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Abstract

Streaming media applications have become important components in multime-
dia communications. Typically, these applications require real-time data delivery
in order to provide continuous playback with good visual quality. However, the
real-time constraints may not be explicitly guaranteed when the streaming media
is delivered over networks exhibiting time varying behavior. Streaming systems are
designed to maximize the playback quality in the presence of various channel condi-
tions. This research includes studies of different components of a streaming system,
and proposes several algorithms to improve the streaming performance.

The first part of this thesis considers the transport of scalable streaming media
over best-effort networks (e.g., today’s Internet) and proposes a scheduling algorithm
for packet delivery. The proposed algorithm first determines the importance values
of all packets in the transmission buffer, based on the packet contents, channel
conditions and client feedbacks. Then the algorithm guides the media server to
transmit more important data packets earlier than less important ones. This leads

to improvements in the playback quality.
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The second part focuses on video caching, and shows that the streaming perfor-
mance can be improved even when only part of the video object is cached in the
proxy. Two video caching algorithms are proposed to store selected frames of the
video in the proxy, under the constraints of cache space and decoder buffer size.
The first caching algorithm aims at reducing the cost for channel bandwidth reser-
vation in QoS networks; while the second one is designed for best-effort networks,
with the goal to improve the robustness of continuous playback against poor channel
conditions (e.g., packet delay and loss).

The last part of this thesis addresses the video compression problem combined
with disk storage strategies for video servers. Video disk storage algorithms aim
at improving the video server throughput by placing the video data blocks in a
special order (therefore reducing the disk seek time). We translate the specified
disk placement algorithm into rate constraints for video compression, and propose
a rate-distortion based compression algorithm to improve the video quality, while

maximizing the advantage achieved with the disk placement strategies.
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Chapter 1

Introduction and Motivation

1.1 Digital communication and multimedia data

delivery

The development of high speed networks has led to a steady increase in the popu-
larity of digital multimedia communications. Multimedia applications are becoming
an important component for today’s Internet, from commercial services, such as on-
line video/audio clips, video conferencing, video-on-demand, to distance learning,
tele-presentations, digital libraries, and other scientific and medical research, such
as remote surgery, etc..

Streaming media data usually has the following properties: (i) the client can play
back the media before it is fully downloaded, with a fixed start-up delay. Typically,
all the data packets have to arrive at the client end before their playback time.

Therefore, this delay constraint requires sufficient channel bandwidth to deliver the



streaming data on time. (ii) Using retransmission can not always recover all the
lost/corrupted packet due to the delay constraints. (iii) The media data packets
may have different impacts on the quality of the reconstructed signal and therefore
the loss of some (important) packets may have a more severe impact on quality than
other packets.

For such streaming media applications, Quality-of-Service (QoS) guarantees in
the network are very useful, including for example, constant delay, sufficient band-
width and low data loss rate during playback. Therefore, transporting streaming
media over QoS networks can easily achieve better performance. An example of
a QoS networks considered in this thesis (Chapter 3) is a network based on Asyn-
chronous Transfer Mode (ATM) [23]. The main issues for delivery of streaming media
over the QoS networks can be, for example, admission control, channel utilization,
bandwidth cost etc.

However these QoS parameters can not be easily provided by best-effort net-
works, e.g., the Internet. Best-effort networks are suitable for delivering bulk data
with relatively loose timing requirements (e.g., text, emails, data files). Thus, the
channel packet losses can be recovered by retransmissions. But due to its extra
delay, retransmission can only recover a limited part of the lost packets in real-time
streaming applications. Consequently, it becomes a challenging issue in streaming
media applications to provide robust transmission and therefore better playback

quality against delay, congestion and packet loss, especially in best-effort networks.



As the Internet grows and its costs come down, best-effort networks represent the
majority of practical networks used today. The delivery of streaming media over the
Internet attracts more interest, from academic research to industrial development.
Though there have already been some successful commercial products for streaming
applications over the Internet, those challenging problems, such as delay, jitter,
congestion, packet loss, still remain open.

The increase in Internet data traffic also leads to the quick development of proxy
based caching in recent years. The initial research in this area (e.g., within the
Harvest project [11]) has led to the development of commercial products (e.g., [25])
and to continuing research activity (e.g., [87, 96]). Due to the increasing demand
of streaming video service and its large volume of data traffic, proxy caching of
streaming video (as well as other multimedia objects such as images, audio clips) is
becoming increasingly important.

Similar to the video end-to-end delivery methods, caching strategies specific to
video are often designed differently from other methods for caching “traditional” web
objects. Studies in [101, 50, 84] show that the benefits from video caching include
not only the reduction in networks access cost and delay, but also an improvement
in the overall performance of streaming video applications, e.g., more robust packet
delivery against poor network conditions.

Examples of video streaming systems are shown in Fig.-1.1. The encoded video

objects are stored on the video server (live video is encoded in real-time). The servers
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Figure 1.1: Streaming video system examples

and clients are connected by some heterogeneous networks, e.g. they can be either
QoS networks or best-effort networks, and may have various bandwidth capacities
and packet delays. Some clients can be directly connected to the servers (through
the communication networks), while others may be connected to them through the
proxies, where the proxies are set close to those clients and connect to the servers
through the communication networks. Here the proxies are expected to improve the

performance of streaming video services.

1.1.1 Focus of this thesis

This thesis includes the studies on three topics, each focusing on a different compo-
nent of the streaming video system shown in Fig.-1.1, namely, (i) the video trans-
mission problem (Chapter 2); (ii) the video proxy caching problems for QoS and

best-effort networks (Chapter 3), and (iii) video compression constrained by the



server storage restrictions. (Chapter 4). The relationship between each topic and
the overall system is further depicted in Fig.-1.2.

The streaming media objects can be video, audio, speech, graphics or any combi-
nation of them. Most of this thesis addresses variable-bit-rate (VBR) video objects,
which usually have high data volume and bit rate burstiness. However, the proposed
algorithms, for example the delivery scheduling in Chapter 2, can also be applied to

other media objects, e.g., the audio clips.

Pre-encoded . _ _ _Feedback
video _>| Video Server H Networkchannel [ 1~~~ ~~-=-~—-°—- 1

Video Video
Video disk Video data . Caching for
L Caching for
storage transmission oSnetworks best-effort
Q networks

Figure 1.2: The relationship between the topics in this thesis and streaming video
applications.

In the rest of this chapter, we will first describe the characteristics of VBR video,
then we will give brief reviews on the related areas of streaming video delivery,
caching and disk storage. The contributions of the thesis on each topic are summa-

rized at the end of this chapter.



1.2 VBR video characteristics

In this section, we review some properties for streaming media objects and their

delivery challenges, especially for Variable-Bit-Rate (VBR) video.

1.2.1 VBR video

In order to achieve acceptable visual quality, video data is typically large even after
compression. For some good quality video stream, e.g., compressed digital movies,
the data volume can be huge and can pose significant challenges to system resources,
such as server disk storage, disk bandwidth, network channel bandwidth, codec buffer
size, etc. For example, a 2 hour movie may have a total size of 4 gigabytes. The
compressed video signal usually produces a variable bit rate stream, i.e., some frames
(e.g, frames containing “complex” visual objects and/or more motions of the objects)
may be coded with more bits than other frames (e.g, with simple objects and less
motion). This phenomenon is also referred to as data burstiness of the VBR video.
The burstiness introduces difficulties for video transmission over a constant-bit-rate
(CBR) channel, and has been studied in some literature as well as in this thesis (see

Chapter 3 on video caching).



1.2.1.1 Rate-distortion model

Most current coding standards for images, video and audio, such as JPEG [63],
MPEG [52], H.263 [34], use lossy compression techniques to achieve high compres-
sion gain, in which the detail information of the source may discarded, while the
reconstructed signal still has reasonable perceptual quality. The amount of output
data from lossy compression can be increased/decreased by increasing/decreasing
the quality of the reconstructed signal.

The fundamental mathematical principle behind this property is the “rate-distortion”
theory. The classical rate distortion (R-D) theory has its origins in Shannon’s theory
[86], which is concerned with the task of representing a source with the minimum
number of bits possible, subject to a fidelity criterion.

R-D based video compression for different applications has been studied exten-
sively in recent years, [82, 90, 57]. The basic idea in most R-D based approaches is
to properly allocate the amount of bits to different parts of the signal for a given a
rate budget (e.g., total number of bits for the compressed signal), so that the quality
of coded signal is maximized. For example, video objects of real-time delivery are
usually compressed with a given target rate, based on the available channel band-
width. Under this rate constraint, the compressed video quality can be maximized
by using R-D based compression approaches [32].

Note that because the channel rate may be unknown in the compression stage

due to heterogeneity of the network, in some cases it is preferable to compress the



video at high quality with high bitrate, and let the sender application decide the
number of bits to be transmitted during the delivery. This highlights the usefulness
of the so-called scalable or layered encoded video (similar scalable formats can be
found in still image or audio coding). In fact scalable coded video also has other

advantages over non-scalable systems, which will be discussed in the next section.

1.2.1.2 Data contents

One important property of compressed multimedia data is that different parts of
the bitstream have different “importance value” for the quality of reconstructed sig-
nal. There are different ways to classify the compressed data into categories with
different “importance”. For example, in transform-based (DCT or wavelet) still im-
age compression, the low frequency coefficients are treated as more important data
than high frequency coefficients, because low frequency coefficients can be used to
reconstruct a coarse version of the signal, and high frequency coefficients can be
decoded to obtain additional fine details based on that coarse version. The different
importance among those coefficients can also be found in video compression, where
some frames are coded as still images (e.g., the I-frames coded in intra mode). More-
over, in compressed video data, “data dependencies” also contributes to producing
different levels of data importance. For example, I-frames are more important than
P-frames (coded in predictive mode), because P-frames are coded depending on the
data in corresponding I-frames (P-frames can not be decoded without the presence

of I-frames) [3].



Thus, in the presence of limited channel bandwidth resources, or when network
congestion occurs, the less important data can be discarded by the sender or the
intermediate nodes in the networks, in order to give more chance to the more impor-
tant data to be delivered on time. To better utilize this property, one may choose

to use a scalable encoding scheme.

1.2.1.3 Scalable and non-scalable representations

Scalable (or layered) compression techniques are attractive because of the additional
flexibility and functionality they provide, although this comes at the cost of a reduced
compression performance. In a scalable coding scheme, the original signal is coded
into several layers, from lowest to highest layer. The lowest layer, (also referred as the
base layer), contains a coarse version of the signal, each of the higher layers (referred
as enhancement layers) carries finer information of the original signal. To reconstruct
the signal, one can decode starting from base layer to an arbitrary higher layer. The
more layers are decoded, the better the quality of the reconstructed signal is. Note
that in order to decode a higher layer, all the layers lower then that particular higher
layer must be decoded first. In other words, a higher layer is useless without the
presence of all corresponding lower layers.

Layered coding for image compression has been used in several systems, e.g.,
progressive compression in JPEG standard. The new JPEG 2000 standard sup-
ports still image compression with a better embedded scalability (by using wavelet

transform based compression) [1].



Scalable video is also supported by some standards, such as H.263+ and MPEG-4
[3]. MPEG-4 specifies a scalable coding format for video, referred as fine-granular-
scalability (FGS), which encodes video into two bit streams, i.e., the base layer
and enhancement layer. The base layer has to be decoded completely and then the
enhancement layer can be decoded to an arbitrary position [65].

While, typically scalable video encoding produces less compression gain as com-
pared to non-scalable techniques, it is still preferred in some situations for its ad-
vantages over non-scalable video. For example, to access versions of the video with
different qualities, several complete bit streams of compressed video have to be stored
by using non-scalable coding. In contrast, only a single scalable video bit stream is
needed in that case, so that the disk storage can be reduced.

For streaming video multicast applications, some end users connected with chan-
nels having small bandwidth may prefer a low bitrate video stream with poor quality,
while some users with a high capacity channel may prefer a higher bitrate video with
better quality. This conflict can be easily solved by sending a single scalable video
bit stream with full quality, so that the users can decide to receive a number of lay-
ers that matches their channel capacity. This approach is known as receiver driven
multicast [47, 48, 18].

For end-to-end unicast streaming video, scalable video offers better flexibility for
different network conditions, e.g., when the network suffers from congestion or delay,

the sender can send fewer number of layers to maintain the continuous playback

10



at receiver; conversely the number of layers can be increased when the network
conditions become better.

Chapter 2 of this thesis studies the transmission strategy for end-to-end scalable
streaming video. By analyzing and exploring the flexibility of the scalable video,
a transmission algorithm is proposed to achieve better receiver playback quality.
Chapter 3 and 4 do not explicitly specify the video format, the algorithms proposed

in those chapters are applicable to both scalable and non-scalable videos.

1.3 Real-time VBR video delivery and its challenges

1.3.1 Delivery over best-effort networks

Delivery of streaming media may requiring some QoS guarantees on channel band-
width, delay and loss rate that may not be explicitly available in best-effort networks.
Delay. Real-time streaming applications require strict delay in packet delivery,
since those packets that arrive to the client later than their playback time are con-
sidered to be useless. This delay bound also introduces the following requirements
for the channel: bandwidth and packet loss.
Bandwidth. The channel should have enough bandwidth to deliver the packets

on time, especially for video data which is typically large.

11



Loss. Since retransmission introduces extra delays, it can not recover all the lost
packets in real-time streaming applications. Therefore the channel should have low
loss rate, or have extra bandwidth to deliver additional error resilient data.

Usually in best-effort networks, these parameters can not be easily controlled
by the end users (sender or receiver), and the network behavior may be difficult
to predict. Since these parameters are time varying, a common mechanism uses
network feedback to estimate them during the transmission. The lack of these QoS
guarantees is a very significant challenge in designing an efficient streaming video

system.

1.3.2 Joint approaches

Approaches to improve the performance of Internet streaming video can be roughly
classified into two general categories: rate control and error control methods. Before
we give an overview of these approaches, it should be pointed out that most of these
approaches are designed in a joint fashion by considering the characteristics of both
the media data contents and the network conditions. The main reason for the better
performance of “joint” approaches is that the compressed media data has different
levels of importance (and data dependencies), as mentioned above. Joint approaches
can treat the data packets differently according to their importance to achieve better

overall performance.
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For example, from a coding point of view, Joint Source Channel Coding (JSCC)
has been proven to have advantages in coding multimedia signals with protection
against channel error (for example, unequal protection coding, multiple description
coding, etc..)

From a network point of view, since the traditional protocols (such as TCP/UDP,
which treat all data packets in the same way) are not suitable for real time trans-
mission, the new protocols proposed (such as RTP/RTSP [4]) are designed to be
more specifically for streaming media delivery. There are other proposed delivery
mechanisms that consider both the content of data packets and channel conditions,
for example, priority packet transmission or dropping, [64].

Even in other components of the system, such as the proxy caching and central
server disk storage, the joint approaches can lead to attractive performance improve-
ments. In this thesis, the proposed strategies in different topics (delivery, caching,
disk storage) also have the “flavor” of a joint approach, and will be shown to have

improved performance for streaming applications (covered in Chapter 2-4).

1.3.3 Rate control and error control
1.3.3.1 Rate control

The heavy data traffic of streaming video may introduce network congestion (of
course, the congestion can be also due to other reasons such as physical problems

of internal network nodes), which in turn, causes packet losses and degrades the

13



quality of the playback. “Rate control” methods are commonly applied to solve
this problem, by considering the channel condition as a critical parameter during
the data encoding procedure. To obtain the channel conditions, one can use a pre-
defined channel model or estimate it from the real time network statistics based on
the feedback; or combine them both, e.g., use a priori channel model and update it
during the data transmission according the network status.

The rate control algorithms can be roughly divided into the following two cate-

gories.

1. Encoder rate control. This approach operates directly in the video compression
domain, which basically reduces the output bitrate from the encoder when net-
work congestion occurs, and maintains the output bitrate under the available

channel bandwidth when there is no congestion.

2. Network interface rate control (rate shaping/smoothing). Instead of varying
the actual bits of compressed frame, it controls the video data to be fed into
to the channel, or statistically multiplexes multiple streams into the channel,

to maximally utilize the channel bandwidth.

1.3.3.2 Error control

For data (such as text, files) with lax timing requirement, error control is easy to
achieve, e.g., retransmission can be simply applied to recover lost data. Due to the

delay constraints, streaming applications have to use more carefully designed error

14



control mechanisms to achieve better performance. Some approaches are listed as

follows.

1. Forward error correction (FEC). Both compression and error protection are
applied during the encoding of original signal and the transmission of coded
data. Joint Source Channel Coding (JSCC) has been studied extensively ([26,
36]) in designing of FEC approaches. FEC is applied in the situations where
the network feedback is difficult to obtain (to guide the retransmission), or
the round-trip-time is too long for retransmission. For example in multicast
streaming video, FEC is preferred to avoid feedback explosion and improve

channel utilization, [18].

2. Error resilient coding. This approach has some similarity with the FEC ap-
proach. However error resilient coding operates mostly in the signal com-
pression stage. Different compression methods, with different error resilient
capability, are chosen according to the channel environments. For example,
Multiple Description Coding (MDC) is shown to be more robust against chan-
nel noise than layered coding for audio or video in certain cases, i.e., in the
case when there is no prioritized delivery (which is common for the Internet),
or packet retransmission is not allowed (due to tight delay constraint) or not
provided (e.g., lack of feedback channel) [35, 89]. Another example can be the
“compression mode selection” (intra/inter mode) in video compression [27],

where the more robust compression mode (intra) is chosen when the channel

15



noise is high, at the cost of requiring a higher transmission rate than if inter

coding modes were used.

3. Retransmission. Though being tightly restricted by the delay bound, retrans-
mission can be applied with certain limitation in streaming media applications.
The “limitation” means that (i) the retransmission is only useful if the packets
can still arrive the client before time out, (ii) when there is only limited chan-
nel bandwidth, e.g. the “overall” transmission rate is limited, a retransmission
of one lost packet may reduce the chances for transmission of other packets
(or transmission of other lost packets). The sender has to make decisions on
whether or not to abandon the retransmission requests in order to save band-
width for other packets. There have been works on retransmission-based error

control for both unicast [24, 59] and multicast [18, 62, 41, 97].

The retransmission issue leads to an interesting media delivery problem: how
to deliver (considering (re)transmission of both new and lost packets) a given media
stream over a lossy channel with delay constraint? In fact studies have shown that to
achieve better performance, not only the decisions on packets retransmission should
be carefully made, but also the delivery schedule for both new and lost packets is

important to improve the playback quality, e.g., see [64].
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1.3.3.3 The media data delivery problem

In Chapter 2 of this thesis, a general framework of scalable streaming media delivery
problem is presented. This study focuses on the end-to-end unicast streaming ap-
plications, using a scalable (layered) encoded media. Each data packet may contain
data of different layers and frames, thus has different importance “value” for the
playback quality. The channels in best-effort networks between sender and receiver
have certain loss rate and delay, which can vary over the time. The streaming me-
dia data packets are transmitted via the forward channel from sender to receiver;
while the packet loss (as well as other statistics such as RTT) are reported to the
server via a feedback channel. Chapter 2 formulates this delivery problem as follows.
Given the scalable media bit stream and the channel feedback (such as packet lost,
round-trip-time), find the best order of packet delivery in the transmission buffer
containing both the new packets and lost packets requesting for retransmission, in
order to maximize the playback quality at the receiver end. This problem is solved
by the proposed scheduling algorithm. A brief overview can be found in the end of

this chapter (Section-1.5), and details are presented in Chapter 2.

1.3.4 Delivery over QoS networks

Compared to best-effort networks, QoS networks are more desirable for streaming
applications, since the requirements, such as bandwidth, delay and packet loss rate,

can be easily obtained in QoS networks. As a result, significant research work has
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focused on (i) maximizing the video playback quality given certain QoS resources,
and (ii) minimizing the resource usage for given streaming objects so that the system
throughput can be increased, or the cost for the resource can be reduced.

Some of the joint approaches for best-effort networks described in the previous
sections can also be applied in QoS networks. For example, JCSS is used in [33]
for video transmission over the ATM networks with some policing constraints to
maximize the video playback quality. In [78], a smoothing algorithm can be used
to reduce the bandwidth that has to be reserved on the channel for VBR video
transmission.

Chapter 3 (also see next section) includes an example of a proxy caching strat-
egy for video delivery over QoS networks, which improves the channel bandwidth
utilization (a video caching problem for best-effort networks is also covered at the

same time).

1.4 Other Components in streaming video services

system

1.4.1 Proxy caching for streaming video

The great majority of recent proxy caching research and development has focused on
techniques that can handle generic web objects, i.e., a decision is made about whether

an object should be cached based on the type of object, or on meta-data provided by
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the content creator. But among “cacheable” objects there is no distinction is made
between, say, an HTML text file and a JPEG image. Some recent work has proposed
that having caching strategies that are specific of particular types of objects can
help improving the caching performance. We refer to these approaches as “partial
caching” methods to distinguish them from the “complete caching” for web objects.
An example of partial caching for images is soft caching in [56, 98, 39], which results
in images being “recorded” (i.e., compressed with lower quality), instead of simply
being removed from the cache when there is not sufficient cache space left.
Likewise, caching only part of the video can be useful for the streaming video
applications. For example, the prefiz caching [84] caches the beginning frames of
the video sequence in order to further smooth out the variance of the VBR video
bitrate. Another approach in [101] caches part of larger frames (e.g., a larger frame
is broken into two parts, one part is cached, the other is still in the server), in order
to reduce the bandwidth requirement on the channel between server and proxy.
Chapter 3 proposes two streaming video proxy caching frameworks for the QoS
networks and best-effort networks. Both of these two cases focus on the problem of
improving the overall streaming and caching performance by using “partial” caching
strategies, which cache only part of video on the proxy. In the case of QoS networks,
the channels have high bandwidth, low loss rate and small delay, and the caching
goal is to maximally reduce the bandwidth reservation needs (so that the network

cost can be reduced), by selecting proper frames of the video to be cached. In the
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case of best-effort networks, since the channels are vulnerable to congestion, delay
and loss, the caching goal here is to improve the robustness of continuous playback

at receiver end against bad network condition.

1.4.2 Disk storage strategy for central video server

For the video servers in VOD (video-on-demand) systems, the disk storage strategies
(disk data placement) of video objects can be one of the critical factors that affects
the server performance, i.e., the server mazimum throughput, which can be measured
by the maximum number of concurrent users can be supported by the server.

The factors that may affect the server throughput can be channel bandwidth,
disk bandwidth and disk seek time. VOD servers are usually equipped with high
speed disks with large capacities for video storage. Since the bandwidth of channel
and disk are “hard” constraints, research has aimed at reducing the disk seek time,
which is proportional to the distance the disk head has to travel to find the requested
video data block. The studies in [30, 7, 9, 10] showed that by carefully designing the
disk placement for the video objects, the disk seeking time for the video data blocks
can be reduced, such that the server throughput is increased. In those schemes, the
data blocks of different video objects are typically placed in a “sequential” fashion
rather than being randomly placed. This is because that the video data is usually
requested sequentially for playback, and a sequential placement can reduce the seek

time significantly when the video size is very large.
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For multiple users connected to the same server, a Round Robin Service [30] is
applied to allocate disk bandwidth to all users, such that each user can receive a
block of video data during a fixed interval in each service round. This block of data
should be sufficient for the user to display video until the next block arrives. Most
disk placement methods segment the video into fixed-size blocks and place them
in a certain order so as to reduce the disk seek time for these blocks. Given that
the video data is VBR in nature, the blocks with same size may not contain same
number of frames to supply same playback duration.

The sequential placement implies restrictions in the access order of video blocks,
which has a negative side effect: if a video block contains fewer frames to playback
for a complete round for a particular user, the server has to (i) either ignore this and
continue to serve other users, which will cause playback jitter for that particular user,
or (ii) send additional blocks of data to that user, which requires the server to use
additional disk seek time to retrieve other blocks, and may disorder the “sequential”
data retrieval for all other users. In any case, the benefit of sequential data placement
may become unavailable as the “random” disk seek has to be performed.

Since none of these two methods are desirable, Chapter 4 describes an approach
to solve this problem in the compression domain, which compresses the video under
the constraints of the particular disk placement so that each data block is guaranteed
to have sufficient frames for playback during an entire service round, while the video

quality is maximized.
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1.5 Contributions of this thesis

There are three topics related to streaming media presented in this thesis, i.e., de-

livery, caching and disk storage.

1. Chapter 2 studies the end-to-end delivery strategies for scalable streaming
media over best-effort networks. The starting point of this problem is how to
make a decision on whether or not to retransmit a lost packet in the presence of
delay constraints and limited channel bandwidth. It turns out that the delivery
order of all packets (both the new and retransmitted packets) is important for
the playback quality. This chapter proposes a fast scheduling algorithm to
deliver the packets in sender’s buffer, based on a packet importance metric
that considers the data contents, data dependencies, channel conditions, and
packet delivery status. The proposed algorithm can improve the streaming
video (or audio) playback quality by 2 to 4dB, with very small computational

overhead that enables it to be applied in real-time applications.

2. Chapter 3 focuses on the video caching problem for both QoS networks and
best-effort networks. This chapter shows how to cache only part of the video
to improve the overall performance when proxy cache space is limited. For
QoS networks, the caching goal is to reduce the network bandwidth cost and
channel utilization. The proposed method is a frame-based selection algorithm,
which uses an iterative method to select frames to be cached, such that the

channel bandwidth is guaranteed to be (maximally) reduced.
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For best-effort networks, the caching goal is to improve the robustness of con-
tinuous playback against poor network condition, Another frame-based itera-
tive caching algorithm is proposed for this case, where a frame is selected to
maximally improve the robustness. Both caching algorithms take the client
buffer size into account so that the caching performance is maximized without

producing overflow in the client buffer.

. Chapter 4 formulates a rate-distortion optimal video compression problem un-
der the constraints of particular disk storage strategies for video servers. It
proposes an R-D based compression algorithm such that the video quality is
maximized under the condition that continuous playback is guaranteed even
when the server throughput reaches its maximum limit. This chapter trans-
forms the disk placement constraint into video rate constraints, and applies the
Multiple Lagrange Multiplier during the video compression stage to determine

the optimal (in an R-D sense) operating points for compressed video.
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Chapter 2

Scalable streaming media delivery

2.1 Introduction

In this chapter we focus on the problem of delivery of scalable streaming media over a
lossy packet network, e.g., the Internet. More specifically, we consider an end-to-end
system, where a video server and client are connected through a channel, suffering
from packet loss and varying channel bandwidth. Our goal is to find a packet
transmission policy to select the packets to be transmitted (or retransmitted) at any
given time during a streaming session, in such a way as to maximize the playback
quality. In this Chapter we propose a server-driven “packet scheduling” algorithm
especially designed for scalable media.

Before we introduce the main ideas of this chapter, we first give some examples
of media delivery over the best-effort networks. First, consider a video sequence en-
coded in a single layer and without any temporal dependencies (e.g, motion JPEG).

To transmit such a video object can be straightforward: we can simply transmit the
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frames according to their original their playback time, i.e., frames to be displayed
earlier will be transmitted earlier (due to the delay constraint). A second example is
to transmit video encoded with bi-directional temporal dependencies (e.g., MPEG
encoded video). For example, when B-frames are used, it may be necessary to trans-
mit all the reference frames before transmitting any of the B-frames. This is because
B-frames are useless unless their reference frames have arrived.

The last example is for a scalable video encoded with both temporal and SNR
(or other) dependencies, where each frame may contain several layers, e.g., the Fine
Grain Scalability (FGS) algorithms with MPEG 4 [3]. The base layer can be decoded
by itself with low quality; while the higher layer can be decoded, with the presence
of the entire base layer, to obtain enhanced visual quality. The data dependencies
among both layers and frames introduce a more complex dependency relationship
across the different video data packets.

Furthermore, when streaming over a best-effort network with packet loss or error,
retransmission can be used to recover the lost packets, as long as the delay constraints
are met. However a retransmitted packet typically has an extra delay of one or more
RTT(s) (round-trip-time), and can not be guaranteed to arrive to the client on
time. In addition, even if there is still time to retransmit a given packet, a decision
needs to be made on whether this packet should be given more preference over other

retransmission requests.
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In this Chapter, we propose a scheduling algorithm to select the most “impor-
tant” packets to be transmitted at a given time, i.e., the packets that will tend to
maximize the playback quality, where “importance value” of a packet is evaluated by
taking into account data dependencies, network conditions and other factors. The
work in this Chapter is an extension of our previous work [51] where we apply the
scheduling algorithm to layered video objects with more complex dependencies than
those considered in [51]. Our simulation results show that by using the proposed
algorithm, the video playback quality (in PSNR) can be improved around 2 dB,
compared to a simple fixed scheduling approach, the when packet loss rate is around
20%.

Retransmission with delay constraints has been studied in [60, 42], where the
decisions have been made on whether to retransmit or not based on the time-out
factor the lost packet. While those works consider the problem of retransmissions,
they do not consider specifically scalable media, which is addressed in our work.

In [65] a rate control algorithm for delivering MPEG-4 video over the Internet
was proposed with a priority re-transmission strategy for recovery of lost packets,
which incorporates a the constraint to prevent the receiver buffer underflow. This
is achieved by giving priority to retransmission of base (lower) layers. However this
work did not address the problem of the delivery order of new packets in the sender’s
buffer. For example, the enhancement layer is packetized before transmission, and

those packets actually have decoding dependencies on each other as well as the
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dependencies on the base layer. Our proposed framework solves the problem of
delivery order of both the new and lost packets and can complement other rate-
control based schemes, which make decisions on the rate of the video bit-stream to
be transmitted, e.g., [65].

Optimization of layered streaming media delivery was also addressed by Podolsky
et al [64], who use a Markov chain analysis to find the optimal packets transmission
and retransmission policies. However, the algorithm in [64] needs to search over
all the possible candidate policies and thus the policy space grows exponentially
with the number of layers and frames (in the scheduling window). In practice this
algorithm may only be used with a limited number of layers and frames. Chou and
Miao also addressed the same problem with a rate-distortion analysis [15, 16]. They
show that the policy space can be factored so that packet dependencies are loosely
coupled, and the optimal schedule policy can be found through a few of iterations
over all the packets in the scheduling window. Therefore that framework can operate
on more layers and a larger transmission window.

The main contribution of our work is to propose a simplified formulation and cost
function so that a decision on which packet to transmit can be found without any
iterations, reducing the complexity greatly with respect to [15, 16]. This is achieved
by introducing the concept of expected run-time distortion, which summarizes the
parameters to be considered in the packet scheduling (such as data dependencies,

network condition) into a single packet importance metric. A similar concept of
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packet expected distortion has been proposed in [18, 19] and also used in [15, 16].
Those metrics take into account the status of packets whose decoding is needed be-
fore the current packet can be decoded (i.e., its parent packets). Our definition of
expected run-time distortion extends this metric by explicitly including the “impor-
tance” of the children packets (i.e., those that depend on the current one). While
the iterative techniques in [15, 16] resolve the data dependencies and take into ac-
count the impact of future scheduling of other packets, we can achieve these without
iterations by using our proposed metric.

Therefore our proposed scheduling scheme can operate, with very low computa-
tional overhead, on more complex media streaming, such as MPEG 4 FGS scalable
video, where a video packet may have hundreds of parent or children packets in the
dependency tree (see details below). Furthermore, our proposed low complexity al-
gorithm is no longer restricted to operate on fixed transmission times as in [64, 15, 16]
(i.e., the scheduling algorithm assume packets sent at fixed intervals). Our packet
selection algorithm can be used at any desired time when policy is needed to select
packet(s) for transmission (or retransmission). Thus data packet size can be either
fixed or variable.

The chapter is organized as follows. In Section 2.2 we describe the backgrounds
for scalable media (e.g., MPEG 4 FGS) data, the data packetization and the stream-

ing system architecture used in this chapter. Section 2.3 formulates our packet
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scheduling problem. Section 2.4 presents the proposed ERDBS algorithm, and sim-

ulation results is shown in Section 2.5. Section 2.6 concludes the chapter.

2.2 Scalable Media and Streaming System Architecture

Scalable encoded media has several layers. The lowest layer (or base layer) can be
decoded by itself to obtain a coarse reconstructed version of the signal. As increasing
numbers of higher layers to be decoded, more refined version of the signal is achieved.
The MPEG 4 standard specifies a FGS (Fine Grain Scalability) mode [3], where a
video sequence can be encoded into two layers: a base layer and an enhancement
layer. The base layer has to be received completely before it can be decoded; while
to obtain better reconstruction quality, one can continue to decode the enhancement

layer, and can stop decoding at any position of the enhancement layer.

2.2.1 Data packetization

In this chapter we use the MPEG 4 FGS video stream as implemented by the
reference codec [3]. The base and enhancement layers are packetized separately, see
Fig. 2.1(a). Usually the enhancement layer has large size and in order to generate
different layers out of a single FGS layer, the enhancement layer is packetized into
several packets; while the base layers of many frames can be packetized into a single

packet.
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For each packet, denoted as [; ; (the j™ layer of the i*" frame), we are interested
in the following parameters: (i) the size of the packet r;;; (ii) the playback time
of the packet ¢;, which is defined as the time when frame 7 has to be displayed at
the client end; (iii) the distortion value of the packet d, j; (iv) the set of its parent

packets A, ;; and (v) the set of its children packets B; ;.

distortion

Frame i Frame j+1 Frame j+2 Frame i+3

I B B P

Rate-distortion ™ [d ’ li'z
(RD) curve i4

o | | ate ]

i7__| bits
Base Layer Enhancement Layer (FGS) ’ ‘ ’ ‘ ’ ‘ ’ ‘
(a) (b)

Figure 2.1: (a) MPEG 4 FGS packetization of a single frame. (b) MPEG 4 FGS
packetization of frames with inter-frame dependencies.

i1

The packet distortion value d; ; is determined as the decrease in the distortion of
the reconstructed signal when the corresponding packet /; ; is decoded. For example
in Fig. 2.1(a), when packet [; 4 is decoded, the distortion is reduced by d; 4. If the
base layer is split into several packets then the distortion value of each base layer
packet can be assigned proportional to its packet size r; ;, while their sum is equal

to the total distortion value of the base layer. However it should be emphasized that
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this distortion value assignment is for our scheduling algorithm proposed below,
decoding any single packet of the base layer cannot decrease the distortion of the
reconstructed signal, as the base layer (of a frame) cannot be decoded without all
its packets being available.

The parent set A; ; of packet [; ; is defined as the set of packets that has to be
available (or decoded) in order to decode packet /; ;. For example A, 4, the parent
set of packet l; 4, includes packets l;1, ;2 and [;3. The child set B, ; of packet [; ;
is defined as the set of packets that cannot be decoded without the presence of
packet [; ;, i.e., B; ; contains all packets that have packet /; ; in their parent set. For
example, the child set of /; 4 is B; 4 including packets l; 5, l;s and I; 7.

Fig. 2.1(a) is an example for a single frame with only intra-frame dependencies
(e.g., an I frame). For any P or B frame, the inter-frame dependencies should be
taken into account to form the parent and child sets, which may contain packets
across several frames. For example, in Fig. 2.1(b), when two packets are connected
by a line, this means there is a direct dependency between them. The arrows are
directed from parent to child packets. Note that some parent packets of a packet [; ;
may not be shown explicitly, but should be counted as well. For example, packet
li+12 has a direct parent /;;1 1 and other parent packets [;; and l;;31 (this is because
packets /; 1 and ;13 are in the parent set of packet l;111).

Although the original MPEG 4 FGS stream has two layers, after packetization,

the enhancement layer can be broken into several sub-layers, where each packet
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represents a sub-layer. We define the total distortion of a frame, d;, as the distortion
when a frame is completely lost (see Fig. 2.1(a)). A frame reconstructed with all its
layers (packets) will have the minimum distortion. Define the total distortion of the
media stream as the sum of d; of all the individual frames. The playback distortion
is defined as the total distortion minus the distortion of all layers and frames that
are actually used at playback. Define a;; as an indicator such that a; ; =1 if [; ; is
used for playback, otherwise a; ; = 0. For a media sequence with NV frames, with L;

layers in each frame, the actual playback distortion, Dy, can be obtained as

L;

N L; N
DV = szi:j — ZZai’jdi,j. (21)

i=1j=1 i=1j=1

Note that the on-time arrival of a packet /; ; does not necessary mean that it can be
used for playback, as decoding a packet is not possible unless all its parent packets

have also arrived on time.

2.2.2 System architecture
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Figure 2.2: System architecture
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Fig. 2.2 shows the architecture of our proposed streaming system. The server
and the client are connected by an unreliable channel link, which has low delay but
with packet loss/delay (e.g., a UDP channel). We denote e the packet loss proba-
bility in this server-client data channel. The source media sequence is compressed
and packetized into several layers/packets, then is fed into the server’s transmission
buffer. These packets are referred as the “new” packets waiting to be scheduled
for transmission. There are also packets in the server’s buffer that are waiting for
retransmission because they are reported lost or no acknowledgment was received.
The server’s scheduling module selects one packet at a transmission time from those
buffers and sends it to the channel. At the client end, the lost or damaged packets
are reported to the server via a feedback channel.

The value of round-trip-time (RTT) is defined as the interval from the time a
packet is sent from the server to the time the server gets feedback on this packet from
the client. With a smaller RT'T, the server can get the feedback more promptly and
have more time to re-send (if necessary) a packet before its time-out. If the feedback
channel is also unreliable, RTT estimates can be used by the sender as the “time-
out” threshold in the case of lost of feedback. Both channel error and RTT can be
estimated by the feedback information. They can be used by the server to adjust
the stream delivery mechanism according to the varying channel conditions.

The start-up delay, 7, is defined as the period between the time when the first

packet is sent by the server, and the time when the first frame starts to be displayed

33



at the client. Usually a larger initial delay can smooth out more variations in channel
behavior, and enable more time for retransmissions, resulting in a better playback
quality. Refer to [32, 50, 49] for a more detailed analysis of the trade-off between
start-up delay and playback quality. Our proposed scheduling framework can be
applied for both pre-recorded and real-time encoded media which has a small start-

up delay.

2.3 The Packet Scheduling Problem

The goal of this work is to minimize the playback distortion Dy for a streaming
session in a lossy packet network. Due to the fixed start-up delay constraint, not
all lost packets can be recovered by retransmission. However, if the server schedules
a packet to be sent much earlier than its playback time, this packet will have more
chances to be retransmitted (and received) before it is too late for display. This fact
motivates the main ideas in our proposed framework.

Given a set of packets, G, that are the candidates to be transmitted by the server,
we define a schedule s as the transmission order of all those candidate packets, which
specifies whether and when a packet should be transmitted. Clearly, the order
of delivering the packets has an impact on the actual playback quality, because
of the delay constraint (which limits the retransmission) and data dependencies.
Intuitively, it would be useful to transmit (retransmit) a more “important” packet

at an earlier time, e.g., a base layer or I frame packets, rather than simply transmit
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all the packets in a sequential order (i.e., following the original time stamp order)
without any distinction among all the packets.

Due to the packet loss, the importance of a packet needs to take into account
not only the playback distortion d; ; and its playback time ¢;, but also the status
of other packets in both the parent and child sets. These other parameters can
be captured into an “expected” distortion metric. We denote D¢ as the expected
playback distortion of the packet set G, where G is the set of packets currently

available in the transmission buffer. Similar to (2.1), we have

bg(S) = Z di,j7_ Z &i,jdi,j; (22)

bij€9 lij €9

where @, ; is the probability that packet /; ; can be used for decoding,

CAli,j = H (1 _pm,n(s))' (2'3)

lm,neAi,i

Eq. (2.3) specifies that the probability, d;;, is the product of the probabilities of
the successful arrival of all its parent packets. pp,(s) is the probability that packet
lm,n (which may or may not belong to G) is lost or delayed, for a given schedule s.
Clearly p,,, depends on both the packet loss rate € and the schedule s. For a given
€, if packet [, is scheduled to be transmitted earlier, it will have more chances to
arrive on time, or to be retransmitted (within the delay constraint) if it is reported

lost. We can formulate the scheduling problem as follows.
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Given a set of packets G, and given 7, ¢, RT'T, find the optimal schedule s* € S,
such that the expected playback distortion Dg is minimized, when all packets in G
are transmitted at the time specified by s*,

s* = arg min Dg(s), (2.4)
s€S

where S is the set containing all possible schedules. Note that after the first packet
in s* is sent, the set G will change accordingly because the transmitted packets is
removed and possibly other packets are added to the set. Therefore s* has to be
re-computed after each packet is sent during the streaming session. In other words,
the server is only interested in the first packet in s* at any given time that a packet
need to be selected for transmission. This property will be used in our proposed

algorithm below.

2.4 Proposed Scheduling Algorithm

The set of candidate packets G can contain packets of several frames, or the entire
video sequence. For a streaming session where the source is captured in real-time, it
is limited by the end-to-end delay 7. In general, we can use a “look-ahead” sliding
window to specify which of the new packets should be considered as part of the set
G. Note that the candidate packet set G also includes the packets that are reported

as lost and waiting for retransmission.
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To find the optimal solution for our problem in (2.4), an exhaustive search over
all candidate schedules is possible but may not be practically useful, since even a
small candidate set G can leads to a large number of candidate schedules. The size
of 8, and therefore the search complexity, increases exponentially with the size of
G. Exhaustive search is only applicable when the window size W is very small.
Alternatives to an exhaustive search do exist as in the search algorithms proposed
by Chou and Miao in [15, 16].

In this chapter we propose a fast heuristic approach to solve this problem practi-
cally. The performance of the heuristic approach is very close to that of an exhaustive
search (see experimental results below). At the end of this section we will discuss

the difference between our approach and those in [15, 16].

2.4.1 Expected run-time packet distortion

Recall that only the first packet in s* is actually used for transmission at a given
time. Thus, instead of scheduling the order of the transmission of a packets in G,
if one can properly predict the importance of each packet in G, then choosing the
most “important” packet to be (re-)transmitted should provide a greedy solution to
the scheduling problem.

In order to estimate the “importance” of a packet prior to the transmission, we
propose the concept of expected run-time distortion, which takes into account (i) the

packet distortion d; ;, (ii) the packet data dependencies, (iii) the channel conditions
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(e.g., loss rate, RT'T), (iv) the packet playback time (deadline) and its delivery status
(e.g., transmitted, received, lost, etc.).

We first introduce the concept of run-time distortion, di,,-, which enables us to
capture the dependencies among packets (layers). We will show some examples
before giving its definition. Consider transmitting or retransmitting a packet /; ;.
If it is independent from any other packets, its run-time distortion is equal to its

original distortion, CZ” = d; ;. If it has a child packet /; ; 1, we will have the following

situations.

1. If I; j+1 has not been transmitted yet, transmitting /; ; only affects the layer

itself.

2. If I, j41 has been transmitted (but without any ACK or NAK), transmitting
l; ; becomes more valuable since [; ;.1 might be received and has to be decoded

with li,j-

3. If I; j+1 has been transmitted and an ACK feedback is received, then [; ; be-

comes more important, because the received /; ;1 will be useless without this

li ;-

4. If l; j11 has been transmitted and a NAK was received we will have the same

situation as in (1).
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Similarly, the gain of transmitting (re-transmitting) /; ;11 also depends on the status
of l; ;. Extending the above to multiple layers, we define the run-time distortion of

l; ; as follows:

~

dij=di; [ Q=P lmn)+ Y. dmn(l— P (lny)), (2.5)

lm,n€A; lm,n€Bs;

where P¥(1,,,) is probability of loss/damage to layer I, ,,, based on its transmission

history, and is defined as

1 if layer [ has not been sent,

1 if there is NAK on layer [,
PH(lm n) =9 (26)

’

if layer [ has been sent n times,

0 if layer [ is ACKed.

The term d; ; [T, e, (1 — P?(lms)) in (2.5) shows that the original distortion of
a packet is weighted by the probability of receiving all its parent packets. The sec-
ond term, 3, g, dmn(l — PH(l,.,)), indicates that the importance of a packet
increases if any of its children packets has been received. Before anything is trans-
mitted, the run-time distortion of all layers is zero except for the lowest layer, for
which the run-time distortion is equal to the original distortion d; ; = d; ;. Eq. (2.5)
implies that only after transmission (at least once) of all its parents, does a packet’s
run-time distortion become non-zero (except the base layer). The run-time distortion

increases if a child packet has arrived (or has been transmitted). Thus this definition
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reflects the “importance” of a layer given data distortion, data dependencies, and
the current status of the transmission.

Now we consider the loss probability of packet [; ; when we are able to send it
at time t;;. We denote it as P¥(l;;) to distinguish it from P in (2.6). Since there
could be possible retransmissions for a packet /; ; before its playback time ¢;, we

approximate PX(l; ;) as follows,

PX(ZZ,]) == eui:j, (27)

where wu;; is the number of possible retransmissions before packet [;; passes its

playback deadline, and can be obtained as

ui,j = (tz — tf,(g - tfj)/RTT, (28)

where ¢, is the transmission delay for l;;, ie., t7; = r;;/C(t). C(t) is channel
bandwidth, which can be varying over the time.

We here defined the ezpected run-time distortion c’i;; of a packet /; ; as follows,

dij(£Y) = P* (Liz) x di, (2.9)

where 3;; is a function of t;X] since PX (I;;) depends on it. We will use c’i; as the

importance metric of packet ; ;.
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2.4.2 Expected Run-time Distortion Based Scheduling - ERDBS

We now propose a fast scheduling algorithm to select packets for transmission at
any given time. Denote %.,, as the current time at which the server wishes to select
a packet to transmit. Note that ?.,,. corresponds to the time when the first packet
in a schedule s is to be sent. We substitute tf‘; in (2.9) by teur, for all the packets
in G, and select the packet with the largest value of Zl—;; (tewr) to be transmitted at
current time t.,.. The reason is that the expected run-time distortion evaluated at
the current time %.,, reflects importance of the packet f it is to be transmitted at
Leur-

We refer to this approach as “Expected Run-time Distortion Based Scheduling”
(ERDBS). The complexity is greatly reduced with this algorithm, since only one
iteration for all the packets in transmission buffer is needed. The results in [51]
show that the packets selected using this greedy search, are almost identical to the

ones selected by the optimal schedule in (2.4) using an exhaustive search.

2.4.3 Discussion

From (2.2) and (2.3), we can see that the distortion decrease in Dg(s) achieved
by any given single packet [; ; is heavily coupled with the transmission schedule of
its parent packets. This introduces high complexity in the search for the optimal
scheduling solution. As mentioned before, Chou and Miao [15, 16] already show

that the dependencies of packets can be factored in a way such that the optimal
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schedule policy can be found with several iterations instead of a full search. The
main difference between the approach in this chapter and those in [15, 16] lies in

the following two aspects. First, for any packet /; ;, the status and distortion values

irj>
of its child packets have been explicitly taken into account in our definition of the
run-time distortion (see (2.5)). Second, the loss probabilities of all parent and child
packets of /; ; are computed based only on the history of the transmission of those
packets (see (2.6)), without any assumption of the future transmission schedules. In
contrast, in [15, 16] these probabilities are calculated based on both the history and
the transmission policies which are scheduled in the future.

Therefore, with (2.5) and (2.7) we are able to capture both the data dependen-
cies and delay constraints into a single importance metric, i.e., expected run-time
distortion, and the selection of packets can be done by choosing the packet with

that maximum metric. Thus the full search in [64] or the iterative techniques in

[15, 16] can be avoided.

2.5 Experimental Results

To evaluate our proposed scheduling algorithm, we also simulate a transmission
scheme with no particular scheduling among different packets. We refer to this as
the Sequential Scheduling (SS) scheme. In SS, the data packetization is the same as
depicted in Section 2.2.1. The packets within the same frame will be transmitted

consecutively. The frames are delivered according to their original order in the
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encoded video stream. The SS scheme has the ability to discard a packet (either
new or retransmitted) if it detects that this packet exceeds its playback time, in
order to save bandwidth for other packets. The SS scheme selects proper layers of
each frame to be sent to the client such that the average video data rate will not
exceed the available channel bandwidth, and the remaining higher layers will be

discarded.

Video frame bit rate: base layer and enhancement layer

T T T T T )
—— Full bit rate per frame (base layer + enhancement layer)
Base layer bit rate per frame
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Figure 2.3: MPEG 4 FGS frame data rate. The dotted line is the base layer size of
each frame; and the solid line represents the full size of each frame (base layer and
enhancement layer).

We use a MPEG 4 FGS video stream in our simulation. The video data is
packetized with a fixed packet size of 512 bytes. The data used in the simulation is
shown in Fig. 2.5 (we use the video sequence Stefan with 300 frames). The average
video data rate after compression, with both base and enhancement layer, is 958
KBits/second. The channel packet loss rate is 0.2, i.e., 20% of the packets will be
lost when transmitting over the server-client data channel, and packet loss is assumed

to be i.i.d.. The round-trip-time is 200 ms and the streaming session has a start-up
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delay of 40 ms. The playback quality is measured by PSNR of the reconstructed
video frames at the client end incorporating all the packets that were received on
time. Over 100 realizations are averaged in the results we present.

Fig. 2.4 shows the simulation results of the playback quality using the FGS video
stream (in Fig. 2.5) with various parameters (such as bandwidth, channel packet loss
rate, start-up delay and RTT). Our simulation shows that by using the proposed
ERDBS algorithm to deliver the video data, the playback quality improves about 2

dB compared to using a SS delivery algorithm.

2.6 Conclusions

In this chapter, a new framework for delivery of scalable streaming media data
over networks with packet loss is presented. We proposed a new delivery method,
ERDBS, for this framework to solve the packet scheduling problem. The proposed
algorithm, designed for a sender-driven transmission system, can increase the client
playback quality by selecting proper packet(s) to be transmitted at any given time
during the streaming session. The simulation results shows that ERDBS algorithms
outperforms the other packet delivery schemes with a fixed scheduling, in the pres-
ence of channel packet loss. The low complexity of the search algorithm in ERDBS

also enable it to be applied in real-time applications.
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Figure 2.4: The comparison of playback quality (PSNR) using proposed ERDBS
and SS algorithm, in various conditions, such as bandwidth, channel packet loss
rate, start-up delay and round trip time. In most cases the playback quality of
ERDBS outperforms the regular SS delivery algorithm around 2 dB.
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Chapter 3

Scalable Proxy Caching for Streaming Video

Applications

3.1 Introduction

Interest in proxy based caching has increased with the growth in Internet traffic and
the initial research in this area (e.g., within the Harvest project [11]) has quickly led
to the development of commercial products and continuing research activity (e.g.,
[96, 87, 88, 75, 44, 94]). The great majority of recent research and development on
proxy caching has focused on techniques that can handle generic web objects; among
the “cacheable” objects no distinction is made between, say, an HTML text file and
a JPEG image. As real-time streaming video is becoming a significant proportion of
network traffic and, given the large data volumes involved and its variable-bit-rate
(VBR) nature, even a few popular video applications can result in potential network

congestion problems. The congestion can cause not only packet loss, but also packet
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delays, which degrade the video playback quality dramatically (since the packets
that arrive after their playback time are useless).

In this chapter we focus on the caching problem specifically for streaming video
objects. Some recent work has proposed that having caching strategies which are
specific for particular types of objects can help improving the overall performance.
In particular, for some objects, it is possible to perform “partial caching”, where only
part of the objects are stored on the proxy, as opposed to the “complete caching”
where the objects are stored completely. An example can be found in “soft caching”
for images ([56, 98, 39]). Approaches for partial caching for video have also been
proposed in [101, 84]. In this chapter, we study a “selective caching” strategy [50],
which selects only certain parts of the video to be cached. We will show that the
strategy to use depends on the specific network environment; and we focus on two
representative scenarios, namely networks with Quality-of-Service (QoS) and best-
effort networks. We provide a selective caching method for each of these scenarios.

Our proposed caching methods are frame-wise selection algorithms, i.e., the
smallest caching unit we consider is one frame of the video (each frame may con-
tain different number of bytes). Since there can be frequent changes on caching
parameters (e.g., the popularity of the video objects), it is desirable to enable the
proxy to be scalable, i.e., to be able to easily increase/reduce the portion of video be-

ing cached while still maintaining good performance. This scalability is inherent in
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our proposed frame-wise selective caching methods, by which the proxy can simply

add/drop the selected frames as the environment changes.

3.1.1 System architecture

Video
Server

Video
Server

Low cost channe\ Client

Proxy{— Client

QoS Backbone

High cost channel

(a)

Client

Proxy<

Figure 3.1: System architecture.
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The proxies are set close the clients, and are

connected to the video server via either a QoS (a) or best-effort network (b).

The server-proxy-client model used in this chapter is shown in Fig. 3.1. The
clients are attached to the proxy and all their requests for videos go through the
proxy. The proxy allocates a certain cache space for each video sequence. Upon the
client’s request, if the frames are cached, the proxy will send them from its cache
to the client directly; otherwise, the proxy will retrieve the frames from the video
server. For a video streaming session, usually there is an end-to-end playback delay
d, which is the interval between the time when the first packet is sent and the time
when the first frame is displayed. For a continuous playback, the transmission of any
given frame cannot exceed the delay d. We are also interested in other parameters
for the design of selective caching, such as the server-proxy and proxy-client channel
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characteristics; the cache space (H) allocated on the proxy for a particular video;
and client buffer size (B.). We consider two network cases in the following and will
propose different strategies for selective caching for each of them.

Case 1: Proxy caching in QoS networks (see Fig. 3.1a). The bandwidth on the
server-proxy channel can be reserved, and the cost of reservation is proportional to
the reserved bandwidth. The goal of caching in this case is to reduce the amount of
bandwidth C that has to be reserved on the server-proxy backbone channel (therefore
reducing the network cost), while minimizing the required client buffer size B, to
achieve that reduction, given a limited cache space H.

Case 2: Proxy caching in best-effort networks without QoS on the server-proxy
channel, as for example in the current Internet (see Fig. 3.1b). The delivery of data
over these channels is vulnerable to congestion, delay and loss, which are harmful
for real-time streaming video delivery. The caching goal for this case is to provide
more robustness® for continuous playback against poor network conditions on the
proxy-server channel.

To improve the streaming performance given that the proxy-client channel is
fast and reliable, one could consider using the proxy as an external buffer for each
client, i.e., such that a client with minimal buffer resources can store some of the
incoming video data at the proxy. In this case the proxy would need to allocate

separate storage resources to each client for each streaming session (even when some

1Gee Section 3.4 for detailed definition of robustness.
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sessions may be accessing the same video object). Thus, as a proxy may serve a large
number of clients simultaneously, this scenario may require the availability of high
performance caching resources at the proxy, including not only memory but also
output bandwidth. Both these resources have to increase as the number of clients is
increased, since all the clients active at any given time will be simultaneously using
the proxy for secondary storage.

Thus, in this chapter, we focus on a less resource-intensive caching scenario where
caching storage is assigned to each video object, rather than to each client. The
assumption here is that the data stored for each video object changes only when the
popularity of the video object changes and that the storage is shared by all clients
accessing a given video object. Therefore the requirement of the cache storage space
is reduced. In additional, this approach reduces the amount of data that the proxy
has to provide to the clients (since only certain video frames need to be served from
the proxy) and also requires substantially less real time storage management (since
only when the popularity of an object changes is the storage devoted to it modified.)

In both cases, the proxy-client channel delivers the data originated from both
server and proxy. In our model we assume that the main network bottleneck (in
terms of both cost and reliability) is the server-proxy channel, and therefore the
proxy-client link is assumed to have “left-over” bandwidth even when video trans-
mission is ongoing. One example of such a scenario would be accessing a relatively

low bandwidth video stream through a DSL/cable link. Another example would
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that where proxy and client are co-located within the same local area network [101].
The algorithms proposed here are good approximations for the case when there is a
substantial amount of “left-over” bandwidth, in which we can assume that the delay
in delivering a frame from the proxy to the client is very small (even when transmis-
sion of other frames from the server is taking place simultaneously.) This will enable
us to assume that, since they can delivered in a very short time, frames stored at
the proxy consume practically no client buffer memory. Therefore, to simplify the
analysis, we exclude them from client buffer consumption in the rest of this chapter.
For the scenario when when the “left-over” bandwidth on proxy-client channel is not
large enough to ignore the delay between proxy and client, our buffer analysis can
still be used as an approximation for the proposed selective caching algorithms. In
the extreme case where there is no “left-over” bandwidth, and therefore the client
cannot receive data simultaneously from the proxy and the server, our proposed
will reduce to the prefix caching proposed in [84], which will provide the optimal
solution.

We will show that the performance of some “partial” video caching strategies may
be limited by client buffer size constraints. For example, it is obvious that in QoS
networks caching any part of the video can reduce the server-proxy bandwidth C|
since less data has to be retrieved from the server directly. However, the bandwidth
may be reduced at the expense of increasing in the required client buffer size B.,

because the frames that are stored at the server (not cached at the proxy) will have to
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be buffered at the client until they are displayed. We will show that the increment
in B, varies among different selective caching strategies which lead to the same
bandwidth reduction. Similar constraints also exist in the case of video caching
for best-effort networks. Therefore, there are trade-offs between the reduction of
C (or improvement of U) and the memory size B, to achieve it. Our goal is to
find proper selective caching methods such that the best performance is achieved
under a constraint on B,.. Thus one of the main differences between our work and
other proposed caching algorithms (see below) is that we will consider the storage
constraints at both client and proxy.

In summary, the main assumptions we make in our work, which also explain how
it differs from other proposed caching algorithms (see below), are (i) that memory
at the client is constrained, (ii) that cost considerations preclude using the proxy
cache to provide dynamic “additional memory” for each client buffer, and (iii) that
there is some “left-over” bandwidth in the proxy-client link. We will propose two

approaches for selective caching in each of the above cases, namely, Selective Caching

for QoS networks (SCQ) and Selective Caching for Best-effort networks (SCB).

3.1.2 Related work

Proxy caching for video has been explored in [84, 101, 43] under network conditions
similar to those in Case 1 (QoS networks in Fig. 3.1a). Prefix caching, proposed by

Sen et al. [84], is a special form of selective video caching, which involves caching
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only a group of consecutive frames at the beginning of the video sequence to smooth
and reduce the bit-rate of a VBR video. We will show that our proposed SCQ
algorithm, compared to prefix caching, requires less client buffer B, while achieving
the same bandwidth reduction (Case 1), and that SCB can improve robustness more
than prefix caching (Case 2). Note that when B, is large, SCQ/SCB can reduce to
prefix caching (see Sections 3.3 and 3.4.2).

Wang et al. propose a “video staging” algorithm in [101], which prefetches to
the proxy a portion of bits from the video frames whose size is larger than a pre-
determined “cut-off” rate, to reduce the bandwidth on the server-proxy channel.
Therefore some frames are separated into two parts: one is cached on the proxy
and the other remains on the server. By contrast, our proposed algorithms are
frame-wise caching schemes so that a frame is either not available at the proxy
or it is stored in its entirety. One advantage of frame-wise caching is that those
frames available in the proxy can actually be played by the client (this would not
be possible with partially cached frames) in the event where congestion prevents
any data from being delivered from the server for some period of time. Another
advantage of frame-wise caching scheme is that the proxy can easily add (or drop)
more frames when cache space increases upon the changes of caching condition (such
as network status, video object popularities, cache space, etc.), by using a caching
table created off-line (proposed in Section 3.4.4). As an example, with a staging

approach, if the popularity of a video increases the proxy will need to increase the
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percentage of data in all frames (sending a request to the server to achieve this).
Instead, with frame-wise caching only a few complete frames need to be requested
from the server.

Ma et al. [43] also study a frame-wise video caching problem slightly different
from that in Case 1, where selective caching is performed but the algorithm attempts
to select groups of consecutive frames rather than isolated frames, in order to re-
duce the complexity of proxy management. In our work, by using a caching table,
the proposed SCQ/SCB algorithms can select isolated frames (during iterations)
to maximally improve the overall performance without increase the complexity for
proxy online operations. Another major difference between our proposed work and
other works in [43, 84, 101] is that we provide a caching strategy (SCB) for video
delivery over best-effort networks, which are the most popular nowadays but are not
explicitly considered in those works.

Both proposed SCQ/SCB algorithms consider non-layered coded video streams,
while caching for layered (scalable) video can be found in [72, 38]. Rejaie et al.
[72] propose a video caching algorithm for scalable video, which co-operates with
the congestion control mechanism (for best-effort networks in Case 2) proposed in
[69]. This work studies the caching replacement mechanism and cache resource
allocation problem, according to the popularity of video objects, e.g., more layers
of the video with higher popularity will be cached, and vice versa. Therefore the

overall streaming performance can be improved (e.g., less network congestion, better

o4



playback quality). Kangasharju et al. formulate the caching problem for layered
video differently, aiming to maximize the overall revenue for the service providers
[38]. Tewari et al. [91] and Reisslein et al. [67] study cache replacement of streaming
media (in non-layered format) to improve the cache hit ratio and therefore the
streaming quality. Our work can be complementary to [91, 67|, as we are focusing
on the problem of selecting which part of the video should be cached, after the cache
space for this particular video has been allocated.

The rest of this chapter is organized as follows. Section 3.2 gives the background
and definitions. Section 3.3 addresses the video caching problem for QoS networks
and proposes the SCQ algorithm, while the SCB algorithm is proposed in Section 3.4
to solve the caching problem for best-effort networks. The experimental results are

shown in Section 3.5. Finally, Section 3.6 concludes the chapter.

3.2 Basic definitions

Most standard video codecs (e.g., [52, 3]) produce VBR data after compression,
which leads to high data burstiness. Usually there is a small start-up playback delay
d (here we define it as the duration between sending out the first packet and playing
the first frame) for most existing streaming video services to allow the client buffer
to store a few beginning frames before playback starts. This delay is useful to (i)
smooth the burstiness of VBR video data [78]; and (ii) to provide robustness against

packet delay resulting from poor network conditions (in best-effort networks), thus

95



playback from the client buffer is possible even when frames are being delayed.
For this reason, we always cache this beginning portion of video data, which is
referred as the “required initial buffering segment” (I,.,), such that the client can
start to playback with a smaller start-up delay. When we can assign more cache
space than I,., for a given video, we can choose between continuing to cache the
immediately following frames (as would be done in a prefix caching technique), or
instead selecting other intermediate frames to be cached. In this chapter, we consider
the latter option, i.e., selective caching rather than prefix caching.

Assume there are N frames in a video V, denoted as F'(i),1 = [1,2, ..., N]; each
frame F'(i) has a size of R(i) bytes, and a constant playback duration of T seconds
(e.g., Tr = 1/30 second). We discretize the time axis ¢t with intervals of Tr. The
total size of the video is Ryt = Z?Ll R(i). We define a “caching indicator sequence”,

A =[a(1),a(2),...,a(N)], to indicate whether the 7" frame F(i) is cached or not:

0 if frame F'(7) is not cached

1 if frame F(4) is cached

A sequence A uniquely defines which part of video is cached, and can represent a

selective caching scheme. We denote Ay (or simply ¢) as the zero sequence, i.e., the
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sequence where no frames are cached so that all a(i) = 0. A possible A must satisfy

the cache space constraint

ZR(i)a(i) <H, a(i)eA (3.2)

We also denote A' as the indicator sequence where only I, is cached. H is pre-

determined for each video object.

3.3 Video caching in QoS networks

3.3.1 Problem formulation

An example of a QoS network is shown in Fig. 3.1a. We assume that a CBR
bandwidth is reserved on the server-proxy backbone, and the cost of reservation is
proportional to that bandwidth. Therefore we always reserve only the minimum
required bandwidth for video delivery in a particular streaming session. Define C
as the required bandwidth of a CBR channel to deliver the video V on time for
real-time playback without jitter, given a finite start-up delay d. Due to the data
burstiness of VBR video, C; is usually higher than the average video data rate, Rq,,q,
to avoid decoder buffer underflow. Feng et al. [14] proposed a general method to
find such C, for pre-coded video without caching (where C, is defined as critical
bandwidth) in [14]. We will show that C, changes after some frames are cached, and

is a function of caching indicator .A. One of our objectives in this case is to choose
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A to minimize C,(A) by caching selected frames, so that the bandwidth reservation
cost on server-proxy channel can be reduced.

However, while there may exist many possible A which lead to the same maxi-
mum reduction on C,(A), they may require different amount of client buffer size B,
to achieve that reduction, as shown in the analysis below. Considering both band-
width and buffer size, we formulate the video caching problem for QoS networks as
follows.

Problem formulation 1: Given a limited proxy cache space H for a video
sequence (H < Rypa1), a pre-encoded video stream V with N frames and a fized delay
d, among all possible A satisfying (3.2), find A* which mazimally reduces C,(A) after

caching while requiring a minimum B, to achieve that bandwidth reduction.

3.3.2 Analysis on bandwidth reduction

To calculate C,(.A), here we will extend the solution in [14] with minor modifications.
We will only refer to the results from [14]; readers can refer to [14, 74, 83] for more
details. Assume the transmission starts at time ¢, = —d, and playback starts at
t = 0, the start-up delay is d (d > 0). Frame F(i) is scheduled to be displayed at

time ¢ = i. Define S4(t) as the cumulative frame rate at time ¢, for a given A,
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Define C(t) as the server-proxy channel bandwidth at time ¢. A feasible channel rate

function C(t) to ensure a continuous playback must meet the following constraint:

i C(i) > Sa(t), forall tell,N]. (3.4)

S4(t) and 3t__, C(i) can been thought of as the video data consumption curve at the
client and the data supply curve from the channel, respectively. Since cached frames
do not consume the server-proxy bandwidth and they can be fetched when needed
(right before decoding) from the proxy, then the cached frames can be excluded from
the client consumption curve in (3.3). Eq. (3.4) means that the supply curve should
be greater than the consumption curve in order to avoid client buffer underflow (see
Fig. 3.2). For a CBR channel, the bandwidth cannot exceed the constant allocated
rate, so that

O@t) < Cy(A), forall ¢el[l,N]. (3.5)

Define the slope function of a video sequence to be L(t),

La(t) = Salt)/t. (3.6)

Fig. 3.2 shows an example of S4(t) and L 4(¢). In fact, L 4(t) represents the lower
bound of a feasible C'(t), and C, can be obtained as (see [14, 74, 83] for a proof)
C’I’(A) = lrélt%}](v{LA(t)}’ te [15 N], (37)
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Figure 3.2: Cumulative rate and slope functions. (a): Cumulative frame/channel
rate. Curve (1), (2) and (4) are cumulative channel rate functions, }°; C (). Among
them only (1) and (4) represent CBR channels. Curve (3) is the cumulative frame
rate, S4(t). Curve (1) and (2) are feasible channel rate, while (4) is not. (b): Slope
function L4(t) is drawn in curve (3). The minimum CBR channel bandwidth that
has to be reserved is C. = max{L 4(t)}.

i.e., the minimum bandwidth C,(A) that has to be reserved on a CBR channel is

the maximum value of the video slope function L 4(t), which is reached at time #,cq,

referred to as the consumption peak time,

tpeak = arg max {L(%)}.

1<t<N

(3.8)

Suppose we want to cache one more frame F'(k) after some frames have already

been cached. Let A and Aj be the caching indicator sequences before and after

caching F'(k), respectively. The following proposition shows the change in bandwidth

after caching F'(k).
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Proposition 1 For a given F'(k) and A, max{L 4, ()} = max{L4(t)} — Al, where

R(k)/t eak k S [Lt eak];
Al = ’ ’ (3.9)

0, otherwise.
See Appendix for a proof. An illustration is shown in Fig. 3.3. This means that
max{L4,(t)} can be reduced if and only if k € [1, tpeqr]. Therefore we should cache
a frame before tpeqr to reduce C;, and the reduction Al depends only on the size of

the cached frame but not on its position, i.e.,

Co(Ap) = Cr(A) = R(E)/tyear, if k € [1, tpear]- (3.10)

The above conclusion indicates that caching successive frames from the beginning
of the video sequence is one of the caching schemes that can reduce C;, maximally.
As an example, “prefix caching”, which selects the group of beginning frames to be
cached until the cache space is full, is a good approach to reduce the bandwidth

requirements [84].

3.3.3 Client buffer analysis

Recall that we need to select frames to be cached to (i) mazimally reduce C,(A), and
(ii) require the minimum B, to achieve that reduction. Selecting different frames to
be cached within the period of [1,%pe.x] leads to different requirements of B.. This
can be explained by the following buffer analysis. Define a byte-level buffer trace
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function, B4(t), as the amount of video data (in number of bytes) in the client
buffer during playback (given a cache sequence A), which can be written as (3.11)
(see [14]),

Ba(t) = ¥ C(0) - Sald, 3.11)

i=——d
where C(i) < C.(A) in (3.7). The required client buffer size, Bj..(A), is the
maximum value of B4(t). Thus we need to minimize By,,;(.A) in order to reduce the
required client buffer size to achieve the reduction of C,.(.A) stated in Proposition 1.

We also denote t,q, as the buffer peak time, when B 4(t) reaches t0 Bz (A),
tmaz = arg lrg%cv{BA(t)}. (3.12)

We first examine the change from B4(t) to B4, () for the period of 1 < ¢ < tpea,
after caching one frame F'(k) (note that 1 < k < t,.q according to Proposition 1).
Because the channel bandwidth is constant, see (3.4) and (3.5), we have C(t) =
Cr(A) for 1 <t < tpeqr (so that C(t) = C,(Ag) after caching F(k)). From (3.11)

and (3.10) we have

— Sa, (1), (3.13)
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where 1 <t < t,.q,. Note that after caching F'(k), Sa,(t) = Sa(t) for 1 <t < k;

and Su, (1) = Sa(t) — R(k) for k <t < tpeqr. Thus we have

Bu(t) — R(k)~, 1<t<k,
Ba,(t) = et (3.14)
Ba(t) — R(k)tp:ak + R(k) k<t<tpear.

Eq. (3.14) means that after caching frame F(k), the new buffer trace decreases before
k (due to the reduction of C,), and increases during [k, tpeqr| (due to the removal
of R(k) from the consumption curve)?. Tt also indicates that at any particular time
t € [1,%peak], the amount of increment/decrement of By, (t) depends only on R(k).
More specifically, if t0e < tpeak, We can reduce By, (Ax) only if we cache frame

F(k) after t,;q4., and we will have

Bmaz(-Ak) = Bmaw(A) - Ab, if tmaz < k < tpeaka (315)
tmazx

where Ab = R(k). (3.16)
tpeak

The change of By, (t) for the remaining period fpeqr < t < N may not be easily
expressed in a closed form. However, based on the results from [14, 74, 83] we can
find that the mazimum buffer occupancy may increase (or at least not decrease)

for the period of ¢, < t < N. This is because By, (tpear) = Ba(tpear) = 0, and

2Eq. (3.14) is obtained as the delay of transmitting F'(k) (over the proxy-client channel) is small,
and the delay is ignored to simplify the analysis. The frames after F'(k) are received earlier than
they would have if caching is not used.
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the only difference is that a smaller bandwidth (C 4, (7)) is available to transmit the
video data for ¢ > t,.., after caching frame F'(k) (see [14] for details). Proposition 1
and (3.14) assume that tpeqr O te, do not change after F'(k) is cached. However
those results still hold when #,c. Or ¢, changes, except that the absolute values
of Al and Ab will become smaller, which would not affect the conclusions in next

section.

3.3.4 Proposed SCQ algorithm

The results in (3.10) and (3.15) lead to the following conclusion for caching one
frame F(k): one can cache the frame at tyear, F (tpear), in order to minimize C,.(A)

and B,z (A). The reasons are:
1. From Proposition 1 we have to cache a frame before ?,..; to reduce C,.

2. From (3.14) and (3.15), if By, is reached before tpear (i-€.; tmaz < Tpeak),
caching the frame F'(t,eq) can also reduce By,,,. More specifically, in this
case, caching any frame within the period of (t4z, tpear] has the same effect in
terms of reducing both B,,,, and C,. Similarly, caching any frame of a given
size within the period of [1, .| has the same effect on reducing C, while
increasing Bna,. See Fig. 3.4 for an illustration. Therefore, simply selecting
frame F'(tpeq) is guaranteed to reduce By, and C,, without requiring to

compute &qz-
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3. If By is reached after tpear (i-€., tmaz > tpeak), caching any frames before
tpear Can not reduce (or may increase) By,.,. However, from (3.14), we can
see that caching frame F'(fc;) has the effect of reducing B 4(¢) for the longest
duration of [1,%,eqk]. Also as more frames are cached, t,c.; tends to increase
monotonically. Once tpe < tpeak, We will have the above situation 2, and the

new By, is already reduced if we keep on caching frame F'(¢peqx)-

The above analysis shows that the changes on C,(A) and B, (A) depend only
on the cached frame size (i.e., the absolute values of Al and Ab depend only on
R(k)), not the exact position of the cached frame, as long as that frame falls in the
range of [1, £peqx)-

For a VBR video, the frames around t,.,; may have different sizes, the search
for the optimal selection of frames to be cached can be complex when cache space
H is large. Therefore we propose an heuristic approach, SCQ, for selective video
caching in QoS networks, which selects frames iteratively. During each iteration,
SCQ computes the L 4(t) and locates t,q using (3.8), then selects the frame at ,eq
(i.e., F(tpear)) to be cached. This process is iterated until the cache space is full.

The detailed procedure is summarized in the following steps.

Step 1. Initialization. Set n = 1 (n is the iteration index). Cache the required
initial segment I,., and set A' correspondingly (see Section 3.2). Let A" be

the cache indicator after the n* iteration. Set H < H — Lpeq.

Step 2: Find 7., = arg max;{ L~ (¢)} for the n'* iteration.

pea
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Step 3: Cache frame F(tI,..), set a(t?...) = 1; set H <= H — R(t7..;)-

peak peak peak

Step 4: If there is no cache space left (H < 0), procedure ends. Otherwise, set

n < n+1, go to Step 2 (start next iteration).

We will obtain the solution A* = A" at the last iteration. Note that usually
tmaz > tpear during the initial iterations. Therefore increasing of By, can not be
avoided since we have to cache a frame before t,..;, to reduce bandwidth. B,,,, starts
to decrease once t,ap < tpeqr after more frames are cached, and SCQ tries to keep

that initial increment as small as possible. See the results in Section 3.5.

3.4 Video caching in best-effort networks

An example of video caching in best-effort networks is shown in Fig. 3.1b. The server-
proxy channel bandwidth may have variations due to network congestion or other
poor conditions. These variations can cause dramatic degradation on continuous
video playback quality, since packets that arrive too late are considered to be lost.
Thus it is useful for the client to buffer a certain number of frames before and during
playback, in order to increase the likelihood that frames are available for playback
in the decoder buffer during the periods of packet lost (delay). The more frames are
buffered at a given time, the more robustness there will be against the packet delay.

However, the frames in VBR video have different sizes, which means that the

number of buffered frames in the client’s buffer may not be constant during playback.
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Periods during which the number of frames in the decoder buffer becomes low are
referred to as the risky periods (less robust). Our caching goal here is to improve
the robustness by increasing the number of frames in the client buffer during risky
periods.

As we are focusing on an off-line caching algorithm that only has the knowledge
of the video sequence, we do not make any assumptions about the actual bandwidth
variations while deriving the caching algorithm. The risky periods of the video
sequence can be located before transmission by analyzing the decoder buffer contents
during a “virtual” playback, where a constant server-proxy bandwidth C' (close to
the average video bit-rate) is applied. Note that the network congestion may happen
any time during a real-time session. However the congestion is more likely to cause
quality degradation when the client buffer contains fewer frames, i.e., during the
risky periods identified in our analysis. In the simulation, we transmitted video
(with partial caching) using a server-proxy channel with bandwidth variations to
verify the effectiveness of the buffer analysis and the caching algorithm.

We define a frame-level buffer trace function, B/(t), which indicates the num-
ber of frames available at the client during the playback. A measurement of the

robustness of a video stream U can be defined as

U= mtin{Bf )}, (3.17)
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i.e., the minimum value (referred to as a trough) of the buffer trace in number of
frames. Risky period is the time when a trough occurs, i.e., t, = arg min,{B/(t)}.
There might be many risky periods/frames in one session. The larger B/(t), the
more robust this video stream will be around time £.

The robustness metric U defined in (3.17) corresponds to using a MazMin crite-
rion (as we will try to maximize U by caching frames, see below). Obviously there
are alternative ways to define robustness such as, for instance, the average number

of frames in the buffer (referred to as a MazAverage criterion):

1 N
Us N; (3.18)

Each of these two measures of robustness, U or U,, leads us to different algorithms
to select which frames should be cached. For most scenarios in this chapter, we use
the MaxMin criterion for robustness, and we will use the MaxAverage criterion only
to break the tie among multiple choices that all improve U in the same way (see
Section 3.4.3).

Note that B/(¢) (measured in number of frames) is used to calculate robustness;
while B(t) (measured in number of bits, see (3.11) ) is used to determine the occu-
pancy of the client physical buffer during playback. It should be emphasized that
both the frames in the client’s physical buffer and the cached frames at the proxy

are counted as the available frames for the client. In other words, cached frames can
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increase B/(t) (and therefore the robustness), while not occupying client physical

buffer, i.e., they do not increase B(t)3.

3.4.1 Problem formulation

In this case the decoder buffer size B, is the bottleneck in improving U. For ex-
ample, a straightforward way to improve U is to cache the “earlier” frames from
the beginning of video sequence. Thus the client can retrieve the “later” non-cached
frames from the server, while it is displaying the cached frames retrieved from proxy.
At the time when those “later” frames that are not cached start to be displayed,
many of them are already buffered at the client, and therefore U is improved. How-
ever, this method could soon fill up the client buffer since the frames retrieved from
the server are not played until all the cached frames (scheduled to be displayed at
earlier time) are displayed. Thus the server may have to slow down the transmission
speed when the client buffer is full, which waste the bandwidth to further increase
the robustness. Therefore a proper selection scheme should be designed under the
constraint a limited memory buffer B.. We formulate the caching problem as follows
(assume By,q, is known).

Problem formulation 2: Given a limited cache space (H < Rypq) on the
proxy, a pre-encoded video stream V with N frames and a fized delay d, among

all possible A satisfying (3.2), find the cache indicator sequence A* such that the

3 Again, this is true because the cached frames can be fetched quickly from proxy right before
their playback time, such that they can be excluded from the consumption of client physical buffer,
see explanation in Section-3.1.
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robustness U = min,{ B (t)} is mazimized, without exceeding the mazimum client

buffer size Biaz-

3.4.2 Analysis on buffer trace after caching

The byte-level buffer trace function B(t) can be computed from (3.11). The frame-
level buffer trace function B/(t) can be obtained by simulating the transmission
frame by frame, assuming that the nominal channel rate C' is provided. An example
is shown in Fig. 3.5.

We first study the case of caching a single frame. For a given A, and available
channel bandwidth C| if the client buffer size (B,,4;) is large enough, i.e., Byap >

max;{B(t)}, then based on (3.11) we have

Ba(t) = C(t+d)— Sa(t)

= C(t+d) — (Z; R; - Xt:a(i)R(i)>

=1

= By(t) + Y ali)R(i), (3.19)

where By(t) is the buffer trace (in bits) where no frame is cached (A = ¢). From
(3.19) it can be seen that caching one frame F(k) increases the buffer trace B4(t) for
the duration t € [k, N| by the cached frame size R(k). This is because, after being
cached, frame F'(k) will be fetched from the proxy rather than from the server, thus

all the non-cached frames later than F'(k) are “shifted” to an earlier transmission
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time (because frame F'(k) is skipped for transmission) from server. Those later
frames (after F'(k)) will stay in the client buffer for a longer period and thus increase
By(t) (and corresponding BY(t)), by caching F (k).

A simple example of the “raise” in B 4(t) after caching F'(k) is shown in Fig. 3.6.
However, (3.19) does not hold if there is a tight buffer size limitation, i.e., Bpes <
max;{B(t)}. If the decoder buffer is full, then the server and proxy have to reduce
the transmission speed, which means C(i) is smaller than C, otherwise packets will

be discarded due to client buffer overflow.

Proposition 2 If there exists a t,,q, (defined in (3.12)) such that By (tmez) = Bmas
(where B,,q; is the known maximum buffer size), then caching one frame F'(¢;) which
is located before .44 (t; < tmaz) can only increase the buffer trace by approximately
R(t;) between time #; and t,,,,, where #; is the transmission time of frame F(t;), and

tAi < ti < tmam-

By(t) ift <4,
By(t) + R(t;) ift;<t<t .,
B(t) =4 (3.20)
Bmax lf t;naw < t S tmax ’
By(t) if tae <t < N.

\

See the Appendix for a proof. In short, before B4(t) reaches By, (i€, t; < t <

!
tmam

), it is “lifted” according to (3.19), and as a result B4(t) will reach By, at an

where ¢, .. < tmae )- Then the proxy and/or server have to

“earlier” time t] .. (

!

maz When the buffer is full, until it is drained

reduce transmission speed after time ¢
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to accept further data. This reduction cancels out the “extra” frames cumulated in
the buffer, so that the remaining buffer trace for ¢t > ¢,,,, is the same as if no frames
are cached. See Fig. 3.7 for an illustration.

Caching multiple frames is similar to the single frame case. When additional
frames are cached, the buffer trace B(t) is “raised” consequently, and may hit the
maximum bound B,,,; at more points. Therefore, we conclude that each cached
frame can only increase the buffer trace between its scheduled transmission time t;

and next nearest tyaz, if it exists, where B(tmaz) = Bmaz-

3.4.3 Proposed SCB algorithm

Based on the above conclusions, we now propose the Selective Caching for Best-effort
networks (SCB), which iteratively selects one frame that is located within the range
of [timaz, tr], Where t,,4, is the closest buffer peak time before ¢,. An example of SCB
is shown in Fig. 3.8, where troughs occurs at ¢; and t4 before caching. According
to Proposition 2, caching frames before the buffer peak time t, will not lift B/ (t)
after tp. So after caching frames before before ¢, to increase B/ (t;), we should select
frames between ¢, and #, to increase B/ (t,) (see Fig. 3.8(b)), and therefore improve
U defined in (3.17). The details of SCB algorithm are summarized in the following

steps.

Step 1. Initialization. Same as Step 1 in SC(Q algorithm. See Section 3.3.4.
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Step 2. In the n' iteration, find the most risky period t* = argmin,{ B (¢)}, e.g.,
time ¢; in Fig. 3.8a. If there are multiple ", choose the first one (the MaxMin
criteria is applied first, and MaxAverage is applied to break the tie choices if

needed).

Step 3. Find the nearest buffer peak time ¢ before the chosen ¢! (e.g., to for

max

risky time ¢4 in Fig. 3.8b). If no maximum peak exists before ¢7, set ¢ =0

max

(e.g., t = 0 for ¢; in Fig. 3.8a). Note that ¢”

ez 15 obtained from the byte-level

buffer trace B (1).

Step 4. Select one frame F(¢") which is right after ¢7 . (obtained in Step 3) to be
cached, set the a(c") = 1. Update the trace B%.(t) and set H < H — R(c").

If H <0, there is not enough space left on proxy, procedure ends. Otherwise,

set n <=n + 1, go to Step 2.

In each iteration, we first locate the ¢, for U, thus to increase U is the same as to
increase B/(t,). From Proposition 2, we know that in order to increase BY(t,), we
have to cache the frames after the nearest previous buffer peak time.* Since there
might be multiple choices for selecting, e.g., caching any frames between t,,,, and

t, can increase B/(t,), the MaxAverage criteria for robustness requires to select the

40ur goal is to increase the number of available frames in the buffer during the playback, which
is measured by B7(t). The exact value of B (t) may have a slightly different shape from B(t), due
the variable size of frames in VBR video. However, the increment in B(t) should also lead to the
increment in Bf(t) when there is more data in the client buffer. Therefore the results in (3.19) and
(3.20) can also be applied to approximate the increment in B7(t) after caching a frame F (k).
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frame furthest away from ¢, but after the nearest previous peak, %,,,,. This provides

the largest increase in average robustness U,,.

3.4.4 Caching table

Both SCQ/SCB algorithms select additional frames when there is more cache space
available, while the frames selected earlier still remain being cached. Therefore we
can perform the SCQ/SCB algorithms for the complete video sequence to determine
the order of all frames to selected for caching (this can be achieved by setting the
cache space equal to the size of the video), and store the results into a cache table.
When the available cache space increases or decreases, then the proxy can add
or remove frames that need to be cached according to the cache table, without re-
computing the selection procedure. Thus, the caching scalability and low complexity

(for online operations of the proxy) can be achieved, by using such a cache table.

3.5 Experimental results

Experimental results on the SCQ algorithm described in Section 3.3.4 are shown
in Fig. 3.9. A video clip (part of movie Star Wars in MPEG-1 [29]) with 10,000
consecutive frames is used for simulation. The original video has the average rate
(Ravg) of 5,516 KBits/sec, (peak frame rate is 9,812 KBits/sec). The total size of
video clip (Rypta) is 280.6 MBytes. Fig. 3.9a shows that the proposed SCQ algorithm

can reduce the server-proxy bandwidth almost the same as that of the prefix caching
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algorithm. Fig. 3.9b shows that as expected, the SCQ algorithm requires a much
smaller client buffer size to achieve the same bandwidth reduction as prefix caching.

In the experiments of SCB algorithm, the video clip having 10,000 frames is
encoded with MPEG-2 under rate control® similar to [55]. The original video data
has an average rate (Rqy4) of 2,112 KBits/sec, with peak data rate 2,400 KBytes/sec.
The average frame size is 88 KBits. The average channel bandwidth, C, is also
2,112 KBits/sec. The client buffer size (B.) is 512 KBytes. Fig. 3.10a shows the
robustness U = min;{ B/ (¢)} with respect to the percentage of video being cached.
Fig. 3.10b shows the average number of frames in the buffer during the playback,
or U, = + /L, B/(t). Note that as defined in Section 3.4.1, the selective caching
uses the MaxMin robustness criterion first rather than the MaxAverage criterion to
eliminate the worst case first. When only a portion of the video is cached, the SCB
outperforms prefix caching in both cases (for U and U,).

Fig. 3.11 shows the simulation results to verify the effectiveness of our definition
of robustness ( U and U, ). We simulate the delivery of streaming video when it is
partially cached. The cached part of the video is sent to client from the proxy with
no loss. The non-cached frames are retrieved from server (via proxy), starting from
the beginning of the playback session, and the data is buffered at client until it is

displayed. The client physical buffer size is 512KB.

5The reason to apply rate control is to avoid large variance of video data rate to avoid potential
network congestion in a best-effort network.
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We use a binary erasure channel (BEC) [20] to model the server-proxy channel.
A packet (we use a fixed packet size of 512 bytes) is lost with probability €, and
arrives to the client correctly with probability 1 — €, where € is the channel packet
loss rate. All lost packets are recovered by retransmission. In this simulation all
frames have to be played, thus if a frame arrives too late to the client, due to delay
or retransmission, the previous frame is “frozen” on the screen until it arrives. We
refer to the period during which a frame is “frozen” as the “jitter duration” 77;. The
fraction of T;/Ty (where Ty is the total video playback time) is used to measure
the continuity of the playback. T; /Ty = 0 means that the playback has no jitter; a
larger Ty /Ty indicates that more jitter happens during the playback. Thus a smaller
T;/Ty indicates more robustness for a continuous playback. The experiment uses
1000 realizations, the packet loss is performed randomly with the given channel error
€. We can see from Fig. 3.11a shows that when a larger proportion of the video is
cached, the robustness is increased and the jitter duration is reduced. Fig. 3.11b
shows the jitter duration with different packet loss rate. In both cases, the proposed
SCB algorithm leads to smaller jitter duration than prefix caching since it select
frames to be cached to maximize the robustness.

In the presence of network congestion, the congestion duration can last over
some unpredictable time-scale. During the congestion all packets are delayed, and
the bandwidth drops to zero. Fig. 3.11c shows the results when both the channel

congestion and the congestion duration (denoted by d.) occurs randomly. d. follows
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an exponential distribution with mean of m,.. We test the robustness with two cache
schemes with different, value of m.. Fig. 3.11c shows that in both schemes, the jitter
duration increases when m. becomes large. This is true as jitter is more likely to
happen when network congestion becomes severe (last longer). As expected, the
proposed SCB algorithm outperforms prefix caching algorithms with different m,.
The results showed in Fig. 3.11 verify the effectiveness of our definition of robustness

criteria developed for SCB algorithm.

3.6 Conclusions

In this chapter, two novel approaches for proxy caching of video are presented for
both the QoS networks and best-effort networks (e.g., the Internet). The video
caching performance is measured differently in these network environments, i.e., for
QoS networks, the metric of interest is the network bandwidth cost; while the ro-
bustness of continuous playback against poor network conditions is more important
in best-effort networks. Therefore the caching algorithms should be designed accord-
ingly. We also emphasized that some resources, such as client decoder buffer size
and limited proxy cache space, are also critical for the design of video caching algo-
rithms. We proposed two caching algorithms, SCQ and SCB, for QoS and best-effort
networks, respectively. SCQ can reduce the network cost of bandwidth reservation
near optimally and requires a small client buffer size to achieve it; SCB can increase

the playback robustness while not violating the client buffer size budget. Both SCQ
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and SCB algorithms provide good scalability for proxy space adjustment, and low
complexity for proxy online operations. The proxy can easily reduce/increase the
cache space for a video object while still maintain the good performance provided
by these algorithms.

Both SCQ and SCB algorithms are designed for caching a single video object
with a pre-allocated cache space. In the situation that the total cache space is
limited, to determine how much cache space allocated to each video to maximize
the overall performance can be an interesting resource allocation problem (e.g., [88,
67, 38, 75, 91]. ). The proposed caching algorithms (SCQ and SCB) in this Chapter
are independent of any other cache space allocation mechanisms, and can be used
in conjunction with them. The cache table described in Section 3.4.4 can be used
to find the trade-offs between the cache space and the caching performance for each

individual video sequence.
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Appendix

Proof of Proposition 1.

From (3.3) and (3.6) we get

Ly, (t) = (3.21)

Recall the definition of tpeq, in (3.8). If k < tpeuk, from the second case in (3.21),
we have max{L4, (1)} < max{L4(t)}, therefore caching a frame F'(k) before t,eq
can reduce the required bandwidth C,. The reduction is Al = R(k)/tpear (note that
this assumes tpeq remains the same after caching F'(k); however the Proposition still
holds if ¢,¢qr changes except that the absolute value of Al is smaller than R(k)/tpear)-
Obviously if £ > tpeqk, caching that frame cannot reduce the maximum of L 4(%)
which occurs before £.
Proof of Proposition 2.

From (3.19), we know that without the physical buffer size constraint, B4(t) would
exceed Byq;. Thus to prevent the buffer overflow, the server and/or proxy has to
reduce the transmission speed (C(i)) at (or before) t,,,,. However we assume the

reduction of C(i) is as small as possible® so that client buffer is always kept full

6This can be easily achieved by sending feedback from client to proxy indicating the buffer
fullness during the transmission, so that the proxy/server can adjust the C(i) accordingly.
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during the period around #,,,'. Therefore, at time #,,4,, BA(t) also reaches the
maximum, By (tmez) = Bmaz-
Because R(t;) > 0 and ¢, > t;, it is easy to see that there must exist e < tmaz

such that B4(t!.,,) = Bmaz- This means By(t) reaches By, at an earlier time ¢/

maxr

due to the increase of R(t;).

For {; <t <t ., we know from (3.19),
Ba(t) = By(t) + R(E), (3.22)
For t] .. <t < tmaz, Ba(t) remains full at By, (as the above assumption). We also

have BA(tmaz) = By(tmaz) = Bmaz For t > t14,, from (3.11) we know that

tmam+1 tmam+1
Ba(tmas +1) Z C(i R(i)
i=1
tmaz tmacc

= ( 2 00 - 3, R(i)) + C(tmaz + 1) = R(tmaz +1)
= Bu(tmas) + C(tmas + 1) = R(tmes + 1)

= Buas + Cltmar + 1) = R(tmas + 1)

= By(tmaz) + Cltmaz +1) — Rltmaz + 1)

= Bd)(tmaw + 1)

"To always keep the buffer as full as possible is to maximize the robustness, by storing more
frames in the buffer.
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Applying this recursively for all ¢,,,, <t < N, we can get

Ba(t) = By(t), where tpep <t < N. (3.23)

Finally, for ¢ < {; (f; is the transmission time of frame F(t;)), obviously there is no

change for the buffer trace, B4(t) = B,(t). Combining these results we get (3.20).
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Figure 3.3: Illustration of Proposition 1. The lower figure shows the slope functions
before and after caching one frame F'(k1), represented by L4(¢) (solid line) and
L4, (t) (dashed line), respectively. The upper figure is the corresponding cumulative
channel/frame rate functions. After caching an “earlier” frame before tpcq, i.e.,
ki1 < tpeak, max{L4(t)} reduces from c¢ to ¢;. Obviously, caching a “later” frame
F(ky), i.e., ky > tpeak, can not reduce max{L 4(¢)}, which occurs at tpeqx-
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Figure 3.4: Tllustration of caching one frame before or after t,,4,. S4,(t) and S4, (%)

are the cumulative frame rate functions after caching F'(k;) and F'(ks), (drawn
in dashed and dotted lines) respectively. Note that only one frame is selected in
each case. If R(k1) = R(k2) and ky < tyas < k1 < tpear, Proposition 1 shows that
selecting F'(k;) or F'(k3) leads to the same reduction on bandwidth C,. However, the

corresponding changes in B,,,, are different: caching F'(k;) reduces B,,,, from b to by
(Ab = by —b < 0); while caching F'(ks) increases By, from b to by (Ab = by—b > 0).

Therefore caching a frame between ¢,,4, and tpeqi (€.8., F'(k2)) can reduce Bj,,, while

keeping the same reduction on C.
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Figure 3.5: Trace of client buffer size in number of frames and bits.
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Figure 3.6: (a): By(t), no frame is cached. (b): By, (t), frame F'(t;) is cached. These

figures illustrated that by caching one frame F(¢;), the buffer trace can be “lifted”
for ¢ > t1, when there is no buffer size limitation.
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Figure 3.7: The client buffer size limitationis Byax. (a): By(t), no frame is cached.
(b): By, (t), after F(t;) is cached. (c): By,(t), after both F'(¢;) and F'(t3) are cached.
With the buffer size limitation, the buffer trace after caching frames will not follow
that in Fig. 3.6. (b) shows that caching frame F'(¢;) only increase By, (t) between
t1 <t < timas- (¢) shows that caching frame F'(t3) can lift buffer trace for all ¢ > ¢,
because there is no maxima point after ¢,.
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Figure 3.8: (a): Trace where only I,., is cached and troughs occur at time ¢; and t4.
(b): After SCQ caching. First select frames before t1, but #4 still remains the same,
due to the maximum peak at t,, drawn in dotted line. Next select frames within
[t2, t4] to increase robustness for 4.
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percentage of the video been cached. (a): Both the proposed SCQ and prefix caching
can reduce C,(A) similarly as more portion of the video has been cached. (b): The
maximum buffer size, B,,,;, required at the client to achieve the caching performance
in (a).
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Figure 3.10: Robustness vs the percentage of the video been cached, using SCB and
prefix caching methods. (a) Robustness U defined in (3.17). (b) Robustness U,
defined in (3.18).
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Chapter 4

Video Compression with Rate Control for Video

Storage on Disk Based Video Servers

4.1 Introduction

Video-On-Demand (VOD) services have been studied in the past few years and
may soon become popular, as recording, storage and transmission of video data
becomes less costly. The two challenging problems in a VOD system are video data
transmission and disk storage. The output bit rate after compression is usually
Variable Bit Rate (VBR),! but common transmission channels are based on the
Constant Bit Rate (CBR) mode where the transmission bandwidth is fixed. Thus,
transmission of VBR video data through a CBR channel may generate hiccups (i.e.

frame loss) [10, 46, 32, 55].

IThe variable nature of the bit rate per frame comes from the fact that frames, when compressed
to achieve a specific visual quality, require a different number of bits depending on such factors as
the number of objects in the frame, the motion, the proportion of textured areas to flat areas, etc.
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In this chapter, we first address the disk storage issues and, in particular, we
study how video data can be encoded to achieve more efficient transmission. This
will lead us to the rate control algorithms optimized for specific disk placement
strategies.

Since the volume of video data is large, large capacity and high-speed hard
disks are commonly used to store it. These modern disks have very high transfer
bandwidth, and thus it is possible for a server to provide continuous video display
to several users simultaneously. The disk drive can be multiplexed among several
displays by providing Round Robin Service [30).

An example is shown in Fig.-4.1. A number of users (W, X, ...Z) are served by
the server. Each user is allocated a “time slot” (T,;) during one round interval
(Trouna) to receive a block of data from the server. This block (e.g., W;) of data
should contain sufficient number of data (frames) for the user to display video until
the next block arrives, the required display time is also equal to T;ounq. If there is
not sufficient data in that block, jitters will occur during the playback at the user.
For a fair service, each user gets the same amount of compressed data in each service
round.

The video data blocks have to be retrieved from disks before the server send it
to the network channels. When the disk is large (which is typical for the purpose of
storing large volume of video data), the time spent to find a particular video data

block on the disk, referred as disk seek-time, can be significant [30, 7, 9, 10]. Since
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Figure 4.1: Service Round. During each service round time, 7} ,,,4, many users can
retrieve data from the server for playback. This figure shows an example of Round
Robin Service, where each user is allowed to retrieve a block data from a particular
time slot during each service round.

data can not be transferred from disk during the seek-time, a smaller seek-time
overhead allows more data to be delivered from disk to the the users during one
round 7;.,,nq and therefore, more users can be supplied by the server concurrently.
The disk seek-time also introduces another side effect: if the video blocks are placed
in a random order, the seek-time can be wariable to access different blocks, which
will lead T}4ynq to be variable? and unpredictable. If T},,,q becomes too long, there
are more chance for the client to run out of frames to be displayed (where jitter
occurs) before it get another data block from next service round.

Studies in [30, 7, 9, 10] show different approaches to reduce the seek-time by
place the video objects on the hard disk special orders. Many of these approaches
partition the disk and place the video data blocks on the disk sequentially. according

to the display order, since the video data is likely to be requested sequentially (from

2We assume Ty, is fixed to transfer a complete data block. Otherwise if we vary Ty;,; to make
T:ouna to be constant, then some data blocks may have to be delivered during more than one
time slot, which means more disk seek-time has to be spent to find the same data block for each
additional delivery
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the earlier frames to later frames) for playback. The disk partition creates “regions”.
One region contains several video data blocks from different video objects, see Fig.-
4.2 for an example. The data blocks from different video objects forms an interlaced
fashion of placement. The reason for the “interlaced fashion” is that disk bandwidth
is large enough to transfer one data block which contains enough frames to playback
during the time when the disk transfer other blocks in the same region. For example,
after transferring data block V;! (the i data block of video object 1), the disk arm
continues to move in one direction to retrieve other blocks in the same region. With
carefully design, the disk arm takes less then 7T}.,,,4 time when it reaches block V;:Ll to
continue transfer next block of video object 1. Therefore the data can be transferred
for different video objects during the disk arm movement showed in Fig.-4.2. It
is shown that this kind of placement can reduced the overall disk seek-time when
different video objects are requested simultaneously by several concurrent users. For
more details of disk placement strategies, refer to [7, 9, 10]. If blocks are placed in
a more restrictive sequence (e.g. zigzag mode [30]), the seek-time can be reduced to
close to zero.

Another benefit from these disk placement strategies is that the disk seek-time
is relatively constant for different data blocks, so that the resulting 7}.,,nq is nearly
constant, which reduces the complexity of software design of the server system and

improves its performance.
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Figure 4.2: Disk placement. The video blocks are placed in an “interlaced” fashion
so that disk seek-time can be reduced when multiple video objects are requested
concurrently

These disk placement algorithms target the efficiency® of VOD servers, but they
may affect the servers’ ability to provide continuous display. For example, some data
placement algorithms may not allow random access because the location of the data
blocks has been restricted. Thus it will be more difficult than that in a pure random
placement approach to reduce the duration of hiccups. This is because, once the
maximum number of users N is set, the block size By, is also fixed (transmitted
during each Tyounq) [30]. Thus, after the disk placement algorithm has been applied,
it is not possible for the disk arm to reach a block at an arbitrary location, because
the disk arm moves in a single direction (either towards the edge or the inside). If a
block can not be displayed for 7},,,4 long, the result is that a user must wait for the
next service round to get the next block. The server may have to “pause” service to

other users by spending extra time on one particular client to reduce its hiccups.

3i.e., they try to maximize the number of users that can be served simultaneously.
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Studies [10, 46] show different strategies to reduce the hiccups, such as restricting
the number of concurrent users based on the Quality-of-Service parameters. Other
approaches involve making a decision on whether to admit a new user based on the
probability of hiccups if that user is admitted. Some of these admission algorithms
may be too restrictive, and while they may prevent hiccups, they may also waste
bandwidth during some service rounds (when all the users request small size blocks).
Conversely, a less demanding admission policy may result in more hiccups.

In this chapter, we tackle this problem from the encoder view point. We encode
the video data with the given constraints set (Bi;e, Tr, N) to guarantee continuous
display given a particular disk placement specification. Admission of a new user
will be simple, we just need to check to see if the total number of users exceeds
the maximum number allowed (N). Since N is used to calculate the bandwidth per
user applied in the rate control optimization, we can guarantee that no hiccups will
occur if the number of users is less than N. This approach could also be incorpo-
rated with other algorithms mentioned above, if we allow limited hiccups during the
display. Note that an easy way to achieve this is to compress the video with restrict
Constant-Bit-Rate (CBR), so that each data block with same size is guaranteed to
supply a constant period of time, e.g, T,,unqs- However, typically a CBR video has
lower quality (measured in Peak Signal to Noise Ratio, PSNR) then a Variable-Bit-
Rate (VBR) video for the rate budget, and VBR video is generally supported by

many current standards, such as MPEG-1, -2 [52], H.263 [34], MPEG-4 [3]. In this
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paper we code the video in VBR formate to achieve better quality, and propose a
rate-distortion based algorithm for video compression under the constraints of disk
placement strategies, which selecting different quatizers for each frame to find the
optimal bit allocate for each frame. The experimental results shows that the video
quality is improved by 0.5dB to 1.5dB compared the compression method without
rate control.

The organization of this chapter is as follows. Section II presents the formulation
of the problem. Section III describes a Multiple Lagrange Multiplier Algorithm to
obtain the optimal solution, and Section IV provides the experimental results and
conclusions. Our results show that the overall PSNR with rate control can be im-
proved by 0.5 to 1.5 dB as compared to not using rate control under the constraints

of continuous displaying.

4.2 Problem Formulation

User buffer constraints: We assume that the video frame rate is constant. In a
real-time video transmission system, the end-to-end delay interval must be constant,
say AT seconds. Thus a frame read from disk at time ¢, must arrive at the decoder
(user) before t + AT. As for a VOD system, all the video data is available before
transmission, the size of the user buffer and initial latency should be small (i.e., we
assume the user can only pre-fetch a smaller number of frames, f,, before playback).

Real-time transmission constraints are still applicable in VOD systems, because once
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Ty Period during which a frame is displayed, e.g. 1/30second
Ip Number of pre-fetched frames

T, Period during which the pre-fetched frames are displayed, T, = f, x T}
Tround Turn-around-time for one service round

F; i-th frame

Baisk Disk bandwidth (bits/second)

N Maximum number of users

Byser The average bandwidth per user Byser = Baisk/N

Clce Accumulated channel rate

Rgcc Accumulated frame rate

Buf 4. | User buffer size

Ch Channel rate at time ¢t = kT

x(7) Quantization step for frame i

Ry)(i) | Number of bits for frame ¢ coded with quantization step z(7)
Dyy(7) | Distortion of frame ¢ coded with quantization step x(7)

Ny Total number of frames

Bsise Block size in disk placement algorithms

Ry Number of total service rounds

Ng(i) | Number of frames in block i

Table 4.1: Notation used in this chapter
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we start displaying frames, we need to continuously transmit frames, and the number
of frames that can be stored in the decoder buffer is limited (e.g. the whole sequence
cannot be stored in the buffer).

End-to-end Delay: We assume the frame rate is 30 frames/sec (it can be other
number depending on the video object). The pre-fetched f, frames will be displayed
for T,, = f,/30 seconds. If a frame is scheduled to be displayed at time ¢ during the
playback, it should arrive at the user end before ¢ + T},.

Rate constraint: The delay and buffer constraints can be converted into rate
constraints, which the encoder has to meet to prevent hiccups. We assume that
Ty is the period each frame can be displayed (typically, 1/30second), which is also
the “time unit” we will use in this paper. Each frame is labeled with index 7,7 =
(1,2,3...), and if we start display at time ¢t = 0, the frame F; will be scheduled to
display at time ¢t = ¢ X Ty. R; is the number of bits of frame F;.

The channel rate is the disk bandwidth allocated to each user after time mul-
tiplexing. According to Table-1, each user will get Byser = Buaisk/N(bits/sec) of
bandwidth on average. That is, each user will receive bandwidth By, during a
fraction T,,unq/N of each service round. The constraint for no buffer underflow is
that any frame F; must arrive at the user no later than ¢ = ¢ x Ty. This requires

that the channel have enough capacity to transmit all the frames (Fy, Fs... F;) to
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the user before time ¢t = 4 x Ty. Denote C'(k) as the disk bandwidth (allocated to

the particular user) at time ¢t = kT, we get

i i+fp
S Ruw(k) <3 C(k), i=1,2,3,..,N; (4.1)
k=1 k=1

where R (k) is the size of k-th frame encoded with quantization step z(k). In
this paper we use the video sequences compressed using MPEG-1 with intra-mode,
which means each frame is coded independently The frame size and quality can be
adjust by the quantization step size x(k) (chosen from an available quantization step
set) used for that frame: a larger z(k) leads to lower bit rate of the frame (smaller
Ry (k)) with poor quality; while a smaller (k) leads to a larger R,)(k) with
higher quality.

We can use Accumulated channel rate (Cyee) and accumulated frame rate (Ryec)
to describe the problem more clearly. We can re-write the (4.1) as (with frames
pre-fetching):

Ruce(1) = Ry (i), Ciaceli) = Z Ch, (4.2)

Io
Racc(i) < Cacc(i) + Z C(k)a (43)

Bdisk7 nTround S k < nTround + Tuser
where C(k) =

0, otherwise
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Here R, is simply the accumulated bits of all the frames that have been sent. C(k)
equals Byg;sr while the server is transmitting data to that user; it is zero while the
server is serving other users. We assume there are no constraints introduced by
the network bandwidth here. Fig.-4.3 shows and example of R, and C,.. For a
continuous playback, the curve of R,.. must below C., otherwise hiccups will occur

during the playback at the time when R,.. is larger than C..

A
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frame rate >/~ [

Accumulated

|
|
| |
channel rate | |
|
I
| | |
| | |
I 1 ) 1
| Transmit to
Py N | othgr user's
s M

P .
»

Hiccups occur here

Figure 4.3: Accumulated channel rate and frame rate.

If different video sequences are stored on the disk, and different users request
different sequences randomly, buffer underflow can be avoided for all clients if all
the video sequence is encoded with rate control set by (4.1). This is because that
if each sequence is encoded with rate constraints, and each of them will meet the
requirement of no buffer underflow. These constraints are still met for each user
even if the sequences are requested simultaneously.

In real-time playback, lost frames will cause visual distortion. For our scenario,
hiccups mean the user has to wait for the next frame, while the current frame is

98



frozen on the screen (or other error concealment can be applied). Thus, it may
be preferable to encode a frame with fewer bits if that allows us to avoid hiccups.
Although the distortion of this frame would be increased, it is better than displaying
nothing in certain cases. In the cost function below, we do not allow any frame loss
in our formulation*. The quantization step could be chosen at the encoder end
before the video streams are stored onto the disk. The problem can be formalized
as follows.

Given a set of constraints (as in [55]), how do we choose the quantization step size
for each frame while minimizing the total distortion. To encode Ny frames, using a
given set () of M admissible quantizers, such that, for each choice of quantizer j =
x(@) for a given block ¢, we incur a distortion cost D, (i) while requiring a certain
rate R, (7). The objective is to find the optimal quantizer choices v* € x = QN ,

for a given channel rate Cy, as in (4.3), such that:

Ny
z*(1, ..., Ny) = argmin »_ Dy;(3) (4.4)

=1

subject to the constraint set (4.1) or (4.3). We will solve this problem using multiple

Lagrange Multipliers in the next section.

4Tt is possible to develop other cost functions which may take account frame losses. This is
beyond the scope of this chapter.
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4.3 Optimization based on Multiple Lagrange Multipliers

Using Lagrangian optimization for rate control under multiple rate constraints was
previously studied in [55, 12]. In that approach, the constrained optimization prob-
lem above is equivalent to the unconstrained problem derived by introducing a non-
negative Lagrange multiplier \; associated with each constraint in (4.2). The opti-
mization formulation then becomes: find the quantizer choice x* at the time t; = 7Ty

such that:

Ny Ny J
(1, Ny) = argmin 3 Dy (i) + 3 25 (D0 RBagiy (1)), (4.5)
i=1 j=1 i=1

We introduce Ny Lagrange multipliers to replace the /N, constraints in equation
(4.3). To find the optimal quantizer set x*(1, Ny) is the same as to to find the
appropriate multipliers {);} to meet the constraints. From [32], we can introduce

another set of multipliers A\, = Z;-V:fi Aj, (1 =1,2,...Ny) to rearrange (4.5) as:

Ny
*(1,Ny) = argmin Y _ (Dy(p)(8) + N Raugi) (1)), (4.6)
i=1

Finding the solution for (4.5) is equivalent to finding the appropriate non-negative

values of the set {\;}. Define J;(\}, z(7)), the cost for frame i, as:
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If we use intra-frame mode, the quantizer for each frame can be chosen indepen-

dently while minimizing the cost for each block J;(A}, z(7)) as:

z*(i) = arg min J;(\, z(7)), Vi€ {1,2,...,N;} (4.8)

z(1)€EQ

In [55, 32] a similar problem is solved by iteratively increasing the lower bounds
on the multipliers, defined as {A}}, such that the violation of rate constraints can
be prevented, and adjusting the values of {\;} until an optimal bit allocation, where
none of the constraints is violated, is found. The details of the search for these
multiple Lagrange multipliers can be found in [55, 32, 81]. Here we outline the basic
procedures.

Step 1: Initially the quantizer choices & = {z(1),z(2),...,2(Ny)} are obtained
by using a single Lagrange multiplier )\’Nf for all the frames in (4.8), subject to only
one constraint: EkNil Ri ) < ZkNiILf” Ck.

Step 2: If % is such that all rate constraints in (4.1) are met, then % is the optimal
solution z* for problem (4.4). Otherwise, assume that frame v is the last frame which
violates the rate constraint, that is, v < Ny and no other frame between frame v +1
and frame Ny violates the rate constraint. Find the minimum value of Lagrange
multiplier A} = min A} for the video stream from frame 1 to frame v which prevents

violation of the rate constraint: 37, | R; ;) < ZZi{p Ch-
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Step 3: Find the quantizer choices & = {z(1),z(2), ..., z(Nf)} as in Step 1 except
that the Lagrangian multiplier for the video streams from frame 1 to frame v is
lower-bounded by Al as A < max(A!, \).

Step 4: Go to Step 2. Repeat until all the rate constraints in (4.1) are met.

4.4 Experimental Results

In order to test our proposed algorithms, we simulated the transmission behavior
with and without the rate control. We use 5000 and 10,000 frames from the movie
“Mission Impossible” for our simulation. Each frame was encoded in intra-frame
mode and we use 7 different quantization steps encoded by JPEG, thus generating 7
source streams with different rate-distortion performance. Each source stream uses
a fixed quantizer. We test with different parameters for By;sk, Trounda and N.

Fig. 4.4 shows the accumulated channel and frame rate (with and without rate
control). The rates are added up from the time the video transmission starts. Curve
(1) is accumulated channel rate (C(qc)) Which is the upper bound of the frame rate.
The other curves (2-3) are accumulated frame rate (Ry.). The hiccups will occur
if R(ace) exceeds the Clue). Among curves (2-3), curve (2) is closest to the bound
(1), which is based on rate control processing (Lagrange iteration). Curve (3,4) use
fixed quantization steps, with a smaller quantizer step size for curve (4) (high frame
rate, low distortion), and a larger one for curve (3). Those two quantization step

are the closest two consecutive steps size of all the available steps.
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The channel rate is the disk bandwidth, the block size is a typical size from
certain disk placement algorithms. These two parameters decide the shape of curve
(1), the upper frame rate bound. It shows that with a smaller fixed quantization

step, there are more hiccups, while with a larger one, the channel capacity is wasted.

Accumulated channel rate and data rate. Users =36

Avg rate / frame = 5.91 - 27.72Kbps
Channel Rate = 19.20 Mbps

250 - Turn around - =360 sec

Block size . =1000.00 Kbytes
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— — with rate control (2)
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Figure 4.4: Accumulated channel rate and frame rate

After applying the rate control over the whole sequence, a different quantization
step can be chosen for each frame, and the accumulated frame rate can be set very
close to the channel bound without exceeding it. We compared the PSNR with the
distortion using rate controls with the frames of fixed quantization (its rate also
not exceed the channel bound). As there is no common methods to measure the
distortion (neither measured by PSNR or by some perceptual measurement) for a
“lost” frame, the comparison is made based on that no hiccups occur for any choice
of the quantizers (with or without rate control). Based on our experimental result,

we have about 0.5 to 1.5 dB for overall frame sequences as showed in Fig.-4.5. Of
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course, if there are less available quantization steps, we can get larger PSNR gain,

and small PSNR gain vice versa®.

Figure: PSNR of "No Rate Control" vs. "Rate Control" (Lagrange iteration)
T T T T T
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Figure 4.5: PSNR of the video sequence. When the maximum number of the con-
current user can be supported by the server increases, the bandwidth allocated to
each user decreases, therefore the video bit rate has to be reduced which leads to
poor quality. Using rate control based compression can improve the overall PSNR
(averaging over the frames) by 0.5 to 1.5 dB compared to the scheme without any
rate control (a uniform quantizer is used for all frames).

For the other choices of uniform quantizers which leads to different quality and
bit rate of the compressed video, we show the total hiccups and average user waiting
time during the hiccups (hiccup duration) in Fig-4.6. The results shows that when
the number of designed maximum user increases, more hiccups will occur for the
video coded with a particular quantizer, and the average waiting time (during which
a frame has to be frozen on the screen until the next video block arrives) also
increases. This is the drawback of using a uniform quantizer for compression. Note

that with rate control, the hiccups can be guaranteed to be avoided for a given

maximum number of concurrent users.

5Tf the set of available quantization scales is small than it will be more likely that a solution
which does not violate the rate constraints is far below the bound.
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Figure 4.6: Average waiting time and hiccups without rate control

4.5 Conclusions

In this paper we analysis the impact on continuous playback of the video stream
by some particular video disk storage strategies. The disk storage strategies are
designed to improve the server throughput by reducing the disk seek time (for finding
a particular video data block on the disk) so that more users can be served currently.
We found that certain disk storage strategies imply some restrictions the bit rate of
the VBR video stream to meet their data retrieval patterns. We translated those

restrictions into rate constraints and the cost functions for our proposed rate control
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based compression algorithm, Basically, the proposed algorithm selects the proper
quantizers for different frames in the video to maximize the overall (averaging over
the frames) video quality (measure in PSNR) while the rate constraints are not
violated. Our experimental results show the proposed scheme has 0.5 to 1.5 dB
quality improvement compared to the compression scheme without any rate control,

which uses uniform quantizer for all frames in a video object.
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Chapter 5

Conclusions

In this thesis several novel algorithms are presented for streaming media services,
namely, the delivery scheduling algorithm (ERDBS) for scalable streaming media
over best-effort networks; the two selective caching algorithm for video proxy caching
in QoS networks (SCQ algorithm ) and best-effort networks (SCB algorithm); a
rate-control based compression technique under the constraint of video server disk
placement.

The thesis discussed each algorithm in details and shows that there is perfor-
mance improvement by using these algorithms. For example, EDBS algorithm can
improve the playback quality of streaming media compared to the traditional deliv-
ery methods. The SCQ video caching algorithm can reduce the QoS network cost
maximumly while a smaller receiver buffer size is required and the caching space is
limited (only part of the video can be cached); the SCB video caching algorithm

can increase the robustness of continues playback of streaming video against poor
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network condition in best-effort networks (under the same constraints as QoS net-
works, such as limited cache space and receiver buffer size). Finally, using rate
control based video compression with certain video server disk placement strategy
can secure the benefit of the particular disk placement strategy and gaurante the

conitnues playback at the client.
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