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ABSTRACT

Based on message-passing techniques, a novel iterative
grid algorithm for the general two-dimensional (2D) digital
least metric (DLM) problem is proposed and applied to im-
age halftoning. The algorithm attempts to achieve a glob-
ally optimal solution via a local-metric computation and
message passing as opposed to other 2D iterative global-
metric optimizations such as simulated annealing and tog-
gle/swap scheme. A reduced-complexity version of the pro-
posed digital image halftoning technique is demonstrated.
Results show that the quality of the halftone images is com-
parable to that of the state-of-the-art toggle/swap algorithm.
Since the algorithm is not constrained by the specific metric
used in this work, the proposed method is directly appli-
cable to other digital image processing tasks (e.g., optimal
near-lossless coding or entropy-constrained halftoning). An
expanded set of results from this work can be viewed at
http://sipi.usc.edu/�ortega/icip2001/icip2001.html

1. INTRODUCTION

General two-dimensional (2D) digital least-metric (DLM)
problems [3] can be found in a broad range of applications
in digital imaging (e.g., processing, compression, and gen-
eration), page-oriented memories (POM), and concatenated
systems in digital communications. However, unlike in their
1D counterparts, there are no efficient approaches to con-
duct an exhaustive search for 2D DLM problems. Common
approaches to tackle the 2D DLM problems include the ap-
plication of 1D DLM algorithms (e.g., Viterbi algorithm
(VA), ML algorithm, etc.) or 2D heuristic optimizations
based on a global metric (e.g., simulated annealing, tog-
gle/swap algorithm). Recently, after the decoding algorithm
of turbo codes was introduced, iterative message-passing al-
gorithms have proven to be a powerful tool for many DLM
problems in the communications literature [2, 5]. Such al-
gorithms utilize a local message computation and propaga-
tion in order to reach near optimal solutions after several
iterations. These message-passing approaches are variously

known as belief propagation [10], generalized distributive
law (GDL) [1] and sum-product algorithms (in the factor
graph research area [5].)

In this paper we apply message-passing techniques to
the 2D DLM problem arising in image halftoning, a process
that creates an illusion of a continuous-tone image with a
black-and-white image. Numerous authors have proposed
to address this problem as a 2D DLM problem and have
proposed solutions based on algorithms such as simulated
annealing [4], neural networks [4], the Viterbi algorithm [8],
multipath tree-coding [12], and the toggle/swap algorithms
[6, 7, 9]. In [3], the iterative message passing algorithm is
introduced to the halftoning problem with the row/column
processing. However, the algorithm presented here achieves
better performance with less complexity than the algorithm
in [3]. The first novelty in our work is the introduction of a
loopy graphical model, which we call the grid model, that
enables the application of an iterative message-passing tech-
nique to the 2D DLM problem. We also introduce reduced-
complexity techniques that prove useful for the digital im-
age halftoning problem but could be used in other scenar-
ios as well. The results show that the halftone image qual-
ity we achieve is comparable to that of the state-of-the-art
toggle/swap scheme. Note that while our results are for a
halftoning problem, the general framework we propose to
solve the 2D DLM problem can be applied to other prob-
lems in digital imaging (e.g., optimal near-lossless com-
pression [3] or entropy-constrained optimal halftoning [12])
with appropriate changes (e.g., proper metric definition).

In the next section, the iterative message-passing algo-
rithm for 2D DLM is described. The reduced complex-
ity method for digital image halftoning is proposed in Sec-
tion 3. Section 4 illustrates the results and provides a dis-
cussion of the algorithm.

2. GRID ALGORITHM

The 2D DLM problem [3] is a problem of finding the inten-
sity level for each pixel bi;j 2 B (finite) that minimizes an
additive cost metric with local dependencies �(�). Specifi-
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cally, the desired image is B̂ which satisfies

B̂ = argmin
B

N�1X
i=0

N�1X
j=0

�(zi;j ;Ti;j) (1)

where B = fbi;jg
N�1

i;j=0 is a candidate image, Ti;j is the
value of this candidate image in the neighborhood of (i; j),
and zi;j is the observation at location (i; j). Particularly,
zi;j is the (filtered) original gray-scale intensity at location
(i; j) in the halftoning problem and zi;j is the received in-
tensity at location (i; j) for the image deblurring problem.
In addition, the support region of �(zi;j;Ti;j) determines
the number of possible values of Ti;j – e.g., if the support
region is 3�3 and bi;j is binary, there are 29 possible values
of Ti;j, which we refer to as local configurations.

The 2D DLM problem may be written as a two-step
problem of the form

b̂k;l = argmin
bk;l

2
4min
B:bk;l

N�1X
i;j=0

�(zi;j ;Ti;j)

3
5 (2)

where the inner minimization is conducted for all image
candidates corresponding to the conditional value bk;l. The
problem of computing this inner minimization in (2) is a
well-known problem in engineering and computer science
(e.g., see [1, 2, 5] and references therein). Algorithms based
on the notion of message-passing on graphical models may
provide efficient solutions to this problem. Specifically, if
the underlyinggraphical formulation is cycle-free, message-
passing algorithms provide the desired solution. Recently,
however, it has been widely appreciated that message-passing
algorithms can be very effective in practice even when the
underlying graphical model contains cycles (i.e., when there
is no theoretical assurance of optimality). In the following
we describe briefly the operation of a message passing al-
gorithm based on a novel graphical model for the 2D DLM
problem in (2). The underlying principles used to define
the standard messages and update rules have been described
from a variety of perspectives and the reader is referred to
the following for details: [1, 2, 5, 10].

The underlying graphical model used is the grid model
shown in Fig. 1(a). The two types of nodes represent the im-
age variables bi;j and the local configurations Ti;j, respec-
tively. The edges connecting the configuration nodes repre-
sent the “overlap” (or mutual information) between the con-
figurations that they connect. Applying the standard mes-
sage passing technique, there is a processing node corre-
sponding to each configuration node in Fig. 1(a). The role
of this node is to accept some messages from the other (di-
rectly connected) processing nodes, and to return a similar
message to each of those nodes. These messages represent
some measure of the quality of each of the possible con-
figurations of the edge variables. By repeated activation of
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(a) Grid Model
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(b) Combine and Fusion
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(c) Example of Marginalization

Fig. 1. Graphical Model for Grid Algorithm.

these processing nodes, the global configuration (i.e., B) is
eventually accounted for via these edge messages.

For a concrete example, consider a 3� 3 support region
and binary bi;j and the node processor at location (i; j).
Each of the four edge variables comprises 6 binary pix-
els, so that each takes on 64 conditional values. Let Ui;j ,
Di;j, Li;j, and Ri;j define the edge variables in the “up”,
“down”, “left” and “right” directions from (i; j), respec-
tively. For a given variable v taking a finite number of val-
ues, let MI[v] denote the incoming messages to the node
processor at (i; j), then for each of the 29 possible local
configurations, we compute the metric

M[Ti;j] = �(zi;j ;Ti;j) + MI[bi;j] (3)

MI[Ui;j] + MI[Di;j] + MI[Li;j] + MI[Ri;j]

Note that each of the conditional variables on the right-hand
side of (3) are determined uniquely by the configurationTi;j
considered. This message combining or fusing process is
illustrated in Fig. 1(b). The messages returned in each di-
rection are obtained by minimizing over consistent config-
urations and subtracting the corresponding input message.
For example, the message sent out to the right is

MO[Ri;j] = min
Ti;j :Ri;j

M[Ti;j]� MI[Ri;j] (4)

where the minimization is conducted for all local configu-
rations Ti;j corresponding to the edge variable Ri;j. This
marginalization processing is shown in Fig. 1(c). The mes-
sages sent out in other directions are defined analogously.



An algorithm for the 2D DLM problem is then obtained
by specifying a schedule for activating the node processors
and a stopping condition. After stopping the algorithm, the
value of the halftone image at location (i; j) is selected to
be the minimizer of the quantity MO[bi;j] + MI[bi;j].

3. REDUCED-COMPLEXITY GRID ALGORITHM
FOR DIGITAL IMAGE HALFTONING

In this paper, we consider the least-squares optimization
corresponding to a halftoning problem, defined as

B̂ = argmin
B

N�1X
i=0

N�1X
j=0

(zi;j � X (Ti;j))
2 (5)

where bi;j is the intensity level of halftone image, zi;j and
X (Ti;j) are filtered versions of gray-scale and halftone im-
ages, respectively, X (Ti;j) = bi;j�hi;j and zi;j = yi;j�h

0

i;j,
where yi;j is the original gray-scale image. The filters hi;j
and h0i;j are 2D eye filters. All images are N � N and
black (white) pixels are represented by 1 (0) intensity level.
Therefore, the grid algorithm is applicable with, however,
an exponential complexity of the size of Ti;j or the size
of the support for the filter h. This requires a number of
reduced-complexity techniques to enable the use of suffi-
ciently large filters.

To limit the complexity of message updating, let T 0

i;j

be a L-shape pattern fbi�1;j; bi;j�1; bi;jg with 8 possible
configurations. The square-error metric is modified to be

B̂ = argmin
B

N�1X
i=0

N�1X
j=0

(�zi;j � X
0(Ti;j))

2 (6)

by assigning the most updated decision of the intensity lev-
els, b̂i;j, to all pixels in Ti;j but outside T 0

i;j . Therefore,

X
0(Ti;j) = h1;0bi�1;j + h0;1bi;j�1 + h0;0bi;j (7)

�zi;j = zi;j � �hi;j � b̂i;j (8)

b̂i;j = argmin
bi;j

MO[bi;j] + MI[bi;j] (9)

where the filter �hi;j is an eye filter hi;j with h1;0 = h0;1 =

h0;0 = 0 and b̂i;j is the current decision value of bi;j. Note
that, Ui;j = bi�1;j, Li;j = bi;j�1, and Di;j = Ri;j = bi;j
Define a node activation as a operation of message updat-
ing (i.e., (3) and (4)), thresholding for bit decision (9), and
decision feedback (8). Then, the reduced-complexity al-
gorithm is conducted by running a sequence of node acti-
vations as follows. For each iteration, nodes Ti;j are ac-
tivated row-wise left-to-right and right-to-left from top-to-
bottom, and then column-wise top-to-bottom and bottom-
to-top from left-to-right. This will be run iteratively until
a stopping condition is reached. For numerical stability, a

algorithm square-error cost
metric (per pixel)

Reduced-Complexity Grid algorithm 0.000260
Toggle/Swap [6, 7, 9] 0.000139
Toggle Only [6, 7, 9] 0.000417
Floyd-Steinberg error diffusion [11] 0.000347

Table 1. Comparison of square-error cost metric.

metric normalization is done so that the metric correspond-
ing to 0-bit is 0. This allows all messages are represented
by one number and simplifies the additions in (3) and (4).
Therefore, the message updating requires 8 multiplications,
at most 30 additions, and at most six 4-way compare/select
operations. The decision feedback for each b̂i;j requires a
jTi;jj-3 additions. Each node is activated 4 times in each
iteration. Note that the complexity of the associated look-
up-table (LUT) is considered negligible.

4. RESULTS AND DISCUSSION

To test the reduced-complexity algorithm in Section 3, the
512�512 gray-level Lenna image was used as a test image.
The filters hi;j and h0i;j are Gaussian with � = 1:5 (trun-
cated to 9�9) and � = 0:9 (truncated to 5�5), respectively.
The initial binary image is randomly generated and all mes-
sages are initiated with zero metric. Fig. 2 shows a result of
this algorithm at the 10th iteration and Table 1 provides a
comparison in terms square-error cost metrics among vari-
ous techniques. It was found that these metrics can roughly
characterize the subjective quality of the halftone images.
Using the same metric, the image from a toggle/swap tech-
nique (after 19 iterations) is shown in Fig. 3. As a result, the
image quality from the proposed technique is comparable
to that of the toggle/swap technique (used in 2D LSMB [9]
and DBS [6, 7]) which is regarded as a very high-quality
halftoning process.

In the comparison with the toggle/swap scheme, the spe-
cific DBS approach we simulated is that in [7], which, to
the best of our knowledge, is the highest performance one
to date. When comparing the relative complexities of the
grid technique and the DBS approach we implemented both
without filter- or image-dependent optimizations. Thus we
do not use any initialization in either technique and we do
not explore potential complexity reductions that may arise
from symmetries in the values of the filter coefficients. In
fact, for the DBS approach, this is called the original ver-
sion in [7]. Under these conditions the complexity of the
two approaches is comparable, with the grid technique be-
ing generally faster than toggle/swap and about the same
speed as toggle-only schemes. Note that this complexity
does not include the complexity of the table initialization
for both techniques. In [7], a number of techniques have



Fig. 2. Reduced-complexity Grid algorithm (10th iteration).

been introduced to accelerate the DBS operation. Most of
these techniques (e.g., choosing a good initial image before
the start of the iteration) can be used within our framework
as well so that we expect our algorithm, once filter- and
image-dependent optimizations have been incorporated, to
operate at least at a comparable speed. In addition, other
techniques can be used to reduce complexity of the grid al-
gorithm. In fact, it is straightforward to show that the er-
ror diffusion [11] and 1D LSMB [8] can be derived from
this grid algorithm but with the recursive and 1D eye fil-
ters, respectively. Finally, it is worth noting that the algo-
rithm introduced herein is applicable to general 2D DLM
problems with essentially the same complexity regardless
of the metric being used. Techniques such as toggle/swap,
however, are designed to exploit special properties of addi-
tive quadratic metrics. If alternative metrics were required
(e.g., to produce an optimal halftone under an entropy con-
straint) the complexity of the algorithm would increase sub-
stantially. The application of the grid algorithm to other 2D
DLM problems, such as optimal near-lossless compression
and entropy-constrained optimal halftoning, is an interest-
ing area for future research.
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