
INTERACTIVE FAST RANDOM ACCESS, RETRIEVAL,
AND NAVIGATION OF LARGE DATASETS

by

Zihong Fan

A Dissertation Presented to the
FACULTY OF THE VITERBI SCHOOL of ENGINEERING

UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the
Requirements for the Degree

Ph. D.
(ELECTRICAL ENGINEERING)

June 2011

Copyright 2011 Zihong Fan

Dedication

To my mom.

ii

Acknowledgements

My graduate study at both USC and Stanford has been one of the most memorable

periods of my life. I feel very fortunate to have learned from and worked with so

many incredible people. Firstly, I would like to thank my advisor Professor Antonio

Ortega for his excellent guidance, mentorship, and support for my research. It is

thanks to him that I have had the opportunity to work on a new research area and

enjoy it as much as I have. He has always been enthusiastic to discuss my research

and has continually provided superb suggestions and criticisms which have greatly

improved the quality of my work. I would also like to thank Professors Richard

Leahy and Shanghua Teng for being on my dissertation committee, as well as

Professors Giuseppe Caire, C.C. Jay Kuo, and Shrikanth Narayanan for being on

my qualifying exam committee. It is indeed a great privilege and honor to have all

their advice on my work.

I am also grateful to Professor John Pauly at Stanford, who encouraged me to

pursue Ph.D. studies and has inspired me with his innovative thinking and creative

attitude towards research. Professors Uel Jackson McMahan and David Ress, at

Stanford and Brown Universities respectively, also provided me with my first real

research experience and I am very grateful to them both.

In addition, I am deeply indebted to many current and past members of the

Compression Research Group at USC, especially Ngai-Man Cheung, Roger Pique,

and Sunil Narang. Very importantly, I would like to thank all of my dear friends

iii

for making the years enjoyable and for the treasured support they have given me

during hard times: Shuguang Cui, Da Ha, Yunsong Huang, Quanzheng Li, Huazhou

Liu, Yousong Mei, Michael Padilla, Shuxue Quan, Ran Ren, Yun Wang, Bo Wu,

Junfeng Xu, and many other wonderful friends too numerous to mention here.

Finally, I would like to express my deepest gratitude to my family. In particular,

I devote all my work to my mom who devoted her life to me and passed away four

years ago without seeing my graduation.

iv

Table of Contents

Dedication ii

Acknowledgements iii

List Of Tables vii

List Of Figures viii

Abstract xii

Chapter 1: Introduction 1

Chapter 2: Overlapped Tiling Random Retrieval System and its
Components 8

2.1 System . 8

2.2 Rotated Center Based Tiling . 10

2.2.1 2D Case . 12

2.2.2 3D Case . 13

2.3 Search Algorithm . 18

2.3.1 Optimal Fast 2D Rectangle Search Algorithm 19

2.3.2 Fast 3D Rectangle Search Algorithm 23

2.4 Mapping Algorithm for Rotated Tile Encoding 24

2.5 Reconstruction, Display and Compression 25

2.5.1 2D Compression and Reconstruction 26

2.5.2 3D Compression . 26

2.5.3 Oblique Plane Acquisition and Display 27

2.6 Experiments . 32

2.6.1 2D Case . 32

2.6.2 3D Case . 35

2.7 Conclusions . 37

v

Chapter 3: Tiling Optimization 38
3.1 Prediction Model . 39

3.1.1 2D Case . 41
3.1.2 3D Prediction Model . 46

3.2 Optimized Rectangular Tiling Scheme 52
3.2.1 2D Case . 57
3.2.2 3D Case . 58
3.2.3 3D Experimental Results . 60

3.3 Conclusions . 63

Chapter 4: Mapping for Rotated Tile Encoding and Analysis 64
4.1 Mapping Algorithm for Rotated Tile Encoding 65
4.2 Metric to Check the Symmetry of Mapping Algorithms 72
4.3 A Spectral Graph Theory Approach for Data Re-mapping 73

4.3.1 A Graph Representation of Remapping Problem 73
4.3.2 Analysis and Results . 77

4.4 Experimental Results . 81
4.4.1 2D Case . 81
4.4.2 3D Case . 82

4.5 Conclusion . 84

Chapter 5: A Wavelet Based Approach for Overlapped Tiling 86
5.1 Wavelet-Domain Redundant Tiling 86
5.2 Conclusions . 90

Chapter 6: Conclusions and Future Work 92
6.1 Conclusions . 92
6.2 Summary of Future Work . 94

Reference List 94

vi

List Of Tables

2.1 Ico: icosahedron tessellation; Oct: octahedron tessellation; Tetra: tetrahedron

tessellation. L means refining level. 18

3.1 Coverage probability for any voxel by one tile with random norm vector. . . . 48

5.1 Storage Overhead (So). Transmission efficiency (Te). Te = Tr/Tc, where Tr

represents the average transmission bits using rectangular tiling scheme, and Tc

represents the average transmission bits using cubical tiling scheme. 87

5.2 J: Decomposition level, J = 0 means without using Haar transform on the object;

S: Total storage (in bits) . 89

vii

List Of Figures

1.1 Random oblique plane acquisition illustration. 2

1.2 3D Example: retrieve a random plane from a 3D data set. The colors represent

the number of tiles covering the pixels. Tiles used in the rectangular tiling

scheme are overlapped, and the tiles used in the cubic tiling scheme are non-

overlapped. Much less voxels from the proposed method (rectangular tiles) are

needed comparing to the traditional method (cubic tiles). 4

1.3 Comparison of rectangular and square tiling schemes in 2D case (where we re-

trieve a random line from a plane). Only 10 rectangular tiles are needed, instead

of 21 square tiles (note that tiles have the same size 8×32 and 16×16, respectively). 5

2.1 3D Retrieval system . 9

2.2 Example of proposed overlapped rectangular tiling. 12

2.3 Example of proposed overlapped rectangular tiling. 13

2.4 Comparison of rectangular and cubic tiling schemes in 3D case(retrieve a random

plane from a 3D data set). Just 9 rectangular tiles are needed, instead of 24 cubic

tiles (note that tile sizes are close, 32 × 32 × 8 and 20 × 20 × 20, respectively).

The colors represent the number of tiles covering the pixels. Tiles used in the

rectangular tiling scheme are overlapped, and the tiles used in the cubic tiling

scheme are non-overlapped. 14

2.5 3D tile demonstration: D is the distance (between P and P0) from the rotation

center of the tile to the plane. θ is the angle between the tile and the plane. n⃗

is one norm vector of the rectangle tile. The other norm vector is opposite with

180 ◦. 16

2.6 Angles selection for 3D tiles: Note (b) shows points from both possible n⃗ vectors

associated with a given tile, contrary to the definition, for illustrative purposes

of the geometry. 17

viii

2.7 The number of the tiles at each rotation center by using icosahedron sphere

tessellation: 6 in total . 17

2.8 2D Demonstration of the optimal rectangle cover searching algorithm. 20

2.9 Demonstration of the proof for Part 1. 21

2.10 Three-dimensional scanning order illustration. Only the first 9 points are showed

in order to be clearly visualized. 28

2.11 Three-dimensional coordinate rotation . 29

2.12 Display of the reconstructed requested plane using proposed system. 3D volume

size is 256x256x256. Transmission rate is 1.2 bits per pixel, PSNR is 35.28 with

quantization scaling value 30. 31

2.13 Compression Result: PSNR versus R (Rate). Q is 10 ∼ 25 with step 5. The

circle points are using 3D compression. The square points are using 2D compression. 33

2.14 Te versus So: left side, for a fixed value of N , Dx and Dy are varied; right side,

for a fixed value of Dx, Dy, N is varied. Using JPEG for compression. 34

2.15 3D case result: Te versus So. Te denotes the ratio of required bandwidths for the

rectangular and cubic tiling schemes. So denotes the relative storage overhead

required by the rectangular tiling scheme. Te = Tr/Ts So = Sr/Ss. Note, the

storage here is before 3D compression. 36

3.1 Illustration of the metric for calculating the average number of tiles of an arbi-

trary pixel around one rotation center. 42

3.2 2D Voronoi regions. 9 Voronoi regions are shown in the center part. 44

3.3 Linear regression: σ/µ vs. rate . 45

3.4 Linear regression: σ/µ vs. average storage(m), µ < 40 (without using compres-

sion technique.) . 46

3.5 Model for calculating the average number of tiles covering an arbitrary voxel

around a rotation center. 47

3.6 3D Voronoi region: The blue star points are the locations of the rotation centers.

Each numbered shaded area represents one Voronoi region. Since the rotation

centers are located at points on a regular octahedron grid patten (the rotation

centers are located at the regular octahedron vertices), the Voronoi regions are

all the same polyhedrons. 50

3.7 Linear regression: σ
2
3 /µ vs. Rate. 51

ix

3.8 σ
2
3 /µ vs. µ, (µ < 60) . 51

3.9 3D case result using first tiling scheme: Te versus So. Te denotes the ratio of

required bandwidths for the rectangular (Tr) and cubic (Ts) tiling schemes. So

denotes the relative storage overhead required by the rectangular tiling scheme.

Te = Tr/Ts So = Sr/Ss. Rotation center distance: the distance between the

rotation centers. Rotation tiles: the average number of the rotated tiles around

each rotation center. Note that the average number of rotation tiles on the red

curve is not integer because different numbers of rotated tiles are used at different

rotation centers and this is their average. 53

3.10 Here, tile center distance = 32× Scale. Fix the tile center distance, the number of

rotation angles vary. Tr is the average number of tiles needed to be transmitted.

µ is the average number of tiles coverage per pixel. 58

3.11 New 3D rectangular tiling scheme. The tile centers for each layer are shown. 3

layers of tiles are in this figure. The arrows show the norm vector n⃗i representing

the tile angle. 59

3.12 3D Partition for speeding up the searching in Algorithm 4. Each color represents

each subregion. 60

3.13 3D case result: Te versus So. Te denotes the ratio of required bandwidths for the

rectangular and cubic tiling schemes. So denotes the relative storage overhead

required by the rectangular tiling scheme. Te = Tr/Ts So = Sr/Ss. 61

3.14 σ
2
3 /µ vs. µ. µ and σ are the average and the standard deviation of the tile

coverage. 62

4.1 2D Mapping: RC (rotation center), CP (cartesian points), CP O (cartesian

points outside the rectangle), CP I (cartesian points inside the rectangle), RP

(point on rectangle grid), D (mapping points distance). 66

4.2 3D Mapping: CP O (cartesian points outside the rectangle), CP I (cartesian

points inside the rectangle), RP (point on rectangle grid), D (mapping points

distance). 69

4.3 (a): 3D rotated tile symmetric mapping illustration. Size 3×3×3. CP (cartesian

points). Other labels are denoted in Section 4.2. (b): mapping vectors (symmetric). 70

4.4 (a): 3D rotated tile non-symmetric mapping illustration. Size 3 × 3 × 3. (b):

mapping vectors (non-symmetric) . 71

4.5 Regular grid graph. Size: 11× 11 . 74

x

4.6 Mapping of the Cartesian grid pixels onto the rotated grid using the symmetric

mapping algorithm. Size: 9× 9 . 75

4.7 Mapping the Cartesian grid pixels onto the rotated grid using non-symmetric

mapping algorithm. Size: 9× 9 . 76

4.8 Absolute values of the correlation matrices RS and RNS 79

4.9 Percentage of the off-diagonal energy . 80

4.10 Rate distortion for two mapping algorithms and the interpolation method. Using

”Lena” as the test image. N = 8, Dx = Dy = 20 81

4.11 RD curves by using symmetric mapping/non-symmetric algorithms and using

interpolation method . 83

4.12 Symmetric and non-symmetric mapping algorithms’ RD curves. 84

5.1 Applying Haar wavelet to the 3D volumetric data. This only shows the one level

decomposition. Different levels decomposition are used in our experiments. . . 87

5.2 Approximation Result: Transmission efficiency (Te) versus Storage overhead

(So). 89

xi

Abstract

This research is motivated by two important trends. First, more than ever before

large amounts of data and information are being accessed through mobile devices

such as smart phones, tablet computers, book readers, etc. Second, significant

amounts of complex and high-volume information (e.g. maps, medical images, sci-

entific datasets, virtual museums, etc.) are now available over networks. In addition

to entertainment applications (e.g. video sharing), a significant driver of traffic over

networks is likely to come from professional applications. Such applications, like

those that might provide doctors with pervasive access to medical information, will

demand high quality performance according to a variety of different metrics, such

as latency, resolution, interactivity, and perceptual quality.

We have proposed a novel system for interactive, fast, and random access and

navigation of large datasets. Of particular interest in our system is the random

retrieval of lower dimensional data from high dimensional datasets. The system

makes it possible to allow limited-memory mobile devices to quickly access com-

plex large datasets over low-bandwidth connections. This approach can reduce the

transmission rate dramatically (by factor of 2) and also improve the level of inter-

active navigation. Both 2D and 3D systems, referring to the dimensionality of the

datasets that may be accessed, for fast and random access have been developed and

each system is composed of a tiling scheme, linear searching algorithm, compression

xii

methodology, mapping algorithm, and reconstruction scheme. The mapping algo-

rithms can also be applied to various other applications and areas. We also have

proposed models for parameter selection and system optimization, tools to both

analyze and quantify the benefits of our proposed re-mapping algorithm as well as

wavelet based approach 3D system. This work offers both theoretical and practical

contributions and can be used in a wide-array of exciting future applications.

xiii

Chapter 1

Introduction

Motivation: Our research is motivated by two important trends. First, more than

ever before large amounts of data and information are being accessed through mo-

bile devices such as smart phones, tablet computers, book readers, etc. Second,

significant amounts of complex and high-volume information (e.g. maps, medical

images, scientific datasets, virtual museums, etc.) are now available over networks.

In addition to entertainment applications (e.g. video sharing), a significant driver

of traffic over networks is likely to come from professional applications. Such ap-

plications, like ones that might provide doctors with pervasive access to medical

information, would demand high quality performance according to a variety of dif-

ferent metrics, such as latency, resolution, interactivity, and perceptual quality.

Interactive navigation of large high-dimensional media datasets aims at allowing

viewers to freely navigate content, selecting a subset of the high-dimensional data

of interest for display. With current techniques, the visualization of volumetric data

with random access poses significant technical challenges even in 3 dimensional case.

We propose a novel system for interactive, fast, and random access navigation of

large datasets. Of particular interest in our system is the more challenging problem,

random retrieval of lower dimensional data from high dimensional datasets. One

1

potential 2D application can be with map data, in which the requested portion

covering a route may be retrieved first and/or with higher resolution, followed by

other parts of the map. In a volumetric image example, arbitrary oblique planes

from the volume may need to be extracted and rendered, as is required in some

medical imaging applications. For example, doctors may wish to navigate and

visualize any slide from a large 3D volume data as shown in Figure 1.1. Our

3D Volume

Requested plane

Intersection

Figure 1.1: Random oblique plane acquisition illustration.

proposed methodology makes it possible to allow limited-memory mobile devices

to quickly access complex large datasets over low-bandwidth connections. This

approach can reduce the transmission rate dramatically (by factor of 2) and also

improve the level of interactive navigation. We will illustrate our proposed method

for both 2D and 3D cases, but our method can be extended to higher dimensions

with some modifications.

2

Background and Problems: In many fields, there is a high demand to ma-

nipulate and visualize very large datasets. Often it is not practical for a personal

computer to be equipped with sufficient memory so as to enable manipulation, vi-

sualization and rendering of the complete dataset. In these kinds of applications,

a client-server approach can be more effective, with the server providing only the

data needed for the specific visualization task at the client. Such client-server ap-

proaches are widely used, e.g., for interactive viewing of maps at various resolutions,

and are often supported by tiling techniques, so that the server provides only those

tiles corresponding to data requested by the client. Tiling-based techniques effi-

cient when most of the information included in the tiles is used for display. For

the challenging problem we tackle, the conventional tiling techniques can be very

inefficient. This is because the conventional tiling techniques tile the object into

non-overlapped regular small tiles. For example, the techniques proposed for vol-

umetric image coding [3, 4, 12, 14, 16], including approaches such as JP3D [1,2, 15],

where a non-overlapped, independently encoded, cuboid tiling is used in order to

assist random access. This scenario is shown in Figure 1.2, where the 3D volume

dataset has been tiled into small non-overlapped cubes. The inefficiency is due to

the fact that for each retrieved cubic tile the only voxels1 that are “useful” are those

near the intersection between the cube and the desired 2D plane. Because tiles are

the basic unit, complete tiles have to be retrieved, even in cases when just a small

number of voxels in each tile will be used for display. As we shall see from the

examples in Figure 1.2 and Figure 1.3, it is more efficient to use overlapping tiles

to represent the data-set (our approach here uses rectangular tiles with different

orientations).

1a volume element, representing a value on a regular grid in three dimensional space.

3

Figure 1.2: 3D Example: retrieve a random plane from a 3D data set. The colors represent the
number of tiles covering the pixels. Tiles used in the rectangular tiling scheme are overlapped, and
the tiles used in the cubic tiling scheme are non-overlapped. Much less voxels from the proposed
method (rectangular tiles) are needed comparing to the traditional method (cubic tiles).

As another example in 2D, it may be necessary to extract narrow “bands”,

sets of parallel lines of arbitrary orientation, from complete 2D images in various

cartographic or medical imaging applications. Similarly, lower transmission bitrates

may be achieved by using rectangular tiles which lie along the area of interest

(Figure 1.3). As we shall see, by using overlapped rotated tiles to represent the

dataset we are able to increase the average number of useful voxels per tiles so that

the total number of tiles to be retrieved is smaller, leading to a lower transmission

bitrate. Thus we trade-off increased storage at the server’s side for lower bandwidth

during the interactive access to the data-set and lower memory requirements at the

client’s side.

Our Novel Approach and Challenges: The two examples in Figure 1.2

and Figure 1.3 have illustrated the potential benefits of using overlapped tiling

to represent a dataset. Our approach trades-off storage at the server’s side for

significant reductions in average transmission rate relative to the conventional cubic

tiling techniques. The run-time memory space requirement can also be reduced

accordingly at the client’s side.

4

Proposed Rectangle Tiling Scheme

50 100 150 200 250

50

100

150

200

250

Square Tiling Scheme

50 100 150 200 250

50

100

150

200

250

Figure 1.3: Comparison of rectangular and square tiling schemes in 2D case (where we retrieve
a random line from a plane). Only 10 rectangular tiles are needed, instead of 21 square tiles (note
that tiles have the same size 8× 32 and 16× 16, respectively).

There are many challenging problems that arise for this approach, particularly

that of how to design the overlapped tiling scheme? If we choose to use rectangles

(as we do here), the dominant question becomes where to locate the tiles and how

to rotate the rectangular tiles to provide different orientations? What is the insight

for the relationship between transmission rate and different tiling schemes? Can we

find the best way to tile the object to achieve the best transmission gain? Given

that the tiles are overlapped and hence there are a multiplicity of tile sets that can

represent one query (the cover is not unique), how can we find the best tile set in

linear time? In addition, transforms operate on pixels organized in a regular grid.

In a rotated tile, the points on the rotated rectangular grid do not coincide with the

original Cartesian grid points. How can we solve this problem without introducing

any distortion and also without introducing additional computation time? The tiles

may overlapped, how to display the queue, for example a random oblique plane in

the 3D case?

In this work, we have developed both 2D and 3D systems for fast, random

access, which address all the issues raised above. Each system is composed of a

5

tiling scheme, linear searching algorithm, compression methodology, mapping algo-

rithm, and reconstruction scheme. The tiling scheme provides multiple redundant

tilings of the 2D image/3D volume dataset, where each tile has a different orien-

tation. The searching algorithm determines which tiles should be retrieved for a

given query in linear time and with minimum number of tiles necessary. The map-

ping algorithm enables efficient coding without interpolation of rotated tiles. Each

tile is compressed and encoded independently using the compression techniques.

The reconstruction and display component allows the acquisition and display of

the requested queue from the selected overlapped rectangular tiles. The mapping

algorithms can also be applied to various other applications and areas. In addition,

we have proposed models for parameter selection and system optimization, a Haar

transform based approach, which can reduce the transmission rate even more, as

well as tools to both analyze and quantify the benefits of our proposed re-mapping

algorithm. This work offers both theoretical and practical contributions and can

be used in a wide-array of future applications.

This approach achieves a substantial reduction in the average transmission rate

as compared to traditional square/cubic tiling. In the 2D case, the average number

of bits transmitted when using the 2D tiling scheme can be reduced by a factor

of 2 relative to the square tiling scheme and 15 - 40% additional transmission rate

reduction can be achieved using an optimized 2D tiling scheme. In the 3D case,

for different storage overhead as compared to the traditional cubic tiling scheme,

the average number of bits transmitted can be nearly 15 - 55% lower using the

3D tiling scheme and an additional 10 - 30% reduction can be achieved in the

average transmission rate using an optimized 3D tiling scheme. The reduction can

be even greater by allowing additional storage overhead using different tile sizes.

6

Additionally, this approach leads to improved random access, with less storage and

run-time memory required at the client.

The five components of the system are very different for the 2D and 3D cases.

For each chapter, we first describe the 2D case to assist with the understanding of

the methodology and we then emphasize on the more difficult 3D case. We start

by introducing our overlapped tiling random retrieval system and describing the

system components in Chapter 2. In Chapter 3, optimization of the tiling scheme

will be presented. A prediction model will be introduced, which enables parame-

ters selection without the need to implement the system with different parameter

settings and also provide insights for designing new tiling schemes. With these

insights, a new tiling scheme is proposed to achieve better performance. Chapter 4

will describe and evaluate in detail the mapping algorithm for rotated tile encoding,

which will show that remapping without interpolation leads to overall much better

RD performance and that the more symmetric the mapping is, the better RD per-

formance can be achieved. Using a spectral graph theory approach, a tool will be

proposed that can analyze and quantify the performance and benefits of our pro-

posed re-mapping algorithm. In Chapter 5, a wavelet approach will be described,

which can potentially achieve a 25% reduction in the average transmission rate at

the cost of a factor of five on the server side. Finally, we present our conclusions as

well as discuss future work in Chapter 6. Work described in this proposal has been

published in [6–11].

7

Chapter 2

Overlapped Tiling Random Retrieval System and

its Components

In this chapter, we start by introducing our overlapped tiling random retrieval

system and then describing the details for each component. We will start with 2D

case to assist with the understanding of the methodology and then present the 3D

case. We consider tiling methods, parameterized by the location and orientation of

the tiles, that can guarantee that all data can be retrieved. Because tiles overlap,

there is no longer a unique way to retrieve data for a given query, and so we propose

search algorithms in both 2D and 3D case to identify the most efficient set of tiles

to be transmitted in response to a query (Sections 2.3.1 and 2.3.2). We also propose

mapping techniques to compress the data points on the rotated tiles that do not

coincide with the Cartesian grid points (Section 2.4).

2.1 System

In this section, we provide overviews of the systems, where for the 2D case, the

goal is to retrieve arbitrary oblique lines from 2D images (A practical application

can be retrieve a path from a map. We simplified the case as retrieving lines for

8

Figure 2.1: 3D Retrieval system

experiments.) and for the 3D case, the goal is to retrieve an arbitrary oblique planes

from 3D volume datasets.

The structure of the whole 3D system is displayed in Figure 2.1. For the 3D

case, on the server’s side, the 3D dataset is tiled by overlapped 3D rectangular tiles

with different orientations. The tiles are compressed and saved at the server, which

is done offline. When a user requests a oblique random plane, the plane parameters

are sent to the server, and the voxels that contribute to the plane are then recorded

in order for server to find the associated tiles and transmit the compressed tiles

back. After user receives the data, the 2D oblique plane can be reconstructed.

Similarly, for the 2D case, on the server’s side, the 2D image is tiled by overlapped

2D rectangular tiles with different orientations. The tiles are compressed and saved

9

at the server, which is done offline. When a user requests a oblique random line

or a band, the parameters are sent to the server, and the pixels contributing to

the line/band are then recorded in order for server to find the associated tiles and

transmit the compressed tiles back. After user receives the data, the line/band can

be reconstructed. This system consists of 5 parts: 1) tiling scheme, 2) mapping

algorithm, 3) tile searching algorithm, 4) compression, and 5) arbitrary oblique

plane/line (band) reconstruction and display.

Our tiling scheme provides multiple redundant tilings of the 2D images/3D

volume datasets, where each tiling has a different orientation. Since the tiles are

overlapped, and there are many possible tile combinations to cover a query, we con-

sider a solution to be “optimal” when the number of rectangles to cover the query

is minimum. Note that several solutions may be optimal (different tile combina-

tions that cover the query, using the same number of tiles). We propose searching

algorithms (Section 2.3) to identify the most efficient set of tiles to be transmit-

ted in response to a query. Mapping algorithms enables efficient coding without

interpolation of rotated tiles (Section 2.4). Each tile is compressed and encoded

independently. JPEG is used in 2D compression. 3D DCT, a 3D zig-zag scanning

order and VLC are used in 3D compression experiments.

2.2 Rotated Center Based Tiling

The intuition behind the proposed redundant tiling is that if each pixel is available

from more than one tile, one can achieve lower bandwidth on average by delivering

the set of tiles that provide all requested pixels most efficiently (i.e., with lowest

number of tiles required)1. Since queries of interest are lines (or sets of lines) at

1Note that in a non-redundant case the set of tiles required to answer a query is unique.

10

arbitrary angles in a 2D image, random planes from a 3D data set, or random

hyperplanes from higher dimensional data set, this suggests that overlapped tiles

with different locations should be used. While square tiles with well designed

overlap can be used, in this work, we use rectangular tiles with different rotation

angles. The potential benefits of the proposed method using rectangular tiles are

illustrated in Figure 1.3 for the 2D case. It can be seen that fewer tiles have to be

fetched when rectangular rotated tiles are used (in this example rectangular and

square tiles contain the same number of pixels). Clearly, the number of tiles to be

transmitted will depend on the data being requested.

Using rotated rectangular tiles will lead to a lower average transmission rate

because each selected tile will lie along the requested line/plane/hyperplane, which

will lead to increases in the average number of pixels contained in the intersection

between line/plane/hyperplane being requested and the “best matching tiles”.

For the 3D case, in our work, 3D rotated rectangular tiles (flat tiles, two sides

are big and one side is small) are used. Using rotated rectangular tiles will lead

to a lower average transmission rate because each selected tile is more likely to lie

along the requested plane, which will lead to increases in the average number of

voxels contained in the intersection between planes being requested and the “best

matching tiles”. The tiling scheme can be extended to higher dimensions too. For

example, if there is need for extracting a line (or a pipe) from 3D volume data, the

tile can be designed as 3D thin rectangular (tall tiles, one side is big and two sides

are small) or with cylinder shape. There are many different ways to design the tile

shape, which depends on the application and the dimension of the datasets. In this

section, we will present one way of the tiling schemes for both 2D and 3D cases. In

Chapter 3, two prediction models will be presented and we will describe approaches

to optimize tiling.

11

Dy

Dx

rotation centers

Figure 2.2: Example of proposed overlapped rectangular tiling.

2.2.1 2D Case

The tiling layout we first considered in the proposed system can be described by

the width W and length L of each rectangle, the number N of rotated rectangles

associated with each rotation center, andDx andDy respectively, and the horizontal

and vertical distance between rotation centers on the same Cartesian horizontal or

vertical grid, as illustrated in Figure 2.2. The even/odd row and column rotation

centers are interleaved with shifts of Dx/2 horizontally and Dy/2 vertically. At each

rotation center, theN rotated rectangles are uniformly spread out. We test different

configurations for these parameters, always chosen so that each pixel in the image

12

0

50

100

1020304050607080

10

20

30

40

50

60

70

80

Rotation Center

Rotation Center

 Distance

Figure 2.3: Example of proposed overlapped rectangular tiling.

is covered by at least one tile. Each rectangular tile is compressed independently

for storage. The parameters can be chosen to achieve different trade-offs between

transmission efficiency and storage overhead.

2.2.2 3D Case

Similar to the 2D case, for the 3D case, at each rotation center in Figure 2.3, N

rotated 3D rectangles are uniformly spread out. We test different configurations for

these parameters, always chosen so that each voxel in the 3D volume is covered by

at least one tile. Each 3D rectangular tile is compressed independently for storage.

Figure 1.2 illustrates the potential benefits using a 3D example (retrieve a ran-

dom plane from a 3D data set). Just 9 rectangular tiles are needed, instead of 24

13

(a) Front view: rectangular tiling
scheme result. The flat rectangular tiles
are overlapped.

(b) Front view: cubic tiling scheme re-
sult. The cubic tiles do not overlap.

(c) Side view: rectangular tiling scheme
result. The flat tiles lie alone the plane,
so we can see the tiles are very thin from
this side view of the requested plane.

(d) Side view: cubic tiling scheme result.
The tiles are cubic shape, so the tiles are
thick from this side view of the requested
plane.

Figure 2.4: Comparison of rectangular and cubic tiling schemes in 3D case(retrieve a random
plane from a 3D data set). Just 9 rectangular tiles are needed, instead of 24 cubic tiles (note that
tile sizes are close, 32× 32× 8 and 20× 20× 20, respectively). The colors represent the number of
tiles covering the pixels. Tiles used in the rectangular tiling scheme are overlapped, and the tiles
used in the cubic tiling scheme are non-overlapped.

14

cubic tiles. The rectangular tiles have size 32 × 32 × 8 and the tile size for the

cubic tile is 20 × 20 × 20. The colors represent the number of tiles covering the

pixels. Tiles used in the rectangular tiling scheme are overlapped, and the tiles

used in the cubic tiling scheme are non-overlapped. From Figure 2.4(a), we can see

that the flat rectangular tiles are overlaped and from Figure 2.4(b), the cubic tiles

do not overlap. Because by using the rectangular tiling scheme, the flat tiles lie

alone the plane, we can see the tiles look very thin from Figure 2.4(c), side view of

the requested plane. For the cubic tiling scheme, tiles are cubic shape, so the tiles

are thick from Figure 2.4(d), side view of the requested plane. It can be seen that

fewer voxels have to be fetched when rectangular rotated tiles are used. Clearly,

the number of tiles to be transmitted will depend on the data being requested. Fig-

ure 2.4 also illustrates the lower transmission rate that can be achieved in 3D case,

where a random plane is retrieved from a 3D data set. By showing the front view

and the side view of the selected tiles in Figure 2.4, we can see that even though

overlapping exists in the rectangle tiling scheme, as compared with the traditional

cubic tiling scheme (seen in the front views), a significant amount of transmission

bits can be reduced using our proposed method (seen in the side views and the

retrieved number of the tiles).

Figure 2.5 illustrates the 3D tiling scheme. The tiling layout in our proposed

system can be described by the width W , length L and height H of each 3D tile,

the number N of rotated rectangles associated with each rotation center, and Dx,

Dy and Dz respectively, the distance between rotation centers along the x, y and z

directions on the Cartesian grid. Here we choose W = L and H < W . Uniformly

rotated 3D tiles can be obtained by making their norm vectors (refer to Figure 2.6)

be spread uniformly in a sphere around the rotation center. This means that the

minimum angle between any two tiles is ∆α. In Figure 2.6 (b), the norm vectors are

15

P

n

P0 l

~

θ

Intersection area

Cl

l

θ

Cl

Side view

Figure 2.5: 3D tile demonstration: D is the distance (between P and P0) from the rotation
center of the tile to the plane. θ is the angle between the tile and the plane. n⃗ is one norm vector
of the rectangle tile. The other norm vector is opposite with 180 ◦.

represented with a common origin and with their end points uniformly spread out

on a 3D sphere, so that sphere tessellation methods can be used for designing the

tile angles. Therefore, icosahedron, octahedron and tetrahedron sphere tessellations

with different refining levels can be used for choosing the directions of the uniformly

rotated rectangular tiles. When two vectors with exactly opposite directions are

part of the tesselation, only one of them is used as the norm vector of a tile. For 3D

case, in order to try to let the rotation centers located in a uniform way, the pattern

of the rotation centers could be the regular patten like, cuboctahedral, octahedral or

tetrahedral, etc. and the rotation angles can be different for each rotation centers.

In this Chapter, we locate the rotation centers at points on a regular octahedron

grid patten (the rotation centers are located at the regular octahedron vertices) and

at each rotation center, the N rotated rectangles are uniformly spread out by using

equal sphere tessellation method [5]. Cases using different patterns for the rotation

centers and using different rotation angles will be discussed in future work.

The 3D tile angle selection is illustrated by Figures 2.6 and 2.7. The number

of tile angles obtained by using the different tessellation methods are shown in

Table 2.1. Different tile angle settings can be used associated to different rotation

16

(a) Icosahedron sphere tessellation: refine-
ment level 0

∆α

n~

(b) Tile direction vectors n⃗

Figure 2.6: Angles selection for 3D tiles: Note (b) shows points from both possible n⃗ vectors
associated with a given tile, contrary to the definition, for illustrative purposes of the geometry.

Figure 2.7: The number of the tiles at each rotation center by using icosahedron sphere tessel-
lation: 6 in total

17

Ico: L0 Ico: L1 Oct: L0 Oct: L1 Oct: L2 Tetra: L1 Tetra: L2
No. Vertices 12 42 6 18 66 10 34
No. Tile angles 6 21 3 9 33 7 24

Table 2.1: Ico: icosahedron tessellation; Oct: octahedron tessellation; Tetra: tetrahedron tes-
sellation. L means refining level.

centers. In this work, when different tile angle settings are used, the rotation centers

with different tile angle settings are interleaved. For example, the close neighbor

rotation centers have different number of tiles rotated around of them. For the

tiling layout in this proposed system (a better layout in Chapter 3), parameter

configurations which can cover all the voxels in the 3D object are chosen. For

example, if for some values of Dx, Dy, Dz and N , not all the voxels of the 3D

object are covered, these parameter settings will not be used.

2.3 Search Algorithm

As discussed in Section 2.2.1, the tiles are overlapped. Overlap between rectangles

means that there are multiple ways (different rectangle sets) to provide all the

information corresponding to a line in 2D image, or a plane in 3D volume. This

leads to a set covering problem with the objective of finding which representation,

ie., which collection of rectangles, is best for transmission. Normally, set covering

problems are NP problems, potentially resulting in considerable complexity. Our

particular problem, however, has certain characteristics that allow for a feasible

algorithm. We propose a fast search algorithm to solve the problem that is optimal

in the sense that it minimizes the number of rectangles to cover the line. This is

a reasonable criterion, because the total transmission rate needed will be roughly

proportional to the number of rectangles that have to be retrieved. Note that

18

several solutions may be optimal (different rectangle combinations that cover the

query, using the same number of rectangles).

2.3.1 Optimal Fast 2D Rectangle Search Algorithm

Our particular problem in the 2D case has certain characteristics that allow for a

feasible algorithm. Specifically, each rectangle that crosses over the line contains a

contiguous line segment of the straight line we are trying to cover. For example in

Figure 2.8, tile R1 contains the line segment between points S1 and S2. It is possible

to have several optimal solutions (different rectangle combinations that cover the

line, using the same number of rectangles). For example, regardless of whether one

starts searching at the beginning or end of the line2, an optimal solution (achieving

the minimum number of the tiles to cover the line, even if those tiles themselves

are different) will be found. While greedy, Algorithm 1 can be shown to provide

a globally optimal solution (where optimality is as defined above). At each step

only the rectangles that are close to the line and the starting point Si, need to be

searched.

Proof of optimality for Algorithm 1. Let {R1, R2, R3, . . . , Rn} be the n rectangles

obtained by our algorithm to cover the line. Let {L1, L2, L3, . . . , Lm} be the m

rectangles selected by any other technique. To prove that our algorithm is optimal,

we need to show that m ≥ n. Assume that for each index i < n

C{L1, L2, ...Li} ⊆ C{R1, R2,Ri}, (2.1)

2In Figure 2.8, {S1, S2, S3, . . .} are the starting points resulting from applying the cover
searching algorithm starting from the “beginning” of the line. These correspond to the points
{Ŝ1, Ŝ2, Ŝ3, . . .} when the algorithm is applied starting from the “end” of the line.

19

Algorithm 1 Optimal Rectangle Cover Searching Algorithm

1: Starting with the beginning point of the line (S1 in Figure 2.8), find the rectan-
gle that covers the starting point (S1) and maximizes the number of line points
covered.

2: Set the point in the line that follows the last point covered by the last rectangle
chosen as the new starting point Si for the ith iteration (e.g. S2 is the new
starting point for the second iteration in Figure 2.8).

3: Record the rectangle and mark the points in the line that covered by the rect-
angle as “covered”.

4: Repeat steps 1 to 3 with the new starting point Si until all the points in the
line are marked as “covered”.

S2

S3

S4

S5

S1

R1

R2

R3

R4
R5

S1

S2

S3

Figure 2.8: 2D Demonstration of the optimal rectangle cover searching algorithm.

20

Figure 2.9: Demonstration of the proof for Part 1.

where C denotes the (contiguous) portion of the line covered by the corresponding

rectangles3. With this assumption, it follows that we also have

C{L1, ..., Li, Li+1} ⊆ C{R1,, Ri, Ri+1}. (2.2)

This is because (refer to Figure 2.9) if there existed a rectangle Li+1 satisfying the

relationship

C{L1, ..., Li, Li+1}) C{R1,, Ri, Ri+1}, (2.3)

then the endpoint of Li+1 would extend beyond the endpoint of Ri+1 and would

also overlap with Ri. However, if such an Li+1 were to exist, then it would have

been chosen by Ri+1 given the steps of Algorithm 1. Statement (2.2) is thus proved

by contradiction. Based on the induction of (2.1) and (2.2), we have that

C{L1, ..., Li, ..., Ln} ⊆ C{R1, ...Ri, ..., Rn}. (2.4)

It thus follows that m ≥ n and we see that the proposed algorithm is optimal under

the assumption above. From our algorithm, we know that

C{L1} ⊆ C{R1}. (2.5)

3Notational note: A ⊆ B denotes that A is a subset of B and could be equal to B. A (B
denotes that A is a proper (or strict) subset of B, and hence is a subset but is not equal.

21

Since R1 covers S1 and covers the line furthermost to the right, the assumption

is true at the first step. Hence by induction based on (2.1), (2.2), and (2.5), the

rectangle searching algorithm we propose is optimal according to our definition.

Additionally, an optimal solution will be found, regardless of whether one starts

from either the beginning or end of the line. This may be easily shown as follows.

In Figure 2.8, {Ŝ1, Ŝ2, Ŝ3, . . .} are the starting points resulting from applying the

same cover searching algorithm when starting from the “end” of the line, while the

points {S1, S2, S3, . . .} correspond to the case when the algorithm is applied starting

from the “beginning” of the line. By the proposed searching algorithm, for each

iteration, the selected tile covers the starting point of that iteration and covers the

greatest length of the line. Hence, the points {S1, S2, S3, . . .} and {Ŝ1, Ŝ2, Ŝ3, . . .}

are interleaved with one another. In other words, between Si and Si+1 there must

lie exactly one point Ŝk. Similarly, between Ŝk and Ŝk+1 there must lie exactly one

point Si. If this were not so, then there would be contradiction. The proof is shown

in the following paragraph. Therefore the optimal solution is obtained regardless of

the starting point being at the “beginning” or “end” of the line. Similarly, we can

show that if we start the searching algorithm from any point of the line between

the end points that the number of selected tiles will be either the minimum or the

minimum + 1.

Proof of optimality for Algorithm 1, regardless starting point of the line. Refer to Fig-

ure 2.9, let {R1, R2, R3, . . .} be the rectangles obtained by our algorithm starting

from the “beginning” of the line and the points {S1, S2, S3, . . .} are the associated

staring points. Let {L1, L2, L3, . . .} be the rectangles obtained by our algorithm

starting from the “end” of the line and let the corresponding starting points be

{Ŝ1, Ŝ2, Ŝ3, . . .} (not shown in Figure 2.9). To prove that our algorithm is optimal

22

regardless of whether the starting points are chosen at the beginning or end of the

line, we need to show that the starting points {S1, S2, S3, . . .} and {Ŝ1, Ŝ2, Ŝ3, . . .}

are interleaved with one another.

Assume that both Si and Si+1 were between Ŝk and Ŝk+1 (referring to Figure

2.9). This would mean that

Si, Si+1 ⊆ C{Lk}, (2.6)

and

C{Ri} ⊆ C{Lk} (2.7)

This tells us that the selected tile Lk (not Ri) would be the tile that covers Si and

covers the greatest amount of the line. This is contradict with our algorithm. Thus

the number of points Si is equal to the number of points Ŝk and they are interleaved

with one another.

2.3.2 Fast 3D Rectangle Search Algorithm

Our 3D rectangle search algorithm is similar to Algorithm 1 defined for the 2D

case. Instead of sorting the points associated with a line as in the 2D case in

Algorithm 1, the points associated with the plane are sorted in order of decreasing

distance to the center point of the plane (this sorted list of points is called List A.)

In Algorithm 2, we start by finding the tile that covers the first element of List A

(the furthest point from the center of the plane) and covers the largest number of

points in the list. Then the selected tile will be recorded and all the points covered

by the selected tile will be removed from List A. The procedure is then repeated on

the updated List A, until all the points associated with the plane are covered (i.e.,

List A is empty). While it cannot be guaranteed that this algorithm is optimal

23

in the 3D case, the resulting transmission rate can be significantly reduced by

using this search algorithm (as will be seen from our experiments in Section 2.6.2.)

Additionally, this search algorithm is very fast, since we only need to search for the

rectangles located close to the plane.

Algorithm 2 3D Rectangle Cover Searching Algorithm

1: Find the indices for the points associated with the requested plane. Sort the
indices with decreasing order by calculating the distance from the points in a
plane to the plane origin, calling the sorted list A.

2: Find tile centers which are close to the plane, calling the list B.
3: while A is not empty do
4: Starting with A(1), the beginning point of the list A, find the tiles in B,

which are close to A(1), calling the list C.
5: for i=1:length(C) do
6: For the rectangle tiles associate with the tile position in C(i), find the

one that covers A(1) and maximizes the number of the plane points in A
covered , call this R(i).

7: end for
8: MaxR = max(R);
9: In A, remove the points covered by MaxR, the rectangle tile selected from

the previous step. Update list A and record the rectangle.
10: end while

2.4 Mapping Algorithm for Rotated Tile Encoding

We use the rotated rectangular tiles to represent the dataset. After we rotate a

rectangular tile, the points on the rotated rectangle grid will not coincide with the

original Cartesian grid points. A straightforward approach to represent the data

would be to interpolate the values on the rotated rectangle grid before compression.

Instead we propose to map the original values on the Cartesian grid into the rotated

rectangular grid before compression.

For each point on the rectangle grid, there is a Cartesian point to map to.

The distance between the mapping pair is called as “mapping distance”. Certain

24

points, such as the rotation center, are in the same positions in both grids, while in

other cases, the pixel in a given location in the rotated grid has been copied from

a neighboring location in the Cartesian grid. The pixels are copied unchanged, i.e.,

no interpolation is performed. While many alternative mappings are possible, we

are interested in methods that minimize the “mapping distance”, by which pixels

are displaced from their original positions for encoding. Clearly this is desirable as

these displacements “distort” the frequency contents of the blocks prior to encoding.

The details of the mapping algorithm in both 2D and 3D cases will be described

in Chapter 4, as well as details of the mapping evaluation and analysis tools. Note

that rectangles having the same rotation angles around their (different) rotation

centers have rectangular grid points that are in the same locations relative to the

Cartesian grid points in their neighborhood. Thus, we only need to store a small

number of tables (one per angle) to specify the mapping.

2.5 Reconstruction, Display and Compression

Our redundant representation is based on representing 2D image/3D volumes with

several sets of tiles. While the original tiling scheme is based on non-overlapping

squares/cubes that are aligned with the axes of the Carditional basis in 2D/3D

space, the tiles in our approach can have any position and orientation. As described

in Section 2.4, pixels (in 2D)/voxels (in 3D) on the original Cartesian grid are

directly mapped (without interpolation) to the nearest point in the rotated grid.

Each tile (rotated or not) is encoded independently and stored on the server. The

details of compression, reconstruction and display for both 2D and 3D cases will

be described in the following sections.

25

2.5.1 2D Compression and Reconstruction

The number of pixels within a line are determined by the length of the line segment

across the image, which is proportional to the size of the image. In general, if the

length of the line segment is L (L is not an integer), xLy uniformly distributed

samples on the line segment will be chosen. While other approaches could be

used, in our implementation, the pixels’ values within a line are calculated by using

a simple “nearest neighbor” interpolation at the uniformly sampled positions on

the line segment. We tile a 2D image (both Lena and MRI images were used)

and use our search algorithm (Section 2.3.1) to identify the best tiles to display

a random oblique line within the image. Distortion is measured by mean squared

error (MSE) between the pixels in the line generated from the original image data

and the line obtained by decoding and then interpolating compressed tile data.

Rate is measured in terms of bits per pixel in a line (i.e., we compute the total

rate required to transmit all the needed tiles and divide this by the total number

of pixels in the decoded line). Both rectangular (8× 32) and square (16× 16) tiles

are coded using JPEG tools (i.e. four 8× 8 blocks are encoded using JPEG).

2.5.2 3D Compression

Each tile is divided into small blocks of size 8 × 8 × 8 on which a 3D DCT is

performed (similar to approaches in [17] and [18]). The coefficients are rounded to

integers and a simple uniform quantizer is applied. The transformed coefficients

are then scanned in a predetermined order within each block using the 3D zig-zag

table shown in Figure 2.10. The coding method for DC/AC coefficients is similar

to that used by JPEG. When encoding transform coefficients in three dimensions,

different coefficient scanning orders will lead to different performances depending

26

on the texture correlation along each direction. For example, when 3D compression

is applied on video frames (where time is the other dimension), in still scenes,

correlations along the time direction are very high. In this case, a two-dimensional

zig-zag scan which is in the spatial image plane and repeats in the temporal direction

will lead to lower compression rates compared to other possible scanning orders.

In our case, we consider a 3D object dataset (e.g., MRI volume data) where the

correlations along all three directions are statistically similar. Hence, a simple

three-dimensional zig-zag scanning order is used in our application. As in [18],

the DCT coefficient scanning order for a given three-dimensional block is in order

of increasing distance from the DC coefficient for that block. The left bottom

corner point represents the DC coefficient location (1,1,1)4 The order after sorting

will form a 3D zig-zag table. Only the first 9 points are shown in the figure for

easier visualization. Entropy coding method for DC/AC coefficients is essential the

same table used by JPEG, added one more symbol code to accommodate a larger

dynamic range in the quantized coefficients.

2.5.3 Oblique Plane Acquisition and Display

When a user requests a random oblique plane, the plane parameters are sent to the

server. The plane parameters are the norm vector of the plane n⃗ and any points

(x, y, z) in the plane. Since the points close to the requested oblique plane are

needed to interpolate the values on the plane, the server will find the Cartesian

points within a small distance to the plane in order to search for the best tile

combinations to cover the plane. Because it is in 3D the largest distance between

neighboring pixels is
√
3. In our experiments,

√
3
2

is used as the distance range to

4The index starts from 1, instead of 0.

27

1 2 3
1

2

3

1

2

3

Figure 2.10: Three-dimensional scanning order illustration. Only the first 9 points are showed
in order to be clearly visualized.

the plane. The compressed data5 for the selected tiles is then transmitted to the

user.

After the user receives the data, tiles are decoded. Since the tiles are partially

overlapped, the voxel values which are covered by multiple tiles take values that are

formed from averaging the values provided by each of the overlapping tiles. Note

that the voxels here are on a Cartesian grid. In order to display the image with

the same resolution6 no matter what the plane orientation is, the requested oblique

plane coordinate matrices need to be generated and then the values on the new grid

can be interpolated by the received voxels on Cartesian grid (Note that the values

on the rotated rectangular tile are mapped from the values on the Cartesian grid

using our mapping algorithm) .

5These are saved on the server during offline process and are independent for each tile.
6Scaling will be considered separately.

28

Figure 2.11: Three-dimensional coordinate rotation

An oblique plane can also be represented by P (x0, y0, z0) and θ, ϕ. P (x0, y0, z0)

is the point on the plane closest to the origin. θ is the rotation angle in the X,Y

plane and ϕ is the rotation angle from the X,Y plane to the Z plane. P (x0, y0, z0),

θ and ϕ can be generated from the norm vector of the plane n⃗ and any point (x, y, z)

in the plane. From Figure 2.11, the requested plane coordinate can be generated

from the following steps. Let X, Y, Z represent the plane coordinate for each axis,

where Z = 0. First, the coordinate are rotated in the X, Y plane by θ degrees as

follows


X ′

Y ′

Z ′

 =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1




X

Y

Z

 (2.8)

They are then rotated around line L by ϕ degrees denoted as Rϕ as follows:

29


X ′′

Y ′′

Z ′′

 = Rϕ


X ′

Y ′

Z ′

 (2.9)

Line L passes through the origin and the point (u, v, w). (u, v, w) can be gener-

ated by (2.10):


u

v

w

 =


cos π

2
− sin π

2
0

sin π
2

cos π
2

0

0 0 1




cos θ − sin θ 0

sin θ cos θ 0

0 0 1




1

0

0

 (2.10)

with Rϕ obtained as:

Rϕ =


u2 + (v2 + w2) cosϕ uv(1− cosϕ)− w sinϕ uw(1− cosϕ) + v sinϕ

uv(1− cosϕ) + w sinϕ v2 + (u2 + w2) cosϕ vw(1− cosϕ) + u sinϕ

uw(1− cosϕ)− v sinϕ vw(1− cosϕ) + u sinϕ w2 + (u2 + v2) cosϕ


(2.11)

Finally, the requested plane coordinate matrices X ′′′, Y ′′′, Z ′′′ can be obtained

by shifting X ′′, Y ′′, Z ′′ by P (x0, y0, z0), as follows:


X ′′′

Y ′′′

Z ′′′

 =


X ′′

Y ′′

Z ′′

+ P (x0, y0, z0) (2.12)

While there are many interpolation methods can be used, we use bi-linear interpo-

lation which is specified by the received Cartesian grid voxels.

Since the “cut” of the 3D data set is random, the intersection of the requested

plane and the 3D volume can be polygon with different shape (refer to Figure 1.1).

30

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Figure 2.12: Display of the reconstructed requested plane using proposed system. 3D volume
size is 256x256x256. Transmission rate is 1.2 bits per pixel, PSNR is 35.28 with quantization
scaling value 30.

31

One experimental result can be seen from Figure 2.12. A 3D compression result

is shown in Figure 2.13 and compared to 2D compression for an MRI volume data

of a patient’s head7 of size 256 × 256 × 256. Uniform quantization scale value Q

ranges from 10 to 25 in increments of 5. The same quantization scale values and

JPEG encoding are used for both 3D compression and 2D compression. For 3D

compression, the 3D data are divided into 8×8×8 blocks. For 2D compression, each

slice (256× 256) will be coded independently with block size 8× 8 and procedure

is repeated for all the slices. Figure 2.13 shows that the 3D compression has a

much higher PSNR compared to the 2D compression for the same compression

rate. Similar comparison results can also be seen [18] and [17].

2.6 Experiments

2.6.1 2D Case

We now compare our proposed tiling (with rectangular, overlapping tiles) to a

standard tiling strategy (with square, non-overlapping tiles). Let Tr and Ts be

the average total number of bits to transmit in the rectangular and square tiling

modes, respectively, and let Te = Tr/Ts denote the ratio of required bandwidths

for the rectangular and square tiling schemes. Similarly, let Sr and Ss be the total

storage for the image using the rectangular and square tiling schemes, respectively,

and let So = Sr/Ss be the relative storage overhead required by the rectangular

tiling scheme. In this Chapter, the rotation center parameters Dx and Dy and the

number of rotation angles N vary, while we fix W = 8 and L = 32.

7This volume data was downloaded from http://www9.informatik.uni-
erlangen.de/External/vollib/.

32

1 1.5 2 2.5 3 3.5
29

30

31

32

33

34

35

36

37

38

R

P
S

N
R

3D

2D

Figure 2.13: Compression Result: PSNR versus R (Rate). Q is 10 ∼ 25 with step 5. The circle
points are using 3D compression. The square points are using 2D compression.

33

0 5 10 15 20 25 30
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

So

Te

N = 5

N = 6

N = 8

N = 10

N = 11

N = 13

N = 15

0 5 10 15 20 25 30
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Te

So

Dx = Dy = 12

Dx = Dy = 16

Dx = Dy = 20

Dx = Dy = 24

Dx = Dy = 28

Dx = Dy = 32

Figure 2.14: Te versus So: left side, for a fixed value of N , Dx and Dy are varied; right side,
for a fixed value of Dx, Dy, N is varied. Using JPEG for compression.

Figure 2.14 (left) represents the tradeoff between Te and So as we vary the

number of angles N while keeping the center positions of the rectangles fixed (an

optimized tiling layout in Chapter 3.2 will not keep the center positions of the

rectangles fixed, which will improve the performance dramatically.). The curves are

not smooth because N is discrete and because each point is obtained by averaging

the results from only 20 random retrieval experiments (in this case we use an MRI

image). Figure 2.14 (right) shows the trade-off between Te and storage So while

varying the center positions of the rectangles and fixing the number of angles N .

These two figures demonstrate that as compared to conventional tiling, the proposed

method leads to increases in random access efficiency of 20% - 60% as compared to

square tiling, depending on the chosen storage overhead (S0). Hence, we can choose

the parameters to achieve different levels of higher transmission efficiency according

to the different storage requirements. For example, choosing N = 6, Dx = Dy =

20, leads to a 50% reduction in bandwidth at the expense of a 4-fold increase in

storage at the server (Te = 0.49 and So = 3.93).

34

2.6.2 3D Case

We now compare our proposed 3D tiling (with rectangular, overlapping tiles) to

a standard tiling strategy (with cubic, non-overlapping tiles). 80 experiments of

random oblique plane retrieval were done. For each request of a random oblique

plane, both rectangular and cubic tiling schemes are applied. Figure 2.15 reports

the results for our 3D case study, where 3D compression has not been applied

yet to the tiles. The results after using 3D compression are provided in Chapter 3.

Considering that the actual transmission rate or storage in bits is proportional to the

volume of encoded 3D tiles, in this experiment, we compare the number of retrieved

voxels for the various methods. The rectangular tile size is fixed to be W = 32,

L = 32 and H = 8. The side of a cubic tile is 20. Similarly to the 2D case, Tr and

Ts indicate the total numbers of bits transmitted in the rectangular and cubic tiling

modes, respectively, and Te = Tr/Ts denotes the ratio of required bandwidths for

the rectangular and cubic tiling schemes. Sr and Ss are the total storage sizes when

using the rectangular and cubic tiling, respectively, and So = Sr/Ss is the relative

storage overhead required by the rectangular tiling scheme. Figure 2.15 shows the

trade-off between the ratio of required bandwidth Te and the storage overhead So,

while we fix one and vary the other between the center position and the number

of angles. The number of rotation angles varies by using the tile angle selection

method in Section 2.2.2. The tile center positions vary by changing the rotation

center distances (Dx, Dy and Dz in Section 2.2.2). The proposed method presented

in this Chapter leads to an increase in random access transmission efficiency of 15%

- 55% as compared to cubic tiling, depending on the chosen storage overhead (S0).

This transmission rate can be further reduced by allowing more storage overhead.

An optimized tiling method will be proposed in Chapter 3, which will improve the

35

0 20 40 60 80 100 120
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

So (without compression)

T
e

Figure 2.15: 3D case result: Te versus So. Te denotes the ratio of required bandwidths for
the rectangular and cubic tiling schemes. So denotes the relative storage overhead required by
the rectangular tiling scheme. Te = Tr/Ts So = Sr/Ss. Note, the storage here is before 3D
compression.

performance dramatically. Intuitively, the proposed method uses an over-complete

set (overlapped rectangular tiles) to represent the 3D data set, while the traditional

method uses an orthogonal set (non-overlapped cubic tiles) to represent the 3D data

set. Therefore, more over-completeness (more storage overhead) tends to lead more

transmission efficiency. In addition, Figure 2.15 shows that for the same storage

overhead (So), different transmission efficiencies (Te) are achieved by using different

parameter settings (Dx, Dy, Dz and the number of the tile rotation angles). Hence,

we can choose the parameters to achieve the best transmission efficiencies according

to the different storage requirements. Prediction models for both 2D and 3D cases

will be introduced in Chapter 3 for the parameter selection. The models will allow

users to select best tiling parameters without running any simulation.

36

2.7 Conclusions

We proposed a new approach for fast random access retrieval of large datasets. For

the 2D system, random paths are retrieved from 2D images. For the 3D system,

random oblique planes are retrieved from large 3D volume. In our experiments we

have demonstrated that by using overlapped tiles with different orientations and

allowing some storage overhead on the server’s side, for the 2D case, transmission

rate can be reduced by 20% - 60% depending on the desired trade-off with storage

overhead, as compared to the conventional square tiling scheme. For the 3D case,

transmission rate can be reduced by 15% - 55% depending on the desired trade-

off with storage overhead, as compared to the conventional cubic tiling scheme.

Additional reductions in transmission rate or storage overhead can be achieved by

using the optimized tiling scheme in Chapter 3. This system has the potential to

considerably speed up the random access procedure, requiring less data storage at

the client compared to conventional tiling. We demonstrated two fast rectangle

searching algorithm for both 2D and 3D cases. For the 2D searching algorithm, we

have proved its optimality. The 2D system has the potential to be used in map

applications on small devices, eg. GPS and mobile phone and the 3D system has

the potential to be used on different applications in low memory devices.

37

Chapter 3

Tiling Optimization

We have presented a rotation center based tiling in Chapter 2. We consider a

“redundant” tiling system, i.e., where each pixel is available from multiple different

tiles. However, in general, a given tiling strategy may lead to different redundancy

for different pixels. We propose a simple tool to evaluate different tiling systems,

which will be described in detail in Section 3.1.1. For a given tiling strategy we

compute the average number of tiles per pixel (i.e., the average redundancy for a

pixel), which provides us an estimate for the total storage required. In addition,

we also consider the variance in the number of tiles per pixel. Since arbitrary

lines can be retrieved from an image, it is reasonable to assume that every pixel is

equally likely to be requested. Therefore, it is in general undesirable for this “tiling

variance” to be large, since this would mean that some pixels are represented in

a significantly more redundant manner than others. In short, good tiling schemes

will tend to be such that i) tiles of evenly distributed orientations are available and

ii) the variance in the number of tiles per pixel is low.

There are various ways of designing the tiling, e.g., different tile sizes, different

orientations, tile centers, etc. In Chapter 2, we have presented a rotation center

based design that assumes that a series of “rotation centers” are chosen, in which

38

several tiles of different orientations are centered. The rotation centers are placed at

points on a square Cartesian grid patten and have the tile rotation angles uniformly

distributed around each rotation center. These rotation angles are the same for each

rotation center.

In this Chapter, prediction models for both 2D and 3D cases will be introduced

in Section 3.1 for the parameter selection that provides insight as to why different

parameter settings produce different transmission efficiencies for a given storage

overhead. The models will allow users to select best tiling parameters without

running any simulation. With the intuition provided by the prediction models,

optimized tiling schemes for both 2D and 3D cases will be presented in Section 3.2.

3.1 Prediction Model

As was shown in Section 2.6.1, by using the rotation center based tiling method

transmission rate can be reduced dramatically as compared to the conventional

tiling scheme, depending on the desired trade-off with the storage overhead. But the

question is whether better results are possible. By using the rotation center based

tiling scheme, for a fixed storage overhead, different values of distance between

rotation centers and the number of rotation tiles around each rotation center achieve

different levels of transmission efficiency. Thus, in designing such redundant storage

systems it is important to determine how to select parameter settings in order to

achieve the best transmission efficiency for a given storage overhead.

We start by noting that with a redundant tiling strategy each pixel/voxel is

available from more than one tile. Intuitively, since each pixel/voxel is equally likely

to be selected, it would make sense for all pixels/voxels to be available from a similar

number of tiles. Thus our model provides a way to estimate relative transmission

39

efficiency by computing the mean and standard deviation of the number of tiles

per pixel/voxel. While we use the rotation center based tiling schemes to illustrate

the models, they can be readily applied to other tiling approaches (e.g., to the

optimized tiling schemes of Section 3.2). In order to compute the mean (µ) and

standard deviation (σ) of the number of tiles per voxel, assume that a tile has a

random orientation around a rotation center. The mean and standard deviation of

the tile coverage for a whole volume can be computed based on one Voronoi region

spanned by the rotation centers, given that regular tilings will be used (i.e., the

same tiling structure will be repeated throughout the volume). The Voronoi region

associated with rotation center Ci is defined by

V (Ci) = {k : d(k, Ci) ≤ d(k, Cj), j ̸= i, i, j ∈ In} (3.1)

where k here denotes a pixel/voxel at position in 2D/3D space and d(k, Ci) is the

distance between pixel/voxel k and rotation center Ci. Denote M = |V (Ci)|, the

number of pixels/voxels in V (Ci). Then µ and σ can be calculated by using one

Voronoi region,

µ =
1

M

M∑
k=1

Tk σ =

√√√√ 1

M

M∑
k=1

(Tk − µ)2. (3.2)

where Tk represents the number of tiles covering pixel/voxel k. LetN be the number

of rotation angles we use in 2D case or 3D case, so that the N norm vectors of the

tiles are ñ = {n⃗1, n⃗2, n⃗3, · · · , n⃗N}. Tiles are thus rotated by selecting one of the

N angles. In order to compute µ and σ, Tk for every pixel/voxel k in M needs to

be calculated. We assume that a tile has a random orientation around a rotation

center. The analysis is based on randomly rotated tiles, then Tk can be measured

40

as the average number of tiles covering pixel/voxel k. For both 2D and 3D cases,

each parameter will be calculated differently. We will show that Tk only depends

on the distance d between pixel/voxel k and all the rotation centers close to k. The

details of the 2D case will be described first in Section 3.1.1, followed by the 3D

case in Section 3.1.2.

3.1.1 2D Case

The metric will provide a way to relate transmission efficiency to statistics (average

and standard deviation) describing how well pixels in the image are covered by

the tiles. Let W x L be the size of the rectangular tile and N be the number

of the tiles associated with one rotation center. N norm vectors of the tiles are

ñ = {n⃗1, n⃗2, n⃗3, · · · , n⃗N}. Tiles are thus rotated by selecting one of the N angles.

We select a tile with norm vector ñ′ = Rϕñ, where ϕ is a random variable with

uniform distribution U(0, π). Rϕ is the corresponding rotation matrices. The

analysis is based on randomly rotated tiles. Define “coverage probability” as the

probability of one tile covering a specific pixel. Figure 3.1 illustrates the possible

cases involved in computing the “coverage probability”. Intuitively, the coverage

probabilities are higher for pixels closer to the rotation center, lower for pixels

farther from the rotation center. For example, considering only one rotation center,

the pixels in the range I can always be covered and the pixels in the range IV can

never be covered regardless of the rotation angle of the tile. From Figure 3.1, notice

that the coverage probability of an arbitrary pixel depends only on d: P (d) can be

obtained as the ratio between i) the lengh of the intersection of a circle of radius d

and a tile with arbitrary orientation and ii) the circumference of the circle.

range I [d ≤ W
2
]

41

θ

Figure 3.1: Illustration of the metric for calculating the average number of tiles of an arbitrary
pixel around one rotation center.

p(d) = 1

range II [W
2
< d ≤ L

2
]

p(d) = 2× arcsin W
2d

× 1
π

range III [L
2
< d ≤ 1

2
×
√
L2 +W 2]

p(d) = 2 × (θ1 − θ2 + θ3) × 1
π

where, θ1 = arctan W
L
, θ2 = arccos L

2d
,

θ3 = θ1 − arcsin L
2d

range IV [d > 1
2
×
√
L2 +W 2]

p(d) = 0

The four cases illustrated in Figure 3.1, for different ranges of d, lead to different

expressions for P (d).

42

For the rotated tiling scheme, assume we have N tiles around a rotation center,

with orientations chosen independently with an identical uniform angle distribution,

as discussed. Then, the average number of tiles covering a pixel is P (d) × N .

Alternatively, assume there are multiple rotation centers in the neighborhoodN{k}

of pixel k. Here we consider neighboring rotation centers to be those that are

within a distance
√

(L/2)2 + (W/2)2 of a given pixel. Then the average number

of tiles covering pixel k is Tk =
∑

i P (dki)×N , where P (dki) denotes the coverage

probability for one of the rotation centers i in N{k} and pixel k can be described

with 2D coordinate (x, y). dki is the distance between k and the rotation center i.

This coverage probability will depend on the distance between the pixel and each of

the neighboring rotation centers. Hence the average (µ) and the standard deviation

(σ) of the tile coverage can be calculated (3.2). This only needs to be done for one

Voronoi region spanned by the rotation centers, since rotation centers are located

uniformly. Figure 3.2 shows the Voronoi regions. Voronoi region associated with

the rotation center Ci is defined by Equation 3.1, where d(k, Ci) is the distance

between pixel k to the rotation center Ci. M is the number of pixels in V (Ci).

Algorithm 3 summarizes how µ and σ are computed.

Algorithm 3 Estimation algorithm of µ and σ for different tiling layout

1: Find one Voronoi region V and calculate M , the number of pixels in V .
2: for Each point k ∈ M do
3: Find the rotation centers in the neighborhood N{k} of pixel k (within a

distance
√

(L/2)2 + (W/2)2).
4: Calculate Tk =

∑
i P (dki)×N , where P (dki) is the coverage probability for

one of the rotation centers i in N{k} and pixel k.
5: end for
6: Calculate µ and σ according to (3.2).

43

Figure 3.2: 2D Voronoi regions. 9 Voronoi regions are shown in the center part.

44

8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

8

9
10

11
1213

14

15

16

17
1819 20

21

22

23

24

25

rate: transmission bits / points of the line

σ
 /
 µ

Rotation Center Distance

Figure 3.3: Linear regression: σ/µ vs. rate

Using linear regression, Figure 3.3 shows that there is a highly linear relationship

between the ratio σ/µ characterizing the tile coverage and the required rate1. Figure

3.4 represents the σ/µ as a function of average storage (µ) for different parameter

settings, where focusing on the range of m 0− 40. Note that the storage overhead

plotted in Figures 3.3 and 3.4 does not take into account compression. From Figure

3.3, we can see that for a fixed rectangular tile size, in order to achieve lower

transmission rate, a lower σ/µ is preferred. Hence, for the same storage overhead,

the parameter setting that produces the smallest σ/µ should be chosen. Notice from

Figure 2.14 that in the rotated center based tiling scheme, for the same average

value (storage overhead), decreasing the rotation center distance is better than

increasing the rotation angles because decreasing the rotation center distance will

1The calculation of the rate is the same as in the previous sections, which use 30 random lines.

45

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

9: 5

9: 6

10: 6

11: 6

11: 9

12: 7
12: 9 12: 1013: 6 13: 8 13: 10

14: 7 14: 9 14: 11
14: 13

15: 8
15: 12 15: 15

16: 9

16: 14

17: 10 17: 1318: 11 18: 14 1518: 14 1519: 1220: 13 1420: 13 14

21: 14 1521: 14 15

average (µ)

 σ
/
µ

Rotation Center Distance : Rotation Angles

Figure 3.4: Linear regression: σ/µ vs. average storage(m), µ < 40 (without using compression
technique.)

lead to smaller σ/µ. In order to find the optimal parameter settings that lead to

a small σ/µ for a given target µ from Figure 3.4, a polynomial may be fit to the

lower convex hull defined by the points in the figure. Parameters associated with

the lower convex hull would be preferred for selection. Using this prediction model

with the intuition, one can build other tiling layouts to achieve better performance.

3.1.2 3D Prediction Model

Let L × W × H be the size of each tile (with L = W and L,W > H) and let N

be the number of rotation angles we use, chosen using sphere tesselation (refer to

Section 2.2.2), so that the N norm vectors of the tiles are ñ = {n⃗1, n⃗2, n⃗3, · · · , n⃗N}.

Tiles are thus rotated by selecting one of the N angles. In the first tiling scheme

46

d

Figure 3.5: Model for calculating the average number of tiles covering an arbitrary voxel around
a rotation center.

multiple tiles with different orientations shared the same rotation center, while in

our new approach in Section 3.2.2, the tile centers can be different.

In order to compute the mean and standard deviation of the number of tiles

per voxel, assume that a tile has a random orientation around a rotation center.

More precisely, we select a tile with norm vector ñ′ = RϕRφñ, where φ and ϕ

are independent random variables with uniform distribution U(0, 2π). Rϕ and Rφ

are the corresponding rotation matrices. Since φ and ϕ are independent random

variables with uniform distribution U(0, 2π), the possible norm vectors of the tiles

form a unit sphere.

Based on this we derive expressions for the coverage probability, P (d) similar to

the 2D case, i.e., the probability that a voxel at location (x, y, z) will be covered by

a randomly rotated tile. Let d =
√
(x− xc)2 + (y − yc)2 + (z − zc)2 be the distance

between this voxel and the tile rotation center at (xc, yc, zc). Figure 3.5 illustrates

the possible cases to consider. Intuitively, the coverage probabilities are higher for

47

Range Distance(d) Coverage Probability
I d ≤ H

2
P (d) = 1

II H
2
< d ≤ L

2
P (d) = 1− 1

2
(cos θ − cos(π − θ)),

where θ = arcsin(H
2d
).

III L
2
< d ≤ 1

2
×

√
L2 +W 2 +H2 P (d) ≈ 0

IV d > 1
2
×

√
L2 +W 2 P (x, y, z) = 0

Table 3.1: Coverage probability for any voxel by one tile with random norm vector.

voxels closer to the rotation center. For example, as shown in Figure 3.5, voxels in

the range I (inside the ball with radius H) can always be covered and voxels in the

range IV can never be covered, regardless of the rotation angle of the tile. From

Figure 3.5, notice that the coverage probability of an arbitrary voxel depends only

on d: P (d) can be obtained as the ratio between i) the area of the intersection of

a sphere of radius d and a tile with arbitrary orientation and ii) the area of the

sphere:

A =

∫ 2π

0

∫ π−θ

θ

sinαdαdφ, where θ = arcsin(
H

2d
) (3.3)

P (d) =
A

4π
. (3.4)

The four cases illustrated in Figure 3.5, for different ranges of d, lead to different

expressions for P (d) which are summarized in Table 3.1.

For the rotation center based tiling scheme, assume we have N tiles around a

rotation center, with orientations chosen independently with an identical uniform

angle distribution, as discussed before. Then, the average number of tiles covering

a voxel is P (d)×N . Alternatively, assume there are multiple rotation centers in the

neighborhood N{k} of voxel k. Here we consider neighboring rotation centers to

be those that are within a distance
√

(L/2)2 + (W/2)2 + (H/2)2 of a given voxel.

48

Then the average number of tiles covering voxel k is Tk =
∑

i P (dki) × N , where

P (dki) denotes the coverage probability for one of the rotation centers i in N{k}

and voxel k can be described with 3D coordinates (x, y, z). dki is the distance

between k and the rotation center i. This coverage probability will depend on the

distance between the voxel and each of the neighboring rotation centers.

The mean (µ) and standard deviation (σ) of the tile coverage for a whole volume

can be computed based on one Voronoi region spanned by the rotation centers, given

that regular tilings will be used (i.e., the same tiling structure will be repeated

throughout the volume). The Voronoi region associated with rotation center Ci is

defined by (3.1). where k here denotes a voxel at position (x, y, z) in 3D space and

d(k, Ci) is the distance between voxel k and rotation center Ci. M is the number

of voxels in V (Ci). Then µ and σ can be calculated by using (3.2) using one

Voronoi region. Figure 3.6 shows the 3D Voronoi regions. Each numbered shaded

area represents one Voronoi region in 3D. Since the rotation centers are located

at points on a regular octahedron grid patten (the rotation centers are located at

the regular octahedron vertices), the Voronoi regions are all the same polyhedrons.

Algorithm 3 summarizes the steps of how µ and σ are computed, which can also

be used in the 3D case.

Using linear regression, Figure 3.7 shows that there is a highly linear relationship

between the ratio σ
2
3/µ, which characterizes the tile coverage, and the transmission

rate2. The reason for using the third root of the variance σ
2
3 is the dimensionality of

3D volume data. As we see here and also from the 2D case, the ratio of variance per

dimension and µ has highly linear relationship with the transmission rate. In the

future work, it will be interesting to evaluate the relationship in higher dimension.

Figure 3.8 represents σ
2
3/µ as a function of the average storage (µ) for different

2Rate = transmission bits / points in the plane. The rate is averaged over 80 random planes.

49

1

2

3

4

Rotation Center

Voronoi Regions

Figure 3.6: 3D Voronoi region: The blue star points are the locations of the rotation centers.
Each numbered shaded area represents one Voronoi region. Since the rotation centers are located
at points on a regular octahedron grid patten (the rotation centers are located at the regular
octahedron vertices), the Voronoi regions are all the same polyhedrons.

50

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

19

18

17

16

1514
13

12
11

10

9

Rate

Rotation Center Distance

σ
2 3
/µ

Figure 3.7: Linear regression: σ
2
3 /µ vs. Rate.

10 20 30 40 50 60
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

σ
2 3
/µ

µ

Figure 3.8: σ
2
3 /µ vs. µ, (µ < 60)

51

parameter settings, focusing on the range of 0 ≤ µ ≤ 60. Note that the values of

µ shown in Figures 3.7 and 3.8 are calculated from (3.1) and (3.2). From Figure

3.7, we observe that in order to achieve a lower transmission rate, a lower σ
2
3/µ

is preferred. Hence, for the same value µ, the parameter setting which produces

the smallest σ
2
3/µ should be chosen. Notice that in our previously proposed tiling

scheme, for the same value µ, decreasing the rotation center distance is better

than increasing the rotation angles (equivalent to increasing the number of tiles

per rotation center) because decreasing the rotation center distance will lead to

smaller values of σ
2
3/µ. This can be seen in Figure 3.9. In order to find the optimal

parameter settings considering both µ and σ
2
3/µ to be small, from Figure 3.8, a

polynomial may be fit to the lower portion of the convex hull defined by the points

in the figure, the associated parameters of which would be preferred for selection.

3.2 Optimized Rectangular Tiling Scheme

We now use the results of the previous section to motivate our proposed tiling

schemes. As shown by in Figures 3.7 and 3.8 for the 3D case, a lower variation in

the number of tiles per voxel is desirable. The rotation center based tiling scheme

centered multiple tiles with different orientations around each rotation center, lead-

ing to high variability in coverage (all tiles covered voxels near the rotation center,

while only a few tiles covered those voxels further away). As an alternative, we no

longer place multiple tiles around each rotation center. More importantly, we pro-

pose a technique to search for tile positions and angles in order to minimize overlap

with previously chosen tiles. This ensures that tiles are more evenly distributed and

the overall variance of tile coverage is reduced.

52

Figure 3.9: 3D case result using first tiling scheme: Te versus So. Te denotes the ratio of required
bandwidths for the rectangular (Tr) and cubic (Ts) tiling schemes. So denotes the relative storage
overhead required by the rectangular tiling scheme. Te = Tr/Ts So = Sr/Ss. Rotation center
distance: the distance between the rotation centers. Rotation tiles: the average number of the
rotated tiles around each rotation center. Note that the average number of rotation tiles on the
red curve is not integer because different numbers of rotated tiles are used at different rotation
centers and this is their average.

53

In our new tiling scheme we define multiple “layers” of tiles, where the tiles for

each layer have the same angle and are located in a regular lattice throughout the

image in 2D case and the volume in 3D case, as shown in Figure 3.11. Each tile is

represented by the tile center location p and the norm vector n⃗i representing the

tile angle. For each layer, the tiles could be arranged according to a regular pattern.

There are N layers in total, each with different tile angles. Each layer does not have

to cover all the pixels/voxels, but each pixel/voxel has to be covered by at least one

tile. The new tiling scheme aims to decrease the standard deviation in the number

of tiles that cover a typical voxel. In this scheme, starting with first layer tiles with

arbitrary locations on a regular grid pattern and an arbitrary angle, the new layer

tiles are determined by minimizing the maximum overlap value between the new

tiles and the existing tiles. We then record the new layer of tiles in the existing tile

list, and proceed to find the next layer of tiles until all the layers (with different

angles) are determined. Because we request sets of pixels/voxels, low maximum

overlap between tiles means that when a query gets a bad fit from one tile, it is more

likely that the query can get a good fit from another tile. Intuitively, the 2D/3D

rectangular tiling method uses an over-complete set (overlapped rectangular tiles)

to represent the 2D/3D dataset, while the traditional method uses an orthogonal set

(non-overlapped square/cubic tiles) to represent the 2D/3D dataset. Minimizing

the value of the maximum overlap between the new tile and the existing tiles

leads to less correlation within the over-complete set, which then leads to greater

transmission efficiency.

We now describe the algorithm we propose to select tile locations and angles for

each of the layers. The genearl algorithm will work for both 2D case and the 3D

case. Let B ≡ {1, 2, . . . , N} be the set of angles indexes. We let (Pi, Ii) denote the

selected tiles for layer i, where Pk = {pk1, pk2, · · · } are the kth layer tiles locations

54

and Ik ∈ B is the kth layer angle index. Let Bk be the set of angles used up to

the kth layer so that B −Bk is the set of angles unused up to kth layer. We let Ak

denote the set of tiles that have been assigned to the first k layers. Initially A0 = ∅

and B0 = ∅, but these sets grow as the algorithm assigns tiles to the layers. Note

that each angle index will be assigned to one of the layers, such that at the end of

the entire algorithm we will have B−BN = ∅. For each layer Algorithm 4 searches

for the tile positions/angles that minimize the maximum overlap with tiles in all

the previously chosen layers. Algorithm 5 is called in order to break ties, whenever

multiple angles and positions lead to the same maximum overlap (detail is in the

next paragraph).

Since the tile centers of all layers are on regular grid, it follows that once we

know the position of one tile location in a given layer, we know the locations of

all the tile centers for that same layer. Because the Voronoi regions are the same

within each layer, we only need to determine the location and the angle index of

one tile in the center Voronoi region, denoted by V , in order to generate all the

tiles for that layer. We let Ck denote the tiles in Ak that are inside or close to

the Voronoi region. Let O({p1, I1}, {p2, I2}) denote the overlap between two tiles

{p1, I1} and {p2, I2} and let

Omax({p1, I1}, Ck) = max
{pm,Im}∈Ck

{O({p1, I1}, {pm, Im})}

be the maximum overlap between tile {p1, I1} and all the tiles in Ck. We then

search for solutions {p∗k, I∗k}3 that minimize the maximum overlap, i.e.,

{p∗k, I∗k} = argmin{Omax({pk, Ik}, Ck)},

3 ∗ / ∗∗ denotes the result before / after the adjustment Algorithm 5, respectively.

55

where pk ∈ V , and Ik ∈ B −Bk−1. The new tile {p∗, I∗} minimizes the maximum

overlap with previously chosen tiles. For a given tile location p, it is possible that

a continuous range of tile angles may be equally optimal due to the fact that tile

overlap is measured by the number of discrete grid points that are contained in

the overlapping regions. In this case, Algorithm 5 chooses the median angle index.

For example, if tiles {p, 3}, {p, 4}, {p, 5}, {p, 6}, {p, 7} are equivalent in terms

of overlap, then tile {p, 5} will be selected. Similarly, if the tile at location p∗

minimizes overlap, then it may be possible for some points (x, y, z) ∈ N{p∗} to

achieve the same maximum overlap. Let S denote the set containing all the points

(x, y, z) ∈ N{p∗} (including p∗) that achieve the minimum max-overlap value.

Algorithm 5 chooses the central point of S as the selected tile location p∗∗ with its

associated angle index I∗∗ to be the new tile in the Voronoi region for the next tile

layer.

Algorithm 4 Optimized Rectangle Tiling Algorithm

1: Starting with first layer tiles {Pi, Ii} with arbitrary locations on a regular grid
pattern and with tile angle index Ii = 1. A0 = ∅, B0 = ∅.

2: for k = 1 to N do
3: Sort Ak according to the distance from the tile center location to the center

of the data (2D image/3D volume).
4: Find Ck.
5: for ∀ pk ∈ |V | and ∀ Ik ∈ B −Bk−1 do
6: {p∗k, I∗k} = argminOmax({pk, Ik}, Ck)
7: end for
8: The parameter pairs achieving the minimum value of the maximum overlap

may not be unique. Algorithm 5 is used to select the proper one {p∗∗k , I∗∗k }.
9: Using the new tile {p∗∗k , I∗∗k }, generate all tiles {Pk, Ik} for layer k.
10: Ak = Ak−1 ∪ {Pk, Ik}. Bk = Bk−1 ∪ Ik.
11: end for

56

Algorithm 5 Adjustment Algorithm

for ∀ pk ∈ |N{p∗k}| and ∀ Ik ∈ B −Bk−1 do
S = {{p∗, I∗} |{p∗, I∗} = argminOmax({pk, Ik}, Ck)}

3: end for
Find the central point p∗∗ of S.
if Continuous angles lead the same minimum max-overlap value then

6: The median angle index will be chosen as I∗∗.
end if
Return {p∗∗, I∗∗}.

3.2.1 2D Case

The new tiling scheme aims to decrease the standard deviation in the number of

tiles that cover a typical pixel. In this scheme, starting with first layer tiles with

arbitrary locations with a square grid patten and an arbitrary angle, the new layer

tiles are determined by minimizing the maximum overlap value between the new

tiles and the existing tiles. The tiles on different layers are located with the same

square grid patten but with different shift. We then record the new layer of tiles

in the existing tile list, and proceed to find the next layer of tiles until all the

layers (with different angles) are determined. Figure 3.10 shows that with the

same storage overhead, the optimized tiling scheme leads much better transmission

efficiency comparing to the rotation center based tiling scheme. Figure 3.10 is

calculated in terms of the average number of tiles. Since the tile centers for each

layer are uniformly and regularly spread out, all the Voronoi region are the same

as shown in Figure 3.6. So we only search for one tile in the one Voronoi region to

generate all the tiles for the new layer. More detailed analysis and results can be

seen next in the 3D case.

57

0 10 20 30 40 50 60 70
6

8

10

12

14

16

18

T
r

Old Tiling: Scale = 0.75

Old Tiling: Scale = 0.625

Old Tiling: Scale = 0.5

Old Tiling: Scale = 0.375

Old Tiling: Scale = 0.25

New Tiling: Scale = 1.2

New Tiling: Scale = 1

New Tiling: Scale = 0.65

New Tiling: Scale = 0.5

µ

Figure 3.10: Here, tile center distance = 32 × Scale. Fix the tile center distance, the number of
rotation angles vary. Tr is the average number of tiles needed to be transmitted. µ is the average
number of tiles coverage per pixel.

3.2.2 3D Case

In the 3D case optimized tiling scheme we define multiple “layers” of tiles, where

the tiles for each layer have the same angle and are located uniformly throughout

the volume, as shown in Figure 3.11. Each tile is represented by the tile center

location p and the norm vector n⃗i representing the tile angle. For each layer, the

tiles could be arranged according to a cuboctahedral, octahedral, icosahedral or

tetrahedral pattern; here we locate the tiles (corresponding to a set of tile centers

P = {p1, p2, · · · }) at points on a regular octahedron grid patten (the tile centers are

located at the vertices of an octahedron). There are N layers in total, each with

different tile angles. The N norm vectors (one for each layer) are obtained by using

the equal sphere tessellation method [5] and are represented with a common origin

58

0

50

100

0 20 40 60 80 100

−10

0

10

20

30

40

50

60

70

80

90

100

Layer 1

Layer 2

Layer 3

Figure 3.11: New 3D rectangular tiling scheme. The tile centers for each layer are shown. 3
layers of tiles are in this figure. The arrows show the norm vector n⃗i representing the tile angle.

and with their end points uniformly spread out on a 3D sphere. When two vectors

with exactly opposite directions are part of the tessellation, only one of them is

used as the norm vector in Section 2.2.2.

Figure 3.6 shows the 3D Voronoi regions, with each color representing a separate

region. Since the Voronoi regions are the same within each layer, we only need to

determine the location and the angle index of one tile in the center Voronoi region

In order to speed up the search, we partition the Voronoi region into several 3D

subregions shown in Figure 3.12. Each color represents one subregion. At the center

point of each subregion, the maximum overlap value is calculated. Then, we pick

the subregion with the minimum value to be used for the next level partition. The

partition procedure stops once the selected subregion is very small (e.g., less than

59

Center points of the subregions

Figure 3.12: 3D Partition for speeding up the searching in Algorithm 4. Each color represents
each subregion.

70 voxels within the final selected subregion in our experiments). Algorithm 4 lines

5-7 will then be employed for the final selected subregion, rather than using V . In

our experiments, this procedure speeds up the search time dramatically. Since the

search is operated on the Voronoi region, the complexity only depends on M , the

size of the Voronoi region and it does not increase when the data size increases.

3.2.3 3D Experimental Results

The performances of the optimized 3D rectangular tiling scheme and the rotation

center based tiling scheme of Section 2.2.2 are compared in Figure 3.13. The two

tiling schemes are also compared in Figure 3.14 by using the model proposed in

Section 3.1.2, which shows that the model is also useful for designing new tiling

60

schemes. For all the experimental results in this section, MRI volume data for

10 20 30 40 50 60
0.4

0.5

0.6

0.7

0.8

0.9

1

So (with compression)

T
e

Old Tiling Scheme

New Tiling Scheme

Figure 3.13: 3D case result: Te versus So. Te denotes the ratio of required bandwidths for the
rectangular and cubic tiling schemes. So denotes the relative storage overhead required by the
rectangular tiling scheme. Te = Tr/Ts So = Sr/Ss.

a patient’s head4 of size 256 × 256 × 256 is used. Because we are measuring the

transmission ratio between using our proposed schemes and using the traditional

square/cubic cases, similar results are expected by using different datasets. After

mapping the Cartesian grid points to neighboring points in the rotated rectangular

tiles, 3D compression is applied independently to each tile.

Performance is shown compared to a standard tiling strategy (with cubic, non-

overlapping tiles). The rectangular tile size was fixed at W = 32, L = 32 and

H = 8. The side of a cubic tile was 16. Figure 3.13 shows the trade-off between

the ratio of required bandwidth Te and the storage overhead So while we fix one

4This volume data was downloaded from http://www9.informatik.uni-
erlangen.de/External/vollib/.

61

0 10 20 30 40 50 60
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

σ
2 3
/µ

µ

Old Tiling Scheme

New Tiling Scheme

Figure 3.14: σ
2
3 /µ vs. µ. µ and σ are the average and the standard deviation of the tile

coverage.

and vary the other by changing the distance between tile centers and the number

of different tile angles N . N varies by using the tile angle selection method in

Section 2.2.2. As shown in Figure 3.13, the proposed new tiling scheme leads to

an additional increase in random access transmission efficiency of 10% - 30% when

compared to the first proposed tiling scheme in Section 2.2.2, depending on the

chosen storage overhead (S0). In addition, Figure 3.13 shows that for the same

storage overhead (So), different transmission efficiencies (Te) are achieved by using

different parameter settings (the distance between the tile centers and the number

of tile rotation angles). By using the model in Section 3.1.2, the parameter setting

to achieve the best transmission efficiency (given a fixed storage overhead) can be

chosen without experimental tests, shown in Figure 3.14. Smaller variance will

lead to greater transmission efficiency. Intuitively, this is because by decreasing the

62

coverage variance across all voxels it follows that all voxels will tend to be covered

by a similar number of tiles.

3.3 Conclusions

In this Chapter two prediction models were presented for both 2D and 3D cases.

The prediction model provide a way to relate transmission efficiency to pixel/voxel

coverage statistics (mean value and standard deviation) for the fast random retrieval

system we have proposed in Chapter 2. These models enable designers to select

parameter settings that achieve the best transmission efficiency without perform-

ing experimental tests and also provide us with insight on designing better tiling

schemes. We have thus proposed two optimized tiling schemes for both 2D and 3D

cases which achieve an additional 10% - 30% reduction in the average transmission

rate compared to the rotation center based rectangular tiling scheme in Chapter

2, We have demonstrated that in exchange for increased server-side storage, signif-

icant reductions in the average transmission rate can be achieved. Furthermore,

compared to the conventional tiling scheme the client side benefits from random

data access and relaxed storage requirements. The run-time memory space can also

be reduced accordingly.

63

Chapter 4

Mapping for Rotated Tile Encoding and Analysis

In this chapter we present a non-interpolated symmetric mapping algorithm, which

maps each pixel/voxel in the original image/volume to a rotated Cartesian grid

point. We will show that this approach outperforms tile representation methods

based on interpolation and non-symmetric mapping. We first evaluate in detail the

mapping algorithm for rotated tile encoding in Section 4.1. Furthermore, a metric

in Section 4.2 is proposed for automatically checking the mapping symmetry. In

Section 4.3, a tool will be presented to analyze and quantify the performance and

demonstrate the benefits of our proposed re-mapping algorithm. It will show that

in general the more symmetric the mapping is, the better RD performance can be

achieved. Our analysis, based on spectral graph theory, could be used for measuring

the performance of different mapping algorithms on a grid of any dimension. In

Section 4.4, we will experiment in the 2D and the 3D cases and will show that the

non-interpolated symmetric mapping approach, which maps each pixel/voxel in the

original image to a rotated Cartesian grid point, outperforms tile representation

methods based on interpolation and non-symmetric mapping. The experimental

results are consistent with the analysis results using the tools presented in Section

4.3. In particular, the lack of interpolation means that complexity is significantly

64

lower and the running time is 20 to 30 times lower. The mapping algorithm, the

metric and the analysis tool can be applied for any tile size and with any dimension.

Finally Section 4.5 concludes this chapter.

4.1 Mapping Algorithm for Rotated Tile Encoding

Consider a rotated 2D rectangle of length L and width W . Refering to Figure 4.1,

CP represents the Cartesian points (CP I and CP O represent the Cartesian

points inside and outside of the rectangle respectively.), RP represents the points

on the rectanglular grid and RC is the center point of the rectangle, around which

the rectangle is rotated.

Figure 4.1 shows a example of a rotated 2D tile such as those used in our system.

All tiles are encoded using standard transform coding techniques (e.g., the discrete

cosine transform, DCT). Transforms operate on pixels organized in a regular grid.

But, as seen in Figure 4.1, the points on the rotated rectangular grid (RP) do not

coincide with the original Cartesian grid points (CPO, CPI). Thus, it is necessary

to decide how to assign the intensity values on Cartesian grid in this new rotated

grid (RP), this is what we call “mapping algorithm”. A straightforward approach

to represent the data would be to interpolate the values on the rotated rectangular

grid before compression (e.g., using all pixels surrounding a given rotated grid

position), but any interpolation will result on smooth, and thus loss of some high

frequency information. Additionally, interpolation is computationally expensive.

Thus, instead we propose to simply re-map the original values on the Cartesian

grid into the rotated rectangular grid before compression. That is, we select one of

the neighboring pixel values and assign it to the rotated grid points. For example in

Figure 4.1, for each point on the rotated rectangular grid (RP), there is a Cartesian

65

CP_O

CP_I

RC

D

RP

CP

Figure 4.1: 2D Mapping: RC (rotation center), CP (cartesian points), CP O (cartesian points
outside the rectangle), CP I (cartesian points inside the rectangle), RP (point on rectangle grid),
D (mapping points distance).

66

point to map to and the two mapping points are connected in Figure 4.1 in order

to show the mapping relationship. This “mapping” relationship is shown by the

blue lines in the Figure. The distance between the mapping pair is denoted as D.

Certain points, such as the rotation center (RC), are in the same positions in both

grids, while in other cases, the pixel in a given location in the rotated grid has been

copied from a neighboring location in the Cartesian grid. Note that the pixels are

copied unchanged, i.e., no interpolation is performed.

Our proposed mapping can be used for high dimensional datasets. The al-

gorithm is presented, then 2D and 3D simulations will be provided to evaluate

performance. While many alternative mappings are possible, we are interested in

methods that minimize the mapping distance (D in Figure 4.1), so that pixels are

displaced by a minimal amount from their original positions for encoding. Clearly

this is desirable as these displacements “distort” the frequency content of the blocks

prior to encoding. Our proposed symmetric mapping algorithm seeks to i) map all

Cartesian points inside the rectangular area, ii) minimize the maximum pointwise

mapping distances, D, and iii) be symmetric about the rotation center. Starting

from the rotation center, we first map all the Cartesian points inside the rectangu-

lar area (CPI) to the rotated grid points (RP) in a 1-to-1 mapping moving from

the center of the tile outward. This ensures that all the Cartesian points inside the

rectangle will be mapped. We then map the non-mapped rotated grid points to the

Cartesian points outside of the rectangular area (CPO) in a 1-to-1 mapping moving

outwards relative to the center. Refer to Algorithm 6 for the details.

In Figure 4.1, certain points, such as the rotation center, are in the same posi-

tions in both grids, while in other cases the pixel in a given location in the rotated

grid has been copied from a neighboring location in the Cartesian grid. Note that

the pixels are copied unchanged, i.e., no interpolation is performed. The blue lines

67

Algorithm 6 Mapping Algorithm

1: Find the Cartesian points inside the rotated rectangle volume. Calculate the
distances from the Cartesian points (from the step above) to the rotation center.
Sort the distances with increasing order, calling the sorted list A.

2: Calculate the distances from the rotated rectangle grid points to the rotation
center. Sort the distances with increasing order, calling the sorted list B.

3: while i ≤ length(A) and k ≤ length(B) do
4: while A(i) has been mapped do
5: i = i+ 1
6: end while
7: while B(k) has been mapped do
8: k = k + 1
9: end while
10: if A(i) ≤ B(k) then
11: Find the rotated grid point closest to A(i) from the unmapped points in

B.
12: Record the mapping points and label the points as “mapped” in A and B.
13: i = i+ 1
14: else
15: Find the unmapped Cartesian point closest to B(k).
16: Record the mapping points and label B(k) as “mapped”.
17: Also label the Cartesian point as “mapped”.
18: The Cartesian point may or may not be in A.
19: k = k + 1
20: end if
21: end while

68

D

CP_ICP_O

RP

Figure 4.2: 3D Mapping: CP O (cartesian points outside the rectangle), CP I (cartesian points
inside the rectangle), RP (point on rectangle grid), D (mapping points distance).

show how pixels are remapped. There are many ways to achieving a non-symmetric

mapping. The non-symmetric mappings we use in our work are “minimum error

mapping”, which seek to reduce the mapping distance D and happen to be non-

symmetric about the rotation center. In the next sections, we will show that our

proposed symmetric mapping has better performance even if its average mapping

distance D maybe higher. Algorithm 6 ensures the mapping is symmetric. Fig-

ure 4.2 shows a mapping example in 3D case. The blue lines show how voxels are

remapped.

Figures 4.3 and 4.4 show a 3D rotated tile and its mappings using symmetric

and non-symmetric mapping, respectively. There are many ways to achieving a

non-symmetric mapping. Here we use “minimum error mapping” to generate the

non-symmetric mappings. Figures 4.3(a) and 4.4(a) show a example of the 3D

69

rotated rectangular tile and the mapping relationships. Figures 4.3(b) and 4.4(b)

display the mapping vectors, which are defined as the vectors V⃗ from the Cartesian

points to the mapped rotated grid points. The length of each vector V⃗ is the

mapping distance D analogous to that shown in Figure 4.1. In this context, by

“symmetry” we mean that if there is a mapping vector V⃗ then there must be a

mapping vector −V⃗ in the mapping vector plot1. We can check that the right-hand

plot in Figure 4.3 has a symmetric mapping while that of the right-hand plot of

Figure 4.4 has a non-symmetric mapping. The tile size in the figures is 3× 3× 3.

When the tile size increases or we move into higher dimensions, it will be impossible

to tell the mapping symmetry from the mapping vector plot. Therefore, in Section

4.2, a metric for checking the mapping symmetry will be described.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

0

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−0.5

0

0.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.5

0

0.5

Pc

Pr

Prm

Pcm

CP

(a) (b)

Figure 4.3: (a): 3D rotated tile symmetric mapping illustration. Size 3× 3× 3. CP (cartesian
points). Other labels are denoted in Section 4.2. (b): mapping vectors (symmetric).

The main advantage of this approach is that it lowers the encoding and decod-

ing complexity, but at the cost of introducing some distortion in the compression

1We only consider sides of the rectangle that have odd length. For sides with even length, we
do not take into account the last column points which are far from the middle column.

70

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

0

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−0.4

−0.2

0

0.2

0.4

0.

6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.2

0

0.2

0.4

(a) (b)

Figure 4.4: (a): 3D rotated tile non-symmetric mapping illustration. Size 3 × 3 × 3. (b):
mapping vectors (non-symmetric)

process (i.e., the pixel values that are aligned for encoding are not aligned in the

original representation). In our 2D and 3D case study, compression techniques

in Sections 2.5.1 and 2.5.2 are applied and the experimental results in Section 4.4

demonstrate greatly improved RD performance. Note that tiles having the same ro-

tation angles around their (different) rotation centers have the same mapping table

relative to the Cartesian grid points with just a shift between the rotation centers.

Thus, we only need to store a small number of tables (one per angle) to specify the

mapping, which is convenient during tiling, searching, and reconstructing tiles onto

the Cartesian grid at the client side.

71

4.2 Metric to Check the Symmetry of Mapping

Algorithms

We now introduce a metric to quantify the degree of symmetry. This is introduced

in the 3D case but can easily be used in 2D and any dimension cases. Assume

the coordinate of the rotation center is (0, 0, 0). Let Pr(x, y, z) denote a point in

the rotated rectangular grid and let Pc(x, y, z) denote the associated point in the

Cartesian grid that it is mapped to. Then the mapping vector is defined as:

V⃗ (x, y, z) = Pr(x, y, z)− Pc(x, y, z).

Let Prm(x, y, z) = Pr(−x,−y,−z) denote the mirror image point of Pr(x, y, z),

where Prm and Pr are 180 degrees from each other and let Pcm(x, y, z) denote the

Cartesian grid point corresponding to Prm(x, y, z). Then

V⃗m(x, y, z) = Prm(x, y, z)− Pcm(x, y, z).

Hence, if the mapping is symmetric,

Prm(x, y, z) = Pr(−x,−y,−z)

=⇒ Pcm(x, y, z) = Pc(−x,−y,−z)

is ture. This is equivalent to saying that if the mapping is symmetric,

V⃗m(x, y, z) = V⃗ (−x,−y,−z)

72

The total number of vectors that have this property can be counted, and the

larger the number of vectors having this property, the more symmetric the mapping

is. Algorithm 7 shows the details of the metric computation. Using this metric,

the symmetry of the mapping results can be checked automatically regardless of

the tile size or the tile dimension. Additionally, this metric can also be used for

detecting how many voxels are mapped symmetrically and how many are not, i.e.,

what percentage of the voxels are not symmetrically mapped.

Algorithm 7 Metric for checking mapping symmetry

1: for Each point Pri ∈ {Pr1, Pr2, · · · } do
2: Find their corresponding mirror point Pmri.

1

3: end for
4: for each pair (Pri, Pmri) do
5: Check and see if their mapping Cartesian points are 180 degree to each other.
6: end for

4.3 A Spectral Graph Theory Approach for Data

Re-mapping

In this section, we will present tools to both analyze and quantify the performance

and benefits of our proposed re-mapping algorithm. We will start in Section 4.3.1,

which defines the graphs for the regular grid and the re-mapping grid. In Section

4.3.2, an analysis using spectral transforms on graphs will be shown. The analysis

results will be verified by the experiments in Section 4.4.

4.3.1 A Graph Representation of Remapping Problem

Transforms (e.g., DCT) represent data on a regular grid. When we consider a

rotated tile we select a subset of pixels from regular grid. Then the question is how

73

0 2 4 6 8 10
0

2

4

6

8

10
Regular Grid Graph

Figure 4.5: Regular grid graph. Size: 11× 11

to apply a regular grid transform to this rotated set of pixels. Our solution is to

“remap” the pixels in the rotated tile to a regular grid. This is illustrated in Figure

4.6. The key problem is that when placing these pixels in this new regular grid a

geometric distortion is incurred. We start by providing a more formal definition of

the problem. Then, in Section 4.3.2, a tool will be introduced to evaluate different

mapping algorithms quantify the geometrical distortion.

Let G = (V,E) be a graph, which represents a grid. Vertex set V contains N

nodes indexed by n ∈ {1, 2, . . . , N}. The set of edges E represents the connectivity

of grid pixels. In Figure 4.5 for example, except for the pixels on the boundaries,

each pixel is connected with its four neighboring pixels (up, down, left and right).

Figures 4.6 and 4.7 display rotated regular grids (blue stars) superimposed on top

of their corresponding original Cartesian grids (red dots) as well as the mapping

relationship (matching pairs) between pixels in the two (blue vectors). When the

74

−10 −5 0 5
−8

−6

−4

−2

0

2

4

6

Symmetric Mapping Grid Graph

Regular Grid Graph

Symmetric Mapping

 Grid Graph

Matching Pair

Figure 4.6: Mapping of the Cartesian grid pixels onto the rotated grid using the symmetric
mapping algorithm. Size: 9× 9

symmetric mapping algorithm is used, connectivity between pixels in the original

Cartesian grid is preserved between the pixels they are matched to, as seen in

Figure 4.6. This leads to a regular pattern to the blue vectors showing the mapping

relationships. In contrast to this is the irregular pattern seen in Figure 4.7, where

we see the results of the non-symmetric mapping algorithm.

Let AG denote the adjacency matrix of the grid graph, with entries ai,j given

by

ai,j =

 AG(i, j) =
1

w(i,j)
if (i, j) ∈ E

0 otherwise,
(4.1)

where w(i, j) is the Euclidean distance between nodes i and j. ai,j can be seen as

the relationship between the two nodes, which is smaller when the distance between

75

−10 −5 0 5
−8

−6

−4

−2

0

2

4

6

Non−symmetric Mapping Grid Graph

Regular Grid Graph

Non-symmetric

Mapping Grid Graph

Matching Pair

Figure 4.7: Mapping the Cartesian grid pixels onto the rotated grid using non-symmetric map-
ping algorithm. Size: 9× 9

nodes i and j is larger and vice versa. The degree matrix of a weighted graph G

will be denoted DG with diagonal elements

DG(i, i) =
∑
j

AG(i, j). (4.2)

The Laplacian matrix of a weighted graph G will be denoted by LG and is defined

as

LG = DG − AG. (4.3)

Since LG for undirected graphs is symmetric and positive semidefinite, the eigen-

vectors of LG form an orthonormal basis in RN . Let {λi, νi}Ni=1 be the eigenvalues

76

and eigenvectors of LG arranged in non-decreasing order with respect to the eigen-

values. Similarly to LG, we let LRG, LSG, LNSG and {λri, νri}ni=1, {λsi, νsi}Ni=1,

{λnsi, νnsi}Ni=1 denote the Laplacian matrices and the eigenvalues and vectors for

the regular grid graph, symmetric mapping graph, and the non-symmetric map-

ping graph, respectively. We also denote < v1, v2 > as inner-product between

vectors v1 and v2.

4.3.2 Analysis and Results

As mentioned earlier, the transform operates on a regular grid, producing transform

coefficients that are encoded. Compression is achieved when the data is smooth

(or sparse) in the bases of the transform. Note, however, that the geometrical

distortion introduced by remapping may mean that even though the original data

was smooth (in a traditional 2D or 3D separable transform), the information in

the block obtained after remapping may not be as smooth and, thus, overall coding

efficiency may suffer. We next propose a way that will allow us to compare mapping

algorithms and quantify the difference, e.g., Figures 4.6 and 4.7, and predict which

approach will achieve better performance.

LRG is symmetric and positive semidefinite, the eigenvectors of LRG form an

orthonormal basis in RN and the eigenvectors can be used to characterize various

properties of the graph. The transform is based on the regular graph LRG, but

the mapping graph grids are not regular any more, which can be seen as geometric

distortion with respect to the regular graph. In order to measure the geometric

distortion, here we measure the difference of the eigenvectors between LRG and

LSG, LNSG.

77

Given that both the symmetric grid graph and the non-symmetric grid graph

share the same topology, but different weights, we calculate the inner product

between all respective eigenvectors (i.e., regular grid graph vs. symmetric grid

graph and regular grid graph vs. non-symmetric grid graph). We let RS denote the

correlation matrix between the eigenvectors of LRG and LSG and let RNS denote

the correlation matrix between the eigenvectors of LRG and LNSG. The entries of

the correlation matrix RS are given by

RS{i, j} =< νri, νsj > i, j ∈ {1, 2, . . . , N}, (4.4)

and for the correlation matrix RNS they are given by

RNS{i, j} =< νri, νnsj > i, j ∈ {1, 2, . . . , N}. (4.5)

Figure 4.8 shows the absolute values of the correlation matrices RS and RNS.

Figure 4.8 (a) indicates that the energy of the correlation matrix RS is more con-

centrated along the diagonal terms, while (b) indicates that the energy of the cor-

relation matrix RNS is more spread out along the diagonal terms. Assume that a

smooth signal is such that it can be described using a small number of eigenvectors

of the original graph Laplacian. Then, the intuition is that the effect of remapping

is to “disperse” the energy, since eigenvectors in the new graph have non-zero corre-

lation with all eigenvectors corresponding to the original graph. Thus, it would be

desirable for this dispersion to be minimal, and hence for the off-diagonal energy to

be as small as possible. From this observation, we can conclude that the spectrum

of the weighted grid graph does not change as much when using the symmetric

mapping algorithm, as compared to the non-symmetric mapping case.

78

regular grid & symmetric mapping grid

20 40 60 80

10

20

30

40

50

60

70

80 0

0.2

0.4

0.6

0.8

1

(a) RS : Absolute value of the Correlation
matrices for the symmetric grid graph.

regular grid & non−symmetric mapping grid

20 40 60 80

10

20

30

40

50

60

70

80 0

0.2

0.4

0.6

0.8

1

(b) RNS : Absolute value of the Correlation
matrices for the non-symmetric grid graph.

Figure 4.8: Absolute values of the correlation matrices RS and RNS .

We notice from Figure 4.8 that the largest correlation terms are not always

exactly on the diagonal of the matrices. For each row i of the correlation matrix

R (R can be RS or RNS), the maximum correlation term is found and denoted

Rmax(i), i.e.

Rmax(i) = arg max
j∈{1,2,...,N}

{R(i, j)}. (4.6)

The modified diagonal terms of the correlation matrix are thus the set {Rmax(i)}Ni=1,

the energy of which can be calculated as

Ediag =
N∑
i=1

Rmax(i)
2. (4.7)

Denoting the energy of the modified off-diagonal terms as Eoff-diag, we have

Eoff-diag = N − Ediag, (4.8)

79

where the total energy of the correlation matrix is N , since the energy of each row is

1. Hence the percentage of the total energy attributed to the modified off-diagonal

terms of the correlation matrix is
Eoff-diag

N
. The off-diagonal energy resulting from

using either symmetric or non-symmetric mapping is shown in Figure 4.9. In this

figure, different sizes of the grid graphs are used, which are 9× 9, 11× 11, 13× 13,

15×15, 17×17, and 19×19. For all grid graph sizes considered, there is consistently

more off-diagonal energy using the non-symmetric mapping algorithm than using

the symmetric mapping algorithm.

8 10 12 14 16 18 20

0.3

0.4

0.5

0.6

0.7

0.8

Off−diagnal energy percentage

Grid graph size

O
ff
−

d
ia

g
n

a
l
e

n
e

rg
y
 (

%
)

non−symmetric mapping

symmetric mapping

Figure 4.9: Percentage of the off-diagonal energy

80

4.4 Experimental Results

In this section we evaluate our proposed symmetric mapping algorithm by compar-

ing the performance against the usage of non-symmetric mapping and interpolation

methods. With different mapping order (not moving outwards relative to the cen-

ter), two different non-symmetric mappings are generated (refer to Section 4.1).

4.4.1 2D Case

From Figure 4.1, we can see that our mapping is symmetric. In general, the distance

between paired points in the mapping is less than
√
2. The worst case for the

mapping is for rotation angles of π/4 and 3π/4. A rate-distortion (RD) comparison

0 20 40 60 80 100 120 140
5

10

15

20

25

30

35

40

45

50

55

MSE

R
a

t e

Q = [0.1: 0.3: 2]

symmetric mapping

non−symmetric mapping

linear interpolation

Figure 4.10: Rate distortion for two mapping algorithms and the interpolation method. Using
”Lena” as the test image. N = 8, Dx = Dy = 20

81

of mapping techniques is shown in Figure 4.10 using the Lena image. We compare

our proposed symmetric mapping algorithm and a non-symmetric approach. While

their average mapping distances are comparable, the symmetric approach leads to

better RD performance. For the interpolation method, we use cubic interpolation

to calculate the values of the tiles on the rectangle grid. 30 random lines are used

to generate the curves.

4.4.2 3D Case

In this study, 3D MRI volume data has been tiled using the tiling method in

3.2.2, the tiles’s voxels then being been mapped via either the symmetric or non-

symmetric mapping algorithms onto the Cartesian grid, or interpolated using the

linear interpolation method. The 3D interpolation method we used in the experi-

ments is tesselation-based linear interpolation.

The rate distortion curves in Figure 4.11 and Figure 4.12 are generated using

the quantization step values from 10 to 80, with increment 10. The mean squared

error is calculated to measure the distortion and the rate is measured in terms of

the average bits per voxel of the transmitted tiles for all random oblique planes.

In Figure 4.11, we interpolate (linearly) the values on the 2D oblique plane grid

using the neighborhood Cartesian voxel values. We measure the distortion between

the 2D oblique planes, with and without passing through our system. From Figure

4.11, we can see non-interpolated mapping algorithms lead much to better perfor-

mance than interpolation method. This is because in the non-interpolated case

the only loss is due to compression, while in the interpolated case smoothing is

performed, leading to loss of high frequency information. A situation analogous

to that observed in compression of Bayer filter images [13] arises: interpolation

82

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

MSE

R
a

te
 (

b
it
s
 /
 p

ix
e

l)

interpolation

non−symmetric mapping 1

non−symmetric mapping 2

symmetric mapping

Figure 4.11: RD curves by using symmetric mapping/non-symmetric algorithms and using
interpolation method

leads to smoother images, but also removes information from the original data so

that at high rates re-mapping leads to better performance than interpolation. The

experimental results in Figure 4.12 shows that different non-symmetric mapping

algorithms lead to different RD performance in terms of coding, and the symmet-

ric mapping algorithm has better performance than the non-symmetric mapping

algorithms. The distortion is measured by using the Cartesian voxel values, which

are used for reconstructing the 2D oblique plane from a 3D volume dataset and

the distortion only comes from the compression process. For the non-symmetric

mapping here, we do select remapping to the nearest neighbor at each point, so that

the overall remapping distortion incurred is not very high and the main difference

is the lack of symmetry. The experiment uses the same 30 random oblique planes

for all different cases.

83

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

MSE

R
a

te

symmetric mapping

non−symmetric mapping 1

non−symmetric mapping 2

Figure 4.12: Symmetric and non-symmetric mapping algorithms’ RD curves.

4.5 Conclusion

In this chapter we have presented a non-interpolated symmetric mapping algorithm

which maps each original pixel/voxel in the original image/volume data to a rotated

Cartesian grid point. We have shown that this approach outperforms tile repre-

sentation methods based on interpolation and non-symmetric mapping in both 2D

and 3D case, a result that generalizes to higher dimensions. In particular, the lack

of interpolation also means that the run-time complexity is significantly lower and

is approximately 30 times less for the whole system in our experiments. Moreover,

remapping without interpolation has been shown to lead to overall better RD perfor-

mance and the more symmetric the mapping is, the better the RD performance that

can be achieved. Additionally, we have proposed a metric for automatically check-

ing mapping symmetry and measuring the percentage of non-symmetric mapped

84

points produced by the non-symmetric mapping algorithms. Furthermore, we have

presented a tool to both analyze and quantify the performance and benefits of our

proposed re-mapping algorithm. Across a range of grid graph sizes, there is always

more off-diagonal energy using non-symmetric mapping algorithm, as compared to

the symmetric mapping algorithm. Intuitively, when using the symmetric mapping

algorithm the weighted grid graph’s spectrum does not change as much as when

the non-symmetric mapping algorithm is used. Moreover, this result explains the

experiments where it was found that in general the more symmetric the mapping is,

the better the RD performance that can be achieved. Our analysis based on spec-

tral graph theory can be used for measuring the performance of different mapping

algorithms on a grid of any dimension.

85

Chapter 5

A Wavelet Based Approach for Overlapped Tiling

We have shown that our proposed 3D random image retrieval system using a 3D

rectangular tiling scheme leads to greater transmission efficiency compared to the

traditional cubic tiling scheme. The compression result with the new tiling scheme

shows a nearly 30%/45% reduction in the average transmission rate. However, this

reduction comes at the cost of a significant storage overhead (e.g., a factor of ten)

as compared to the traditional cubic tiling scheme. In this chapter we propose a

new technique to reduce the storage overhead while preserving improvements in

transmission efficiency.

5.1 Wavelet-Domain Redundant Tiling

We start by applying the Haar wavelet to the 3D volumetric data X in order

to generate different frequency 3D subbands, {WLLL,WLLH ,WLHL, · · · ,WHHH} as

shown in Figure 5.1. For each band, different rectangular tiling settings can be

used. While the same 3D compression method is used for all tiles (as described

in Section 2.5.2), we allow each band to use different tile sizes, shapes and, most

importantly, different levels of tile redundancy. When a random plane is requested,

86

Figure 5.1: Applying Haar wavelet to the 3D volumetric data. This only shows the one level
decomposition. Different levels decomposition are used in our experiments.

in all bands, the tiles associated with the requested plane are fetched from storage

and transmitted. For instance, if a 3D volume size is N ×N ×N , pixel (x, y, z) on

the requested plane will be associated with the coefficients (⌈x/Ni⌉, ⌈y/Ni⌉, ⌈z/Ni⌉)

in each band with decomposition level i, where Ni = N/2i. The minimum number

of tiles that cover the associated coefficients in all the bands will be selected and

transmitted.

Table 5.1 shows the normalized transmission efficiency gains associated with

different storage overheads for the optimized tiling scheme in Section 3.2.2.

So 1 11.5 18.3 25.1 33.25 46.6
Te 1 0.68 0.52 0.505 0.47 0.42

Table 5.1: Storage Overhead (So). Transmission efficiency (Te). Te = Tr/Tc, where Tr repre-
sents the average transmission bits using rectangular tiling scheme, and Tc represents the average
transmission bits using cubical tiling scheme.

The goal here is to improve the storage overhead versus overall transmission

efficiency by selecting the best tiling scheme for different frequency bands. Denote

Sci the storage (in bits) for band i, which is compressed using a cubic tiling scheme

and our compression method. Then, once we decide a rectangular tiling scheme

(with Soi storage overhead and Tei transmission efficiency) for band i, the total

storage for band i using the rectangular tiling scheme (Sri) can be approximated

as Sri = Soi ×Sci. Tri and Tci represent the average transmission bits for frequency

87

band i using the overlapped tiling scheme and the non-overlapped cubical tiling

scheme, respectively, and Tri = Tei×Tci. Therefore, the approximate overall storage

and transmission efficiency can be computed as

S =
∑
i

Soi × Sci, (5.1)

and

Te =
Tr

Tc
=

∑
i Tri∑
i Tci

. (5.2)

The optimal settings for the bands can be obtained by using the Lagrange multi-

pliers method. We define a new function Z

Z = S + λ× Te (5.3)

where λ ≥ 0 is the Lagrange multiplier. In this scenario, retrieving random planes

from 3D data, the number of retrieved bits in frequency band i using the cubic

tiling scheme, Tci, is proportional to Bi
2, where Bi ×Bi ×Bi is the size for the 3D

frequency band i. We know Sci is proportional to Bi
3. Therefore, we have that

Tci = K × Sci

Bi
, where K is a constant. Equation (5.3) then can be written as

Z =
∑
i

Soi × Sci + λ

∑
i Tei

Sci

Bi∑
i
Sci

Bi

=
∑
i

Soi × Sci + λ
Tei

Sci

Bi∑
i
Sci

Bi

=
∑
i

Zi,

where

Zi = Soi × Sci + λ
Tei

Sci

Bi∑
i
Sci

Bi

.

Hence, minZ =
∑

iminZi. The simulation results for optimizing the tiling scheme

for each frequency band are shown in Figure 5.2. Table 5.2 shows the total storage

88

J 0 2 3 4
Sc 2698345 2730124 2744989 2745917

Table 5.2: J: Decomposition level, J = 0 means without using Haar transform on the object; S:
Total storage (in bits)

0 5 10 15 20 25 30
0.4

0.5

0.6

0.7

0.8

0.9

1

T
e

J = 0

J = 2

J = 3

J = 4

So

Figure 5.2: Approximation Result: Transmission efficiency (Te) versus Storage overhead (So).

89

using the cubic tiling scheme for different Haar transform decomposition levels. The

cubic tile size used in this experiment is 8× 8× 8. Just as in Section 3.2.3, where

the transmission rate vs. storage overhead trade-off of our previously published

rectangle tiling scheme (without the Haar wavelet) was shown relative to the cubic

tiling scheme (without the Haar wavelet), in Figure 5.2 we again show the relative

trade off of this rectangular tiling scheme (without the Haar wavelet, labeled as

“Rect J = 0”) and that of the currently proposed scheme using the Haar wavelet,

again with respect to the cubic tiling scheme (without the Haar wavelet). The

result shows that using the wavelet based approach achieve 25% reduction in the

average transmission rate with a storage overhead of just a factor of five. In this

experiment, same block size of 8 × 8 × 8 is used for compressing all the tiles in

the different frequency bands. In future work, different block sizes can be used for

compressing the tiles in different frequency bands (e.g., smaller tiles can be used in

high frequency bands, leading to a lower compression rate). In addition, 3D DCT

compression may not be an optimal compression tool for compressing the frequency

bands after the Haar transform. Different compression methods will be investigated

in future work.

5.2 Conclusions

We have proposed a new wavelet based approach, which could achieve 25% re-

duction in the average transmission rate at the cost of a factor of five in storage

overhead (half of what was required for our previously proposed method). In this

approach, a wavelet transform is first computed and then each of the 3D subbands

can be tiled with different levels of redundancy in each subband. This allows us

90

to select a more redundant representation for those bands requiring a higher bit-

rate (e.g., lower frequency bands) while reducing the redundancy for bands whose

bit-rate is already low (e.g., higher frequency bands). We demonstrate that sim-

ilar reductions in bandwidth to those in Section 3.2.3 can be achieved but with

significantly lower storage overhead. In future work, different block sizes can be

used for compressing the tiles in different frequency bands (e.g., smaller tiles can

be used in high frequency bands, leading to a lower compression rate). In addition,

3D DCT compression may not be an optimal compression tool for compressing the

frequency bands after the Haar transform. Different compression methods will be

investigated in future work.

91

Chapter 6

Conclusions and Future Work

6.1 Conclusions

We have proposed a server-client based data overlapped representation and re-

trieval system which can be used for fast random access of low dimensional data

from high dimensional datasets. 2D and 3D systems have been proposed and eval-

uated, however, our approach can be extended to higher dimensional datasets. We

used multiple redundant tilings of the image/3D data set, where each tiling has a

different orientation. This approach achieved a substantial reduction (a factor of

2 in bandwidth reduction) in average transmission rate as compared to traditional

square/cubic tiling. Using the first tiling strategy, transmission rate can be reduced

by 20% - 60% in 2D case and 15% - 55% in 3D case. Additionally, this approach

leads to improved random access, with less storage and run-time memory required

at the client.

Our proposed system consists of 5 components: 1) the rectangular tiling scheme,

2) the mapping algorithm, 3) the tile searching algorithm, 4) compression, and 5)

random line/oblique plane reconstruction and display. The five components of

the system are very different for the 2D and 3D cases. We have designed all the

92

components for both 2D and 3D cases. The rectangular tiling scheme provides

multiple redundant rectangular tilings of the object and the tiles have different

orientations. The searching algorithm determines which tiles should be retrieved

for a given query while the mapping algorithm enables efficient coding without

interpolation of rotated tiles.

Two models (2D and 3D cases) for our system were also proposed that allow us

to optimize system parameter selection without the need for simulations of system

performance. The proposed models can be used to predict transmission rate and

storage, given how the cells are partitioned. Then, based on the insights obtained

from the proposed models, two new rectangular tiling schemes (2D and 3D cases)

have been proposed, which reduce the transmission rate an additional 10% - 30%

as compared with the first two tiling schemes (15% - 50% for 2D and 3D cases

comparing with the traditional non-overlapped tiling schemes).

We also evaluated in detail the mapping algorithm for rotated tile encoding,

which showed that the lack of interpolation means that complexity is significantly

lower and the running time is 20 to 30 times less. Moreover, remapping without

interpolation leads to overall much better RD performance and the more symmetric

the mapping is, the better RD performance that will be achieved. Using spectral

graph theory approach, we proposed a tool that can analyze and quantify the

performance and benefits of our proposed re-mapping algorithm.

Furthermore, we have proposed a new wavelet based approach in the 3D case,

which can potentially achieve 25% reduction in the average transmission rate at

the cost of a factor of five on server’s side. The 2D system has the potential to be

used in map applications on small devices, eg. GPS and mobile phone. The 3D

system has the potential to be used in mobile devices.

93

6.2 Summary of Future Work

We summarize the future work as follows.

(i) For the more difficult 3D case, currently, we use a simple 3D DCT based

compression scheme with uniform quantization. In the future work, different

compression schemes can be used.

(ii) For the wavelet based approach, different block sizes can be used for com-

pressing the tiles in different frequency bands (e.g., smaller tiles can be used

in high frequency bands, leading to a lower compression rate). In addition, 3D

DCT compression may not be an optimal compression tool for compressing

the frequency bands after the Haar transform. Different compression methods

will be investigated in future work.

(iii) In the future, users’ statistics can be considered. Different part of the im-

age/3D data can be tiled with different size and with different redundancy.

(iv) Caching can also be considered to optimize the tiling scheme to achieve better

performance.

(v) While the applications potentially can be used on different devices, the reso-

lution and bandwidth requirements may vary. Scalable coding can be used to

compress tiles.

(vi) Data streaming can also be used in some future 3D random access applica-

tions.

(vii) Different tile sizes and angles as well as other tiling methods can be explored

for potential gain.

94

Reference List

[1] Information technology - JPEG 2000 image coding system: Part 10 - exten-
sions for three-dimensional data (jp3d) - fcd v1.0. ISO/IEC JTC1/SC29/WG1
N4101, 2006.

[2] T. Bruylants, A. Munteanu, A. Alecu, R. Deklerck, and P. Schelkens. Volu-
metric image compression with JPEG2000. In SPIE The International Society
for Optical Engineering, 2007.

[3] Y. Cho and W. A. Pearlman. Hierarchical dynamic range coding of wavelet
subbands for fast and efficient image compression. IEEE Trans. Image Pro-
cessing, 16(2005-2015), Aug 2007.

[4] Y. Cho, A. Said, and W. A. Pearlman. Low complexity resolution progres-
sive image coding algorithm: PROGRES(PROGressive RESolution decom-
pression). In IEEE ICIP, 2005.

[5] Coxeter and H. S. M. Regular Polytopes. ISBN 0-486-61480-8. Dover Publica-
tions., New York, 3rd edition edition, 1973.

[6] Z. Fan and A. Ortega. Overlapped tiling for fast random access of 3-d datasets.
In Proc of Data Compression Conference (DCC), 2009.

[7] Z. Fan and A. Ortega. Overlapping tiling for fast random access of low-
dimensional data from high-dimensional datasets. In SPIE Multimedia Con-
tent Access: Algorithms and Systems III, 2009.

[8] Z. Fan and A. Ortega. Optimization of overlapped tiling for efficient 3d image
retrieval. In Proc of Data Compression Conference (DCC), 2010.

[9] Z. Fan and A. Ortega. Wavelet-based redundant representation for efficient
random access of volumetric images. In IEEE ICIP, 2010.

[10] Zihong Fan and A. Ortega. Mapping data on a rotated grid in high-dimensions
for lossless compression. In IEEE ICIP, 2011.

[11] Zihong Fan and A. Ortega. A spectral graph theory approach for data re-
mapping. 2011.

95

[12] I. Ihm and S. Park. Wavelet-based 3D compression scheme for interactive
visualization of very large volume data. Computer Graphics Forum, March
1999.

[13] S. Lee and A. Ortega. A novel approach for image compression in digital
cameras with bayer color filter array. In IEEE ICIP, 2001.

[14] S. Muraki. Volume data and wavelet transforms. In IEEE Trans. Computer
Graphics and Application, July 1993.

[15] J. P. W. Pluim and J. M. Reinhardt. Compression of medical volumetric
datasets: physical and psychovisual performance comparison of the emerg-
ing JP3D standard and JPEG2000. In SPIE, Medical Imaging 2007: Image
Processing., volume 6512, 2007.

[16] A. Said and W. A. Pearlman. A new, fast, and efficient image codec using set
partitioning in hierarchical trees. IEEE Trans. Circuits and Systems for Video
Technology, pages 243–250, June 1996.

[17] Yung-Gi Wu Shen-Chuan Tai and Chang-Wei Lin. An adaptive 3-d discrete
cosine transform coder for medical image compression. In IEEE Transactions
on Information Technology in Biomedicine, 2000.

[18] Akihiko Sugiura and Minoru Inatsu. A study of dct image coding using
adaptive three- dimensional scanning. In Electronics and Communications
in Japan, Part 3, volume 79, pages 103–112, 1996.

96

