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ABSTRACT 
 
Diffusion MRI (D-MRI) opened a new front for uncovering the convoluted structure of the 
central nervous system by providing the capability for non-invasive identification of geometries 
of white tracts in the brain. It is well understood that, this imaging modality is characterized by 
the shape of the self-diffusion (SD) profile within the brain fibers. Despite previous efforts in the 
literature for quantification of this physical phenomenon, most current methods suffer from a 
number of constraints which severely limit the extent of their practical applicability. Here, by 
relaxing limitations of previous work, we address the solution of the SD process in its most 
general partial differential equation (PDE) form. To this end, we develop an approach based on 
the finite elements methodology (FEM) to obtain the numerical SD solution in multi-
compartments models of white tracts. Our method provides more flexibility for geometry and 
material of different white tracts compartments than existing techniques.  Due to the finite 
resolution of D-MRI signals, reconstruction of the SD profile is voxel-wise rather than point-
wise. We formulate this problem in terms of parameters of microstructures of white tracts, 
passing through a voxel. Consequently, the developed method can easily accommodate 
challenging situations such as tract crossings and demyelinations into computing the voxel 
aggregate propagators.   
 
Keywords: Brain imaging, Brain Mapping, Diffusion Tensor imaging, Diffusion magnetic 
resonance imaging, DTI, Axon. 
 
INTRODUCTION 
 
During the past two decades, diffusion magnetic resonance imaging (D-MRI) (1-3) has found 
many applications in diagnoses and studies of abnormalities and diseases associated with the 
central nervous system (CNS). Example includes, Ischemia (4-6), Multiple Scleroses (7,8), 
Parkinson’s (9), Alzheimer’s (10,11) and schizophrenia (12). The D-MRI signal is characterized 
by the Brownian motion of water molecules within the biological tissues, a process known as 
self-diffusion (SD). The applicability of this method is rooted in an important assumption that 
the direction of the SD process is identical to the orientation of the tissues of study. 
Consequently, the general problem in the study of biological tissues by the D-MRI technology is 
to assess the tissues structure from the measured SD propagation profile.  
The CNS white tract (WT) tissues consist of parallel and well-organized multi-compartment   
environment which causes the SD process to have directional preference along the WT axonal 
fibers orientations, which makes them appropriate candidates to be studied by D-MRI. The 
impacts of the compartments material, geometry packs, and structural parameters, which are in 
the microscopic scale, are prevalent on aggregate SD propagation profiles in MRI voxels. 
Inferring the structure of WTs from measured D-MRI signals is often an ill-posed problem. To 
this end, quantification of the SD process in the WT environment can help identify salient 
constraints to facilitate the assessment of the WT structure from the incomplete data.  
The SD propagation within the WTs has been previously addressed in the literature. The tensor 
model (13-14) is the most famous experimental approach for the SD characterization within a 
voxel. Despite its theoretical and practical simplicity, this macroscopic model falls short in 
accommodating the relation between microscopic WT parameters and the aggregate SD 
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propagator of a voxel. As an alternative view, there are analytical and numerical measures for the 
microscopic assessment of the SD process. Due to the complexity of biological tissues, the 
analytical approaches (15-18) are confined to oversimplified models of WTs which severely 
limit the extent of their applicability to the practical clinical domain. The Monte Carlo (MC) 
simulation (19-21) offers a prevalent numerical method to simulate the SD process of water 
molecules. One of the drawbacks of the MC simulation is its extremely high computational 
complexity. Hwang et al. (22) addressed the problem by providing a finite difference (FD) 
solution to the approximate SD partial differential equation (PDE) in the WT environments. 
However, they provided no quantitative relations between the microscopic SD within the axonal 
microstructure and the macroscopic aggregate SD regime. Besides, it is well-understood that the 
FD does not provide an effective technique for the solution of PDEs with irregular boundary 
conditions such as complex geometries of WTs.  
It is fair to say that the solution of PDE of SD propagation under a general geometrical structure 
of axons has not properly been addressed in the literature. The main difference between solving 
the SD-based PDE and conducting the MC simulation is that we deal with the average statistical 
behavior of water molecules in the former approach while we perform the statistical simulation 
of individual particles in the latter one. It is obvious that the former can dramatically reduce the 
computational complexity of the latter. Besides, the microscopic parameters (e.g. axons 
diameters, spacing, myelin thickness, etc.) of WTs are explicitly involved in the SD-based PDE, 
which makes it possible to easily account for their effects. 
To summarize, the intention of our current study is to establish a numerical foundation for the 
solution of the SD-based PDE with general WT geometries, which imposes no constraints on the 
axonal models as demanded by previous work. To this end, we devise a PDE solution technique 
based on the higher-order finite elements methodology (FEM) (23) for the multi-compartment 
environment of WTs. Our main contributions can be categorized as follows. First, theoretical 
constraints are devised to make FEM applicable to the solution of the SD-based PDE in multi-
compartment environments, which is not automatically held by the standard FEM. Second, we 
develop a numerical scheme to validate the PDE solution. The relation between the microscopic 
SD and axonal parameters, and the aggregate SD propagation of an MRI voxel is analytically 
formulated. The microscopic SD process occurs in the micron range and, unlike its macroscopic 
aggregate counterpart, is unobservable by D-MRI measurements. Finally, our developed 
methodology is implemented in form of a software tool, which is applicable to general 
geometries of axons.      
 
THEORY AND METHOD 
 
It is theoretically well-understood that the observed signal of a D-MRI voxel is strongly tied with 
the SD profile of spin magnets (e.g., water molecules) within the voxel. Such a relation 
constitutes the foundation of many applications of this imaging technique for exploring the WT 
structures in the CNS. For narrow diffusion gradient pulses, the D-MRI principal signal 
formation is given by the following formula (24), 
 

 ܵሺ݇, ሻݍ ן ׬ Ԣሻ݁ଶగ௜ݎሺߩ ௞.௥ᇲ ׬ ௥ܲᇱሺݎ, Δሻ ݁ଶగ௜௤.൫௥ᇲି௥൯ ோݎ݀  Ԣݎ݀
Rᇱ , (1) 

 
,ᇱݎ୼ሺܧ  ሻݍ ן ࣠ሾܵሺ݇,  ሻሿ. (2)ݍ

 



 

3 
 

In the above equations, ߩሺݎᇱሻ  is the concentration of spin magnets, k is the k-space variable, q is 
proportional to the applied diffusion gradient vector, and Δ is the effective diffusion time during 
the course of signal acquisition. S(k,q) is the k-space signal which forms a Fourier pair with 
,ᇱݎ୼ሺܧ  ሻ, the D-MRI signal observed at position r’, as a result of applying diffusion gradient qݍ
and effective diffusion time Δ (24-25). The D-MRI signal in Eq. 1 explicitly depends on the SD 
process through the term ௥ܲᇱሺݎ, ∆ሻ which is referred to as the SD propagator. It is defined as the 
probability density function of transition of a water molecule from coordinate position r’ at time 
t=0, to position r, at time t=∆. Throughout this work, notation ܲሺݎ, ∆ሻ is used to represent the 
case where the coordinates origin is shifted to r’; namely, r’=0. 
The SD propagator is governed by a second order parabolic PDE (26) as given by 
 

 డ௉ ሺ௥,௧ሻ
డ௧

ൌ ׏ ,ݎሺܲ׏ሻݎሺܦ  ሻ, (3)ݐ

 
where D(r) is the SD coefficient at position r.  The solution of the equation can be uniquely 
specified, if it is accompanied by additional initial and boundary conditions,  
 

 ܲሺݎ, ݐ ൌ 0ሻ ൌ  ሻ, (4)ݎሺߜ
 

 ܲሺݎ ൌ ∞, ሻݐ ൌ 0. (5) 
 
The brain WTs consist of bundles of axons which exhibit different SD speeds at different 
locations. Consequently, the volume of the tissue of interest is partitioned into a number of 
compartments such that the SD coefficient is continues within a compartment, and it has 
discontinuities on the surface boundaries between neighboring compartments. Hence, the 
solution of the original PDE in Eq. 3 has to be examined in a multi-compartments scenario. To 
uniquely identify the solution in such environments, it is necessary to have additional boundary 
layer constraints for coupling the solutions of two adjacent compartments on their shared 
boundary (27) as given below 
 

ሻݎേሺܬ  ൌ ሻݎേሺܦ ׏ േܲሺݎሻ. ሬ݊Ԧሺݎሻ , (6) 
 

where ܬ  is the SD probability flow and ሬ݊Ԧ is the normal vector to the layer surface. The + and – 
subscripts are used to discriminate quantities on two opposite sides of a layer.   
Due to the microstructure complexities of WTs, it is often difficult to find analytical (exact) 
solutions for the PDE and, therefore, numerical (approximate) techniques have to be exploited 
inevitably. The higher-order FEMs (23) provide a superior tool for numerical solution of PDEs 
with boundary conditions defined on complex geometries. Another advantage of this family of 
methods is that it provides a great degree of flexibility to control the solution precision.  
A standard FEM solution consists of three main steps (26): 1) conversion to the variational 
domain, 2) discretization of the solution and reducing the problem to simple ordinary differential 
equations (ODEs), and 3) the solution of the ODEs. Since the SD coefficient value in Eq. 3 is 
discontinues on layer boundaries between compartments of WTs, the higher order FEM is not 
directly applicable to our problem in its standard form. However, the FEM includes a host of 
nice properties which can be employed to devise rules to make a modified FEM applicable to our 
problem.   
As the first step of the FEM solution, the space of the original PDE is transformed to the 
variational domain by multiplying both sides of Eq. 3 by an arbitrary function u(r) and 
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integrating over the whole sample volume ߗ.   For multi-compartment environments, integrating 
over ߗ  is equivalent to partitioning the integration domain into the compartment volumes  ԧ௜ݏ, 
as presented in the following, 
 

 
෍ න

߲ܲሺݎ, ሻݐ
ݐ߲

ሻݎሺݑ  ݎ݀
  

ԧ೔

 

௜

ൌ ෍ න ሻݎሺݑ ሻݎሺܦ׏ ,ݎሺܲ׏ ሻݐ .ݎ݀
ԧ೔௜

 (7) 

 
Application of the divergence theorem (26) reduces the order of spatial derivatives as shown 
below, 
 

 ෍ න
߲ܲሺݎ, ሻݐ

ݐ߲ ݎ݀ ሻݎሺݑ 
  

ԧ೔

 

௜

ൌ  ෍ ቈെ න ሻݎሺܦ ሻݎሺݑ׏ · ,ݎሺܲ׏ ሻݐ ݎ݀
ԧ೔

൅ න ሻݎሺܦሻݎሺݑ ,ݎሺܲ׏ ሻݐ ·  ݀ܵሬሬሬሬԦ 
ௌ೔

቉
 

௜

, (8) 

 
where  ௜ܵ  is the surface of ԧ௜. For the exact solution, the application of layer boundary conditions 
in Eq. 6 eliminates the surface integral on the right hand side of Eq. 8. However, for approximate 
(FEM) solutions, this property does not automatically hold, and the design of the solution must 
be adapted to contain the property. To understand how this constraint is imposed on the 
approximate solution, it is important to understand the properties of the FEM and design the 
approximate solution such that it accounts for the layer boundary conditions.    
In the FEM, the spatial domain is partitioned into non-overlapping small 3D volumetric shapes 
which are referred to as elements. Fig. 1 shows a tetrahedral element employed for the 
experiments of this study. Within an element, the solution is approximated by a linear 
combination of a finite number of polynomial basis functions, and the global solution is 
approximated by a linear combination of all basis functions of all elements as given by 

 
ܲሺݎ , ሻݐ ൌ ෍ ሻݐ௜ሺߙ ߮௜ሺݎ ሻ

ே

௜ୀଵ

,  (9) 

where  ߙ௜ values are coefficients to be determined by the solution, and ߮௜s are the polynomial 
basis functions. For the tetrahedral element, different polynomial bases can be defined for the 
element vertices (lower order bases), as well as for the element edges, faces, and interior regions 
(higher-order bases). For more details, we refer to (23). 
For accommodation of the layer boundary conditions by the FEM approximate solution in Eq. 9, 
we devise two theoretical rules which are elaborated in Appendix B. It is shown that upon 
fulfillment of those rules, the surface integrals in Eq. 8 is eliminated and the original PDE in Eq. 
3 reduces to a simple linear time invariant (LTI) ODE (26), as summarized by 
 

 ܵ ڄߙ ൌ ܯ  ,ߙ
 

ߙ ൌ ሾߙଵሺݐሻ, ڮ ,  ,ሻሿݐேሺߙ
(10) 

 
where ߙ is a vector of coefficients of the basis functions in Eq. 9. The stiffness and mass 
matrices, denoted by S and M, are large squared sparse matrices of constant entries for two sides 
of Eq. 22.   
The value of  ߙ at time t=0 is exploited to initialize the ODE system. This vector can be 
calculated by projecting the initial condition function in Eq. 4 into the space of basis functions of 
the FEM. This is accomplished by minimization of a norm distance between the actual initial 
function and approximate representation as presented by 
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ะܲሺݎ, ݐ ൌ 0ሻ െ ෍ ݐ௜ሺߙ ൌ 0ሻ ߮௜ሺݎሻ
௜

ะ
ு

, (11) 

 
where ԡ. ԡு is the appropriate norm defined on function space H. The choice of the function 
space is according to the nature of the problem (e.g. the Sobolev space)(26).  
Considering that the initial value function is in form of the Dirac delta function, its 
approximation by a linear combination of piecewise polynomials is inaccurate. On the other 
hand, the SD propagator is essentially a probability density function whose integration over the 
global spatial domain must be one at all time instances. This conservation rule for the propagator 
is implied by the original PDE in Eq. 3, and no extra explicit mechanism is available to enforce 
this property. As a result, any error induced in the calculation of the initial value vector, will be 
preserved and propagated as time evolves. To this end, it is crucial to suppress the error of the 
initial value function approximation. To address this issue, we narrow our attention on small time 
interval ሾ0,  ఌ is sufficiently small suchݐ ఌ is a small time right after initial time t=0. Ifݐ ఌሿ, whereݐ
that water molecules do not find enough time to arrive at any restricting layer boundaries, the SD 
will be free (unrestricted) (24) during the time interval (see Appendix C for a formal proof). 
Then, the analytical closed-form solution of free SD (24) can be exploited for evaluation of the 
propagator values as given below,   
 

 
௙ܲ௥௘௘ሺݎ, ሻݐ ൌ ሺ4ݐܦߨሻିଷ

ଶൗ ݁ൣି௥మ ሺସ஽௧ሻ⁄ ൧ , ݐ א ሾ0,  ఌሿ. (12)ݐ
 
As a result, if the system is initialized at time t=ݐఌ with initial value function ௙ܲ௥௘௘ሺݎ,  ఌ ሻ, theݐ
solution must be unchanged (namely, the ODE is LTI). The advantage of this time shift is that 
the initial value function is now of the exponential form, whose approximation by a linear 
combination of piecewise polynomials is far more accurate that the original Delta function. For 
assessment of reasonable values for ݐఌ the Einstein equation (24) can be utilized. 
  

 ݈ ൌ ඥ2ݐܦఌ , (13) 
 
where l is the distance of the point of interest within the compartment to the nearest layer 
boundary. 
 
Validation 
 
For general geometry of WTs, validation of the FEM solution is a challenging task due to the 
lack of ground truth. A valid solution is identified if it satisfies Eqs. 3-5 (28). The initial value 
condition is realized by delayed-initialization as introduced previously. Since the FEM mesh 
generation is performed in the finite spatial domain, it implies that the value of the solution is 
equal to zero at infinity. Hence, the boundary condition of Eq. 5 is satisfied, too. Therefore, the 
necessary and sufficient condition for a valid solution is that it conforms with the original PDE 
of Eq. 3. It can be shown that for a compartment with constant SD coefficient ܦԧ೔ , the original 
PDE reduces to the following simple relation,  
 

 
ԧ೔ܦ ൌ

߲ܲሺݎ, ሻݐ ⁄ݐ߲
,ݎଶܲሺ׏ ሻݐ . (14) 
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The FEM provides the temporal and spatial evolutions of the solution, which makes it possible to 
numerically calculate the partial derivatives in Eq. 14. For multi-compartment diffusive 
environments, a valid solution must confirm in Eq. 3 (or Eq. 14 for the case of constant SD 
coefficient) in all compartments.  
 
Voxel Aggregate SD Propagator 
 
From Eqs.1 and 2, the ideal (infinite resolution) DMRI signal formation at position r’ is given by 
 

,ᇱݎሺܧ  ∆, ሻݍ ן Ԣሻݎሺߩ න ,ݎԢሺݎܲ ∆ሻ Ԣሻݎെݎሺ.ݍ݅ߨ2݁ ݎ݀
ܴ3

. (15) 

  
However, due to practical limitations (25), the K-space sampling is often imperfect and the 
reconstruction of the signal is prone to local averaging over a voxel. Hence, an estimate of the 
observed D-MRI signal in voxel ௝ܸ could be obtained by averaging Eq. 15 over all spin magnets 
of the voxel, 

௏ೕܧ 
௔௩ሺ∆, ሻݍ ן

1
Ν୨

න න ,ݎԢሻ ௥ܲᇱሺݎሺߩ ∆ሻ ݁ଶగ௜௤.ሺ௥ି௥ᇱሻ ݎ݀
 

Թయ

 

௏ೕ

 Ԣݎ݀

                   ൌ  න ݁ଶగ௜௤.ோ ൝
1
Ν୨

 න ᇱݎԢሻ ௥ܲᇱሺݎሺߩ ൅ ܴ, ∆ሻ݀ݎԢ
 

௏ೕ

ൡ 
ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ

ܴ݀

௉തೇೕሺோ,∆ሻ

 

Թయ
, (16) 

where Ν୨ ൌ ׬  Ԣݎ݀ Ԣሻݎሺߩ
Vౠ

 , denotes the total number of spin magnets in the voxel, and തܲ௏ೕ
ሺܴ, ∆ሻ is 

the weighted average of the propagator over voxel ௝ܸ. It is known (15) that for long term SD 
processes, the concentration parameter  ߩሺݎԢሻ is uniform over the entire region of a compartment. 
Therefore, it is possible to evaluate the average voxel propagator by partitioning the voxel 
volume into its constituting compartments, 
 

  തܲ௏ೕ
ሺܴ, ∆ሻ ൌ

1
Ν୨

෍ ௞ߩ න ܲ௥ᇲሺݎᇱ ൅ ܴ, ∆ሻ݀ݎᇱ

ԧೖ௞

 

      ൌ ෍ ௞݂ തܲ௞ሺܴ, ∆ሻ,
௞

 
(17) 

 
where ߩ௞is the constant concentration parameter, ௞݂ ൌ ఘೖ௏ೖ 

∑ ఘ೘௏೘೘
  is the spin magnet fraction ( ௞ܸ is 

the volume of compartment k confined to the voxel region), and തܲ௞ሺܴ, ∆ሻ is the average 
propagator of compartment k.  
 
RESULTS AND DISSCUSION 
 
The hexagonal-array-of-cylinders (15,22) model is utilized for modeling the WTs environment in 
our computer simulation study, although far more complex axonal geometries can be handled 
with the developed method. In this model, a myelinated axon is represented by an inner cylinder 
as the cell cytoplasm region, and a coaxial cylindrical sheath that models the thick myelin layer 
around the axon cell. The effect of the axon membrane’s partial permeability is lumped into the 
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permeability of the myelin sheath.  The organization of myelinated axons within a WT is 
assumed to be hexagonal as illustrated in Fig. 2. It is further assumed that the SD coefficient is 
constant within a compartment (three different compartments identified in the provided model 
which are cytoplasm, myelin sheath, and extracellular regions). A sample discretization of this 
model by tetrahedral elements (tetrahedralization) is illustrated in Fig. 1.  
For experiments of this study, unless otherwise specified, the following parameters settings will 
be employed. The sample dimensions (i.e., the volume over which the PDE solution is evaluated) 
are set to 15x15x15 ݉ߤ along the x-, y-, and z-axes, respectively. The radii of inner cylinders 
corresponding to cytoplasm regions are set to ܴ௜௡ ൌ  and the radii of myelinated axons are ,݉ߤ 3
set to ܴ௢௨௧ ൌ  For the hexagonal organization of axons within a white tract, the distance .݉ߤ 4
between the axels of two neighboring cylinders is chosen to be ܮ ൌ  The SD coefficients .݉ߤ 10
for the cytoplasm, myelin, and extracellular regions are selected as  ܦ௖ ൌ ௠ܦ, ݏ݉/ଶ݉ߤ 1.0 ൌ
௘ܦ and ,ݏ݉/ଶ݉ߤ 0.05 ൌ  respectively. Following the parameterization for water ,ݏ݉/ଶ݉ߤ 1.9
concentrations in (15), the concentrations of water molecules are set to ߩ௖ ൌ ௠ߩ ,0.85 ൌ 0.5, 
௘ߩ  ൌ 0.9, and ߩ௚ ൌ 0.9 for the cytoplasm, myelin, extracellular, and off-tract regions, 
respectively. Tetrahedral elements are utilized for construction of the sample mesh of the FEM. 
In order to relax the minimum rule of conformity to the Sobolev space (see Appendix A), the 
maximum degree of polynomial functions for the edge, face, and bubble bases are set to ݌௘ ൌ 3, 
௙݌ ൌ 4 and  ݌௕ ൌ 0, respectively. For the solution of the ODE system in Eq. 10, the high-order 
implicit Rung-Kutta method was employed. 
Fig. 3 specifies the transverse SD propagator – the probability of propagation in the plane 
perpendicular to the axons orientation - at the center of an axon (position 1 in Fig. 2) after time 
elapses by t = 15 ms. The effect of the myelin sheaths around the axon cells in characterization 
of the profile is evident and they, as a result of their partial permeability, form the shapes of the 
propagators in the neighboring cytoplasm and extracellular regions. 
In Fig. 4 the behavior of the SD propagator as a function of spatial and temporal variables is 
represented. Since the propagation along the axons orientation encounters no limitation, the 
evolution of the parallel SD profile always stays close to the Gaussian shapes. On the other hand, 
as a result of the partial permeability of myelin sheaths, there are drastic deviations from 
Gaussianity in the transverse propagators. Discontinuities of the transverse propagator at 
boundaries between compartments are indications of accommodation of layer boundary 
conditions by our devised methods (see Appendix B). 
It was stated before that a valid solution is identified if and only if it confirms in the original 
PDE in Eq. 3 in all compartments and all positions. For the hexagonal-array-of-cylinders model, 
the original PDE reduces to a simple relation given by Eq. 14. The practical approach is to 
perform the evaluations at several sample points of a compartment and study the results statistics 
(e.g. means and standard deviations). In Fig. 5, evaluation results for the SD propagator at the 
center of an axon (position 1 in Fig. 2) performed at cytoplasm and myelin compartments are 
presented. We see that the results of the cytoplasm region are in the valid range from the 
beginning, whereas it takes about 5 ms to have accurate outcomes in the myelin region. This 
delay is caused by the time which takes water molecules to depart from the center of the axon 
and arrive at the myelin region. 
In Fig. 6, the aggregate SD propagators in different compartments of a voxel, as results of Eq. 
17, are presented. For computation of a compartment aggregate propagator, discrete integration 
techniques are employed. To evaluate the propagators in the regions of a voxel that are not parts 
of the passing tract(s), an isotropic propagator model, as provided in Eq. 12, is considered. It can 
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be seen from the 1D and 3D voxel aggregate propagator profile that the SD process is quite 
anisotropic along the axons orientation. Also, the role of the myelin region in overall voxel SD 
anisotropy is downplayed by the small degree of anisotropy of those regions, as well as their low 
level of water molecules concentrations (see Eq. 17). Also, the extracellular regions exhibit large 
transverse propagation, which is due to spacing among axons. In Fig. 7 the voxel aggregate 
propagator for the case of crossing tracts is presented.  In Fig. 8, it is shown that how our method 
can be utilized for studies of nerves degeneration, such as axons demyelinations. It is illustrated 
that, as a result of the damage to the myelin layer around the axon, the resultant SD propagator 
becomes severely lateral. This raises serious questions about accuracy of symmetric models, 
such as the tensor model, for studies of these asymmetric conditions.   
 
CONCLUSION AND FUTURE WORK 
 
In this work, we developed a method based of the FEM technology for the solution of SD-based 
PDE in the brain WTs environment. We relaxed a lot of constraints imposed by the previous 
solutions on axonal microstructure geometries and material and extended a method to 
accommodate more realistic models of WTs. One of the highlights of this work is the 
formulization of the relations between the WTs microstructure parameters and voxels aggregate 
SD profile. This relationship is especially important since one can potentially assess 
unobservable axonal microgeometries from aggregate values of SD propagators over a voxel 
which are observable by D-MRI measurements. In the developed method, the capacity of 
including a large degree of variability in WTs structures makes it possible to study the effects of 
a number of WTs parameters on the SD propagator.  
As direct extensions of this work, we intend to include more axonal parameters such as effects of 
membrane partial permeability as well as non-scalar SD coefficients for the myelin sheaths 
regions. Also, we will extend the devised methodology to more general D-MRI data acquisition 
parameter setting such as wide gradient pulses.     
 
APPENDOX A: MINIMUM RULE OF CONFORMITY TO THE SOBOLEV SPACE 
 
The minimum rule is a constraint placed on the FEM basis functions to guarantee the smoothness 
of the solution. A common criterion for smoothness is the existence and square-integrability of 
spatial partial derivatives of the solution. This is also known as H1 conformity or conformity to 
the Sobolev space. In the case of tetrahedral elements, it can be shown (23) that the sufficient 
condition for conformity to the Sobolev space is fulfillment of the following inequalities for all 
tetrahedrons, 

௘ೕ݌  ൑ ௦೔݌ ൑  ௕, (18)݌
 
where ݌௘ೕ,  ௕ are the maximum degrees of polynomials associated with the tetrahedron݌ ௦೔, and݌
edges, faces, and interior regions, respectively. 
 
APPENDIX B: VARIATINAL FORMULATION 
 
In this section, our devised rules for accommodation of layer boundary conditions by the FEM 
approximate solution in Eq. 9 are presented. Let us consider a 2D element which is intersected 
by a layer boundary as illustrated in Fig. 9 (the result of this section can readily be extended to 
3D problems). For a position inside the 2D element, the FEM solution is smooth (polynomial 
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function), and applying the layer boundary condition in Eq. 6 results the following contradiction 
on the layer boundary, 
 

 ൜ܦା׏ ାܲ. ሬ݊Ԧ ൌ ିܲ׏ିܦ  . ሬ݊Ԧ
׏ ାܲ ൌ ିܲ׏ ฺ ାܦ ൌ  Contradiction! , (19)                   ିܦ

  
since the value of SD coefficient on the layer boundary has discontinuity by the assumptions. 
Therefore, as our first devised rule, in the generation of the FEM meshes, no element is divided 
by the layer boundaries as illustrated in Fig. 9. 
As specified in Appendix A, the minimum rule guarantees the smoothness of the FEM solution 
everywhere, including on elements boundaries. This smoothness can fail our first devised rule on 
the layer boundaries. To this end, as the second devised rule, the minimum rule must be violated 
in the design of elements polynomial bases. 
Accounting for the first and second devised rules, the layer boundary conditions are included and 
the surface integrals in Eq. 8 are eliminated which simplified the variational formulations as 
given by,  
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where ܭ௝ is the spatial region confined to the element j. Substituting the approximate FEM 
solution into Eq. 21 results the following, 

 
෍ ڄߙ 

௡ሺݐሻ ෍หܬ௄೔ห න ෨௝ߠ
௤ߠ෨௝

௡ ݀ߦ
 

௄෡

 

௝

ே

௡ୀଵ

ൌ െ ෍ ሻݐ௡ሺߙ ෍ ቚܬ௄ೕቚ ௝ܦ .
௝

ே

௡ୀଵ

  

 
 

෍ ෍ ෍
௦ߦ߲

௠ݔ߲

௥ߦ߲

௠ݔ߲
න

෨௝ߠ߲
௡

௦ߦ߲
 
෨௝ߠ߲

௤

௥ߦ߲
ߦ݀ 

௄෡

ଷ

௠ୀଵ

ଷ

௦ୀଵ

ଷ

௠ୀଵ

 

 
 

For q=1,…,N, 

(22) 

where หܬ௄೔ห is the Jacobean, and  డక೘
డ௫೙

 is the entries of the inverse of the Jacobi matrix of the 

isoparametric map associated with element ܭ௜ (23), and ߠ෨௝
௡ ൌ  ߮௡ ל ଵିݔ 

௄ೕ , and where ݔ௄ೕ is 
the isoparametric map from the reference element to element ܭ௜, and ߮௡Ԣs are the basis functions 
of the reference element (23,26). Note that Eq. 22 can be reformulated in a simple ODE form 
(23). 
 
APPENDIX C. INITIAL UNRESTRICTED SELF-DIFFUSION REGIME  
 
We consider a three-compartment environment with SD coefficients ܦଵ, ܦଶ, and ܦଷ in 
compartment regions 1,2, and 3, respectively. The goal is to evaluate the SD evolution at a point 
within region 1, as illustrated in Fig. 10, within a small time interval ሾ0,  ఌሿ. It is assumed that theݐ
time interval is sufficiently small such that water molecules do not have time to travel beyond 
distance l, which l is the distance of point r’ from the nearest boundary. By definition, the 
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propagator values will be equal to zero for all locations whose distances from r’ are larger than l, 
which include regions 2 and 3. As a result, we have the following equalities, 
 

 ߲ܲ௥ᇲሺݎ, ሻݐ
ݐ߲

ൌ ,ݎଶܲ௥ᇲሺ׏ܦ ሻݐ
௉ೝᇲሺ௥,௧ሻୀ଴
ሳልልልልልልሰ (23) 

 
 0 ൌ ݎ|                                         ;ܦ 0 െ ݐ  ,  Ԣ|>lݎ א ሾ0,  ఌሿ (24)ݐ

 
Eq. 24 is valid irrespective of all finite values of D, which implies that, during the small time 
interval, the original PDE is independent of the SD coefficient values in regions 2 and 3. In other 
words,  ܦଶ and ܦଷ can be set to any arbitrary finite value, including ܦଵ. Hence, The environment 
can be considered with no layer boundaries.  
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FIGURE LEGENDS  
 
FIGURE 1 
 
(left) A tetrahedral element used for discritization of this study, (right) a tetrahedralization of 
hexagonal array of cylinders model 
 
FIGURE 2 
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(left) A cylinder model for a single axon, Dm and Dc represent constant SD coefficients for 
cytoplasm and myelin sheaths regions. (right) hexagonal organization of axons in WTs 
 
FIGURE 3 
 
Transverse SD propagation profile at the center of an axon cell (position 1 in Fig. 2). The bundle 
of axons orientation is considered along the z- axis, and the propagation is evaluated in the x-y 
plane after time elapses by 15 ms. The elevation of the graph represents the intensity of SD 
propagation 
 
FIGURE 4 
 
Parallel (along the z- axis) and transverse (along the y- axis) SD propagators as functions of 
spatial and temporal variables, for the axons organization in Fig. 2, (TOP) (left) time evolution of 
parallel propagator at position 1 in Fig. 2, (right) time evolution of transverse propagator at 
position 1 in Fig. 2, (BOTTOM) (left) Parallel propagators evaluated at different positions in Fig. 
2 after 15 ms, (right) transverse propagators evaluated at different positions in Fig. 2, after 15 
ms,   
 
FIGURE 5 
 
Validation of the propagator at center of an axon. The model coefficients for cytoplasm and 
myelin regions during computation of the FEM solution are set to ܦ௖ ൌ ௠ܦ and ,ݏ݉/ଶ݉ߤ 0.6 ൌ
 respectively, which are treated as ground truths. The curves are calculated by ,ݏ݉/ଶ݉ߤ 0.015
averaging the evaluations of Eq. 14 at different sample positions of each compartment, for each 
time instance. The standard deviations (sd) are provided to show the precision of the solution. 
 
FIGURE 6 
 
Voxel aggregate SD propagator for a single tract, after t=15 ms,  (LEFT) (top) single WT 
passing through a voxel, (bottom) 1D parallel(along z- axis) and transverse(along y- axis) voxel 
aggregate propagator profiles, (MIDDLE) (top) 3D voxel aggregate propagator for the cytoplasm 
regions (bottom) 3D voxel aggregate propagator for the myelin regions, (RIGHT) (top) 3D voxel 
aggregate propagator for the extracellular regions, (bottom) 3D voxel aggregate propagator 
(average over all compartments). The values of 3D propagators are evaluated for displacement of 
 .in all directions ݉ߤ 8
 
FIGURE 7 
 
Voxel aggregate SD propagator with two crossing WTs 
 
FIGURE 8 
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Effect of demyelination on SD propagator, (left) demyelinated axon, (middle) SD propagator at 
the position labeled by the red arrow, (right) SD propagator for the same position within a 
healthy axon  
 
FIGURE 9 
 
(top) a 2D element intersected by a layer boundary. The value of SD coefficient on the layer 
boundary has discontinuity which is discriminated by + and – subscripts. (bottom) organization 
of elements such that the layer boundary does not have any intersections which elements interior 
regions.   
 
FIGURE 10 
 
Three compartment SD environment 
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FIGURE 10 


