components of the generic hybrid image coder, region segmentation and histogram

compaction, are also discussed in the same section. Experiments and results are

presented in Section 4.3. We conclude this chapter in Section 4.4.

4.2 Coding of simple image/subimage

The proposed image compression algorithm is developed exclusively for simple im-

ages. For a typical simple image, only a small number of symbols are needed to

encode the pixel values and the pixels tend to exhibit a strong �rst-order Markov

statistics. While transform-based coding is inappropriate to make use of these prop-

erties, direct coding in the original image domain is not only more convenient, but

also more e�ective for simple images. As our simple-image coding algorithm operates

in the image domain, it will be referred to as Image Domain Processing (IDP).

We note that IDP can also be used as a part of a more general image coding

system to cope with various types of images. The block diagram in Fig. 4.2 shows an
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Figure 4.2: The block diagram of a generic coding system that can be consistently
good for both natural and simple images. The Classi�er block can be further gen-
eralized by assuming a segmentation function for the input image into natural and
simple regions.

example of a generic system that uses IDP in conjunction with a wavelet coder. The

coding system is intended to o�er consistently good performance for natural and

simple images by adaptively selecting the coding algorithm in the Classi�er module,

depending on the image type. Moreover, assuming a segmentation procedure within

Classi�er to divide the input image into simple and natural regions, this generic

scheme can successfully compress even a compound image that consists of simple

and natural regions. However, assuming wavelet transform coding applied to natural

regions, it is diÆcult to deal with region segments of arbitrary shape. We will

introduce a simple block-based segmentation procedure after describing the IDP

algorithm in the following.

4.2.1 Description of algorithm

Suppose that we compress a simple image or a simple region. The compression al-

gorithm processes each bit-plane successively, from the most signi�cant bit (MSB)

plane to the least signi�cant bit (LSB) plane, thus achieving an embedded bit stream.

See Fig. 4.3 for an example of the bit-planes obtained from an 8-bit image. A binary
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1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

1 1 0 0 1 0

255 255 254 0 1 0

MSB=BP7

LSB=BP0

BP6

BP5

8 bit-planes

Figure 4.3: Bit-planes obtained from an 8-bit gray-scale image. In this �gure one
line of pixels in the image is converted into bit-planes.

adaptive arithmetic coder is used to compress each bit-plane. The conditional prob-

ability model of the adaptive arithmetic coder is instrumental for good compression

performance and it is described in detail below.

Given an input bit to the binary arithmetic coder in the current bit-plane, the

context model is composed of two sets of bits: one set containing neighboring bits

in the same bit-plane, Cintra, and the other containing bits in the other bit-planes,

Cinter. We do not want to increase overhead to estimate the conditional probability

of the current symbol so that we use causal contexts, i.e., the bits from the causal

past, or the bits already processed by the arithmetic coder thus known to the encoder

and the decoder. Our causal context models are shown in Fig. 4.4.

The reason for considering two di�erent sets of context bits is clear. First, the

strong spatial correlation among image pixels also extends to some extent to its

bit-planes and thus using Cintra will be bene�cial. Second, Cinter is useful because

we are running our algorithm on simple images. Consider as an example a bi-level

image scanned as an 8-bit image. In this case the two more likely intensity levels

are going to be 0000 00002 and 1111 11112 and, possibly, the levels that di�er only

in some of the LSB's. Thus, if a particular pixel's MSB is 1, the less signi�cant bits

would also be 1 with high likelihood. This motivates the fact that, for simple images,
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Figure 4.4: Causal contexts to generate the conditional probability model for an
input bit to the binary arithmetic coder in IDP. Two sets of bits, (a) Cintra and (b)
Cinter, are used to exploit the correlations among neighboring bits within the current
bit-plane and across the bit-planes, respectively.

gain can be achieved by using information about the previously scanned bit-planes

and thus justi�es the potential bene�ts of Cinter.

Note that a similar intuition applies in the case where the original images scanned

to 8-bit images are not bi-level. Since the number of gray-scale levels is much less

than the maximum of 256 in those simple images, for each given pattern of, say,

4 MSB's, the number of possible combinations of 4 LSB's is likely to be less than

16 and may indeed be biased to one particular level. This aspect can be exploited

through context modeling. Also note that further gains can be achieved for simple

images by performing histogram compaction, e.g., if only 32 pixel values are used in

an 8-bit image, we �rst map the 32 levels into a 5-bit code and then run bit-plane

coding for each of the 5 bit-planes. We will discuss histogram compaction brie
y

later in this chapter.
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Once the context model has been selected, the compression algorithm processes

each bit plane in the usual raster scan order. The only necessary side informa-

tion is the dimension of the input image and, when segmentation is applied, the

classi�cation map to describe the location of simple and natural regions.

4.2.2 Region segmentation

In order to separate simple regions from a compound input image, we use a segmen-

tation procedure. The main issues in developing the segmentation algorithm are: (i)

the criterion to decide whether a region is simple or natural, (ii) the amount of side

information required to deliver the segmentation result, and (iii) applicability of the

coding methods to the classi�ed regions.

Although segmentation into an arbitrary region shape is optimal in extracting

simple regions, the practical concerns given in (ii) and (iii) above make it diÆcult

to use arbitrary shapes. Instead we apply segmentation over the blocks obtained by

tiling the input image. Segmentation based on the image tiles can avoid the excessive

side information required for shape coding. Furthermore, for the compression of the

natural regions, rectangular tiles are more suitable for the popular transform coding

techniques (e.g., wavelet coding or DCT coding).

Choosing an optimal segmentation criterion depends on the particular coding

method for each of the simple and natural regions. While we do not specify the

compression method for the natural tiles, we employ a simple segmentation rule

which tests the number of active2 levels in the image tile.

We summarize our segmentation procedure in the following. Given an M -by-N

image,

Algorithm 3 Image Tile Segmentation

1. Partition the image into MN
mn

, m-by-n tiles.

2
Active levels are the pixel values that are used at least once to represent the given image tile.
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2. For each m-by-n tile, generate a histogram of the pixel values to �nd the active

levels having non-zero frequency of occurrences.

3. Compare the number of active levels La with a given threshold LT . If La < LT ,

then the given tile is compressed with IDP. Otherwise, apply a natural image

coding method.

In the above algorithm we assume that we choose m and n such that M and

N are multiples of M and N , respectively. Note that m, n, and LT are all design

parameters for the overall hybrid coding system. This scheme needs no more than

mn bits as overhead for tile classi�cation.

4.2.3 Histogram compaction

Histogram compaction can be optionally used to preprocess simple images to help

the performance of our image domain compression algorithm (See Fig. 4.2). If the

number of active intensity levels is small, then we use side information to specify

what pixel values are in use and represent each pixel intensity with a reduced number

of bits.

Suppose that only 29 active pixel values are used in a given image. Then we can

represent image using only 5 bits per pixel after specifying those 29 levels explicitly

in the side information. This makes our compression algorithm avoid compressing 3

bit-planes so as to increase compression eÆciency. However, when to use histogram

compaction must be decided carefully, taking into account the trade-o� between bits

added by overhead and bits saved by removing redundant bit-planes. For example,

a convenient, yet eÆcient way of specifying the active pixel values is to use a 256-bit

overhead (for 8-bit gray-scale images) where the i-th bit is set to 1 if the pixel value

i�1 is engaged in image representation, or set to 0 otherwise. In this case, obviously,
histogram compaction is not worth considering if it can save no more than 256 bits

by bit-plane reduction.
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4.3 Experiments and results

For the experiment with the proposed coding scheme, we �rst generated simple im-

ages from some of the JPEG 2000 test images [16], cmpnd1.raw (512x768), target.raw

(512x512), and us.raw (512x448). The selected test images are shown in Fig. 4.5.

From these images, we obtained the corresponding simple images in Fig. 4.6 by

using the segmentation procedure in the previous section. The tile size is �xed to

m = n = 64. LT = 64 is used for segmentation and those tiles classi�ed as the

natural regions are �lled with 0000 00002's and shown as the black tiles in the �gure.

In the implementation of the IDP algorithm for experiments we choose 4 bits

for Cintra: the adjacent bits to the current bit in W, N, NW, and NE directions.

When compressing the k-th bit plane, k=0,...,7, we use k bits from Bit-Plane 0 to

Bit-Plane k�1 in Cinter, where Bit-Plane 0 corresponds to the MSB's and Bit-Plane

7 to the LSB's. See also Fig. 4.4.

Lossless compression with IDP is compared to independent bit-plane by bit-plane

compression using JBIG [20], the ISO/ITU bi-level image compression standard.

Also we consider CALIC [68] which is known as one of the best lossless coding algo-

rithms for the general gray-scale images. The black tile regions are also considered

in compression as parts of a simple image. The results indicate that our method out-

performs the other schemes for simpler images, i.e., image represented by a smaller

number of pixel intensity levels. These results are summarized in Table 4.1. We also

include, in the parentheses below the IDP result for each test image, the results of

combining histogram compaction with IDP. Since histogram compaction on a tile-

by-tile basis produces a large amount of side information, it is either used for all

simple tiles or not used at all in the given image. Thus, while it increases compres-

sion eÆciency for cmpnd1.smp, histogram compaction is automatically turned o� for

cmpnd1.smp and us.smp because it does not o�er any reduction in bit-planes.

We then ran the same experiment on the images obtained by a di�erent segmen-

tation threshold: LT = 24 is used instead of 64, yielding the results in Table 4.2. By
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(a)

(b) (c)

Figure 4.5: JPEG 2000 test images used in the experiment. (a) cmpnd1.raw, (b)
target.raw, and (c) us.raw. All are 8-bit gray-scale images.
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(a)

(b) (c)

Figure 4.6: Simple images obtained by preprocessing JPEG 2000 test images in
Fig. 4.5. (a) cmpnd1.smp is a bi-level image. (b) target.smp and (c) us.smp have
no more than 64 intensity values in their 64x64 tiles.
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Test Images Original Size Compressed Size (bytes)
(bytes) IDP I-JBIG CALIC

cmpnd1.smp 393,216 5,400 18,893 6,256
(5,400)

target.smp 262,144 11,539 9,739 12,686
(11,539)

us.smp 229,376 21,158 24,011 19,365
(21,158)

Table 4.1: Lossless compression comparison of IDP with I-JBIG (compression by
independent application of JBIG to each of 8 bit-planes) and CALIC. Test images
are obtained by segmentation with LT = 64 and shown in Fig. 4.6. Note that
cmpnd1.smp is a bi-level image except one 64�64 tile at the upper left corner of the
original photo region. The �le sizes in the parentheses in the IDP column are the
results of applying histogram compaction before IDP compression.

Test Images Original Size Compressed Size (bytes)
(bytes) IDP I-JBIG CALIC

cmpnd1.smp 393,216 3,313 16,056 4,098
(3,162)

target.smp 262,144 2,076 3,578 2,757
(2,141)

us.smp 229,376 9,161 11,245 8,503
(8,385)

Table 4.2: The results from the same experiment as the one for Table 4.1 but with
di�erent test images: the test images are obtained via segmentation with LT = 24.
cmpnd1.smp is now a true bi-level image.

using even simpler input images, we can see that IDP consistently outperforms the

others. Also, histogram compaction can provide further gain for cmpnd1.smp and

us.smp. However, it is interesting to observe that, for target.smp, the histogram

compaction slightly degrades the compression performance. In this case the side in-

formation for histogram compaction overshadows the gain by IDP with the reduced

bit-planes.

We also experiment with a computer-generated graphics image in Fig. 4.7. This

graphics image uses as many as 151 intensity levels for the whole image and up to

115 levels locally when 64�64 tiling is applied. Tile-based segmentation is not used

to preprocess the image so that the whole image is treated as a simple image. In the
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Figure 4.7: A computer generated graphics image used to evaluate the lossless per-
formance of IDP. This 125�151 gray-scale image contains 151 intensity level for the
whole image while it locally has no more than 116 levels for 64� 64 tiling.

Original IDP I-JBIG CALIC GIF
18,875 4,305 5,596 4,729 5,254

Table 4.3: Lossless compression comparison of IDP with I-JBIG, CALIC, and GIF,
for the simple computer-generated graphics image in Fig. 4.7. The numbers indicate
the �le sizes in bytes. Preprocessing of the image is not considered. While bit-
plane reduction for histogram compaction is not available, IDP outperforms all other
algorithms.

performance comparison we consider Compuserve's Graphical Interchange Format

(GIF), a de facto lossless image compression standard, as well as I-JBIG and CALIC.

In Table 4.3 the compressed �le size in bytes is given for each method. As the

IDP algorithm outperforms the other methods, it can be useful for compression of

similar computer-generated graphics consisting of large homogeneous regions. Note

that histogram compaction does not help the performance of IDP in this case since

bit-plane reduction is not available.

4.4 Conclusion and remarks

We have demonstrated that the proposed IDP algorithm is more e�ective than

CALIC or a trivial extension of JBIG to gray-scale coding, for simple images. The
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IDP algorithm is also comparable or superior to CALIC and GIF, when compress-

ing images having a moderate number of active pixel values or images consisting of

large homogeneous regions. However, it is important to see that our method, unlike

CALIC or GIF, is very simple and o�ers embedded bit streams and bit scalability

so as to easily enable lossy compression. Thus, provided that there is an intelligent

way to segment a compound image (e.g., cmpnd1.raw), this lossless compression

method can be incorporated with some embedded wavelet coder for compound im-

ages, i.e., we apply the IDP algorithm to the simple tiles (e.g., the text region of

cmpnd1.raw) and the wavelet coder to the natural image tiles (e.g., the photo region

of cmpnd1.raw).

The IDP algorithm has been proposed to the ongoing JPEG 2000 standardiza-

tion e�ort, as a part of the algorithm contribution of [36]. IDP is indeed used to

complement the embedded wavelet coder of [35] for tiling-based coding of the com-

pound test images. We remark that this is another example of successful use of

combined backward and forward adaptation|while classi�cation of the image tiles

is run in a forward adaptive manner, a backward adaptive mode of operation can be

found in IDP coding.

As a future work to extend the proposed IDP idea, we can consider more sophis-

ticated context modeling for both Cintra and Cinter. Finally, to establish a universal

image coding scheme that combines IDP and wavelet coding, we need to further

investigate the segmentation procedure.
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Chapter 5

EÆcient Rate-Distortion Optimization Techniques

with Applications to Fast SVQ Codebook Search1

5.1 Introduction

A key part of any eÆcient lossy source coder involves optimal allocation of bit rate

to each of the coding units, as employed in the selected coding paradigm. This

allocation problem can be classi�ed under the general label of budget-constrained

rate-distortion optimization which is formulated in Section 1.2.1. Examples include

the traditional o�-line design of vector quantizers based on optimization over repre-

sentative training data [15]; more recent non-training based quantization frameworks

where the encoder makes on-the-
y decisions on how many bits to assign to com-

peting coding units in the given system [53]; and how to �nd the best subtree for

tree-structured quantization or the best wavelet packet tree from the uniform wavelet

decomposition tree [5, 29, 49]. One of the bene�ts of R-D optimized allocation can

be found in [69] where an R-D optimization of the zerotree coding framework of [52]

results in signi�cant performance improvement.

1Part of this chapter represents work done jointly with Kannan Ramchandran. For related
publication see [74].
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Typically, an operational R-D optimization problem for practical coding systems

subsumes the selection, among quantization choices available in the chosen frame-

work, of those which minimize the coding distortion for a given bit rate budget.

A key point is that the set of parameters is discrete, therefore dictating the use of

discrete optimization techniques. The encoder's task is then to �nd a good (if not

optimal) operating point from the discrete set of available operating points corre-

sponding to quantization choices, i.e., to search through the operational R-D space

for the point which has the least distortion while not exceeding the target rate. An

additional requirement is obviously that the search be computationally eÆcient.

In this chapter we will describe eÆcient ways of �nding this operating point for

the important class of block-based coders which can change their coding parameters,

i.e., quantization choices, for the composing coding units of the block. In this regard,

our problem framework is similar to the case considered by Shoham and Gersho [53]

with a vital distinction that we do not restrict ourselves to operating points on the

convex hull of the coder's R-D characteristic. In Fig. 5.1 we repeat Fig. 1.5 to show

an example of a non-convex hull solution which is not attainable by the Lagrange

multiplier based methods of [53].

Typical examples in the scope of application of our proposed techniques include

coding of intraframe (I-frame) blocks in MPEG (which typically occupy 75% of the

overall budget) [34], entropy-constrained scalar/vector quantization (ECSQ/ECVQ)

[11, 4], and any block-coding type framework where convex-hull operating points

will not suÆce in general. An illuminating example of such a framework involves

the problem of optimal codebook search for scalar-vector quantization (SVQ) [30]

that we have introduced early in Section 2.3.1. Also the signal decision problem in

the channel decoder of the V.34 voice-band modem standard [12] would be a good

candidate to apply the proposed technique, as the V.34 standard uses a dual of the

SVQ design for optimal shaping of multidimensional constellations [33].

The example of the SVQ codebook search problem will guide us through the

development of new discrete optimization techniques, illustrating the basic concepts.

81



R

D0

Lagrangian

di j( )∑
min di j( ) λr i j( )+{ }∑

θ λ θtan–=( )

r i j( )∑

RT

convex hull solution

Optimal solution

Figure 5.1: Optimal and Lagrangian solutions in the operational R-D space. The
convex hull solution is determined as the �rst point hit by a plane wave of slope
�1=�. The D-intercept of the plane wave determines the corresponding cost. The
shaded area behind the convex hull solution contains the optimal operating point
that cannot be reached by this Lagrangian method.

We will present experimental results in Section 5.4 to verify the superior performance

of our proposed technique over the standard optimal approach|based on dynamic

programming (DP)|of [30] for SVQ codebook search.

We now provide a brief motivation for our proposed method, a hybrid between

the two most popular discrete optimization techniques: Lagrangian optimization

and dynamic programming.

The Lagrangian optimization technique addressed in [53] has the advantage of

being fast but, as mentioned, has the drawback of achieving solutions that lie strictly

on the convex hull of the available rate distortion characteristic. While this is not

a major problem when the convex-hull is densely populated, sparse convex-hull sets

are problematic and may result in unacceptably suboptimal performance. This can

occur in practical scenarios in tree-based coding when trying to operate at low rates,

as mentioned in [29]. Note that the suboptimality of the Lagrangian approach stems
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from the fact that the set of operating points is discrete. In a continuous optimization

problem where all optimal operating points necessarily lie on the convex hull of the

R-D curve, the Lagrangian approach will always yield the optimal operating point.

At the other end of the spectrum we can �nd the class of DP-based techniques

which are guaranteed to �nd the optimal operating point, whether or not they are

convex-hull residents (see Sec. 5.3 for details). In fact, for the SVQ codebook search

problem, Laroia and Farvardin in [30] propose such a DP-based method to achieve

optimal performance. The main drawback of the DP technique is that optimality

comes at the price of a substantial increase in complexity, and indeed for most

practical \on-line" image/video coding scenarios, dynamic programming is out of

the question unless the number of candidate operating points is small or can be

reduced.

Our goal is to introduce a novel hybrid method that is targeted at combining

the advantages of the Lagrangian and the DP-based approaches. The core idea is

to use the fast Lagrangian solution as an initial guess for the optimal solution in

the DP tree search, thus reducing its complexity to a fraction of that of the regular

full-search DP. We will demonstrate how the proposed technique �nds application in

providing a much improved way of SVQ codebook search compared to the approach

of [30] based on full-search DP. Although we use SVQ as a means to demonstrate

our technique, we emphasize that its scope of application is quite broad and includes

any R-D optimization framework where convex hull operating points may not suÆce.

Indeed the scope extends beyond source coding or even engineering, as it addresses

the universal problem of optimal resource allocation in a discrete optimization setting

[10].

This chapter is organized as follows. In Section 5.2 we discuss the optimal SVQ

codebook search using the regular DP algorithm. We also discuss the Lagrangian

approach as a fast approximation technique. In Section 5.3 we describe a set of

new hybrid techniques which will allow us to trade o� performance and complexity,
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including bu�er-constrained DP optimization and our proposed method, Lagrangian-

initialized bu�er-constrained optimization. In Section 5.4 we present the results of

applying the new techniques to SVQ codebook search and compare our results with

those obtained from the standard techniques. Finally, we conclude in Section 5.5

with remarks on future research topics related to this chapter.

5.2 SVQ revisited

The scalar-vector quantizer (SVQ), a �xed-rate VQ scheme, has been proposed to

approximate the performance of ECSQ while being robust in noisy environments

[30]. The SVQ is theoretically justi�ed by the asymptotic equipartition property

(AEP) for i.i.d. random variables [7]. From the AEP, a code with a �xed length

close to m-times the source entropy can represent most of the sample sequences of

length m with minimal error. The basic idea of SVQ is to use an underlying scalar

quantizer (USQ) and associate a \length" based on the sample entropy to each of

its quantization levels. Of all possible combinations of the USQ levels, only those

with the total length (i.e., the sample entropy) no greater than a threshold are made

part of the codebook. The threshold is determined such that the total number of

codevectors in the codebook matches the design rate of the SVQ. The details about

design of SVQ are treated in [30]. Here we focus on the codebook search issue for

SVQ, i.e., the procedure to �nd the best codevector given an input vector and the

designed SVQ codebook.

5.2.1 SVQ codebook search

The SVQ quantizes an input vector by choosing, among all combinations of USQ

levels, the one which minimizes the distortion without having the total length exceed

the threshold. More formally, an m-dimensional rate-r SVQ can be de�ned by its

parameter triplet (Q;L; L), i.e., (i) Q, the set of the n (n � 2r) levels qj of an USQ,
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Bit Allocation SVQ Codebook Search

Number of input units Vector dimension
M m

Number of quantizer choices Number of USQ levels
N n

Rate caused by j-th quantizer Length of j-th USQ level
r(j) `j

Total rate budget Total length constraint
RT L

Table 5.1: Analogy between SVQ codebook search and bit allocation in the general
budget-constrained optimization framework. The parameters for the bit allocation
application are from the R-D optimization formulation of Sec. 1.2.1. The total length
constraint of SVQ codebook is equivalent to per-vector rate constraint mR when R
is the target rate of SVQ coding.

(ii) L, the set of the corresponding lengths `j given by the source entropy, and (iii)

L, a threshold on the total length
Pm

i=1 `(zi) for a codevector z � (z1; � � � ; zm) where
`(zi) 2 L is the length of zi. Scalar quantizing m samples is conceptually equivalent

to vector quantizing an m-vector with a VQ codebook containing all nm possible

combinations in Qm. The SVQ codebook contains only codevectors such that

mX
i=1

`(zi) � L (5.1)

where L limits the codebook size (� 2mr) making SVQ �xed-bit-rate. See Fig. 2.2

for an example of a 2-dimensional SVQ codebook based on the USQ for a Gaussian

marginal distribution of input.

We can readily see that SVQ encoding is analogous to the allocation problem in-

troduced in Section 1.2.1: the rate ri(j) is replaced by the length associated to each

quantization level `(zi) and the rate budget RT is replaced by the length threshold,

L. The analogy is also summarized in Table 5.1. Note that all the described opti-

mization techniques thus can be applied in the SVQ context. In this particular case

the allocation problem results in a sparse R-D characteristic and it is thus a perfect
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Figure 5.2: DP tree for SVQ codebook search. The whole tree is grown by attaching
the possible transition given by the USQ (in the box) to each state. Each quanti-
zation choice for the i-th component of the input vector has corresponding weight
(distortion, d1; : : : ; d7) and transition branch (length, `1; : : : ; `7). If some quantiza-
tion levels are of the same length (e.g., `1 = `7), then the weight for such a branch
is chosen as the minimum of all the distortions associated with the branch (e.g.,
min(d1; d7) as the weight of the uppermost branch). Note that the upper (lower)
extreme path correspond to the quantization of all input components to the USQ
level with the longest (shortest) of `j's.

testbed for the algorithms that we introduce in Section 5.3. We �rst describe how

the SVQ codebook search problem is treated by the standard techniques.

5.2.2 Optimal codebook search by dynamic programming

As mentioned previously, the optimal SVQ codebook search proposed in [30] is a full

search DP algorithm. We refer to Section 1.2.3 for the detailed procedure to grow

and prune the DP tree to �nd the optimal solution as a path of the tree. Here we

only identify the components of the DP tree for SVQ codebook search.
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We redraw the DP tree of Fig. 1.6 in Fig. 5.2. Fig. 5.2 also shows the optimal

codevector obtained by DP for a 4-dimensional input vector. In a separate box we

include the transition diagram for state si. The diagram explains how the USQ Q
acts in order to grow a whole tree. In particular, we assume thatQ has 7 quantization

levels fq1; : : : ; q7g for which there are 4 distinct lengths with `1 = `7, `2 = `6, and

`3 = `5. We denote the quantization distortion associated with qj by dj, j = 1; : : : ; 7.

Note that the number of possible transitions (branches) is equal to the number of

distinct lengths. Hence, sk+1 linked to sk can have 4 di�erent values, `+`1; : : : ; `+`4,

given si = `.

In the tree of Fig. 5.2 the thick solid path indicates the solution codevector. The

path with the thick dashed branch, deviating from the solution path at stage 3,

represents the quantization corresponding to the overall minimum distortion. But

it is pruned out by DP since its total length exceeds the threshold L. Note that

independent scalar quantization by the USQ results in this non-admissible path.

The solution path is associated with the minimum overall cost, among the surviving

paths with the �nal state bounded by L, and thus guarantees optimality.

5.2.3 Fast SVQ codebook search by Lagrangian approach

The Lagrange multiplier approach prevails, as a means to approximate the optimal

solution, in most constrained optimization coding problems where the computational

eÆciency is crucial. For example, a Lagrangian algorithm has been adopted for a

fast approximation of the bu�ered compression in [45]. This approach can be used

also in our SVQ example for eÆcient codebook search.

Let x = (x1; : : : ; xm) 2 Rm be an m-dimensional input vector. De�ne the cost

function D as

D =
mX
i=1

d(xi; zi) (5.2)

where zi is the i-th component of z, the codevector for x, and d(�; �) is an additive

distortion measure, typically squared error between the input and the codevector.
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The corresponding codevector length
Pm

i=1 `f(zi) must be bounded by L where f(zi)

denotes the index of the quantization level corresponding to zi.

Now we rewrite the budget-constrained optimization formulation of Section 1.2.1

in the context of SVQ codebook search. For notational simplicity, we represent SVQ

codevector assignment by a mapping v � (v1; : : : ; vm) de�ned as

v : Rm ! Z (5.3)

such that, for x 2 Rm,

v(x) = (v1(x1); : : : ; vm(xm)) = (z1; : : : ; zm) 2 Z (5.4)

where Z 2 Qm is the SVQ codebook.

Formulation 1 (Budget-constrained SVQ codebook search)

Find a mapping v which minimizes the cost

D(v) �
mX
i=1

d(xi; vi(xi)) =
mX
i=1

d(xi; zi); (5.5)

subject to

R(v) �
mX
i=1

`f(zi) � L: (5.6)

It is generally more diÆcult to obtain the optimal solution of constrained opti-

mization than that of unconstrained optimization. However, with aid of the next

theorem, we can justify that the solution to an unconstrained optimization is equally

good for the inequality-constrained optimization in the above formulation, under a

certain condition.

Theorem 1 [53] If v�(�) is the solution to the unconstrained problem

min
v

n
D(v) + �R(v)

o
(5.7)
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for a given � � 0 then it is also the solution to the constrained problem in Formu-

lation 1 with the constraint R(v) � L = R(v�(�)).

Theorem 1 implies that, for every � � 0, there exists a corresponding constrained

problem of which the solution is identical to that of the unconstrained problem.

Thus, if R(v�(�)) happens to be equal to L then v�(�) from the unconstrained prob-

lem becomes the optimal solution to the constrained problem. Hence the solution

can be obtained by running a two-step algorithm in which we �nd the optimal so-

lution to the unconstrained problem in Equation (5.7) in one step and then �nd a

value of �, which makes R(v�(�)) close enough or equal to L, in another step. The

generalized Lagrange multiplier method of [10] is such a two-step algorithm which

converges in � yielding a solution

v�(x) = v(x;��) (5.8)

to the new unconstrained problem.

For fast convergence in �, Lagrangian optimization uses, for example, the bisec-

tion algorithm [48] while utilizing an optimization technique called constant-slope

optimization to obtain the optimal solution to the unconstrained optimization prob-

lem for a given �. Fig. 5.1 shows how the constant-slope optimization technique

�nds the solution SVQ codevector for a �xed �. To brie
y describe this technique,

we consider a \plane wave" of slope �1=� which propagates from the origin toward

the discrete R-D characteristics points of the SVQ, i.e., the operating points of the

SVQ. The point �rst hit by the plane wave determines a particular quantization v

which is the solution to (5.7). Note that only the points on the convex hull are the

possible solutions obtained by this constant-slope method.

We include the Lagrangian optimization algorithm for SVQ codebook search in

the following. For a detailed description of this optimization algorithm, as applied

to the bit allocation problem and the bu�er-constrained compression problem, refer

to [53, 45].
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Algorithm 4 Lagrangian Optimization: SVQ Codebook Search

1. Start with � = �l = 0. If R(v�(�)) � L, then STOP with v�(�) as the optimal

assignment of codevector; Otherwise choose large enough �u such that

R(v�(�u)) � L � R(v�(�l)): (5.9)

2. Set

�next =

�����D(v�(�l))�D(v�(�u))

R(v�(�l))� R(v�(�u))

�����+ " (5.10)

where " is an arbitrarily small positive number to ensure the smallest rate

when �next is singular.

3. Repeat the optimization of Equation (5.7) for � = �next. If R(v�(�next)) =

L, STOP. Else set �l = �next if R(v�(�next)) � L, or set �u = �next if

R(v�(�next)) � L: Go to Step 1.

5.3 EÆcient DP-based optimization techniques

Now we go back to the general budget-constrained optimization problem and develop

two improved techniques based on the DP algorithm. While the �rst technique,

bu�er-constrained DP optimization, introduces the basic idea of limiting complex-

ity of the optimal DP search, the second technique, Lagrangian-initialized bu�er-

constrained DP optimization, further improves the eÆciency over bu�er-constrained

DP without compromising the optimal performance. Note that we use the same

terms and notations as those used to describe the DP procedure in Section 1.2.

5.3.1 Bu�er-constrained DP optimization

The fact that the number of states in the DP formulation increases linearly as a

function of the DP stage number is the major obstacle to applicability of DP for
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Figure 5.3: Standard DP and bu�er-constrained DP. In the standard DP case the
number of states grows linearly. By introducing \bu�ering" constraint, we can keep
the number of states at each stage constant. The states are allowed only between
the bu�er state bounds denoted by the dashed lines. In this example, for the chosen
bu�er size, the optimal solution cannot be achieved. However note that one could
always �nd a suÆciently large bu�er that would not prune out the optimal solution.

large input dimensions. Thus we �rst propose a method to maintain a �xed number

of states for all stages in order to reduce the computational burden of DP.

Suppose that the average rate �r = RT =M (or �r = L=m for SVQ codebook search)

is allocated to every input unit by the solution of optimization. Then the \average"

solution path through the DP tree can be de�ned as the one in which all branches use

rate equal to �r. Note that this average solution path does not necessarily correspond

to an actual path in the tree since �r may not be integer. In Fig. 5.3 the average

solution path is denoted by the hidden line of slope �r = 2 starting from (0,3).

Now the basic idea is to assume that most paths will not deviate too far from

the average path. We introduce a new state variable bi to represent the state of a

virtual bu�er at the i-th stage. The role of the virtual bu�er is to keep track of

how much each path deviates|in terms of the accumulated rate|from the average

path. Since most paths tend to be close to the average path, we can impose an
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additional constraint so that the admissible solutions not only need to have the

total rate bounded by RT but also need to stay within certain �nite bu�er state

bounds at every stage i. Hence we now search for the minimum distortion solution

satisfying

bmin � bi � bmax for all i; (5.11)

as well as the constraint (1.2), where bmin and bmax are appropriately chosen lower

and upper bu�er state bounds,2 respectively. With this change, the DP technique

can be used in the usual way except now with a constant number of states at each

stage. Note that the number of states is equal to the chosen bu�er size, B =

bmax � bmin + 1.

The main bene�t of this formulation which is analogous to the bu�er constrained

optimization of [45] is that the number of states can be bounded and thus the

complexity is kept reasonable even for a largeM . However the additional constraint

may potentially eliminate the full-search optimal solution (see Fig. 5.3). In general,

we can expect that this would not occur often (and thus suboptimality will be

limited). Note that we can always �nd the optimal bu�er size|the minimum bu�er

size for which the bu�er-constrained solution is equal to the optimal DP solution.

Now we describe the bu�er-constrained DP for the example of SVQ codebook

search. We then consider a procedure to choose the optimal bu�er size and discuss

the complexity of the algorithm.

5.3.1.1 Bu�er-constrained SVQ codebook search

For the i-th element zi of an m-dimensional SVQ codevector z = (z1; : : : ; zm), the

virtual bu�er state bi is expressed by the recursive equation

bi = bi�1 + `f(zi) � �r for i = 1; : : : ; m; (5.12)

2We emphasize that we assume a virtual bu�er only to clarify our idea. If the selected encoder
has an actual bu�er, a separate bu�ering constraint can be added to the problem formulation. Also
note that bmin of the virtual bu�er can be negative.
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where bi�1 is the state for the previous element zi�1 and b0 is the initial state.

The bu�er state equation (5.12) models a bu�er which is emptied at a constant

rate �r = L=m while the bu�er occupancy is incremented by the length associated

with the quantization level, `f(zi), for the input element. Then, given the bu�ering

constraints bmin and bmax, we formulate the bu�er-constrained SVQ codebook search

problem as follows:

Formulation 2 (Bu�er-constrained SVQ codebook search)

Find the SVQ codevector z = (z1; � � � ; zm) for an input x = (x1; � � � ; xm) which

minimizes the distortion

D(x; z) =
mX
i=1

d(xi; zi); (5.13)

subject to
mX
i=1

`f(zi) � L (5.14)

and

bmin � bi � bmax for i = 1; : : : ; m; (5.15)

where b0 is the initial bu�er state and bi is given by (5.12).

It is straightforward to modify the DP algorithm for the new formulation with

added constraints, as shown in Fig. 5.3. In the �gure bmax = 2 and bmin = �3. This
particular choice emphasizes the fact that the bu�er size can a�ect the encoding

quality of SVQ. In what follows we discuss the minimum bu�er size requirement for

optimal or lossless SVQ codebook search.

5.3.1.2 Determining optimal bu�er bounds

While developing the bu�er-constrained formulation of budget-constrained optimiza-

tion, we have assumed that the maximum and the minimum bu�er occupancies do

not deviate far from the initial state due to the constant bu�er output. We can

�rst verify this hypothesis with a simple experiment to track the bu�er state change

through quantization of a large number of input vectors.
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Figure 5.4: (a) Maximum and minimum bu�er states for a Gaussian test sequence
of 80,000 samples optimally quantized by a 64-dimensional SVQ. For each of the
1,250 vectors, the maximum and the minimum states are plotted with dots. The
overall maximum and minimum bu�er states for all vectors are b�max = 66 and
b�min = �93. Dashed and dash-dotted lines denote 80% and 60% thresholds of b�max

and b�min, respectively. (b) 3-D histogram of bu�er states at each vector component.
The bu�er state histogram is generated for 200 (between the 751st and the 950th)
vectors. Note that most the bu�er states lie in [�50; 50] range.

Fig. 5.4(a) is a plot of the maximum and the minimum bu�er states incurred by

optimal DP codebook search for a test sequence, assuming an in�nite bu�er. For the

entire test sequence of 1,250 (64-dimensional) vectors from a Gaussian source, the

bu�er occupancy never exceeds b�max = 66 (the overall maximum) nor under
ows

below b�min = �93 (the overall minimum). Hence, if the DP codebook search is

constrained with a �nite bu�er of size (b�max � b�min + 1) = 160 or larger, then the

resulting bu�er-constrained DP is \lossless," i.e., there is no additional distortion

incurred by using the bu�er-constrained algorithm instead of the optimal DP. In

any case the bu�er-constrained DP is expected to search the SVQ codebook much

faster than the full-search DP since it considers only 160 states per stage while the

full search considers L = 518 states per stage to meet the given rate constraint of

r = 2:0.
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m b�max(b
c
max) b�min(b

c
max) L SNR

8 27 (31) -21 (-24) 74 9.982
16 36 (52) -33 (-48) 138 10.204
32 45 (95) -57 (-96) 265 10.347
48 56 (137) -72 (-144) 392 10.411
64 66 (178) -93 (-192) 518 10.416

Table 5.2: Optimal bu�er state bounds necessary for lossless performance. b�max and
b�min are the input-dependent optimal bu�er bounds for lossless performance while
bcmax and bcmin are the codebook-dependent optimal bounds good for arbitrary input
sequences. Note that the SNR numbers are the same for both of the optimal and
the bu�er-constrained codebook search.

The dashed and dash-dotted lines represent bu�er state bounds reduced to 80%

and 60% of the optimal bu�er bounds (b�max, b
�
min) for the lossless codebook search,

respectively. We will later consider the reduced bounds in the \lossy" mode of DP

to further speed up codebook search.

Fig. 5.4(b) is a 3-D histogram of the bu�er states for 200 vectors from the same

test sequence. The histogram can be regarded as a series of 64 2-D histograms

for the 64 components of vector or the 64 stages of DP, each of which represents

the usage of the bu�er states at the corresponding stage. Although the histogram

has non-zero values for the extreme bu�er states like 66 and �93, as depicted by

Fig. 5.4(a), most bu�er states are populated in the range of [�50; 50] throughout the
entire stages. This observation implies that we could further accelerate the bu�er-

constrained algorithm by reducing the bu�er size to a certain extent, without any

signi�cant degradation from the optimal performance.

We repeat the above experiment using 8-, 16-, 32-, and 48-dimensional optimal

SVQ's. The SVQ parameters Q and L and the test sequence are the same as the

ones used for the 64-dimensional case of Fig. 5.4. Table 5.2 summarizes the results.

Again, from the table, b�max and b�min specify the minimum bu�er size requirement

as b�max � b�min + 1 which is required for the SVQ to quantize the test sequence

without altering the solution path even when the bu�er is introduced. The bu�er
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size requirements obtained from this experiment are much smaller than L, especially

for larger input dimensions.

However these b�max and b�min are valid only for our test input sequence based

on which they are obtained. These particular parameters may be slightly lossy or

redundant (i.e., smaller or larger than the optimal bounds) for other input sequences

even if the sequences are generated from the same input source. Nonetheless, it is

useful to include a step to �nd the minimum bu�er size requirement for a training

set provided that the training set be large enough to represent the source statistics

suÆciently well. Then the bu�er size estimate from the training set can be used

in codebook search for the actual inputs, assuming that the minimum bu�er size

requirement does not vary much among di�erent sets of input vectors from the same

signal source.

Alternatively, given a SVQ codebook (or SVQ parameters), bcmax and bcmin can

be determined as the optimal bu�er bounds of bu�er-constrained SVQ codebook

search, which is lossless for arbitrary inputs, as follows:

bcmin = m(`min � rb) (5.16)

bcmax = m0(`max � rb) (5.17)

with m0 = L�m `min

`max�`min
where `max and `min represent the largest and the smallest

lengths in L, respectively. Then, with bmax = bcmax and bmin = bcmin, the \codebook-

dependent" bu�er-constrained algorithm can �nd optimal SVQ codevectors for any

input vectors although the improvement in search complexity is not as signi�cant

as the improvement by the \input-dependent" optimal bu�er bounds. We compare

the codebook-dependent bounds (bcmax, b
c
min) and the input-dependent bounds (b

�
max,

b�min) in Table 5.2.
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5.3.1.3 Complexity Analysis

The computational complexity of SVQ codebook search using the full-search DP

and the bu�er-constrained DP can be assessed in terms of the number of USQ

levels n, the dimension of the vector m, the length constraint L, and the bu�er size

B = bmax � bmin + 1. The number of distinct code lengths for the USQ also a�ects

the complexity of codebook search. For simplicity in determining the complexity of

the DP algorithms, we use n for this number|although it is e�ectively less than

n|assuming that each USQ level has a di�erent code length.

For the optimal DP codebook search, there are L nodes per stage so that a total

of mL nodes has to be considered for the complete sequence. To grow a branch

to each individual node (i; si), we choose the branch with minimum cost among

at most n branches arriving to that node, which requires n comparisons per node.

Since the cost associated with an incoming branch is computed as the sum of the

cost accumulated in the path up to the previous stage and the cost of the branch

itself, the complexity for each node increases linearly with n. Once DP has grown the

full tree, determining the optimal path involves backtracking from the �nal stage

to the initial stage. This requires one addition per stage, which is negligible in

estimating the order of the complexity. Thus the overall complexity of the optimal

DP is approximated as

Copt = O(nmL): (5.18)

The complexity of the bu�er-constrained DP depends on the bu�er size B instead

of L since now the algorithm considers only B states per stage. Then we modify

(5.18) to calculate the complexity of the bu�er-constrained case as

Cb = O(nmB): (5.19)

Table 5.2 shows that the bu�er size B can be less than 1/3 of the threshold

L for large m in a typical case. Hence, from (5.18) and (5.19), we can expect
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Figure 5.5: Approximated solution paths assumed in two hybrid DP optimizations.
(a) Bu�er-constrained DP optimization assumes an average solution path of linearly
changing states with slope �r. (b) Lagrangian-initialized bu�er-constrained DP op-
timization uses the path corresponding to Lagrangian convex-hull solution as the
guiding path of DP search. By using a close approximation to the optimal solu-
tion, this requires smaller bu�er size than the average solution path case, leading to
improved search speed.

reduction in the SVQ codebook search time by a factor of 3 for large m using the

bu�er-constrained DP. This will be veri�ed through the experiments in Section 5.4.

5.3.2 Lagrangian-initialized bu�er-constrained optimization

We �nally propose a hybrid optimization technique as the major achievement in the

chapter. The new technique is based on the intuitively obvious fact: even though

a convex hull solution may not be optimal it will typically be close to the optimal

solution. We thus �rst run the Lagrangian algorithm and then use this solution

as our initial guess to guide the DP search. This is accomplished by employing

the bu�er-constrained optimization introduced in Section 5.3.1 but now using the

Lagrangian solution as the virtual channel rate instead of �r. See Fig. 5.5 for how the

virtual channel rate assumption alters the average solution path to approximate the

optimal solution.

More formally, let ri(�) be the optimal rate assignment by the Lagrangian tech-

nique for the value of � which results in a total rate closest to (but smaller than)

the budget. With a new virtual bu�er state variable b0i for block i, we can apply
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the bu�er-constrained optimization technique of Section 5.3.1 to �nd the optimal

solution with appropriately chosen bu�ering constraint

b0min � b0i � b0max; i = 1; : : : ; m: (5.20)

In this manner we are bounding the solution to be close to the Lagrangian solution.

To apply this new technique to the SVQ codebook search example, we �rst

replace the bu�er state equation of (5.12) by

b0i = b0i�1 + `f(zi) � �ri(�); i = 1; : : : ; m: (5.21)

Then, with a new bu�ering constraint of

b0min � b0i � b0max; i = 1; : : : ; m; (5.22)

in place of the constraint of (5.15), we can directly use Formulation 2 and the bu�er-

constrained DP method to obtain solution codevectors.

For a suÆciently large bu�er size, we can guarantee that the optimal solutions

are always achievable with this new bu�er-constrained DP algorithm. The impor-

tant point to note is that the required bu�er size to guarantee optimality will typically

be small since the Lagrangian technique already gives a good approximation to the

optimal solution. However a drawback of the new method is that the codebook-

dependent optimal bu�er bounds are not available in general. Thus practical use of

the Lagrangian-initialized bu�er-constrained DP may have to resort to the input-

dependent optimal bounds based on a training set. We have observed from an

extensive simulation of the new algorithm for SVQ codebook search that the input-

dependent bu�er size derived from a large enough training set is practically optimal

in �nding codevectors. Note that our optimization technique can be favorably com-

pared to the improvement ideas for Lagrangian optimization shown in [53], which can

access non-convex hull points but cannot guarantee to achieve the optimal points.
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5.4 Experimental Results

We now compare four SVQ codebook search schemes which represent the four

budget-constrained optimization algorithms discussed in this chapter. The algo-

rithms are:

(i) Optimal (full search) DP (SVQ), the method originally proposed in [30].

(ii) Lagrangian approximation (L-SVQ).

(iii) Bu�er-constrained DP (B-SVQ).

(iv) Lagrangian-initialized bu�er-constrained DP (LB-SVQ).

Note that our experiments involve only the codebook search, and not the codebook

design.

Results are provided for a sequence of 80,000 i.i.d. samples having Gaussian

distribution N(0; 12). In all four schemes we use identical SVQ parameters (Q;L; L)
designed for a distinct training set of 40,000 samples with N(0; 12) using the meth-

ods in [30]. The test SVQ rate is r = 2:0 (bits/sample) and the number of USQ

quantization levels is n = 7.

As discussed above the bu�er size in bu�er-constrained DP environments can be

selected so as to guarantee the optimal solution. In the �rst experiment regarding B-

SVQ we �nd b�max and b
�
min for the test sequence in order to verify that the encoding

is not a�ected by the appropriately chosen bu�er size. The SVQ parameters are

the same as the ones used for Table 5.2 while the test sequence is di�erent. We

summarize the results in Table 5.3. Note that, since the input sequence is changed,

the values of b�max and b�min di�er from the data in Table 5.2 but only slightly.

This observation justi�es use of the bu�er parameters found for the training set to

quantize di�erent input vectors.

In the next experiment we design b�max and b
�
min, together with the SVQ parame-

ters, based on the training sequence. Then we use the parameters (Q;L; L; b�max; b
�
min)
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SVQ B-SVQ
m L

SNR Time b�max b�min SNR Time

8 74 10.001 (10.11) 0:22 27 -21 10.001 0:14
16 138 10.225 (10.33) 0:49 35 -36 10.225 0:23
32 265 10.358 (10.40) 1:43 45 -57 10.358 0:38
48 392 10.427 (N/A) 2:49 63 -63 10.427 0:52
64 518 10.437 (N/A) 3:35 65 -72 10.437 1:00

Table 5.3: Codebook search speeds of lossless DP-based SVQ's. For the full search
DP algorithm (SVQ), SNRs are compared with the data given in [6] (in the paren-
theses). The same SVQ parameters to those for Table 5.2 are used here while the
test sequence is di�erent. Note that the test sequence gives di�erent bu�er param-
eters for the bu�er-constrained SVQ (B-SVQ) from the ones in Table 5.2. Time is
the execution time to run the C implementation of each method on SUN Sparc-5,
measured in min:sec.

B-SVQ100% B-SVQ80% B-SVQ60% L-SVQ
m b�max b�min SNR Time SNR Time SNR Time SNR Time

8 27 -21 10.001 0:14 9.980 0:13 9.855 0:10 9.836 0:01
16 36 -36 10.225 0:24 10.221 0:21 10.168 0:19 10.102 0:02
32 48 -57 10.358 0:39 10.357 0:35 10.337 0:28 10.271 0:02
48 64 -56 10.427 0:49 10.426 0:44 10.409 0:35 10.357 0:02
64 56 -66 10.437 0:55 10.434 0:47 10.410 0:39 10.384 0:03

Table 5.4: Comparison of B-SVQ for various bu�er sizes and the Lagrangian-based
SVQ (L-SVQ). The SVQ parameters and test sequence are the same as the ones
for Table 5.3 but now the bu�er parameters are determined also from the training
sequence. Bu�er parameters dependent of the training set result in practically loss-
less quantization for B-SVQ100% and only slightly lossy B-SVQ60%. L-SVQ shows
extremely fast codebook search.

to quantize the input sequence using the bu�er-constrained algorithm. To see the

e�ect of a bu�er size smaller than the minimum requirement for lossless search, we

tried three di�erent bu�er sizes for the bu�er-constrained SVQ. For example, B-

SVQP% represents the bu�ered SVQ with P% of the b�max and b�min as its maximum

and minimum of the allowed bu�er state. See also Fig. 5.4. From the table, we

can see that the performance degradation due to the reduced bu�er size is negligible

while the search eÆciency is improved.
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Figure 5.6: Comparison of codebook search algorithms: SVQ with optimal full-
search DP, B-SVQ with bu�er-constrained DP, L-SVQ with Lagrange multiplier
method, and LB-SVQ with Lagrangian-initialized bu�er-constrained scheme. Note
that B-SVQ100% and LB-SVQ achieve the optimal (DP) operating point, thus three
curves are superimposed. LB-SVQ guarantees optimality with a reduction of an
order of magnitude in search time. L-SVQ is the fastest scheme but is limited to
non-convex hull points and thus cannot achieve optimality.

We also consider the fast approximation of the codebook search by using the

Lagrangian optimization technique for which the result is shown also in Table 5.4

as L-SVQ. The experimental data in Table 5.4 are plotted in Fig. 5.6. Note that

the execution time has log scale in the plot. Compared to the other schemes, code-

book search by L-SVQ is extremely fast. However we can observe non-negligible

performance degradation due to the suboptimality associated with the convex hull

solution.

We �nally experiment with LB-SVQ where we use training-set-based bu�er state

bounds in the bu�ering constraint. The performance of LB-SVQ is, as we expected,

equal to the optimal performance for all vector dimensions while the reduction in

search time is signi�cant (over an order of magnitude with respect to the full search

DP case), as shown in Fig. 5.6. We summarize the experimental result for LB-SVQ
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m SVQ B-SVQ100% LB-SVQ SNRopt

8 0:22 0:14 0:04 10.001
16 0:49 0:23 0:09 10.225
32 1:43 0:38 0:21 10.358
48 2:49 0:52 0:31 10.427
64 3:35 1:00 0:40 10.437

Table 5.5: Codebook search time comparison of optimal schemes. For optimal per-
formance, we �nd the minimum bu�er size requirement for the training set, i.e., b�max

and b�min, for each of B-SVQ100% and LB-SVQ.

in comparison with the other optimal SVQ's in Table 5.5. There is no performance

loss observed for LB-SVQ throughout the experiments.

5.5 Conclusion and future work

We have introduced new budget-constrained optimization tools based on the stan-

dard techniques of Lagrangian optimization and dynamic programming. Using the

�rst of two proposed technique, bu�er-constrained DP optimization, we can guaran-

tee the optimal performance of DP with improved search eÆciency. Then we have

established an intelligent way to constrain DP search with aid of suboptimal solu-

tions instantly available from Lagrangian optimization. The resulting Lagrangian

initialized bu�er-constrained DP optimization provides a practical means to obtain

optimal performance in source coding problems which can be formulated as budget-

constrained R-D optimization.

SVQ codebook search has been considered as an example of the R-D formulated

source coding problem in order to illustrate the basic ideas and the algorithms related

to the standard techniques and the new techniques. Convex hull solutions of SVQ

codebook search are found to result in noticeable degradation in SNR performance

compared to optimal DP solutions so that Lagrangian approximation is less attrac-

tive in this particular example of R-D optimization, regardless of its unsurpassed

advantage in computational complexity. Through application to SVQ codebook
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search in Section 5.4, we have demonstrated that our proposed optimization tech-

niques are very helpful in achieving both optimal performance and fast search when

they are not simultaneously available from the standard techniques. Especially, LB-

SVQ codebook search, which is based on Lagrangian-initialized bu�er-constrained

optimization, combines the speed of Lagrangian approach with the optimality of DP

and successfully extracts the \best of both worlds."

As we have developed the novel optimization techniques in the general framework

of budget-constrained discrete optimization, we can apply our proposed techniques

to a broad class of source coding and other allocation problems where essential

performance degradation from the Lagrangian method is expected. Thus extended

application of our optimization technique to other relevant optimization problems is

our main interest in the future work.
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Chapter 6

Constrained Bit Allocation for Error Resilient

JPEG Coding1

6.1 Introduction

Robustness in the face of channel errors is always a major concern for many image

coding systems which employ entropy coders utilizing variable-length codes or run-

length codes. The traditional approach to increase the robustness of these image

transmission systems has been to use error protection at the bit level, i.e., to add

redundancy to the variable-length/run-length coded bit stream. Recently, there

has been renewed interest in methods that allow increased robustness through use

of image domain techniques, i.e., introducing the error robustness features at the

encoder rather than on the encoded bit stream. Fig. 6.1 shows two di�erent error

protection image coding schemes. Note that an image domain approach can be

combined with the bit level error protection method and, in this case, the redundancy

by bit level protection can be reduced.

The image domain method can be potentially more bene�cial than a bit level

error protection since error protection can be more intelligent by understanding

the contents or meaning of bits in the bit stream. Examples of the image domain

1For related publication see [72]. Part of the simulation program code (the R-D optimal thresh-
olding code) is provided by Matthew Crouse and Kannan Ramchandran.
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Figure 6.1: Bit level approach vs. image domain approach for error protection in
image coding systems. (a) When an image coder generates variable-length codes via
entropy coding, bit errors by channel noise during transmission can cause a loss of
synchronism at the decoding end. (b) The bit level approach introduces redundancy
through, e.g., forward error correction (FEC) in the channel encoder. The level of
protection can be adapted to the channel condition, but not to the contents of the
coded image. (c) Depending on the image content, the bit control module interacts
with the encoder to produce bit stream inherently robust to the transmission errors.
The image domain approach can lower the necessary redundancy by FEC.

approach include adding redundancy in the image domain as in [28], where an ad-

ditional row of blocks (obtained by averaging the existing DCT blocks along the

column direction) is added to provide H.263 video sequences with error resiliency.

An alternative approach, exempli�ed by [80], is based on transmitting image domain

side information to enhance the error concealment process.

Although we focus on the case of JPEG image coding, we can carry out similar

analyses for other image/video coding algorithms. The major concern in a lossy

environment is that, due to the use of variable-length entropy codes, a single bit

error may cause a complete loss of synchronism at the decoder, and thus potentially

result in a completely unusable picture from the point of the bit error. Bit errors in
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Block  i -  1 Block  i -  1 Block  i -  1

Resync markers
Approach I

Approach II

Figure 6.2: Bit streams obtained from two di�erent approaches to limit error propa-
gation in variable-length codes. Approach I uses explicit resynchronization markers
(e.g., JPEG standard). At the cost of resynchronization overhead, it allows bit allo-
cation over blocks of coded bits. Approach II uses blocks of the same number of bits
so that the decoder determines the end of block without side information. However,
coding su�ers from the penalty by the \constant rate" constraint in this case.

a variable-length coded bit stream are bound to result in quality degradation, and

thus the goal of an error protection algorithm should be �rst to correct as many

errors as possible and second to limit propagation of the e�ect of errors.

In this chapter we consider approaches to limit error propagation in a variable-

length coded bit stream. Two basic approaches have been previously proposed,

namely,

1. Insertion of explicit synchronization markers in the bit stream; and

2. Use of constant rate for blocks of data.

In Fig. 6.2 we compare the bit streams resulting from these two approaches.

An example of the �rst approach is found in the JPEG standard [47], where

a reserved word (i.e., the resynchronization marker) is inserted in between sets of

encoded DCT blocks at a pre-speci�ed interval. The decoder attempts to locate the

resynchronization markers so that if an error occurs its propagating e�ect will be

limited to at most the span between two consecutive synchronization points. While

it is possible that at high error rates the decoder would still lose synchronization,

by being unable to recognize the synchronization word, this event will tend to be
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rare. To achieve suÆcient robustness it will be necessary to have resynchronization

markers that are frequent (to limit the maximum length of error propagation) and

suÆciently long (for example 2 bytes of length as in JPEG). At the same time, these

requirements also point to the major drawback of explicit synchronization, namely

the substantial overhead required by the resynchronization markers (up to 0.25 bit

per pixel in JPEG if each resynchronization marker is placed at the end of every

DCT block!).

An alternative to the explicit synchronization technique consists of imposing

constraints on the output of the encoder so that each block of data has a constant

(and known) total number of bits. This approach could be used in conjunction

with a standard decoder based on explicit synchronization, since a preprocessor of

the decoder can introduce the synchronization points into the received bit stream.

Scalar-vector quantization (SVQ) [30, 31] is an example of this approach, as is the

algorithm of [79]. In both cases blocks of scalar input data are coded such that the

overall rate of each block is constant. In [30, 31] constant rate is achieved with a

vector encoder where the vector codebook consists of the codewords with the same

length. In [79] the encoder can assign one of several possible reproduction levels

to each input (with a corresponding variable length code designed by the Hu�man

procedure). The encoder selects the quantization levels for each input such that the

overall distortion is minimized and the rate for the whole block is constant. This

constrained optimization can be achieved using dynamic programming.

In this chapter we apply the constrained bit allocation approaches to a practical

image coding scenario. We deal mainly with a JPEG-like DCT-based coding scheme.

In the description of our algorithm we will call block the 8x8 DCT block and group of

blocks (GOB) the set of consecutive DCT blocks over which the rate constraint has

been imposed (or which are separated by resynchronization markers). See Fig. 6.3.

The approaches such as [30, 31] or [79] rely on allocating a �xed number of bits

to each set of inputs. Thus, given the standard JPEG tables and a choice of quanti-

zation scale, the algorithm in [79] can be used to encode a GOB to meet a required
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GOB (size N = 4)

DCT

Input image

Figure 6.3: De�nitions for our constant GOB rate coding. A block is an 8�8 DCT
block and a group of blocks (GOB) is a set of consecutive blocks over which the rate
constraint is imposed. The GOB size (N) is the number of blocks in a GOB.

number of bits. However, in practice, using the same number of bits for every GOB

in an image would result in poor image quality. Conversely, making the GOB size

large (e.g., a complete row of image blocks) would not a�ect much the image quality

but would result in reduced error protection capabilities (e.g., one complete row of

blocks could be lost). We propose methods to allow a variable number of bits to be

allocated to each GOB, while still preserving the resynchronization properties of the

constrained allocation with manageable overhead.

The remainder of this chapter is organized as follows. In Section 6.2 we discuss

our constrained bit allocation approach for error robustness of JPEG coded images.

The details of our proposed system is presented in Section 6.3 and the results from

experiments in Section 6.4. We conclude this chapter in Section 6.5.

6.2 Constrained bit allocation for error robustness

Image coding techniques based on the DCT naturally tend to assign a di�erent

number of bits to each image block depending on its frequency contents. This is

true if a single quantizer/entropy coder is used for the whole picture, as in the
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baseline JPEG, but also if an optimal R-D based allocation is performed based on

a discrete set of quantizers [53].

Assume that we start with a particular allocation which is given by using a �xed

quantization table as in the baseline JPEG, or by a constant quality slope as in [53]

for a discrete set of quantizers. Resynchronization markers at the boundaries be-

tween GOBs will introduce overhead. This overhead would have to be compensated

by a corresponding reduction of the coding rate. As mentioned above, this overhead

can be signi�cant (e.g., a 2-byte word per GOB in JPEG). Thus we propose to not

use explicit resynchronization markers but instead transmit overhead to specify the

allocated rate of each GOB. This is equivalent to using a position code that speci�es

the starting points of GOBs in the coded bit stream.

For simplicity let us assume that all GOBs have the same size, N . Consider

an image with M blocks and let Ri be the i-th GOB rate, i.e., the number of bits

allocated to the i-th GOB. We will transmit all Ri, i 2 f1; : : : ; dM=Neg, as side
information. If at most 2b di�erent values of Ri occur the overall overhead will then

be bdM=Ne in bits, by using a �xed length code for the GOB rate overhead. As in

other cases, the overhead can be reduced by letting the size of the GOBs grow, with

corresponding reductions in error robustness.

A trivial implementation of this system would be to encode an image with a pre-

determined algorithm and then transmit the resulting sizes Ri as side information.

However, in the extreme case where the GOB size is one, the overhead of sending

the GOB rates would be signi�cant and thus it will be useful to introduce additional

constraints that allow to reduce the overhead.

Thus we propose to introduce the selection of GOB rates in the allocation loop.

That is, our goal will be to �nd a set of 2b di�erent GOB rates such that the coding

overhead is minimized and the overall distortion is as close as possible to that of the

original coded image.

Moreover, for an implementation based on JPEG, we also need a rate allocation

algorithm which can access a set of smoothly varying optimal R-D operating points
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Figure 6.4: Block diagram of the proposed error-robust coding scheme for the JPEG
bit stream. At the encoding end, the JPEG coded data is modi�ed to satisfy the rate
constraint through thresholding. The rate constraint is imposed by a rate control
algorithm and the resulting GOB rates are sent as overhead. At the decoder, a
preprocessor inserts JPEG resynchronization markers into the transmitted data bit
stream based on the GOB rate side information. The output of the preprocessor is
completely compliant to the JPEG decoder.

so that we can achieve the overall target rate. Otherwise we will have to rely on

an iterative search for the R-D optimized JPEG quantization matrix satisfying the

new reduced rate budget due to the overhead, which is not practical. Thus, in

our implementation, we utilize the thresholding technique of [50, 8] to modulate

the rate of each GOB and its DCT blocks. The implementation of the proposed

scheme is described in detail in the next section. Then, in the experiments, we

will demonstrate the advantage of our approach with respect to methods based on

explicit synchronization.

6.3 Proposed system

The proposed system is depicted in Fig. 6.4. At the encoder, a two-pass algorithm

generates a set of b-bit GOB rate information and a JPEG bit stream. In the �rst

pass the input image is JPEG-encoded with the resynchronization interval equal to

the GOB size. Based on the generated GOBs, b is determined as the number of the

bits required to specify the largest GOB rate, i.e.,

b = dlog2(max
i

Ri)e: (6.1)
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Then the second pass modi�es the JPEG-encoded data using the thresholding algo-

rithm (see [50, 8] for the details of the R-D optimal thresholding algorithm for the

DCT coeÆcients) to represent the coded image with a reduced rate budget. That is,

given the overall target rate RT , the new rate budget available for allocation through

thresholding (or, the rate constraint for thresholding) is

Rthr = RT � bdM=Ne (bits) (6.2)

where bdM=Ne is the number of reserved bits for the GOB rate side information.

Note that the encoder output can be separated into two parts: overhead to spec-

ify the data length for each GOB and the JPEG bit stream without resynchronization

markers/byte stuÆng.2 Since we directly encode the DC level at the �rst block of

GOB, rather than the di�erential DC level, the second part of the JPEG bit stream

is not completely compliant with the JPEG format. However we can reproduce a

JPEG-compatible bit stream through a simple preprocessing prior to JPEG decod-

ing. The preprocessor parses the received data bit stream into GOBs based on the

GOB rate information. Then it stu�s the last GOB byte with zeros, if necessary,

and puts the resynchronization marker at the beginning of each GOB. In this way,

we can use a JPEG decoder without any modi�cation after preprocessing.

To further reduce b by limiting the allowable GOB rates, we consider a simples

case of restricting the GOB rate to be an even number. Then the side information

about the GOB rates requires a reduced precision of b � 1 bits/GOB. However the

GOBs with odd rates have to be speci�ed as if they have one more bit (i.e., GOB

stuÆng to an even data length), the expected average reduction of overhead is �nally

settled at 0.5 bits/GOB.

2Since every resynchronization marker must be placed at the beginning of a new byte in the
JPEG bit stream, byte stuÆng is required when the number of bits used to encode the given
synchronization interval (or GOB) is not a multiple of 8, the byte size in bits.
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GOB Size b bdN=Me Total overhead for error protection PSNR
(blocks) (bits) (bits) (bytes) (dB)

1 6 24576 4070+ 33.59
2 7 14436 2301+ 34.33
4 8 8192 1312+ 34.53
8 9 4608 705+ 34.57
12 9 3078 459+ 34.58

JPEG - - - 34.58
JPEG+Resync - - 8192+ 27.43

Table 6.1: Side rates and error-free PSNR results for various GOB sizes. b denotes
the side rate to specify the GOB data length while bdN=Me is the corresponding
total overhead for the whole image. Total overhead for error protection includes the
rate increase due to GOB or byte stuÆng. For the result in the bottom row, JPEG
encoding has a resync marker at every block.

6.4 Experiments

In the experiment we �rst test the proposed coding scheme on the Lena image

(512 � 512), assuming noise-free transmission. Throughout the experiment, we �x

the target compression rate at 0.5 bpp. The PSNR results for various GOB sizes

are summarized in Table 6.1. We can see from the table that the proposed scheme

requires only a small amount of overhead so as to yield PSNR performance close to

that of JPEG coding without resynchronization. The extreme case of 1 block/GOB

can be compared with JPEG coding with resynchronization markers for every block.

Due to eÆcient use of overhead, our coding scheme retains a signi�cant PSNR per-

formance gain over the baseline JPEG at the same level of compression and error

protection.

We then consider noisy channel environments with di�erent bit error rates (BERs).

As indicated by the plot in Fig. 6.5, our scheme o�ers graceful degradation in de-

coded image quality with worsening channel conditions. The plot also shows that

coding with small GOB sizes can be particulary useful for the channel with high

BERs.
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Figure 6.5: PSNR vs. BER obtained by the proposed scheme for various GOB
sizes. The Lena image (512x512) is encoded at the target rate of 0.5 bpp for each
simulation. The error robustness of the coding scheme yields graceful degradation of
PSNR with worsening channel conditions and the small GOB sizes are particularly
useful at high BERs.

In Fig. 6.6 the decoded Lena image is compared with those from JPEG coding

with and without resynchronization markers, at BER = 10�5. Fig. 6.6 (a) shows that,

for JPEG coding, the e�ect of bit errors can be disastrous, when resynchronization

markers are not used. Figs. 6.6 (b) and (c) are obtained with resynchronization at

every block (N = 1). We can see that the proposed scheme e�ectively protects the

error propagation across the GOB boundaries (see Fig. 6.6 (c)) while maintaining

the image quality of the original JPEG image in regions with no bit error. Fig. 6.6

(b) shows how severely the JPEG coded image is degraded due to excessive use

overhead for explicit resynchronization, though catastrophic propagation of bit errors

is prevented.

All experimental results are based on error-free transmission of side information

about the GOB rates. For typical rates of compression, the level of redundancy

required for error-free overhead transmission is only modest. For example, suppose

that we arrange the GOB rates Ri into a matrix according to the spatial location
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of the corresponding GOBs in the image. Considering the binary representation

of the GOB rates using b bits per GOB, we can obtain a block-diagonal binary

matrix. Then it is possible to transmit the parity check bit for each row and column

of the binary matrix, i.e., the i-th parity bit for a row (column) carries the parity

information of the i-th signi�cant bits of the matrix entries in the row (column). The

parity bits can correct any error patterns as long as no two or more matrix entries in

the same row or column have bit errors at the same bit signi�cance position. This

would be suÆcient for error levels of 5:2� 10�3 in our experiment. Nonetheless the

redundancy by the parity bits is negligible: it reaches the maximum of only 0.1875

bits/block when the GOB size N = 1 is used.

6.5 Conclusion

We have proposed a JPEG-based image coding scheme that is robust against bit

errors in noisy transmission environments. In particular, we are interested in the

ability to limit error propagation in the variable-length or run-length coded bit

stream. In the proposed scheme the number of coded bits in each group of DCT

blocks, or each GOB rate, is sent to the decoder as side information so that the

decoder can parse the data bitstream into GOBs and introduce resynchronization

markers at approapriate positions. The required overhead to achieve robustness is

signi�cantly less than that of the typical explicit synchronization schemes (e.g., the

baseline JPEG). In addition, it is possible to further constrain the allowable rates for

GOB in order to reduce the overhead. We have included experimental results where

the constrained rate allocation is performed using thresholding techniques on images

encoded by the baseline JPEG. The proposed scheme o�ers superior reconstructed

image quality comparing to the baseline JPEG with resynchronization at the same

level of protection against error propagation.

In future work we can apply the idea presented in this chapter to DCT-based

video coders such as H.261/263 or MPEG. Another interesting issue is to use a
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more eÆcient technique to modulate GOB rates such as soft thresholding since the

hard thresholding method in the current proposed system either keeps or rounds to

zero the quantized DCT coeÆcients to control the GOB rate, while quantization

to an intermediate level is possible. Developing an error-robust coding scheme for

wavelet-based image coders is a related research topic.
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(a)

(b) (c)

Figure 6.6: Comparison of reconstructed images from corrupted bit stream with BER
= 0.001%. For all three cases, the encoding rate is 0.5 bpp. (a) JPEG without resync
markers (PSNR = 9.43 dB). Corrupted DPCM DC coeÆcients locally a�ect the
brightness and, in the lower part, block shift is observed due to block loss. (b) JPEG
with resync markers at every block (PSNR = 18.08 dB). Use of resync prevents error
from propagating across blocks. To accommodate the explicit resynchronization
overhead, coarser quantization is used so that the blocking artifacts are observed.
(c) The proposed scheme successfully protects the bit stream from error propagation.
Its eÆcient use of overhead allows �ne quantization and good image quality (PSNR
= 33.00 dB).
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