

LIFTING TRANSFORMS ON GRAPHS: THEORY AND
APPLICATIONS

by

Godwin Shen

A Dissertation Presented to the
FACULTY OF THE USC GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the

Requirements for the Degree
DOCTOR OF PHILOSOPHY

(ELECTRICAL ENGINEERING)

August 2010

Copyright 2010 Godwin Shen

Dedication

To all of my wonderful friends and family.

ii

Acknowledgments

I would first like to thank my advisor, Professor Antonio Ortega, whose wonderful,

tireless guidance has shaped my ideas about research, and moreover, has helped

to re-shape and refine my approach to writing, analytical / critical thinking and

problem solving. Thanks is also due to Professor Bhaskar Krishnamachari and

Professor Ramesh Govindan for serving on my dissertation committee, as well as to

Professor C.-C. Jay Kuo and Professor Alexandros Dimakis for being members in

my qualifying exam committee. It is a privilege to have their advice on my work.

I would also like to thank Hua Xie, Samuel Dolinar, Matthew Klimesh, Aaron

Kiely and Michael Cheng from Jet Propulsion Laboratory, who have provided great

support throughout my research studies. Interactions with you have been wonder-

ful. I am also grateful for the many fruitful discussions and fun times we had during

my summer in Pasadena. I also owe thanks to Jaejoon Lee and HoCheon Wey from

Samsung Electronics Co., Ltd. Your support during the final year of my research

has been greatly appreciated.

Special thanks are also due to my colleagues in the Compression Research

Group. It has been a pleasure working with all of you and I have enjoyed the nu-

merous discussions we had about research, work and life in general. In particular, I

would like to thank Sunil Narang for all of our memorable research collaborations

and for teaching me everything I know about spectral graph theory. I also owe

thanks to Woo-shik Kim for our collaborations and for teaching me so much about

iii

video compression. I would also like to thank Ivy Tseng, Polin Lai, Insuk Chong

and Roger Pique for all of their advice, guidance and support. I also owe a special

thanks to Sean McPherson, who has been a great colleague and friend through all

of my time spent at USC.

From the Autonomous Networks Research Group, I owe special thanks to Prof.

Bhaskar Krishnamachari, Sundeep Pattem and Ying Chen for all of the unforget-

table years of collaboration. The time spent in our joint efforts has truly enriched

my experience at USC. I would also like to thank Paula Tarŕıo from Universi-

dad Politécnica de Madrid, Giuseppe Valenzise from Politecnico di Milano, Alfonso

Sánchez from Universidad Politécnica de Catalunya and Javier Perez Trufero from

Universidad Politécnica de Catalunya for all of the wonderful collaborations we

have undertaken.

I would also like to thank my mother Elena Shen and father Jen-Chi Kung

for their endless love, patience, guidance and support throughout my life. Special

thanks also to my brother Ernest Shen and to the rest of my family who have

always given me so much love and support. Finally, I would like to thank Vanessa

Hadikusumah for all of her love and support.

iv

Table of Contents

Dedication ii

Acknowledgments iii

List Of Tables viii

List Of Figures ix

Abstract xiii

Chapter 1: Introduction 1
1.1 Motivation . 2
1.2 Lifting Transforms on Graphs . 5
1.3 Transform-based Distributed Data Gathering 6
1.4 Joint Optimization of Transform and Routing 8
1.5 Graph-based Transforms for Image Coding 8
1.6 Outline . 10

Chapter 2: Lifting Transforms on Graphs 11
2.1 Preliminaries . 12
2.2 Even/Odd Split Design . 17

2.2.1 Tree-based Even/Odd Split 17
2.2.2 Graph-based Even/Odd Split 18

2.3 Prediction Filter Design . 21
2.3.1 Polynomial Prediction Filters 23
2.3.2 Data-adaptive Prediction Filters 24

2.3.2.1 Optimal Prediction Filters 24
2.3.2.2 Approximating Optimal Prediction Filters 25

2.4 Update Filter Design . 26
2.4.1 Mean-preserving Update Filters 27
2.4.2 Orthogonalizing Update Filters 28
2.4.3 Discussion . 31

2.5 Conclusions . 32

v

Chapter 3: Transform-based Distributed Data Gathering 33
3.1 Introduction . 34
3.2 En-route In-network Transforms . 40

3.2.1 Notation . 40
3.2.2 Definition of Unidirectional Transforms 43
3.2.3 Invertibility Conditions for Unidirectional Transforms 45
3.2.4 Discussion . 50

3.3 Unidirectional Transform Designs 54
3.3.1 Tree-based Karhunen-Loève Transform 54
3.3.2 Orthogonal Unidirectional Transforms 55
3.3.3 Tree-based DPCM . 56
3.3.4 Unidirectional Lifting-based Wavelets 57
3.3.5 Unidirectional 5/3-like Wavelets 61

3.4 Unidirectional Haar-like Wavelets 63
3.4.1 Transform Construction . 63
3.4.2 Discussion . 65

3.5 Quantization of Transform Coefficients 67
3.6 Experimental Results . 69

3.6.1 Experimental Setup . 69
3.6.2 Simulation Results . 71
3.6.3 Comparison of Filter and Even/Odd Split Designs 73

3.7 Conclusions . 74

Chapter 4: Joint Optimization of Transform and Routing 78
4.1 Introduction . 78
4.2 Joint Routing and Transform Optimization 83

4.2.1 Optimization Algorithm . 85
4.2.2 Feasible Set Construction 86
4.2.3 Feasible Set Search . 87

4.3 Heuristic Approximation Algorithm 88
4.4 Practical Considerations . 89
4.5 Evaluation of MST Performance . 91
4.6 Experimental Results . 93

Chapter 5: Graph-based Transforms for Image Coding 97
5.1 Overview . 98
5.2 Preliminaries . 101
5.3 Tree-based Lifting Transforms . 102

5.3.1 Tree-based Transform Design 104
5.3.1.1 Lifting Filter Design 105
5.3.1.2 Tree Construction 105
5.3.1.3 Separable Tree-based Transforms 107

5.3.2 Experimental Results . 108

vi

5.4 Edge-Adaptive Intra Prediction . 115
5.4.1 Edge-adaptive Intra Prediction 118

5.4.1.1 Edge Detection . 118
5.4.1.2 Predictor Selection 118
5.4.1.3 Discussion . 122

5.4.2 RD Optimization . 123
5.4.3 Experimental Results . 125

5.5 Conclusions . 127

Chapter 6: Conclusions 129
6.1 Future Work . 130

Appendix A
Additional Proofs . 132
A.1 Proof of Proposition 1 . 132
A.2 Proof of Proposition 2 . 133
A.3 Proof of Proposition 4 . 133

Bibliography 137

vii

List Of Tables

2.1 Table of common notation. 13

5.1 Edge map bit rates (in kbps). 126

viii

List Of Figures

1.1 Irregularly spaced nodes organized onto a rooted tree. 2

1.2 Example illustrating the communications required to compute the
transforms in [23, 36, 72, 73] in a distributed manner. White nodes
are even and gray nodes are odd. First even nodes must transmit
data to their odd neighbors. Odd nodes receive even node data,
compute transform coefficients, then transmit those coefficients back
to their even neighbors (and also to the sink). Even nodes then use
these odd node coefficients to compute their own coefficients, then
transmit them to the sink. Note that even nodes must transmit their
own data twice. 7

2.1 Examples of splitting on multiple trees. Black center node is the
sink, gray nodes are even and white nodes are odd. The first level
tree is shown in (a). In the second level tree (b), the even nodes
from the first level are again split and another level of transform
decomposition is performed. 19

3.1 Example of routing tree and a tree augmented with broadcasts. Solid
arrows denote forwarding links along the tree and dashed arrows
denote broadcast links. 38

3.2 Example of causal neighborhoods for each node. Node n receives
yDn

and yBn
from Dn and Bn, respectively, processes x(n) together

with yDn
and yBn

, then forwards its transform coefficient vector yn

through its ancestors in An. 43

3.3 Illustration of causal neighborhoods. Node n transmits at time t(n).
The left figure shows the full communication graph. The right figure
shows the graph after removing broadcast links that violate causality
and step by step decoding. 44

ix

3.4 Example to illustrate unidirectional computations. Nodes gener-
ate and transmit transform coefficients in the order specified by the
transmission schedule. 49

3.5 Example of splitting based on the depth of the routing tree. White
(odd depth) nodes are odd, gray (even depth) nodes are even and
the black center node is the sink. 58

3.6 Raw data example. Nodes 3 and 6 need x(2) to compute details
d(3) and d(6), so they must forward raw data over 1-hop to node
2. Nodes 4 and 5 need d(3) to compute s(4) and s(5), so they must
forward raw data over 2-hops. 62

3.7 Unidirectional Computations for Haar-like Transform. In (a), nodes
3 and 6 compute a first level of transform. Then in (b), nodes 3 and
6 compute a second level of transform on smooth coefficients of their
children. 65

3.8 No broadcasts are used in (a), so node 11 consumes more resources
when transmitting raw data x(11). Broadcasts are used in (b), so
node 11 consumes less resources when transmitting detail d(11). . . 67

3.9 Average percent cost reduction (Cr−Ct

Cr
). Solid and dashed lines cor-

respond to high and low spatial data correlation, respectively. Best
performance achieved by Haar-like transforms, followed by 5/3-like
transform and T-DPCM. High correlation data also gives greater
reduction than low correlation data. 72

3.10 Sample networks with corresponding Cost-Distortion curves. In (a)
and (c), solid lines denote forwarding links, dashed lines are broad-
cast links, circles are even nodes, x’s are odd nodes, and the square
center node is the sink. 76

3.11 Filter design comparison. Circles are even nodes and x’s are odd
nodes. Adaptive prediction filters do much better than fixed predic-
tion filters. Orthogonalizing updates provide almost no gain. 77

3.12 Split design comparison. Circles are even nodes and x’s are odd
nodes. Dashed lines denote broadcast links. Graph-based splits pro-
vide some improvements over tree-based splits. 77

4.1 SPT, MST, and Combined Tree . 82

4.2 Comparison of MST with RD optimal tree. 92

4.3 Performance Comparison of MST and RD Optimal Tree 93

x

4.4 Jointly optimized network with corresponding Cost-Distortion curves.
In (a), blue lines denote forwarding links, dashed magenta lines de-
note broadcast links, green circles represent even nodes, red x’s rep-
resent odd nodes, and the black center node is the sink. 94

4.5 Comparison of optimized graph-based splitting and optimized rout-
ing. In (a), blue lines denote forwarding links, dashed magenta lines
denote broadcast links, green circles represent even nodes, red x’s
represent odd nodes, and the black center node is the sink. 95

4.6 Cost reduction ratios with routing optimization. 96

5.1 Example to illustrate tree construction, where links in the tree (de-
noted by blue lines between pixels) are not allowed to cross edges in
the image (denoted by red dots) . 108

5.2 The Peppers image (a) and its corresponding edge map (b) 109

5.3 The Tsukuba depth map (a) and its corresponding edge map (b) . . 110

5.4 Rate-distortion curve for various transforms using peppers image.
Tree-based transforms give the best performance, and orthogonaliz-
ing update filters provide additional gain over mean-preserving up-
date filters. 111

5.5 Rate-distortion curve for various transforms using depth map im-
age. Tree-based transforms give the best performance, and orthogo-
nalizing update filters provide additional gain over mean-preserving
update filters. 112

5.6 Subjective performance comparison at 0.25 bpp. Our proposed method
has a PSNR of 42.65 dB whereas the standard 9/7 transform has
PSNR of 35.83 dB. This difference is clearly reflected in the recon-
structed images . 113

5.7 The Lena image (a) and Barbara image (b) 114

5.8 RD curves for the Lena image (a) and Barbara image (b) 114

5.9 Examples of blocks with different edge structure. Blocks such as
those in (a) and (b) can be efficiently represented by existing intra
prediction schemes. Blocks such as those in (c) are not efficiently
represented. 116

5.10 Predicted pixels (a-p) and predictor pixels (A-M) used in H.264. . . 116

xi

5.11 Example of valid predictors. This section of the image consists of two
flat regions separated by an edge shown by the thick solid line. In
this case pixels A, B, . . . , K and M are all valid predictors for pixels
a, b, . . . and i, but are not valid predictors for pixels h and j, k, . . . , p.
On the other hand, pixel L is only a valid predictor for pixels h and
j, k, . . . , p. 119

5.12 Example of graph used to find valid predictors using the same sam-
ple from Figure 5.11. The thick dotted line with small black circles
denotes the edges. Thin solid lines between pixels represent connec-
tions in the graph G. The thick solid line represents the boundary
between the current block and previously coded blocks. 120

5.13 Comparison of the rate-distortion curves between the proposed meth-
ods and H.264 AVC. x-axis: total bitrate to code two depth maps;
y-axis: PSNR of luminance component between the rendered view
and the ground truth. 126

5.14 Comparison of the rate-distortion curves between the proposed meth-
ods and H.264 AVC using IPPP structure. x-axis: total bitrate to
code two depth maps; y-axis: PSNR of luminance component be-
tween the rendered view and the ground truth. 127

xii

Abstract

There are many scenarios in which data can be organized onto a graph or tree.

Data may also be similar across neighbors in the graph, e.g., data across neigh-

boring sample points may be spatially correlated. It would therefore be useful to

apply some form of transform across neighboring sample points in the graph to

exploit this correlation in order to achieve more compact representations. To this

end, we describe a general class of de-correlating lifting transforms that can be

applied to any graph or tree, and propose a variety of transform optimizations.

We mainly focus on the design of tree-based lifting transform designs. Extensions

to graph-based lifting transforms are also discussed. As a first application, we

develop distributed graph-based transforms for efficient data gathering in wireless

sensor networks (WSNs), where the goal is to transmit data from every node in

the network to a collection (or sink) node along a routing tree. In particular, we

(i) propose a general class of unidirectional transforms that can be computed in a

distributed manner as data is routed toward the sink, and (ii) provide conditions

for their invertibility. Moreover, we show that any unidirectional lifting transform

is invertible, and propose a variety of tree-based lifting transform designs. By us-

ing these transforms to de-correlate data in the network, the total communication

cost for data gathering is significantly reduced. We also extend these tree-based

lifting transforms to incorporate broadcast communication links. This leads to

xiii

a set of graph-based lifting transforms for WSNs. In particular, nodes incorpo-

rate data received from their broadcast neighbors together with data received from

their neighbors in the routing tree. By doing so, they are able to achieve more data

de-correlation. By exploiting the additional broadcast communication links in this

way, these graph-based lifting transforms reduce the total communication cost even

further. In addition to the transform designs, we also propose an algorithm that can

jointly optimize the choice of routing tree with the transform. As a second applica-

tion, we also develop graph-based transforms for image compression. In particular,

we focus on designing graph-based transforms that avoid filtering across edges in an

image. This reduces the number of large magnitude coefficients, which are expen-

sive to code, and ultimately reduces the total bit rate while also preserving better

the edge structure in the reconstructed images. To this end, we first discuss how

our tree-based lifting transforms generalize existing wavelet transforms proposed

for image coding, then propose algorithms to design the trees and transforms. By

avoiding filtering across edges, our tree-based lifting transforms yield better coding

efficiency than standard transforms (i.e., the total bit rate is reduced for a fixed

reconstruction quality). We also develop an edge-adaptive intra prediction scheme

that avoids computing predictions across edges in an image/video frame. Since

predictions are not computed across edges, our scheme significantly reduces the

number of large magnitude coefficients that must be coded. This new scheme is

then incorporated with the intra prediction scheme in H.264/AVC, and is shown

to increase the overall coding efficiency of H.264/AVC. Moreover, when using this

new scheme to code depth map images in a multi-view video coding system (where

virtual views are synthesized using video plus depth from existing views), we also

see an improvement in the quality of the virtual views.

xiv

Chapter 1

Introduction

There are many applications in which data can be organized on a graph G =

(V, E) or tree T = (V, E ′), where the set of tree edges E ′ is a subset of E. As

an example, consider a wireless sensor network (WSN) [4] where nodes are able

to communicate with each other (possibly via broadcast) through wireless data

transmissions. In this case, nodes serve as vertices, V , and the communication

links that connect neighboring nodes form the set of edges E. A concrete example

of this is illustrated in Figure 1.1, where nodes are organized onto a routing tree

T . Even for standard such as images a graph interpretation is possible, i.e., we can

view the pixels in the image grid as vertices in a graph or tree. Edges between

pixels can then be defined, for instance, as connections between 4-connected or

8-connected neighbors. As we will soon see, a graph-based representation is useful

since it allows us to generalize standard signal processing operations (e.g., filtering,

transforms, de-noising) to different types of data. In this chapter, we first provide

some motivation and preliminaries for a graph-based representation in Section 1.1.

We then give an overview of the work proposed in this thesis in Sections 1.2, 1.3, 1.4

and 1.5.

1

3
4

2 6

1 5

7

8

11

12

13

9

10

Figure 1.1: Irregularly spaced nodes organized onto a rooted tree.

1.1 Motivation

We now describe the basic graph-based representation and provide some motivation

for the work in this thesis. Let {x(n)}N
n=1 denote a finite-dimensional signal and

suppose that the N values are taken from some arbitrary sampling grid. The points

in the sampling grid (i.e., the sample points) can be organized as vertices V in a

graph G, with each vertex corresponding to, for example, a point in Euclidean space.

The connectivity between vertices can then be represented by edges E in the graph,

with the “neighbors” of each vertex defined as other vertices that are connected to

it (e.g., its “one-hop” neighbors in the graph). This leads to a graph-based signal

representation for x(n).

Note that for standard signals (e.g., digital audio signals and images), samples

are typically placed on a regularly spaced sampling grid on the real line R or the real

plane R
2. There are many signal processing tools available for regularly spaced data,

e.g., filters for processing [39], transforms for compression and analysis [22,28,47,64].

2

However, none of these tools can be used for irregularly spaced sampling grids.

Thus, the utility of this graph-based representation is two-fold. First, it allows

us to generalize existing signal processing techniques to irregularly spaced data.

Since irregularly spaced sampling grids are common to many applications (e.g.,

WSNs [14], distributed databases [18], and de-noising of scattered data [23, 36]),

one overarching theme of this thesis is to develop signal processing tools that can

be applied to irregularly spaced data by utilizing this graph-based representation.

Secondly, graph-based representations for regularly spaced data can also be used

to develop transforms that are adapted to the underlying signal structure, e.g.,

discontinuities (or edges) in an image. A set of “edge-adaptive” transforms is also

described in this thesis.

In standard applications such as image processing and compression, filtering is

typically done along 1D paths. For example, in JPEG [42] and JPEG-2000 [67]

filtering is performed along the rows and columns of an image. Filtering could

also be applied along 1D paths that are oriented diagonally as in the Directional

DCT [78], Directionlets [71] and Bandelets [43]. Note that in all of these (and

related) techniques filtering is done along non-overlapping 1D paths. While these

are reasonable strategies for signals on regular sampling grids, they are not easily

extended to signals on irregular sampling grids. For irregular grids, it is more

sensible to form the sample points onto a graph or tree, then to perform filtering

along these graphs or trees. In particular, note that filtering along 1D paths is

just a special case of filtering along trees with non-overlapping paths (i.e., every

node in the tree has at most one child). On the other hand, more general trees will

have have multiple 1D paths that merge together (i.e., nodes can have more than

one child). Therefore, in this thesis the primary focus is to develop techniques for

filtering along arbitrary trees. This provides a more general framework for filtering

3

since data can be filtered along overlapping 1D paths. We mainly focus on a tree-

based signal representation and develop algorithms for processing data along these

trees, then discuss how to extend these algorithms to more general graphs.

Of the wide variety of signal processing techniques that can be generalized using

a tree-based (and graph-based) signal representation, we only focus on designing

de-correlating linear transforms for data compression. Linear transforms are impor-

tant since data across neighboring sample points is typically well correlated, e.g.,

neighboring pixels in an image tend to have similar intensity, temperature read-

ings tend to be very similar across neighboring nodes in a WSN, etcetera. Thus,

applying a de-correlating linear transform (e.g., a DCT or wavelet transform) to

the data will allow us to reduce the amount of information (i.e., bits) needed to

represent it. We would also like the transforms to be localized in the sense that

the transform only operates on sets of sample points that are physically close to-

gether. Let x = [x(1), x(2), . . . , x(N)]t be a vector containing the measurements

of N nodes in a graph. An example of a transform which is localized for the tree

shown in Figure 1.1 is

y =



















A1 0 0 0

0 A5 0 0

0 0 A7 0

0 0 0 A11



















·



















x1

x5

x7

x11



















,

where x1 = [x(1), x(2), x(3), x(4)]t, x5 = [x(5), x(6)]t, x7 = [x(7), x(8), x(9), x(10)]t

and x11 = [x(11), x(12), x(13)]t. Note that the transform operations on nodes 1

through 4 only involve data from nodes 1 to 4, hence, the transform is localized

to nodes 1 to 4. Similar logic follows for other nodes. These local transforms are

4

also convenient since they can be computed in a distributed manner, thus, they are

easily amenable to distributed compression in WSNs. Moreover, we can easily adapt

localized transforms to local signal structures such as discontinuities. This is useful

for image compression. In this work, we mainly focus on developing tree-based

lifting transforms since (i) they have been shown to provide good de-correlation for

multiple applications and (ii) they are local transforms.

The transform designs in this thesis are geared toward two applications. The

first is distributed data gathering for WSN, where the goal is to gather data from

every node in the network at a central collection (or sink) node. In this applica-

tion, de-correlating linear transforms are often computed in the network in order

to reduce the amount of data nodes must transmit to a central collection (or sink)

node. This reduces the total communication cost that nodes incur while transport-

ing data to the sink node. Tree-based transforms are developed for these WSNs as

well as graph-based extensions that incorporate broadcast wireless communication

links. The second application is image compression, where tree-based transforms

are developed in which the paths in the tree do not cross over discontinuities (i.e.,

edges) in the image. Since filtering along these trees avoids filtering across edges,

fewer large magnitude coefficients are produced. Thus, fewer bits are needed to

represent the transform coefficients.

1.2 Lifting Transforms on Graphs

In terms of transform designs, our primary focus is on the design of wavelet trans-

forms constructed on graphs and trees using lifting [65]. Lifting transforms are

invertible by construction, and are fully specified by (i) a split step which divides

the sample points into an even and odd set, (ii) a prediction step that filters data

5

from odd sample points with data from even ones (yielding detail coefficients), and

(iii) an update step which filters data from even sample points with detail coeffi-

cients from odd ones. Since arbitrary split, prediction and updates can be used

without affecting invertibility, these transforms are very flexible. They can also be

made local by only allowing odd (resp. even) sample points to use data from their

even (resp. odd) neighbors in the graph. Furthermore, these lifting transforms

have consistently shown excellent performance in many applications, e.g., in data

de-noising [23, 36] and distributed data gathering [72]. In this thesis we describe a

framework that encompasses these tree-based and graph-based lifting transforms.

We primarily focus on tree-based lifting transform designs, where the splitting is

done along a tree and filtering operations are only performed across neighbors in

the tree, though we have also proposed graph-based splitting schemes [37]. Similar

techniques have also been proposed [23,36]. Thus, we also compare tree-based and

graph-based lifting transforms. In terms of novel contributions, we propose new

tree-based lifting transforms with (i) a new split design along an arbitrary tree, (ii)

an extension of existing adaptive prediction filters to WSNs and (iii) a novel update

filter design.

1.3 Transform-based Distributed Data Gathering

In terms of applications, we first apply these lifting transforms to data gathering in

WSN. Note that computing the transforms in [23,36,72,73] in a distributed manner

will require nodes to make many (local) data transmissions before coefficients can

be encoded and transferred to the collection node along an efficient routing tree.

An example of this is shown in Figure 1.2. As such, these strategies are not very

efficient in terms of energy expenditure. Instead, it would be better to design

6

transforms that can be computed as data is being routed to the sink node. This

will eliminate the need for excessive local data transmissions, thereby leading to

distributed implementations that are more energy-efficient.

3
4

2 6

1 5

7

8

11

12

13

9

10

3
4

2 6

1 5

7

8

11

12

13

9

10

3
4

2 6

1 5

7

8

11

12

13

9

10

Forwarding StepPrediction Step Update Step

x(3)

x(3)

x(1)

x(1)

x(5)

x(5)

x(11)

x(11)

x(7)

x(7)

x(9)

x(9)

d(4)

d(2) d(4)

d(2)

d(4)

d(6)

d(12)

d(13)

d(10)

d(8)

d(8)

d(10)

[d(2) d(4)]

[d(12) d(13)]

[d(8) d(10)]

d(6)

s(3)

s(3)

s(5)

s(11)
[s(7) s(9)]

[s(1) s(3)]

s(9)

Figure 1.2: Example illustrating the communications required to compute the trans-
forms in [23, 36, 72, 73] in a distributed manner. White nodes are even and gray
nodes are odd. First even nodes must transmit data to their odd neighbors. Odd
nodes receive even node data, compute transform coefficients, then transmit those
coefficients back to their even neighbors (and also to the sink). Even nodes then
use these odd node coefficients to compute their own coefficients, then transmit
them to the sink. Note that even nodes must transmit their own data twice.

In this thesis we (i) design a general class of transforms (not restricted to lifting)

that can be computed in a distributed manner as data is routed to the sink node,

then (ii) provide lifting transform designs that fall into this general class. While

these designs are specific to WSN, they can be easily extended to other applica-

tions. We assume that data is forwarded along the tree according to a transmission

scheduling and that for transform computations sensor nodes can only use data

that they receive before they transmit. This includes data that sensor nodes re-

ceive along the tree, i.e., from descendants, as well as data overheard via broadcast

communications. This leads to a general class of transforms which we refer to as

unidirectional transforms; a general definition and invertibility conditions are given

7

in Chapter 3. We then describe how to translate existing unidirectional trans-

forms into our framework in order to demonstrate its generality. Finally, novel

energy-efficient lifting transforms are proposed that provide superior performance

over existing methods.

1.4 Joint Optimization of Transform and Routing

The choice of routing tree also impacts the performance of unidirectional trans-

forms. For example, from a routing perspective the best trees are the well-known

shortest path routing trees [12] (SPTs). While SPT routing provides the minimum

cost to route a fixed amount of data to the sink, transforms computed along these

trees will not always provide the most compact representation of the underlying

data. In particular, an SPT will provide the minimum distance from any node to

the root, but will not necessarily minimize the distance between each node and its

neighbors in the tree. As was pointed out in our previous work [54], if data corre-

lation is inversely proportional to distance, a minimum spanning tree [12] (MST)

which minimizes the sum of the distances between neighboring nodes will provide

a more compact representation of the data than an SPT. Thus, routing with com-

pression on a shortest path routing tree (SPT) will not necessarily provide the

minimum total cost. Another major contribution of this thesis is a joint routing

and transform optimization algorithm, as described in Chapter 4.

1.5 Graph-based Transforms for Image Coding

The second application of this thesis is image coding. Correlation across neighbor-

ing pixels in an image is typically exploited in one of two ways. First, separable

8

filtering (i.e., filtering is done first along rows, then along columns) is typically ap-

plied, e.g., pixel data is filtered using separable DCT bases [47] as in JPEG [42],

or with separable wavelet bases as in JPEG-2000 [67]. These bases can repre-

sent smooth images with few horizontal, vertical and diagonal discontinuities very

compactly. However, for images with complex discontinuities, these transforms

produce many large magnitude high-pass coefficients. Large magnitude high-pass

components require many bits to be encoded, i.e., they increase the total bit rate.

Furthermore, quantization of these large high-pass components leads to annoying

compression artifacts such as ringing. One way to deal with this is to construct

transforms along graphs that either avoid discontinuities or perform filtering parallel

to them. When doing so, the number of large magnitude high-pass coefficients can

be significantly reduced. The structure of the discontinuities will also be well pre-

served, thereby reducing the amount of ringing artifacts. In Chapter 5 we construct

trees that do not have links between pixels that are separated by discontinuities,

then we design transforms along these trees. We apply these transforms to natural

and depth map images, and see performance that is superior to standard separable

transforms.

Another way correlation in images is typically exploited is through block-based

intra prediction schemes used in, for example, H.264/AVC and MPEG-4. The

prediction is typically done along a fixed set of directions and the “best” direction

is chosen as the final “intra prediction mode”. While these directional prediction

methods can provide accurate predictions of blocks with a single diagonal edge (and

therefore, can provide low energy prediction residuals for these blocks), they do not

provide accurate for blocks with more complex edge structure such as “L” or “V”

shaped edges. Thus, we also develop an edge-adaptive intra prediction scheme that

can be easily integrated with existing techniques. When applied to intra predictive

9

coding of depth map images, we see significant gains with respect to existing intra

prediction schemes.

1.6 Outline

This thesis is organized as follows. First we provide an overview of lifting transforms

in Chapter 2. We then describe the data gathering problem for WSN and propose

a general framework for efficient de-correlating transforms that can be computed in

the network in Chapter 3. Various tree-based and graph-based transforms are also

proposed in Chapter 3. In Chapter 4 we also propose a joint routing and transform

optimization method for WSN. In Chapter 5 we propose a variety of tree-based and

graph-based transforms for image compression. Finally, some concluding remarks

and interesting directions for future work are discussed in Chapter 6.

10

Chapter 2

Lifting Transforms on Graphs

We now focus on the construction and optimization of tree-based and graph-based

lifting transforms. As a starting point, in Section 2.1 we establish some definitions

and notation for lifting transforms [65] and show that these transforms are invertible

by construction. These transforms consist of three key components. The first is a

split step that divides nodes into disjoint sets of even and odd nodes. Prediction

filters must also be designed with which data at odd nodes is linearly predicted

from data at even nodes (yielding detail coefficients). Finally, update filters are

used to linearly update data at even nodes using detail coefficients from odd nodes

(yielding smooth coefficients). Multiple prediction and update steps can be used.

We initially make no assumption about the relationships between these nodes, i.e.,

we do not assume anything about the structure of the graph nor is there any

notion of relative position or distance, though some notion of this would be useful

when defining the filtering operations used in the transform. Therefore, the lifting

transforms presented as such are very general.

In Section 2.2, two split design procedures are discussed that can be applied to an

arbitrary rooted tree or to an arbitrary graph. These designs were first introduced

by us in [37,55]. We note that data de-correlation occurs in the prediction step, i.e.,

11

if an appropriate choice of prediction filter is made for each odd node, the prediction

made from its neighbors’ data will be very close to its own data, hence, the resulting

prediction residual (i.e., detail coefficient) will be close to zero. This is useful since

small prediction residuals require very few bits to be encoded. Naturally, the choice

of prediction filter depends on the properties of the given data. Thus, in Section 2.3

we will discuss prediction filter designs that minimize the average energy in the

prediction residuals. This result and an algorithm for learning these prediction

filters were described by the author in [52].

When a prediction step is applied without any update step, issues like numer-

ical instability of the inverse transform [23, 67] and propagation of quantization

errors [16, 67] will arise. This will reduce the quality of the reconstructed data.

Thus, it is also important to include an update step to mitigate these effects. It

is also desirable to design update filters that have certain properties such as pre-

serving the average value of coefficients across multiple levels of decomposition or

orthogonality between low-pass (i.e., update) and high-pass (i.e., prediction) filters.

Various update filter designs are discussed in Section 2.4. In particular, we propose

an update filter design that makes the low-pass and high-pass filters orthogonal.

This result was first introduced by us in [56]. Furthermore, we show that this choice

of update filters also minimizes the reconstruction MSE due to quantization of the

transform coefficients.

2.1 Preliminaries

Lifting transforms are computed by splitting (i.e., partitioning) nodes into even and

odd sets, filtering data from odd nodes with data from even nodes to produce detail

coefficients, and then filtering data from even nodes with details coefficients from

12

Parameter Description
N Number of sample points (nodes)
I Set of node indices
ei i-th identity vector, ei(i) = 1, ei(j) = 0 for all j 6= i
I Identity matrix
0 All zero vector
x(i) Data at node i ∈ I
x̂(i) Prediction of x(i)
x Vector of original data
T Lifting transform matrix
y Vector of lifting transform coefficients
E and O Set of even and odd nodes (E ∩ O = ∅)
Ni Set of even (odd) neighbors of odd (even) node i
pn Prediction vector (filter) for odd node n
d(n) Detail coefficient of odd node n
P Prediction matrix
d Vector of detail coefficients
um Update vector (filter) for even node m
s(m) Smooth coefficient of even node m
U Update matrix

Table 2.1: Table of common notation.

odd nodes. As we will soon show, since data at odd nodes is only filtered using data

from even nodes and vice versa, the corresponding transform is guaranteed to be

invertible. We first establish some notation that will be throughout the remainder

of this chapter. The notation is summarized in Table 2.1.

Suppose that there are N sample points indexed by I = {1, 2, . . . , N}. Let

x(n) denote the value at sample point n, and let x = [x(1), x(2), . . . , x(N)]t. Let

E and O be two disjoint sets of even and odd nodes, respectively. For each odd

node n, let Nn ⊂ E be the set of even neighbors of node n. The prediction vector

pn is used to produce a prediction as
∑

m∈Nn
pn(m)x(m) and this prediction is

subtracted from x(n) to yield detail coefficient d(n) = x(n) −
∑

m∈Nn
pn(m)x(m).

No predictions are performed for even node data, thus, pm = 0 for all m ∈ E , where

0 is the all zero vector. Since data for odd node n is only filtered using even node

13

data in Nn, we also have that pn(k) = 0 for all k ∈ O ∪ (E − Nn). For each even

node m, let Nm ⊂ O denote the set of odd neighbors of node m. Data from each

even node m is then updated using update vector um, yielding smooth coefficient

s(m) = x(m)+
∑

n∈Nm
um(n)d(n). Since odd node data is not updated, un = 0 for

all n ∈ O. Since data from even node m is only filtered with odd node data from

Nm, we also have that um(l) = 0 for all l ∈ E ∪ (O −Nm). This is all summarized

in the following definition.

Definition 1 (Single Step Lifting Transform). Let there be N data points x(n)

indexed by n ∈ I = {1, 2, . . . , N}. Let I be partitioned into two disjoint sets of

even and odd nodes denoted by E and O respectively, i.e., I = E∪O and E∩O = ∅.

For each m ∈ E , let Nm ⊂ O. Similarly, for each n ∈ O, Nn ⊂ E . A single step

lifting transform is a linear prediction step followed by a linear update step. Let pn

denote the N × 1 prediction operator used for node n and let um denote the N × 1

update operator for node m. The lifting transform is computed in the prediction

step first, yielding detail coefficients for each n ∈ O as

d(n) = x(n) −
∑

i∈Nn

pn(i)x(i). (2.1)

In the update step, smooth coefficients are computed for each m ∈ E as

s(m) = x(m) +
∑

j∈Nm

um(j)d(j). (2.2)

Since Nn ⊂ E for all n ∈ O, we have that pn(j) = 0, for all j ∈ O ∪ (E − Nn).

Similarly, Nm ⊂ O for all m ∈ E , hence, um(j) = 0, for all j ∈ E ∪ (O − Nm).

Moreover, pm = 0, for m ∈ E and un = 0, for n ∈ O.

14

Note that these operations correspond to a set of N vector inner products. For

example, if en represents the n-th identity vector (i.e., en(n) = 1 and en(l) = 0 for

all l 6= n), then for each n ∈ O, x(n) = et
n · x and

∑

m∈Nn
pn(m)x(m) = pt

n · x.

Thus, d(n) = (en − pn)t · x. Therefore, we can also express the transform as a

single matrix operation y = (I + U) · (I − P) · x as shown in Proposition 1 (see

Appendix A for the proof).

Proposition 1 (Lifting Transform Matrices). Let the vectors un and pn satisfy

Definition 1 for all n. Let P be the N × N prediction matrix with rown(P) = pt
n.

Similarly, let U be the N × N update matrix with rown(U) = ut
n. The lifting

transform matrix is simply T = (I + U) · (I−P) and we can compute the vector of

coefficients as y = T · x.

Note that the non-zero filter coefficients are completely unconstrained in Def-

inition 1, thus, this represents a very general class of transforms. The inverse of

I − P and I + U also exist by construction and are easily shown to be I + P and

I − U, respectively, as shown in Proposition 2 (the proof is in Appendix A).

Proposition 2 (Inverse Lifting Transform Matrices). Let E and O satisfy Defini-

tion 1, and let P and U satisfy the assumptions in Proposition 1. Then (I−P)−1 =

I + P and (I + U)−1 = I − U.

We can also introduce non-zero normalization factors into the filters without

affecting invertibility. In particular, if the prediction operation at node n is nor-

malized by a factor cn,p, this is equivalent to multiplying the prediction matrix I−P

by a diagonal matrix Dp = diag(c1,p, c2,p, . . . , cN,p). The same is true for the update

matrix I + U for some diagonal matrix Du. As long as the normalization factors

are non-zero (there is no practical reason why they should be zero), the overall

transform y′ = Du · (I + U) · Dp · (I − P) · x, will be trivially invertible.

15

Corollary 1 (Lifting Filter Normalization). Let E , O, P and U be specified as

in Definition 1 and Proposition 1. Let c1,p, c2,p, . . . , cN,p (resp. c1,u, c2,u, . . . , cN,u)

be a set of normalization factors for the prediction (resp. update) filters, with

Dp = diag(c1,p, c2,p, . . . , cN,p) (resp. Du = diag(c1,u, c2,u, . . . , cN,u)). The normalized

prediction and update filters are then given by the matrices P′ = Dp · (I − P) and

U′ = Du · (I + U) respectively. Moreover, (P′)−1 = (I + P) · D−1
p and (U′)−1 =

(I −U) ·D−1
u .

This can be easily generalized to multiple lifting (i.e., prediction and update)

steps and multiple levels of decomposition. Let Oj and Ej be odd and even sets of

nodes, respectively, for j = 0, 1, 2, . . . , J and some positive integer J . We assume

that E0 = I and O0 = ∅. Suppose that Ej−1 = Ej ∪ Oj and Ej ∩ Oj = ∅ for all j.

This provides a direct analogy to the standard dyadic decomposition. At each level

j, let Kj denote the number of lifting steps and let the k-th prediction and update

filters be respectively denoted by the vectors pk
n,j and uk

m,j for all m, n ∈ I. Of

course each of these should satisfy Definition 1. Moreover, let Pj,k and Uj,k satisfy

the assumptions in Proposition 1 for each j, let dj(n) denote the detail coefficient

of each n ∈ Oj and let sj(m) denote the smooth coefficient of each m ∈ Ej. By

convention, we let P0 = U0 = 0 and s0(n) = x(n) for all n. This represents a multi-

level transform decomposition on the original data, with the aggregate transform

operations defined as y =
∏J

j=1

∏Kj

k=1(I + Uj,k) · (I − Pj,k) · x. Each (I − Pj,k)

and (I + Uj,k) is invertible by Proposition 2. Therefore, the overall transform is

invertible. This is formally stated in Corollary 2. Note that this transform is

still invertible when filter normalization is introduced. This follows by a simple

extension of Corollary 1.

16

Corollary 2 (Invertible Multi-level Lifting Transforms). Let Ej and Oj satisfy

Definition 1 and Pj,k and Uj,k satisfy the assumptions in Proposition 1 for all

j = 0, 1, 2, . . . , J for some positive integer J , and for all k = 1, 2, . . . , Kj. Suppose

that Ej−1 = Ej∪Oj and Ej∩Oj = ∅ for all j. Then the transform y =
∏J

j=1

∏Kj

k=1(I+

Uj,k)·(I−Pj,k)·x is invertible with (I−Pj,k)
−1 = I+Pj,k and (I+Uj,k)

−1 = I−Uj,k

for all j and k.

2.2 Even/Odd Split Design

Assume that nodes are organized on some graph G. This graph could naturally

arise from a routing tree as in a WSN, or could be defined based on some additional

information as we shall see in the case of images.. We can now investigate exactly

how nodes should be split into even and odd sets. An even/odd splitting strategy

on trees is described in Section 2.2.1 and a set of strategies for graphs are described

in Section 2.2.2. Both the tree-based and graph-based splitting methods are used

for the WSN application in Chapter 3 and an experimental evaluation is provided

in Section 3.6.3.

2.2.1 Tree-based Even/Odd Split

Let T denote a rooted tree with root node indexed by N + 1. This provides some

notion of relative position in T . In particular, every node n will have a parent ρ(n),

children Cn, descendants Dn, ancestors An, and will be h(n) hops away from the

root node. h(n) can also be thought of as the depth of n in T . We can use this

information to define the splitting in a manner analogous to the even/odd splitting

done on 1D data, e.g., where in Z, samples occurring at even integers are even and

those occurring at odd integers are odd.

17

One natural way of doing an even/odd splitting along T (analogous to even/odd

splitting in 1D) is to use the parity of the depth of each node. This splitting method

was introduced by us in [55], where each node n for which h(n) is odd fall into the

odd set O, i.e., O = {n : h(n) mod 2 = 1}. Similarly, each node m such that

h(m) is even fall into the even set E , i.e., E = {m : h(m) mod 2 = 0}. An

example of this split design is shown in Figure 2.1(a). Clearly O ∩ E = ∅, and

so any prediction and update operations satisfying Definition 1 for this choice of

E and O will yield an invertible transform. In general, multiple trees Tj can be

defined for some j = 1, 2, . . . , J and positive integer J , with corresponding even

sets Ej and odd sets Oj . Lifting transforms can then be defined on each Tj and, by

Corollary 2, each of these transforms will be invertible. Therefore, any multi-level

transform constructed in this way will also be invertible. An example of splitting

over multiple trees is shown in Figure 2.1. This split design is adopted later in

Chapter 3 for the WSN application.

2.2.2 Graph-based Even/Odd Split

While even/odd splitting on a tree is rather simple, it has its disadvantages since it

will not exploit links that exists between nodes that are not directly connected in the

tree. For example, in the WSN application a routing tree is typically given, but due

to the broadcast nature of wireless communication [10, 77], multiple nodes will be

able to overhear a single data transmission. This induces additional communication

links on top of those along the routing tree, thus, a graph arises. Since it may

be possible to achieve more de-correlation by doing an even/odd splitting on this

graph (since nodes will typically have more neighbors on a graph than along a

tree), it would generally be better to do a graph-based splitting whenever possible.

18

17

5

3

6

2

16

11

10

12
1 9

13

14

21

23

22

15
18

1920

7

8

4

(a) Split on 1st tree

17

5

16

10

12

23

22

1920

7

8

4

(b) Split on 2nd trees

Figure 2.1: Examples of splitting on multiple trees. Black center node is the sink,
gray nodes are even and white nodes are odd. The first level tree is shown in (a).
In the second level tree (b), the even nodes from the first level are again split and
another level of transform decomposition is performed.

Moreover, there are other applications [23,36] where only the connectivity between

nodes is given (e.g., no tree is provided); clearly a graph-based even/odd splitting

is needed in these cases. Thus, we also summarize results on graph-based splitting

methods for lifting transforms.

Various graph-based even/odd splitting methods have been proposed in the

literature [3, 23, 36, 72, 73]. The techniques in [3, 72, 73] are used for distributed

compression in WSNs, where nodes are assumed to be randomly distributed on

some subset of R
2. In this case, roughly speaking, the nodes with the largest

number of neighbors within a certain distance R are chosen as odd and the rest

are chosen as even. This is done over multiple splitting stages j = 1, 2, . . . , J until

nodes can no longer be split, and it induces a series of graphs Gj, each of which is

used to determine the j-th level splitting. This is one example of splitting nodes

along a graph G. Note that under this even/odd split design, each odd node will

19

have many even neighbors. Thus, this even/odd split is particularly useful since

a very accurate prediction x̂(n) can be generated for each odd node n. Therefore,

d(n) = x(n) − x̂(n) will tend to be small on average. The graph-based split design

in [23] uses similar ideas (i.e., each odd node should have many even neighbors),

though it was developed and used specifically for the de-noising of irregularly spaced

data.

Alternatively, the even/odd split in [36] attempts to find an even/odd splitting

in which the number of links between different even (resp. odd) nodes is minimum.

The motivation in that work is to utilize as many links in the graph as possible when

computing a lifting transform. Since even (resp. odd) node data is not processed

using other even (resp. odd) node data, the links between different even (resp. odd)

nodes will not be used in the transforms. Thus, the goal in that work is to find a

split that minimizes the number of links between different even (resp. odd) nodes.

This is done by searching for a bi-partite graph (which partitions nodes into disjoint

even and odd subsets) that minimizes the “conflict fraction”, i.e., the number of

links between even nodes plus the number of links between odd nodes divided by

the total number of links in the graph. Since odd nodes will have (on average) more

even neighbors in graph-based splits than in tree-based splits, the predictions are

likely to be more accurate. Thus, there will be less energy in the detail coefficients;

this reduction in energy will generally lead to more efficient signal representations

(e.g., better energy compaction and coding performance).

The graph-based even/odd split we proposed in [37] attempts to optimize the

total energy consumption in a WSN. This is done by minimizing the number of even

nodes under the constraint that every odd node has at least one even neighbor. This

will tend to produce splits for which odd nodes have relatively few even neighbors, so

it will not be good from a data de-correlation standpoint. However, in the context of

20

WSN where the goal is to minimize the total energy consumption, using distributed

lifting transforms with very few even nodes turns out to be very beneficial. To

summarize [37], the main observations are that (i) any form of transform-based

distributed data gathering requires some nodes to transmit raw data (i.e., there

must be some raw data nodes), (ii) nodes that receive raw data can perform some

aggregation to remove correlation as to reduce the amount of data they need to

transmit (i.e., there are some aggregating nodes), and (iii) the cost to transmit raw

data is typically much higher than the cost to transmit aggregated data. Thus, the

main goal in that work is to minimize the number of raw data nodes (or rather, to

minimize the total cost incurred by raw data nodes) under some constraints. This

is a rather general framework (i.e., assignment of raw and aggregating nodes), and

lifting transforms are just one example where even nodes serve as raw nodes and odd

nodes (which compute residual detail coefficients) act as aggregating nodes. Some

comparisons of tree-based and graph-based splits will be presented in Section 3.6.3.

In summary, the graph-based even/odd splitting techniques proposed in [3, 23,

36, 72, 73] are very general and can be applied to any graph. Thus, these graph-

based even/odd split designs (along with the tree-based split designs) could also be

applied to other applications such as image coding. On the other hand, the graph-

based split proposed in [37] was designed specifically for distributed compression

in WSNs, and may not provide good performance for other applications such as

image coding.

2.3 Prediction Filter Design

Assume (as in Section 2.2) that a graph G = (V, E) is given, nodes are placed in

Z
2 and the position of each node n is given by (in, jn). As discussed before, data

21

de-correlation occurs in the prediction step, i.e., for each odd node n a prediction

x̂(n) =
∑

m∈Nn
pn(m)x(m) and detail coefficient d(n) = x(n) − x̂(n) is computed

and encoded. If x̂(n) ≈ x(n), then d(n) ≈ 0, so that it can be encoded using

significantly fewer bits than would be needed to encode x(n). Thus, the goal in this

section is to design a prediction filter pn that produces very accurate predictions of

x(n) using data from an arbitrary set of neighbors Nn, i.e., we want to design pn

such that x̂(n) =
∑

m∈Nn
pn(m)x(m) ≈ x(n). The proper choice of pn ultimately

depends on how data is correlated across nodes.

In this section we present two methods for computing “good” prediction filters

(e.g., “good” in the sense that |d(n)|2 is minimized). In the first method, we assume

that data is locally very smooth, so that the data across neighboring nodes is well

approximated by a polynomial function. More specifically, for each odd node n, the

data from its neighbors in Nn can be well approximated by a K-degree polynomial

P (i, j|Nn), in which case we can accurately predict x(n) by x̂(n) = P (in, jn|Nn),

i.e., d(n) = x(n) − x̂(n) ≈ 0. This will be discussed in Section 2.3.1.

If the data is not piece-wise polynomial but is spatially stationary, with the

correlation between any node n and m following correlation function RXX(n, m), we

can still compute good prediction filters. Thus, in the second method we describe

how to compute prediction filter pn that minimizes the mean squared error of

detail coefficient d(n). They are simply the well known linear minimum mean

squared error (LMMSE) prediction filters [20], and are optimal in the sense that

they minimize E[|d(n)|2], where E[·] denotes the expected value operation. If the

data is stationary but the correlation function RXX(n, m) is unknown, we can use

an adaptive filter [20] to estimate the optimal filters. This will be discussed in

Section 2.3.2 in the context of distributed compression for WSNs and was initially

introduced by us in [52].

22

2.3.1 Polynomial Prediction Filters

If the data is nearly piece-wise polynomial, then for each odd node n, we can fit

data from even neighbors Nn to a 2D polynomial P (i, j|Nn), and can predict x(n)

by x̂(n) = P (in, jn|Nn) with great accuracy, i.e., d(n) = x(n) − x̂(n) ≈ 0. As an

example of this type of design, consider a planar prediction of x(n) from {x(m)}Nn

as was proposed in [3,72,73]. Suppose that Nn = {m1, m2, . . . , m|Nn|}. The best-fit

plane (in the least squares sense [63]) P (i, j|Nn) = A · i + B · j + C of the data

{x(mi)}mi∈Nn
can be found by solving













x(m1)

...

x(mk(n))













=













im1
jm1

1

...

im|Nn|
jm|Nn|

1













·













A

B

C













. (2.3)

Let xNn
=
[

x(m1), x(m2), . . . , x(m|Nn|)
]t

, c = (A, B, C)t and

An =













im1
jm1

1

...

im|Nn|
jm|Nn|

1













.

Then a best-fit plane exists as long as rank (At
nAn) = 3, since then c = (At

nAn)
−1

At
nx(Nn).

Note that rank (At
nAn) = rank (An) [63], so a best fit plane exists if and only

if rank (An) = 3. Since x̂(n) = A · in + B · jn + C = [in jn 1] · c, x̂(n) =
(

[in jn 1] · (At
nAn)

−1 ·At
n

)

· xNn
. Thus, pn(Nn) =

(

[in jn 1] · (At
nAn)

−1 · At
n

)t

,

and is only a function of the positions of n and Nn.

For a general K-degree polynomial we have P (i, j|Nn) =
∑K

k=0

∑K

l=0 Ck,l · i
k · jl.

In this case, we must estimate (K +1)2 of the Ck,l parameters, i.e., to approximate

x(n) with a K-degree polynomial fitted to {x(mi)}mi∈Nn
, n must have at least

23

(K + 1)2 neighbors. For many practical applications, sets of neighbors whose size

scales as (K +1)2 may not be feasible for large K, so using high degree polynomials

to compute predictions is not very practical.

2.3.2 Data-adaptive Prediction Filters

If the data is spatially stationary with correlation between samples at node n and

m given by RXX(n, m), we can still compute good prediction filters. In this case,

for each odd node n, we want to find a prediction vector for x(n), that minimizes

the energy in residual prediction error d(n) = x(n)−
∑

i∈Nn
pn(i)x(i), i.e., we want

to find

p∗
n = arg min

pn

E[|x(n) −
∑

i∈Nn

pn(i)x(i)|2]. (2.4)

The solution is the well-known Wiener-Hopf solution [20], and is a function of the

correlation RXX(i, j) = E[x(i)x(j)] between nodes i, j ∈ Nn.

2.3.2.1 Optimal Prediction Filters

We derive the optimal solution to (2.4) for the sake of completeness. Note that

x∗(n) =
∑

i∈Nn
p∗

n(i)x(i) is the LMMSE estimate of x(n) only if the orthogonality

principle [62] is satisfied. Thus,

E{[x(n) − x∗(n)]x(j)} = E{[x(n) −
∑

i∈Nn

p∗
n(i)x(i)]x(j)} = 0, for all j ∈ Nn (2.5)

This implies that, for all j ∈ Nn, E[x(n)x(j)] =
∑

i∈Nn
p∗

n(i)E[x(i)x(j)]. Since

RX(i, j) = E[x(i)x(j)], we can simplify (2.5) as

∑

i∈Nn

p∗
n(i)RX(i, j) = RX(n, j), for all j ∈ Nn. (2.6)

24

Let Nn = {i1, i2, . . . , i|Nn|}. Let the |Nn|×|Nn| matrix Rn be defined by Rn(k, l) =

RX(ik, il) and let the |Nn| × 1 vector rn be defined by rn(k) = RX(n, ik). We can

now express (2.6) above as Rnp
∗
n(Nn) = rn. So as long as Rn is invertible, we have

an optimal solution for node n. If Rn is positive definite, then p∗
n(Nn) = R−1

n rn.

2.3.2.2 Approximating Optimal Prediction Filters

We now describe an algorithm to estimate the optimal prediction filters in the con-

text of WSN as was introduced by us in [52]. Note that estimating these statistics

in a WSN will be costly in terms of delay, computation and communication. More-

over, a large amount of data is generally needed to reliably estimate correlation

matrices. Alternatively, we can use adaptive filters to estimate the optimal spatial

prediction filters over time with no learning cost since (i) they converge to the op-

timal filters for stationary data, (ii) they do not require estimates of data statistics

and (iii) the filtering done at one node can be replicated at any other node (e.g.,

the sink) given the same prediction errors and initial prediction filters. Note that

if quantization is used, then both nodes must use the same quantized prediction

errors to update the filters. More specifically, in order for the sink to re-produce

the same prediction filters used at an odd node n, it must use (i) the same initial

prediction filter as node n, (ii) the same prediction errors that were generated by

node n, and (iii) the same data that node n used to compute the prediction errors.

Conditions (i) and (ii) are easily met. In the context of lifting, (iii) is also met since

the update step is always inverted before the prediction step is inverted; thus, the

sink can always recover data that node n used to compute prediction errors. In

this way, we can apply an adaptive filter at each odd node to estimate the optimal

prediction filters without specifying any additional information to the sink. Note

that it still takes time for the filters to adapt to the data well enough to produce

25

good predictions. Thus, there will be a small learning cost for nodes to initially

“train” their filters and also to “re-train” their filters when data statistics change

(i.e., the overall encoding rate will be higher during training periods, during which

filters have not yet converged to a state that matches current data statistics.)

There are many adaptive filters that we can choose from, but the step-size

parameter µ often must be chosen based on data dependent parameters to ensure

filter convergence. We generally will not know those parameters, thus, the most

suitable choice is a normalized least mean squares adaptive filter [20] since µ need

not be specified but is instead adapted as the filter is adapted. Some notation is now

established. Suppose nodes measure data at times t1, t2, . . . , tM . Let x(n, m) denote

the data at node n captured at time step tm. The N × M prediction coefficient

matrix for node n is given by pn, where column i, i.e., pn(:, i), is the prediction

vector at the i-th time step at node n. The adaptive filter at each odd node n is

then computed, from m = 1 to m = M , as d(n, m) = x(n, m)−pt
n(Nn, m)x(Nn, m)

and the update equation pn(Nn, m+ 1) = pn(Nn, m) + µ̃ x(Nn,m)d(n,m)
xt(Nn,m)x(Nn,m)

, where µ̃ is

a parameter that can be used to speed up (or slow down) the rate of convergence.

For correlated Gaussian data, the optimal value of µ̃ = 1 [20].

2.4 Update Filter Design

It is also necessary to provide some form of update step after prediction in order

to reduce the effects of numerical instability and propagation of quantization er-

rors. We now present two update filter designs. The first one, as presented in

Section 2.4.1, was proposed in [72, 73]. It essentially preserves the average value

of smooth coefficients across multiple levels of decomposition. This reduces the

harmful effects caused by numerical instability [23], but the resulting low-pass (LP)

26

filters may not be orthogonal to the resulting high-pass (HP) filters. Therefore, any

quantization error introduced in the HP and LP subbands will propagate through

the inverse transform into both subbands. Instead, it would be better to design

update filters that force LP filters to be orthogonal to HP filters. We provide such

an update filter design in Section 2.4.2 and show that it always exists. This design

was initially proposed by the author in [56]. Moreover, we show that this choice

of update filter (for a fixed prediction filter design) minimizes the reconstruction

mean squared error due to quantization of transform coefficients. Comparisons of

these various update filter designs are given in Section 3.6.3 and in Section 5.3.2.

As we will see in Section 5.3.2 the orthogonalizing update filter design provides a

modest increase in coding efficiency.

2.4.1 Mean-preserving Update Filters

A method to preserve the average value of coefficients across multiple levels of

decomposition on a finite number of irregularly spaced data points was proposed

in [72, 73]. For every even node m ∈ E with prediction filters pn from neigh-

bors n ∈ Nm, the update filter which preserves the average value of the smooth

coefficients is computed as a function of each pn. While this does provide some

smoothing properties, the proposed design does not yield LP and HP filters that are

mutually orthogonal. As pointed out in [16], this is problematic when quantization

is introduced since it will cause the quantization errors from one subband to prop-

agate into the reconstructed samples from other subbands. This will increase the

total quantization error in the reconstructed data. Therefore, it is more desirable

to design a lifting transform that forces the low-pass component to be orthogonal

to the high-pass component.

27

2.4.2 Orthogonalizing Update Filters

We now describe the orthogonalizing update filter design as was first introduced

by the author in [56]. As has been discussed, it is desirable to design update filters

that makes the LP signal component orthogonal to the HP signal component after

each lifting step. More specifically, we would like to decompose the signal vector

as x = xe + xo, with < xe,xo >= 0. This should increase the overall energy

compaction of the transform. It will also be useful when performing quantization

since it essentially isolates quantization noise into each sub-band. Note that after

each lifting step, the even samples correspond to the “low-pass” component and the

odd samples to the “high-pass” component. Furthermore, since I + U and I − P

are invertible, T = (I + U)(I − P) is also invertible. Let rowi(T) = tt
i and let

T−1 =
[

t̃1 t̃2 . . . t̃N

]

. Since {ti}i∈I and {t̃i}i∈I form a pair of dual bases, we

can represent our signal as x =
∑N

i=1 < ti,x > t̃i. An orthogonal decomposition

will then be obtained if we can construct lifting filters that force < t̃i, t̃j >= 0 for

any i ∈ E and j ∈ O, since then we have x = xe + xo with xe =
∑

i∈E < ti,x > t̃i,

xo =
∑

j∈O < tj ,x > t̃j and < xe,xo >= 0.

We would like to design update filters that provide the desired orthogonality

of the dual basis vectors {t̃i}i∈I . To achieve this, we assume a fixed prediction

filter design, then construct update filters such that the “equivalent filter” of any

even node (tn for n ∈ E) is orthogonal to the “equivalent filter” of every odd node

(tm for m ∈ O). Suppose there are Ne and No even and odd nodes, respectively,

and let E = {j1, j2, . . . , jNe
} and O = {i1, i2, . . . , iNo

} be the sets of even and odd

indices, respectively. The equivalent filter for every even node n is tn = en +
∑No

k=1 un(ik)d(ik) and the equivalent filter for every odd node m is tm = em −

pm. What we are seeking is an “orthogonalizing” update filter design for which

28

< tn, tm >= 0 for all n ∈ E and m ∈ O. The orthogonalizing update filter design

is presented in Proposition 3. This design is also sufficient to provide the desired

orthogonality result as stated in Proposition 4 (the proof is in Appendix A), that

is, our proposed lifting filter design ensures that < tn, tm >= 0 for any n ∈ E and

m ∈ O, and this implies that < t̃n, t̃m >= 0 for any n ∈ E and m ∈ O.

Proposition 3 (Orthogonalizing Update Filters). Let the prediction filter for every

odd node be fixed and let Nn = O for all n ∈ E . Let tn be the equivalent filter of

node n, i.e., it is the filter resulting from application of both the prediction and

update step. Then the equivalent filter of an even node n (e.g., every LP filter) is

orthogonal to the equivalent filter of every odd node ik (e.g., every HP filter), i.e.,

(eik − pik)
ttn = 0, ∀k = 1, 2, . . . , No (2.7)

if and only if

un(O) =
(

INo
+ P̃tP̃

)−1

P̃ten. (2.8)

Since
(

INo
+ P̃tP̃

)−1

always exists, we always have update filters for which tt
ntm =

0, ∀m ∈ O, n ∈ E .

Proof. Since x(n) = et
nx and d(ik) = (eik − pik)

tx, we have that

s(n) = x(n) +

No
∑

k=1

un(ik)d(ik)

= et
n · x +

No
∑

k=1

un(ik) (eik − pik)
t · x

=

(

en +
No
∑

k=1

un(ik) (eik − pik)

)t

· x

= tt
nx

29

(2.7) is satisfied if and only if

(eil − pil)
t

(

en +

No
∑

k=1

un(ik) (eik − pik)

)

= 0, ∀il ∈ O. (2.9)

Since n ∈ E , n 6= il. Thus, eil(n) = 0, and so et
il
en = 0. Since pik(il) = 0 for all k

by Definition 1, et
il
pik = 0 for all k. Similarly, pil(ik) = 0 for all k, so pt

il
eik = 0 for

all k. Therefore, (2.9) becomes

et
il

No
∑

k=1

eikun(ik) + pt
il

No
∑

k=1

pikun(ik) = pt
il
en, ∀il ∈ O. (2.10)

If we define un(O) = [un(i1), . . . ,un(iNo
)]t and Ĩ =

[

ei1 . . . eiNo

]

, we have that

∑No

k=1 eikun(ik) = Ĩ ·un(O) and
∑No

k=1 pikun(ik) = P̃ ·un(O). Thus, (2.10) becomes

et
il
· Ĩ · un(O) + pt

il
· P̃ · un(O) = pt

il
· en, ∀il ∈ O. (2.11)

This provides a set of No linear equations in No unknowns, and we can express

(2.7) as
[

ĨtĨ + P̃tP̃
]

· un(O) = P̃t · en. (2.12)

Note that ĨtĨ = INo
, the No × No identity matrix. Moreover, for any x 6= 0,

xt
[

ĨtĨ + P̃tP̃
]

x = ||x||2 + ||P̃x||2 > 0. Thus,
[

INo
+ P̃tP̃

]

is positive definite and

(2.8) follows. Since tm = em − pm for all m ∈ O, tt
ntm = 0, ∀m ∈ O, n ∈ E .

Proposition 3 yields a filter design in which the equivalent filter of every even

node is orthogonal to the filter of every odd node. Intuitively, this provides a

decomposition of the signal into two separate subbands and one should expect or-

thogonality between the signal components in each subband. In fact, orthogonality

between the filters of even and odd nodes is sufficient to guarantee an orthogonal

30

decomposition as x = xe + xo with xt
exo = 0. This is formally stated in Proposi-

tion 4 and is proven in the Appendix. Moreover, under a fixed prediction design

and some mild assumptions about quantization noise, the filter design proposed

in [16] is equivalent to the design in Proposition 3, where in [16] it was shown that

this design minimizes the mean-squared reconstruction error due to quantization

of the transform coefficients. Thus, our proposed update filters are also useful in

coding applications.

Proposition 4 (Orthogonal Decomposition). Let there be N nodes with E , O, P

and U specified as in Definition 1 and Proposition 1. Let T = (I + U)(I − P) =

[t1 t2 . . . tN]t and T−1 =
[

t̃1 t̃2 . . . t̃N

]

. Suppose the lifting filters have been

designed as in Proposition 3. Then for any vector x ∈ R
N , x = xe + xo, with

xe =
∑

i∈E < ti,x > t̃i, xo =
∑

j∈O < tj,x > t̃j, and < xe,xo >= 0.

2.4.3 Discussion

Some remarks are now in order. Note that the work initially proposed by the

author in [56] only provided the result in Proposition 3. In this thesis, we have also

proven Proposition 4, which shows that the update design proposed in Proposition 3

(from [56]) provides an orthogonal decomposition of x = xe +xo, with < xe,xo >=

0. This is useful from a coding perspective since the quantization errors of the

even (LP) components are also orthogonal to the quantization errors of the odd

(HP) components, i.e., it essentially isolates the quantization errors made in one

subband from the other. This isolation of quantization errors should intuitively lead

to minimum reconstruction error. This is in fact the case since we have arrived at

the same solution as in [16] (which aims at minimizing the reconstruction error due

to quantization), and the connection with the work in [16] shows why our proposed

31

update filters (and in particular, orthogonal decompositions) are useful in coding

applications.

2.5 Conclusions

In this chapter we have shown that lifting transforms are invertible by construc-

tion (Proposition 2, Corollary 2), have proposed various methods for even/odd

splitting, proposed optimized prediction filter designs, and have developed optimal

update filter designs. The even/odd splitting methods described have been opti-

mized with de-correlation in mind [3, 23, 36, 72, 73], and have also been optimized

with the goal of minimizing total energy-consumption in WSN [37]. The proposed

prediction filters are optimal in the sense that the average energy in prediction

residuals is minimized [20,52]. This is useful from a coding perspective since lower

energy in the prediction residuals generally leads to fewer bits needed to repre-

sent them. Since these optimal filters depend on the correlation structure in the

data, which is not always known, an adaptive prediction filter method was also

developed [52]. These adaptive filters converge to the optimal filters under some

stationarity assumptions [20]. Finally, orthogonalizing update filters were also pro-

posed [56] (Proposition 3). It was shown that these filters provide an orthogonal

decomposition of the input signal (Proposition 4), and moreover, this choice of fil-

ters also minimizes the reconstruction MSE. These designs and optimizations are

used throughout the remainder of this thesis, with the goal of (i) minimizing total

energy consumption in WSN, and (ii) providing efficient image representations for

image coding.

32

Chapter 3

Transform-based Distributed Data Gathering

We now describe how to apply these tree-based and graph-based lifting trans-

forms to WSNs. Most of the work described in this chapter was proposed by

us in [37, 52, 55, 57, 58]. We focus on the data gathering problem where the goal is

to collect data from every node in a WSN at a central collection (or sink) node.

In particular, we assume that the nodes in the WSN are organized onto a routing

tree. The application is introduced in detail in Section 3.1. We then develop a gen-

eral framework for computing “unidirectional” transforms along routing trees (i.e.,

transforms that are computed as data is routed toward the sink node along the tree)

and provide a set of conditions under which these transforms are invertible. This

framework was initially introduced by us in [58], and was fully formalized in [57].

It is described in detail in Section 3.2. Once the basic framework is established, we

then show how existing transforms fit into this framework. This was also described

in [57], and is described in this thesis in Section 3.3. Finally, we discuss how to

design unidirectional tree-based and graph-based lifting transforms, then compare

the performance against existing work. Again, this work was initially proposed by

the author in [57], and is described in detail in Section 3.3.4, 3.3.5 and 3.4.

33

3.1 Introduction

In networks such as wireless sensor networks (WSNs), one major challenge is to

gather data from a set of nodes and transfer it to a collection (or sink) node as

efficiently as possible. Efficiency can be measured in terms of bandwidth utilization,

energy consumption, etc. We refer to this as the data gathering problem. The

gathering is typically done in data gathering rounds or epochs along a collection of

routing paths to the sink, i.e., in every epoch each node forwards data that it has

measured along a multi-hop path to the sink. A simple gathering strategy is to have

each node route raw data to the sink in a way that minimizes some cost metric,

e.g., number of hops to the sink, energy consumption. This minimizes the amount

of resources nodes use to transfer raw data to the sink and is the basis for many

practical systems used in WSN such as the Collection Tree Protocol (CTP) [68].

However, it has been recognized in the literature [2, 4] that, in a WSN, (i) spatial

data correlation may exist across neighboring nodes and (ii) nodes that are not

adjacent to each other in a routing path can still communicate due to broadcasted

wireless transmissions1. Raw data forwarding does not make use of these two facts,

thus, it will not be the most efficient data gathering method in general.

When spatial data correlation exists, it may be useful to apply in-network com-

pression distributed across the nodes to reduce this data redundancy [4]. More

specifically, nodes can exchange data with their neighbors in order to remove spa-

tial data correlation. This will lead to a representation requiring fewer bits per

measurement as compared to a raw data representation, also leading to reduced en-

ergy consumption, bandwidth usage, delay, etc. Since nodes in a WSN are severely

energy-constrained [2,4,74], some form of in-network processing that removes data

1Data transmissions in a WSN are typically broadcast [10,77], so multiple nodes can receive a
single data transmission.

34

redundancy will help reduce the amount of energy nodes consume in transmitting

data to the sink. In this way the lifetime of a WSN can be extended. This could

also be useful in other bandwidth-limited applications such as underwater acoustic

networks [46] and structural health monitoring [34].

Generally speaking, distributed spatial compression schemes require some form

of data exchange between nodes. Therefore, one needs to select both a routing

strategy and a processing strategy. The routing strategy defines what data com-

munications nodes need to make and the processing strategy defines how each

node processes data. There are a variety of approaches available, e.g., distributed

source coding (DSC) techniques [13,45], transform-based methods like Distributed

KLT [15], Ken [5], PAQ [69], and wavelet-based approaches [1, 3, 6, 7, 9, 55, 72, 73].

Note that DSC techniques do not require nodes to exchange data in order to achieve

compression. Instead, each node can compress its own data using some statistical

correlation model. Note, however, that an estimate of these models must be known

at every node, so nodes will still need to do some initial data exchange in order to

learn the models (after which compression can be done independently at each node).

Our work only considers transform-based methods, which use linear transforms to

decorrelate data while distributing transform computations across different nodes.

While we do not consider DSC approaches, our algorithms could be useful in the

training phase of these methods to estimate correlation. Ken and PAQ are exam-

ples of approaches we consider, where data at each node is predicted using a linear

combination of measurements from the node and measurements received from its

neighbors. Similarly, the Distributed KLT, wavelet-based methods and many other

related methods also use linear transforms to decorrelate data. Therefore, we can

restrict ourselves to linear in-network transforms while still encompassing a general

class of techniques.

35

Many of the existing transform-based methods propose a specific transform

first, then design routing and processing strategies that allow the transform to

be computed in the network. Some examples are the wavelet transforms proposed

in [3,9,72,73], the Distributed KLT, Ken and PAQ. While these methods are good

from a data decorrelation standpoint, the routing and processing strategies that

are used to facilitate distributed processing may not always be efficient in terms

of data transport cost. In particular, nodes may have to transmit their own data

multiple times [72,73], nodes may need to transmit multiple copies of the same coef-

ficients [9], or nodes may even need to transmit data away from the sink [15,72,73].

As discussed in [57, 72], this sort of strategy can outperform raw data gathering

for very dense networks, but it can lead to significant communication overhead for

small to medium sized ones (less than 200 nodes). Other related methods may also

suffer from such inefficiencies.

The results of our previous work [54,55] and of [72] demonstrate why transport

costs cannot be ignored. One simple way to work around these issues is to first

design an efficient routing tree (e.g., a shortest path routing tree, or SPT), then

allow the transform computations to occur only along the routing paths in the tree.

We call these types of schemes en-route in-network transforms. These transforms

(e.g., the wavelet transforms in [1, 6–9, 55]) will typically be more efficient since

they are computed as data is routed to the sink along efficient routing paths. In

addition to overall efficiency, these transforms can be easily integrated on top of

existing routing protocols, i.e., a routing tree can be given by a protocol, then the

transform can be constructed along the tree. This allows such schemes to be easily

usable in a WSN - as demonstrated by the SenZip [41] compression tool, which

includes an implementation of our algorithm in [55] - as well as other types of data

gathering networks [34, 46].

36

We note that all existing en-route transforms start from well-known transforms,

then modify them to work on routing trees. Instead, in this work we start from

a routing tree T and additional links given by broadcast (e.g., Figure 3.1). We

then pose the following questions: (i) what is the full set of transforms that can be

computed as data is routed toward the sink along T and (ii) what are conditions

for invertibility of these transforms? The main goal of this work is to determine

this general set of invertible, en-route in-network transforms. Note that in many

transform-based compression systems, design or selection of a transform is con-

sidered separately from the design of a quantization and encoding strategy. This

is done in practice in order to simplify the system design (e.g., [67]). In general

certain properties of the transform (energy compaction, orthogonality) can serve as

indicators of achievable performance in the lossy case. We adopt a similar approach

in our work, choosing to only focus on the transform design. Simple quantization

and encoding schemes can then be applied to the transform coefficients, as demon-

strated in our experimental results. Joint optimization of routing and compression

is also possible, as in [40,48] and in Chapter 4 [54], but this is beyond the scope of

this section. Here we only focus on the design of transforms for a fixed routing tree

such as, e.g., an SPT.

In order to formulate this problem, we first note that the data gathering process

consists of data measurement at each node and routing of data to the sink along

T done in accordance with some transmission scheduling, i.e., nodes transmit data

along T in a certain order. Also note that data is only transmitted along T in the

direction of the sink, i.e., data transmissions are unidirectional toward the sink.

Moreover, each node can only process its own data with data received from other

nodes that transmit before it, i.e., processing of data must be causal in accordance

with the transmission schedule. In particular, before each node transmits it will

37

Forwarding Link

Broadcast Link

Sensor Node

Sink Node

After adding
broadcast links

3
4

2 6

1 5

7

8

11

12

13

9

10

TA

3
4

2 6

1 5

7

8

11

12

13

9

10

T

Figure 3.1: Example of routing tree and a tree augmented with broadcasts. Solid
arrows denote forwarding links along the tree and dashed arrows denote broadcast
links.

only have access to data received from nodes that use it as a relay in a multi-

hop path to the sink (i.e., “descendants”) and nodes whose data it receives but

is not responsible for forwarding to the sink (i.e., “broadcast” neighbors). When-

ever broadcast is used, data from a single node will often be available at multiple

nodes. While this can help to decorrelate data even further (since more data will

be available for transform computations at each node), it would be undesirable to

transmit this same piece of data through multiple paths since this would increase

the overall communication cost. Thus, in addition to causality and unidirectional-

ity, the transform should also be critically sampled, i.e., the number of transform

coefficients that are computed and routed to the sink is equal to the number of

nodes in the network. We refer to causal, critically-sampled transforms that are

computed in a unidirectional manner as unidirectional transforms.

As we will show, unidirectional transforms can be defined in terms of the routing

tree, the broadcast links induced by the routing and the transmission schedule.

38

Thus, given a tree and transmission schedule, the main problem we address in this

work is to determine a set of necessary and sufficient conditions under which an

arbitrary unidirectional transform is invertible. While unidirectional transforms

have been proposed, to the best of our knowledge, none of the existing works have

attempted to define the most general set of unidirectional transforms, nor has any

attempt been made to find conditions under which such transforms are invertible.

Our proposed theory also incorporates the use of broadcast data in a general setting.

This leads us to develop transforms that use broadcasts in a manner not previously

considered. This contribution is discussed in detail in Section 3.2, and was initially

proposed by us in [57].

In the context of wavelet transforms for WSNs, early work [1,6, 7, 9] developed

unidirectional wavelet transforms on 1D routing paths in WSNs. Extensions to 2D

routing paths on arbitrary routing trees were made by the authors in [54,55]. The

superiority of these 1D [9] and 2D [55] transforms over the method in [72] (which

requires a great deal of backward communication) was demonstrated in [55]. Gen-

eral unidirectional transforms were initially proposed by us in [58], in the context of

lifting transforms [65], and conditions for single-level invertible unidirectional lifting

transforms were initially proposed there. However, no invertibility conditions were

provided for general unidirectional transforms, nor were any conditions given for

invertible multi-level unidirectional lifting transforms. We provide such conditions

here (Section 3.2 and 3.3.4) as well as new transform designs (Section 3.4) that

outperform previously proposed transforms.

General unidirectional transforms with a set of necessary and sufficient invert-

ibility conditions are presented in Section 3.2. In order to demonstrate the gener-

ality of our proposed theory, Section 3.3 shows how existing unidirectional trans-

forms (e.g., the tree-based KLT [52], tree-based differential pulse code modulation

39

(T-DPCM) [41, 52] and lifting transforms [52, 58]) can be mapped into our frame-

work. Moreover, our proposed formalism is used to construct general unidirec-

tional lifting transforms. Some of the inefficiencies of existing lifting transforms are

then discussed. In order to address these inefficiencies, we define a new Haar-like

wavelet transform in Section 3.4 which is analogous to the standard Haar wavelet

when applied to 1D paths. As is shown in Section 3.4, our formalization guarantees

invertibility of these Haar-like transforms, and also leads to an extension which in-

corporates broadcast. Section 3.6 provides experimental results that demonstrate

the benefits of using our proposed transforms.

3.2 En-route In-network Transforms

In this section, assuming a fixed routing tree T and schedule t(n) are given, we

provide a definition of unidirectional transforms and determine conditions for their

invertibility. Some notation is established in Section 3.2.1. Unidirectional trans-

forms are then defined in Section 3.2.2. Section 3.2.3 presents a set of conditions

under which these transforms are invertible. Throughout this discussion, the con-

figuration of the network in terms routing and scheduling is assumed to be known.

Section 3.2.4 addresses how this can be achieved in practice and how our approach

can be used with decentralized initialization approaches.

3.2.1 Notation

Assume there are N nodes in the network with a given routing tree T = (V, ET),

where V = {1, 2, . . . , N, N + 1}, each node is indexed by n ∈ I = {1, 2, . . . , N},

the sink node is indexed by N + 1, and (m, n) ∈ ET denotes an edge from node

m to node n along T . We also assume that there is a graph G = (V, E) which is

40

defined by the edges in ET and any additional edges that arise from the broadcast

nature of wireless communications. An example graph is shown on the right side

of Figure 3.1. We observe that data gathering consists of three key components.

The first is data measurement, where each node n measures some scalar data x(n)

that it must send to the sink in each epoch (these ideas can be easily generalized

to non-scalar data2). Additionally, node n must route its data to the sink along T .

The tree T is defined by assigning to every node n a parent ρ(n). We assume that

these trees are provided by a standard routing protocol such as CTP. Finally, we

assume that data transmissions are scheduled [10, 60] in some manner, i.e., node

n will transmit data to its parent ρ(n) at time t(n) according to a transmission

schedule (see Definition 2). CTP is a practical example that can be viewed in

terms of this formalization: nodes are assigned parents in a distributed manner,

data is forwarded to the sink along the corresponding routing paths and the times

at which nodes transmit serve as an implicit transmission schedule.

Definition 2 (Transmission Schedule). A transmission schedule is a function t :

I → {1, 2, . . . , Mslot}, such that t(n) = j when node n transmits in the j-th time

slot3. Moreover, node n transmits data before node m whenever t(n) < t(m).

Note that, along the tree T , each node has a set of descendants Dn which use

node n as a data relay to the sink and a set of ancestors An that node n uses for

relaying data to the sink. Also let each node n be h(n) hops away from the sink

node, i.e., n has depth h(n) in T . We also let Ck
n denote the descendants of n which

2One straightforward extension is to use a “separable” transform, where a transform is first
applied in one dimension (e.g., over time or across dimensions of a multivariate input) and then
in the other (i.e., spatially).

3Note that these time slots are not necessarily of equal length; they simply allow us to describe
the order in which communications proceed in the network; before time slot t(n), node n is
listening to other nodes, and at time t(n) node n starts transmitting its own data, and potentially
data from its descendants in the routing tree.

41

are exactly k hops away from n, i.e., Ck
n = {m ∈ Dn|ρk(m) = n}, where ρk(m) is the

k-th ancestor of node m (e.g., ρ1(m) is the parent of m, ρ2(m) is the grandparent

of m, etc). For instance, C1
n is the set of children of n, C2

n is the set of grandchildren

of n, etc, and for simplicity we let Cn = C1
n. Also note that data can be heard via

broadcast in WSNs, so we let Bf
n define the full set of broadcast neighbors whose

data node n can overhear due to broadcast.

Under this formulation, each node n can process its own data with data received

from Dn and Bf
n. This yields transform coefficients y(n) and y(m) for each descen-

dant m ∈ Dn. We make an abuse of notation by letting y(Dn) = {y(m)|m ∈ Dn}.

Since node n is only responsible for forwarding y(n) and y(Dn) to its parent ρ(n), it

should not transmit any data received from broadcast neighbors. In particular, we

assume that node n transmits the transform coefficient vector yn = [y(n) y(Dn)]
t

to its parent ρ(n) at time t(n). We refer to this as critical-sampling, where in each

epoch only one transform coefficient per sample per node is generated and then

transmitted to the sink. Also note that y(n) and y(Dn) can be further processed

at the ancestors of n. We refer to this as delayed processing.

Note that data is only transmitted along T toward the sink, i.e., data relay is

unidirectional toward the sink. The existence of a transmission schedule - given

explicitly or implicitly - also induces a notion of causality for transform computa-

tions. In particular, the computations performed at each node n can only involve

x(n) and any ym received from a node m that transmits data before node n. More

specifically, nodes can only use data from m ∈ Bf
n if t(m) < t(n) (we assume that

t(m′) < t(n) for all m′ ∈ Dn). These constraints (i.e., causality and unidirectional

relay) induce causal neighborhoods whose data each node n can use for processing,

where we let Bn = {m ∈ Bf
n|t(m) < t(n)} denote the set of causal broadcast neigh-

bors. These can be abstracted as in Figure 3.2 where yDn
=
[

yt
Cn(1) . . . yt

Cn(|Cn|)

]t

42

and yBn
=
[

yt
Bn(1) . . . yt

Bn(|Bn|)

]t

. These ideas are illustrated in Figure 3.3. For

instance, nodes 4 and 12 will not receive data from node 2 before they transmit,

thus, they cannot use it for processing. These are formally defined as follows.

n
An

Dn

Bn

yDn

yBn

yn

Figure 3.2: Example of causal neighborhoods for each node. Node n receives yDn

and yBn
from Dn and Bn, respectively, processes x(n) together with yDn

and yBn
,

then forwards its transform coefficient vector yn through its ancestors in An.

Definition 3 (Causal Neighborhoods). Given a routing tree T and schedule t(n),

the causal neighborhood of each node n is the union of the descendants Dn and the

set of causal broadcast neighbors Bn = {m ∈ Bf
n|t(m) < t(n)}, i.e., Dn ∪ Bn. We

also define B̄n = Bn ∪m∈Bn
Dm for future discussions.

3.2.2 Definition of Unidirectional Transforms

We define a unidirectional transform (not necessarily invertible) as any transform

that (i) is computed unidirectionally along a tree T and (ii) satisfies causality and

critical sampling. Now we can establish the general algebraic form of unidirectional

transforms. Without loss of generality, assume that node indices follow a pre-order

numbering [70] on T , i.e., Dn = {n+1, n+2, . . . , n+|Dn|} for all n (see Figure 3.3 for

an example). A pre-order numbering always exists, and can be found via standard

43

Forwarding Link

Broadcast Link

Sensor Node

Sink Node

After removing
forbidden links

3
4

2 6

1 5

7

8

11

12

13

9

10

t(3) = 2

t(9) = 1

t(13) = 3

t(12) = 4

t(10) = 5

t(8) = 6

t(6) = 7

t(4) = 8

t(2) = 9

t(11) = 10
t(7) = 11

t(5) = 12

t(1) = 13

3
4

2 6

1 5

7

8

11

12

13

9

10

t(3) = 2

t(9) = 1

t(13) = 3

t(12) = 4

t(10) = 5

t(8) = 6

t(6) = 7

t(4) = 8

t(2) = 9

t(11) = 10
t(7) = 11

t(5) = 12

t(1) = 13

Figure 3.3: Illustration of causal neighborhoods. Node n transmits at time t(n).
The left figure shows the full communication graph. The right figure shows the
graph after removing broadcast links that violate causality and step by step decod-
ing.

algorithms [70]. For the sake of simplicity, we also assume that the transmission

schedule provides a unique time slot to each node4, i.e., t(n) 6= t(m) for all n 6= m.

Recall that each node n receives yDn
and yBn

from its descendants and (causal)

broadcast neighbors, respectively. Thus, in a general unidirectional transform, each

node processes its own data x(n) along with yDn
and yBn

. Then, it will transmit

coefficient vector yn at time t(n). We omit t(n) from the notation of yn since

the timing is implicit. In order to satisfy critical-sampling, each node should only

forward 1 + |Dn| coefficients to the sink. Therefore, yn must be a (1 + |Dn|) × 1

dimensional vector. A unidirectional transform can now be expressed as follows.

Definition 4 (Unidirectional Transform). Let T be a routing tree with a unique

time slot assignment given by t(n), and suppose that the causal neighborhood of

4We note that the time slot assignment need not be unique. However, this assumption sig-
nificantly simplifies the transform construction and invertibility conditions. It is easy to develop
similar transform constructions when multiple nodes are assigned the same time slots, and similar
invertibility conditions arise.

44

each node is given by Definition 3. A unidirectional transform on T is a collection

of local transformations done at each node n given by

yn =
[

An B1
n . . . B|Bn|

n

]

·













x(n)

yDn

yBn













, (3.1)

where yn has dimension (1 + |Dn|) × 1, An has dimension (1 + |Dn|) × (1 + |Dn|)

and each Bi
n has dimension (1 + |Dn|)× (1 + |DBn(i)|). The transform is computed

starting from the node at the first time slot up through the nodes in the remaining

time slots k = 2, 3, . . . , N .

3.2.3 Invertibility Conditions for Unidirectional Transforms

We now establish a set of invertibility conditions for unidirectional transforms.

Note that these transforms are always computed in a particular order, e.g., starting

from nodes furthest from the sink (i.e., “leaf” nodes), up to nodes which are 1-hop

from the sink. Some sort of interleaved scheduling (where one set of nodes transmits

before the rest) could also be used [37]. Therefore, it would also be desirable to have

step by step decoding in the reverse order, since this would simplify the transform

constructions. In particular, if the overall transform can be inverted by inverting

the computations done at each node in the reverse order, then invertibility will be

ensured by designing invertible transforms at each node.

Step by step decoding in the reverse order is trivially guaranteed when no broad-

cast data is used since the transform at each node n is simply yn = An ·
[

x(n) yt
Dn

]t
.

Thus, if each An is invertible, we can invert the operations done at node n as
[

x(n) yt
Dn

]t
= (An)−1 ·yn. This becomes more complicated when broadcast data is

45

used. By examining (3.1), we observe that yn = An ·
[

x(n) yt
Dn

]t
+
[

B1
n . . . B

|Bn|
n

]

·

yBn
, where yBn

=
[

yt
Bn(1) . . . yt

Bn(|Bn|)

]t

. In order to have step by step decodability,

we need to be able to recover (for every node n) x(n) and yDn
from yn and yBn

.

Note that this fails whenever we cannot decode some transform coefficient vector

ym from broadcast node m ∈ Bn before decoding yn. It will also fail if the matrix

operations performed at any given node are not invertible. Thus, in order to guar-

antee step by step decodability, we need to ensure that (i) the matrix operations at

each node are invertible, and (ii) it is possible to decode each ym before decoding

yn. As we now show, (i) is guaranteed by ensuring that each An matrix is invertible

and (ii) is guaranteed by imposing a timing condition.

Proposition 5 (Step by Step Decodability). Suppose that we have the transform

in Definition 4 and assume that t(ρ(m)) > t(n) for every broadcast node m ∈ Bn.

Then we can recover x(n) and yDn
as

[

x(n) yt
Dn

]t
= A−1

n · yn − A−1
n ·

[

B1
n . . . B|Bn|

n

]

· yBn
(3.2)

if and only if A−1
n exists.

Proof. Note that the vector transmitted by any broadcast node m ∈ Bn will be

processed at its parent, node ρ(m), and this processing will occur at time t(ρ(m)).

Moreover, node n will generate its own transform coefficient vector yn at time t(n),

and by assumption we have that t(ρ(m)) > t(n). Thus, it is possible to decode ym

before yn for every broadcast neighbor m ∈ Bn. It follows that, we can always form

yBn
=
[

yt
Bn(1) . . . yt

Bn(|Bn|)

]t

before decoding yn. Therefore, we can recover x(n)

and yDn
as in (3.2) if and only if A−1

n exists.

46

To simplify our transform constructions, we also assume that nodes use the

latest version of broadcast data that they receive, i.e., m ∈ Bn only if Am ∩Bn = ∅.

This second constraint precludes the possibility that a node n receives broadcast

data from node m and from an ancestor of node m. Removing the broadcast links

which violate these constraints gives a simplified communication graph as shown on

the right side of Figure 3.3. Removal of these links can be done by local information

exchange within the network; examples of how this can be achieved are discussed

in Section 3.2.4. Under the constraint of Prop. 5 and this second constraint, we

can represent the global transform taking place in the network as follows. Since the

time slot assignment is unique, at time t(n) only data from n and its descendants

will be modified, i.e., only x(n) and y(Dn) will be changed at time t(n). Since pre-

order indexing is used, we have that yDn
= [y(n+1), . . . , y(n+ |Dn|)]

t. Therefore,

the global transform computations done at time t(n) are given by (3.3), where each

ỹi corresponds to data which is not processed at time t(n).





















































ỹ1

yBn(1)

...

ỹk

yn

ỹk+1

...

yBn(|Bn|)

ỹK





















































=





















































I 0 . . . 0 0 0 . . . 0 0

0 I . . . 0 0 0 . . . 0 0

...
...

. . .
...

...
...

. . .
...

...

0 0 . . . I 0 0 . . . 0 0

0 B1
n . . . 0 An 0 . . . B

|Bn|
n 0

0 0 . . . 0 0 I . . . 0 0

...
...

. . .
...

...
...

. . .
...

...

0 0 . . . 0 0 0 . . . I 0

0 0 . . . 0 0 0 . . . 0 I















































































































ỹ1

yBn(1)

...

ỹk






x(n)

yDn







ỹk+1

...

yBn(|Bn|)

ỹK



























































(3.3)

47

The global transform matrix Ct(n) at time t(n) is just

Ct(n) =





















































I 0 . . . 0 0 0 . . . 0 0

0 I . . . 0 0 0 . . . 0 0

...
...

. . .
...

...
...

. . .
...

...

0 0 . . . I 0 0 . . . 0 0

0 B1
n . . . 0 An 0 . . . B

|Bn|
n 0

0 0 . . . 0 0 I . . . 0 0

...
...

. . .
...

...
...

. . .
...

...

0 0 . . . 0 0 0 . . . I 0

0 0 . . . 0 0 0 . . . 0 I





















































. (3.4)

This yields the global transform coefficient vector

y = CN · CN−1 · · ·C1 · x. (3.5)

Figure 3.4 illustrates these computations. Initially, y = x = [x(1) x(2) . . . x(5)]t.

At times 1 and 2, nodes 3 and 5, respectively, transmit raw data to their parents.

Therefore, the global matrices at times 1 and 2 are simply C1 = C2 = I. At time 3,

node 4 produces (3.6), where ai and bi represent arbitrary values of the transform

matrix used at node 4. Then at time 4, node 2 produces transform coefficients y(2)

and y(3) (and coefficient vector y2) as in (3.7), where a′
i and b′i are the values of

the matrix used at node 2.

y4 =







y(4)

y(5)






=







b1 a1 a2

b2 a3 a4






·













x(3)

x(4)

x(5)













(3.6)

48

y2 =







y(2)

y(3)






=







a′
1 a′

2 b′1 b′2

a′
3 a′

4 b′3 b′4






·













x(2)

x(3)

y4













(3.7)

Node 1 then computes y1 at time 5. The global transform is given by

y = A1

























1 0 0 0 0

0 a′
1 a′

2 b′1 b′2

0 a′
3 a′

4 b′3 b′4

0 0 0 1 0

0 0 0 0 1

















































1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 b1 a1 a2

0 0 b2 a3 a4

















































x(1)

x(2)

x(3)

x(4)

x(5)

























. (3.8)

3

5

2

4

1

t(3) = 1 t(2) = 4

t(5) = 2 t(4) = 3

t(1) = 5

x(3)

x(3)

x(5)

y4

y4

y2

y1

Figure 3.4: Example to illustrate unidirectional computations. Nodes generate and
transmit transform coefficients in the order specified by the transmission schedule.

It is now simple to show that the transform is invertible if each An is invertible.

Proposition 6 (Invertible Unidirectional Transforms). Suppose that we have the

transform in Def. 4, the second timing constraint (m ∈ Bn only if Am ∩ Bn = ∅) is

met, and Prop. 5 is satisfied for every node n. Then the overall transform given by

(3.5) is invertible.

49

Proof. Under the two broadcast timing assumptions, the global transform is given

by (3.5). (3.5) is invertible if and only if every Ct(n) in (3.4) is invertible. Ct(n) is

invertible if and only if det
(

Ct(n)

)

6= 0. Recall that adding a multiple of one row

to another does not change the determinant [63]. Given the structure of the Ct(n)

matrices, using such row operations to eliminate each Bi
n matrix, it is easy to show

that det
(

Ct(n)

)

= det (An). Moreover, Prop. 5 implies that An is invertible.

Proposition 6 shows that locally invertible transforms provide globally invertible

transforms. Moreover, under our stated timing constraints, broadcast data does

not affect invertibility. Therefore, broadcast data at each node n can be used in an

arbitrary manner without affecting invertibility. So in order to design an invertible

unidirectional transform, all that one must do is design invertible matrices An.

This is an encouraging result since it essentially means that broadcast data can be

used in any way a node chooses. In particular, broadcast data can always be used

to achieve more data decorrelation.

3.2.4 Discussion

The theory presented thus far assumes that the routing and transmission scheduling

are known, and that all of the transform matrices are known both at the nodes and

at the sink. In practice, the routing, scheduling and transforms must be initialized.

Moreover, the network may need to re-configure itself if, for example, nodes die

or link conditions change drastically. In addition, packet losses will often occur.

Nodes typically deal with this (as in CTP) by re-transmitting a packet until an

acknowledgment (ACK) is received from the intended recipient. While these three

issues pose no significant problems for routing, they all have an impact on our

50

proposed transform due to the assumptions we make about timing. We now provide

some discussion of how this affects our theory and how it can be handled.

We first address the impact that initialization and reconfiguration have on the

routing and scheduling, as well as what can be done to address it. We assume

that routing is initialized and reconfigured in a distributed manner using standard

protocols such as CTP. Distributed scheduling protocols for WSNs also exist [60,61].

However, the resulting schedules may not be consistent with Definition 3 (i.e., they

may not provide timings for which t(m) < t(n) for all m ∈ Dn), so in practice we

would need to enforce such timings. One way to achieve this is to force nodes to

suppress transmission (in a given epoch) until they have received data from all of

their descendants. Another alternative would be to determine such a transmission

schedule at the sink, then to disseminate the timing information to the nodes.

Whenever timing and routing information is established (or re-established due

to re-configuration), it is also necessary to check our main broadcast timing con-

straint, i.e., m ∈ Bn only if t(n) < t(ρ(m)). We describe one way in which this

information can be disseminated to each node in a distributed manner. First, when-

ever the time t(n) at node n is initialized or changes, it broadcasts a small packet

(i.e., a beacon) which contains t(n) to its children. Then, any child of n which

broadcasts data will send the same beacon to all of its neighbors. This requires a

total of 2 messages for each broadcasting node. Note that protocols such as CTP

already use control beacons (in addition to data packets) to update stale routing

information. Thus, nodes could potentially piggyback timing information on these

control beacons whenever they are generated, or otherwise use separate control

beacons to disseminate timing information. This will incur an additional cost, al-

though (as was shown in [68]) the per packet cost for control beacons is typically

much smaller than the cost for data forwarding.

51

Initialization and re-configuration also impacts the transform matrices that are

used. Each node could transmit the values of its matrix to the sink, or vice versa,

but this may be very costly. Instead, the construction of each transform matrix

should be based on a small amount of information which is made common to the

nodes and to the sink. For example, the values in each transform matrix could be

based on the number of 1-hop neighbors that each node has [55] or the relative

node positions [73]. In this way each matrix can be constructed at each node

and at the sink without explicitly communicating the matrix values. However,

additional information (e.g., node positions, number of neighbors) would need to

be communicated to the sink whenever the network is initialized or re-configured.

For example, each node could construct a transform using only the number of nodes

that it receives data from (as in [55, 73]) and would send the set of nodes whose

data it used as overhead to the sink. Then, assuming that the nodes and the sink

construct the matrices according to the same rules, the sink can re-construct the

matrix used at each node.

Packet loss is the last practical issue which impacts our proposed transforms.

We do not consider the effects of channel noise on the data since these can be

handled using a wide variety of existing techniques. Moreover, packet losses and

channel noise will impact other data gathering schemes (e.g., CTP), and we expect

that the penalty due to packet losses will be similar in our scheme and in other

data gathering schemes. Packet losses are typically handled (as in CTP) by re-

transmitting a packet until an ACK is received from the desired destination. Thus,

if node n does not receive data from descendant n+k by the time that it transmits,

due to packet re-transmissions for n + k, the data from node n + k cannot be

combined with data available at node n. This is equivalent to not using the data

from node n+k in the transform computation (i.e., An(j, k +1) = An(k +1, j) = 0

52

for all j 6= k +1 and An(k +1, k +1) = 1) and does not affect our proposed theory.

However, this change must be signaled to the sink so that it knows how to adjust

An accordingly. This can be done by including some additional information in the

packet headers for node n and n + k to signify this change.

Packet losses also have an impact on the use of broadcast data. Suppose that

node n does not receive a data packet from broadcast neighbor bk but the packet

from bk does reach the intended recipient ρ(bk). In this case, node ρ(bk) will send

an ACK back to node bk and node bk will no longer re-transmit (note that node

bk will not expect an ACK from node n). Thus, data from node bk can not be

combined with data available at node n. This is equivalent to not using data from

node bk in the transform computation (i.e., Bk
n = 0) and our proposed theory is

not affected. However, node n must signal this change to the sink node so that it

knows to set Bk
n = 0.

One way to work around these issues (initialization, re-configuration and packet

losses) is to design transforms that can work under arbitrary timing and with arbi-

trary uses of broadcast data. However, under arbitrary timing and use of broadcast

data, it is no longer possible to guarantee global transform invertibility by design-

ing invertible transforms at each node. More specifically, we must ensure that the

transform computations done at different nodes are jointly invertible. This leads

to a set of complex conditions. The cost to determine such conditions and to coor-

dinate nodes so that they satisfy these conditions could be very high, perhaps even

much higher than the additional coordination needed to implement our proposed

transforms. However, it is still possible to design simple versions of such transforms

by using constructions such as lifting. The transforms described in Section 2.2.2 [37]

is one particular example. Given this high degree of complexity to ensure an invert-

ible transform when using broadcast, broadcast data should probably only be used

53

with our proposed transforms if (i) it is possible to fix the timing in the network in

accordance with Definition 3, and, (ii) the timing is very stable.

3.3 Unidirectional Transform Designs

Proposition 6 provides simple conditions for invertible transform design, i.e., An is

invertible for every node n. This is a simple design constraint that unifies many

existing unidirectional transforms. In this section, we demonstrate how existing

unidirectional transforms can be mapped to our formulation. In particular, we focus

on the tree-based Karhunen-Loève Transform (T-KLT) [52], T-DPCM [41,52] and

early forms of tree-based wavelet transforms [1,7,9,55] constructed using lifting [65].

In order to exploit spatial correlation to achieve reduction in the number of bits

per measurement, nodes must first exchange data. Therefore, some nodes must

transmit raw data to their neighbors before any form of spatial compression can

be performed. Since raw data typically requires many more bits than encoded

transform coefficients, it would be desirable to minimize the number of raw data

transmissions that nodes must make to facilitate distributed transform computa-

tion. Therefore, our main design consideration is to minimize the number of raw

data transmissions that are required to compute the transform.

3.3.1 Tree-based Karhunen-Loève Transform

Since transforms that achieve data decorrelation potentially lead to better coding

efficiency [17], we consider now the design of unidirectional transforms that achieve

the maximum amount of data decorrelation. This can be achieved by applying, at

each node n, a transform An that makes all of the coefficients in yn statistically

uncorrelated (or “whitened”), e.g., by using a Karhunen-Loève transform (KLT)

54

at each node, leading to the T-KLT described in our previous work [52]. In this

transform, each node n computes and transmits a set of “whitened” coefficients

yn, which will then have to be “unwhitened” and then re-whitened at ρ(n) to

produce a new set of whitened coefficients. Whitening can be done using a KLT

and unwhitening can be achieved using an inverse KLT. More specifically, this is

done at each node n by (i) finding the whitening transform Hn and unwhitening

transforms of each child GCn(i), (ii) applying an unwhitening transform to each

child to recover the original measurements as xCn(i) = GCn(i) · yCn(i), and then (iii)

rewhitening these measurements as yn = Hn ·
[

x(n) xt
Cn(1) . . .xt

Cn(|Cn|)

]t

. Thus,

yn = Hn ·



















1 0 · · · 0

0 GCn(1) · · · 0

...
...

. . .
...

0 0 · · · GCn(|Cn|)



















·



















x(n)

yCn(1)

...

yCn(|Cn|)



















, (3.9)

with An = Hn · diag
(

1,GCn(1), . . . ,GCn(|Cn|)

)

. Each An is trivially invertible since

Hn and each GCn(i) are invertible by construction.

3.3.2 Orthogonal Unidirectional Transforms

It may also be desirable to construct orthogonal transforms on an arbitrary tree

T . Given the assumptions in Section 3.2, we have that the transform Ct(n) is

orthogonal if and only if
(

Ct(n)

)t
· Ct(n) = Ct(n) ·

(

Ct(n)

)t
= I, which holds if and

only if At
n = A−1

n and Bi
n = 0. Thus, under the formulation in Section 3.2, a

unidirectional transform is orthogonal only if broadcast data is not used.

55

3.3.3 Tree-based DPCM

A simpler alternative to the T-KLT is T-DPCM [41, 52]. A related DPCM based

method was proposed in [31]. The method in [31] is not designed for any particular

communication structure, but it can easily be adapted to take the form of a uni-

directional transform. In contrast to the method in [31], the T-DPCM methods in

our previous work [41, 52] compute differentials directly on a tree such as an SPT.

In the T-DPCM method of [52], each node n computes its difference with respect

to a weighted average of its children’s data, i.e., y(n) = x(n) −
∑

m∈Cn
an(m)x(m).

For this to be possible, one of two things must happen: either every node n must

decode the differentials received from its children to recover x(m) for each m ∈ Cn,

or, every node n must transmit raw data two hops forward to its grandparent (at

which point y(n) can be computed) to avoid decoding data at every node. In order

to avoid each node having to forward raw data two hops, at each node n, the

inverse transform on the data of each child Cn(i) must be computed first using the

inverse matrix
(

ACn(i)

)−1
of each child. The forward transform is then designed

accordingly. We can express this version of T-DPCM as:

yn =







1 −an(Dn)

0 I

























1
(

ACn(1)

)−1
· · ·

(

ACn(|Cn|)

)−1

0 I · · · 0

...
...

. . .
...

0 0 · · · I





































x(n)

yCn(1)

...

yCn(|Cn|)



















.

(3.10)

Moreover, only leaf nodes need to forward raw data and the rest transmit only

transform coefficients.

Alternatively, in the T-DPCM scheme of [41], each node n first forwards raw

data x(n) to its parent ρ(n), then node ρ(n) computes a differential for n and

56

forwards it to the sink, i.e., node ρ(n) computes y(n) = x(n) − an(ρ(n))x(ρ(n)).

This transform can also be mapped to our formalism as

yn =







1 0

−aDn
(n) I






·







x(n)

yDn






. (3.11)

This eliminates the computational complexity of the previous T-DPCM method

since no decoding of children data is required. However, every node must now

forward raw data one hop. Moreover, it will not decorrelate the data as well as the

first method since only data from one neighbor is used.

3.3.4 Unidirectional Lifting-based Wavelets

We now describe how unidirectional wavelet transforms can be constructed under

our framework as was initially proposed by us in [57]. This can be done using

lifting [65]. Lifting transforms are constructed by splitting nodes into disjoint sets

of even and odd nodes, by designing prediction filters, which alter odd data using

even data, and update filters, which alter even data based on odd data. They are

invertible by construction [65].

Recall from Chapter 2 that nodes are split into odd and even sets O and E ,

respectively. This can be done completely arbitrarily. One example from Chap-

ter 2.2.1 [55] is to split according to the depth in the tree, e.g., as illustrated in

Figure 3.5. Data at each odd node n ∈ O is then predicted using data from even

neighbors Nn ⊂ E , yielding detail coefficient d(n) = x(n)−
∑

i∈Nn
pn(i)x(i). Incor-

porating some broadcast data into the prediction is also useful since it allows odd

nodes to achieve even further decorrelation. After the prediction step, data at each

57

even node m ∈ E is updated using details from odd neighbors Nm ⊂ O, yielding

smooth coefficient s(m) = x(m) +
∑

j∈Nm
um(j)d(j).

17

5

3

6

2

16

11

10

12
1 9

13

14

21

23

22

15
18

1920

7

8

4

Figure 3.5: Example of splitting based on the depth of the routing tree. White
(odd depth) nodes are odd, gray (even depth) nodes are even and the black center
node is the sink.

As was shown in Section 2.1, invertibility will be guaranteed as long as (i)

odd node data is only predicted using even node data, and (ii) even node data is

only updated using details from odd nodes. So if E and O is an arbitrary even

and odd split, the transform computed at each node will be invertible as long as

the computations satisfy (i) and (ii). We are particularly interested in designing

unidirectional lifting transforms, thus, we must constrain the set of neighbors for

each node to its descendants Dn and its causal broadcast neighbors Bn. More

formally, let On = (n ∪ Dn) ∩ O be the set of odd nodes whose data is available

at n from its subtree. Let En = (n ∪ Dn) ∩ E be defined similarly. Moreover, let

OB
n = B̄n ∩ O denote the set of odd nodes whose data n receives via broadcast.

Similarly, let EB
n = B̄n ∩ E . Then the computations at n will be invertible as long

58

as it only predicts y(On) from y(En) and y(EB
n) and only updates y(En) from y(On)

and y(OB
n). Let Mn and MB

n be permutation matrices such that



















y(On)

y(En)

y(OB
n)

y(EB
n)



















=







Mn 0

0 MB
n






·













x(n)

y(Dn)

y(B̄n)













. (3.12)

Then node n can compute transform coefficients as

yn = (Mn)t







I 0 0 0

Un I UB
n 0

























I Pn 0 PB
n

0 I 0 0

0 0 I 0

0 0 0 I





































y(On)

y(En)

y(OB
n)

y(EB
n)



















. (3.13)

By multiplying these matrices together, we get yn = [An Bn]·
[

x(n) yt
Dn

yt
Bn

]t
, with

An = (Mn)t ·







I 0

Un I






·







I Pn

0 I






· Mn,

Bn = (Mn)t ·







0 PB
n

UB
n UnP

B
n






· MB

n .

Since det(An) = 1, single-level unidirectional lifting transforms are invertible.

The transform given by (3.13) corresponds to only one level of decomposition.

In particular, at each node n the transform of (3.13) will yield a set of smooth

(or low-pass) coefficients {y(k)}k∈En
and a set of detail (or high-pass) coefficients

{y(l)}l∈On
. The high-pass coefficients will typically have low energy if the original

59

data is smooth, so these can be encoded using very few bits and forwarded to the

sink without any further processing. However, there will still be some correlation

between low-pass coefficients. It would therefore be useful to apply additional levels

of transform to the low-pass coefficients at node n to achieve more decorrelation.

This will reduce the number of bits needed to encode these low-pass coefficients,

and will ultimately reduce the number of bits each node must transmit to the sink.

Suppose each node performs an additional J levels of lifting transform on the

low-pass coefficients {y(k)}k∈En
. At each level j = 2, 3, . . . , J + 1, suppose that

nodes in E j−1
n are split into even and odd sets E j

n and Oj
n, respectively. We assume

that E1
n = En. For each odd node l ∈ Oj

n, we predict y(l) using even coefficients from

some set of even neighbors N j
l ⊂ E j

n, i.e., y(l) = y(l) −
∑

k∈N j

l
pl,j(k)y(k). Then

for each even node k ∈ E j
n, we update y(k) using odd coefficients from some set of

odd neighbors N j
k ⊂ Oj

n, i.e., y(k) = y(k) +
∑

l∈N j

k
uk,j(l)y(l). This decomposition

is done starting from level j = 2 up to level j = J + 1. For all j = 2, 3, . . . , J + 1,

let Mj
n be a permutation matrix such that













y(Oj
n)

y(E j
n)

y(Rj
n)













= Mj
n · yn, (3.14)

where Rj
n = (n ∪ Dn) − (Oj

n ∪ E j
n) is the set of nodes whose coefficients are not

modified at level j. Then we can express the level j transform computations in

matrix form as

yn =
(

Mj
n

)t
·













I 0 0

Uj
n I 0

0 0 I













·













I Pj
n 0

0 I 0

0 0 I













·













y(Oj
n)

y(E j
n)

y(Rj
n)













, (3.15)

60

where Pj
n and Uj

n represent the prediction and update operations used at level j,

respectively.

By combining (3.12), (3.13), (3.14) and (3.15), we finally get that yn = [An Bn]·
[

x(n) yt
Dn

yt
Bn

]t
, with An and Bn defined in (3.16) and (3.17).

An =
J+1
∏

j=2

Mjt
n













I 0 0

Uj
n I 0

0 0 I

























I Pj
n 0

0 I 0

0 0 I













Mj
nM

t
n







I 0

Un I













I Pn

0 I






Mn

(3.16)

Bn =
J+1
∏

j=2

Mjt
n













I 0 0

Uj
n I 0

0 0 I

























I Pj
n 0

0 I 0

0 0 I













Mj
nM

t
n







0 PB
n

UB
n UnP

B
n






MB

n (3.17)

Prop. 6 implies that the overall transform is invertible if An given in (3.16) is

invertible. Since each Mj
n is a permutation matrix, | det(Mj

n)| = 1. Moreover,

the remaining matrices are triangular. Thus, it easily follows that det(An) = 1.

Therefore, unidirectional, multi-level lifting transforms are always invertible.

3.3.5 Unidirectional 5/3-like Wavelets

This section describes the 5/3-like transform on a tree initially proposed in the

author’s previous work [55]. First, nodes are split into odd and even sets O and

E , respectively, by assigning nodes of odd depth as odd and nodes of even depth

as even (as done in Section 2.2.1). This is illustrated in Figure 3.5. The transform

neighbors of each node are simply Nn = {ρ(n)}∪Cn for every node n. This provides

a 5/3-like wavelet transform on a tree since whenever predictions and updates are

used along a 1D path, the transform reduces to the 5/3 wavelet transform [33].

61

This transform can be computed in a unidirectional manner, but doing so requires

that some nodes forward raw data 1 or 2 hops. This is illustrated in Figure 3.6.

Nodes 4, 5, 7, 8 tx raw data

5

3

6

2

1

7

8

4

y4 = [x(4)]

y5 = [x(5)]

y7 = [x(7)]

y8 = [x(8)]

5

3

6

2

1

7

8

4

y3 = [x(3) x(4) x(5)]t

y6 = [x(6) x(7) x(8)]t

Nodes 3, 6 tx raw data

Figure 3.6: Raw data example. Nodes 3 and 6 need x(2) to compute details d(3)
and d(6), so they must forward raw data over 1-hop to node 2. Nodes 4 and 5 need
d(3) to compute s(4) and s(5), so they must forward raw data over 2-hops.

Data from each odd node n is predicted using data x(Cn) (from children Cn)

and x(ρ(n)) (from parent ρ(n)). However, odd node n will not have x(ρ(n)) locally

available for processing. Therefore, we require that each odd node n transmit

raw data x(n) one hop forward to its parent ρ(n), at which point node ρ(n) can

compute the detail coefficient of n. Each even node m will then compute detail

d(j) = x(j) −
∑

i∈Cj
pl(j)x(j) − pj(m)x(m) for every child j ∈ Cm. Similarly, the

smooth coefficient of each even node m requires details from its parent ρ(m) and

children Cm, so it can not be locally computed either. Moreover, detail d(ρ(m))

can only be computed at node ρ2(m), i.e., at the grandparent of m. Therefore,

we require that even node m transmit raw data x(m) two hops forward to ρ2(m),

at which point d(ρ(m)) will be available and ρ2(m) can compute s(m) = x(m) +

∑

j∈{ρ(m)}∪Cm
um(j)d(j). Note that each of these operations are trivially invertible,

and easily lead to local transform matrices An which are invertible by construction.

However, the number of raw data transmissions is relatively high, i.e., 1-hop for odd

nodes and 2-hops for even nodes. We address this inefficiency in the next section.

62

3.4 Unidirectional Haar-like Wavelets

We now construct a transform that addresses the inefficiency of the transform

proposed in Section 3.3.5. For the transform in Section 3.3.5, raw data from even

and odd nodes must be forwarded over 2-hops and 1-hop, respectively. This can

be inefficient in terms of transport costs. Instead, it would be better to construct a

lifting transform that directly minimizes the number of raw data transmissions each

node must make. We use the splitting method in Section 3.3.5. Note that some

form of data exchange must occur before the transform can be computed, i.e., evens

must transmit raw data to odds, or vice versa. Suppose that even nodes forward

raw data to their parents. In this case, the best we can do is to design a transform

for which even nodes transmit raw data over only 1-hop, and odd nodes do not

transmit any raw data. This will minimize the number of raw data transmissions

that nodes need to make, leading to transforms which are more efficient than the

5/3-like transform in terms of transport costs. We note that minimizing raw data

only serves as a simple proxy for the optimization. A more formal optimization

which relies on this same intuition is undertaken in recent work [37].

3.4.1 Transform Construction

A design that is more efficient than the 5/3-like transform can be achieved as follows.

Note that an odd node n has data from its children Cn and/or even broadcast

neighbors Bn ∩ E locally available, so it can directly compute a detail coefficient

for itself, i.e., d(n) = x(n)−
∑

i∈Cn
pn(i)x(i)−

∑

j∈Bn∩E
pn(j)x(j). Thus, the detail

d(n) is computed directly at n, is encoded, and then is transmitted to the sink.

These details require fewer bits for encoding than raw data, hence, this reduces

the number of bits that odd nodes must transmit for their own data. Since data

63

from even node m is only used to predict data at its parent ρ(m), we simply have

that Nm = {ρ(m)} and s(m) = x(m)+um(ρ(m))d(ρ(m)). Moreover, these smooth

coefficients can be computed at each odd node n. Therefore, even nodes only

need to forward raw data over one hop, after which their smooth coefficients can

be computed. Note that not all odd nodes will have children or even broadcast

neighbors, i.e., there may exist some odd nodes n such that Cn = ∅ and Bn ∩E = ∅.

Such odd nodes can simply forward raw data x(n) to their parent ρ(n), then ρ(n)

can compute their details as d(n) = x(n)−pn(ρ(n))x(ρ(n)). Thus, there may be a

few odd nodes that must send raw data forward one hop. This leads to a Haar-like

transform since it is the Haar wavelet transform when applied to 1D paths.

Odd nodes can also perform additional levels of decomposition on the smooth

coefficients of their descendants. In particular, every odd node n will locally com-

pute the smooth coefficients of its children. Therefore, it can organize the smooth

coefficients {s(k)}k∈Cn
onto another tree T 2

n and perform more levels of transform

decomposition along T 2
n . In this work, we assume T 2

n is a minimum spanning tree.

This produces detail coefficients {d2(k)}k∈O2
n
, {d3(k)}k∈O3

n
, . . ., {dJ+1(k)}k∈OJ+1

n
and

smooth coefficients {sJ+1(k)}k∈EJ+1
n

for some J ≥ 0. In this way, odd nodes can fur-

ther decorrelate the data of their children before they even transmit. This reduces

the resources they consume in transmitting data. An example of this separable

transform for J = 1 is illustrated in Figure 3.7. By choosing averaging prediction

filters and the orthogonalizing update filter design in Section 2.4.2 [56], we get the

global equation in (3.18). The coefficient vector y6 is obtained in a similar manner.

y3 =













1 0 0

0 1 0

0 1
2

1













·













1 0 0

0 1 −1

0 0 1













·













1 0 0

1
3

1 0

1
3

0 1













·













1 −1
2

−1
2

0 1 0

0 0 1

























x(3)

x(4)

x(5)













(3.18)

64

5

3

6

2

7

8

4

y4 = [x(4)]

y5 = [x(5)]

y7 = [x(7)]

y8 = [x(8)]

d(3) = x(3) - [x(4) + x(5)] / 2
s(4) = x(4) + d(3) / 3
s(5) = x(5) + d(3) / 3

d(6) = x(6) - [x(7) + x(8)] / 2
s(7) = x(7) + d(6) / 3
s(8) = x(8) + d(6) / 3

(a) 1st-level along T

5

2

7

8

4

y3 = [d(3) d2(4) s2(5)]t

y6 = [d(6) d2(7) s2(8)]t

d2(4) = s(4) - s(5)
s2(5) = s(5) + d2(4) / 2

d2(7) = s(7) - s(8)
s2(8) = s(8) + d2(7) / 2

(b) 2nd-level “orthogonal” to T

Figure 3.7: Unidirectional Computations for Haar-like Transform. In (a), nodes 3
and 6 compute a first level of transform. Then in (b), nodes 3 and 6 compute a
second level of transform on smooth coefficients of their children.

3.4.2 Discussion

The transform computations that each node performs can be easily mapped into

our standard form yn = [An Bn] ·
[

x(n) yt
Dn

yt
Bn

]t
by appropriately populating the

matrices in (3.16) and (3.17). Therefore, they will always yield invertible trans-

forms. For example, since each odd node n predicts its own data x(n) using data

from its children Cn and even broadcast neighbors Bn ∩ E , then updates the data

of its children from its own detail, a single level transform can be expressed as

yn =







1 0

uDn
(n) I













1 −pn(Dn) −pn(B̄n)

0 I 0



















x(n)

yDn

yBn













. (3.19)

By choosing

An =







1 0

uDn
(n) I






·







1 −pn(Dn)

0 I






, (3.20)

and

Bn =







1 0

uDn
(n) I






·







−pn(B̄n)

I






, (3.21)

65

we have that yn = [An Bn] ·
[

x(n) yt
Dn

yt
Bn

]t
. Note that (3.19) covers all of the

cases discussed in Section 3.4.1 for each odd node n, that is to say: (i) Cn 6= ∅ and

Bn ∩E 6= ∅, (ii) Cn = ∅ and Bn ∩E 6= ∅, (iii) Cn 6= ∅ and Bn ∩E = ∅, and (iv) Cn = ∅

and Bn∩E = ∅. In particular, whenever Cn 6= ∅, pn(Dn) and uDn
(n) will have some

non-zero entries. Otherwise, n has no descendants and so pn(Dn) and uDn
(n) will

just be vectors of zeros. Similarly, whenever Bn ∩ E 6= ∅, pn(B̄n) will have some

non-zero entries. Otherwise, n has no even broadcast neighbors and pn(B̄n) will be

a vector of zeros.

Similarly, each even node m may need to compute predictions for its odd chil-

dren, so its computations for a single level transform can be expressed as

ym =







1 0

−pDm
(m) I






·







x(m)

yDn






. (3.22)

Also note that (3.22) covers all of the cases for each even node m discussed in

Section 3.4.1, i.e., when m has to compute predictions for children then pDm
(m) 6=

0, otherwise, pDm
(m) = 0.

Note that, when broadcast data is used, the decorrelation achieved at odd nodes

may still be comparable to the 5/3-like transform since the same number of neigh-

bors (or more) will be used. Moreover, broadcasts are particularly useful for odd

nodes n that have no children, i.e., n for which Cn = ∅ but Bn ∩E 6= ∅. If broadcast

data is not used when it is available, node n will have to transmit x(n) to its par-

ent. Since x(n) requires more bits for encoding than does a detail coefficient d(n), n

will consume more resources during data transmission. By using broadcasts, these

odd nodes which have no children can still use data overheard from even broadcast

neighbors, allowing them to avoid transmitting raw data to their parents. This is

66

illustrated in Figure 3.8, where node 11 has no children but overhears data from

node 12. The example in Figure 3.8(a) will consume more resources at node 11

than will the example in Figure 3.8(b).

11

10

12
9

x(11)

[x(10), d(11)]

x(12)

[d(9), s(10), d(11), s(12)]

(a) Without Broadcasts

11

10

12
9

x(12)

d(11)

[x(10), d(11)]

x(12)

[d(9), s(10), d(11), s(12)]

(b) With Broadcasts

Figure 3.8: No broadcasts are used in (a), so node 11 consumes more resources when
transmitting raw data x(11). Broadcasts are used in (b), so node 11 consumes less
resources when transmitting detail d(11).

3.5 Quantization of Transform Coefficients

Quantization is also an important part of the compression process since it allows

nodes to provide data to the sink at different bit rates (and correspondingly, differ-

ent costs and reconstruction qualities), though lossless coding (i.e., without quanti-

zation) could always be performed for the wavelet transforms in Section 3.3.4, 3.3.5

and 3.4 or the T-DPCM schemes in Section 3.3.3. In this thesis we consider both

lossless and lossy coding. One major problem with quantization in WSNs is that

original data will not always be available for computation at every node. Thus, it is

possible that some nodes receive data that has already been quantized, process it,

67

then quantize it again. This creates two major problems. First, it can lead to severe

propagation of quantization errors in the inverse transform computations, leading

to significant degradation in the reconstructed data. Secondly, if the encoders (i.e.,

at the nodes) and decoder (i.e., at the sink) operate on different data (unquantized

versus quantized) for adaptation of the filters or entropy coders, this will lead to a

serious drift problem.

The first problem can be easily handled by only using quantized data for filtering

operations at each node, that way we can avoid having cascaded quantization steps.

T-DPCM is one scheme that only uses quantized data to compute predictions. In

light of these facts, for the lifting transforms we also find it sensible to (i) only use

quantized data to compute predictions for odd node data and (ii) only use quantized

detail coefficients to compute updates of even node data. A similar strategy would

be employed over multiple levels of decomposition. In this way we can avoid this

severe propagation of quantization errors. This idea was initially proposed in [8] for

the same reason, and was used to quantize the coefficients of a unidirectional 1D,

5/3 wavelet transform. Note that transforms such as the T-KLT do not have this

luxury since inverse and forward transforms are constantly being applied at every

node, i.e., initially each node transmits quantized raw data, the quantized raw data

is used to generate transform coefficients, then the coefficients are quantized again.

Thus, propagation of quantization error is inevitable for the T-KLT.

The second problem can be dealt with by using only quantized data in the

filter adaptation. For example, in the adaptive prediction filter scheme described

in Section 2.3.2, the prediction filters are always updated using quantized data.

In this way, nodes and the sink will use the same data for adaptation, so drift

problems are completely avoided. Obviously quantized data should always be used

when adapting the entropy coders.

68

3.6 Experimental Results

This section presents experimental results that compare the transforms proposed

here against existing methods. Source code used to generate these results can

be found on our web page5. In particular, we focus on comparing the proposed

multi-level Haar-like lifting transforms against the multi-level 5/3-like transform

from [55, 58], the T-DPCM scheme in [52] and raw data gathering. We consider

the application of distributed data gathering in WSNs. Performance is measured

by total energy consumption.

3.6.1 Experimental Setup

For evaluation, we consider simulated data generated from a second order AR

model. This data consists of two 600 × 600 2D processes generated by a second

order AR model with low and high spatial data correlation, e.g., nodes that are

a certain distance away have higher inter-node correlation for the high correlation

data than for the low correlation data. More specifically, we use the second order AR

filter H(z) = 1
(1−ρejω0z−1)(1−ρe−jω0z−1)

, with ρ = 0.99 and ω0 = 99 (resp. ω0 = 359)

to produce data with low (resp. high) spatial correlation. The nodes were placed in

a 600×600 grid, with node measurements corresponding to the data value from the

associated position in the grid. Each network used in our simulations is generated

from a set of random node positions distributed in the 600 × 600 grid. An SPT is

constructed for each set of node positions. We consider two types of networks: (i)

variable radio range networks in which each node can have a different radio range,

and (ii) fixed radio range networks in which each node has the same radio range. In

the variable radio range case, the radio range that each node n uses for transmission

5http://biron.usc.edu/wiki/index.php/Wavelets on Trees

69

is defined by the distance from n to its parent in the SPT. Additional broadcast

links induced by the SPT are also included, i.e., a broadcast link between node n

and m exists if m is not a neighbor of n in the SPT but is within radio range of n.

In order to measure energy consumption, we use the cost model for WSN devices

proposed in [21, 74], where the energy consumed in transmitting k bits over a

distance D is ET (k, D) = Eelec · k + εamp · k · D2 Joules and the energy consumed

in receiving k bits is ER(k) = Eelec · k Joules. The Eelec · k terms capture the

energy dissipated by the radio electronics to process k bits. The εamp · k · D2 term

captures the additional energy for signal amplification needed to ensure reasonable

signal power at the receiver. WSN devices also consume energy when performing

computations, but these costs are typically very small compared with transmission

and reception costs. Therefore, we ignore them in our cost computations. Also note

that all data gathering schemes will suffer from channel noise and attenuation, so

a no-channel-loss comparison is still valid. Thus, we do not consider these effects

in our experiments.

Comparisons are made with the Haar-like transforms of Section 3.4 against

the 5/3-like transform with delayed processing proposed in [58] and the T-DPCM

scheme proposed in [52]. Predictions for each of these transforms are made using

the adaptive prediction filter design in Section 2.3.2 (proposed in [52]). Updates are

made using the “orthogonalizing” update filter design in Section 2.4.2 (proposed

in [56]). In each epoch, we assume that each node transmits M = 50 measurements

taken at M different times. Also, each raw measurement is represented using Br =

12 bits. We assume each odd node encodes M detail coefficients together with

an adaptive arithmetic coder. Smooth coefficients are treated like raw data, e.g.,

each one uses Br bits. Since we only seek to compare the performance of spatial

transforms, we do not consider any temporal processing.

70

3.6.2 Simulation Results

In the case of lossless compression, the average cost reduction ratios taken over

multiple uniformly distributed networks are shown in Figure 3.9 for high and low

data correlation. These are expressed as the average of multiple values of (Cr −

Ct)/Cr, where Ct is the cost for joint routing and transform and Cr is the cost for

raw data forwarding. Results for variable radio ranges (each node has different radio

range) are shown in Figure 3.9(a). Results for fixed radio ranges (each node has

the same radio range) are given in Figure 3.9(b). T-DPCM does the worst overall.

The 5/3-like transform provides significant improvement over the simple T-DPCM

scheme. The Haar-like transforms have the highest average cost reduction ratio,

or equivalently, the lowest average cost. Moreover, we note that broadcast is not

very helpful (on average) when nodes have variable radio ranges (Figure 3.9(a)), but

there is a significant gain when nodes use a fixed radio range (Figure 3.9(b)). This is

mainly because, in the fixed radio range case, (i) there are many more opportunities

for using broadcast data and (ii) each node has more broadcast neighbors. Thus,

broadcast is likely to be most useful when nodes are configured with a fixed radio

range.

Note that the amount of raw data forwarding needed to compute the Haar-like

transform is significantly reduced compared with the 5/3-like transform. Therefore,

the Haar-like transform will do better than the 5/3-like transform in terms of trans-

port costs. Granted, the 5/3-like transform will use data from more neighbors for

processing, so the decorrelation given by the 5/3-like transform will be greater than

that given by the Haar-like transform. However, in our experiments the average

reduction in rate that the 5/3-like transform provides over the Haar-like transform

is rather small. The Haar-like transform with broadcast also provides additional

71

0 100 200 300 400 500
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Average Percent Cost Reduction

No. of Sensors

(C
r−

C
t)
/C

r

Haar−like Wav. w/ Broad.

Haar−like Wav.

5/3−like Wav.

T−DPCM

(a) Variable Radio Range

0 100 200 300 400 500
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Average Percent Cost Reduction

No. of Sensors

(C
r−

C
t)
/C

r

Haar−like Wav. w/ Broad.

Haar−like Wav.

5/3−like Wav.

T−DPCM

(b) Fixed Radio Range

Figure 3.9: Average percent cost reduction (Cr−Ct

Cr
). Solid and dashed lines cor-

respond to high and low spatial data correlation, respectively. Best performance
achieved by Haar-like transforms, followed by 5/3-like transform and T-DPCM.
High correlation data also gives greater reduction than low correlation data.

cost reduction over the Haar-like transform without broadcasts since less raw data

forwarding is needed on average. Moreover, the amount of cost reduction achievable

is higher for the high correlation data than for the low correlation data.

Lossy coding is also possible and can provide even greater cost reductions while

introducing some reconstruction error. In this case, we quantize transform coef-

ficients with a dead-zone uniform scalar quantizer. Performance is measured by

the trade-off between total cost and distortion in the reconstructed data, which we

express as the signal to quantization noise ratio (SNR). Sample 50 node networks

are shown in Figs. 3.10(a) and 3.10(c) and, in the case of high correlation data,

the corresponding performance curves are shown in Figs. 3.10(b) and 3.10(d). The

Haar-like transforms do the best among all transforms.

When using broadcasts with the Haar-like transform, there is an additional 1 dB

(resp. 2.5 dB) gain in SNR for the variable (resp. fixed) radio range network at a

72

fixed cost, i.e., by using broadcasts we can increase the quality in the reconstructed

data for a fixed communication cost. Thus, for these networks, using broadcast is

quite helpful. Also note that there are only 2 broadcast links used in the trans-

form for the variable radio range network (Figure 3.10(a)), whereas there are over

10 broadcast links used in the fixed radio range network (Figure 3.10(c)). Thus,

broadcast provides even greater gains for the fixed radio range network (2.5 dB

versus 1dB) since there are more broadcast links. More generally, broadcast should

provide more gains in networks where many broadcast opportunities are available.

In this particular network for the variable radio range case, T-DPCM actually

does better than the 5/3-like transform. Note that in T-DPCM, only the leaf nodes

forward raw data to the sink; so if there are only a few leaf nodes, the raw data

forwarding cost for T-DPCM may not be very high compared with the raw data

forwarding cost for the 5/3-like transform. In this particular network, only 19 of

the 50 nodes are leaves in the tree. Therefore, the raw data forwarding cost for

T-DPCM in this case is lower than that for the 5/3-like transform. However, on

average the raw data forwarding cost for T-DPCM will be very high (see Figure 3.9),

leading to higher total cost on average as compared with the 5/3-like transform.

3.6.3 Comparison of Filter and Even/Odd Split Designs

This section provides experimental results which compare the various split and filter

designs. We again consider the scenario of transform-based distributed data gather-

ing in WSN, and use the same experimental setup as in Section 3.6.1. Figure 3.11(a)

shows the same 50 node network used in Section 3.6.2 and the corresponding cost-

distortion curves are shown in Figure 3.11(b).

73

The data adaptive prediction filters from Section 2.3.2 are far superior to sim-

ple average and planar-based prediction filters proposed in Section 2.3.1. We also

see that the orthogonalizing update filters from Section 2.4.2 do not provide much

improvement for this network. This is mainly because not many levels of decom-

position are performed. For larger networks, there is more gain when using or-

thogonalizing updates, but this gain is still not very substantial. In fact, for WSN

and our particular transform constructions, we only observe at most 3 levels of

decomposition being possible. Thus, this update design is not likely to improve the

performance for this application. However, as we will see in Section 5.3, this does

provide some significant improvements when used in image coding, mainly because

(i) there are many pixels and (ii) many levels of decomposition can be applied.

We also show some comparisons for various split designs in this same WSN

context. In particular, we compare the simple tree-based splitting described in

Section 2.2.1 with Haar-like transforms from Section 3.4 against the optimized

graph-based splitting discussed in 2.2.2 (see [37] for more details). We use the

same network shown in Figure 3.11(a), and adaptive prediction filters are used

in all cases. The resulting graph-based split is shown in Figure 3.12(a) and the

corresponding cost-distortion curves are shown in Figure 3.12(b). The graph-based

splits provide some improvements over the tree-based splits, mainly because there

is much less raw data forwarding in the network.

3.7 Conclusions

A general class of en-route in-network (or unidirectional) transforms has been pro-

posed along with a set of conditions for their invertibility. This covers a wide

74

range of existing unidirectional transforms and has also led to new transform de-

signs which outperform the existing transforms in the context of data gathering in

wireless sensor networks. In particular, we have used the proposed framework to

provide a general class of invertible unidirectional wavelet transforms constructed

using lifting. These general wavelet transforms can also take into account broadcast

data without affecting invertibility. A unidirectional Haar-like transform was also

proposed which significantly reduces the amount of raw data transmissions that

nodes need to make. Since raw data requires many more bits than encoded trans-

form coefficients, this leads to a significant reduction in the total cost. Moreover,

our proposed framework allows us to easily incorporate broadcasts into the Haar-

like transforms without affecting invertibility. This use of broadcast data provides

further performance improvements for certain networks.

75

0 100 200 300 400 500 600
0

100

200

300

400

500

600
Transform Structure on SPT (Variable RR)

(a) Variable RR Network

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
5

10

15

20

25

30

35

40

45

50

Total Energy Consumption (Joules)

S
N

R
 (

d
B

)

SNR vs. Energy Consumption (Variable RR)

Haar−like w/ Broad.

Haar−like

5/3−like

T−DPCM

Raw Data

(b) Cost-Distortion Curves (Variable RR)

0 100 200 300 400 500 600
0

100

200

300

400

500

600
Transform Structure on SPT (Fixed RR)

(c) Fixed RR Network

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
5

10

15

20

25

30

35

40

45

50

Total Energy Consumption (Joules)

S
N

R
 (

d
B

)

SNR vs. Energy Consumption (Fixed RR)

Haar−like w/ Broad.

Haar−like

5/3−like

T−DPCM

Raw Data

(d) Cost-Distortion Curves (Fixed RR)

Figure 3.10: Sample networks with corresponding Cost-Distortion curves. In (a)
and (c), solid lines denote forwarding links, dashed lines are broadcast links, circles
are even nodes, x’s are odd nodes, and the square center node is the sink.

76

0 100 200 300 400 500 600
0

100

200

300

400

500

600
Transform Structure on SPT

(a) Sample Network

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
0

10

20

30

40

50

60

Total Energy Consumption (Joules)

S
N

R
 (

d
B

)

SNR vs. Energy Consumption

Adaptive Pred.

Planar Pred. / Orth. Update

Avg. Pred. / Orth. Update

Avg. Pred. / Update

Raw Data

(b) Performance Curves

Figure 3.11: Filter design comparison. Circles are even nodes and x’s are odd
nodes. Adaptive prediction filters do much better than fixed prediction filters.
Orthogonalizing updates provide almost no gain.

0 100 200 300 400 500 600
0

100

200

300

400

500

600
Transform Structure on Graph

(a) Graph-based Split

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
0

10

20

30

40

50

60

Total Energy Consumption (Joules)

S
N

R
 (

d
B

)

SNR vs. Energy Consumption

Tree−based Split (1−level)

Tree−based Split (Multi−level)

Unweighted Graph−based Split

Weighted Graph−based Split

Raw Data

(b) Performance Curves

Figure 3.12: Split design comparison. Circles are even nodes and x’s are odd
nodes. Dashed lines denote broadcast links. Graph-based splits provide some
improvements over tree-based splits.

77

Chapter 4

Joint Optimization of Transform and Routing

In this chapter we address the problem of joint optimization of transform and rout-

ing. Note that the unidirectional transforms proposed in Chapter 3 can be defined

along any routing tree, thus, it would be best to choose the routing tree jointly with

the transform. We achieve this by proposing two optimization algorithms (initially

proposed by us in [54]) that search for the best choice of tree for a fixed choice of

transform.

4.1 Introduction

While existing transform-based methods (e.g., those proposed in Chapter 3) are

capable of reducing the number of bits to be transferred to the sink, almost all of

them separate transform design and routing, i.e., they define transforms first then

map those transforms onto efficient routing trees, or vice versa. In the first case, this

requires nodes to transmit uncompressed data directly to a cluster head as in [15]

or to a certain number of neighbors [72, 73] before transform coefficients can even

be computed. If the neighbors (or cluster head) of a node are further away from the

sink than the node itself, additional backward transmissions of uncompressed data

78

will be required that increase the total cost. The unidirectional transforms proposed

in Chapter 3 (and [1, 9, 52, 55, 57, 58]) i) can be computed on arbitrary routing

trees and ii) do not require additional backward transmissions (they are computed

in a unidirectional manner as data flows toward the sink). These unidirectional

transforms have been shown to be more energy-efficient than the bi-directional

transform in [72, 73]. However, note that these unidirectional transforms consider

the design of the transform and routing separately, e.g., a shortest path routing

tree is chosen first and then a transform is performed over that tree. Instead, the

techniques we propose in this chapter attempt to exploit the inherent interaction

between different trees and the unidirectional transforms proposed in Chapter 3.

This leads us to a practical approach for jointly optimizing compression and routing,

i.e., we can aim at designing a tree with good transport cost and data correlation

properties, knowing that no matter what tree is chosen a unidirectional transform

can be implemented.

A shortest path routing tree (SPT), guarantees that the path from a given

node to the sink is most efficient for routing, but obviously does not guarantee

that consecutive nodes in a path contain highly correlated data. Of course one

could simply optimize the transform along this SPT, as was done in work by us

in [37]. However, that optimization problem is quite different since (i) the routing

is assumed fixed, (ii) any additional broadcast links that arise are added to the

links on the tree in order to form a more general graph and (iii) a greedy heuristic

is used to search for the minimum cost even / odd splitting on this graph. This

leads to a more general transform than the tree-based wavelet transforms proposed

in Sections 3.3.4, 3.3.5 and 3.4. On the other hand, the optimization algorithm

proposed in this chapter assumes that a tree-based transform is given (such as, e.g.,

the Haar-like tree-based wavelet transform proposed in Section 3.4), then searches

79

for the routing tree that minimizes the total energy consumption for this choice of

transform.

Again, note that the SPT does not guarantee that consecutive nodes along a

routing path contain highly correlated data. For example, if data correlation is

inversely proportional to distance between nodes, one would always have to route

through the nearest neighbor in order to achieve maximal inter-node data corre-

lation. Clearly SPT routing does not guarantee this, since this design aims to

minimize distance to sink, not inter-node distance. The results in [40] corroborate

this basic intuition, where it was shown that a network with high data correlation

benefits most from routing with compression along shorter hops with longer overall

paths. As an alternative, we could consider trees that link together nodes with high

inter-node data correlation. Such trees can provide greater compression efficiency

than an SPT. However, aggregating along these types of trees may force nodes to

transmit data away from the sink, so that gains provided by the increase in de-

correlation are offset by increased transmission cost. Since aggregation will occur

along routing trees, there is a trade-off between trees that result in energy-efficient

routing and ones that allow a transform to de-correlate data effectively. Thus, the

main goal in this chapter is to find trees that effectively exploit this trade-off.

In order to achieve jointly optimized routing and transform we search exhaus-

tively for the lowest cost tree among a set of possible trees, for a fixed distortion

level D. For a given tree T , we use cost model proposed in Section 3.6 which speci-

fies the cost for each node n to route and compress data to the sink along T . We let

CT (D) denote the total cost to route and compress data along tree T for some fixed

distortion level D. Since any of the transforms in Chapter 3 can be computed along

arbitrary trees, a natural optimization problem is to find a tree T that minimizes

the total cost CT (D) for a fixed distortion level D and fixed transform.

80

While one could consider the full set of possible trees for a given communication

graph, this set can be extremely large. The well-known matrix-tree theorem [25]

(which provides the number of spanning trees for a given graph) shows that a

complete graph with n nodes has nn−2 possible trees. Even if the graph is not

complete, the matrix-tree theorem may still imply a very large solution space.

Thus, it is not computationally feasible to consider a full solution set. To make the

optimization problem tractable, we choose only to explore trees that can be obtained

by combining links from an SPT computed with edges defined by physical inter-node

distances (to minimize distance to the sink) with links from a minimum spanning

tree (MST) computed with edge weights defined by inter-node data correlation

(to maximize pair-wise inter-node correlation). More specifically, we design an

MST using edge weights w(m, n) = 1 − rm,n with rm,n the correlation coefficient

between nodes m and n so that an MST corresponding to these edge weights will

have a link between each node n and the neighbor of n that has maximum inter-

node data correlation with n. Clearly, such an MST is “best” in the sense of

maximizing pair-wise data correlation along the tree, which should help achieve

improved compression efficiency for our transform. Since the SPT will minimize the

cost to route any amount of data from a node to the sink, we can use combinations

of such an MST with an SPT to provide a direct trade-off between high compression

performance and low routing cost.

To illustrate this point, consider the real network in Figure 4.1 taken from [38],

where a combination of an SPT and MST is used for joint routing and compression.

The SPT provides the shortest route to the sink from any node, but fails to link

some nodes to their closest neighbors. This can reduce compression efficiency. The

MST links those nodes to their closest neighbors, but also has some longer paths

that push data away from the sink. Clearly, neither alone is sufficient to achieve

81

the best joint routing and compression performance. Instead, the trees obtained

by our proposed optimization methods tend to link nodes to their closest neighbor,

but in a way that preserves short paths to the sink, resulting in improved overall

performance.

500 520 540 560 580 600

240

260

280

300

320

SPT

500 520 540 560 580 600

240

260

280

300

320

MST

500 520 540 560 580 600

240

260

280

300

320

Heuristic Tree

500 520 540 560 580 600

240

260

280

300

320

Optimal Tree

Figure 4.1: SPT, MST, and Combined Tree

In summary, in this chapter we address the joint optimization of routing and

compression by using the unidirectional transform framework proposed in Chap-

ter 3. In particular, we propose a two heuristic algorithms for selecting routing and

transform jointly by accounting for both data correlation and routing costs.

82

4.2 Joint Routing and Transform Optimization

Our proposed optimization method is inspired by the “foreign coding” technique de-

veloped in [48], where an MST is constructed with edge weights that are a function

of data correlation and where data is encoded along this MST and forwarded along

an SPT. Note that an MST constructed from edge weights that are inversely pro-

portional to pair-wise data correlation will always connect nodes to the neighbors

with which they share the highest data correlation. To see why this is so, consider

Prim’s algorithm [12] for constructing an MST. Given a set of edge weights, Prim’s

algorithm can construct an MST by starting from any arbitrary node n. So by

starting from any node n, the second node added to the MST will be the node m

such that w(n, m) ≤ w(n, k), for all k ∈ V \{n}. Since w(n, m) is minimal over

all edges containing n as a vertex, the correlation between n and m is maximal.

Therefore, data at n is maximally correlated with data at m. Since this can be

done for arbitrary n, it follows that in an MST every node will be connected to

the neighbor with which it shares the highest data correlation. It is worth noting

here that an MST defined in this way only considers pair-wise correlation, and

so is not necessarily optimal from a coding standpoint when using our proposed

transforms (where data is filtered over multiple hops). However, it should provide

a good approximation to the optimal tree. Thus, we choose to exploit our stated

trade-off by searching for a minimum cost tree among a set of trees that combine

a distance-based SPT and a correlation-based MST.

In the technique proposed in [48], spatial correlation at each node is only ex-

ploited using data from at most one child in the routing tree. If data from a child is

used, nodes perform what is called “foreign coding”. Otherwise (if no other data is

used for compression), nodes perform what is known as “self coding”. In the case of

83

the unidirectional transforms proposed in Chapter 3, nodes always perform foreign

coding. Moreover, this foreign coding can incorporate data from more than one

child and/or descendant. Since the optimal solution in [48] assumes that foreign

coding uses data from only one child, it can not be directly extended to our trans-

forms. Furthermore, the unidirectional transforms we consider should also provide

more de-correlation since a node can compress its data using data from more than

one neighbor.

An MST does have some drawbacks, though. For one, it may not have as many

merge points as an SPT. Since the transforms in Chapter 3 only exploit cross-

path correlation at and around merge nodes, having fewer merges may actually

reduce the efficiency of our transform when performed along an MST. However,

an appropriate combination with an SPT should maintain these merges whenever

beneficial. In fact, not all of the neighbors of a node in the MST will have high

data correlation with it so some merges may actually hurt coding performance. As

mentioned above, our MSTs only consider correlation over a single hop and may

result in some inefficiency since our proposed transform actually filters data over

multiple hops. Furthermore (as will be discussed in Section 4.5), if a predict has

more neighbors it will tend to have less residual energy and so should require fewer

bits. Similarly, having more neighbors at an update node can produce a smoother

approximation of the original data and as such should also require fewer bits. So as

an alternative to MSTs, we could develop trees that (1) preserve beneficial merges

and (2) keep the number of merges at predict nodes to a minimum. These issues

will be explored experimentally in Section 4.5 and could be an interesting area for

future work.

In Section 4.2.1, we propose an algorithm that finds the minimum cost combi-

nation of an SPT and MST by computing, for every possible combination, the cost

84

of transform and routing along each tree (overlayed on an SPT) and then select-

ing the lowest cost combination for a fixed distortion D. The algorithm is general

enough to accommodate an arbitrary definition of edge weights used to construct

the MST, i.e., w(m, n) = 1 − rm,n, or w(m, n) can be physical inter-node distance,

or anything else that allows us to quantify the degree of inter-node data correlation.

Since the number of combinations grows rapidly with the number of nodes, we also

propose a heuristic approximation algorithm that is amenable to larger networks

in Section 4.3.

4.2.1 Optimization Algorithm

For a set of N nodes, let TS denote the SPT and TM denote an oriented version

of the MST. Let T represent the tree which is our desired combination of TS and

TM . An oriented version of the MST (TM) is necessary to define a unidirectional

transform. Basically, TM fixes the sink node N + 1 as the root and directs all

edges in the MST toward the sink. We can represent each tree by defining parent

functions ρM
n and ρS

n for TM and TS respectively. Under this construction, data at

node n is routed to the sink through ρM
n in TM , ρS

n in TS, and ρn in T . Thus, we

define the edges in each tree by the ordered pairs (n, ρM
n) and (n, ρS

n) for TM and

TS.

We construct a minimum cost tree by searching among all feasible combinations

of such edges in TM with such edges in TS. We first explain how to find the smallest

possible set of feasible combinations (i.e., combinations that result in a connected

acyclic graph) in Section 4.2.2. We then provide an algorithm that searches over

this feasible set to find a minimum cost solution in Section 4.2.3.

85

4.2.2 Feasible Set Construction

The total number of combinations could be as many as 2N , but many such edges

in TS and TM will be the same so we may eliminate those from consideration.

Furthermore, not all combinations of such edges will produce a valid tree (i.e., some

may result in cycles or may disconnect certain groups of nodes) so the number of

combinations can be reduced even further by eliminating invalid trees. We consider

an edge (n, m) to be the same in both trees if m = ρM
n = ρS

n (i.e., the parent of

node n is the same in both trees). Thus, we define V ′ = {n|ρM
n 6= ρS

n} and N ′ as

the number of nodes in V ′. We also enumerate this set as V ′ = {n1, n2, . . . , nN ′}.

For each node ni ∈ V ′, let E ′(ni) = {
(

ni, ρ
M
ni

)

,
(

ni, ρ
S
ni

)

} be the set of edges from

ni to the parent of ni in either TS or TM . Then the full set of combinations of edges

we consider in TM and TS is given by:

E = E ′(n1) × E ′(n2) × . . . × E ′(nN ′).

We reduce the search space further by eliminating combinations of edges in E that

do not produce a valid tree (i.e., graphs that are disconnected or have cycles or

both).

We check for tree validity as follows. Let Ẽj ∈ E , where j indexes the j-th

combination of edges in E . Naturally, Ẽj = {(n1, m1,j), . . . , (n1, mN ′,j)} for the j-th

combination. Let Ẽ be the set of edges in TS that are the same in TM . Then a

combination Ej will be feasible only if the graph T̃ = (V, Ẽ ∪ Ẽj) is connected and

acyclic. This is done by checking that each leaf node has a non-cyclic path to the

sink (which is sufficient since this process traverses every node in the network).

Otherwise, the graph T̃ does not form a valid tree. We represent the set of feasible

86

trees by the Nf × N matrix Tf , where Nf is the number of feasible trees and

Tf(m, n) is the parent of node n in the m-th feasible tree.

4.2.3 Feasible Set Search

Since the full set of feasible trees is given by Tf , we could then find the tree that

optimizes routing and transform by i) fixing a target distortion level D (in our case,

distortion is mean squared error (MSE)) , ii) computing the cost Cj for performing

routing and transform along every possible tree given in Tf with distortion level

D, and iii) choosing the tree with minimum cost. This is an exhaustive search over

our set of feasible combinations of MST and SPT, and should therefore provide the

minimum cost combination.

Specifically, this is done as follows. Let C∗ be the cost for the best tree found up

to row j and initialize it as C∗ = ∞. Also let i∗ index the row in Tf corresponding

to C∗ and initialize it as i∗ = 0. Then for each row j of Tf , with j = 1, 2, . . . , Nf , do

the following. Define the parent function ρj(1 : N) = Tf (j, 1 : N) and compute Cj

= ComputeCost(ρj ,D, TS) (a function that computes the cost of doing transform

and routing along the tree corresponding to ρj with SPT TS overlayed on top).

If Cj < C∗, then C∗ = Cj and i∗ = j. Once all feasible trees are exhausted,

we can construct the tree T (which minimizes the cost for routing and transform

over all feasible combinations of MST and SPT) using the parent function defined

by Tf (i
∗). The function ComputeCost(ρj ,D, TS) returns the total cost for using

the tree defined by ρj. This cost is computed using the cost models discussed in

Section 3.6.

87

4.3 Heuristic Approximation Algorithm

For large N , the feasible set from Section 4.2.2 can still be very large. This makes

the problem intractable for large N , which motivates the need for a good heuristic

algorithm that approximates the minimum cost algorithm in Section 4.2.1.

The main goal of a good heuristic should be to choose links that provide a

direct gain in coding efficiency only if the resulting increase in routing cost does

not offset the gains achieved, so that a desirable balance of low cost routing and

higher compression efficiency can be obtained. This can be done reasonably well by

starting from an initial tree and searching one node at a time from nodes of greatest

depth (since these nodes will be further from the sink and will benefit more from

efficient coding) and decrementing depth at each stage until all nodes are covered.

In our case we choose SPT as the initial tree in order to preserve low routing costs,

then for each node we simply determine if the cost (CT) to use the next hop in

the MST is lower than the cost to continue along the next hop in the current tree

(e.g. SPT). If so, then the next hop of such a node will be the next hop along the

MST (rather than the next hop along the SPT). This ensures that, for each node,

any direct gains in coding efficiency will not be offset by the resulting increase in

routing cost. This is clearly a greedy algorithm, and so can not guarantee that the

optimal combination of an MST and SPT will be found. But at the very least,

it will guarantee that the resulting tree provides lower cost transform and routing

than a transform performed along the SPT.

This algorithm is described formally in Algorithm 1. The final tree we seek is T

and initially T = TS. This allows us to greedily choose an edge in TM over an edge

in TS only if the direct gain in coding efficiency offsets the increase in routing cost.

Naturally, the validity of the tree that results from switching to an edge in TM is

88

checked before further steps are taken. We also say that a parent function ρj yields

a feasible tree if the tree defined by ρj is a connected, acyclic graph. The algorithm

simply searches each resulting tree and returns the lowest cost tree it finds as T .

Algorithm 1 Find Heuristic Tree

1: T = TS and ρj = ρS
j , ∀j ∈ I

2: k = max(depth) and C = ∞

3: while k ≥ 1 do

4: Ik = {m ∈ I : depth(m) = k}

5: for each n ∈ Ik do

6: ρt
n = ρM

n and ρt
j = ρj , ∀j ∈ I\{n}

7: if ρt
j yields a feasible tree then

8: Ct = ComputeCost(ρt,D, TS)

9: if Ct < C then

10: Update T and ρj using ρt
j

11: C = Ct

12: end if

13: end if

14: end for

15: k = k − 1

16: end while

17: return T

4.4 Practical Considerations

There are multiple practical issues involved with joint routing and transform opti-

mization, the most prevalent ones being (i) how to estimate the change in correlation

89

(and the corresponding difference in cost) for a given change in routing for each

node, (ii) how to communicate the changes in routing to each node and (iii) how

to perform the joint optimization in a distributed manner. The first issue could be

solved with some training data, where the differences in correlation (and the cor-

responding differences in routing costs) for different routing choices are estimated

off line. In this case, the routing optimization could also be done off line and the

routing information could then be flooded to the nodes from the sink. Depend-

ing on the transform, these changes in correlation (and routing costs) could also

be estimated in a distributed manner by having nodes exchange data with their

immediate neighbors, then the optimal routing decisions could be made at each

node.

For example, in the T-DPCM scheme proposed in [41], each node computes a

difference between its own data and that of its parent in the routing tree. Thus,

the total cost for routing and compression for each node is equal to (i) the cost to

route raw data to its parent plus (ii) the cost to route the difference between its

own data and its parent’s data to the sink. Since the cost for each node (cost (i)

plus cost (ii)) only depends on the choice of parent, the cost for each node to jointly

route and compress its own data is completely independent of any other nodes’ cost.

Thus, if each node chooses the minimum cost parent for itself, the total cost will

also be minimized. Moreover, each node can exchange routing information (e.g.,

ETX) and some training data (used to estimate bit rate for prediction residuals),

and then can choose the parent that minimizes cost (i) plus cost (ii) in a completely

distributed manner. Note that care must be taken to ensure that routing loops do

not occur (e.g., the best parent of node n is node m, and the best parent for node

m is node n, etcetera), so some local consistency checking would also need to be

done to ensure that no cycles exist.

90

For more complex transforms such as the unidirectional wavelet transforms in

Chapter 3, data from multiple neighbors (both descendants and ancestors) will be

used to compute the transforms. Thus, the optimization will be difficult to perform

in a distributed manner in general. Moreover, if topology changes such as link or

node failures occur, re-configuration will be needed no matter what transform is

chosen. Therefore, the proposed optimization techniques are probably best suited

to very stable, static networks in which topology changes are infrequent. These and

other related practical issues are an interesting topic for future work.

4.5 Evaluation of MST Performance

As discussed in Section 4.2, the MST is not necessarily the best tree to minimize

the distortion (i.e. maximize SNR) for a given rate. This is mainly due to its

lack of merges (as compared to an SPT). For the sake of computational feasibility,

we consider the small 20 node network shown in Figs. 4.2(a) and 4.2(b) where

nodes are indexed by the number next to them. We use the unidirectional 5/3-

like transform proposed in Section 3.4 for the comparisons. We compute all of the

possible spanning trees using standard algorithms [70] then perform an exhaustive

search of all possible spanning trees for the best RD tree. The performance curves

are shown in Figure 4.3. In this case, there are only around 1000 spanning trees,

so a brute-force search is feasible. However, in general there will be very many

spanning trees. For each fixed rate we compute the distortion for each tree and

choose the tree with the minimum distortion.

The optimal RD tree shown in Figure 4.2(b) has one more merge (node 12)

than the MST shown in Figure 4.2(a) and also has a different merge with different

neighbors (node 17), resulting in reconstruction quality shown in Figure 4.3. The

91

100 200 300 400 500
0

100

200

300

400

500

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20

MST

(a) Minimum Spanning Tree

50 100 150 200 250 300 350 400 450 500 550
0

100

200

300

400

500

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

RD Opt. Tree

(b) RD Optimal Tree

Figure 4.2: Comparison of MST with RD optimal tree.

increase in quality is not so significant in this case, but it may be more significant

as the network density grows. The fact that adding a merge improves performance

is consistent with our previous discussion.

These results suggest that having more merges at a given node will generally

provide better performance. This is reasonable if the data considered is spatially

stationary and is highly correlated across space. As discussed before, adding more

neighbors to a predict node will tend to produce smaller residual energy. Conversely,

an update coefficient (low pass) will provide a smooth approximation to the original

data and so adding more residues (i.e. predicts) can increase smoothness which

would also reduce the number of bits. All things considered, an MST can provide

a good approximation to the optimal RD tree but it is clearly not optimal, mainly

because it does not have many merges and because the merges it does have may

not occur in the right places in the tree. Finding trees that can eliminate the

shortcomings of MSTs is an interesting area for future work.

92

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

20

25

30

35

40

45

SNR vs. Rate

Rate

S
N

R

Raw Data
2D SPT
2D MST
2D Opt. Rate

Figure 4.3: Performance Comparison of MST and RD Optimal Tree

4.6 Experimental Results

To evaluate the performance of the proposed optimization algorithm we use the

sample 40 node network shown in Figure 4.4(a). We use the same set of sample

data, the same cost models and the same entropy coding techniques presented in

Section 3.6. We find a jointly optimized transform and routing, with the transform

fixed as the Haar-like separable wavelets with and also without broadcasts. We com-

pare the jointly optimized transforms and trees against an SPT using T-DPCM, the

5/3-like separable wavelets and the Haar-like separable wavelets (with and without

broadcasts). The jointly optimized network topology is shown in Figure 4.4(a) and

the performance curves are shown in Figure 4.4(b).

As we can see, the heuristic optimized tree with Haar-like transform is exactly

the same as the full optimized tree, and gives a 2 dB improvement in SNR over

the best SPT Haar-like transform (with broadcasts). Thus, in this case we see that

the heuristic optimization algorithm presented in Section 4.3 provides essentially

93

0 200 400 600
0

200

400

600
SPT w/ Broadcasts

0 200 400 600
0

200

400

600
MST

0 200 400 600
0

200

400

600
Heuristic Jointly Optimal Tree

0 200 400 600
0

200

400

600
Jointly Optimal Tree

(a) Sample Network

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
5

10

15

20

25

30

35

40

45

50

55

Total Energy Consumption (Joules)

S
N

R
 (

d
B

)

SNR vs. Energy Consumption

Haar−like Opt. Tree

Haar−like Heuristic Opt. Tree

Haar−like w/ Broad.

Haar−like

5/3−like

T−DPCM

Raw Data

(b) Cost-Distortion Curves

Figure 4.4: Jointly optimized network with corresponding Cost-Distortion curves.
In (a), blue lines denote forwarding links, dashed magenta lines denote broadcast
links, green circles represent even nodes, red x’s represent odd nodes, and the black
center node is the sink.

the same performance as the full optimization algorithm in Section 4.2.1. We make

similar observations for other networks (which have a few thousand feasible trees)

in that the heuristic and full optimized trees are almost exactly the same1. This

provides a clear example where the total cost can be reduced using joint transform

and routing optimization. Naturally, the overall gains that can be achieved will

vary from network to network.

We also compare this joint routing and transform optimization algorithm against

the graph-based even/odd split optimization described in Section 2.2.2 [37]. The

corresponding graph-based even/odd split and the cost-distortion curves are shown

in Figure 4.5. In this case, the graph-based even/odd split and the routing tree

optimized using the greedy heuristic give very similar performance, while the opti-

mized routing tree using the full search algorithm still gives the best results. We

1Of course it is computational infeasible to always compare the full optimization method with
our proposed heuristic since the number of possible trees is generally very large.

94

make similar observations for other networks. As such, the joint optimization of

routing and transform should typically provide performance that is competitive

with the graph-based even/odd splitting optimization.

0 100 200 300 400 500 600
0

100

200

300

400

500

600
Transform Structure on Graph

(a) Sample Network

0.01 0.015 0.02 0.025 0.03 0.035
10

15

20

25

30

35

40

45

50

55

Total Energy Consumption (Joules)
S

N
R

 (
d
B

)

SNR vs. Energy Consumption

Graph−based Split

Haar−like Opt. Tree

Haar−like Heuristic Opt. Tree

Haar−like w/ Broad.

Haar−like

(b) Cost-Distortion Curves

Figure 4.5: Comparison of optimized graph-based splitting and optimized routing.
In (a), blue lines denote forwarding links, dashed magenta lines denote broadcast
links, green circles represent even nodes, red x’s represent odd nodes, and the black
center node is the sink.

In order to get a better sense of what will happen on average, we also consider

the cost reduction for lossless coding averaged over multiple random networks. This

is shown in Figure 4.6 for the high correlation data. With routing optimization,

we see an average reduction in total cost of around 4% with respect to the Haar-

like transform on an SPT. This suggests that routing optimization may not provide

significant performance improvements on average. This conclusion is also consistent

with previous work [79], which showed that routing with compression along an SPT

is nearly optimal for varying degrees of inter-node data correlation. Our results are

simply a reflection of that.

95

0 100 200 300 400 500
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Average Percent Cost Reduction

No. of Sensors

(C
r−

C
t)
/C

r

Haar−like Opt. Tree

Haar−like Wav. w/ Broad.

Haar−like Wav.

5/3−like Wav.

T−DPCM

Figure 4.6: Cost reduction ratios with routing optimization.

96

Chapter 5

Graph-based Transforms for Image Coding

The main focus of this chapter is on developing graph-based transforms for effi-

cient image representations. Efficient representations are typically achieved in one

of two ways. The first common method is to apply a separable transform to an

image in order to de-correlate data across neighboring pixels. The second method

is to divide the image into blocks, to predict the pixel values in each block using

pixel values from neighboring blocks, then to compute prediction residuals. Both

of these techniques have been adopted in standards such as JPEG, JPEG-2000 and

H.264/AVC, and tend provide very efficient representations for smooth images with

simple discontinuities (or edges) such as horizontal or vertical edges. However, they

do not provide efficient representations for image regions with more complex edge

structure. In particular, they tend to produce many large magnitude coefficients

in regions with more complex edges, and these require many bits to be encoded.

Moreover, quantization of these large magnitude coefficients lead to annoying arti-

facts near edges in the reconstructed images, e.g., the well-known ringing artifacts.

Note that filtering across edges in the image is the main source of inefficiency in

both of these schemes. Thus, the main goal of this chapter is to develop graph-

based transforms that avoid filtering across edges. This should reduce the number

97

of large magnitude coefficients, hence reducing the total bit rate needed to repre-

sent the transform coefficients. This should also better preserve the edge structure

in the reconstructed images. To this end, we make two contributions, summarized

as follows.

5.1 Overview

The first part of this chapter discusses a separable, edge-adaptive, tree-based lift-

ing transform. Note that in all of the existing image and video coding standards,

a standard separable transform (i.e., a transform that consists of row-wise filter-

ing followed by column-wise filtering, or vice versa) is used to de-correlate data

across neighboring image pixels. These separable transforms can efficiently repre-

sent smooth images regions with only horizontal or vertical edges, i.e., there are only

a few large magnitude transform coefficients. This is mainly due to the shape of

the corresponding basis functions, i.e., only a few of the basis functions are smooth

or are separated into smooth regions separated by only horizontal or vertical edges.

However, for regions with more complex edge structure, they tend to produce many

large magnitude transform coefficients. In order to achieve an efficient representa-

tion of regions with more complex edges, we need to adapt the transforms to the

edge structure. In the first part of this chapter (Section 5.3, which summarizes the

work proposed by the author in [53,56]) we focus on developing edge-adaptive tree-

based lifting transforms, i.e., tree-based transforms that avoid filtering across edges

as to avoid creating large magnitude high-pass coefficients. This leads to higher

overall coding efficiency (i.e., fewer bits to achieve a fixed reconstruction quality)

than the standard separable wavelet transforms used in JPEG-2000 [67].

98

Another way of efficiently representing images is by dividing the image into

blocks, predicting the pixel values in each block using pixel values from neighbor-

ing blocks, then computing and transmitting prediction residuals. These types of

schemes are referred to as intra prediction schemes and are a part of standards

such as H.264/AVC and MPEG-4. In these standard schemes, predictions are al-

ways computed in a single direction and in order to account for directional edge

information in each block (e.g., diagonal edges), a fixed set of prediction directions

is used and the “best” one is chosen. These directional predictions will be effective

for encoding image blocks where there is only a single diagonal edge, since then

a very accurate prediction can be produced and the prediction residuals will be

very small. This provides an efficient representation of each block since small pre-

diction residuals will require many fewer bits for encoding than the original pixel

values. However, in regions with more complex edge structure such as “L” shaped

or “V” shaped edges, these directional prediction modes will produce large predic-

tion residuals at pixels near the edges, and these large residuals will require many

bits to be encoded. Note that complex edge structure poses the same problems for

the fixed directional predictions as it does for the standard separable transforms

(since many large magnitude coefficients are produced), and we can address it in a

similar manner by not computing predictions across edges. As such, in the second

portion of this chapter (Section 5.4, which describes the work presented by the au-

thor in [51]) we propose an edge-adaptive intra prediction scheme that can produce

accurate predictions for blocks with more complex (non-diagonal) edge structure.

As an additional application, we also consider using the edge-adaptive trans-

form and intra prediction scheme for coding depth map images used in multi-view

video coding systems. Recent advances in multi-view video have generated interest

in new applications such as 3D-TV [59], bringing a plethora of 3D video services

99

closer to reality. However, the amount of data captured in such systems is typi-

cally very large, making it difficult to store and transmit. We can decrease this

data by (i) reducing the number of views, and (ii) using data taken from actual

cameras at known positions to interpolate intermediate views. Note that view in-

terpolation techniques such as depth-image-based rendering [76] require accurate

position information in 3D space for objects in the scene, i.e., they require depth

map information in addition to 2D pixel positions. These depth maps are an extra

source of data and should therefore be compressed. However, compression artifacts

in depth maps (especially around edges) can lead to annoying visual artifacts in the

interpolated views [26,27,29]. Thus, these edge-adaptive schemes can also be used

to efficiently compress depth maps while also preserving the edge information. Also

note that the depth maps are actually never displayed and are only used for inter-

polation, so it is also important to consider the trade-off between depth map rate

and interpolation distortion. Therefore, we optimize this trade-off by leveraging

results from [26,27].

We first observe that depth maps typically consist of nearly constant regions sep-

arated by edges, i.e., depth maps are nearly piece-wise constant signals. Moreover,

preserving edges in depth maps often yields view interpolations that are percep-

tually better. Thus, using transforms and/or prediction schemes that exploit this

piece-wise constant assumption while also preserving edges should lead to better

interpolation results. As is shown in work by us [50], using edge-adaptive lift-

ing transforms leads to more efficient depth map coding while also improving the

quality of the synthesized views. Similar improvements were also observed for the

edge-adaptive intra-prediction scheme proposed by us in [51]. The performance im-

provements are evaluated experimentally in Section 5.3 for the edge-adaptive lifting

transforms and in Section 5.4 for the edge-adaptive intra prediction scheme.

100

5.2 Preliminaries

We first establish some preliminary concepts and notations that are common to the

edge-adaptive tree-based lifting transform and the edge-adaptive intra prediction

scheme. Let X denote the original image and denote each pixel by the pair (i, j),

with its intensity value given by value X(i, j). Let Nr and Nc denote the number

of rows and columns of X, respectively. Note that both of these methods rely on a

graph-based signal representation. Therefore, let G = (V, E) denote an undirected

graph, where the set V represents the vertices (i.e., the pixels) in the graph and the

set E denotes the set of connections between pixels. Also let each [(i, j), (i′, j′)] ∈ E

denote a connection from pixel (i, j) to (i′, j′) in V .

Note that the edge-adaptive lifting transform and the edge-adaptive intra pre-

diction scheme both avoid filtering across edges, thus, they both require knowledge

of edge locations. We compute edge locations using the edge detector in work done

by the author in [50], which is just a modification of the one used in [32]. This

technique defines edges to be at fractional locations between pixels. In particular,

edges around pixel (i, j) exist at (i, j ± 0.5), (i ± 0.5, j) and (i ± 0.5, j ± 0.5), and

an edge exists whenever |X(i, j)−X(i, j ± 1)| > T , |X(i, j)−X(i± 1, j)| > T and

|X(i, j) − X(i ± 1, j ± 1)| > T , respectively, for some threshold T . This leads to

a binary edge map B which has 2Nr rows and 2Nc columns and specifies an edge

between pixel (i, j) and (i, j +1) if and only if B(2i, 2j+1) = 1. Otherwise, there is

no edge between them and B(2i, 2j +1) = 0. Note that this is equivalent to stating

that an edge exists at location (i, j + 0.5), just that we index it using integers by

multiplying by 2, e.g., 2 · (i, j + 0.5) = (2i, 2j + 1). Similarly, B(2i + 1, 2j) = 1

implies that there is an edge between pixel (i, j) and (i+1, j), B(2i+1, 2j +1) = 1

implies that there is an edge between pixel (i, j) and (i + 1, j + 1), etcetera. Note

101

that B(2i, 2j) = 0 for all i, j and if B(2i±1, 2j) = 0, then there is no edge between

pixel (i, j) and (i ± 1, j). In a similar way, B(2i, 2j ± 1) = 0 implies that there is

no edge between pixel (i, j) and (i, j ± 1), and B(2i ± 1, 2j ± 1) = 0 implies that

there is no edge between pixel (i, j) and (i ± 1, j ± 1). Since our transforms are

constructed using this edge information, the edge map must be encoded and sent

to the decoder so that it can re-produce the same transform used at the encoder.

5.3 Tree-based Lifting Transforms

When using standard separable wavelet transforms in images with complex con-

tours, significant amounts of energy may be present in all high pass sub-bands,

mostly concentrated in large coefficients near contours. Encoding these coefficients

is costly in terms of rate. Reduction of such high pass sub-band energy can be

achieved by applying separable filtering along directions on which pixels exhibit

low intensity variation. Directionlets [71] and Bandelets [43] achieve this using (i)

a block-based segmentation defining dominant directional flow of pixel intensity in

each block and (ii) separable filtering along a grid aligned with each directional

flow. In Directionlets integer lattices are used, while in Bandelets the original grid

is re-mapped onto a grid aligned with directional flows, on which separable filtering

is applied.

In both of these methods a set of “good” paths for traversing the pixels is

defined (i.e., one that exhibits low variation in pixel intensity) and then filtering is

applied along those paths. Both of these approaches are constrained in that they

assume that a set of parallel paths can approximate well the geometric flow of an

image in a given region, e.g., a block. Moreover, both of these transforms provide

superior performance to standard separable wavelets mainly because they do not

102

filter across edges. Thus, one can still achieve competitive coding performance

to these transforms by performing edge-avoiding filtering as is done in, e.g., the

shape-adaptive DWT [30] and the work in [11], where edge-avoiding filtering is done

only along rows and columns. The main contribution in this section is to propose

techniques that avoid filtering across edges while also loosening the constraint of

parallel paths by allowing non-parallel paths for filtering (unlike [11,30,33,71]) and

by not restricting flows to be uniform within blocks (unlike [33, 71]). This leads

us to a set of edge-adaptive tree-based wavelet transforms, where the main goal is

to design trees which do not cross over discontinuities in an image, and then to

perform filtering along these trees. This serves to reduce the amount of energy in

the high-pass subbands, and ultimately leads to greater coding efficiency.

These types of trees were initially developed by the author in [53] where multiple

minimum spanning trees (MSTs) with different orientations were used to provide a

separable transform. This approach has two major drawbacks. First, lifting-based

prediction and update filters lead to an invertible representation but, given the

structures of the trees (e.g., the merge points), the corresponding basis functions

tend to be far from orthogonal (unlike similar lifting structures for 1D regularly

sampled signals). This results in signal energy being spread evenly across sub-

bands which reduces energy compaction. Second, the MST traversal does not

guarantee that downsampled pixel locations will be regularly spaced in successive

levels of decomposition. Thus filtering is often applied across pixels that are far

apart. Our work in [56] improved upon this by (i) designing orthogonalizing update

filters (as detailed in Section 2.4.2), and by (ii) designing trees that provide regular

downsampling patterns.

In this section we describe the work in [56]. Section 5.3.1 describes the tree-

based transform construction. We then discuss tree constructions that produce

103

regular downsampling patterns while avoiding crossing over discontinuities in Sec-

tion 5.3.1.2. Some experimental results are shown in Section 5.3.2 and some con-

cluding remarks are provided in Section 5.5.

5.3.1 Tree-based Transform Design

We now describe how tree-based wavelets such as those proposed in Section 3.3.4 can

be applied to images. Assume a tree T has been selected that allows us to traverse

the pixels in the image from leaves to the tree root. Suppose we index the root node

of T by (MN + 1, MN + 1). Let Cm,n and ρm,n denote the set of children and the

parent of pixel (m, n) in T , respectively, and let Nm,n = Cm,n ∪ {ρm,n}. Finally, let

depth(m, n) be the depth of pixel (m, n) in T , with depth(MN + 1, MN + 1) = 0.

A lifting transform can then be developed along T as discussed in Section 2.2.

Let O and E denote the sets of odd and even pixels and let pm,n and uk,l

denote the prediction and update operators at pixels (m, n) ∈ O and (k, l) ∈ E ,

respectively. For the sake of simplicity, we only allow pixels to use data from their

one-hop neighbors, i.e., for all odd pixels (m, n) we require pm,n(m, n) = 1 and

pm,n(i, j) = 0 for all (i, j) /∈ Cm,n ∪ {ρm,n}. Similarly, for each um,n. The transform

is computed as follows. For each (k, l) ∈ P:

d(k, l) = X(k, l) −
∑

(it,jt)∈Nk,l

pk,l(it, jt)X(it, jt) (5.1)

and given every d(k, l(, for each (m, n) ∈ U we have:

s(m, n) = X(m, n) +
∑

(it,jt)∈Nm,n

um,n(it, jt)d(it, jt). (5.2)

104

5.3.1.1 Lifting Filter Design

Note that images are locally smooth in that around each pixel (m, n), the values

of neighboring pixels tend to be similar to X(m, n). Thus, whenever an odd pixel

(m, n) has at least 3 neighbors in the tree the planar-based prediction filter discussed

in Section 2.3.1 can be used to provide a good prediction of its data. If an odd pixel

(m, n) has at most 2 neighbors, then clearly a planar based prediction cannot be

generated, so for these pixels we use a simple average. More specifically, whenever

|Nm,n| > 3, pm,n(Nm,n) = −
(

[m n 1] ·
(

At
m,nAm,n

)−1
·At

m,n

)t

, where Nm,n =

{(i1, j1), (i2, j2), . . . , (i|Nm,n|, j|Nm,n|)} and

Am,n =













i1 j1 1

...
...

...

i|Nm,n| j|Nm,n| 1













.

Whenever |Nm,n| = 1 or |Nm,n| = 2, pm,n(Nm,n) = − 1
|Nm,n|

. For the update filters,

we choose the orthogonalizing update filter design proposed in Section 2.4.2.

5.3.1.2 Tree Construction

In this thesis, we compute a set of discontinuities D is defined using edges in an

image. We use the edge detector and the corresponding graph described in Sec-

tion 5.2. A tree is then constructed this graph (which has no links which cross over

edges). In early work by us [53], MSTs were used to avoid filtering across disconti-

nuities. However, when applying multiple levels of decomposition by subsampling

the MSTs based on parity of depth, there is no guarantee that pixels will be regu-

larly spaced at each level. This causes the sampling grid at each level to be highly

irregular, i.e., the distance (in the image) between pixels that are neighbors in the

105

tree can vary significantly. As a result, it is possible that a group of pixels that

are neighbors in the tree are located far from each other in the image. This loss of

“spatial locality” in the filtering operations does not occur when using separable

2D transform (for which the resulting 2D filters in a given subband have the same

spatial localization at all positions).

This was addressed in later work by the author [56] by constructing (horizontal

and vertical) trees that avoid filtering across major discontinuities while preserving

regular sampling grids over multiple levels of decomposition. This tree construction

process is now described for one level of decomposition. The binary edge map is

encoded using, e.g., JBIG [24] and is sent as side information so that the decoder can

construct the same trees. Sample trees are shown in Figure 5.1 with discontinuities

shown by red dots.

The horizontal tree is constructed starting from pixels in the right-most column

of the image to pixels in the left-most column. Assume N is even and that pixels

in the right-most column are even. We want pixels in an even (odd) column to be

even (odd) as to preserve column-wise parity. To do so, we just need to specify a

parent for each pixel such that the link between itself and its parent does not cross

over discontinuities and does not induce cycles. Since construction progresses from

right to left, a natural set of parental candidates for pixel (m, n) is a set of pixels to

its left given by {(k, n − 1)|ml ≤ k ≤ mu} for ml ≤ m ≤ mu. Let Candm,n denote

this set of candidates. To avoid filtering across discontinuities, we must eliminate

any candidate (k, n − 1) such that a discontinuity point exists between (m, n) and

(k, n − 1). So if Lk,n−1
m,n is the set of points on the line segment between (m, n) and

(k, n − 1), we have

Candm,n = {(k, n − 1)|ml ≤ k ≤ mu, L
k,n−1
m,n ∩ D = ∅.} (5.3)

106

If Candm,n 6= ∅, the parent of (m, n) is chosen as the pixel in Candm,n closest to

(m, n). Figure 5.1 (b) shows an example of this horizontal tree when ml = m − 2

and mu = m + 2.

If Candm,n = ∅ (no valid parental candidates), we do the following. If n is odd,

the parent of (m, n) is the sink. In the example of Figure 5.1 (a), all of the pixels

in the first column have no valid parental candidates, thus, their parent is simply

the sink. If n is even, then setting the parent of (m, n) as the sink will not preserve

the proper parity. Instead, we can set the parent of (m, n) as (m, n + 1), in which

case the parent of (m, n + 1) must be set as the sink to avoid creating a cycle. For

the same example, pixel (4, 4) is even with Cand4,4 = ∅ so its parent is (4, 5) and

the parent of (4, 5) is the sink.

Each vertical tree is constructed in a similar manner. Note how the horizontal

and vertical trees in Figure 5.1 (b), (c) and (d) avoid filtering across discontinuities.

5.3.1.3 Separable Tree-based Transforms

Note that we can compute the transform over multiple trees, with different orien-

tations, with a different tree used at each level of decomposition. We now outline

a general framework for computing general 2D transforms along multiple trees in

a separable manner, with the main goal of exploiting directionality in images. A

simple example of such separable trees is shown in Figure 5.1. Suppose we are

given an arbitrary method for constructing trees that follow the geometric flow in

an image given a prespecified root node (or more generally, set of root nodes). For

a one level decomposition (using a tree in one direction followed by 2 trees in an-

other), we would first apply 1 level of decomposition along one tree T1 (as shown

in Fig 5.1(b)) oriented in one direction, then split the set of coefficients in T1 into

even (low pass) and odd (high pass) subsets (according to their depths in T1) and

107

(a) Toy Image with Edges
0

2

4

6

8

0 2 4 6 8

(b) Horizontal Tree

0

2

4

6

8

0 2 4 6 8

(c) Vertical Tree on Odds
0

2

4

6

8

0 2 4 6 8

(d) Vertical Tree on Evens

Figure 5.1: Example to illustrate tree construction, where links in the tree (denoted
by blue lines between pixels) are not allowed to cross edges in the image (denoted
by red dots)

then run a one level transform along a second tree T1,l (as shown in Fig 5.1(c)) and

third tree T1,h (as shown in Fig 5.1(d)) over the even and odd subsets respectively.

5.3.2 Experimental Results

We compare the performance of our proposed tree-based lifting transform against

the standard 9/7 separable transform [67], the standard 5/3 separable transform [67]

and second generation bandelets [44] 1. All of the transform coefficients are encoded

using SPIHT [49]2. For the tree-based transforms, we also compare mean preserving

update filters (Section 2.4.1) against orthogonalizing update filters (Section 2.4.2).

1http://www.cmap.polytechnique.fr/peyre/bandelets/
2http://www.cipr.rpi.edu/research/SPIHT/

108

The edge maps are generated using the edge detector described in [32] and are

encoded using JBIG [24]. Five levels of decomposition are used in all cases. We

evaluate the relative performance on the standard peppers image and also using the

ground truth depth map taken from the Middlebury data set3. The peppers image

and its corresponding edge map are shown in Figure 5.2(a) and 5.2(b), respectively.

The Tsukuba depth map and its edge map are shown in Figure 5.3(a) and 5.3(b),

respectively.

(a) Peppers image (b) Edge map

Figure 5.2: The Peppers image (a) and its corresponding edge map (b)

Coding performance is shown in Figure 5.4 and 5.5 for the peppers and tsukuba

images, respectively. The edge threshold used here is T = 30. Despite the addi-

tional bits for edge information, the tree-based transforms still gives performance

far superior to the standard transforms, with up to 2 dB increase in PSNR for the

peppers image and 7 dB increase for the tsukuba image. Most of this gain comes

from not filtering across edges. Second generation bandelets [44] only provides up

to 0.2 dB improvement over the standard transforms. Note that that this scheme

3http://vision.middlebury.edu/stereo/

109

(a) Tsukuba depth map (b) Edge map

Figure 5.3: The Tsukuba depth map (a) and its corresponding edge map (b)

does processing in the wavelet domain by searching for the “best” mapping of a

square block onto a 1D line, then applies an orthogonal 1D wavelet transform on

the corresponding 1D signal. However, as was observed in their work, most of the

resulting 1D signals still have many sharp transitions (e.g., edges). Thus, it is still

likely to have some large wavelet coefficients, though the number of total number

of large wavelet coefficients is reduced. On the other hand, our transform operates

in the spatial domain by avoiding filtering across known (i.e., detected) edge loca-

tions. Thus, for these types of piece-wise smooth images with very little texture,

our transforms tend to produce fewer large wavelet coefficients than second gen-

eration bandelets, hence the better performance. However, for images with more

directional texture information, bandelets is likely to do better than our proposed

transforms. We will examine this shortly by using test images that contain a large

amount of texture.

The orthogonalizing update filters provide an additional 0.1 dB to 1.5 dB im-

provement in PSNR over non orthogonalizing update filters, and more gain is seen

at lower bit rates. This is not surprising since the orthogonalizing update filters

110

from Section 2.4.2 showed that this choice of update filters minimizes the recon-

struction MSE due to quantization. Thus, we obtain performance improvements

by (i) not filtering across edges, (ii) using merges and (iii) using orthogonalizing

update filter designs. It is worth noting that using our proposed transform on trees

with merges does better than on trees with no merges, but only provides another

0.05 dB gain on average. Thus, using merges may not provide significant improve-

ments in general. The reconstructed depth maps at 0.25 bpp are also shown in

Figure 5.6. Clearly the reconstruction using our tree-based transform looks much

better and has many fewer ringing artifacts.

0 0.2 0.4 0.6 0.8 1
18

20

22

24

26

28

30

32

34

36

38

bpp

P
S

N
R

PSNR vs. bpp

Tree−based

Bandelets

Standard

Figure 5.4: Rate-distortion curve for various transforms using peppers image. Tree-
based transforms give the best performance, and orthogonalizing update filters
provide additional gain over mean-preserving update filters.

111

0 0.2 0.4 0.6 0.8 1
25

30

35

40

45

50

55

bpp

P
S

N
R

PSNR vs. bpp

Tree−based (Orth. Update)

Tree−based (Non−orth. Update)

Standard

Figure 5.5: Rate-distortion curve for various transforms using depth map image.
Tree-based transforms give the best performance, and orthogonalizing update filters
provide additional gain over mean-preserving update filters.

For the piece-wise smooth images shown in Figures 5.2(a) and 5.3(a), our trans-

form outperforms the standard wavelet filters and 2nd generation bandelets. How-

ever, second generation bandelets will probably outperform our proposed method

for images with many textured regions, particularly since edge detection will not

be very reliable for textured regions. We examine this using the standard Lena

and Barbara images shown in Figures 5.7(a) and 5.7(b), respectively. The corre-

sponding RD curves are shown in Figures 5.8(a) and 5.8(b), respectively. For the

Lena image, 2nd generation bandelets does slightly better at lower bitrates and is

the same at higher rates. On the other hand, our edge-adaptive lifting transform

is worse at lower rates but better at higher rates. The main reason it is worse at

lower rates is because of the high edge map bit rate (around 0.018 bpp), thus, much

112

(a) Tree-based transform (b) Standard 9/7

Figure 5.6: Subjective performance comparison at 0.25 bpp. Our proposed method
has a PSNR of 42.65 dB whereas the standard 9/7 transform has PSNR of 35.83
dB. This difference is clearly reflected in the reconstructed images

of the bitrate is consumed in coding the edge information. For the Barbara image,

our edge-adaptive transform performs about the same as the standard transform

and bandelets at lower bitrates, but (just as with the Lena image) does better at

higher bitrates. The main cause for worse performance at lower bitrates is the same

as with the Lena image. Therefore, our edge-adaptive lifting transform should con-

sistently outperform existing methods for piece-wise smooth images with very little

texture, but not necessarily for images with textured regions at lower bitrates.

113

(a) Lena image (b) Barbara image

Figure 5.7: The Lena image (a) and Barbara image (b)

0 0.2 0.4 0.6 0.8 1
24

26

28

30

32

34

36

38

40

bpp

P
S

N
R

PSNR vs. bpp

Tree−based

Bandelets

Standard

(a) Lena RD Curve

0 0.2 0.4 0.6 0.8 1
20

25

30

35

bpp

P
S

N
R

PSNR vs. bpp

Tree−based

Bandelets

Standard

(b) Barbara RD Curve

Figure 5.8: RD curves for the Lena image (a) and Barbara image (b)

114

5.4 Edge-Adaptive Intra Prediction

We now introduce our edge-adaptive intra prediction scheme originally proposed

in [51]. This follows the same spirit as the wavelet transforms proposed in Sec-

tion 5.3 in that filtering across edges is avoided. However, the algorithms in this

section provide a set of edge-avoiding graphs, whereas in Section 5.3 a set of edge-

avoiding trees is provided. Moreover, only edge-avoiding prediction is considered.

Edge-adaptive wavelet transforms have been proposed in Section 5.3 as well as

in [32, 50]. However, note that these transforms are not easily amenable to block

based processing as used in H.264. Platelets [75] have been proposed for efficient

representation of piece-wise planar images, and these ideas were extended to depth

map encoding in [35]. The coding results of [35] are quite good with respect to

JPEG-2000. However, the edges are approximated by lines, hence, they become

“smoothed out”. This may lead to worse interpolation results. Moreover, only the

parameters for the planar approximation are sent without any residue, so there will

always be some fixed approximation error. In this section we seek to develop a

block-based, edge-aware intra prediction scheme that can preserve the edge infor-

mation in images while also being easy to integrate with H.264.

The intra prediction modes in H.264 provide good predictions for blocks consist-

ing of flat regions or regions with only horizontal, vertical or diagonal edges, e.g.,

Figure 5.9(a) and 5.9(b). However, those modes do not provide good predictions

for blocks with arbitrary edge shapes, e.g., Figure 5.9(c). Figure 5.10 shows the

predicted pixels (pixels a-p) and predictor pixels (pixels A-M) used in H.264 4 × 4

intra prediction. In blocks such as Figure 5.9(c) there will often be edges between

pixels and their predictors. This leads to large prediction residuals which require

more bits to be represented. Moreover, when used to encode depth map images

115

used for view synthesis in a multi-view video coding system, quantization of these

large residuals produces ringing artifacts around the depth map edges, and these

tend to produce annoying visual artifacts in the synthesized views. To address

this inefficiency, we develop an edge-aware intra prediction scheme that provides

accurate predictions for blocks with arbitrary edge shapes. Our proposed scheme

provides an exact representation (up to quantization errors, unlike [35]) and can

be easily integrated with H.264 coding tools (unlike [32, 50]). No such method has

been developed yet to the best of our knowledge.

(a) Horizontal (b) Diagonal (c) Arbitrary

Figure 5.9: Examples of blocks with different edge structure. Blocks such as those
in (a) and (b) can be efficiently represented by existing intra prediction schemes.
Blocks such as those in (c) are not efficiently represented.

e f g h

i j k l
m n o p

I

J

K

L

a b c d

M A B C D E F G H

Figure 5.10: Predicted pixels (a-p) and predictor pixels (A-M) used in H.264.

116

We separate the design of edge-aware intra prediction schemes into three parts:

(i) detection of edge locations, (ii) identification of “valid predictors” which do

not have an edge between themselves and a given pixel, and (iii) prediction of the

intensity of a pixel using the intensities of its “valid predictors”. Edge locations

are found using the technique described in Section 5.2. Valid predictors for each

predicted pixel are then identified by finding paths (in a graph) to predictor pixels

that do not cross edges. A method for choosing a prediction among the valid

predictors is also proposed in the case of depth map images, though more general

prediction choices could be made for other types of images. In fact, the primary

focus of this section is on efficient, edge-preserving depth map coding for use in

multi-view video coding systems, though the ideas presented here can be easily

extended to more general types of images.

Since depth maps typically consist of nearly flat regions separated by edges,

we assume that depth maps are piece-wise constant signals. In this case, the best

prediction for a given pixel is just the intensity value of any of its valid predictors.

In order to optimize the trade-off between depth map bitrate and interpolation

distortion, we leverage results from previous work [26, 27]. In particular, we use

the distortion metric proposed in [27] in the rate-distortion (RD) optimized mode

selection. This yields an additional improvement on top of what the new edge-aware

intra prediction scheme provides.

This section is organized as follows. Section 5.4.1 describes our proposed edge-

adaptive intra prediction scheme. The optimization between depth map bitrate

and interpolation distortion is described in Section 5.4.2. Section 5.4.3 shows ex-

perimental results demonstrating the gains of our proposed methods. In particular,

we are able to reduce the bit rates for coded depth maps by up to 37% for a fixed

interpolated PSNR. Finally, some concluding remarks are made in Section 5.5.

117

5.4.1 Edge-adaptive Intra Prediction

We describe our scheme only in the case of 4 × 4 intra prediction, but it can be

easily extended to other block sizes. We separate the design of an edge-aware intra

prediction scheme into three parts. First we must find edge locations using an

edge detector as described in Section 5.4.1.1. Once we compute the edge locations,

we must then determine the set of “valid predictors” for each pixel in a given

block. This is done using a graph-based representation of the pixels in a block, as

described in Section 5.4.1.2. Finally, for every pixel in a block, we must determine

the prediction value for each valid predictor. This is also described in Section 5.4.1.2

under a piece-wise constant signal model for depth maps.

5.4.1.1 Edge Detection

We compute edge locations using the edge detector in Section 5.2, which is just a

modification of the one used in [32]. This edge detector produces a binary edge

map that must be encoded and sent to the decoder so that it can produce the

same (edge-adaptive) predictions used at the encoder. However, for many test

sequences we observe that the number of bits required to encode the edge map for

the entire image is very large. Thus, it is necessary to control the amount of edge

information that is generated. We describe a block-based coding scheme for the

edge information in Section 5.4.1.3.

5.4.1.2 Predictor Selection

In order to find accurate predictors for each pixel, we must first identify valid

prediction neighbors. Then, given the set of valid predictors, we must compute

prediction values. We identify the “valid predictors” of each pixel as follows. First,

118

for each block we form an undirected graph G = (V, E) which has as vertices the

pixels a-p in the given block and the pixels A-M from previously coded blocks (see

Figure 5.10). For each pixel (i, j), we restrict the connections to be only with its

left, right, top and bottom neighbors, i.e., pixel (i, j) can only have connections

with pixel (i, j−1), (i, j +1), (i−1, j) and (i+1, j). Then for pixel (i, j), we define

a connection between (i, j) and (i, j − 1) if and only if there is no edge between

them, i.e., [(i, j), (i, j − 1)] ∈ E if and only if B(2i, 2j − 1) = 0. The connections

between (i, j) and (i, j − 1), (i+1, j) and (i− 1, j) are defined in a similar manner.

As an example, consider the image in Figure 5.11, where two constant regions are

separated by an edge. For the example shown in Figure 5.11 the resulting graph

used for searching for valid neighbors is shown in Figure 5.12. Note that pixel m

only has connections to pixels n and L. It is not connected to pixel i since there is

an edge between them.

e f g h

i j k l
m n o p

I

J

K

L

a b c d

M A B C D E F G H

Figure 5.11: Example of valid predictors. This section of the image consists of two
flat regions separated by an edge shown by the thick solid line. In this case pixels
A, B, . . . , K and M are all valid predictors for pixels a, b, . . . and i, but are not valid
predictors for pixels h and j, k, . . . , p. On the other hand, pixel L is only a valid
predictor for pixels h and j, k, . . . , p.

119

a b c

h

nm

lkji

gfe

d

o pL

K

J

HFEDCBAM G

I

Figure 5.12: Example of graph used to find valid predictors using the same sample
from Figure 5.11. The thick dotted line with small black circles denotes the edges.
Thin solid lines between pixels represent connections in the graph G. The thick
solid line represents the boundary between the current block and previously coded
blocks.

We use this graph-based representation to emphasize the generality of our ap-

proach, where the goal is to (i) find all the valid prediction neighbors of each pixel

at different distances, then to (ii) compute a prediction based on the values of these

valid predictors. However, other techniques could be used that would be easier to

implement in practice. Using this representation, we can systematically determine

if an edge exists between a predicted pixel and a predictor pixel as follows. Note

that there is no edge between two pixels if a path between them exists in G. This

can be checked as follows. First let A(u, v) denote the adjacency matrix of graph

G, where A(u, v) = 1 if [u, v] ∈ E, and A(u, v) = 0 if [u, v] /∈ E. For a general

graph G and adjacency matrix A, a path of length k exists between vertex u and v

if Ak(u, v) > 0 [70]. Thus, for each pixel a-p, we can use this to determine if paths

exist to pixels A-M . The set of valid neighbors for a given pixel is simply the set

of pixels A-M which have a path to it. This entire process is described in detail in

Algorithm 2, where for each pixel x, Vx denotes the set of valid predictors of x. A

120

valid predictor for each pixel can then be chosen among those in the set Vx. In the

implementation of our algorithm, we set kmax = 8.

Algorithm 2 Find Valid Predictors

1: Perform edge detection as described in Section 5.2

2: Form the adjacency matrix A as described in Section 5.2

3: for each pixel x = a, b, . . . , p do

4: Vx = ∅

5: for each pixel y = A, B, . . . , do

6: for k = 1, 2, kmax do

7: if Ak(x, y) > 0 then

8: Vx = Vx ∪ {y}

9: Break for loop

10: end if

11: end for

12: end for

13: end for

Figure 5.12 provides an example of this. For instance, pixel p has a path of

length 4 to pixel L, but it has no paths to pixels A-K nor to pixel M . Thus,

pixel L is the only valid predictor for pixel p. Note that this technique can be

used to identify the set of valid prediction neighbors for other block sizes (e.g., it

can be used for edge-adaptive intra prediction in 16 × 16 blocks). If there exists a

single pixel that does not have a path to any pixel A-M , then the edge-adaptive

intra prediction scheme obviously can not be used. In such cases, only standard

prediction modes are used.

121

Now that we have a way to determine the valid predictors of each pixel, all that

remains is to determine which predictors to use and how to compute the predictions.

If a pixel has multiple valid prediction neighbors, then it is possible to predict the

intensity at each pixel using the values from multiple prediction neighbors. However,

we note that depth maps typically consist of flat regions separated by edges, i.e.,

depth maps are nearly piece-wise constant signals. Thus, if pixel (i′, j′) is a valid

predictor of pixel (i, j), then there is no edge between (i′, j′) and (i, j), hence,

X(i, j) ≈ X(i′, j′) and the prediction error is almost zero. As such, one valid

prediction neighbor is sufficient to predict each pixel. Thus, if a pixel has multiple

valid predictors, we simply choose the one which is the least number of hops away

in the graph G as its predictor. For example, in Figure 5.11 and 5.12, pixels c and

g will use C as its predictor, pixel d will use pixel D, etc. In the event of a tie, we

choose the lowest indexed pixel as the predictor, e.g., pixel a will be predicted by

pixel A, pixel f will be predicted from pixel B.

If a given depth map is not actually piece-wise constant (e.g., it is piece-wise

planar or piece-wise smooth), we can compute more accurate predictions by using

values from multiple valid prediction neighbors. This can be done using a simple av-

erage, a linear / planar approximation, or even by using the spectral representation

of the graph G [19]. This remains a topic for future work.

5.4.1.3 Discussion

Recall that edge-adaptive prediction is likely to be more useful in blocks with ar-

bitrary edge shapes, e.g., Figure 5.9(c). Since it may only be useful for these types

of blocks, it would be better to decide whether edge data should be sent on a block

by block basis. This way we only need to encode edge data for such blocks and

that choice can be encoded with a simple mode bit. In order to compute these

122

predictions for a given block, we also need the edge information from neighboring

reconstructed blocks. For example, in order to find the valid predictors for pixels

a-p in Figure 5.11, we also need to know the edge information from pixels A-M .

However, note that the edge information from neighboring blocks can be derived

from the decoded data. Furthermore, these reconstructed blocks will also be avail-

able at the decoder. Thus, as long as the encoder (i) encodes edge data for such a

block and (ii) derives edge data from neighboring blocks by using the reconstructed

values, it will be possible for the decoder to regenerate the same edge information

used at the encoder. More importantly, edge data only needs to be sent for blocks

in which it helps. We can also add our proposed prediction scheme as another

mode and use it with the RD-optimized mode selections in H.264. This allows us

to further reduce edge information if the RD cost for such blocks (which includes

the bits needed to represent the edges) is not the minimum cost among all intra

prediction modes. Therefore, we only encode edge information for a block if (i)

it has complex edge shapes and (ii) edge-adaptive prediction yields the minimum

cost. The corresponding edge maps can be encoded using schemes such as binary

arithmetic coding.

5.4.2 RD Optimization

When a depth map is compressed using lossy coding, distortion occurs in the re-

constructed depth map. However, depth map decoding errors affect video quality

only indirectly, since depth maps are used for interpolation of intermediate views

(and the depth maps themselves are not displayed). In previous work [27] it was

shown that the depth map error causes translation error in the rendering process,

and using this translation error the resulted distortion in the rendered view can be

123





∆xim

∆yim

1



 =

(

1

Zp (xim, yim) + ∆Zp (xim, yim)
−

1

Zp (xim, yim)

)

Ap′Rp′ {Tp − Tp′}

=
∆Lp (xim, yim)

255

(

1

Znear

−
1

Zfar

)

Ap′Rp′ {Tp − Tp′} . (5.4)

estimated by comparing two video pixel values - one at the same location as the

depth map value to be coded and the other translated due to depth map error,

both in the video belongs to the same view as depth map.

First, the translation error can be found using the intrinsic and extrinsic camera

parameters along with nearest and farthest depth values in the scene as in (5.4),

where ∆xim and ∆yim are translation errors (due to distortion in the decoded

depth map) in the x and y direction, respectively, at image coordinate (xim, yim).

Z denotes the depth value, ∆L is depth map distortion at that pixel, and p and p′

indicate view indices. The camera intrinsic parameters are denoted A, and extrinsic

parameters are the rotation matrix R and translation vector T. Znear and Zfar

indicates the nearest and farthest depth value in the scene, respectively. Note that

these parameters can be calculated once for every depth map values in the scene so

that they can be used to compute the distortion corresponding to each depth map

value. Then, using this translation error, the distortion in the rendered view can

be estimated by measuring the distance between pixel at position (xim, yim) and a

pixel translated to (xim + ∆xim, yim + ∆yim), where both pixels belong to the same

video frame (refer to [27] for details).

We apply this new distortion metric to the RD optimized mode selection process

to decide whether the proposed intra prediction mode will be used for each 4×4 and

124

16 × 16 blocks. That is, when the RD cost is calculated, the estimated distortion

at the rendered view is used with the bitrate to code the depth map.

5.4.3 Experimental Results

An implementation of our proposed prediction method has been made based on

H.264 / AVC (joint model reference software ver. 13.2) and the improvements that

our techniques provide are demonstrated by testing with the ‘Ballet’ and ‘Break-

dancers’ sequences provided by Microsoft Research [80]. We encode 15 video and

depth map frames with intra only coding using QP = 24, 28, 32 and 36, where the

proposed intra prediction applied only to depth map coding. The View Synthesis

Reference Software (VSRS) 3.0 [66] is used to generate the rendered view between

two coded views. We apply our proposed scheme only to 4 × 4 and 16 × 16 blocks

which have both horizontal and vertical edges. Standard prediction modes are used

for all other blocks. A binary edge map is generated for each depth map frame as

described in Section 5.4.1.1. For each 4 × 4 (or 16 × 16) block which has horizon-

tal and vertical edges, the corresponding block in the edge map is encoded with

a binary arithmetic coder. No edge information is encoded for blocks which have

no edges or only horizontal or vertical edges. In order to facilitate a quick im-

plementation, we have simply replaced the horizontal up mode with our proposed

prediction mode for 4 × 4 blocks and replaced the planar prediction mode with

our proposed prediction mode for 16 × 16 blocks. The results for the ‘Ballet’ and

‘Breakdancer’ sequences are shown in Figure 5.13. Our proposed intra prediction

provides Bjontegaard Delta Bit Rate (BDBR) reduction of 26% and 8% for ‘Ballet’

and ‘Breakdancer’ sequences, respectively. The proposed intra prediction with new

125

distortion metric yields BDBR reduction of 29% and 16% for ‘Ballet’ and ‘Break-

dancer’ sequences, respectively. The edge map bit rates for these sequences are

shown in Table 5.1. Note how the edge coding scheme proposed in Section 5.4.1.3

decreases the amount of edge data as the QP value increases. This is reasonable

since at lower (resp. higher) rates the edge map bit rate consumes most of (resp.

less of) the total bit rate.

Breakdancers

30.5
30.6
30.7
30.8
30.9

31
31.1
31.2

1000 2000 3000 4000 5000

Kbps

P
S

N
R

 Y

H.264/AVC
NewIntra
NewIntra+NewRD

Ballet

31.5

32

32.5

33

33.5

1000 2000 3000 4000 5000 6000

Kbps

P
S

N
R

 Y

H.264/AVC
NewIntra
NewIntra+NewRD

Figure 5.13: Comparison of the rate-distortion curves between the proposed meth-
ods and H.264 AVC. x-axis: total bitrate to code two depth maps; y-axis: PSNR
of luminance component between the rendered view and the ground truth.

QP 24 28 32 36
Edges (Ballet) 483 481 469 383
Edges (Break) 403 351 177 17

Table 5.1: Edge map bit rates (in kbps).

When using our new intra mode with inter frames in an IPPP structure, we see

similar gains as shown in Figure 5.14. For this IPPP structure, we see lower bit

rates than for all I frame structure (for fixed interpolation quality). Note that in

H.264, intra modes are also used in inter (P) frames. Thus, our new intra prediction

mode is also utilized to improve the coding efficiency for P frames.

126

Breakdancers

30.5

30.6

30.7

30.8

30.9

31

31.1

0 1000 2000 3000 4000

Kbps

P
S

N
R

 Y

H.264/AVC

NewIntra

Ballet

31.5

32

32.5

33

33.5

0 1000 2000 3000 4000 5000

Kbps

P
S

N
R

 Y

H.264/AVC

NewIntra

Figure 5.14: Comparison of the rate-distortion curves between the proposed meth-
ods and H.264 AVC using IPPP structure. x-axis: total bitrate to code two depth
maps; y-axis: PSNR of luminance component between the rendered view and the
ground truth.

5.5 Conclusions

A general class of separable edge-adaptive tree-based wavelet transforms has been

provided that provides superior RD performance over existing methods. This is

due in part to the orthogonalizing update filter design as well as by using trees that

avoid filtering across discontinuities. It mainly provides improvements for piece-

wise smooth images with little to no texture, but it is not always better for images

with textured regions. Moreover, merges do provide some improvements, but the

gains are not significant as compared with a tree without any path merges. Thus,

using trees with merges may not be useful when performing separable, tree-based

transforms along rows and columns. However, it may be useful for certain classes

of images. This would be an interesting topic for future work.

An edge-adaptive intra prediction scheme for depth map coding was also pro-

posed, and has been integrated with H.264. The edge-adaptive scheme is also con-

structed from an edge map, and a graph-based representation of the pixels based

on the edge information. The edge information is encoded on a per block basis,

and is directly accounted for in the optimized mode selection used in H.264. This

127

new scheme (without the new distortion metric) provides up to a 33% reduction

in total bitrate for a fixed PSNR in the interpolated views. An existing distortion

metric has also been employed that takes into account the quality of the interpo-

lated views and when used with our proposed can provide up to 37% reduction in

total bitrate. This demonstrates the efficacy of the proposed edge-adaptive intra

prediction scheme.

128

Chapter 6

Conclusions

A set of de-correlating tree-based and graph-based transforms have been proposed

which can be applied to irregularly (and regularly) spaced data. In particular, a

general set of lifting transforms on graphs and trees were proposed in Chapter 2.

These transforms are general in that they can be constructed for any graph or any

tree. More specifically, general purpose split designs were proposed and other alter-

native methods were discussed in Section 2.2. Prediction filters were also proposed

in Section 2.3 that provide a high degree of data de-correlation for certain classes

of signals. Moreover, we proposed a novel update filter design in Section 2.4.2 that

makes the LP and HP component orthogonal after each lifting step.

In Chapter 3, general unidirectional transforms and specific transform construc-

tions were then proposed for use in distributed compression WSN. These transforms

are able to handle irregularly spaced node locations, and lead to energy-efficient,

distributed implementations since they can be computed in a unidirectional manner

along a given routing tree, i.e., they can be computed as data is routed toward the

sink. It is exactly because of this unidirectionality that the proposed transforms can

consistently outperform existing distributed transforms for WSN. Since the trans-

forms are constructed along trees, they provide an easy way into joint optimization

129

of transform and routing. As such, we also proposed the joint optimization algo-

rithms described in Chapter 4. Note that the lifting transforms we have proposed

under this unidirectional framework are only bi-orthogonal. A method for con-

structing orthogonal unidirectional transforms was provided in Section 3.3.2, but

only one particular transform construction was given in Section 3.3.1.

As a final application, edge-adaptive graph-based transforms were proposed

for use in image coding. These transforms are edge-adaptive in that they avoid

filtering across edges. In particular, edge-avoiding tree-based lifting transforms were

constructed for images in Section 5.3. These proved effective tools for coding certain

images, e.g., smooth images with very sharp discontinuities, since the number of

large high frequency coefficients can be greatly reduced. This led to very efficient

image representations which significantly outperform standard transforms. Edge-

avoiding graphs were also constructed in Section 5.4 for use in edge-adaptive intra

prediction for efficient depth map coding. In particular, we construct graphs that

avoid crossing edges, then compute predictions along these graphs. This also allows

us to significantly reduce the number of large high frequency coefficients, thereby

leading to very efficient representations of depth map images and, ultimately, to

higher coding efficiency. Moreover, the compression artifacts around edges (e.g.,

ringing artifacts) are also significantly reduced, and this leads to better interpolation

quality in rendered views.

6.1 Future Work

There are a few interesting directions for future work. One is to design more general

types of orthogonal unidirectional transforms. The joint routing and transform op-

timization algorithm could also be improved by (i) developing methods to perform

130

the optimization in a distributed manner and (ii) finding better high correlation

trees to use in place of the MST for the joint optimization process.

Currently the edge-avoiding tree-based lifting transforms for image coding can

only efficiently represent piece-wise smooth images without significant texture. In

particular, this method is able to outperform directional transforms for images that

have very complex edge structure such as, e.g., depth map images. However, since

edge detection typically fails in textured regions, this transform will not provide

an efficient representation for textured image regions. In particular, existing direc-

tional transforms can efficiently represent oriented textured regions such as stripes.

Thus, combining the edge-avoiding lifting transforms with directional transforms

could be one new way to achieve gains from both techniques.

The edge-adaptive intra prediction scheme is capable of representing nearly

piece-wise constant images. However, since only one predictor is used to predict

each pixel, the resulting predictions will not be as accurate for images that have

more variation in pixel intensity such as, e.g., piece-wise planar images. This scheme

can be improved by using more neighbors for computing predictions. Moreover,

both the tree-based lifting transform and the edge-adaptive intra prediction scheme

both use edge information to perform edge-avoiding filtering, both could benefit

from improved edge coding tools.

131

Appendix A

Additional Proofs

This appendix contains additional proofs for Chapter 2.

A.1 Proof of Proposition 1

Let ei denote the i-th identity vector, i.e., ei(i) = 1 and ei(j) = 0 for all j 6= i. Note

that x(n) = et
n ·x and

∑

m∈Nn
pn(m)x(m) = pt

n ·x, thus, we can compute the detail

coefficient as d(n) = x(n)−pt
n ·x = (en−pn)t ·x. Thus, if we let P = [p1 p2 . . . pN]t

denote the N × N prediction matrix and I be the N × N identity matrix, we can

compute detail coefficients as d = (I − P) · x. Note that d(m) = x(m) for m ∈ E .

Furthermore, x(m) = et
m · x and

∑

n∈Nm
um(n)d(n) = ut

m · d = ut
m · (I − P) · x,

so we can compute the smooth coefficient as s(m) = x(m) +
∑

n∈Nm
um(n)d(n) =

(et
m+ut

m ·(I−P))·x. Since m ∈ E , rowm(P) = pt
m = 0t. Thus, (i) et

m ·(I−P) = et
m,

(ii) et
m +ut

m · (I−P) = (em +um)t · (I−P), and (iii) s(m) = (em +um)t · (I−P) ·x.

Therefore, if we let U = [u1 u2 . . . uN]t be the N × N update matrix, the full

transform matrix is T = (I + U) · (I − P) and the transform coefficient vector is

y = (I + U) · (I −P) · x.

132

A.2 Proof of Proposition 2

We only prove that (I−P)−1 = I+P. That (I+U)−1 = I−U follows from similar

arguments. Let No = |O| and Ne = |E|. Without loss of generality, suppose that

O = {1, 2, . . . , No} and E = {No + 1, No + 2, . . . , N}. Under Definition 1, we have

that pn(O) = 0 for every n ∈ O and pm = 0 for all m ∈ E . Thus,

P =







P(O,O) P(O, E)

P(E ,O) P(E , E)







=







0 P(O, E)

0 0






.

Thus,

I ± P =







INo
0

0 INe






±







0 P(O, E)

0 0







=







INo
±P(O, E)

0 INe






,

where INo
and INe

denote the No ×No and Ne ×Ne identity matrices, respectively.

Therefore, (I + P) · (I − P) = (I − P) · (I + P) = I.

A.3 Proof of Proposition 4

We first prove Lemma 1, then use it to prove Proposition 4.

133

Lemma 1 (Orthogonality of the Dual Basis). Let K, L and N be non-negative

integers such that K + L = N . Let A = {a1, a2, . . . , aK} be a set of linearly inde-

pendent vectors in R
N and let B = {b1,b2, . . . ,bL} be a set of linearly independent

vectors orthogonal to vectors in A, i.e., < ai,bj >= 0 for all i and j. Define

A =



















at
1

at
2

...

at
K



















, B =



















bt
1

bt
2

...

bt
L



















and C =







A

B






.

Let C−1 = [c̃1 c̃2 . . . c̃N]. Then

CCt =







AAt 0

0t BBt






,

where 0 is the K × L zero matrix, and moreover,

(C−1)tC−1 =







(AAt)−1 0

0t (BBt)−1






,

Therefore, we also have a similar orthogonality relationship between the dual basis

vectors, i.e., < c̃i, c̃j >= 0 for any i = 1, 2, . . . , K and j = K + 1, K + 2, . . . , N .

Proof. Since every vector in A is orthogonal to every vector in B, the vectors in A

are linearly independent of the vectors in B. Therefore, C has N linearly indepen-

dent columns and C−1 exists. Moreover, ABt = 0 and BAt = 0t. Therefore,

CCt =







AAt 0

0t BBt






.

134

At has linearly independent columns, so for any x 6= 0, Atx 6= 0. Thus, xtAAtx >

0, which implies that AAt is positive definite. Similarly, BBt is positive definite.

By basic matrix properties (C−1)tC−1 = (Ct)−1C−1 = (CCt)−1, thus

(C−1)tC−1 =







(AAt)−1 0

0t (BBt)−1






.

This implies that < c̃i, c̃j >= 0 for any i ≤ K and j ≥ K + 1.

The proof of Proposition 4 is as follows. Let No = |O| and Ne = |E|. The

wavelet coefficient vector is w = (I + U)(I−P)x = Tx. Since T is invertible, T−1

exists and so

x = T−1w

=

N
∑

i=1

w(i)t̃i

=
N
∑

i=1

< ti,x > t̃i

=
∑

i∈E

< ti,x > t̃i +
∑

j∈O

< tj ,x > t̃j

= xe + xo

Without loss of generality, suppose that O = {1, 2, . . . , No} and E = {No + 1, No +

2, . . . , N}. Now define

A =



















tt
1

tt
2

...

tt
No



















, B =



















tt
No+1

tt
No+2

...

tt
N



















and T =







A

B






.

135

Proposition 3 implies that ABt = 0 and BAt = 0t and Lemma 1 implies that

(T−1)tT−1 =







(AAt)−1 0

0t (BBt)−1






.

Therefore, < t̃i, t̃j >= 0 for all i ∈ O and j ∈ E . Moreover, < xe,xo >= 0.

136

Bibliography

[1] J. Acimovic, B. Beferull-Lozano, and R. Cristescu. Adaptive distributed al-
gorithms for power-efficient data gathering in sensor networks. Intl. Conf. on
Wireless Networks, Comm. and Mobile Computing, 2:946–951, June 2005.

[2] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey
on sensor networks. IEEE Communication Magazine, 40(8):102–114, August
2002.

[3] R. Baraniuk, A. Cohen, and R. Wagner. Approximation and compression of
scattered data by meshless multiscale decompositions. Applied Computational
Harmonic Analysis, 25(2):133–147, September 2008.

[4] C. Chong and S. P. Kumar. Sensor networks: Evolution, opportunities, and
challenges. Proceedings of the IEEE, 91(8):1247–1256, August 2003.

[5] D. Chu, A. Deshpande, J. Hellerstein, and W. Hong. Approximate data col-
lection in sensor networks using probabilistic models. In IEEE International
Conference on Data Engineering (ICDE), pages 3–7. IEEE, 2006.

[6] A. Ciancio. Distributed Wavelet Compression Algorithms for Wireless Sensor
Networks. PhD thesis, University of Southern California, 2006.

[7] A. Ciancio and A. Ortega. A flexible distributed wavelet compression algo-
rithm for wireless sensor networks using lifting. In Proc. of ICASSP’04, 2004.

[8] A. Ciancio and A. Ortega. Distributed wavelet compression algorithm for
wireless multihop sensor networks based on lifting. In Proc. of ICASSP’05,
2005.

[9] A. Ciancio, S. Pattem, A. Ortega, and B. Krishnamachari. Energy-efficient
data representation and routing for wireless sensor networks based on a dis-
tributed wavelet compression algorithm. In Proc. of IPSN’06, April 2006.

[10] I. Cidon and M. Sidi. Distributed assignment algorithms for multi-hop packet-
radio networks. IEEE Transactions on Computers, 38(10), October 1989.

137

[11] R.L. Claypoole, G.M. Davis, W. Sweldens, and R.G. Baraniuk. Nonlinear
wavelet transforms for image coding via lifting. IEEE Transactions on Image
Processing, 12(12):1449–1459, December 2003.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, 2nd edition, 2001.

[13] R. Cristescu, B. Beferull-Lozaon, and M. Vetterli. Networked Slepian-Wolf:
Theory, algorithms, and scaling laws. IEEE Transactions on Information The-
ory, 51(12):4057–4073, December 2005.

[14] D. Estrin, D. Ganesan, S. Ratnasamy, and H. Wang. Coping with irregu-
lar spatio-temporal sampling in sensor networks. ACM SIGCOMM Comput.
Commun. Rev., 34(1):125–130, January 2004.

[15] M. Gastpar, P. Dragotti, and M. Vetterli. The distributed Karhunen-Loève
transform. IEEE Transactions on Information Theory, 52(12):5177–5196, De-
cember 2006.

[16] B. Girod and S. Han. Optimum update for motion-compensated lifting. IEEE
Signal Processing Letters, 12(2):150–153, February 2005.

[17] V.K. Goyal. Theoretical foundations of transform coding. IEEE Signal Pro-
cessing Magazine, 18(5):9–21, September 2001.

[18] R. Gummadi, X. Li, R. Govindan, C. Shahabi, and W. Hong. Energy-efficient
data organization and query processing in sensor networks. SIGBED Review,
2(1), January 2005.

[19] D. K. Hammond, P. Vandergheynst, and R. Gribonval. Wavelets on graphs
via spectral graph theory. Technical Report arXiv:0912.3848, Dec 2009.

[20] S. Haykin. Adaptive Filter Theory. Prentice Hall, 4th edition, 2004.

[21] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient
routing protocols for wireless microsensor networks. In Proc. of Hawaii Intl.
Conf. on Sys. Sciences, January 2000.

[22] A.K. Jain. Fundamentals of Digital Image Processing. Prentice Hall, 1989.

[23] M. Jansen, G. Nason, and B. Silverman. Scattered data smoothing by empir-
ical Bayesian shrinkage of second generation wavelet coefficients. In Wavelets:
Applications in Signal and Image Processing IX, Proc. of SPIE, 2001.

[24] JBIG. Progressive Bi-level Image Compression. In ISO/IEC ITU Recommen-
dation T.82, 1993.

138

[25] D. Jungnickel. Graphs, Networks and Algorithms. Springer-Verlag Press, 2nd
edition, 2004.

[26] W.-S. Kim, A. Ortega, P. Lai, D. Tian, and C. Gomila. Depth map distortion
analysis for view rendering and depth coding. In Proc. of ICIP’09, 2009.

[27] W.-S. Kim, A. Ortega, P. Lai, D. Tian, and C. Gomila. Depth map coding
with distortion estimation of rendered view. In Proc. of VIPC’10, 2010.

[28] J. Kovacevic and M. Vetterli. Wavelets and Subband Coding. Prentice Hall,
1995.

[29] P. Lai, A. Ortega, C. Dorea, P. Yin, and C. Gomila. Improving view rendering
quality and coding efficiency by suppressing compression artifacts in depth-
image coding. In Proc. of VCIP’09, 2009.

[30] S. Li and W. Li. Shape-adaptive discrete wavelet transforms for arbitrarily
shaped visual object coding. IEEE Transactions on Circuits and Systems for
Video Technology, 10(5):725–743, August 2000.

[31] H. Luo, Y.C. Tong, and G. Pottie. A two-stage DPCM scheme for wireless
sensor networks. In Proc. of ICASSP’05, March 2005.

[32] M. Maitre and M.N. Do. Joint encoding of the depth image based representa-
tion using shape-adaptive wavelets. In Proc. of ICIP’08, 2008.

[33] S. Mallat. A Wavelet Tour of Signal Processing. Elsevier, 2nd edition, 1999.

[34] K. Mechitov, W. Kim, G. Agha, and T. Nagayama. High-frequency distributed
sensing for structure monitoring. In In Proc. First Intl. Workshop on Net-
worked Sensing Systems (INSS), 2004.

[35] Y. Morvan, P.H.N. de With, and D. Farin. Platelet-based coding of depth
maps for the transmission of multiview images. volume 6055. SPIE, 2006.

[36] S.K. Narang and A. Ortega. Lifting based wavelet transforms on graphs. In To
Appear in Proc. of Asia Pacific Signal and Information Processing Association
(APSIPA), October 2009.

[37] S.K. Narang, G. Shen, and A. Ortega. Unidirectional graph-based wavelet
transforms for efficient data gathering in sensor networks. In Proc. of
ICASSP’10, March 2010.

[38] H. M. on Great Duck Island. Online data-set located at
http://www.greatduckisland.net.

139

[39] A.V. Oppenheim and R.W. Schafer. Discrete-time Signal Processing. Prentice
Hall, 3rd edition, 2009.

[40] S. Pattem, B. Krishnamachari, and R. Govindan. The impact of spatial corre-
lation on routing with compression in wireless sensor networks. ACM Trans-
actions on Sensor Networks, 4(4):60–66, August 2008.

[41] S. Pattem, G. Shen, Y. Chen, B. Krishnamachari, and A. Ortega. Senzip: An
architecture for distributed en-route compression in wireless sensor networks.
In Workshop on Sensor Networks for Earth and Space Science Applications
(ESSA), April 2009.

[42] W.B. Pennebaker and J.L. Mitchell. JPEG Still Image Data Compression
Standard. Van Nostrand Reinhold, 1993.

[43] E. Le Pennec and S. Mallat. Sparse geometric image representations with
bandelets. IEEE Transactions on Image Processing, 14(4):423– 438, April
2005.

[44] G. Peyre and S. Mallat. Surface compression with geometric bandelets. In
SIGGRAPH ’05, 2005.

[45] S.S. Pradhan, J. Kusuma, and K. Ramchandran. Distributed compression in
a dense microsensor network. IEEE Signal Processing Magazine, pages 51–60,
March 2002.

[46] J.G. Proakis, E.M. Sozer, J.A. Rice, and M. Stojanovic. Shallow water acoustic
networks. IEEE Communications Magazine, 39(11):114–119, 2001.

[47] K.R. Rao and P. Yip. Discrete Cosine Transform: Algorithms, Advantages,
Applications. Academic, 1990.

[48] P. Rickenbach and R. Wattenhofer. Gathering correlated data in sensor net-
works. In Proceedings of the 2004 Joint Workshop on Foundations of Mobile
Computing, October 2004.

[49] A. Said and W.A. Pearlman. A new, fast, and efficient image codec based
on set partitioning in hierarchical trees. IEEE Transactions on Circuits and
Systems for Video Technology, 6(3):243–250, June 1996.

[50] A. Sanchez, G. Shen, and A. Ortega. Edge-preserving depth-map coding using
graph-based wavelets. In Proc. of Asilomar’09, 2009.

[51] G. Shen, W.-S. Kim, A. Ortega, J. Lee, and H.C. Wey. Edge-aware intra
prediction for depth-map coding. In To Appear in Proc. of ICIP’10, September
2010.

140

[52] G. Shen, S. Narang, and A. Ortega. Adaptive distributed transforms for irreg-
ularly sampled wireless sensor networks. In Proc. of ICASSP’09, April 2009.

[53] G. Shen and A. Ortega. Compact image representation using wavelet lifting
along arbitrary trees. In Proc. of ICIP’08, October 2008.

[54] G. Shen and A. Ortega. Joint routing and 2D transform optimization for
irregular sensor network grids using wavelet lifting. In IPSN ’08, April 2008.

[55] G. Shen and A. Ortega. Optimized distributed 2D transforms for irregularly
sampled sensor network grids using wavelet lifting. In Proc. of ICASSP’08,
April 2008.

[56] G. Shen and A. Ortega. Tree-based wavelets for image coding: Orthogonal-
ization and tree selection. In Proc. of PCS’09, May 2009.

[57] G. Shen and A. Ortega. Transform-based distributed data gathering. IEEE
Transactions on Signal Processing, 58(7):3802–3815, July 2010.

[58] G. Shen, S. Pattem, and A. Ortega. Energy-efficient graph-based wavelets for
distributed coding in wireless sensor networks. In Proc. of ICASSP’09, April
2009.

[59] A. Smolic, K. Mueller, N. Stefanoski, J. Ostermann, A. Gotchev, G.B. Akar,
G. Triantafyllidis, and A. Koz. Coding algorithms for 3DTV: A survey. Cir-
cuits and Systems for Video Technology, IEEE Transactions on, 17(11):1606–
1621, Nov. 2007.

[60] K. Sohrabi, J. Gao, V. Ailawadhi, and G. J. Pottie. Protocols for self-
organization of a wireless sensor network. IEEE Personal Communications,
7(5), October 2000.

[61] A. Sridharan and B. Krishnamachari. Max-min fair collision-free scheduling
for wireless sensor networks. In Proc. of IEEE IPCCC Workshop on Multi-hop
Wireless Networks, April 2004.

[62] H. Stark and J.W. Woods. Probability and Random Processes with Applications
to Signal Processing. Prentice Hall, 3rd edition, 2002.

[63] G. Strang. Linear Algebra and its Applications. Thomson Learning, 3rd edi-
tion, 1988.

[64] G. Strang and T. Nguyen. Wavelets and Filter Banks. Wellesley-Cambridge
Press, 1997.

141

[65] W. Sweldens. The lifting scheme: A construction of second generation
wavelets. Tech. report 1995:6, Industrial Mathematics Initiative, Department
of Mathematics, University of South Carolina, 1995.

[66] M. Tanimoto, T. Fujii, and K. Suzuki. View synthesis algorithm in view
synthesis reference software 2.0(VSRS2.0). ISO/IEC JTC1/SC29/WG11, Feb.
2009.

[67] D. Taubman and D. Marcellin. JPEG2000: Image Compression Fundamen-
tals, Standards and Practice. Kluwer Academic Publishers, 1st edition, 2001.

[68] TinyOS-2. Collection tree protocol. http://www.tinyos.net/tinyos-2.x/doc/.

[69] D. Tulone and S. Madden. PAQ: Time series forecasting for approximate query
answering in sensor networks. In Proceedings of the European Conference in
Wireless Sensor Networks (EWSN), pages 21–37. IEEE, February 2006.

[70] G. Valiente. Algorithms on Trees and Graphs. Springer, 1st edition, 2002.

[71] V. Velisavljevic, B. Beferull-Lozano, M. Vetterli, and P.L. Dragotti. Direc-
tionlets: Anisotropic multidirectional representation with separable filtering.
IEEE Transactions on Image Processing, 15(7):1916– 1933, July 2006.

[72] R. Wagner, R. Baraniuk, S. Du, D.B. Johnson, and A. Cohen. An architecture
for distributed wavelet analysis and processing in sensor networks. In IPSN
’06, April 2006.

[73] R. Wagner, H. Choi, R. Baraniuk, and V. Delouille. Distributed wavelet trans-
form for irregular sensor network grids. In IEEE Stat. Sig. Proc. Workshop
(SSP), July 2005.

[74] A. Wang and A. Chandraksan. Energy-efficient DSPs for wireless sensor net-
works. IEEE Signal Processing Magazine, 19(4):68–78, July 2002.

[75] R. Willett and R. Nowak. Platelets: A multiscale approach for recovering
edges and surfaces in photon-limited medical imaging. IEEE Transactions on
Medical Imaging, 22(3):332–350, March 2003.

[76] K. Yamamoto, M. Kitahara, H. Kimata, T. Yendo, T. Fujii, M. Tanimoto,
S. Shimizu, K. Kamikura, and Y. Yashima. Multiview video coding using view
interpolation and color correction. Circuits and Systems for Video Technology,
IEEE Transactions on, 17(11):1436–1449, Nov. 2007.

[77] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient MAC protocol for
wireless sensor networks. In INFOCOM ’02, 2002.

142

[78] B. Zeng and J. Fu. Directional discrete cosine transforms for image coding. In
Proc. of ICME’06, 2006.

[79] Y. Zhu, K. Sundaresan, and R. Sivakumar. Practical limits on achievable
energy improvements and useable delay tolerance in correlation aware data
gathering in wireless sensor networks. In IEEE SECON’05, September 2005.

[80] L. Zitnick, S.B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski. High-
quality video view interpolation using a layered representation. ACM Trans-
actions on Graphics, 23(3), Aug. 2004.

143

